1 //===-- lib/Semantics/check-declarations.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Static declaration checking
10 
11 #include "check-declarations.h"
12 #include "pointer-assignment.h"
13 #include "flang/Evaluate/check-expression.h"
14 #include "flang/Evaluate/fold.h"
15 #include "flang/Evaluate/tools.h"
16 #include "flang/Semantics/scope.h"
17 #include "flang/Semantics/semantics.h"
18 #include "flang/Semantics/symbol.h"
19 #include "flang/Semantics/tools.h"
20 #include "flang/Semantics/type.h"
21 #include <algorithm>
22 #include <map>
23 #include <string>
24 
25 namespace Fortran::semantics {
26 
27 namespace characteristics = evaluate::characteristics;
28 using characteristics::DummyArgument;
29 using characteristics::DummyDataObject;
30 using characteristics::DummyProcedure;
31 using characteristics::FunctionResult;
32 using characteristics::Procedure;
33 
34 class CheckHelper {
35 public:
36   explicit CheckHelper(SemanticsContext &c) : context_{c} {}
37 
38   SemanticsContext &context() { return context_; }
39   void Check() { Check(context_.globalScope()); }
40   void Check(const ParamValue &, bool canBeAssumed);
41   void Check(const Bound &bound) { CheckSpecExpr(bound.GetExplicit()); }
42   void Check(const ShapeSpec &spec) {
43     Check(spec.lbound());
44     Check(spec.ubound());
45   }
46   void Check(const ArraySpec &);
47   void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters);
48   void Check(const Symbol &);
49   void Check(const Scope &);
50   const Procedure *Characterize(const Symbol &);
51 
52 private:
53   template <typename A> void CheckSpecExpr(const A &x) {
54     evaluate::CheckSpecificationExpr(x, DEREF(scope_), foldingContext_);
55   }
56   void CheckValue(const Symbol &, const DerivedTypeSpec *);
57   void CheckVolatile(const Symbol &, const DerivedTypeSpec *);
58   void CheckPointer(const Symbol &);
59   void CheckPassArg(
60       const Symbol &proc, const Symbol *interface, const WithPassArg &);
61   void CheckProcBinding(const Symbol &, const ProcBindingDetails &);
62   void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &);
63   void CheckPointerInitialization(const Symbol &);
64   void CheckArraySpec(const Symbol &, const ArraySpec &);
65   void CheckProcEntity(const Symbol &, const ProcEntityDetails &);
66   void CheckSubprogram(const Symbol &, const SubprogramDetails &);
67   void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &);
68   void CheckDerivedType(const Symbol &, const DerivedTypeDetails &);
69   bool CheckFinal(
70       const Symbol &subroutine, SourceName, const Symbol &derivedType);
71   bool CheckDistinguishableFinals(const Symbol &f1, SourceName f1name,
72       const Symbol &f2, SourceName f2name, const Symbol &derivedType);
73   void CheckGeneric(const Symbol &, const GenericDetails &);
74   void CheckHostAssoc(const Symbol &, const HostAssocDetails &);
75   bool CheckDefinedOperator(
76       SourceName, GenericKind, const Symbol &, const Procedure &);
77   std::optional<parser::MessageFixedText> CheckNumberOfArgs(
78       const GenericKind &, std::size_t);
79   bool CheckDefinedOperatorArg(
80       const SourceName &, const Symbol &, const Procedure &, std::size_t);
81   bool CheckDefinedAssignment(const Symbol &, const Procedure &);
82   bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int);
83   void CheckSpecificsAreDistinguishable(const Symbol &, const GenericDetails &);
84   void CheckEquivalenceSet(const EquivalenceSet &);
85   void CheckBlockData(const Scope &);
86   void CheckGenericOps(const Scope &);
87   bool CheckConflicting(const Symbol &, Attr, Attr);
88   void WarnMissingFinal(const Symbol &);
89   bool InPure() const {
90     return innermostSymbol_ && IsPureProcedure(*innermostSymbol_);
91   }
92   bool InElemental() const {
93     return innermostSymbol_ && innermostSymbol_->attrs().test(Attr::ELEMENTAL);
94   }
95   bool InFunction() const {
96     return innermostSymbol_ && IsFunction(*innermostSymbol_);
97   }
98   template <typename... A>
99   void SayWithDeclaration(const Symbol &symbol, A &&...x) {
100     if (parser::Message * msg{messages_.Say(std::forward<A>(x)...)}) {
101       if (messages_.at().begin() != symbol.name().begin()) {
102         evaluate::AttachDeclaration(*msg, symbol);
103       }
104     }
105   }
106   bool IsResultOkToDiffer(const FunctionResult &);
107   void CheckBindC(const Symbol &);
108   // Check functions for defined I/O procedures
109   void CheckDefinedIoProc(
110       const Symbol &, const GenericDetails &, GenericKind::DefinedIo);
111   bool CheckDioDummyIsData(const Symbol &, const Symbol *, std::size_t);
112   void CheckDioDummyIsDerived(const Symbol &, const Symbol &,
113       GenericKind::DefinedIo ioKind, const Symbol &);
114   void CheckDioDummyIsDefaultInteger(const Symbol &, const Symbol &);
115   void CheckDioDummyIsScalar(const Symbol &, const Symbol &);
116   void CheckDioDummyAttrs(const Symbol &, const Symbol &, Attr);
117   void CheckDioDtvArg(
118       const Symbol &, const Symbol *, GenericKind::DefinedIo, const Symbol &);
119   void CheckGenericVsIntrinsic(const Symbol &, const GenericDetails &);
120   void CheckDefaultIntegerArg(const Symbol &, const Symbol *, Attr);
121   void CheckDioAssumedLenCharacterArg(
122       const Symbol &, const Symbol *, std::size_t, Attr);
123   void CheckDioVlistArg(const Symbol &, const Symbol *, std::size_t);
124   void CheckDioArgCount(
125       const Symbol &, GenericKind::DefinedIo ioKind, std::size_t);
126   struct TypeWithDefinedIo {
127     const DerivedTypeSpec &type;
128     GenericKind::DefinedIo ioKind;
129     const Symbol &proc;
130     const Symbol &generic;
131   };
132   void CheckAlreadySeenDefinedIo(const DerivedTypeSpec &,
133       GenericKind::DefinedIo, const Symbol &, const Symbol &generic);
134 
135   SemanticsContext &context_;
136   evaluate::FoldingContext &foldingContext_{context_.foldingContext()};
137   parser::ContextualMessages &messages_{foldingContext_.messages()};
138   const Scope *scope_{nullptr};
139   bool scopeIsUninstantiatedPDT_{false};
140   // This symbol is the one attached to the innermost enclosing scope
141   // that has a symbol.
142   const Symbol *innermostSymbol_{nullptr};
143   // Cache of calls to Procedure::Characterize(Symbol)
144   std::map<SymbolRef, std::optional<Procedure>, SymbolAddressCompare>
145       characterizeCache_;
146   // Collection of symbols with BIND(C) names
147   std::map<std::string, SymbolRef> bindC_;
148   // Derived types that have defined input/output procedures
149   std::vector<TypeWithDefinedIo> seenDefinedIoTypes_;
150 };
151 
152 class DistinguishabilityHelper {
153 public:
154   DistinguishabilityHelper(SemanticsContext &context) : context_{context} {}
155   void Add(const Symbol &, GenericKind, const Symbol &, const Procedure &);
156   void Check(const Scope &);
157 
158 private:
159   void SayNotDistinguishable(const Scope &, const SourceName &, GenericKind,
160       const Symbol &, const Symbol &);
161   void AttachDeclaration(parser::Message &, const Scope &, const Symbol &);
162 
163   SemanticsContext &context_;
164   struct ProcedureInfo {
165     GenericKind kind;
166     const Symbol &symbol;
167     const Procedure &procedure;
168   };
169   std::map<SourceName, std::vector<ProcedureInfo>> nameToInfo_;
170 };
171 
172 void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) {
173   if (value.isAssumed()) {
174     if (!canBeAssumed) { // C795, C721, C726
175       messages_.Say(
176           "An assumed (*) type parameter may be used only for a (non-statement"
177           " function) dummy argument, associate name, named constant, or"
178           " external function result"_err_en_US);
179     }
180   } else {
181     CheckSpecExpr(value.GetExplicit());
182   }
183 }
184 
185 void CheckHelper::Check(const ArraySpec &shape) {
186   for (const auto &spec : shape) {
187     Check(spec);
188   }
189 }
190 
191 void CheckHelper::Check(
192     const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) {
193   if (type.category() == DeclTypeSpec::Character) {
194     Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters);
195   } else if (const DerivedTypeSpec * derived{type.AsDerived()}) {
196     for (auto &parm : derived->parameters()) {
197       Check(parm.second, canHaveAssumedTypeParameters);
198     }
199   }
200 }
201 
202 void CheckHelper::Check(const Symbol &symbol) {
203   if (symbol.name().size() > common::maxNameLen) {
204     messages_.Say(symbol.name(),
205         "%s has length %d, which is greater than the maximum name length "
206         "%d"_port_en_US,
207         symbol.name(), symbol.name().size(), common::maxNameLen);
208   }
209   if (context_.HasError(symbol)) {
210     return;
211   }
212   auto restorer{messages_.SetLocation(symbol.name())};
213   context_.set_location(symbol.name());
214   const DeclTypeSpec *type{symbol.GetType()};
215   const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
216   bool isDone{false};
217   common::visit(
218       common::visitors{
219           [&](const UseDetails &x) { isDone = true; },
220           [&](const HostAssocDetails &x) {
221             CheckHostAssoc(symbol, x);
222             isDone = true;
223           },
224           [&](const ProcBindingDetails &x) {
225             CheckProcBinding(symbol, x);
226             isDone = true;
227           },
228           [&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); },
229           [&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); },
230           [&](const SubprogramDetails &x) { CheckSubprogram(symbol, x); },
231           [&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); },
232           [&](const GenericDetails &x) { CheckGeneric(symbol, x); },
233           [](const auto &) {},
234       },
235       symbol.details());
236   if (symbol.attrs().test(Attr::VOLATILE)) {
237     CheckVolatile(symbol, derived);
238   }
239   CheckBindC(symbol);
240   if (isDone) {
241     return; // following checks do not apply
242   }
243   if (IsPointer(symbol)) {
244     CheckPointer(symbol);
245   }
246   if (InPure()) {
247     if (IsSaved(symbol)) {
248       if (IsInitialized(symbol)) {
249         messages_.Say(
250             "A pure subprogram may not initialize a variable"_err_en_US);
251       } else {
252         messages_.Say(
253             "A pure subprogram may not have a variable with the SAVE attribute"_err_en_US);
254       }
255     }
256     if (symbol.attrs().test(Attr::VOLATILE)) {
257       messages_.Say(
258           "A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US);
259     }
260     if (IsProcedure(symbol) && !IsPureProcedure(symbol) && IsDummy(symbol)) {
261       messages_.Say(
262           "A dummy procedure of a pure subprogram must be pure"_err_en_US);
263     }
264     if (!IsDummy(symbol) && !IsFunctionResult(symbol)) {
265       if (IsPolymorphicAllocatable(symbol)) {
266         SayWithDeclaration(symbol,
267             "Deallocation of polymorphic object '%s' is not permitted in a pure subprogram"_err_en_US,
268             symbol.name());
269       } else if (derived) {
270         if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) {
271           SayWithDeclaration(*bad,
272               "Deallocation of polymorphic object '%s%s' is not permitted in a pure subprogram"_err_en_US,
273               symbol.name(), bad.BuildResultDesignatorName());
