1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names-utils.h" 13 #include "resolve-names.h" 14 #include "flang/Common/Fortran.h" 15 #include "flang/Common/idioms.h" 16 #include "flang/Evaluate/common.h" 17 #include "flang/Evaluate/fold.h" 18 #include "flang/Evaluate/tools.h" 19 #include "flang/Parser/characters.h" 20 #include "flang/Parser/dump-parse-tree.h" 21 #include "flang/Parser/parse-tree-visitor.h" 22 #include "flang/Parser/parse-tree.h" 23 #include "flang/Semantics/scope.h" 24 #include "flang/Semantics/semantics.h" 25 #include "flang/Semantics/symbol.h" 26 #include "flang/Semantics/tools.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <functional> 30 #include <optional> 31 #include <set> 32 33 // Typedef for optional generic expressions (ubiquitous in this file) 34 using MaybeExpr = 35 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 36 37 // Much of the code that implements semantic analysis of expressions is 38 // tightly coupled with their typed representations in lib/Evaluate, 39 // and appears here in namespace Fortran::evaluate for convenience. 40 namespace Fortran::evaluate { 41 42 using common::LanguageFeature; 43 using common::NumericOperator; 44 using common::TypeCategory; 45 46 static inline std::string ToUpperCase(const std::string &str) { 47 return parser::ToUpperCaseLetters(str); 48 } 49 50 struct DynamicTypeWithLength : public DynamicType { 51 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 52 std::optional<Expr<SubscriptInteger>> LEN() const; 53 std::optional<Expr<SubscriptInteger>> length; 54 }; 55 56 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 57 if (length) { 58 return length; 59 } else { 60 return GetCharLength(); 61 } 62 } 63 64 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 65 const std::optional<parser::TypeSpec> &spec) { 66 if (spec) { 67 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 68 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 69 // (viz., an intrinsic type with valid known kind or a non-polymorphic 70 // & non-ABSTRACT derived type). 71 if (const semantics::IntrinsicTypeSpec * 72 intrinsic{typeSpec->AsIntrinsic()}) { 73 TypeCategory category{intrinsic->category()}; 74 if (auto optKind{ToInt64(intrinsic->kind())}) { 75 int kind{static_cast<int>(*optKind)}; 76 if (category == TypeCategory::Character) { 77 const semantics::CharacterTypeSpec &cts{ 78 typeSpec->characterTypeSpec()}; 79 const semantics::ParamValue &len{cts.length()}; 80 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 81 // type guards, but not in array constructors. 82 return DynamicTypeWithLength{DynamicType{kind, len}}; 83 } else { 84 return DynamicTypeWithLength{DynamicType{category, kind}}; 85 } 86 } 87 } else if (const semantics::DerivedTypeSpec * 88 derived{typeSpec->AsDerived()}) { 89 return DynamicTypeWithLength{DynamicType{*derived}}; 90 } 91 } 92 } 93 return std::nullopt; 94 } 95 96 // Utilities to set a source location, if we have one, on an actual argument, 97 // when it is statically present. 98 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 99 x.set_sourceLocation(at); 100 } 101 static void SetArgSourceLocation( 102 std::optional<ActualArgument> &x, parser::CharBlock at) { 103 if (x) { 104 x->set_sourceLocation(at); 105 } 106 } 107 static void SetArgSourceLocation( 108 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 109 if (x && at) { 110 x->set_sourceLocation(*at); 111 } 112 } 113 114 class ArgumentAnalyzer { 115 public: 116 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 117 : context_{context}, source_{context.GetContextualMessages().at()}, 118 isProcedureCall_{false} {} 119 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 120 bool isProcedureCall = false) 121 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 122 bool fatalErrors() const { return fatalErrors_; } 123 ActualArguments &&GetActuals() { 124 CHECK(!fatalErrors_); 125 return std::move(actuals_); 126 } 127 const Expr<SomeType> &GetExpr(std::size_t i) const { 128 return DEREF(actuals_.at(i).value().UnwrapExpr()); 129 } 130 Expr<SomeType> &&MoveExpr(std::size_t i) { 131 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 132 } 133 void Analyze(const common::Indirection<parser::Expr> &x) { 134 Analyze(x.value()); 135 } 136 void Analyze(const parser::Expr &x) { 137 actuals_.emplace_back(AnalyzeExpr(x)); 138 SetArgSourceLocation(actuals_.back(), x.source); 139 fatalErrors_ |= !actuals_.back(); 140 } 141 void Analyze(const parser::Variable &); 142 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 143 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 144 std::optional<DynamicType> otherType); 145 146 bool IsIntrinsicRelational( 147 RelationalOperator, const DynamicType &, const DynamicType &) const; 148 bool IsIntrinsicLogical() const; 149 bool IsIntrinsicNumeric(NumericOperator) const; 150 bool IsIntrinsicConcat() const; 151 152 bool CheckConformance(); 153 bool CheckForNullPointer(const char *where = "as an operand here"); 154 155 // Find and return a user-defined operator or report an error. 156 // The provided message is used if there is no such operator. 157 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 158 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 159 template <typename E> 160 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 161 return TryDefinedOp( 162 context_.context().languageFeatures().GetNames(opr), msg); 163 } 164 // Find and return a user-defined assignment 165 std::optional<ProcedureRef> TryDefinedAssignment(); 166 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 167 std::optional<DynamicType> GetType(std::size_t) const; 168 void Dump(llvm::raw_ostream &); 169 170 private: 171 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 172 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 173 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 174 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 175 bool AreConformable() const; 176 const Symbol *FindBoundOp( 177 parser::CharBlock, int passIndex, const Symbol *&definedOp); 178 void AddAssignmentConversion( 179 const DynamicType &lhsType, const DynamicType &rhsType); 180 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 181 int GetRank(std::size_t) const; 182 bool IsBOZLiteral(std::size_t i) const { 183 return evaluate::IsBOZLiteral(GetExpr(i)); 184 } 185 void SayNoMatch(const std::string &, bool isAssignment = false); 186 std::string TypeAsFortran(std::size_t); 187 bool AnyUntypedOrMissingOperand(); 188 189 ExpressionAnalyzer &context_; 190 ActualArguments actuals_; 191 parser::CharBlock source_; 192 bool fatalErrors_{false}; 193 const bool isProcedureCall_; // false for user-defined op or assignment 194 }; 195 196 // Wraps a data reference in a typed Designator<>, and a procedure 197 // or procedure pointer reference in a ProcedureDesignator. 198 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 199 const Symbol &last{ref.GetLastSymbol()}; 200 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 201 if (semantics::IsProcedure(symbol)) { 202 if (auto *component{std::get_if<Component>(&ref.u)}) { 203 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 204 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 205 DIE("unexpected alternative in DataRef"); 206 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 207 if (symbol.has<semantics::GenericDetails>()) { 208 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 209 } else { 210 return Expr<SomeType>{ProcedureDesignator{symbol}}; 211 } 212 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 213 symbol.name().ToString())}; 214 interface && !interface->isRestrictedSpecific) { 215 SpecificIntrinsic intrinsic{ 216 symbol.name().ToString(), std::move(*interface)}; 217 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 218 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 219 } else { 220 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 221 symbol.name()); 222 } 223 return std::nullopt; 224 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 225 return result; 226 } else { 227 if (!context_.HasError(last) && !context_.HasError(symbol)) { 228 AttachDeclaration( 229 Say("'%s' is not an object that can appear in an expression"_err_en_US, 230 last.name()), 231 symbol); 232 context_.SetError(last); 233 } 234 return std::nullopt; 235 } 236 } 237 238 // Some subscript semantic checks must be deferred until all of the 239 // subscripts are in hand. 240 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 241 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 242 int symbolRank{symbol.Rank()}; 243 int subscripts{static_cast<int>(ref.size())}; 244 if (subscripts == 0) { 245 return std::nullopt; // error recovery 246 } else if (subscripts != symbolRank) { 247 if (symbolRank != 0) { 248 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 249 symbolRank, symbol.name(), subscripts); 250 } 251 return std::nullopt; 252 } else if (Component * component{ref.base().UnwrapComponent()}) { 253 int baseRank{component->base().Rank()}; 254 if (baseRank > 0) { 255 int subscriptRank{0}; 256 for (const auto &expr : ref.subscript()) { 257 subscriptRank += expr.Rank(); 258 } 259 if (subscriptRank > 0) { // C919a 260 Say("Subscripts of component '%s' of rank-%d derived type " 261 "array have rank %d but must all be scalar"_err_en_US, 262 symbol.name(), baseRank, subscriptRank); 263 return std::nullopt; 264 } 265 } 266 } else if (const auto *object{ 267 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 268 // C928 & C1002 269 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 270 if (!last->upper() && object->IsAssumedSize()) { 271 Say("Assumed-size array '%s' must have explicit final " 272 "subscript upper bound value"_err_en_US, 273 symbol.name()); 274 return std::nullopt; 275 } 276 } 277 } else { 278 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 279 // which, if not an object, must be a construct entity from 280 // SELECT TYPE/RANK or ASSOCIATE. 281 CHECK(symbol.has<semantics::AssocEntityDetails>()); 282 } 283 return Designate(DataRef{std::move(ref)}); 284 } 285 286 // Applies subscripts to a data reference. 287 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 288 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 289 if (subscripts.empty()) { 290 return std::nullopt; // error recovery 291 } 292 return common::visit( 293 common::visitors{ 294 [&](SymbolRef &&symbol) { 295 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 296 }, 297 [&](Component &&c) { 298 return CompleteSubscripts( 299 ArrayRef{std::move(c), std::move(subscripts)}); 300 }, 301 [&](auto &&) -> MaybeExpr { 302 DIE("bad base for ArrayRef"); 303 return std::nullopt; 304 }, 305 }, 306 std::move(dataRef.u)); 307 } 308 309 // Top-level checks for data references. 310 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 311 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 312 const Symbol &symbol{component->GetLastSymbol()}; 313 int componentRank{symbol.Rank()}; 314 if (componentRank > 0) { 315 int baseRank{component->base().Rank()}; 316 if (baseRank > 0) { // C919a 317 Say("Reference to whole rank-%d component '%%%s' of " 318 "rank-%d array of derived type is not allowed"_err_en_US, 319 componentRank, symbol.name(), baseRank); 320 } 321 } 322 } 323 return Designate(std::move(dataRef)); 324 } 325 326 // Parse tree correction after a substring S(j:k) was misparsed as an 327 // array section. N.B. Fortran substrings have to have a range, not a 328 // single index. 329 static void FixMisparsedSubstring(const parser::Designator &d) { 330 auto &mutate{const_cast<parser::Designator &>(d)}; 331 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 332 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 333 &dataRef->u)}) { 334 parser::ArrayElement &arrElement{ae->value()}; 335 if (!arrElement.subscripts.empty()) { 336 auto iter{arrElement.subscripts.begin()}; 337 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 338 if (!std::get<2>(triplet->t) /* no stride */ && 339 ++iter == arrElement.subscripts.end() /* one subscript */) { 340 if (Symbol * 341 symbol{common::visit( 342 common::visitors{ 343 [](parser::Name &n) { return n.symbol; }, 344 [](common::Indirection<parser::StructureComponent> 345 &sc) { return sc.value().component.symbol; }, 346 [](auto &) -> Symbol * { return nullptr; }, 347 }, 348 arrElement.base.u)}) { 349 const Symbol &ultimate{symbol->GetUltimate()}; 350 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 351 if (!ultimate.IsObjectArray() && 352 type->category() == semantics::DeclTypeSpec::Character) { 353 // The ambiguous S(j:k) was parsed as an array section 354 // reference, but it's now clear that it's a substring. 355 // Fix the parse tree in situ. 356 mutate.u = arrElement.ConvertToSubstring(); 357 } 358 } 359 } 360 } 361 } 362 } 363 } 364 } 365 } 366 367 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 368 auto restorer{GetContextualMessages().SetLocation(d.source)}; 369 FixMisparsedSubstring(d); 370 // These checks have to be deferred to these "top level" data-refs where 371 // we can be sure that there are no following subscripts (yet). 372 // Substrings have already been run through TopLevelChecks() and 373 // won't be returned by ExtractDataRef(). 374 if (MaybeExpr result{Analyze(d.u)}) { 375 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 376 return TopLevelChecks(std::move(*dataRef)); 377 } 378 return result; 379 } 380 return std::nullopt; 381 } 382 383 // A utility subroutine to repackage optional expressions of various levels 384 // of type specificity as fully general MaybeExpr values. 385 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 386 return AsGenericExpr(std::move(x)); 387 } 388 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 389 if (x) { 390 return AsMaybeExpr(std::move(*x)); 391 } 392 return std::nullopt; 393 } 394 395 // Type kind parameter values for literal constants. 396 int ExpressionAnalyzer::AnalyzeKindParam( 397 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 398 if (!kindParam) { 399 return defaultKind; 400 } 401 return common::visit( 402 common::visitors{ 403 [](std::uint64_t k) { return static_cast<int>(k); }, 404 [&](const parser::Scalar< 405 parser::Integer<parser::Constant<parser::Name>>> &n) { 406 if (MaybeExpr ie{Analyze(n)}) { 407 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 408 int iv = *i64; 409 if (iv == *i64) { 410 return iv; 411 } 412 } 413 } 414 return defaultKind; 415 }, 416 }, 417 kindParam->u); 418 } 419 420 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 421 struct IntTypeVisitor { 422 using Result = MaybeExpr; 423 using Types = IntegerTypes; 424 template <typename T> Result Test() { 425 if (T::kind >= kind) { 426 const char *p{digits.begin()}; 427 using Int = typename T::Scalar; 428 typename Int::ValueWithOverflow num{0, false}; 429 if (isNegated) { 430 auto unsignedNum{Int::Read(p, 10, false /*unsigned*/)}; 431 num.value = unsignedNum.value.Negate().value; 432 num.overflow = unsignedNum.overflow || num.value > Int{0}; 433 if (!num.overflow && num.value.Negate().overflow && 434 !analyzer.context().IsInModuleFile(digits)) { 435 analyzer.Say(digits, 436 "negated maximum INTEGER(KIND=%d) literal"_port_en_US, T::kind); 437 } 438 } else { 439 num = Int::Read(p, 10, true /*signed*/); 440 } 441 if (!num.overflow) { 442 if (T::kind > kind) { 443 if (!isDefaultKind || 444 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 445 return std::nullopt; 446 } else if (analyzer.context().ShouldWarn( 447 LanguageFeature::BigIntLiterals)) { 448 analyzer.Say(digits, 449 "Integer literal is too large for default INTEGER(KIND=%d); " 450 "assuming INTEGER(KIND=%d)"_port_en_US, 451 kind, T::kind); 452 } 453 } 454 return Expr<SomeType>{ 455 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(num.value)}}}}; 456 } 457 } 458 return std::nullopt; 459 } 460 ExpressionAnalyzer &analyzer; 461 parser::CharBlock digits; 462 int kind; 463 bool isDefaultKind; 464 bool isNegated; 465 }; 466 467 template <typename PARSED> 468 MaybeExpr ExpressionAnalyzer::IntLiteralConstant( 469 const PARSED &x, bool isNegated) { 470 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 471 bool isDefaultKind{!kindParam}; 472 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 473 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 474 auto digits{std::get<parser::CharBlock>(x.t)}; 475 if (MaybeExpr result{common::SearchTypes( 476 IntTypeVisitor{*this, digits, kind, isDefaultKind, isNegated})}) { 477 return result; 478 } else if (isDefaultKind) { 479 Say(digits, 480 "Integer literal is too large for any allowable " 481 "kind of INTEGER"_err_en_US); 482 } else { 483 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 484 kind); 485 } 486 } 487 return std::nullopt; 488 } 489 490 MaybeExpr ExpressionAnalyzer::Analyze( 491 const parser::IntLiteralConstant &x, bool isNegated) { 492 auto restorer{ 493 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 494 return IntLiteralConstant(x, isNegated); 495 } 496 497 MaybeExpr ExpressionAnalyzer::Analyze( 498 const parser::SignedIntLiteralConstant &x) { 499 auto restorer{GetContextualMessages().SetLocation(x.source)}; 500 return IntLiteralConstant(x); 501 } 502 503 template <typename TYPE> 504 Constant<TYPE> ReadRealLiteral( 505 parser::CharBlock source, FoldingContext &context) { 506 const char *p{source.begin()}; 507 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 508 CHECK(p == source.end()); 509 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 510 auto value{valWithFlags.value}; 511 if (context.flushSubnormalsToZero()) { 512 value = value.FlushSubnormalToZero(); 513 } 514 return {value}; 515 } 516 517 struct RealTypeVisitor { 518 using Result = std::optional<Expr<SomeReal>>; 519 using Types = RealTypes; 520 521 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 522 : kind{k}, literal{lit}, context{ctx} {} 523 524 template <typename T> Result Test() { 525 if (kind == T::kind) { 526 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 527 } 528 return std::nullopt; 529 } 530 531 int kind; 532 parser::CharBlock literal; 533 FoldingContext &context; 534 }; 535 536 // Reads a real literal constant and encodes it with the right kind. 537 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 538 // Use a local message context around the real literal for better 539 // provenance on any messages. 