274         }
275       }
276     }
277   }
278   if (type) { // Section 7.2, paragraph 7
279     bool canHaveAssumedParameter{IsNamedConstant(symbol) ||
280         (IsAssumedLengthCharacter(symbol) && // C722
281             IsExternal(symbol)) ||
282         symbol.test(Symbol::Flag::ParentComp)};
283     if (!IsStmtFunctionDummy(symbol)) { // C726
284       if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
285         canHaveAssumedParameter |= object->isDummy() ||
286             (object->isFuncResult() &&
287                 type->category() == DeclTypeSpec::Character) ||
288             IsStmtFunctionResult(symbol); // Avoids multiple messages
289       } else {
290         canHaveAssumedParameter |= symbol.has<AssocEntityDetails>();
291       }
292     }
293     Check(*type, canHaveAssumedParameter);
294     if (InPure() && InFunction() && IsFunctionResult(symbol)) {
295       if (derived && HasImpureFinal(*derived)) { // C1584
296         messages_.Say(
297             "Result of pure function may not have an impure FINAL subroutine"_err_en_US);
298       }
299       if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585
300         messages_.Say(
301             "Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US);
302       }
303       if (derived) {
304         if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) {
305           SayWithDeclaration(*bad,
306               "Result of pure function may not have polymorphic ALLOCATABLE ultimate component '%s'"_err_en_US,
307               bad.BuildResultDesignatorName());
308         }
309       }
310     }
311   }
312   if (IsAssumedLengthCharacter(symbol) && IsExternal(symbol)) { // C723
313     if (symbol.attrs().test(Attr::RECURSIVE)) {
314       messages_.Say(
315           "An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US);
316     }
317     if (symbol.Rank() > 0) {
318       messages_.Say(
319           "An assumed-length CHARACTER(*) function cannot return an array"_err_en_US);
320     }
321     if (symbol.attrs().test(Attr::PURE)) {
322       messages_.Say(
323           "An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US);
324     }
325     if (symbol.attrs().test(Attr::ELEMENTAL)) {
326       messages_.Say(
327           "An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US);
328     }
329     if (const Symbol * result{FindFunctionResult(symbol)}) {
330       if (IsPointer(*result)) {
331         messages_.Say(
332             "An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US);
333       }
334     }
335   }
336   if (symbol.attrs().test(Attr::VALUE)) {
337     CheckValue(symbol, derived);
338   }
339   if (symbol.attrs().test(Attr::CONTIGUOUS) && IsPointer(symbol) &&
340       symbol.Rank() == 0) { // C830
341     messages_.Say("CONTIGUOUS POINTER must be an array"_err_en_US);
342   }
343   if (IsDummy(symbol)) {
344     if (IsNamedConstant(symbol)) {
345       messages_.Say(
346           "A dummy argument may not also be a named constant"_err_en_US);
347     }
348     if (!symbol.test(Symbol::Flag::InDataStmt) /*caught elsewhere*/ &&
349         IsSaved(symbol)) {
350       messages_.Say(
351           "A dummy argument may not have the SAVE attribute"_err_en_US);
352     }
353   } else if (IsFunctionResult(symbol)) {
354     if (IsNamedConstant(symbol)) {
355       messages_.Say(
356           "A function result may not also be a named constant"_err_en_US);
357     }
358     if (!symbol.test(Symbol::Flag::InDataStmt) /*caught elsewhere*/ &&
359         IsSaved(symbol)) {
360       messages_.Say(
361           "A function result may not have the SAVE attribute"_err_en_US);
362     }
363   }
364   if (symbol.owner().IsDerivedType() &&
365       (symbol.attrs().test(Attr::CONTIGUOUS) &&
366           !(IsPointer(symbol) && symbol.Rank() > 0))) { // C752
367     messages_.Say(
368         "A CONTIGUOUS component must be an array with the POINTER attribute"_err_en_US);
369   }
370   if (symbol.owner().IsModule() && IsAutomatic(symbol)) {
371     messages_.Say(
372         "Automatic data object '%s' may not appear in the specification part"
373         " of a module"_err_en_US,
374         symbol.name());
375   }
376 }
377 
378 void CheckHelper::CheckValue(
379     const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865
380   if (!IsDummy(symbol)) {
381     messages_.Say(
382         "VALUE attribute may apply only to a dummy argument"_err_en_US);
383   }
384   if (IsProcedure(symbol)) {
385     messages_.Say(
386         "VALUE attribute may apply only to a dummy data object"_err_en_US);
387   }
388   if (IsAssumedSizeArray(symbol)) {
389     messages_.Say(
390         "VALUE attribute may not apply to an assumed-size array"_err_en_US);
391   }
392   if (evaluate::IsCoarray(symbol)) {
393     messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US);
394   }
395   if (IsAllocatable(symbol)) {
396     messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US);
397   } else if (IsPointer(symbol)) {
398     messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US);
399   }
400   if (IsIntentInOut(symbol)) {
401     messages_.Say(
402         "VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US);
403   } else if (IsIntentOut(symbol)) {
404     messages_.Say(
405         "VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US);
406   }
407   if (symbol.attrs().test(Attr::VOLATILE)) {
408     messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US);
409   }
410   if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_) &&
411       IsOptional(symbol)) {
412     messages_.Say(
413         "VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US);
414   }
415   if (derived) {
416     if (FindCoarrayUltimateComponent(*derived)) {
417       messages_.Say(
418           "VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US);
419     }
420   }
421 }
422 
423 void CheckHelper::CheckAssumedTypeEntity( // C709
424     const Symbol &symbol, const ObjectEntityDetails &details) {
425   if (const DeclTypeSpec * type{symbol.GetType()};
426       type && type->category() == DeclTypeSpec::TypeStar) {
427     if (!IsDummy(symbol)) {
428       messages_.Say(
429           "Assumed-type entity '%s' must be a dummy argument"_err_en_US,
430           symbol.name());
431     } else {
432       if (symbol.attrs().test(Attr::ALLOCATABLE)) {
433         messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE"
434                       " attribute"_err_en_US,
435             symbol.name());
436       }
437       if (symbol.attrs().test(Attr::POINTER)) {
438         messages_.Say("Assumed-type argument '%s' cannot have the POINTER"
439                       " attribute"_err_en_US,
440             symbol.name());
441       }
442       if (symbol.attrs().test(Attr::VALUE)) {
443         messages_.Say("Assumed-type argument '%s' cannot have the VALUE"
444                       " attribute"_err_en_US,
445             symbol.name());
446       }
447       if (symbol.attrs().test(Attr::INTENT_OUT)) {
448         messages_.Say(
449             "Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US,
450             symbol.name());
451       }
452       if (evaluate::IsCoarray(symbol)) {
453         messages_.Say(
454             "Assumed-type argument '%s' cannot be a coarray"_err_en_US,
455             symbol.name());
456       }
457       if (details.IsArray() && details.shape().IsExplicitShape()) {
458         messages_.Say(
459             "Assumed-type array argument 'arg8' must be assumed shape,"
460             " assumed size, or assumed rank"_err_en_US,
461             symbol.name());
462       }
463     }
464   }
465 }
466 
467 void CheckHelper::CheckObjectEntity(
468     const Symbol &symbol, const ObjectEntityDetails &details) {
469   CheckArraySpec(symbol, details.shape());
470   Check(details.shape());
471   Check(details.coshape());
472   if (details.shape().Rank() > common::maxRank) {
473     messages_.Say(
474         "'%s' has rank %d, which is greater than the maximum supported rank %d"_err_en_US,
475         symbol.name(), details.shape().Rank(), common::maxRank);
476   } else if (details.shape().Rank() + details.coshape().Rank() >
477       common::maxRank) {
478     messages_.Say(
479         "'%s' has rank %d and corank %d, whose sum is greater than the maximum supported rank %d"_err_en_US,
480         symbol.name(), details.shape().Rank(), details.coshape().Rank(),
481         common::maxRank);
482   }
483   CheckAssumedTypeEntity(symbol, details);
484   WarnMissingFinal(symbol);
485   if (!details.coshape().empty()) {
486     bool isDeferredCoshape{details.coshape().CanBeDeferredShape()};
487     if (IsAllocatable(symbol)) {
488       if (!isDeferredCoshape) { // C827
489         messages_.Say("'%s' is an ALLOCATABLE coarray and must have a deferred"
490                       " coshape"_err_en_US,
491             symbol.name());
492       }
493     } else if (symbol.owner().IsDerivedType()) { // C746
494       std::string deferredMsg{
495           isDeferredCoshape ? "" : " and have a deferred coshape"};
496       messages_.Say("Component '%s' is a coarray and must have the ALLOCATABLE"
497                     " attribute%s"_err_en_US,
498           symbol.name(), deferredMsg);
499     } else {
500       if (!details.coshape().CanBeAssumedSize()) { // C828
501         messages_.Say(
502             "'%s' is a non-ALLOCATABLE coarray and must have an explicit coshape"_err_en_US,
503             symbol.name());
504       }
505     }
506     if (const DeclTypeSpec * type{details.type()}) {
507       if (IsBadCoarrayType(type->AsDerived())) { // C747 & C824
508         messages_.Say(
509             "Coarray '%s' may not have type TEAM_TYPE, C_PTR, or C_FUNPTR"_err_en_US,
510             symbol.name());
511       }
512     }
513   }
514   if (details.isDummy()) {
515     if (symbol.attrs().test(Attr::INTENT_OUT)) {
516       if (FindUltimateComponent(symbol, [](const Symbol &x) {
517             return evaluate::IsCoarray(x) && IsAllocatable(x);
518           })) { // C846
519         messages_.Say(
520             "An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US);
521       }
522       if (IsOrContainsEventOrLockComponent(symbol)) { // C847
523         messages_.Say(
524             "An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US);
525       }
526     }
527     if (InPure() && !IsStmtFunction(DEREF(innermostSymbol_)) &&
528         !IsPointer(symbol) && !IsIntentIn(symbol) &&
529         !symbol.attrs().test(Attr::VALUE)) {
530       if (InFunction()) { // C1583
531         messages_.Say(
532             "non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US);
533       } else if (IsIntentOut(symbol)) {
534         if (const DeclTypeSpec * type{details.type()}) {
535           if (type && type->IsPolymorphic()) { // C1588
536             messages_.Say(
537                 "An INTENT(OUT) dummy argument of a pure subroutine may not be polymorphic"_err_en_US);
538           } else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
539             if (FindUltimateComponent(*derived, [](const Symbol &x) {
540                   const DeclTypeSpec *type{x.GetType()};
541                   return type && type->IsPolymorphic();
542                 })) { // C1588
543               messages_.Say(