540 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 541 // If a kind parameter appears, it defines the kind of the literal and the 542 // letter used in an exponent part must be 'E' (e.g., the 'E' in 543 // "6.02214E+23"). In the absence of an explicit kind parameter, any 544 // exponent letter determines the kind. Otherwise, defaults apply. 545 auto &defaults{context_.defaultKinds()}; 546 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 547 const char *end{x.real.source.end()}; 548 char expoLetter{' '}; 549 std::optional<int> letterKind; 550 for (const char *p{x.real.source.begin()}; p < end; ++p) { 551 if (parser::IsLetter(*p)) { 552 expoLetter = *p; 553 switch (expoLetter) { 554 case 'e': 555 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 556 break; 557 case 'd': 558 letterKind = defaults.doublePrecisionKind(); 559 break; 560 case 'q': 561 letterKind = defaults.quadPrecisionKind(); 562 break; 563 default: 564 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 565 } 566 break; 567 } 568 } 569 if (letterKind) { 570 defaultKind = *letterKind; 571 } 572 // C716 requires 'E' as an exponent, but this is more useful 573 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 574 if (letterKind && kind != *letterKind && expoLetter != 'e') { 575 Say("Explicit kind parameter on real constant disagrees with " 576 "exponent letter '%c'"_port_en_US, 577 expoLetter); 578 } 579 auto result{common::SearchTypes( 580 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 581 if (!result) { // C717 582 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 583 } 584 return AsMaybeExpr(std::move(result)); 585 } 586 587 MaybeExpr ExpressionAnalyzer::Analyze( 588 const parser::SignedRealLiteralConstant &x) { 589 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 590 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 591 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 592 if (sign == parser::Sign::Negative) { 593 return AsGenericExpr(-std::move(realExpr)); 594 } 595 } 596 return result; 597 } 598 return std::nullopt; 599 } 600 601 MaybeExpr ExpressionAnalyzer::Analyze( 602 const parser::SignedComplexLiteralConstant &x) { 603 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 604 if (!result) { 605 return std::nullopt; 606 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 607 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 608 } else { 609 return result; 610 } 611 } 612 613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 614 return Analyze(x.u); 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 618 return AsMaybeExpr( 619 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 620 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 621 } 622 623 // CHARACTER literal processing. 624 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 625 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 626 return std::nullopt; 627 } 628 switch (kind) { 629 case 1: 630 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 631 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 632 string, true)}); 633 case 2: 634 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 635 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 636 string, true)}); 637 case 4: 638 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 639 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 640 string, true)}); 641 default: 642 CRASH_NO_CASE; 643 } 644 } 645 646 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 647 int kind{ 648 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 649 auto value{std::get<std::string>(x.t)}; 650 return AnalyzeString(std::move(value), kind); 651 } 652 653 MaybeExpr ExpressionAnalyzer::Analyze( 654 const parser::HollerithLiteralConstant &x) { 655 int kind{GetDefaultKind(TypeCategory::Character)}; 656 auto value{x.v}; 657 return AnalyzeString(std::move(value), kind); 658 } 659 660 // .TRUE. and .FALSE. of various kinds 661 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 662 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 663 GetDefaultKind(TypeCategory::Logical))}; 664 bool value{std::get<bool>(x.t)}; 665 auto result{common::SearchTypes( 666 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 667 kind, std::move(value)})}; 668 if (!result) { 669 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 670 } 671 return result; 672 } 673 674 // BOZ typeless literals 675 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 676 const char *p{x.v.c_str()}; 677 std::uint64_t base{16}; 678 switch (*p++) { 679 case 'b': 680 base = 2; 681 break; 682 case 'o': 683 base = 8; 684 break; 685 case 'z': 686 break; 687 case 'x': 688 break; 689 default: 690 CRASH_NO_CASE; 691 } 692 CHECK(*p == '"'); 693 ++p; 694 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 695 if (*p != '"') { 696 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 697 x.v); // C7107, C7108 698 return std::nullopt; 699 } 700 if (value.overflow) { 701 Say("BOZ literal '%s' too large"_err_en_US, x.v); 702 return std::nullopt; 703 } 704 return AsGenericExpr(std::move(value.value)); 705 } 706 707 // Names and named constants 708 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 709 auto restorer{GetContextualMessages().SetLocation(n.source)}; 710 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 711 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 712 *kind, AsExpr(ImpliedDoIndex{n.source}))); 713 } 714 if (context_.HasError(n.symbol)) { // includes case of no symbol 715 return std::nullopt; 716 } else { 717 const Symbol &ultimate{n.symbol->GetUltimate()}; 718 if (ultimate.has<semantics::TypeParamDetails>()) { 719 // A bare reference to a derived type parameter (within a parameterized 720 // derived type definition) 721 return Fold(ConvertToType( 722 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 723 } else { 724 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 725 if (const semantics::Scope * 726 pure{semantics::FindPureProcedureContaining( 727 context_.FindScope(n.source))}) { 728 SayAt(n, 729 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 730 n.source, DEREF(pure->symbol()).name()); 731 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 732 } 733 } 734 if (!isWholeAssumedSizeArrayOk_ && 735 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 736 AttachDeclaration( 737 SayAt(n, 738 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 739 n.source), 740 *n.symbol); 741 } 742 return Designate(DataRef{*n.symbol}); 743 } 744 } 745 } 746 747 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 748 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 749 if (MaybeExpr value{Analyze(n.v)}) { 750 Expr<SomeType> folded{Fold(std::move(*value))}; 751 if (IsConstantExpr(folded)) { 752 return folded; 753 } 754 Say(n.v.source, "must be a constant"_err_en_US); // C718 755 } 756 return std::nullopt; 757 } 758 759 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 760 if (MaybeExpr value{Analyze(n.v)}) { 761 // Subtle: when the NullInit is a DataStmtConstant, it might 762 // be a misparse of a structure constructor without parameters 763 // or components (e.g., T()). Checking the result to ensure 764 // that a "=>" data entity initializer actually resolved to 765 // a null pointer has to be done by the caller. 766 return Fold(std::move(*value)); 767 } 768 return std::nullopt; 769 } 770 771 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 772 return Analyze(x.value()); 773 } 774 775 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 776 if (const auto &repeat{ 777 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 778 x.repetitions = -1; 779 if (MaybeExpr expr{Analyze(repeat->u)}) { 780 Expr<SomeType> folded{Fold(std::move(*expr))}; 781 if (auto value{ToInt64(folded)}) { 782 if (*value >= 0) { // C882 783 x.repetitions = *value; 784 } else { 785 Say(FindSourceLocation(repeat), 786 "Repeat count (%jd) for data value must not be negative"_err_en_US, 787 *value); 788 } 789 } 790 } 791 } 792 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 793 } 794 795 // Substring references 796 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 797 const std::optional<parser::ScalarIntExpr> &bound) { 798 if (bound) { 799 if (MaybeExpr expr{Analyze(*bound)}) { 800 if (expr->Rank() > 1) { 801 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 802 } 803 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 804 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 805 return {std::move(*ssIntExpr)}; 806 } 807 return {Expr<SubscriptInteger>{ 808 Convert<SubscriptInteger, TypeCategory::Integer>{ 809 std::move(*intExpr)}}}; 810 } else { 811 Say("substring bound expression is not INTEGER"_err_en_US); 812 } 813 } 814 } 815 return std::nullopt; 816 } 817 818 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 819 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 820 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 821 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 822 if (std::optional<DataRef> checked{ 823 ExtractDataRef(std::move(*newBaseExpr))}) { 824 const parser::SubstringRange &range{ 825 std::get<parser::SubstringRange>(ss.t)}; 826 std::optional<Expr<SubscriptInteger>> first{ 827 GetSubstringBound(std::get<0>(range.t))}; 828 std::optional<Expr<SubscriptInteger>> last{ 829 GetSubstringBound(std::get<1>(range.t))}; 830 const Symbol &symbol{checked->GetLastSymbol()}; 831 if (std::optional<DynamicType> dynamicType{ 832 DynamicType::From(symbol)}) { 833 if (dynamicType->category() == TypeCategory::Character) { 834 return WrapperHelper<TypeCategory::Character, Designator, 835 Substring>(dynamicType->kind(), 836 Substring{std::move(checked.value()), std::move(first), 837 std::move(last)}); 838 } 839 } 840 Say("substring may apply only to CHARACTER"_err_en_US); 841 } 842 } 843 } 844 } 845 return std::nullopt; 846 } 847 848 // CHARACTER literal substrings 849 MaybeExpr ExpressionAnalyzer::Analyze( 850 const parser::CharLiteralConstantSubstring &x) { 851 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 852 std::optional<Expr<SubscriptInteger>> lower{ 853 GetSubstringBound(std::get<0>(range.t))}; 854 std::optional<Expr<SubscriptInteger>> upper{ 855 GetSubstringBound(std::get<1>(range.t))}; 856 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 857 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 858 Expr<SubscriptInteger> length{ 859 common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 860 charExpr->u)}; 861 if (!lower) { 862 lower = Expr<SubscriptInteger>{1}; 863 } 864 if (!upper) { 865 upper = Expr<SubscriptInteger>{ 866 static_cast<std::int64_t>(ToInt64(length).value())}; 867 } 868 return common::visit( 869 [&](auto &&ckExpr) -> MaybeExpr { 870 using Result = ResultType<decltype(ckExpr)>; 871 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 872 CHECK(DEREF(cp).size() == 1); 873 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 874 staticData->set_alignment(Result::kind) 875 .set_itemBytes(Result::kind) 876 .Push(cp->GetScalarValue().value()); 877 Substring substring{std::move(staticData), std::move(lower.value()), 878 std::move(upper.value())}; 879 return AsGenericExpr( 880 Expr<Result>{Designator<Result>{std::move(substring)}}); 881 }, 882 std::move(charExpr->u)); 883 } 884 } 885 return std::nullopt; 886 } 887 888 // Subscripted array references 889 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 890 MaybeExpr &&expr) { 891 if (expr) { 892 if (expr->Rank() > 1) { 893 Say("Subscript expression has rank %d greater than 1"_err_en_US, 894 expr->Rank()); 895 } 896 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 897 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 898 return std::move(*ssIntExpr); 899 } else { 900 return Expr<SubscriptInteger>{ 901 Convert<SubscriptInteger, TypeCategory::Integer>{ 902 std::move(*intExpr)}}; 903 } 904 } else { 905 Say("Subscript expression is not INTEGER"_err_en_US); 906 } 907 } 908 return std::nullopt; 909 } 910 911 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 912 const std::optional<parser::Subscript> &s) { 913 if (s) { 914 return AsSubscript(Analyze(*s)); 915 } else { 916 return std::nullopt; 917 } 918 } 919 920 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 921 const parser::SectionSubscript &ss) { 922 return common::visit( 923 common::visitors{ 924 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 925 const auto &lower{std::get<0>(t.t)}; 926 const auto &upper{std::get<1>(t.t)}; 927 const auto &stride{std::get<2>(t.t)}; 928 auto result{Triplet{ 929 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 930 if ((lower && !result.lower()) || (upper && !result.upper())) { 931 return std::nullopt; 932 } else { 933 return std::make_optional<Subscript>(result); 934 } 935 }, 936 [&](const auto &s) -> std::optional<Subscript> { 937 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 938 return Subscript{std::move(*subscriptExpr)}; 939 } else { 940 return std::nullopt; 941 } 942 }, 943 }, 944 ss.u); 945 } 946 947 // Empty result means an error occurred 948 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 949 const std::list<parser::SectionSubscript> &sss) { 950 bool error{false}; 951 std::vector<Subscript> subscripts; 952 for (const auto &s : sss) { 953 if (auto subscript{AnalyzeSectionSubscript(s)}) { 954 subscripts.emplace_back(std::move(*subscript)); 955 } else { 956 error = true; 957 } 958 } 959 return !error ? subscripts : std::vector<Subscript>{}; 960 } 961 962 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 963 MaybeExpr baseExpr; 964 { 965 auto restorer{AllowWholeAssumedSizeArray()}; 966 baseExpr = Analyze(ae.base); 967 } 968 if (baseExpr) { 969 if (ae.subscripts.empty()) { 970 // will be converted to function call later or error reported 971 } else if (baseExpr->Rank() == 0) { 972 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 973 if (!context_.HasError(symbol)) { 974 if (inDataStmtConstant_) { 975 // Better error for NULL(X) with a MOLD= argument 976 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 977 symbol->name()); 978 } else { 979 Say("'%s' is not an array"_err_en_US, symbol->name()); 980 } 981 context_.SetError(*symbol); 982 } 983 } 984 } else if (std::optional<DataRef> dataRef{ 985 ExtractDataRef(std::move(*baseExpr))}) { 986 return ApplySubscripts( 987 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 988 } else { 989 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 990 } 991 } 992 // error was reported: analyze subscripts without reporting more errors 993 auto restorer{GetContextualMessages().DiscardMessages()}; 994 AnalyzeSectionSubscripts(ae.subscripts); 995 return std::nullopt; 996 } 997 998 // Type parameter inquiries apply to data references, but don't depend 999 // on any trailing (co)subscripts. 