544                   "An INTENT(OUT) dummy argument of a pure subroutine may not have a polymorphic ultimate component"_err_en_US);
545             }
546             if (HasImpureFinal(*derived)) { // C1587
547               messages_.Say(
548                   "An INTENT(OUT) dummy argument of a pure subroutine may not have an impure FINAL subroutine"_err_en_US);
549             }
550           }
551         }
552       } else if (!IsIntentInOut(symbol)) { // C1586
553         messages_.Say(
554             "non-POINTER dummy argument of pure subroutine must have INTENT() or VALUE attribute"_err_en_US);
555       }
556     }
557   } else if (symbol.attrs().test(Attr::INTENT_IN) ||
558       symbol.attrs().test(Attr::INTENT_OUT) ||
559       symbol.attrs().test(Attr::INTENT_INOUT)) {
560     messages_.Say("INTENT attributes may apply only to a dummy "
561                   "argument"_err_en_US); // C843
562   } else if (IsOptional(symbol)) {
563     messages_.Say("OPTIONAL attribute may apply only to a dummy "
564                   "argument"_err_en_US); // C849
565   }
566   if (InElemental()) {
567     if (details.isDummy()) { // C15100
568       if (details.shape().Rank() > 0) {
569         messages_.Say(
570             "A dummy argument of an ELEMENTAL procedure must be scalar"_err_en_US);
571       }
572       if (IsAllocatable(symbol)) {
573         messages_.Say(
574             "A dummy argument of an ELEMENTAL procedure may not be ALLOCATABLE"_err_en_US);
575       }
576       if (evaluate::IsCoarray(symbol)) {
577         messages_.Say(
578             "A dummy argument of an ELEMENTAL procedure may not be a coarray"_err_en_US);
579       }
580       if (IsPointer(symbol)) {
581         messages_.Say(
582             "A dummy argument of an ELEMENTAL procedure may not be a POINTER"_err_en_US);
583       }
584       if (!symbol.attrs().HasAny(Attrs{Attr::VALUE, Attr::INTENT_IN,
585               Attr::INTENT_INOUT, Attr::INTENT_OUT})) { // C15102
586         messages_.Say(
587             "A dummy argument of an ELEMENTAL procedure must have an INTENT() or VALUE attribute"_err_en_US);
588       }
589     } else if (IsFunctionResult(symbol)) { // C15101
590       if (details.shape().Rank() > 0) {
591         messages_.Say(
592             "The result of an ELEMENTAL function must be scalar"_err_en_US);
593       }
594       if (IsAllocatable(symbol)) {
595         messages_.Say(
596             "The result of an ELEMENTAL function may not be ALLOCATABLE"_err_en_US);
597       }
598       if (IsPointer(symbol)) {
599         messages_.Say(
600             "The result of an ELEMENTAL function may not be a POINTER"_err_en_US);
601       }
602     }
603   }
604   if (HasDeclarationInitializer(symbol)) { // C808; ignore DATA initialization
605     CheckPointerInitialization(symbol);
606     if (IsAutomatic(symbol)) {
607       messages_.Say(
608           "An automatic variable or component must not be initialized"_err_en_US);
609     } else if (IsDummy(symbol)) {
610       messages_.Say("A dummy argument must not be initialized"_err_en_US);
611     } else if (IsFunctionResult(symbol)) {
612       messages_.Say("A function result must not be initialized"_err_en_US);
613     } else if (IsInBlankCommon(symbol)) {
614       messages_.Say(
615           "A variable in blank COMMON should not be initialized"_port_en_US);
616     }
617   }
618   if (symbol.owner().kind() == Scope::Kind::BlockData) {
619     if (IsAllocatable(symbol)) {
620       messages_.Say(
621           "An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US);
622     } else if (IsInitialized(symbol) && !FindCommonBlockContaining(symbol)) {
623       messages_.Say(
624           "An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US);
625     }
626   }
627   if (const DeclTypeSpec * type{details.type()}) { // C708
628     if (type->IsPolymorphic() &&
629         !(type->IsAssumedType() || IsAllocatableOrPointer(symbol) ||
630             IsDummy(symbol))) {
631       messages_.Say("CLASS entity '%s' must be a dummy argument or have "
632                     "ALLOCATABLE or POINTER attribute"_err_en_US,
633           symbol.name());
634     }
635   }
636 }
637 
638 void CheckHelper::CheckPointerInitialization(const Symbol &symbol) {
639   if (IsPointer(symbol) && !context_.HasError(symbol) &&
640       !scopeIsUninstantiatedPDT_) {
641     if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
642       if (object->init()) { // C764, C765; C808
643         if (auto designator{evaluate::AsGenericExpr(symbol)}) {
644           auto restorer{messages_.SetLocation(symbol.name())};
645           context_.set_location(symbol.name());
646           CheckInitialTarget(foldingContext_, *designator, *object->init());
647         }
648       }
649     } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
650       if (proc->init() && *proc->init()) {
651         // C1519 - must be nonelemental external or module procedure,
652         // or an unrestricted specific intrinsic function.
653         const Symbol &ultimate{(*proc->init())->GetUltimate()};
654         if (ultimate.attrs().test(Attr::INTRINSIC)) {
655           if (const auto intrinsic{
656                   context_.intrinsics().IsSpecificIntrinsicFunction(
657                       ultimate.name().ToString())};
658               !intrinsic || intrinsic->isRestrictedSpecific) { // C1030
659             context_.Say(
660                 "Intrinsic procedure '%s' is not an unrestricted specific "
661                 "intrinsic permitted for use as the initializer for procedure "
662                 "pointer '%s'"_err_en_US,
663                 ultimate.name(), symbol.name());
664           }
665         } else if (!ultimate.attrs().test(Attr::EXTERNAL) &&
666             ultimate.owner().kind() != Scope::Kind::Module) {
667           context_.Say("Procedure pointer '%s' initializer '%s' is neither "
668                        "an external nor a module procedure"_err_en_US,
669               symbol.name(), ultimate.name());
670         } else if (ultimate.attrs().test(Attr::ELEMENTAL)) {
671           context_.Say("Procedure pointer '%s' cannot be initialized with the "
672                        "elemental procedure '%s"_err_en_US,
673               symbol.name(), ultimate.name());
674         } else {
675           // TODO: Check the "shalls" in the 15.4.3.6 paragraphs 7-10.
676         }
677       }
678     }
679   }
680 }
681 
682 // The six different kinds of array-specs:
683 //   array-spec     -> explicit-shape-list | deferred-shape-list
684 //                     | assumed-shape-list | implied-shape-list
685 //                     | assumed-size | assumed-rank
686 //   explicit-shape -> [ lb : ] ub
687 //   deferred-shape -> :
688 //   assumed-shape  -> [ lb ] :
689 //   implied-shape  -> [ lb : ] *
690 //   assumed-size   -> [ explicit-shape-list , ] [ lb : ] *
691 //   assumed-rank   -> ..
692 // Note:
693 // - deferred-shape is also an assumed-shape
694 // - A single "*" or "lb:*" might be assumed-size or implied-shape-list
695 void CheckHelper::CheckArraySpec(
696     const Symbol &symbol, const ArraySpec &arraySpec) {
697   if (arraySpec.Rank() == 0) {
698     return;
699   }
700   bool isExplicit{arraySpec.IsExplicitShape()};
701   bool canBeDeferred{arraySpec.CanBeDeferredShape()};
702   bool canBeImplied{arraySpec.CanBeImpliedShape()};
703   bool canBeAssumedShape{arraySpec.CanBeAssumedShape()};
704   bool canBeAssumedSize{arraySpec.CanBeAssumedSize()};
705   bool isAssumedRank{arraySpec.IsAssumedRank()};
706   std::optional<parser::MessageFixedText> msg;
707   if (symbol.test(Symbol::Flag::CrayPointee) && !isExplicit &&
708       !canBeAssumedSize) {
709     msg = "Cray pointee '%s' must have must have explicit shape or"
710           " assumed size"_err_en_US;
711   } else if (IsAllocatableOrPointer(symbol) && !canBeDeferred &&
712       !isAssumedRank) {
713     if (symbol.owner().IsDerivedType()) { // C745
714       if (IsAllocatable(symbol)) {
715         msg = "Allocatable array component '%s' must have"
716               " deferred shape"_err_en_US;
717       } else {
718         msg = "Array pointer component '%s' must have deferred shape"_err_en_US;
719       }
720     } else {
721       if (IsAllocatable(symbol)) { // C832
722         msg = "Allocatable array '%s' must have deferred shape or"
723               " assumed rank"_err_en_US;
724       } else {
725         msg = "Array pointer '%s' must have deferred shape or"
726               " assumed rank"_err_en_US;
727       }
728     }
729   } else if (IsDummy(symbol)) {
730     if (canBeImplied && !canBeAssumedSize) { // C836
731       msg = "Dummy array argument '%s' may not have implied shape"_err_en_US;
732     }
733   } else if (canBeAssumedShape && !canBeDeferred) {
734     msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US;
735   } else if (canBeAssumedSize && !canBeImplied) { // C833
736     msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US;
737   } else if (isAssumedRank) { // C837
738     msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US;
739   } else if (canBeImplied) {
740     if (!IsNamedConstant(symbol)) { // C835, C836
741       msg = "Implied-shape array '%s' must be a named constant or a "
742             "dummy argument"_err_en_US;
743     }
744   } else if (IsNamedConstant(symbol)) {
745     if (!isExplicit && !canBeImplied) {
746       msg = "Named constant '%s' array must have constant or"
747             " implied shape"_err_en_US;
748     }
749   } else if (!IsAllocatableOrPointer(symbol) && !isExplicit) {
750     if (symbol.owner().IsDerivedType()) { // C749
751       msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must"
752             " have explicit shape"_err_en_US;
753     } else { // C816
754       msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have"
755             " explicit shape"_err_en_US;
756     }
757   }
758   if (msg) {
759     context_.Say(std::move(*msg), symbol.name());
760   }
761 }
762 
763 void CheckHelper::CheckProcEntity(
764     const Symbol &symbol, const ProcEntityDetails &details) {
765   if (details.isDummy()) {
766     if (!symbol.attrs().test(Attr::POINTER) && // C843
767         (symbol.attrs().test(Attr::INTENT_IN) ||
768             symbol.attrs().test(Attr::INTENT_OUT) ||
769             symbol.attrs().test(Attr::INTENT_INOUT))) {
770       messages_.Say("A dummy procedure without the POINTER attribute"
771                     " may not have an INTENT attribute"_err_en_US);
772     }
773     if (InElemental()) { // C15100
774       messages_.Say(
775           "An ELEMENTAL subprogram may not have a dummy procedure"_err_en_US);
776     }
777     const Symbol *interface { details.interface().symbol() };
778     if (!symbol.attrs().test(Attr::INTRINSIC) &&
779         (symbol.attrs().test(Attr::ELEMENTAL) ||
780             (interface && !interface->attrs().test(Attr::INTRINSIC) &&
781                 interface->attrs().test(Attr::ELEMENTAL)))) {
782       // There's no explicit constraint or "shall" that we can find in the
783       // standard for this check, but it seems to be implied in multiple
784       // sites, and ELEMENTAL non-intrinsic actual arguments *are*
785       // explicitly forbidden.  But we allow "PROCEDURE(SIN)::dummy"
786       // because it is explicitly legal to *pass* the specific intrinsic
787       // function SIN as an actual argument.
788       messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
789     }
790   } else if (symbol.attrs().test(Attr::INTENT_IN) ||
791       symbol.attrs().test(Attr::INTENT_OUT) ||
792       symbol.attrs().test(Attr::INTENT_INOUT)) {
793     messages_.Say("INTENT attributes may apply only to a dummy "
794                   "argument"_err_en_US); // C843
795   } else if (IsOptional(symbol)) {
796     messages_.Say("OPTIONAL attribute may apply only to a dummy "
797                   "argument"_err_en_US); // C849
798   } else if (symbol.owner().IsDerivedType()) {
799     if (!symbol.attrs().test(Attr::POINTER)) { // C756
800       const auto &name{symbol.name()};
801       messages_.Say(name,
802           "Procedure component '%s' must have POINTER attribute"_err_en_US,
803           name);
804     }
805     CheckPassArg(symbol, details.interface().symbol(), details);
806   }
807   if (symbol.attrs().test(Attr::POINTER)) {
808     CheckPointerInitialization(symbol);
809     if (const Symbol * interface{details.interface().symbol()}) {
810       if (interface->attrs().test(Attr::INTRINSIC)) {
811         if (const auto intrinsic{
812                 context_.intrinsics().IsSpecificIntrinsicFunction(
813                     interface->name().ToString())};
814             !intrinsic || intrinsic->isRestrictedSpecific) { // C1515
815           messages_.Say(
816               "Intrinsic procedure '%s' is not an unrestricted specific "
817               "intrinsic permitted for use as the definition of the interface "
818               "to procedure pointer '%s'"_err_en_US,
819               interface->name(), symbol.name());
820         }
821       } else if (interface->attrs().test(Attr::ELEMENTAL)) {
822         messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US,
823             symbol.name()); // C1517
824       }
825     }
826   } else if (symbol.attrs().test(Attr::SAVE)) {
827     messages_.Say(
828         "Procedure '%s' with SAVE attribute must also have POINTER attribute"_err_en_US,
829         symbol.name());
830   }
831 }
832 
833 // When a module subprogram has the MODULE prefix the following must match
834 // with the corresponding separate module procedure interface body:
835 // - C1549: characteristics and dummy argument names
836 // - C1550: binding label
837 // - C1551: NON_RECURSIVE prefix
838 class SubprogramMatchHelper {
839 public:
840   explicit SubprogramMatchHelper(CheckHelper &checkHelper)
841       : checkHelper{checkHelper} {}
842 
843   void Check(const Symbol &, const Symbol &);
844 
845 private:
846   SemanticsContext &context() { return checkHelper.context(); }
847   void CheckDummyArg(const Symbol &, const Symbol &, const DummyArgument &,
848       const DummyArgument &);
849   void CheckDummyDataObject(const Symbol &, const Symbol &,
850       const DummyDataObject &, const DummyDataObject &);
851   void CheckDummyProcedure(const Symbol &, const Symbol &,
852       const DummyProcedure &, const DummyProcedure &);
853   bool CheckSameIntent(
854       const Symbol &, const Symbol &, common::Intent, common::Intent);
855   template <typename... A>
856   void Say(
857       const Symbol &, const Symbol &, parser::MessageFixedText &&, A &&...);
858   template <typename ATTRS>
859   bool CheckSameAttrs(const Symbol &, const Symbol &, ATTRS, ATTRS);
860   bool ShapesAreCompatible(const DummyDataObject &, const DummyDataObject &);
861   evaluate::Shape FoldShape(const evaluate::Shape &);
862   std::string AsFortran(DummyDataObject::Attr attr) {
863     return parser::ToUpperCaseLetters(DummyDataObject::EnumToString(attr));
864   }
865   std::string AsFortran(DummyProcedure::Attr attr) {
866     return parser::ToUpperCaseLetters(DummyProcedure::EnumToString(attr));
867   }
868 
869   CheckHelper &checkHelper;
870 };
871 
872 // 15.6.2.6 para 3 - can the result of an ENTRY differ from its function?
873 bool CheckHelper::IsResultOkToDiffer(const FunctionResult &result) {
874   if (result.attrs.test(FunctionResult::Attr::Allocatable) ||
875       result.attrs.test(FunctionResult::Attr::Pointer)) {
876     return false;
877   }
878   const auto *typeAndShape{result.GetTypeAndShape()};
879   if (!typeAndShape || typeAndShape->Rank() != 0) {
880     return false;
881   }
882   auto category{typeAndShape->type().category()};
883   if (category == TypeCategory::Character ||
884       category == TypeCategory::Derived) {
885     return false;
886   }
887   int kind{typeAndShape->type().kind()};
888   return kind == context_.GetDefaultKind(category) ||
889       (category == TypeCategory::Real &&
890           kind == context_.doublePrecisionKind());
891 }
892 
893 void CheckHelper::CheckSubprogram(
894     const Symbol &symbol, const SubprogramDetails &details) {
895   if (const Symbol * iface{FindSeparateModuleSubprogramInterface(&symbol)}) {
896     SubprogramMatchHelper{*this}.Check(symbol, *iface);
897   }
898   if (const Scope * entryScope{details.entryScope()}) {
899     // ENTRY 15.6.2.6, esp. C1571
900     std::optional<parser::MessageFixedText> error;
901     const Symbol *subprogram{entryScope->symbol()};
902     const SubprogramDetails *subprogramDetails{nullptr};
903     if (subprogram) {
904       subprogramDetails = subprogram->detailsIf<SubprogramDetails>();
905     }
906     if (!(entryScope->parent().IsGlobal() || entryScope->parent().IsModule() ||
907             entryScope->parent().IsSubmodule())) {
908       error = "ENTRY may not appear in an internal subprogram"_err_en_US;
909     } else if (subprogramDetails && details.isFunction() &&
910         subprogramDetails->isFunction() &&
911         !context_.HasError(details.result()) &&
912         !context_.HasError(subprogramDetails->result())) {
913       auto result{FunctionResult::Characterize(
914           details.result(), context_.foldingContext())};
915       auto subpResult{FunctionResult::Characterize(
916           subprogramDetails->result(), context_.foldingContext())};
917       if (result && subpResult && *result != *subpResult &&
918           (!IsResultOkToDiffer(*result) || !IsResultOkToDiffer(*subpResult))) {
919         error =
920             "Result of ENTRY is not compatible with result of containing function"_err_en_US;
921       }
922     }
923     if (error) {
924       if (auto *msg{messages_.Say(symbol.name(), *error)}) {
925         if (subprogram) {
926           msg->Attach(subprogram->name(), "Containing subprogram"_en_US);
927         }
928       }
929     }
930   }
931   if (symbol.attrs().test(Attr::ELEMENTAL)) {
932     // See comment on the similar check in CheckProcEntity()
933     if (details.isDummy()) {
934       messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
935     } else {
936       for (const Symbol *dummy : details.dummyArgs()) {
937         if (!dummy) { // C15100
938           messages_.Say(
939               "An ELEMENTAL subroutine may not have an alternate return dummy argument"_err_en_US);
940         }
941       }
942     }
943   }
944 }
945 
946 void CheckHelper::CheckDerivedType(
947     const Symbol &derivedType, const DerivedTypeDetails &details) {
948   if (details.isForwardReferenced() && !context_.HasError(derivedType)) {
949     messages_.Say("The derived type '%s' has not been defined"_err_en_US,
950         derivedType.name());
951   }
952   const Scope *scope{derivedType.scope()};
953   if (!scope) {
954     CHECK(details.isForwardReferenced());
955     return;
956   }
957   CHECK(scope->symbol() == &derivedType);
958   CHECK(scope->IsDerivedType());
959   if (derivedType.attrs().test(Attr::ABSTRACT) && // C734
960       (derivedType.attrs().test(Attr::BIND_C) || details.sequence())) {
961     messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US);
962   }
963   if (const DeclTypeSpec * parent{FindParentTypeSpec(derivedType)}) {
964     const DerivedTypeSpec *parentDerived{parent->AsDerived()};
965     if (!IsExtensibleType(parentDerived)) { // C705
966       messages_.Say("The parent type is not extensible"_err_en_US);
967     }
968     if (!derivedType.attrs().test(Attr::ABSTRACT) && parentDerived &&
969         parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) {
970       ScopeComponentIterator components{*parentDerived};
971       for (const Symbol &component : components) {
972         if (component.attrs().test(Attr::DEFERRED)) {
973           if (scope->FindComponent(component.name()) == &component) {
974             SayWithDeclaration(component,
975                 "Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US,
976                 parentDerived->typeSymbol().name(), component.name());
977           }
978         }
979       }
980     }
981     DerivedTypeSpec derived{derivedType.name(), derivedType};
982     derived.set_scope(*scope);
983     if (FindCoarrayUltimateComponent(derived) && // C736
984         !(parentDerived && FindCoarrayUltimateComponent(*parentDerived))) {
985       messages_.Say(
986           "Type '%s' has a coarray ultimate component so the type at the base "
987           "of its type extension chain ('%s') must be a type that has a "
988           "coarray ultimate component"_err_en_US,
989           derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
990     }
991     if (FindEventOrLockPotentialComponent(derived) && // C737
992         !(FindEventOrLockPotentialComponent(*parentDerived) ||
993             IsEventTypeOrLockType(parentDerived))) {
994       messages_.Say(
995           "Type '%s' has an EVENT_TYPE or LOCK_TYPE component, so the type "
996           "at the base of its type extension chain ('%s') must either have an "
997           "EVENT_TYPE or LOCK_TYPE component, or be EVENT_TYPE or "
998           "LOCK_TYPE"_err_en_US,
999           derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
1000     }
1001   }
1002   if (HasIntrinsicTypeName(derivedType)) { // C729
1003     messages_.Say("A derived type name cannot be the name of an intrinsic"
1004                   " type"_err_en_US);
1005   }
1006   std::map<SourceName, SymbolRef> previous;
1007   for (const auto &pair : details.finals()) {
1008     SourceName source{pair.first};
1009     const Symbol &ref{*pair.second};
1010     if (CheckFinal(ref, source, derivedType) &&
1011         std::all_of(previous.begin(), previous.end(),
1012             [&](std::pair<SourceName, SymbolRef> prev) {
1013               return CheckDistinguishableFinals(
1014                   ref, source, *prev.second, prev.first, derivedType);
1015             })) {
1016       previous.emplace(source, ref);
1017     }
1018   }
1019 }
1020 
1021 // C786
1022 bool CheckHelper::CheckFinal(
1023     const Symbol &subroutine, SourceName finalName, const Symbol &derivedType) {
1024   if (!IsModuleProcedure(subroutine)) {
1025     SayWithDeclaration(subroutine, finalName,
1026         "FINAL subroutine '%s' of derived type '%s' must be a module procedure"_err_en_US,
1027         subroutine.name(), derivedType.name());
1028     return false;
1029   }
1030   const Procedure *proc{Characterize(subroutine)};
1031   if (!proc) {
1032     return false; // error recovery
1033   }
1034   if (!proc->IsSubroutine()) {
1035     SayWithDeclaration(subroutine, finalName,
1036         "FINAL subroutine '%s' of derived type '%s' must be a subroutine"_err_en_US,
1037         subroutine.name(), derivedType.name());
1038     return false;
1039   }
1040   if (proc->dummyArguments.size() != 1) {
1041     SayWithDeclaration(subroutine, finalName,
1042         "FINAL subroutine '%s' of derived type '%s' must have a single dummy argument"_err_en_US,
1043         subroutine.name(), derivedType.name());
1044     return false;
1045   }
1046   const auto &arg{proc->dummyArguments[0]};
1047   const Symbol *errSym{&subroutine};
1048   if (const auto *details{subroutine.detailsIf<SubprogramDetails>()}) {
1049     if (!details->dummyArgs().empty()) {
1050       if (const Symbol * argSym{details->dummyArgs()[0]}) {
1051         errSym = argSym;
1052       }
1053     }
1054   }
1055   const auto *ddo{std::get_if<DummyDataObject>(&arg.u)};
1056   if (!ddo) {
1057     SayWithDeclaration(subroutine, finalName,
1058         "FINAL subroutine '%s' of derived type '%s' must have a single dummy argument that is a data object"_err_en_US,
1059         subroutine.name(), derivedType.name());
1060     return false;
1061   }
1062   bool ok{true};
1063   if (arg.IsOptional()) {
1064     SayWithDeclaration(*errSym, finalName,
1065         "FINAL subroutine '%s' of derived type '%s' must not have an OPTIONAL dummy argument"_err_en_US,
1066         subroutine.name(), derivedType.name());
1067     ok = false;
1068   }
1069   if (ddo->attrs.test(DummyDataObject::Attr::Allocatable)) {