1000 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 1001 return common::visit( 1002 common::visitors{ 1003 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 1004 [](Component &&component) { 1005 return NamedEntity{std::move(component)}; 1006 }, 1007 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 1008 [](CoarrayRef &&coarrayRef) { 1009 return NamedEntity{coarrayRef.GetLastSymbol()}; 1010 }, 1011 }, 1012 std::move(designator.u)); 1013 } 1014 1015 // Components of parent derived types are explicitly represented as such. 1016 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1017 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1018 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1019 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1020 } 1021 if (&component.owner() == &scope) { 1022 return Component{std::move(base), component}; 1023 } 1024 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1025 if (const Symbol * 1026 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1027 if (const auto *object{ 1028 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1029 if (const auto *parentType{object->type()}) { 1030 if (const semantics::Scope * 1031 parentScope{parentType->derivedTypeSpec().scope()}) { 1032 return CreateComponent( 1033 DataRef{Component{std::move(base), *parentComponent}}, 1034 component, *parentScope); 1035 } 1036 } 1037 } 1038 } 1039 } 1040 return std::nullopt; 1041 } 1042 1043 // Derived type component references and type parameter inquiries 1044 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1045 MaybeExpr base{Analyze(sc.base)}; 1046 Symbol *sym{sc.component.symbol}; 1047 if (!base || !sym || context_.HasError(sym)) { 1048 return std::nullopt; 1049 } 1050 const auto &name{sc.component.source}; 1051 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1052 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1053 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1054 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1055 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1056 if (dyType->category() == TypeCategory::Integer) { 1057 auto restorer{GetContextualMessages().SetLocation(name)}; 1058 return Fold(ConvertToType(*dyType, 1059 AsGenericExpr(TypeParamInquiry{ 1060 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1061 } 1062 } 1063 Say(name, "Type parameter is not INTEGER"_err_en_US); 1064 } else { 1065 Say(name, 1066 "A type parameter inquiry must be applied to " 1067 "a designator"_err_en_US); 1068 } 1069 } else if (!dtSpec || !dtSpec->scope()) { 1070 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1071 return std::nullopt; 1072 } else if (std::optional<DataRef> dataRef{ 1073 ExtractDataRef(std::move(*dtExpr))}) { 1074 if (auto component{ 1075 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1076 return Designate(DataRef{std::move(*component)}); 1077 } else { 1078 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1079 dtSpec->typeSymbol().name()); 1080 } 1081 } else { 1082 Say(name, 1083 "Base of component reference must be a data reference"_err_en_US); 1084 } 1085 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1086 // special part-ref: %re, %im, %kind, %len 1087 // Type errors on the base of %re/%im/%len are detected and 1088 // reported in name resolution. 1089 using MiscKind = semantics::MiscDetails::Kind; 1090 MiscKind kind{details->kind()}; 1091 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1092 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1093 if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) { 1094 // Represent %RE/%IM as a designator 1095 Expr<SomeReal> realExpr{common::visit( 1096 [&](const auto &z) { 1097 using PartType = typename ResultType<decltype(z)>::Part; 1098 auto part{kind == MiscKind::ComplexPartRe 1099 ? ComplexPart::Part::RE 1100 : ComplexPart::Part::IM}; 1101 return AsCategoryExpr(Designator<PartType>{ 1102 ComplexPart{std::move(*dataRef), part}}); 1103 }, 1104 zExpr->u)}; 1105 return AsGenericExpr(std::move(realExpr)); 1106 } 1107 } 1108 } else if (kind == MiscKind::KindParamInquiry || 1109 kind == MiscKind::LenParamInquiry) { 1110 ActualArgument arg{std::move(*base)}; 1111 SetArgSourceLocation(arg, name); 1112 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1113 } else { 1114 DIE("unexpected MiscDetails::Kind"); 1115 } 1116 } else { 1117 Say(name, "derived type required before component reference"_err_en_US); 1118 } 1119 return std::nullopt; 1120 } 1121 1122 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1123 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1124 DataRef *dataRef{&*maybeDataRef}; 1125 std::vector<Subscript> subscripts; 1126 SymbolVector reversed; 1127 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1128 subscripts = std::move(aRef->subscript()); 1129 reversed.push_back(aRef->GetLastSymbol()); 1130 if (Component * component{aRef->base().UnwrapComponent()}) { 1131 dataRef = &component->base(); 1132 } else { 1133 dataRef = nullptr; 1134 } 1135 } 1136 if (dataRef) { 1137 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1138 reversed.push_back(component->GetLastSymbol()); 1139 dataRef = &component->base(); 1140 } 1141 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1142 reversed.push_back(*baseSym); 1143 } else { 1144 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1145 } 1146 } 1147 std::vector<Expr<SubscriptInteger>> cosubscripts; 1148 bool cosubsOk{true}; 1149 for (const auto &cosub : 1150 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1151 MaybeExpr coex{Analyze(cosub)}; 1152 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1153 cosubscripts.push_back( 1154 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1155 } else { 1156 cosubsOk = false; 1157 } 1158 } 1159 if (cosubsOk && !reversed.empty()) { 1160 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1161 const Symbol &symbol{reversed.front()}; 1162 if (numCosubscripts != symbol.Corank()) { 1163 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1164 symbol.name(), symbol.Corank(), numCosubscripts); 1165 } 1166 } 1167 for (const auto &imageSelSpec : 1168 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1169 common::visit( 1170 common::visitors{ 1171 [&](const auto &x) { Analyze(x.v); }, 1172 }, 1173 imageSelSpec.u); 1174 } 1175 // Reverse the chain of symbols so that the base is first and coarray 1176 // ultimate component is last. 1177 if (cosubsOk) { 1178 return Designate( 1179 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1180 std::move(subscripts), std::move(cosubscripts)}}); 1181 } 1182 } 1183 return std::nullopt; 1184 } 1185 1186 int ExpressionAnalyzer::IntegerTypeSpecKind( 1187 const parser::IntegerTypeSpec &spec) { 1188 Expr<SubscriptInteger> value{ 1189 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1190 if (auto kind{ToInt64(value)}) { 1191 return static_cast<int>(*kind); 1192 } 1193 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1194 return GetDefaultKind(TypeCategory::Integer); 1195 } 1196 1197 // Array constructors 1198 1199 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1200 // all happen to have the same actual type T into one ArrayConstructor<T>. 1201 template <typename T> 1202 ArrayConstructorValues<T> MakeSpecific( 1203 ArrayConstructorValues<SomeType> &&from) { 1204 ArrayConstructorValues<T> to; 1205 for (ArrayConstructorValue<SomeType> &x : from) { 1206 common::visit( 1207 common::visitors{ 1208 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1209 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1210 to.Push(std::move(DEREF(typed))); 1211 }, 1212 [&](ImpliedDo<SomeType> &&impliedDo) { 1213 to.Push(ImpliedDo<T>{impliedDo.name(), 1214 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1215 std::move(impliedDo.stride()), 1216 MakeSpecific<T>(std::move(impliedDo.values()))}); 1217 }, 1218 }, 1219 std::move(x.u)); 1220 } 1221 return to; 1222 } 1223 1224 class ArrayConstructorContext { 1225 public: 1226 ArrayConstructorContext( 1227 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1228 : exprAnalyzer_{c}, type_{std::move(t)} {} 1229 1230 void Add(const parser::AcValue &); 1231 MaybeExpr ToExpr(); 1232 1233 // These interfaces allow *this to be used as a type visitor argument to 1234 // common::SearchTypes() to convert the array constructor to a typed 1235 // expression in ToExpr(). 1236 using Result = MaybeExpr; 1237 using Types = AllTypes; 1238 template <typename T> Result Test() { 1239 if (type_ && type_->category() == T::category) { 1240 if constexpr (T::category == TypeCategory::Derived) { 1241 if (!type_->IsUnlimitedPolymorphic()) { 1242 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1243 MakeSpecific<T>(std::move(values_))}); 1244 } 1245 } else if (type_->kind() == T::kind) { 1246 if constexpr (T::category == TypeCategory::Character) { 1247 if (auto len{type_->LEN()}) { 1248 return AsMaybeExpr(ArrayConstructor<T>{ 1249 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1250 } 1251 } else { 1252 return AsMaybeExpr( 1253 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1254 } 1255 } 1256 } 1257 return std::nullopt; 1258 } 1259 1260 private: 1261 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1262 1263 void Push(MaybeExpr &&); 1264 void Add(const parser::AcValue::Triplet &); 1265 void Add(const parser::Expr &); 1266 void Add(const parser::AcImpliedDo &); 1267 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1268 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1269 std::int64_t stride); 1270 1271 template <int KIND, typename A> 1272 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1273 const A &x) { 1274 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1275 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1276 return Fold(exprAnalyzer_.GetFoldingContext(), 1277 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1278 std::move(DEREF(intExpr)))); 1279 } 1280 return std::nullopt; 1281 } 1282 1283 // Nested array constructors all reference the same ExpressionAnalyzer, 1284 // which represents the nest of active implied DO loop indices. 1285 ExpressionAnalyzer &exprAnalyzer_; 1286 std::optional<DynamicTypeWithLength> type_; 1287 bool explicitType_{type_.has_value()}; 1288 std::optional<std::int64_t> constantLength_; 1289 ArrayConstructorValues<SomeType> values_; 1290 std::uint64_t messageDisplayedSet_{0}; 1291 }; 1292 1293 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1294 if (!x) { 1295 return; 1296 } 1297 if (!type_) { 1298 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1299 // Treat an array constructor of BOZ as if default integer. 1300 if (exprAnalyzer_.context().ShouldWarn( 1301 common::LanguageFeature::BOZAsDefaultInteger)) { 1302 exprAnalyzer_.Say( 1303 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1304 } 1305 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1306 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1307 std::move(*boz))); 1308 } 1309 } 1310 std::optional<DynamicType> dyType{x->GetType()}; 1311 if (!dyType) { 1312 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1313 if (!type_) { 1314 // Treat an array constructor of BOZ as if default integer. 1315 if (exprAnalyzer_.context().ShouldWarn( 1316 common::LanguageFeature::BOZAsDefaultInteger)) { 1317 exprAnalyzer_.Say( 1318 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1319 } 1320 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1321 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1322 std::move(*boz))); 1323 dyType = x.value().GetType(); 1324 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1325 x = std::move(cast); 1326 dyType = *type_; 1327 } else { 1328 if (!(messageDisplayedSet_ & 0x80)) { 1329 exprAnalyzer_.Say( 1330 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1331 messageDisplayedSet_ |= 0x80; 1332 } 1333 return; 1334 } 1335 } else { // procedure name, &c. 1336 if (!(messageDisplayedSet_ & 0x40)) { 1337 exprAnalyzer_.Say( 1338 "Item is not suitable for use in an array constructor"_err_en_US); 1339 messageDisplayedSet_ |= 0x40; 1340 } 1341 return; 1342 } 1343 } else if (dyType->IsUnlimitedPolymorphic()) { 1344 if (!(messageDisplayedSet_ & 8)) { 1345 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1346 "array constructor"_err_en_US); // C7113 1347 messageDisplayedSet_ |= 8; 1348 } 1349 return; 1350 } 1351 DynamicTypeWithLength xType{dyType.value()}; 1352 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1353 CHECK(xType.category() == TypeCategory::Character); 1354 xType.length = 1355 common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1356 } 1357 if (!type_) { 1358 // If there is no explicit type-spec in an array constructor, the type 1359 // of the array is the declared type of all of the elements, which must 1360 // be well-defined and all match. 1361 // TODO: Possible language extension: use the most general type of 1362 // the values as the type of a numeric constructed array, convert all 1363 // of the other values to that type. Alternative: let the first value 1364 // determine the type, and convert the others to that type. 1365 CHECK(!explicitType_); 1366 type_ = std::move(xType); 1367 constantLength_ = ToInt64(type_->length); 1368 values_.Push(std::move(*x)); 1369 } else if (!explicitType_) { 1370 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1371 values_.Push(std::move(*x)); 1372 if (auto thisLen{ToInt64(xType.LEN())}) { 1373 if (constantLength_) { 1374 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1375 *thisLen != *constantLength_) { 1376 if (!(messageDisplayedSet_ & 1)) { 1377 exprAnalyzer_.Say( 1378 "Character literal in array constructor without explicit " 1379 "type has different length than earlier elements"_port_en_US); 1380 messageDisplayedSet_ |= 1; 1381 } 1382 } 1383 if (*thisLen > *constantLength_) { 1384 // Language extension: use the longest literal to determine the 1385 // length of the array constructor's character elements, not the 1386 // first, when there is no explicit type. 1387 *constantLength_ = *thisLen; 1388 type_->length = xType.LEN(); 1389 } 1390 } else { 1391 constantLength_ = *thisLen; 1392 type_->length = xType.LEN(); 1393 } 1394 } 1395 } else { 1396 if (!(messageDisplayedSet_ & 2)) { 1397 exprAnalyzer_.Say( 1398 "Values in array constructor must have the same declared type " 1399 "when no explicit type appears"_err_en_US); // C7110 1400 messageDisplayedSet_ |= 2; 1401 } 1402 } 1403 } else { 1404 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1405 values_.Push(std::move(*cast)); 1406 } else if (!(messageDisplayedSet_ & 4)) { 1407 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1408 "be converted to the type of the array '%s'"_err_en_US, 1409 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1410 messageDisplayedSet_ |= 4; 1411 } 1412 } 1413 } 1414 1415 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1416 common::visit( 1417 common::visitors{ 1418 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1419 [&](const common::Indirection<parser::Expr> &expr) { 1420 Add(expr.value()); 1421 }, 1422 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1423 Add(impliedDo.value()); 1424 }, 1425 }, 1426 x.u); 1427 } 1428 1429 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1430 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1431 std::optional<Expr<ImpliedDoIntType>> lower{ 1432 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1433 std::optional<Expr<ImpliedDoIntType>> upper{ 1434 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1435 std::optional<Expr<ImpliedDoIntType>> stride{ 1436 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1437 if (lower && upper) { 1438 if (!stride) { 1439 stride = Expr<ImpliedDoIntType>{1}; 1440 } 1441 if (!type_) { 1442 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1443 } 1444 auto v{std::move(values_)}; 1445 parser::CharBlock anonymous; 1446 Push(Expr<SomeType>{ 1447 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1448 std::swap(v, values_); 1449 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1450 std::move(*upper), std::move(*stride), std::move(v)}); 1451 } 1452 } 1453 1454 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1455 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1456 Push(exprAnalyzer_.Analyze(expr)); 1457 } 1458 1459 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1460 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1461 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1462 exprAnalyzer_.Analyze(bounds.name); 1463 parser::CharBlock name{bounds.name.thing.thing.source}; 1464 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1465 int kind{ImpliedDoIntType::kind}; 1466 if (const auto dynamicType{DynamicType::From(symbol)}) { 1467 kind = dynamicType->kind(); 1468 } 1469 std::optional<Expr<ImpliedDoIntType>> lower{ 1470 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1471 std::optional<Expr<ImpliedDoIntType>> upper{ 1472 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1473 if (lower && upper) { 1474 std::optional<Expr<ImpliedDoIntType>> stride{ 1475 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1476 if (!stride) { 1477 stride = Expr<ImpliedDoIntType>{1}; 1478 } 1479 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1480 // Check for constant bounds; the loop may require complete unrolling 1481 // of the parse tree if all bounds are constant in order to allow the 1482 // implied DO loop index to qualify as a constant expression. 