1070     SayWithDeclaration(*errSym, finalName,
1071         "FINAL subroutine '%s' of derived type '%s' must not have an ALLOCATABLE dummy argument"_err_en_US,
1072         subroutine.name(), derivedType.name());
1073     ok = false;
1074   }
1075   if (ddo->attrs.test(DummyDataObject::Attr::Pointer)) {
1076     SayWithDeclaration(*errSym, finalName,
1077         "FINAL subroutine '%s' of derived type '%s' must not have a POINTER dummy argument"_err_en_US,
1078         subroutine.name(), derivedType.name());
1079     ok = false;
1080   }
1081   if (ddo->intent == common::Intent::Out) {
1082     SayWithDeclaration(*errSym, finalName,
1083         "FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with INTENT(OUT)"_err_en_US,
1084         subroutine.name(), derivedType.name());
1085     ok = false;
1086   }
1087   if (ddo->attrs.test(DummyDataObject::Attr::Value)) {
1088     SayWithDeclaration(*errSym, finalName,
1089         "FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with the VALUE attribute"_err_en_US,
1090         subroutine.name(), derivedType.name());
1091     ok = false;
1092   }
1093   if (ddo->type.corank() > 0) {
1094     SayWithDeclaration(*errSym, finalName,
1095         "FINAL subroutine '%s' of derived type '%s' must not have a coarray dummy argument"_err_en_US,
1096         subroutine.name(), derivedType.name());
1097     ok = false;
1098   }
1099   if (ddo->type.type().IsPolymorphic()) {
1100     SayWithDeclaration(*errSym, finalName,
1101         "FINAL subroutine '%s' of derived type '%s' must not have a polymorphic dummy argument"_err_en_US,
1102         subroutine.name(), derivedType.name());
1103     ok = false;
1104   } else if (ddo->type.type().category() != TypeCategory::Derived ||
1105       &ddo->type.type().GetDerivedTypeSpec().typeSymbol() != &derivedType) {
1106     SayWithDeclaration(*errSym, finalName,
1107         "FINAL subroutine '%s' of derived type '%s' must have a TYPE(%s) dummy argument"_err_en_US,
1108         subroutine.name(), derivedType.name(), derivedType.name());
1109     ok = false;
1110   } else { // check that all LEN type parameters are assumed
1111     for (auto ref : OrderParameterDeclarations(derivedType)) {
1112       if (IsLenTypeParameter(*ref)) {
1113         const auto *value{
1114             ddo->type.type().GetDerivedTypeSpec().FindParameter(ref->name())};
1115         if (!value || !value->isAssumed()) {
1116           SayWithDeclaration(*errSym, finalName,
1117               "FINAL subroutine '%s' of derived type '%s' must have a dummy argument with an assumed LEN type parameter '%s=*'"_err_en_US,
1118               subroutine.name(), derivedType.name(), ref->name());
1119           ok = false;
1120         }
1121       }
1122     }
1123   }
1124   return ok;
1125 }
1126 
1127 bool CheckHelper::CheckDistinguishableFinals(const Symbol &f1,
1128     SourceName f1Name, const Symbol &f2, SourceName f2Name,
1129     const Symbol &derivedType) {
1130   const Procedure *p1{Characterize(f1)};
1131   const Procedure *p2{Characterize(f2)};
1132   if (p1 && p2) {
1133     if (characteristics::Distinguishable(
1134             context_.languageFeatures(), *p1, *p2)) {
1135       return true;
1136     }
1137     if (auto *msg{messages_.Say(f1Name,
1138             "FINAL subroutines '%s' and '%s' of derived type '%s' cannot be distinguished by rank or KIND type parameter value"_err_en_US,
1139             f1Name, f2Name, derivedType.name())}) {
1140       msg->Attach(f2Name, "FINAL declaration of '%s'"_en_US, f2.name())
1141           .Attach(f1.name(), "Definition of '%s'"_en_US, f1Name)
1142           .Attach(f2.name(), "Definition of '%s'"_en_US, f2Name);
1143     }
1144   }
1145   return false;
1146 }
1147 
1148 void CheckHelper::CheckHostAssoc(
1149     const Symbol &symbol, const HostAssocDetails &details) {
1150   const Symbol &hostSymbol{details.symbol()};
1151   if (hostSymbol.test(Symbol::Flag::ImplicitOrError)) {
1152     if (details.implicitOrSpecExprError) {
1153       messages_.Say("Implicitly typed local entity '%s' not allowed in"
1154                     " specification expression"_err_en_US,
1155           symbol.name());
1156     } else if (details.implicitOrExplicitTypeError) {
1157       messages_.Say(
1158           "No explicit type declared for '%s'"_err_en_US, symbol.name());
1159     }
1160   }
1161 }
1162 
1163 void CheckHelper::CheckGeneric(
1164     const Symbol &symbol, const GenericDetails &details) {
1165   CheckSpecificsAreDistinguishable(symbol, details);
1166   common::visit(common::visitors{
1167                     [&](const GenericKind::DefinedIo &io) {
1168                       CheckDefinedIoProc(symbol, details, io);
1169                     },
1170                     [&](const GenericKind::OtherKind &other) {
1171                       if (other == GenericKind::OtherKind::Name) {
1172                         CheckGenericVsIntrinsic(symbol, details);
1173                       }
1174                     },
1175                     [](const auto &) {},
1176                 },
1177       details.kind().u);
1178 }
1179 
1180 // Check that the specifics of this generic are distinguishable from each other
1181 void CheckHelper::CheckSpecificsAreDistinguishable(
1182     const Symbol &generic, const GenericDetails &details) {
1183   GenericKind kind{details.kind()};
1184   const SymbolVector &specifics{details.specificProcs()};
1185   std::size_t count{specifics.size()};
1186   if (count < 2 || !kind.IsName()) {
1187     return;
1188   }
1189   DistinguishabilityHelper helper{context_};
1190   for (const Symbol &specific : specifics) {
1191     if (const Procedure * procedure{Characterize(specific)}) {
1192       helper.Add(generic, kind, specific, *procedure);
1193     }
1194   }
1195   helper.Check(generic.owner());
1196 }
1197 
1198 static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) {
1199   auto lhs{std::get<DummyDataObject>(proc.dummyArguments[0].u).type};
1200   auto rhs{std::get<DummyDataObject>(proc.dummyArguments[1].u).type};
1201   return Tristate::No ==
1202       IsDefinedAssignment(lhs.type(), lhs.Rank(), rhs.type(), rhs.Rank());
1203 }
1204 
1205 static bool ConflictsWithIntrinsicOperator(
1206     const GenericKind &kind, const Procedure &proc) {
1207   if (!kind.IsIntrinsicOperator()) {
1208     return false;
1209   }
1210   auto arg0{std::get<DummyDataObject>(proc.dummyArguments[0].u).type};
1211   auto type0{arg0.type()};
1212   if (proc.dummyArguments.size() == 1) { // unary
1213     return common::visit(
1214         common::visitors{
1215             [&](common::NumericOperator) { return IsIntrinsicNumeric(type0); },
1216             [&](common::LogicalOperator) { return IsIntrinsicLogical(type0); },
1217             [](const auto &) -> bool { DIE("bad generic kind"); },
1218         },
1219         kind.u);
1220   } else { // binary
1221     int rank0{arg0.Rank()};
1222     auto arg1{std::get<DummyDataObject>(proc.dummyArguments[1].u).type};
1223     auto type1{arg1.type()};
1224     int rank1{arg1.Rank()};
1225     return common::visit(
1226         common::visitors{
1227             [&](common::NumericOperator) {
1228               return IsIntrinsicNumeric(type0, rank0, type1, rank1);
1229             },
1230             [&](common::LogicalOperator) {
1231               return IsIntrinsicLogical(type0, rank0, type1, rank1);
1232             },
1233             [&](common::RelationalOperator opr) {
1234               return IsIntrinsicRelational(opr, type0, rank0, type1, rank1);
1235             },
1236             [&](GenericKind::OtherKind x) {
1237               CHECK(x == GenericKind::OtherKind::Concat);
1238               return IsIntrinsicConcat(type0, rank0, type1, rank1);
1239             },
1240             [](const auto &) -> bool { DIE("bad generic kind"); },
1241         },
1242         kind.u);
1243   }
1244 }
1245 
1246 // Check if this procedure can be used for defined operators (see 15.4.3.4.2).
1247 bool CheckHelper::CheckDefinedOperator(SourceName opName, GenericKind kind,
1248     const Symbol &specific, const Procedure &proc) {
1249   if (context_.HasError(specific)) {
1250     return false;
1251   }
1252   std::optional<parser::MessageFixedText> msg;
1253   auto checkDefinedOperatorArgs{
1254       [&](SourceName opName, const Symbol &specific, const Procedure &proc) {
1255         bool arg0Defined{CheckDefinedOperatorArg(opName, specific, proc, 0)};
1256         bool arg1Defined{CheckDefinedOperatorArg(opName, specific, proc, 1)};
1257         return arg0Defined && arg1Defined;
1258       }};
1259   if (specific.attrs().test(Attr::NOPASS)) { // C774
1260     msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US;
1261   } else if (!proc.functionResult.has_value()) {
1262     msg = "%s procedure '%s' must be a function"_err_en_US;
1263   } else if (proc.functionResult->IsAssumedLengthCharacter()) {
1264     msg = "%s function '%s' may not have assumed-length CHARACTER(*)"
1265           " result"_err_en_US;
1266   } else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) {
1267     msg = std::move(m);
1268   } else if (!checkDefinedOperatorArgs(opName, specific, proc)) {
1269     return false; // error was reported
1270   } else if (ConflictsWithIntrinsicOperator(kind, proc)) {
1271     msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US;
1272   } else {
1273     return true; // OK
1274   }
1275   SayWithDeclaration(
1276       specific, std::move(*msg), MakeOpName(opName), specific.name());
1277   context_.SetError(specific);
1278   return false;
1279 }
1280 
1281 // If the number of arguments is wrong for this intrinsic operator, return
1282 // false and return the error message in msg.
1283 std::optional<parser::MessageFixedText> CheckHelper::CheckNumberOfArgs(
1284     const GenericKind &kind, std::size_t nargs) {
1285   if (!kind.IsIntrinsicOperator()) {
1286     return std::nullopt;
1287   }
1288   std::size_t min{2}, max{2}; // allowed number of args; default is binary
1289   common::visit(common::visitors{
1290                     [&](const common::NumericOperator &x) {
1291                       if (x == common::NumericOperator::Add ||
1292                           x == common::NumericOperator::Subtract) {
1293                         min = 1; // + and - are unary or binary
1294                       }
1295                     },
1296                     [&](const common::LogicalOperator &x) {
1297                       if (x == common::LogicalOperator::Not) {
1298                         min = 1; // .NOT. is unary
1299                         max = 1;
1300                       }
1301                     },
1302                     [](const common::RelationalOperator &) {
1303                       // all are binary
1304                     },
1305                     [](const GenericKind::OtherKind &x) {
1306                       CHECK(x == GenericKind::OtherKind::Concat);
1307                     },
1308                     [](const auto &) { DIE("expected intrinsic operator"); },
1309                 },
1310       kind.u);
1311   if (nargs >= min && nargs <= max) {
1312     return std::nullopt;
1313   } else if (max == 1) {
1314     return "%s function '%s' must have one dummy argument"_err_en_US;
1315   } else if (min == 2) {
1316     return "%s function '%s' must have two dummy arguments"_err_en_US;
1317   } else {
1318     return "%s function '%s' must have one or two dummy arguments"_err_en_US;
1319   }
1320 }
1321 
1322 bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName,
1323     const Symbol &symbol, const Procedure &proc, std::size_t pos) {
1324   if (pos >= proc.dummyArguments.size()) {
1325     return true;
1326   }
1327   auto &arg{proc.dummyArguments.at(pos)};
1328   std::optional<parser::MessageFixedText> msg;
1329   if (arg.IsOptional()) {
1330     msg = "In %s function '%s', dummy argument '%s' may not be"
1331           " OPTIONAL"_err_en_US;
1332   } else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)};
1333              dataObject == nullptr) {
1334     msg = "In %s function '%s', dummy argument '%s' must be a"
1335           " data object"_err_en_US;
1336   } else if (dataObject->intent != common::Intent::In &&
1337       !dataObject->attrs.test(DummyDataObject::Attr::Value)) {
1338     msg = "In %s function '%s', dummy argument '%s' must have INTENT(IN)"
1339           " or VALUE attribute"_err_en_US;
1340   }
1341   if (msg) {
1342     SayWithDeclaration(symbol, std::move(*msg),
1343         parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name);
1344     return false;
1345   }
1346   return true;
1347 }
1348 
1349 // Check if this procedure can be used for defined assignment (see 15.4.3.4.3).
1350 bool CheckHelper::CheckDefinedAssignment(
1351     const Symbol &specific, const Procedure &proc) {
1352   if (context_.HasError(specific)) {
1353     return false;
1354   }
1355   std::optional<parser::MessageFixedText> msg;
1356   if (specific.attrs().test(Attr::NOPASS)) { // C774
1357     msg = "Defined assignment procedure '%s' may not have"
1358           " NOPASS attribute"_err_en_US;
1359   } else if (!proc.IsSubroutine()) {
1360     msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US;
1361   } else if (proc.dummyArguments.size() != 2) {
1362     msg = "Defined assignment subroutine '%s' must have"
1363           " two dummy arguments"_err_en_US;
1364   } else {
1365     // Check both arguments even if the first has an error.
1366     bool ok0{CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0)};
1367     bool ok1{CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)};
1368     if (!(ok0 && ok1)) {
1369       return false; // error was reported
1370     } else if (ConflictsWithIntrinsicAssignment(proc)) {
1371       msg = "Defined assignment subroutine '%s' conflicts with"
1372             " intrinsic assignment"_err_en_US;
1373     } else {
1374       return true; // OK
1375     }
1376   }
1377   SayWithDeclaration(specific, std::move(msg.value()), specific.name());
1378   context_.SetError(specific);
1379   return false;
1380 }
1381 
1382 bool CheckHelper::CheckDefinedAssignmentArg(
1383     const Symbol &symbol, const DummyArgument &arg, int pos) {
1384   std::optional<parser::MessageFixedText> msg;
1385   if (arg.IsOptional()) {
1386     msg = "In defined assignment subroutine '%s', dummy argument '%s'"
1387           " may not be OPTIONAL"_err_en_US;
1388   } else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)}) {
1389     if (pos == 0) {
1390       if (dataObject->intent != common::Intent::Out &&
1391           dataObject->intent != common::Intent::InOut) {
1392         msg = "In defined assignment subroutine '%s', first dummy argument '%s'"
1393               " must have INTENT(OUT) or INTENT(INOUT)"_err_en_US;
1394       }
1395     } else if (pos == 1) {
1396       if (dataObject->intent != common::Intent::In &&
1397           !dataObject->attrs.test(DummyDataObject::Attr::Value)) {
1398         msg =
1399             "In defined assignment subroutine '%s', second dummy"
1400             " argument '%s' must have INTENT(IN) or VALUE attribute"_err_en_US;
1401       }
1402     } else {
1403       DIE("pos must be 0 or 1");
1404     }
1405   } else {
1406     msg = "In defined assignment subroutine '%s', dummy argument '%s'"
1407           " must be a data object"_err_en_US;
1408   }
1409   if (msg) {
1410     SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name);
1411     context_.SetError(symbol);
1412     return false;
1413   }
1414   return true;
1415 }
1416 
1417 // Report a conflicting attribute error if symbol has both of these attributes
1418 bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) {
1419   if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) {
1420     messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US,
1421         symbol.name(), AttrToString(a1), AttrToString(a2));
1422     return true;
1423   } else {
1424     return false;
1425   }
1426 }
1427 
1428 void CheckHelper::WarnMissingFinal(const Symbol &symbol) {
1429   const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
1430   if (!object || IsPointer(symbol)) {
1431     return;
1432   }
1433   const DeclTypeSpec *type{object->type()};
1434   const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
1435   const Symbol *derivedSym{derived ? &derived->typeSymbol() : nullptr};
1436   int rank{object->shape().Rank()};
1437   const Symbol *initialDerivedSym{derivedSym};
1438   while (const auto *derivedDetails{
1439       derivedSym ? derivedSym->detailsIf<DerivedTypeDetails>() : nullptr}) {
1440     if (!derivedDetails->finals().empty() &&
1441         !derivedDetails->GetFinalForRank(rank)) {
1442       if (auto *msg{derivedSym == initialDerivedSym
1443                   ? messages_.Say(symbol.name(),
1444                         "'%s' of derived type '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US,
1445                         symbol.name(), derivedSym->name(), rank)
1446                   : messages_.Say(symbol.name(),
1447                         "'%s' of derived type '%s' extended from '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US,
1448                         symbol.name(), initialDerivedSym->name(),
1449                         derivedSym->name(), rank)}) {
1450         msg->Attach(derivedSym->name(),
1451             "Declaration of derived type '%s'"_en_US, derivedSym->name());
1452       }
1453       return;
1454     }
1455     derived = derivedSym->GetParentTypeSpec();
1456     derivedSym = derived ? &derived->typeSymbol() : nullptr;
1457   }
1458 }
1459 
1460 const Procedure *CheckHelper::Characterize(const Symbol &symbol) {
1461   auto it{characterizeCache_.find(symbol)};
1462   if (it == characterizeCache_.end()) {
1463     auto pair{characterizeCache_.emplace(SymbolRef{symbol},
1464         Procedure::Characterize(symbol, context_.foldingContext()))};
1465     it = pair.first;
1466   }
1467   return common::GetPtrFromOptional(it->second);
1468 }
1469 
1470 void CheckHelper::CheckVolatile(const Symbol &symbol,
1471     const DerivedTypeSpec *derived) { // C866 - C868
1472   if (IsIntentIn(symbol)) {
1473     messages_.Say(
1474         "VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US);
1475   }
1476   if (IsProcedure(symbol)) {
1477     messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US);
1478   }
1479   if (symbol.has<UseDetails>() || symbol.has<HostAssocDetails>()) {
1480     const Symbol &ultimate{symbol.GetUltimate()};
1481     if (evaluate::IsCoarray(ultimate)) {
1482       messages_.Say(
1483           "VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US);
1484     }
1485     if (derived) {
1486       if (FindCoarrayUltimateComponent(*derived)) {
1487         messages_.Say(
1488             "VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US);
1489       }
1490     }
1491   }
1492 }
1493 
1494 void CheckHelper::CheckPointer(const Symbol &symbol) { // C852
1495   CheckConflicting(symbol, Attr::POINTER, Attr::TARGET);
1496   CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); // C751
1497   CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC);
1498   // Prohibit constant pointers.  The standard does not explicitly prohibit
1499   // them, but the PARAMETER attribute requires a entity-decl to have an
1500   // initialization that is a constant-expr, and the only form of
1501   // initialization that allows a constant-expr is the one that's not a "=>"
1502   // pointer initialization.  See C811, C807, and section 8.5.13.
1503   CheckConflicting(symbol, Attr::POINTER, Attr::PARAMETER);
1504   if (symbol.Corank() > 0) {
1505     messages_.Say(
1506         "'%s' may not have the POINTER attribute because it is a coarray"_err_en_US,
1507         symbol.name());
1508   }
1509 }
1510 
1511 // C760 constraints on the passed-object dummy argument
1512 // C757 constraints on procedure pointer components
1513 void CheckHelper::CheckPassArg(
1514     const Symbol &proc, const Symbol *interface, const WithPassArg &details) {
1515   if (proc.attrs().test(Attr::NOPASS)) {
1516     return;
1517   }
1518   const auto &name{proc.name()};
1519   if (!interface) {
1520     messages_.Say(name,
1521         "Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US,
1522         name);
1523     return;
1524   }
1525   const auto *subprogram{interface->detailsIf<SubprogramDetails>()};
1526   if (!subprogram) {
1527     messages_.Say(name,
1528         "Procedure component '%s' has invalid interface '%s'"_err_en_US, name,
1529         interface->name());
1530     return;
1531   }
1532   std::optional<SourceName> passName{details.passName()};
1533   const auto &dummyArgs{subprogram->dummyArgs()};
1534   if (!passName) {
1535     if (dummyArgs.empty()) {
1536       messages_.Say(name,
1537           proc.has<ProcEntityDetails>()
1538               ? "Procedure component '%s' with no dummy arguments"
1539                 " must have NOPASS attribute"_err_en_US
1540               : "Procedure binding '%s' with no dummy arguments"
1541                 " must have NOPASS attribute"_err_en_US,
1542           name);
1543       context_.SetError(*interface);
1544       return;
1545     }
1546     Symbol *argSym{dummyArgs[0]};
1547     if (!argSym) {
1548       messages_.Say(interface->name(),
1549           "Cannot use an alternate return as the passed-object dummy "
1550           "argument"_err_en_US);
1551       return;
1552     }
1553     passName = dummyArgs[0]->name();
1554   }
1555   std::optional<int> passArgIndex{};
1556   for (std::size_t i{0}; i < dummyArgs.size(); ++i) {
1557     if (dummyArgs[i] && dummyArgs[i]->name() == *passName) {
1558       passArgIndex = i;
1559       break;
1560     }
1561   }
1562   if (!passArgIndex) { // C758
1563     messages_.Say(*passName,
1564         "'%s' is not a dummy argument of procedure interface '%s'"_err_en_US,
1565         *passName, interface->name());
1566     return;
1567   }
1568   const Symbol &passArg{*dummyArgs[*passArgIndex]};
1569   std::optional<parser::MessageFixedText> msg;
1570   if (!passArg.has<ObjectEntityDetails>()) {
1571     msg = "Passed-object dummy argument '%s' of procedure '%s'"
1572           " must be a data object"_err_en_US;
1573   } else if (passArg.attrs().test(Attr::POINTER)) {
1574     msg = "Passed-object dummy argument '%s' of procedure '%s'"
1575           " may not have the POINTER attribute"_err_en_US;
1576   } else if (passArg.attrs().test(Attr::ALLOCATABLE)) {
1577     msg = "Passed-object dummy argument '%s' of procedure '%s'"
1578           " may not have the ALLOCATABLE attribute"_err_en_US;
1579   } else if (passArg.attrs().test(Attr::VALUE)) {
1580     msg = "Passed-object dummy argument '%s' of procedure '%s'"
1581           " may not have the VALUE attribute"_err_en_US;
1582   } else if (passArg.Rank() > 0) {
1583     msg = "Passed-object dummy argument '%s' of procedure '%s'"
1584           " must be scalar"_err_en_US;
1585   }
1586   if (msg) {
1587     messages_.Say(name, std::move(*msg), passName.value(), name);
1588     return;
1589   }
1590   const DeclTypeSpec *type{passArg.GetType()};
1591   if (!type) {
1592     return; // an error already occurred
1593   }
1594   const Symbol &typeSymbol{*proc.owner().GetSymbol()};
1595   const DerivedTypeSpec *derived{type->AsDerived()};
1596   if (!derived || derived->typeSymbol() != typeSymbol) {
1597     messages_.Say(name,
1598         "Passed-object dummy argument '%s' of procedure '%s'"
1599         " must be of type '%s' but is '%s'"_err_en_US,
1600         passName.value(), name, typeSymbol.name(), type->AsFortran());
1601     return;
1602   }
1603   if (IsExtensibleType(derived) != type->IsPolymorphic()) {
1604     messages_.Say(name,
1605         type->IsPolymorphic()
1606             ? "Passed-object dummy argument '%s' of procedure '%s'"
1607               " may not be polymorphic because '%s' is not extensible"_err_en_US
1608             : "Passed-object dummy argument '%s' of procedure '%s'"
1609               " must be polymorphic because '%s' is extensible"_err_en_US,
1610         passName.value(), name, typeSymbol.name());
1611     return;
1612   }
1613   for (const auto &[paramName, paramValue] : derived->parameters()) {
1614     if (paramValue.isLen() && !paramValue.isAssumed()) {
1615       messages_.Say(name,
1616           "Passed-object dummy argument '%s' of procedure '%s'"
1617           " has non-assumed length parameter '%s'"_err_en_US,
1618           passName.value(), name, paramName);
1619     }
1620   }
1621 }
1622 
1623 void CheckHelper::CheckProcBinding(
1624     const Symbol &symbol, const ProcBindingDetails &binding) {
1625   const Scope &dtScope{symbol.owner()};
1626   CHECK(dtScope.kind() == Scope::Kind::DerivedType);
1627   if (symbol.attrs().test(Attr::DEFERRED)) {
1628     if (const Symbol * dtSymbol{dtScope.symbol()}) {
1629       if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { // C733
1630         SayWithDeclaration(*dtSymbol,
1631             "Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US,
1632             dtSymbol->name());
1633       }
1634     }
1635     if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) {
1636       messages_.Say(
1637           "Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US,
1638           symbol.name());
1639     }
1640   }
1641   if (binding.symbol().attrs().test(Attr::INTRINSIC) &&
1642       !context_.intrinsics().IsSpecificIntrinsicFunction(
1643           binding.symbol().name().ToString())) {
1644     messages_.Say(
1645         "Intrinsic procedure '%s' is not a specific intrinsic permitted for use in the definition of binding '%s'"_err_en_US,