1483 auto cLower{ToInt64(lower)}; 1484 auto cUpper{ToInt64(upper)}; 1485 auto cStride{ToInt64(stride)}; 1486 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1487 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1488 "The stride of an implied DO loop must not be zero"_err_en_US); 1489 messageDisplayedSet_ |= 0x10; 1490 } 1491 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1492 bool isNonemptyConstant{isConstant && 1493 ((*cStride > 0 && *cLower <= *cUpper) || 1494 (*cStride < 0 && *cLower >= *cUpper))}; 1495 bool unrollConstantLoop{false}; 1496 parser::Messages buffer; 1497 auto saveMessagesDisplayed{messageDisplayedSet_}; 1498 { 1499 auto messageRestorer{ 1500 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1501 auto v{std::move(values_)}; 1502 for (const auto &value : 1503 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1504 Add(value); 1505 } 1506 std::swap(v, values_); 1507 if (isNonemptyConstant && buffer.AnyFatalError()) { 1508 unrollConstantLoop = true; 1509 } else { 1510 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1511 std::move(*upper), std::move(*stride), std::move(v)}); 1512 } 1513 } 1514 if (unrollConstantLoop) { 1515 messageDisplayedSet_ = saveMessagesDisplayed; 1516 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1517 } else if (auto *messages{ 1518 exprAnalyzer_.GetContextualMessages().messages()}) { 1519 messages->Annex(std::move(buffer)); 1520 } 1521 exprAnalyzer_.RemoveImpliedDo(name); 1522 } else if (!(messageDisplayedSet_ & 0x20)) { 1523 exprAnalyzer_.SayAt(name, 1524 "Implied DO index '%s' is active in a surrounding implied DO loop " 1525 "and may not have the same name"_err_en_US, 1526 name); // C7115 1527 messageDisplayedSet_ |= 0x20; 1528 } 1529 } 1530 } 1531 1532 // Fortran considers an implied DO index of an array constructor to be 1533 // a constant expression if the bounds of the implied DO loop are constant. 1534 // Usually this doesn't matter, but if we emitted spurious messages as a 1535 // result of not using constant values for the index while analyzing the 1536 // items, we need to do it again the "hard" way with multiple iterations over 1537 // the parse tree. 1538 void ArrayConstructorContext::UnrollConstantImpliedDo( 1539 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1540 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1541 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1542 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1543 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1544 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1545 at += stride) { 1546 for (const auto &value : 1547 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1548 Add(value); 1549 } 1550 } 1551 foldingContext.EndImpliedDo(name); 1552 } 1553 1554 MaybeExpr ArrayConstructorContext::ToExpr() { 1555 return common::SearchTypes(std::move(*this)); 1556 } 1557 1558 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1559 const parser::AcSpec &acSpec{array.v}; 1560 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1561 for (const parser::AcValue &value : acSpec.values) { 1562 acContext.Add(value); 1563 } 1564 return acContext.ToExpr(); 1565 } 1566 1567 MaybeExpr ExpressionAnalyzer::Analyze( 1568 const parser::StructureConstructor &structure) { 1569 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1570 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1571 parser::CharBlock &typeName{structureType.source}; 1572 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1573 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1574 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1575 if (!CheckIsValidForwardReference(dtSpec)) { 1576 return std::nullopt; 1577 } 1578 } 1579 } 1580 if (!parsedType.derivedTypeSpec) { 1581 return std::nullopt; 1582 } 1583 const auto &spec{*parsedType.derivedTypeSpec}; 1584 const Symbol &typeSymbol{spec.typeSymbol()}; 1585 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1586 return std::nullopt; // error recovery 1587 } 1588 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1589 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1590 1591 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1592 AttachDeclaration(Say(typeName, 1593 "ABSTRACT derived type '%s' may not be used in a " 1594 "structure constructor"_err_en_US, 1595 typeName), 1596 typeSymbol); // C7114 1597 } 1598 1599 // This iterator traverses all of the components in the derived type and its 1600 // parents. The symbols for whole parent components appear after their 1601 // own components and before the components of the types that extend them. 1602 // E.g., TYPE :: A; REAL X; END TYPE 1603 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1604 // produces the component list X, A, Y. 1605 // The order is important below because a structure constructor can 1606 // initialize X or A by name, but not both. 1607 auto components{semantics::OrderedComponentIterator{spec}}; 1608 auto nextAnonymous{components.begin()}; 1609 1610 std::set<parser::CharBlock> unavailable; 1611 bool anyKeyword{false}; 1612 StructureConstructor result{spec}; 1613 bool checkConflicts{true}; // until we hit one 1614 auto &messages{GetContextualMessages()}; 1615 1616 for (const auto &component : 1617 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1618 const parser::Expr &expr{ 1619 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1620 parser::CharBlock source{expr.source}; 1621 auto restorer{messages.SetLocation(source)}; 1622 const Symbol *symbol{nullptr}; 1623 MaybeExpr value{Analyze(expr)}; 1624 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1625 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1626 anyKeyword = true; 1627 source = kw->v.source; 1628 symbol = kw->v.symbol; 1629 if (!symbol) { 1630 auto componentIter{std::find_if(components.begin(), components.end(), 1631 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1632 if (componentIter != components.end()) { 1633 symbol = &*componentIter; 1634 } 1635 } 1636 if (!symbol) { // C7101 1637 Say(source, 1638 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1639 source, typeName); 1640 } 1641 } else { 1642 if (anyKeyword) { // C7100 1643 Say(source, 1644 "Value in structure constructor lacks a component name"_err_en_US); 1645 checkConflicts = false; // stem cascade 1646 } 1647 // Here's a regrettably common extension of the standard: anonymous 1648 // initialization of parent components, e.g., T(PT(1)) rather than 1649 // T(1) or T(PT=PT(1)). 1650 if (nextAnonymous == components.begin() && parentComponent && 1651 valueType == DynamicType::From(*parentComponent) && 1652 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1653 auto iter{ 1654 std::find(components.begin(), components.end(), *parentComponent)}; 1655 if (iter != components.end()) { 1656 symbol = parentComponent; 1657 nextAnonymous = ++iter; 1658 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1659 Say(source, 1660 "Whole parent component '%s' in structure " 1661 "constructor should not be anonymous"_port_en_US, 1662 symbol->name()); 1663 } 1664 } 1665 } 1666 while (!symbol && nextAnonymous != components.end()) { 1667 const Symbol &next{*nextAnonymous}; 1668 ++nextAnonymous; 1669 if (!next.test(Symbol::Flag::ParentComp)) { 1670 symbol = &next; 1671 } 1672 } 1673 if (!symbol) { 1674 Say(source, "Unexpected value in structure constructor"_err_en_US); 1675 } 1676 } 1677 if (symbol) { 1678 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1679 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1680 Say(source, *msg); 1681 } 1682 } 1683 if (checkConflicts) { 1684 auto componentIter{ 1685 std::find(components.begin(), components.end(), *symbol)}; 1686 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1687 // C797, C798 1688 Say(source, 1689 "Component '%s' conflicts with another component earlier in " 1690 "this structure constructor"_err_en_US, 1691 symbol->name()); 1692 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1693 // Make earlier components unavailable once a whole parent appears. 1694 for (auto it{components.begin()}; it != componentIter; ++it) { 1695 unavailable.insert(it->name()); 1696 } 1697 } else { 1698 // Make whole parent components unavailable after any of their 1699 // constituents appear. 1700 for (auto it{componentIter}; it != components.end(); ++it) { 1701 if (it->test(Symbol::Flag::ParentComp)) { 1702 unavailable.insert(it->name()); 1703 } 1704 } 1705 } 1706 } 1707 unavailable.insert(symbol->name()); 1708 if (value) { 1709 if (symbol->has<semantics::ProcEntityDetails>()) { 1710 CHECK(IsPointer(*symbol)); 1711 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1712 // C1594(4) 1713 const auto &innermost{context_.FindScope(expr.source)}; 1714 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1715 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1716 if (const Symbol * 1717 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1718 if (auto *msg{Say(expr.source, 1719 "Externally visible object '%s' may not be " 1720 "associated with pointer component '%s' in a " 1721 "pure procedure"_err_en_US, 1722 object->name(), pointer->name())}) { 1723 msg->Attach(object->name(), "Object declaration"_en_US) 1724 .Attach(pointer->name(), "Pointer declaration"_en_US); 1725 } 1726 } 1727 } 1728 } 1729 } else if (symbol->has<semantics::TypeParamDetails>()) { 1730 Say(expr.source, 1731 "Type parameter '%s' may not appear as a component " 1732 "of a structure constructor"_err_en_US, 1733 symbol->name()); 1734 continue; 1735 } else { 1736 Say(expr.source, 1737 "Component '%s' is neither a procedure pointer " 1738 "nor a data object"_err_en_US, 1739 symbol->name()); 1740 continue; 1741 } 1742 if (IsPointer(*symbol)) { 1743 semantics::CheckPointerAssignment( 1744 GetFoldingContext(), *symbol, *value); // C7104, C7105 1745 result.Add(*symbol, Fold(std::move(*value))); 1746 } else if (MaybeExpr converted{ 1747 ConvertToType(*symbol, std::move(*value))}) { 1748 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1749 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1750 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1751 AttachDeclaration( 1752 Say(expr.source, 1753 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1754 GetRank(*valueShape), symbol->name()), 1755 *symbol); 1756 } else { 1757 auto checked{ 1758 CheckConformance(messages, *componentShape, *valueShape, 1759 CheckConformanceFlags::RightIsExpandableDeferred, 1760 "component", "value")}; 1761 if (checked && *checked && GetRank(*componentShape) > 0 && 1762 GetRank(*valueShape) == 0 && 1763 !IsExpandableScalar(*converted)) { 1764 AttachDeclaration( 1765 Say(expr.source, 1766 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1767 symbol->name()), 1768 *symbol); 1769 } 1770 if (checked.value_or(true)) { 1771 result.Add(*symbol, std::move(*converted)); 1772 } 1773 } 1774 } else { 1775 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1776 } 1777 } else { 1778 AttachDeclaration( 1779 Say(expr.source, 1780 "Shape of component '%s' cannot be determined"_err_en_US, 1781 symbol->name()), 1782 *symbol); 1783 } 1784 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1785 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE. 1786 result.Add(*symbol, Expr<SomeType>{NullPointer{}}); 1787 } else if (auto symType{DynamicType::From(symbol)}) { 1788 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1789 valueType) { 1790 // ok 1791 } else if (valueType) { 1792 AttachDeclaration( 1793 Say(expr.source, 1794 "Value in structure constructor of type '%s' is " 1795 "incompatible with component '%s' of type '%s'"_err_en_US, 1796 valueType->AsFortran(), symbol->name(), 1797 symType->AsFortran()), 1798 *symbol); 1799 } else { 1800 AttachDeclaration( 1801 Say(expr.source, 1802 "Value in structure constructor is incompatible with " 1803 "component '%s' of type %s"_err_en_US, 1804 symbol->name(), symType->AsFortran()), 1805 *symbol); 1806 } 1807 } 1808 } 1809 } 1810 } 1811 1812 // Ensure that unmentioned component objects have default initializers. 1813 for (const Symbol &symbol : components) { 1814 if (!symbol.test(Symbol::Flag::ParentComp) && 1815 unavailable.find(symbol.name()) == unavailable.cend()) { 1816 if (IsAllocatable(symbol)) { 1817 // Set all remaining allocatables to explicit NULL() 1818 result.Add(symbol, Expr<SomeType>{NullPointer{}}); 1819 } else if (const auto *details{ 1820 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1821 if (details->init()) { 1822 result.Add(symbol, common::Clone(*details->init())); 1823 } else { // C799 1824 AttachDeclaration(Say(typeName, 1825 "Structure constructor lacks a value for " 1826 "component '%s'"_err_en_US, 1827 symbol.name()), 1828 symbol); 1829 } 1830 } 1831 } 1832 } 1833 1834 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1835 } 1836 1837 static std::optional<parser::CharBlock> GetPassName( 1838 const semantics::Symbol &proc) { 1839 return common::visit( 1840 [](const auto &details) { 1841 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1842 std::decay_t<decltype(details)>>) { 1843 return details.passName(); 1844 } else { 1845 return std::optional<parser::CharBlock>{}; 1846 } 1847 }, 1848 proc.details()); 1849 } 1850 1851 static int GetPassIndex(const Symbol &proc) { 1852 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1853 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1854 const auto *interface { semantics::FindInterface(proc) }; 1855 if (!passName || !interface) { 1856 return 0; // first argument is passed-object 1857 } 1858 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1859 int index{0}; 1860 for (const auto *arg : subp.dummyArgs()) { 1861 if (arg && arg->name() == passName) { 1862 return index; 1863 } 1864 ++index; 1865 } 1866 DIE("PASS argument name not in dummy argument list"); 1867 } 1868 1869 // Injects an expression into an actual argument list as the "passed object" 1870 // for a type-bound procedure reference that is not NOPASS. Adds an 1871 // argument keyword if possible, but not when the passed object goes 1872 // before a positional argument. 1873 // e.g., obj%tbp(x) -> tbp(obj,x). 1874 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1875 const Symbol &component, bool isPassedObject = true) { 1876 if (component.attrs().test(semantics::Attr::NOPASS)) { 1877 return; 1878 } 1879 int passIndex{GetPassIndex(component)}; 1880 auto iter{actuals.begin()}; 1881 int at{0}; 1882 while (iter < actuals.end() && at < passIndex) { 1883 if (*iter && (*iter)->keyword()) { 1884 iter = actuals.end(); 1885 break; 1886 } 1887 ++iter; 1888 ++at; 1889 } 1890 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1891 passed.set_isPassedObject(isPassedObject); 1892 if (iter == actuals.end()) { 1893 if (auto passName{GetPassName(component)}) { 1894 passed.set_keyword(*passName); 1895 } 1896 } 1897 actuals.emplace(iter, std::move(passed)); 1898 } 1899 1900 // Return the compile-time resolution of a procedure binding, if possible. 