1646         binding.symbol().name(), symbol.name());
1647   }
1648   if (const Symbol * overridden{FindOverriddenBinding(symbol)}) {
1649     if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) {
1650       SayWithDeclaration(*overridden,
1651           "Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US,
1652           symbol.name());
1653     }
1654     if (const auto *overriddenBinding{
1655             overridden->detailsIf<ProcBindingDetails>()}) {
1656       if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) {
1657         SayWithDeclaration(*overridden,
1658             "An overridden pure type-bound procedure binding must also be pure"_err_en_US);
1659         return;
1660       }
1661       if (!binding.symbol().attrs().test(Attr::ELEMENTAL) &&
1662           overriddenBinding->symbol().attrs().test(Attr::ELEMENTAL)) {
1663         SayWithDeclaration(*overridden,
1664             "A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US);
1665         return;
1666       }
1667       bool isNopass{symbol.attrs().test(Attr::NOPASS)};
1668       if (isNopass != overridden->attrs().test(Attr::NOPASS)) {
1669         SayWithDeclaration(*overridden,
1670             isNopass
1671                 ? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US
1672                 : "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US);
1673       } else {
1674         const auto *bindingChars{Characterize(binding.symbol())};
1675         const auto *overriddenChars{Characterize(overriddenBinding->symbol())};
1676         if (bindingChars && overriddenChars) {
1677           if (isNopass) {
1678             if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) {
1679               SayWithDeclaration(*overridden,
1680                   "A type-bound procedure and its override must have compatible interfaces"_err_en_US);
1681             }
1682           } else if (!context_.HasError(binding.symbol())) {
1683             int passIndex{bindingChars->FindPassIndex(binding.passName())};
1684             int overriddenPassIndex{
1685                 overriddenChars->FindPassIndex(overriddenBinding->passName())};
1686             if (passIndex != overriddenPassIndex) {
1687               SayWithDeclaration(*overridden,
1688                   "A type-bound procedure and its override must use the same PASS argument"_err_en_US);
1689             } else if (!bindingChars->CanOverride(
1690                            *overriddenChars, passIndex)) {
1691               SayWithDeclaration(*overridden,
1692                   "A type-bound procedure and its override must have compatible interfaces apart from their passed argument"_err_en_US);
1693             }
1694           }
1695         }
1696       }
1697       if (symbol.attrs().test(Attr::PRIVATE) &&
1698           overridden->attrs().test(Attr::PUBLIC)) {
1699         SayWithDeclaration(*overridden,
1700             "A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US);
1701       }
1702     } else {
1703       SayWithDeclaration(*overridden,
1704           "A type-bound procedure binding may not have the same name as a parent component"_err_en_US);
1705     }
1706   }
1707   CheckPassArg(symbol, &binding.symbol(), binding);
1708 }
1709 
1710 void CheckHelper::Check(const Scope &scope) {
1711   scope_ = &scope;
1712   common::Restorer<const Symbol *> restorer{innermostSymbol_, innermostSymbol_};
1713   if (const Symbol * symbol{scope.symbol()}) {
1714     innermostSymbol_ = symbol;
1715   }
1716   if (scope.IsParameterizedDerivedTypeInstantiation()) {
1717     auto restorer{common::ScopedSet(scopeIsUninstantiatedPDT_, false)};
1718     auto restorer2{context_.foldingContext().messages().SetContext(
1719         scope.instantiationContext().get())};
1720     for (const auto &pair : scope) {
1721       CheckPointerInitialization(*pair.second);
1722     }
1723   } else {
1724     auto restorer{common::ScopedSet(
1725         scopeIsUninstantiatedPDT_, scope.IsParameterizedDerivedType())};
1726     for (const auto &set : scope.equivalenceSets()) {
1727       CheckEquivalenceSet(set);
1728     }
1729     for (const auto &pair : scope) {
1730       Check(*pair.second);
1731     }
1732     int mainProgCnt{0};
1733     for (const Scope &child : scope.children()) {
1734       Check(child);
1735       // A program shall consist of exactly one main program (5.2.2).
1736       if (child.kind() == Scope::Kind::MainProgram) {
1737         ++mainProgCnt;
1738         if (mainProgCnt > 1) {
1739           messages_.Say(child.sourceRange(),
1740               "A source file cannot contain more than one main program"_err_en_US);
1741         }
1742       }
1743     }
1744     if (scope.kind() == Scope::Kind::BlockData) {
1745       CheckBlockData(scope);
1746     }
1747     CheckGenericOps(scope);
1748   }
1749 }
1750 
1751 void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) {
1752   auto iter{
1753       std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) {
1754         return FindCommonBlockContaining(object.symbol) != nullptr;
1755       })};
1756   if (iter != set.end()) {
1757     const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))};
1758     for (auto &object : set) {
1759       if (&object != &*iter) {
1760         if (auto *details{object.symbol.detailsIf<ObjectEntityDetails>()}) {
1761           if (details->commonBlock()) {
1762             if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1
1763               if (auto *msg{messages_.Say(object.symbol.name(),
1764                       "Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) {
1765                 msg->Attach(iter->symbol.name(),
1766                        "Other object in EQUIVALENCE set"_en_US)
1767                     .Attach(details->commonBlock()->name(),
1768                         "COMMON block containing '%s'"_en_US,
1769                         object.symbol.name())
1770                     .Attach(commonBlock.name(),
1771                         "COMMON block containing '%s'"_en_US,
1772                         iter->symbol.name());
1773               }
1774             }
1775           } else {
1776             // Mark all symbols in the equivalence set with the same COMMON
1777             // block to prevent spurious error messages about initialization
1778             // in BLOCK DATA outside COMMON
1779             details->set_commonBlock(commonBlock);
1780           }
1781         }
1782       }
1783     }
1784   }
1785   // TODO: Move C8106 (&al.) checks here from resolve-names-utils.cpp
1786 }
1787 
1788 void CheckHelper::CheckBlockData(const Scope &scope) {
1789   // BLOCK DATA subprograms should contain only named common blocks.
1790   // C1415 presents a list of statements that shouldn't appear in
1791   // BLOCK DATA, but so long as the subprogram contains no executable
1792   // code and allocates no storage outside named COMMON, we're happy
1793   // (e.g., an ENUM is strictly not allowed).
1794   for (const auto &pair : scope) {
1795     const Symbol &symbol{*pair.second};
1796     if (!(symbol.has<CommonBlockDetails>() || symbol.has<UseDetails>() ||
1797             symbol.has<UseErrorDetails>() || symbol.has<DerivedTypeDetails>() ||
1798             symbol.has<SubprogramDetails>() ||
1799             symbol.has<ObjectEntityDetails>() ||
1800             (symbol.has<ProcEntityDetails>() &&
1801                 !symbol.attrs().test(Attr::POINTER)))) {
1802       messages_.Say(symbol.name(),
1803           "'%s' may not appear in a BLOCK DATA subprogram"_err_en_US,
1804           symbol.name());
1805     }
1806   }
1807 }
1808 
1809 // Check distinguishability of generic assignment and operators.
1810 // For these, generics and generic bindings must be considered together.
1811 void CheckHelper::CheckGenericOps(const Scope &scope) {
1812   DistinguishabilityHelper helper{context_};
1813   auto addSpecifics{[&](const Symbol &generic) {
1814     const auto *details{generic.GetUltimate().detailsIf<GenericDetails>()};
1815     if (!details) {
1816       // Not a generic; ensure characteristics are defined if a function.
1817       auto restorer{messages_.SetLocation(generic.name())};
1818       if (IsFunction(generic) && !context_.HasError(generic)) {
1819         if (const Symbol * result{FindFunctionResult(generic)};
1820             result && !context_.HasError(*result)) {
1821           Characterize(generic);
1822         }
1823       }
1824       return;
1825     }
1826     GenericKind kind{details->kind()};
1827     if (!kind.IsAssignment() && !kind.IsOperator()) {
1828       return;
1829     }
1830     const SymbolVector &specifics{details->specificProcs()};
1831     const std::vector<SourceName> &bindingNames{details->bindingNames()};
1832     for (std::size_t i{0}; i < specifics.size(); ++i) {
1833       const Symbol &specific{*specifics[i]};
1834       auto restorer{messages_.SetLocation(bindingNames[i])};
1835       if (const Procedure * proc{Characterize(specific)}) {
1836         if (kind.IsAssignment()) {
1837           if (!CheckDefinedAssignment(specific, *proc)) {
1838             continue;
1839           }
1840         } else {
1841           if (!CheckDefinedOperator(generic.name(), kind, specific, *proc)) {
1842             continue;
1843           }
1844         }
1845         helper.Add(generic, kind, specific, *proc);
1846       }
1847     }
1848   }};
1849   for (const auto &pair : scope) {
1850     const Symbol &symbol{*pair.second};
1851     addSpecifics(symbol);
1852     const Symbol &ultimate{symbol.GetUltimate()};
1853     if (ultimate.has<DerivedTypeDetails>()) {
1854       if (const Scope * typeScope{ultimate.scope()}) {
1855         for (const auto &pair2 : *typeScope) {
1856           addSpecifics(*pair2.second);
1857         }
1858       }
1859     }
1860   }
1861   helper.Check(scope);
1862 }
1863 
1864 static const std::string *DefinesBindCName(const Symbol &symbol) {
1865   const auto *subp{symbol.detailsIf<SubprogramDetails>()};
1866   if ((subp && !subp->isInterface() &&
1867           ClassifyProcedure(symbol) != ProcedureDefinitionClass::Internal) ||
1868       symbol.has<ObjectEntityDetails>()) {
1869     // Symbol defines data or entry point
1870     return symbol.GetBindName();
1871   } else {
1872     return nullptr;
1873   }
1874 }
1875 
1876 void CheckHelper::CheckBindC(const Symbol &symbol) {
1877   if (!symbol.attrs().test(Attr::BIND_C)) {
1878     return;
1879   }
1880   CheckConflicting(symbol, Attr::BIND_C, Attr::PARAMETER);
1881   if (symbol.has<ObjectEntityDetails>() && !symbol.owner().IsModule()) {
1882     messages_.Say(symbol.name(),
1883         "A variable with BIND(C) attribute may only appear in the specification part of a module"_err_en_US);
1884   }
1885   if (const std::string * name{DefinesBindCName(symbol)}) {
1886     auto pair{bindC_.emplace(*name, symbol)};
1887     if (!pair.second) {
1888       const Symbol &other{*pair.first->second};
1889       if (DefinesBindCName(other) && !context_.HasError(other)) {
1890         if (auto *msg{messages_.Say(
1891                 "Two symbols have the same BIND(C) name '%s'"_err_en_US,
1892                 *name)}) {
1893           msg->Attach(other.name(), "Conflicting symbol"_en_US);
1894         }
1895         context_.SetError(symbol);
1896         context_.SetError(other);
1897       }
1898     }
1899   }
1900   if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
1901     if (!proc->interface().symbol() ||
1902         !proc->interface().symbol()->attrs().test(Attr::BIND_C)) {
1903       messages_.Say(symbol.name(),
1904           "An interface name with BIND attribute must be specified if the BIND attribute is specified in a procedure declaration statement"_err_en_US);
1905     }
1906   }
1907 }
1908 
1909 bool CheckHelper::CheckDioDummyIsData(
1910     const Symbol &subp, const Symbol *arg, std::size_t position) {
1911   if (arg && arg->detailsIf<ObjectEntityDetails>()) {
1912     return true;
1913   } else {
1914     if (arg) {
1915       messages_.Say(arg->name(),
1916           "Dummy argument '%s' must be a data object"_err_en_US, arg->name());
1917     } else {
1918       messages_.Say(subp.name(),
1919           "Dummy argument %d of '%s' must be a data object"_err_en_US, position,
1920           subp.name());
1921     }
1922     return false;
1923   }
1924 }
1925 
1926 void CheckHelper::CheckAlreadySeenDefinedIo(const DerivedTypeSpec &derivedType,
1927     GenericKind::DefinedIo ioKind, const Symbol &proc, const Symbol &generic) {
1928   for (TypeWithDefinedIo definedIoType : seenDefinedIoTypes_) {
1929     // It's okay to have two or more distinct derived type I/O procedures
1930     // for the same type if they're coming from distinct non-type-bound
1931     // interfaces.  (The non-type-bound interfaces would have been merged into
1932     // a single generic if both were visible in the same scope.)