1901 static const Symbol *GetBindingResolution( 1902 const std::optional<DynamicType> &baseType, const Symbol &component) { 1903 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1904 if (!binding) { 1905 return nullptr; 1906 } 1907 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1908 (!baseType || baseType->IsPolymorphic())) { 1909 return nullptr; 1910 } 1911 return &binding->symbol(); 1912 } 1913 1914 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1915 const parser::ProcComponentRef &pcr, ActualArguments &&arguments, 1916 bool isSubroutine) -> std::optional<CalleeAndArguments> { 1917 const parser::StructureComponent &sc{pcr.v.thing}; 1918 if (MaybeExpr base{Analyze(sc.base)}) { 1919 if (const Symbol * sym{sc.component.symbol}) { 1920 if (context_.HasError(sym)) { 1921 return std::nullopt; 1922 } 1923 if (!IsProcedure(*sym)) { 1924 AttachDeclaration( 1925 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1926 sc.component.source), 1927 *sym); 1928 return std::nullopt; 1929 } 1930 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1931 if (sym->has<semantics::GenericDetails>()) { 1932 AdjustActuals adjustment{ 1933 [&](const Symbol &proc, ActualArguments &actuals) { 1934 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1935 AddPassArg(actuals, std::move(*dtExpr), proc); 1936 } 1937 return true; 1938 }}; 1939 auto pair{ResolveGeneric(*sym, arguments, adjustment, isSubroutine)}; 1940 sym = pair.first; 1941 if (sym) { 1942 // re-resolve the name to the specific binding 1943 sc.component.symbol = const_cast<Symbol *>(sym); 1944 } else { 1945 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1946 return std::nullopt; 1947 } 1948 } 1949 if (const Symbol * 1950 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1951 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1952 return CalleeAndArguments{ 1953 ProcedureDesignator{*resolution}, std::move(arguments)}; 1954 } else if (std::optional<DataRef> dataRef{ 1955 ExtractDataRef(std::move(*dtExpr))}) { 1956 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1957 return CalleeAndArguments{ 1958 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1959 std::move(arguments)}; 1960 } else { 1961 AddPassArg(arguments, 1962 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1963 *sym); 1964 return CalleeAndArguments{ 1965 ProcedureDesignator{*sym}, std::move(arguments)}; 1966 } 1967 } 1968 } 1969 Say(sc.component.source, 1970 "Base of procedure component reference is not a derived-type object"_err_en_US); 1971 } 1972 } 1973 CHECK(context_.AnyFatalError()); 1974 return std::nullopt; 1975 } 1976 1977 // Can actual be argument associated with dummy? 1978 static bool CheckCompatibleArgument(bool isElemental, 1979 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1980 const auto *expr{actual.UnwrapExpr()}; 1981 return common::visit( 1982 common::visitors{ 1983 [&](const characteristics::DummyDataObject &x) { 1984 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1985 IsBareNullPointer(expr)) { 1986 // NULL() without MOLD= is compatible with any dummy data pointer 1987 // but cannot be allowed to lead to ambiguity. 1988 return true; 1989 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1990 !x.type.attrs().test( 1991 characteristics::TypeAndShape::Attr::AssumedRank)) { 1992 return false; 1993 } else if (auto actualType{actual.GetType()}) { 1994 return x.type.type().IsTkCompatibleWith(*actualType); 1995 } 1996 return false; 1997 }, 1998 [&](const characteristics::DummyProcedure &) { 1999 return expr && IsProcedurePointerTarget(*expr); 2000 }, 2001 [&](const characteristics::AlternateReturn &) { 2002 return actual.isAlternateReturn(); 2003 }, 2004 }, 2005 dummy.u); 2006 } 2007 2008 // Are the actual arguments compatible with the dummy arguments of procedure? 2009 static bool CheckCompatibleArguments( 2010 const characteristics::Procedure &procedure, 2011 const ActualArguments &actuals) { 2012 bool isElemental{procedure.IsElemental()}; 2013 const auto &dummies{procedure.dummyArguments}; 2014 CHECK(dummies.size() == actuals.size()); 2015 for (std::size_t i{0}; i < dummies.size(); ++i) { 2016 const characteristics::DummyArgument &dummy{dummies[i]}; 2017 const std::optional<ActualArgument> &actual{actuals[i]}; 2018 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 2019 return false; 2020 } 2021 } 2022 return true; 2023 } 2024 2025 // Handles a forward reference to a module function from what must 2026 // be a specification expression. Return false if the symbol is 2027 // an invalid forward reference. 2028 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2029 if (context_.HasError(symbol)) { 2030 return false; 2031 } 2032 if (const auto *details{ 2033 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2034 if (details->kind() == semantics::SubprogramKind::Module) { 2035 // If this symbol is still a SubprogramNameDetails, we must be 2036 // checking a specification expression in a sibling module 2037 // procedure. Resolve its names now so that its interface 2038 // is known. 2039 semantics::ResolveSpecificationParts(context_, symbol); 2040 if (symbol.has<semantics::SubprogramNameDetails>()) { 2041 // When the symbol hasn't had its details updated, we must have 2042 // already been in the process of resolving the function's 2043 // specification part; but recursive function calls are not 2044 // allowed in specification parts (10.1.11 para 5). 2045 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2046 symbol.name()); 2047 context_.SetError(symbol); 2048 return false; 2049 } 2050 } else { // 10.1.11 para 4 2051 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2052 symbol.name()); 2053 context_.SetError(symbol); 2054 return false; 2055 } 2056 } 2057 return true; 2058 } 2059 2060 // Resolve a call to a generic procedure with given actual arguments. 2061 // adjustActuals is called on procedure bindings to handle pass arg. 2062 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2063 const Symbol &symbol, const ActualArguments &actuals, 2064 const AdjustActuals &adjustActuals, bool isSubroutine, 2065 bool mightBeStructureConstructor) { 2066 const Symbol *elemental{nullptr}; // matching elemental specific proc 2067 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2068 const Symbol &ultimate{symbol.GetUltimate()}; 2069 // Check for a match with an explicit INTRINSIC 2070 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2071 parser::Messages buffer; 2072 auto restorer{foldingContext_.messages().SetMessages(buffer)}; 2073 ActualArguments localActuals{actuals}; 2074 if (context_.intrinsics().Probe( 2075 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2076 localActuals, foldingContext_) && 2077 !buffer.AnyFatalError()) { 2078 return {&ultimate, false}; 2079 } 2080 } 2081 if (const auto *details{ultimate.detailsIf<semantics::GenericDetails>()}) { 2082 bool anyBareNullActual{ 2083 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2084 return IsBareNullPointer(iter->UnwrapExpr()); 2085 }) != actuals.end()}; 2086 for (const Symbol &specific : details->specificProcs()) { 2087 if (!ResolveForward(specific)) { 2088 continue; 2089 } 2090 if (std::optional<characteristics::Procedure> procedure{ 2091 characteristics::Procedure::Characterize( 2092 ProcedureDesignator{specific}, context_.foldingContext())}) { 2093 ActualArguments localActuals{actuals}; 2094 if (specific.has<semantics::ProcBindingDetails>()) { 2095 if (!adjustActuals.value()(specific, localActuals)) { 2096 continue; 2097 } 2098 } 2099 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2100 GetFoldingContext(), false /* no integer conversions */) && 2101 CheckCompatibleArguments(*procedure, localActuals)) { 2102 if ((procedure->IsElemental() && elemental) || 2103 (!procedure->IsElemental() && nonElemental)) { 2104 // 16.9.144(6): a bare NULL() is not allowed as an actual 2105 // argument to a generic procedure if the specific procedure 2106 // cannot be unambiguously distinguished 2107 return {nullptr, true /* due to NULL actuals */}; 2108 } 2109 if (!procedure->IsElemental()) { 2110 // takes priority over elemental match 2111 nonElemental = &specific; 2112 if (!anyBareNullActual) { 2113 break; // unambiguous case 2114 } 2115 } else { 2116 elemental = &specific; 2117 } 2118 } 2119 } 2120 } 2121 if (nonElemental) { 2122 return {&AccessSpecific(symbol, *nonElemental), false}; 2123 } else if (elemental) { 2124 return {&AccessSpecific(symbol, *elemental), false}; 2125 } 2126 // Check parent derived type 2127 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2128 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2129 auto pair{ResolveGeneric( 2130 *extended, actuals, adjustActuals, isSubroutine, false)}; 2131 if (pair.first) { 2132 return pair; 2133 } 2134 } 2135 } 2136 if (mightBeStructureConstructor && details->derivedType()) { 2137 return {details->derivedType(), false}; 2138 } 2139 } 2140 // Check for generic or explicit INTRINSIC of the same name in outer scopes. 2141 // See 15.5.5.2 for details. 2142 if (!symbol.owner().IsGlobal() && !symbol.owner().IsDerivedType()) { 2143 for (const std::string &n : GetAllNames(context_, symbol.name())) { 2144 if (const Symbol * outer{symbol.owner().parent().FindSymbol(n)}) { 2145 auto pair{ResolveGeneric(*outer, actuals, adjustActuals, isSubroutine, 2146 mightBeStructureConstructor)}; 2147 if (pair.first) { 2148 return pair; 2149 } 2150 } 2151 } 2152 } 2153 return {nullptr, false}; 2154 } 2155 2156 const Symbol &ExpressionAnalyzer::AccessSpecific( 2157 const Symbol &originalGeneric, const Symbol &specific) { 2158 if (const auto *hosted{ 2159 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2160 return AccessSpecific(hosted->symbol(), specific); 2161 } else if (const auto *used{ 2162 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2163 const auto &scope{originalGeneric.owner()}; 2164 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2165 if (const auto *useDetails{ 2166 iter->second->detailsIf<semantics::UseDetails>()}) { 2167 const Symbol &usedSymbol{useDetails->symbol()}; 2168 const auto *usedGeneric{ 2169 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2170 if (&usedSymbol == &specific || 2171 (usedGeneric && usedGeneric->specific() == &specific)) { 2172 return specific; 2173 } 2174 } 2175 } 2176 // Create a renaming USE of the specific procedure. 2177 auto rename{context_.SaveTempName( 2178 used->symbol().owner().GetName().value().ToString() + "$" + 2179 specific.name().ToString())}; 2180 return *const_cast<semantics::Scope &>(scope) 2181 .try_emplace(rename, specific.attrs(), 2182 semantics::UseDetails{rename, specific}) 2183 .first->second; 2184 } else { 2185 return specific; 2186 } 2187 } 2188 2189 void ExpressionAnalyzer::EmitGenericResolutionError( 2190 const Symbol &symbol, bool dueToNullActuals) { 2191 Say(dueToNullActuals 2192 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2193 : semantics::IsGenericDefinedOp(symbol) 2194 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2195 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2196 symbol.name()); 2197 } 2198 2199 auto ExpressionAnalyzer::GetCalleeAndArguments( 2200 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2201 bool isSubroutine, bool mightBeStructureConstructor) 2202 -> std::optional<CalleeAndArguments> { 2203 return common::visit( 2204 common::visitors{ 2205 [&](const parser::Name &name) { 2206 return GetCalleeAndArguments(name, std::move(arguments), 2207 isSubroutine, mightBeStructureConstructor); 2208 }, 2209 [&](const parser::ProcComponentRef &pcr) { 2210 return AnalyzeProcedureComponentRef( 2211 pcr, std::move(arguments), isSubroutine); 2212 }, 2213 }, 2214 pd.u); 2215 } 2216 2217 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2218 ActualArguments &&arguments, bool isSubroutine, 2219 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2220 const Symbol *symbol{name.symbol}; 2221 if (context_.HasError(symbol)) { 2222 return std::nullopt; // also handles null symbol 2223 } 2224 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2225 CheckForBadRecursion(name.source, ultimate); 2226 bool dueToNullActual{false}; 2227 bool isGenericInterface{ultimate.has<semantics::GenericDetails>()}; 2228 bool isExplicitIntrinsic{ultimate.attrs().test(semantics::Attr::INTRINSIC)}; 2229 const Symbol *resolution{nullptr}; 2230 if (isGenericInterface || isExplicitIntrinsic) { 2231 ExpressionAnalyzer::AdjustActuals noAdjustment; 2232 auto pair{ResolveGeneric(*symbol, arguments, noAdjustment, isSubroutine, 2233 mightBeStructureConstructor)}; 2234 resolution = pair.first; 2235 dueToNullActual = pair.second; 2236 if (resolution) { 2237 // re-resolve name to the specific procedure 2238 name.symbol = const_cast<Symbol *>(resolution); 2239 } 2240 } else { 2241 resolution = symbol; 2242 } 2243 if (!resolution || resolution->attrs().test(semantics::Attr::INTRINSIC)) { 2244 // Not generic, or no resolution; may be intrinsic 2245 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2246 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2247 arguments, GetFoldingContext())}) { 2248 CheckBadExplicitType(*specificCall, *symbol); 2249 return CalleeAndArguments{ 2250 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2251 std::move(specificCall->arguments)}; 2252 } else { 2253 if (isGenericInterface) { 2254 EmitGenericResolutionError(*symbol, dueToNullActual); 2255 } 2256 return std::nullopt; 2257 } 2258 } 2259 if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2260 if (mightBeStructureConstructor) { 2261 return CalleeAndArguments{ 2262 semantics::SymbolRef{*resolution}, std::move(arguments)}; 2263 } 2264 } else if (IsProcedure(*resolution)) { 2265 return CalleeAndArguments{ 2266 ProcedureDesignator{*resolution}, std::move(arguments)}; 2267 } 2268 if (!context_.HasError(*resolution)) { 2269 AttachDeclaration( 2270 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2271 name.source), 2272 *resolution); 2273 } 2274 return std::nullopt; 2275 } 2276 2277 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2278 // generic intrinsic function "has no effect" on the result type of a 2279 // call to that intrinsic. So one can declare "character*8 cos" and 2280 // still get a real result from "cos(1.)". This is a dangerous feature, 2281 // especially since implementations are free to extend their sets of 2282 // intrinsics, and in doing so might clash with a name in a program. 2283 // So we emit a warning in this situation, and perhaps it should be an 2284 // error -- any correctly working program can silence the message by 2285 // simply deleting the pointless type declaration. 2286 void ExpressionAnalyzer::CheckBadExplicitType( 2287 const SpecificCall &call, const Symbol &intrinsic) { 2288 if (intrinsic.GetUltimate().GetType()) { 2289 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2290 if (const auto &result{procedure.functionResult}) { 2291 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2292 if (auto declared{ 2293 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2294 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2295 if (auto *msg{Say( 2296 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, 2297 typeAndShape->AsFortran(), intrinsic.name(), 2298 declared->AsFortran())}) { 2299 msg->Attach(intrinsic.name(), 2300 "Ignored declaration of intrinsic function '%s'"_en_US, 2301 intrinsic.name()); 2302 } 2303 } 2304 } 2305 } 2306 } 2307 } 2308 } 2309 2310 void ExpressionAnalyzer::CheckForBadRecursion( 2311 parser::CharBlock callSite, const semantics::Symbol &proc) { 2312 if (const auto *scope{proc.scope()}) { 2313 if (scope->sourceRange().Contains(callSite)) { 2314 parser::Message *msg{nullptr}; 2315 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2316 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2317 callSite); 2318 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2319 // TODO: Also catch assumed PDT type parameters 2320 msg = Say( // 15.6.2.1(3) 2321 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2322 callSite); 2323 } 2324 AttachDeclaration(msg, proc); 2325 } 2326 } 2327 } 2328 2329 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2330 if (const auto *designator{ 2331 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2332 if (const auto *dataRef{ 2333 std::get_if<parser::DataRef>(&designator->value().u)}) { 2334 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2335 return AssumedTypeDummy(*name); 2336 } 2337 } 2338 } 2339 return nullptr; 2340 } 2341 template <> 2342 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2343 if (const Symbol * symbol{name.symbol}) { 2344 if (const auto *type{symbol->GetType()}) { 2345 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2346 return symbol; 2347 } 2348 } 2349 } 2350 return nullptr; 2351 } 2352 template <typename A> 2353 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2354 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2355 // point it is is not guaranteed that it has been checked the object has 2356 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2357 // returned. 2358 return common::visit( 2359 common::visitors{ 2360 [&](const parser::StructureComponent &x) { 2361 return AssumedTypeDummy(x.component); 2362 }, 2363 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2364 }, 2365 object.u); 2366 } 2367 template <> 2368 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2369 const parser::AllocateObject &x) { 2370 return AssumedTypePointerOrAllocatableDummy(x); 2371 } 2372 template <> 2373 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2374 const parser::PointerObject &x) { 2375 return AssumedTypePointerOrAllocatableDummy(x); 2376 } 2377 2378 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2379 const semantics::DerivedTypeSpec &dtSpec) { 2380 if (dtSpec.IsForwardReferenced()) { 2381 Say("Cannot construct value for derived type '%s' " 2382 "before it is defined"_err_en_US, 2383 dtSpec.name()); 2384 return false; 2385 } 2386 return true; 2387 } 2388 2389 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2390 std::optional<parser::StructureConstructor> *structureConstructor) { 2391 const parser::Call &call{funcRef.v}; 2392 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2393 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2394 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2395 analyzer.Analyze(arg, false /* not subroutine call */); 2396 } 2397 if (analyzer.fatalErrors()) { 2398 return std::nullopt; 2399 } 2400 if (std::optional<CalleeAndArguments> callee{ 2401 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2402 analyzer.GetActuals(), false /* not subroutine */, 2403 true /* might be structure constructor */)}) { 2404 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2405 return MakeFunctionRef( 2406 call.source, std::move(*proc), std::move(callee->arguments)); 2407 } 2408 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2409 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2410 if (structureConstructor) { 2411 // Structure constructor misparsed as function reference? 2412 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2413 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2414 semantics::Scope &scope{context_.FindScope(name->source)}; 2415 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2416 if (!CheckIsValidForwardReference(dtSpec)) { 2417 return std::nullopt; 2418 } 2419 const semantics::DeclTypeSpec &type{ 2420 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2421 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2422 *structureConstructor = 2423 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2424 return Analyze(structureConstructor->value()); 2425 } 2426 } 2427 if (!context_.HasError(symbol)) { 2428 AttachDeclaration( 2429 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2430 symbol.name()), 2431 symbol); 2432 context_.SetError(symbol); 2433 } 2434 } 2435 return std::nullopt; 2436 } 2437 2438 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2439 for (const auto &arg : args) { 2440 if (arg && arg->isAlternateReturn()) { 2441 return true; 2442 } 2443 } 2444 return false; 2445 } 2446 2447 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2448 const parser::Call &call{callStmt.v}; 2449 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2450 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2451 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2452 for (const auto &arg : actualArgList) { 2453 analyzer.Analyze(arg, true /* is subroutine call */); 2454 } 2455 if (!analyzer.fatalErrors()) { 2456 if (std::optional<CalleeAndArguments> callee{ 2457 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2458 analyzer.GetActuals(), true /* subroutine */)}) { 2459 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2460 CHECK(proc); 2461 if (CheckCall(call.source, *proc, callee->arguments)) { 2462 callStmt.typedCall.Reset( 2463 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2464 HasAlternateReturns(callee->arguments)}, 2465 ProcedureRef::Deleter); 2466 return; 2467 } 2468 } 2469 if (!context_.AnyFatalError()) { 2470 std::string buf; 2471 llvm::raw_string_ostream dump{buf}; 2472 parser::DumpTree(dump, callStmt); 2473 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2474 dump.str()); 2475 } 2476 } 2477 } 2478 2479 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2480 if (!x.typedAssignment) { 2481 ArgumentAnalyzer analyzer{*this}; 2482 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2483 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2484 std::optional<Assignment> assignment; 2485 if (!analyzer.fatalErrors()) { 2486 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2487 if (!procRef) { 2488 analyzer.CheckForNullPointer( 2489 "in a non-pointer intrinsic assignment statement"); 2490 } 2491 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2492 if (procRef) { 2493 assignment->u = std::move(*procRef); 2494 } 2495 } 2496 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2497 GenericAssignmentWrapper::Deleter); 2498 } 2499 return common::GetPtrFromOptional(x.typedAssignment->v); 2500 } 2501 2502 const Assignment *ExpressionAnalyzer::Analyze( 2503 const parser::PointerAssignmentStmt &x) { 2504 if (!x.typedAssignment) { 2505 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2506 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2507 if (!lhs || !rhs) { 2508 x.typedAssignment.Reset( 2509 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2510 } else { 2511 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2512 common::visit( 2513 common::visitors{ 2514 [&](const std::list<parser::BoundsRemapping> &list) { 2515 Assignment::BoundsRemapping bounds; 2516 for (const auto &elem : list) { 2517 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2518 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2519 if (lower && upper) { 2520 bounds.emplace_back( 2521 Fold(std::move(*lower)), Fold(std::move(*upper))); 2522 } 2523 } 2524 assignment.u = std::move(bounds); 2525 }, 2526 [&](const std::list<parser::BoundsSpec> &list) { 2527 Assignment::BoundsSpec bounds; 2528 for (const auto &bound : list) { 2529 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2530 bounds.emplace_back(Fold(std::move(*lower))); 2531 } 2532 } 2533 assignment.u = std::move(bounds); 2534 }, 2535 }, 2536 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2537 x.typedAssignment.Reset( 2538 new GenericAssignmentWrapper{std::move(assignment)}, 2539 GenericAssignmentWrapper::Deleter); 2540 } 2541 } 2542 return common::GetPtrFromOptional(x.typedAssignment->v); 2543 } 2544 2545 static bool IsExternalCalledImplicitly( 2546 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2547 if (const auto *symbol{proc.GetSymbol()}) { 2548 return symbol->has<semantics::SubprogramDetails>() && 2549 symbol->owner().IsGlobal() && 2550 (!symbol->scope() /*ENTRY*/ || 2551 !symbol->scope()->sourceRange().Contains(callSite)); 2552 } else { 2553 return false; 2554 } 2555 } 2556 2557 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2558 parser::CharBlock callSite, const ProcedureDesignator &proc, 2559 ActualArguments &arguments) { 2560 auto chars{characteristics::Procedure::Characterize( 2561 proc, context_.foldingContext())}; 2562 if (chars) { 2563 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2564 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2565 Say(callSite, 2566 "References to the procedure '%s' require an explicit interface"_err_en_US, 2567 DEREF(proc.GetSymbol()).name()); 2568 } 2569 // Checks for ASSOCIATED() are done in intrinsic table processing 2570 const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()}; 2571 bool procIsAssociated{ 2572 specificIntrinsic && specificIntrinsic->name == "associated"}; 2573 if (!procIsAssociated) { 2574 const Symbol *procSymbol{proc.GetSymbol()}; 2575 bool procIsDummy{procSymbol && IsDummy(*procSymbol)}; 2576 if (chars->functionResult && 2577 chars->functionResult->IsAssumedLengthCharacter() && 2578 !specificIntrinsic && !procIsDummy) { 2579 Say(callSite, 2580 "Assumed-length character function must be defined with a length to be called"_err_en_US); 2581 } 2582 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2583 context_.FindScope(callSite), treatExternalAsImplicit, 2584 specificIntrinsic); 2585 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2586 if (const semantics::Scope * 2587 pure{semantics::FindPureProcedureContaining( 2588 context_.FindScope(callSite))}) { 2589 Say(callSite, 2590 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2591 procSymbol->name(), DEREF(pure->symbol()).name()); 2592 } 2593 } 2594 } 2595 } 2596 return chars; 2597 } 2598 2599 // Unary operations 2600 2601 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2602 if (MaybeExpr operand{Analyze(x.v.value())}) { 2603 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2604 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2605 if (semantics::IsProcedurePointer(*result)) { 2606 Say("A function reference that returns a procedure " 2607 "pointer may not be parenthesized"_err_en_US); // C1003 2608 } 2609 } 2610 } 2611 return Parenthesize(std::move(*operand)); 2612 } 2613 return std::nullopt; 2614 } 2615 2616 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2617 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2618 ArgumentAnalyzer analyzer{context}; 2619 analyzer.Analyze(x.v); 2620 if (!analyzer.fatalErrors()) { 2621 if (analyzer.IsIntrinsicNumeric(opr)) { 2622 analyzer.CheckForNullPointer(); 2623 if (opr == NumericOperator::Add) { 2624 return analyzer.MoveExpr(0); 2625 } else { 2626 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2627 } 2628 } else { 2629 return analyzer.TryDefinedOp(AsFortran(opr), 2630 "Operand of unary %s must be numeric; have %s"_err_en_US); 2631 } 2632 } 2633 return std::nullopt; 2634 } 2635 2636 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2637 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2638 } 2639 2640 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2641 if (const auto *litConst{ 2642 std::get_if<parser::LiteralConstant>(&x.v.value().u)}) { 2643 if (const auto *intConst{ 2644 std::get_if<parser::IntLiteralConstant>(&litConst->u)}) { 2645 return Analyze(*intConst, true); 2646 } 2647 } 2648 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2649 } 2650 2651 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2652 ArgumentAnalyzer analyzer{*this}; 2653 analyzer.Analyze(x.v); 2654 if (!analyzer.fatalErrors()) { 2655 if (analyzer.IsIntrinsicLogical()) { 2656 analyzer.CheckForNullPointer(); 2657 return AsGenericExpr( 2658 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2659 } else { 2660 return analyzer.TryDefinedOp(LogicalOperator::Not, 2661 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2662 } 2663 } 2664 return std::nullopt; 2665 } 2666 2667 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2668 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2669 // intrinsic function. 2670 // Use the actual source for the name of the call for error reporting. 2671 std::optional<ActualArgument> arg; 2672 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2673 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2674 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2675 arg = ActualArgument{std::move(*argExpr)}; 2676 } else { 2677 return std::nullopt; 2678 } 2679 parser::CharBlock at{GetContextualMessages().at()}; 2680 CHECK(at.size() >= 4); 2681 parser::CharBlock loc{at.begin() + 1, 3}; 2682 CHECK(loc == "loc"); 2683 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2684 } 2685 2686 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2687 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2688 ArgumentAnalyzer analyzer{*this, name.source}; 2689 analyzer.Analyze(std::get<1>(x.t)); 2690 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2691 "No operator %s defined for %s"_err_en_US, nullptr, true); 2692 } 2693 2694 // Binary (dyadic) operations 2695 2696 template <template <typename> class OPR> 2697 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2698 const parser::Expr::IntrinsicBinary &x) { 2699 ArgumentAnalyzer analyzer{context}; 2700 analyzer.Analyze(std::get<0>(x.t)); 2701 analyzer.Analyze(std::get<1>(x.t)); 2702 if (!analyzer.fatalErrors()) { 2703 if (analyzer.IsIntrinsicNumeric(opr)) { 2704 analyzer.CheckForNullPointer(); 2705 analyzer.CheckConformance(); 2706 return NumericOperation<OPR>(context.GetContextualMessages(), 2707 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2708 context.GetDefaultKind(TypeCategory::Real)); 2709 } else { 2710 return analyzer.TryDefinedOp(AsFortran(opr), 2711 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2712 } 2713 } 2714 return std::nullopt; 2715 } 2716 2717 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2718 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2719 } 2720 2721 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2722 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2723 } 2724 2725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2726 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2727 } 2728 2729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2730 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2731 } 2732 2733 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2734 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2735 } 2736 2737 MaybeExpr ExpressionAnalyzer::Analyze( 2738 const parser::Expr::ComplexConstructor &x) { 2739 auto re{Analyze(std::get<0>(x.t).value())}; 2740 auto im{Analyze(std::get<1>(x.t).value())}; 2741 if (re && im) { 2742 ConformabilityCheck(GetContextualMessages(), *re, *im); 2743 } 2744 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2745 std::move(im), GetDefaultKind(TypeCategory::Real))); 2746 } 2747 2748 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2749 ArgumentAnalyzer analyzer{*this}; 2750 analyzer.Analyze(std::get<0>(x.t)); 2751 analyzer.Analyze(std::get<1>(x.t)); 2752 if (!analyzer.fatalErrors()) { 2753 if (analyzer.IsIntrinsicConcat()) { 2754 analyzer.CheckForNullPointer(); 2755 return common::visit( 2756 [&](auto &&x, auto &&y) -> MaybeExpr { 2757 using T = ResultType<decltype(x)>; 2758 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2759 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2760 } else { 2761 DIE("different types for intrinsic concat"); 2762 } 2763 }, 2764 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2765 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2766 } else { 2767 return analyzer.TryDefinedOp("//", 2768 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2769 } 2770 } 2771 return std::nullopt; 2772 } 2773 2774 // The Name represents a user-defined intrinsic operator. 2775 // If the actuals match one of the specific procedures, return a function ref. 2776 // Otherwise report the error in messages. 2777 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2778 const parser::Name &name, ActualArguments &&actuals) { 2779 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2780 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2781 return MakeFunctionRef(name.source, 2782 std::move(std::get<ProcedureDesignator>(callee->u)), 2783 std::move(callee->arguments)); 2784 } else { 2785 return std::nullopt; 2786 } 2787 } 2788 2789 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2790 const parser::Expr::IntrinsicBinary &x) { 2791 ArgumentAnalyzer analyzer{context}; 2792 analyzer.Analyze(std::get<0>(x.t)); 2793 analyzer.Analyze(std::get<1>(x.t)); 2794 if (!analyzer.fatalErrors()) { 2795 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2796 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2797 analyzer.ConvertBOZ(leftType, 0, rightType); 2798 analyzer.ConvertBOZ(rightType, 1, leftType); 2799 if (leftType && rightType && 2800 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2801 analyzer.CheckForNullPointer("as a relational operand"); 2802 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2803 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2804 } else { 2805 return analyzer.TryDefinedOp(opr, 2806 leftType && leftType->category() == TypeCategory::Logical && 2807 rightType && rightType->category() == TypeCategory::Logical 2808 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2809 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2810 } 2811 } 2812 return std::nullopt; 2813 } 2814 2815 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2816 return RelationHelper(*this, RelationalOperator::LT, x); 2817 } 2818 2819 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2820 return RelationHelper(*this, RelationalOperator::LE, x); 2821 } 2822 2823 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2824 return RelationHelper(*this, RelationalOperator::EQ, x); 2825 } 2826 2827 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2828 return RelationHelper(*this, RelationalOperator::NE, x); 2829 } 2830 2831 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2832 return RelationHelper(*this, RelationalOperator::GE, x); 2833 } 2834 2835 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2836 return RelationHelper(*this, RelationalOperator::GT, x); 2837 } 2838 2839 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2840 const parser::Expr::IntrinsicBinary &x) { 2841 ArgumentAnalyzer analyzer{context}; 2842 analyzer.Analyze(std::get<0>(x.t)); 2843 analyzer.Analyze(std::get<1>(x.t)); 2844 if (!analyzer.fatalErrors()) { 2845 if (analyzer.IsIntrinsicLogical()) { 2846 analyzer.CheckForNullPointer("as a logical operand"); 2847 return AsGenericExpr(BinaryLogicalOperation(opr, 2848 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2849 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2850 } else { 2851 return analyzer.TryDefinedOp( 2852 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2853 } 2854 } 2855 return std::nullopt; 2856 } 2857 2858 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2859 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2860 } 2861 2862 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2863 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2864 } 2865 2866 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2867 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2868 } 2869 2870 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2871 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2872 } 2873 2874 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2875 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2876 ArgumentAnalyzer analyzer{*this, name.source}; 2877 analyzer.Analyze(std::get<1>(x.t)); 2878 analyzer.Analyze(std::get<2>(x.t)); 2879 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2880 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2881 } 2882 2883 // Returns true if a parsed function reference should be converted 2884 // into an array element reference. 2885 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2886 const parser::FunctionReference &funcRef) { 2887 // Emit message if the function reference fix will end up an array element 2888 // reference with no subscripts, or subscripts on a scalar, because it will 2889 // not be possible to later distinguish in expressions between an empty 2890 // subscript list due to bad subscripts error recovery or because the 2891 // user did not put any. 2892 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2893 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2894 if (!name) { 2895 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2896 } 2897 if (!name->symbol) { 2898 return false; 2899 } else if (name->symbol->Rank() == 0) { 2900 if (const Symbol * 2901 function{ 2902 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2903 auto &msg{context.Say(funcRef.v.source, 2904 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2905 name->source)}; 2906 AttachDeclaration(&msg, *function); 2907 name->symbol = const_cast<Symbol *>(function); 2908 } 2909 return false; 2910 } else { 2911 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2912 auto &msg{context.Say(funcRef.v.source, 2913 "Reference to array '%s' with empty subscript list"_err_en_US, 2914 name->source)}; 2915 if (name->symbol) { 2916 AttachDeclaration(&msg, *name->symbol); 2917 } 2918 } 2919 return true; 2920 } 2921 } 2922 2923 // Converts, if appropriate, an original misparse of ambiguous syntax like 2924 // A(1) as a function reference into an array reference. 2925 // Misparsed structure constructors are detected elsewhere after generic 2926 // function call resolution fails. 2927 template <typename... A> 2928 static void FixMisparsedFunctionReference( 2929 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2930 // The parse tree is updated in situ when resolving an ambiguous parse. 2931 using uType = std::decay_t<decltype(constU)>; 2932 auto &u{const_cast<uType &>(constU)}; 2933 if (auto *func{ 2934 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2935 parser::FunctionReference &funcRef{func->value()}; 2936 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2937 if (Symbol * 2938 origSymbol{ 2939 common::visit(common::visitors{ 2940 [&](parser::Name &name) { return name.symbol; }, 2941 [&](parser::ProcComponentRef &pcr) { 2942 return pcr.v.thing.component.symbol; 2943 }, 2944 }, 2945 proc.u)}) { 2946 Symbol &symbol{origSymbol->GetUltimate()}; 2947 if (symbol.has<semantics::ObjectEntityDetails>() || 2948 symbol.has<semantics::AssocEntityDetails>()) { 2949 // Note that expression in AssocEntityDetails cannot be a procedure 2950 // pointer as per C1105 so this cannot be a function reference. 2951 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2952 uType>) { 2953 if (CheckFuncRefToArrayElement(context, funcRef)) { 2954 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2955 } 2956 } else { 2957 DIE("can't fix misparsed function as array reference"); 2958 } 2959 } 2960 } 2961 } 2962 } 2963 2964 // Common handling of parse tree node types that retain the 2965 // representation of the analyzed expression. 2966 template <typename PARSED> 2967 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2968 const PARSED &x, parser::CharBlock source) { 2969 if (useSavedTypedExprs_ && x.typedExpr) { 2970 return x.typedExpr->v; 2971 } 2972 auto restorer{GetContextualMessages().SetLocation(source)}; 2973 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2974 std::is_same_v<PARSED, parser::Variable>) { 2975 FixMisparsedFunctionReference(context_, x.u); 2976 } 2977 if (AssumedTypeDummy(x)) { // C710 2978 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2979 ResetExpr(x); 2980 return std::nullopt; 2981 } 2982 MaybeExpr result; 2983 if constexpr (common::HasMember<parser::StructureConstructor, 2984 std::decay_t<decltype(x.u)>> && 2985 common::HasMember<common::Indirection<parser::FunctionReference>, 2986 std::decay_t<decltype(x.u)>>) { 2987 if (const auto *funcRef{ 2988 std::get_if<common::Indirection<parser::FunctionReference>>( 2989 &x.u)}) { 2990 // Function references in Exprs might turn out to be misparsed structure 2991 // constructors; we have to try generic procedure resolution 2992 // first to be sure. 2993 std::optional<parser::StructureConstructor> ctor; 2994 result = Analyze(funcRef->value(), &ctor); 2995 if (result && ctor) { 2996 // A misparsed function reference is really a structure 2997 // constructor. Repair the parse tree in situ. 2998 const_cast<PARSED &>(x).u = std::move(*ctor); 2999 } 3000 } else { 3001 result = Analyze(x.u); 3002 } 3003 } else { 3004 result = Analyze(x.u); 3005 } 3006 if (result) { 3007 SetExpr(x, Fold(std::move(*result))); 3008 return x.typedExpr->v; 3009 } else { 3010 ResetExpr(x); 3011 if (!context_.AnyFatalError()) { 3012 std::string buf; 3013 llvm::raw_string_ostream dump{buf}; 3014 parser::DumpTree(dump, x); 3015 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 3016 dump.str()); 3017 } 3018 return std::nullopt; 3019 } 3020 } 3021 3022 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 3023 return ExprOrVariable(expr, expr.source); 3024 } 3025 3026 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 3027 return ExprOrVariable(variable, variable.GetSource()); 3028 } 3029 3030 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 3031 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 3032 if (!useSavedTypedExprs_ || !var->typedExpr) { 3033 parser::CharBlock source{var->GetSource()}; 3034 auto restorer{GetContextualMessages().SetLocation(source)}; 3035 FixMisparsedFunctionReference(context_, var->u); 3036 if (const auto *funcRef{ 3037 std::get_if<common::Indirection<parser::FunctionReference>>( 3038 &var->u)}) { 3039 // A Selector that parsed as a Variable might turn out during analysis 3040 // to actually be a structure constructor. In that case, repair the 3041 // Variable parse tree node into an Expr 3042 std::optional<parser::StructureConstructor> ctor; 3043 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 3044 if (ctor) { 3045 auto &writable{const_cast<parser::Selector &>(selector)}; 3046 writable.u = parser::Expr{std::move(*ctor)}; 3047 auto &expr{std::get<parser::Expr>(writable.u)}; 3048 expr.source = source; 3049 SetExpr(expr, Fold(std::move(*result))); 3050 return expr.typedExpr->v; 3051 } else { 3052 SetExpr(*var, Fold(std::move(*result))); 3053 return var->typedExpr->v; 3054 } 3055 } else { 3056 ResetExpr(*var); 3057 if (context_.AnyFatalError()) { 3058 return std::nullopt; 3059 } 3060 } 3061 } 3062 } 3063 } 3064 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3065 return Analyze(selector.u); 3066 } 3067 3068 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3069 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3070 return ExprOrVariable(x, x.source); 3071 } 3072 3073 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3074 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3075 } 3076 3077 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3078 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3079 } 3080 3081 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3082 TypeCategory category, 3083 const std::optional<parser::KindSelector> &selector) { 3084 int defaultKind{GetDefaultKind(category)}; 3085 if (!selector) { 3086 return Expr<SubscriptInteger>{defaultKind}; 3087 } 3088 return common::visit( 3089 common::visitors{ 3090 [&](const parser::ScalarIntConstantExpr &x) { 3091 if (MaybeExpr kind{Analyze(x)}) { 3092 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3093 if (CheckIntrinsicKind(category, *code)) { 3094 return Expr<SubscriptInteger>{*code}; 3095 } 3096 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3097 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3098 } 3099 } 3100 return Expr<SubscriptInteger>{defaultKind}; 3101 }, 3102 [&](const parser::KindSelector::StarSize &x) { 3103 std::intmax_t size = x.v; 3104 if (!CheckIntrinsicSize(category, size)) { 3105 size = defaultKind; 3106 } else if (category == TypeCategory::Complex) { 3107 size /= 2; 3108 } 3109 return Expr<SubscriptInteger>{size}; 3110 }, 3111 }, 3112 selector->u); 3113 } 3114 3115 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3116 return context_.GetDefaultKind(category); 3117 } 3118 3119 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3120 common::TypeCategory category) { 3121 return {category, GetDefaultKind(category)}; 3122 } 3123 3124 bool ExpressionAnalyzer::CheckIntrinsicKind( 3125 TypeCategory category, std::int64_t kind) { 3126 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3127 return true; 3128 } else { 3129 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3130 ToUpperCase(EnumToString(category)), kind); 3131 return false; 3132 } 3133 } 3134 3135 bool ExpressionAnalyzer::CheckIntrinsicSize( 3136 TypeCategory category, std::int64_t size) { 3137 if (category == TypeCategory::Complex) { 3138 // COMPLEX*16 == COMPLEX(KIND=8) 3139 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3140 return true; 3141 } 3142 } else if (IsValidKindOfIntrinsicType(category, size)) { 3143 return true; 3144 } 3145 Say("%s*%jd is not a supported type"_err_en_US, 3146 ToUpperCase(EnumToString(category)), size); 3147 return false; 3148 } 3149 3150 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3151 return impliedDos_.insert(std::make_pair(name, kind)).second; 3152 } 3153 3154 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3155 auto iter{impliedDos_.find(name)}; 3156 if (iter != impliedDos_.end()) { 3157 impliedDos_.erase(iter); 3158 } 3159 } 3160 3161 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3162 parser::CharBlock name) const { 3163 auto iter{impliedDos_.find(name)}; 3164 if (iter != impliedDos_.cend()) { 3165 return {iter->second}; 3166 } else { 3167 return std::nullopt; 3168 } 3169 } 3170 3171 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3172 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3173 if (result) { 3174 if (auto type{result->GetType()}) { 3175 if (type->category() != category) { // C885 3176 Say(at, "Must have %s type, but is %s"_err_en_US, 3177 ToUpperCase(EnumToString(category)), 3178 ToUpperCase(type->AsFortran())); 3179 return false; 3180 } else if (defaultKind) { 3181 int kind{context_.GetDefaultKind(category)}; 3182 if (type->kind() != kind) { 3183 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3184 kind, ToUpperCase(EnumToString(category)), 3185 ToUpperCase(type->AsFortran())); 3186 return false; 3187 } 3188 } 3189 } else { 3190 Say(at, "Must have %s type, but is typeless"_err_en_US, 3191 ToUpperCase(EnumToString(category))); 3192 return false; 3193 } 3194 } 3195 return true; 3196 } 3197 3198 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3199 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3200 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3201 if (intrinsic->characteristics.value().attrs.test( 3202 characteristics::Procedure::Attr::NullPointer) && 3203 arguments.empty()) { 3204 return Expr<SomeType>{NullPointer{}}; 3205 } 3206 } 3207 if (const Symbol * symbol{proc.GetSymbol()}) { 3208 if (!ResolveForward(*symbol)) { 3209 return std::nullopt; 3210 } 3211 } 3212 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3213 if (chars->functionResult) { 3214 const auto &result{*chars->functionResult}; 3215 if (result.IsProcedurePointer()) { 3216 return Expr<SomeType>{ 3217 ProcedureRef{std::move(proc), std::move(arguments)}}; 3218 } else { 3219 // Not a procedure pointer, so type and shape are known. 3220 return TypedWrapper<FunctionRef, ProcedureRef>( 3221 DEREF(result.GetTypeAndShape()).type(), 3222 ProcedureRef{std::move(proc), std::move(arguments)}); 3223 } 3224 } else { 3225 Say("Function result characteristics are not known"_err_en_US); 3226 } 3227 } 3228 return std::nullopt; 3229 } 3230 3231 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3232 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3233 if (std::optional<SpecificCall> specificCall{ 3234 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3235 arguments, GetFoldingContext())}) { 3236 return MakeFunctionRef(intrinsic, 3237 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3238 std::move(specificCall->arguments)); 3239 } else { 3240 return std::nullopt; 3241 } 3242 } 3243 3244 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3245 source_.ExtendToCover(x.GetSource()); 3246 if (MaybeExpr expr{context_.Analyze(x)}) { 3247 if (!IsConstantExpr(*expr)) { 3248 actuals_.emplace_back(std::move(*expr)); 3249 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3250 return; 3251 } 3252 const Symbol *symbol{GetLastSymbol(*expr)}; 3253 if (!symbol) { 3254 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3255 x.GetSource()); 3256 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3257 auto *msg{context_.SayAt(x, 3258 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3259 symbol->name())}; 3260 if (subp->isFunction()) { 3261 const auto &result{subp->result().name()}; 3262 msg->Attach(result, "Function result is '%s'"_en_US, result); 3263 } 3264 } else { 3265 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3266 symbol->name()); 3267 } 3268 } 3269 fatalErrors_ = true; 3270 } 3271 3272 void ArgumentAnalyzer::Analyze( 3273 const parser::ActualArgSpec &arg, bool isSubroutine) { 3274 // TODO: Actual arguments that are procedures and procedure pointers need to 3275 // be detected and represented (they're not expressions). 3276 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3277 std::optional<ActualArgument> actual; 3278 common::visit( 3279 common::visitors{ 3280 [&](const common::Indirection<parser::Expr> &x) { 3281 actual = AnalyzeExpr(x.value()); 3282 SetArgSourceLocation(actual, x.value().source); 3283 }, 3284 [&](const parser::AltReturnSpec &label) { 3285 if (!isSubroutine) { 3286 context_.Say("alternate return specification may not appear on" 3287 " function reference"_err_en_US); 3288 } 3289 actual = ActualArgument(label.v); 3290 }, 3291 [&](const parser::ActualArg::PercentRef &) { 3292 context_.Say("%REF() intrinsic for arguments"_todo_en_US); 3293 }, 3294 [&](const parser::ActualArg::PercentVal &) { 3295 context_.Say("%VAL() intrinsic for arguments"_todo_en_US); 3296 }, 3297 }, 3298 std::get<parser::ActualArg>(arg.t).u); 3299 if (actual) { 3300 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3301 actual->set_keyword(argKW->v.source); 3302 } 3303 actuals_.emplace_back(std::move(*actual)); 3304 } else { 3305 fatalErrors_ = true; 3306 } 3307 } 3308 3309 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3310 const DynamicType &leftType, const DynamicType &rightType) const { 3311 CHECK(actuals_.size() == 2); 3312 return semantics::IsIntrinsicRelational( 3313 opr, leftType, GetRank(0), rightType, GetRank(1)); 3314 } 3315 3316 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3317 std::optional<DynamicType> leftType{GetType(0)}; 3318 if (actuals_.size() == 1) { 3319 if (IsBOZLiteral(0)) { 3320 return opr == NumericOperator::Add; // unary '+' 3321 } else { 3322 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3323 } 3324 } else { 3325 std::optional<DynamicType> rightType{GetType(1)}; 3326 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3327 auto cat1{rightType->category()}; 3328 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3329 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3330 auto cat0{leftType->category()}; 3331 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3332 } else { 3333 return leftType && rightType && 3334 semantics::IsIntrinsicNumeric( 3335 *leftType, GetRank(0), *rightType, GetRank(1)); 3336 } 3337 } 3338 } 3339 3340 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3341 if (std::optional<DynamicType> leftType{GetType(0)}) { 3342 if (actuals_.size() == 1) { 3343 return semantics::IsIntrinsicLogical(*leftType); 3344 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3345 return semantics::IsIntrinsicLogical( 3346 *leftType, GetRank(0), *rightType, GetRank(1)); 3347 } 3348 } 3349 return false; 3350 } 3351 3352 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3353 if (std::optional<DynamicType> leftType{GetType(0)}) { 3354 if (std::optional<DynamicType> rightType{GetType(1)}) { 3355 return semantics::IsIntrinsicConcat( 3356 *leftType, GetRank(0), *rightType, GetRank(1)); 3357 } 3358 } 3359 return false; 3360 } 3361 3362 bool ArgumentAnalyzer::CheckConformance() { 3363 if (actuals_.size() == 2) { 3364 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3365 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3366 if (lhs && rhs) { 3367 auto &foldingContext{context_.GetFoldingContext()}; 3368 auto lhShape{GetShape(foldingContext, *lhs)}; 3369 auto rhShape{GetShape(foldingContext, *rhs)}; 3370 if (lhShape && rhShape) { 3371 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3372 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3373 "left operand", "right operand") 3374 .value_or(false /*fail when conformance is not known now*/)) { 3375 fatalErrors_ = true; 3376 return false; 3377 } 3378 } 3379 } 3380 } 3381 return true; // no proven problem 3382 } 3383 3384 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3385 for (const std::optional<ActualArgument> &arg : actuals_) { 3386 if (arg) { 3387 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3388 if (IsNullPointer(*expr)) { 3389 context_.Say( 3390 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3391 fatalErrors_ = true; 3392 return false; 3393 } 3394 } 3395 } 3396 } 3397 return true; 3398 } 3399 3400 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3401 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3402 bool isUserOp) { 3403 if (AnyUntypedOrMissingOperand()) { 3404 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3405 return std::nullopt; 3406 } 3407 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3408 if (!definedOpSymbolPtr) { 3409 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3410 } 3411 { 3412 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3413 std::string oprNameString{ 3414 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3415 parser::CharBlock oprName{oprNameString}; 3416 const auto &scope{context_.context().FindScope(source_)}; 3417 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3418 *definedOpSymbolPtr = symbol; 3419 parser::Name name{symbol->name(), symbol}; 3420 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3421 return result; 3422 } 3423 } 3424 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3425 if (const Symbol * 3426 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3427 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3428 return result; 3429 } 3430 } 3431 } 3432 } 3433 if (*definedOpSymbolPtr) { 3434 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3435 } else if (actuals_.size() == 1 || AreConformable()) { 3436 if (CheckForNullPointer()) { 3437 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3438 } 3439 } else { 3440 context_.Say( 3441 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3442 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3443 } 3444 return std::nullopt; 3445 } 3446 3447 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3448 std::vector<const char *> oprs, parser::MessageFixedText error) { 3449 const Symbol *definedOpSymbolPtr{nullptr}; 3450 for (std::size_t i{1}; i < oprs.size(); ++i) { 3451 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3452 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3453 return result; 3454 } 3455 } 3456 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3457 } 3458 3459 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3460 ActualArguments localActuals{actuals_}; 3461 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3462 if (!proc) { 3463 proc = &symbol; 3464 localActuals.at(passIndex).value().set_isPassedObject(); 3465 } 3466 CheckConformance(); 3467 return context_.MakeFunctionRef( 3468 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3469 } 3470 3471 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3472 using semantics::Tristate; 3473 const Expr<SomeType> &lhs{GetExpr(0)}; 3474 const Expr<SomeType> &rhs{GetExpr(1)}; 3475 std::optional<DynamicType> lhsType{lhs.GetType()}; 3476 std::optional<DynamicType> rhsType{rhs.GetType()}; 3477 int lhsRank{lhs.Rank()}; 3478 int rhsRank{rhs.Rank()}; 3479 Tristate isDefined{ 3480 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3481 if (isDefined == Tristate::No) { 3482 if (lhsType && rhsType) { 3483 AddAssignmentConversion(*lhsType, *rhsType); 3484 } 3485 return std::nullopt; // user-defined assignment not allowed for these args 3486 } 3487 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3488 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3489 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3490 context_.Say( 3491 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3492 DEREF(procRef->proc().GetSymbol()).name()); 3493 } 3494 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3495 return std::move(*procRef); 3496 } 3497 if (isDefined == Tristate::Yes) { 3498 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3499 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3500 SayNoMatch("ASSIGNMENT(=)", true); 3501 } 3502 } 3503 return std::nullopt; 3504 } 3505 3506 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3507 TypeCategory lhs, TypeCategory rhs) { 3508 if (!context_.context().languageFeatures().IsEnabled( 3509 common::LanguageFeature::LogicalIntegerAssignment)) { 3510 return false; 3511 } 3512 std::optional<parser::MessageFixedText> msg; 3513 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3514 // allow assignment to LOGICAL from INTEGER as a legacy extension 3515 msg = "assignment of LOGICAL to INTEGER"_port_en_US; 3516 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3517 // ... and assignment to LOGICAL from INTEGER 3518 msg = "assignment of INTEGER to LOGICAL"_port_en_US; 3519 } else { 3520 return false; 3521 } 3522 if (context_.context().languageFeatures().ShouldWarn( 3523 common::LanguageFeature::LogicalIntegerAssignment)) { 3524 context_.Say(std::move(*msg)); 3525 } 3526 return true; 3527 } 3528 3529 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3530 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3531 std::string oprNameString{"assignment(=)"}; 3532 parser::CharBlock oprName{oprNameString}; 3533 const Symbol *proc{nullptr}; 3534 const auto &scope{context_.context().FindScope(source_)}; 3535 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3536 ExpressionAnalyzer::AdjustActuals noAdjustment; 3537 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment, true)}; 3538 if (pair.first) { 3539 proc = pair.first; 3540 } else { 3541 context_.EmitGenericResolutionError(*symbol, pair.second); 3542 } 3543 } 3544 int passedObjectIndex{-1}; 3545 const Symbol *definedOpSymbol{nullptr}; 3546 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3547 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3548 if (const Symbol * 3549 resolution{GetBindingResolution(GetType(i), *specific)}) { 3550 proc = resolution; 3551 } else { 3552 proc = specific; 3553 passedObjectIndex = i; 3554 } 3555 } 3556 } 3557 if (!proc) { 3558 return std::nullopt; 3559 } 3560 ActualArguments actualsCopy{actuals_}; 3561 if (passedObjectIndex >= 0) { 3562 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3563 } 3564 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3565 } 3566 3567 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3568 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3569 << '\n'; 3570 for (const auto &actual : actuals_) { 3571 if (!actual.has_value()) { 3572 os << "- error\n"; 3573 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3574 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3575 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3576 expr->AsFortran(os << "- expr: ") << '\n'; 3577 } else { 3578 DIE("bad ActualArgument"); 3579 } 3580 } 3581 } 3582 3583 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3584 const parser::Expr &expr) { 3585 source_.ExtendToCover(expr.source); 3586 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3587 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3588 if (isProcedureCall_) { 3589 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3590 SetArgSourceLocation(arg, expr.source); 3591 return std::move(arg); 3592 } 3593 context_.SayAt(expr.source, 3594 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3595 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3596 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3597 ActualArgument arg{std::move(*argExpr)}; 3598 SetArgSourceLocation(arg, expr.source); 3599 return std::move(arg); 3600 } 3601 context_.SayAt(expr.source, 3602 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3603 : "Subroutine name is not allowed here"_err_en_US); 3604 } 3605 return std::nullopt; 3606 } 3607 3608 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3609 const parser::Expr &expr) { 3610 // If an expression's parse tree is a whole assumed-size array: 3611 // Expr -> Designator -> DataRef -> Name 3612 // treat it as a special case for argument passing and bypass 3613 // the C1002/C1014 constraint checking in expression semantics. 3614 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3615 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3616 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3617 return context_.Analyze(expr); 3618 } 3619 } 3620 return context_.Analyze(expr); 3621 } 3622 3623 bool ArgumentAnalyzer::AreConformable() const { 3624 CHECK(actuals_.size() == 2); 3625 return actuals_[0] && actuals_[1] && 3626 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3627 } 3628 3629 // Look for a type-bound operator in the type of arg number passIndex. 3630 const Symbol *ArgumentAnalyzer::FindBoundOp( 3631 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3632 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3633 if (!type || !type->scope()) { 3634 return nullptr; 3635 } 3636 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3637 if (!symbol) { 3638 return nullptr; 3639 } 3640 definedOp = symbol; 3641 ExpressionAnalyzer::AdjustActuals adjustment{ 3642 [&](const Symbol &proc, ActualArguments &) { 3643 return passIndex == GetPassIndex(proc); 3644 }}; 3645 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment, false)}; 3646 if (!pair.first) { 3647 context_.EmitGenericResolutionError(*symbol, pair.second); 3648 } 3649 return pair.first; 3650 } 3651 3652 // If there is an implicit conversion between intrinsic types, make it explicit 3653 void ArgumentAnalyzer::AddAssignmentConversion( 3654 const DynamicType &lhsType, const DynamicType &rhsType) { 3655 if (lhsType.category() == rhsType.category() && 3656 (lhsType.category() == TypeCategory::Derived || 3657 lhsType.kind() == rhsType.kind())) { 3658 // no conversion necessary 3659 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3660 std::optional<parser::CharBlock> source; 3661 if (actuals_[1]) { 3662 source = actuals_[1]->sourceLocation(); 3663 } 3664 actuals_[1] = ActualArgument{*rhsExpr}; 3665 SetArgSourceLocation(actuals_[1], source); 3666 } else { 3667 actuals_[1] = std::nullopt; 3668 } 3669 } 3670 3671 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3672 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3673 } 3674 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3675 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3676 } 3677 3678 // If the argument at index i is a BOZ literal, convert its type to match the 3679 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3680 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3681 // is not currently supported. 3682 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3683 std::size_t i, std::optional<DynamicType> otherType) { 3684 if (IsBOZLiteral(i)) { 3685 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3686 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3687 if (otherType && otherType->category() == TypeCategory::Real) { 3688 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3689 MaybeExpr realExpr{ 3690 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3691 actuals_[i] = std::move(*realExpr); 3692 thisType.emplace(TypeCategory::Real, kind); 3693 } else { 3694 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3695 MaybeExpr intExpr{ 3696 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3697 actuals_[i] = std::move(*intExpr); 3698 thisType.emplace(TypeCategory::Integer, kind); 3699 } 3700 } 3701 } 3702 3703 // Report error resolving opr when there is a user-defined one available 3704 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3705 std::string type0{TypeAsFortran(0)}; 3706 auto rank0{actuals_[0]->Rank()}; 3707 if (actuals_.size() == 1) { 3708 if (rank0 > 0) { 3709 context_.Say("No intrinsic or user-defined %s matches " 3710 "rank %d array of %s"_err_en_US, 3711 opr, rank0, type0); 3712 } else { 3713 context_.Say("No intrinsic or user-defined %s matches " 3714 "operand type %s"_err_en_US, 3715 opr, type0); 3716 } 3717 } else { 3718 std::string type1{TypeAsFortran(1)}; 3719 auto rank1{actuals_[1]->Rank()}; 3720 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3721 context_.Say("No intrinsic or user-defined %s matches " 3722 "rank %d array of %s and rank %d array of %s"_err_en_US, 3723 opr, rank0, type0, rank1, type1); 3724 } else if (isAssignment && rank0 != rank1) { 3725 if (rank0 == 0) { 3726 context_.Say("No intrinsic or user-defined %s matches " 3727 "scalar %s and rank %d array of %s"_err_en_US, 3728 opr, type0, rank1, type1); 3729 } else { 3730 context_.Say("No intrinsic or user-defined %s matches " 3731 "rank %d array of %s and scalar %s"_err_en_US, 3732 opr, rank0, type0, type1); 3733 } 3734 } else { 3735 context_.Say("No intrinsic or user-defined %s matches " 3736 "operand types %s and %s"_err_en_US, 3737 opr, type0, type1); 3738 } 3739 } 3740 } 3741 3742 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3743 if (i >= actuals_.size() || !actuals_[i]) { 3744 return "missing argument"; 3745 } else if (std::optional<DynamicType> type{GetType(i)}) { 3746 return type->IsAssumedType() ? "TYPE(*)"s 3747 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s 3748 : type->IsPolymorphic() ? "CLASS("s + type->AsFortran() + ')' 3749 : type->category() == TypeCategory::Derived 3750 ? "TYPE("s + type->AsFortran() + ')' 3751 : type->category() == TypeCategory::Character 3752 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3753 : ToUpperCase(type->AsFortran()); 3754 } else { 3755 return "untyped"; 3756 } 3757 } 3758 3759 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3760 for (const auto &actual : actuals_) { 3761 if (!actual || 3762 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3763 return true; 3764 } 3765 } 3766 return false; 3767 } 3768 } // namespace Fortran::evaluate 3769 3770 namespace Fortran::semantics { 3771 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3772 SemanticsContext &context, common::TypeCategory category, 3773 const std::optional<parser::KindSelector> &selector) { 3774 evaluate::ExpressionAnalyzer analyzer{context}; 3775 auto restorer{ 3776 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3777 return analyzer.AnalyzeKindSelector(category, selector); 3778 } 3779 3780 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3781 3782 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3783 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3784 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3785 auto name{bounds.name.thing.thing}; 3786 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3787 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3788 if (dynamicType->category() == TypeCategory::Integer) { 3789 kind = dynamicType->kind(); 3790 } 3791 } 3792 exprAnalyzer_.AddImpliedDo(name.source, kind); 3793 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3794 exprAnalyzer_.RemoveImpliedDo(name.source); 3795 return false; 3796 } 3797 3798 bool ExprChecker::Walk(const parser::Program &program) { 3799 parser::Walk(program, *this); 3800 return !context_.AnyFatalError(); 3801 } 3802 } // namespace Fortran::semantics 3803