1933     if (derivedType == definedIoType.type && ioKind == definedIoType.ioKind &&
1934         proc != definedIoType.proc &&
1935         (generic.owner().IsDerivedType() ||
1936             definedIoType.generic.owner().IsDerivedType())) {
1937       SayWithDeclaration(proc, definedIoType.proc.name(),
1938           "Derived type '%s' already has defined input/output procedure"
1939           " '%s'"_err_en_US,
1940           derivedType.name(),
1941           parser::ToUpperCaseLetters(GenericKind::EnumToString(ioKind)));
1942       return;
1943     }
1944   }
1945   seenDefinedIoTypes_.emplace_back(
1946       TypeWithDefinedIo{derivedType, ioKind, proc, generic});
1947 }
1948 
1949 void CheckHelper::CheckDioDummyIsDerived(const Symbol &subp, const Symbol &arg,
1950     GenericKind::DefinedIo ioKind, const Symbol &generic) {
1951   if (const DeclTypeSpec * type{arg.GetType()}) {
1952     if (const DerivedTypeSpec * derivedType{type->AsDerived()}) {
1953       CheckAlreadySeenDefinedIo(*derivedType, ioKind, subp, generic);
1954       bool isPolymorphic{type->IsPolymorphic()};
1955       if (isPolymorphic != IsExtensibleType(derivedType)) {
1956         messages_.Say(arg.name(),
1957             "Dummy argument '%s' of a defined input/output procedure must be %s when the derived type is %s"_err_en_US,
1958             arg.name(), isPolymorphic ? "TYPE()" : "CLASS()",
1959             isPolymorphic ? "not extensible" : "extensible");
1960       }
1961     } else {
1962       messages_.Say(arg.name(),
1963           "Dummy argument '%s' of a defined input/output procedure must have a"
1964           " derived type"_err_en_US,
1965           arg.name());
1966     }
1967   }
1968 }
1969 
1970 void CheckHelper::CheckDioDummyIsDefaultInteger(
1971     const Symbol &subp, const Symbol &arg) {
1972   if (const DeclTypeSpec * type{arg.GetType()};
1973       type && type->IsNumeric(TypeCategory::Integer)) {
1974     if (const auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())};
1975         kind && *kind == context_.GetDefaultKind(TypeCategory::Integer)) {
1976       return;
1977     }
1978   }
1979   messages_.Say(arg.name(),
1980       "Dummy argument '%s' of a defined input/output procedure"
1981       " must be an INTEGER of default KIND"_err_en_US,
1982       arg.name());
1983 }
1984 
1985 void CheckHelper::CheckDioDummyIsScalar(const Symbol &subp, const Symbol &arg) {
1986   if (arg.Rank() > 0 || arg.Corank() > 0) {
1987     messages_.Say(arg.name(),
1988         "Dummy argument '%s' of a defined input/output procedure"
1989         " must be a scalar"_err_en_US,
1990         arg.name());
1991   }
1992 }
1993 
1994 void CheckHelper::CheckDioDtvArg(const Symbol &subp, const Symbol *arg,
1995     GenericKind::DefinedIo ioKind, const Symbol &generic) {
1996   // Dtv argument looks like: dtv-type-spec, INTENT(INOUT) :: dtv
1997   if (CheckDioDummyIsData(subp, arg, 0)) {
1998     CheckDioDummyIsDerived(subp, *arg, ioKind, generic);
1999     CheckDioDummyAttrs(subp, *arg,
2000         ioKind == GenericKind::DefinedIo::ReadFormatted ||
2001                 ioKind == GenericKind::DefinedIo::ReadUnformatted
2002             ? Attr::INTENT_INOUT
2003             : Attr::INTENT_IN);
2004   }
2005 }
2006 
2007 // If an explicit INTRINSIC name is a function, so must all the specifics be,
2008 // and similarly for subroutines
2009 void CheckHelper::CheckGenericVsIntrinsic(
2010     const Symbol &symbol, const GenericDetails &generic) {
2011   if (symbol.attrs().test(Attr::INTRINSIC)) {
2012     const evaluate::IntrinsicProcTable &table{
2013         context_.foldingContext().intrinsics()};
2014     bool isSubroutine{table.IsIntrinsicSubroutine(symbol.name().ToString())};
2015     if (isSubroutine || table.IsIntrinsicFunction(symbol.name().ToString())) {
2016       for (const SymbolRef &ref : generic.specificProcs()) {
2017         const Symbol &ultimate{ref->GetUltimate()};
2018         bool specificFunc{ultimate.test(Symbol::Flag::Function)};
2019         bool specificSubr{ultimate.test(Symbol::Flag::Subroutine)};
2020         if (!specificFunc && !specificSubr) {
2021           if (const auto *proc{ultimate.detailsIf<SubprogramDetails>()}) {
2022             if (proc->isFunction()) {
2023               specificFunc = true;
2024             } else {
2025               specificSubr = true;
2026             }
2027           }
2028         }
2029         if ((specificFunc || specificSubr) &&
2030             isSubroutine != specificSubr) { // C848
2031           messages_.Say(symbol.name(),
2032               "Generic interface '%s' with explicit intrinsic %s of the same name may not have specific procedure '%s' that is a %s"_err_en_US,
2033               symbol.name(), isSubroutine ? "subroutine" : "function",
2034               ref->name(), isSubroutine ? "function" : "subroutine");
2035         }
2036       }
2037     }
2038   }
2039 }
2040 
2041 void CheckHelper::CheckDefaultIntegerArg(
2042     const Symbol &subp, const Symbol *arg, Attr intent) {
2043   // Argument looks like: INTEGER, INTENT(intent) :: arg
2044   if (CheckDioDummyIsData(subp, arg, 1)) {
2045     CheckDioDummyIsDefaultInteger(subp, *arg);
2046     CheckDioDummyIsScalar(subp, *arg);
2047     CheckDioDummyAttrs(subp, *arg, intent);
2048   }
2049 }
2050 
2051 void CheckHelper::CheckDioAssumedLenCharacterArg(const Symbol &subp,
2052     const Symbol *arg, std::size_t argPosition, Attr intent) {
2053   // Argument looks like: CHARACTER (LEN=*), INTENT(intent) :: (iotype OR iomsg)
2054   if (CheckDioDummyIsData(subp, arg, argPosition)) {
2055     CheckDioDummyAttrs(subp, *arg, intent);
2056     if (!IsAssumedLengthCharacter(*arg)) {
2057       messages_.Say(arg->name(),
2058           "Dummy argument '%s' of a defined input/output procedure"
2059           " must be assumed-length CHARACTER"_err_en_US,
2060           arg->name());
2061     }
2062   }
2063 }
2064 
2065 void CheckHelper::CheckDioVlistArg(
2066     const Symbol &subp, const Symbol *arg, std::size_t argPosition) {
2067   // Vlist argument looks like: INTEGER, INTENT(IN) :: v_list(:)
2068   if (CheckDioDummyIsData(subp, arg, argPosition)) {
2069     CheckDioDummyIsDefaultInteger(subp, *arg);
2070     CheckDioDummyAttrs(subp, *arg, Attr::INTENT_IN);
2071     const auto *objectDetails{arg->detailsIf<ObjectEntityDetails>()};
2072     if (!objectDetails || !objectDetails->shape().CanBeDeferredShape()) {
2073       messages_.Say(arg->name(),
2074           "Dummy argument '%s' of a defined input/output procedure must be"
2075           " deferred shape"_err_en_US,
2076           arg->name());
2077     }
2078   }
2079 }
2080 
2081 void CheckHelper::CheckDioArgCount(
2082     const Symbol &subp, GenericKind::DefinedIo ioKind, std::size_t argCount) {
2083   const std::size_t requiredArgCount{
2084       (std::size_t)(ioKind == GenericKind::DefinedIo::ReadFormatted ||
2085                   ioKind == GenericKind::DefinedIo::WriteFormatted
2086               ? 6
2087               : 4)};
2088   if (argCount != requiredArgCount) {
2089     SayWithDeclaration(subp,
2090         "Defined input/output procedure '%s' must have"
2091         " %d dummy arguments rather than %d"_err_en_US,
2092         subp.name(), requiredArgCount, argCount);
2093     context_.SetError(subp);
2094   }
2095 }
2096 
2097 void CheckHelper::CheckDioDummyAttrs(
2098     const Symbol &subp, const Symbol &arg, Attr goodIntent) {
2099   // Defined I/O procedures can't have attributes other than INTENT
2100   Attrs attrs{arg.attrs()};
2101   if (!attrs.test(goodIntent)) {
2102     messages_.Say(arg.name(),
2103         "Dummy argument '%s' of a defined input/output procedure"
2104         " must have intent '%s'"_err_en_US,
2105         arg.name(), AttrToString(goodIntent));
2106   }
2107   attrs = attrs - Attr::INTENT_IN - Attr::INTENT_OUT - Attr::INTENT_INOUT;
2108   if (!attrs.empty()) {
2109     messages_.Say(arg.name(),
2110         "Dummy argument '%s' of a defined input/output procedure may not have"
2111         " any attributes"_err_en_US,
2112         arg.name());
2113   }
2114 }
2115 
2116 // Enforce semantics for defined input/output procedures (12.6.4.8.2) and C777
2117 void CheckHelper::CheckDefinedIoProc(const Symbol &symbol,
2118     const GenericDetails &details, GenericKind::DefinedIo ioKind) {
2119   for (auto ref : details.specificProcs()) {
2120     const auto *binding{ref->detailsIf<ProcBindingDetails>()};
2121     const Symbol &specific{*(binding ? &binding->symbol() : &*ref)};
2122     if (ref->attrs().test(Attr::NOPASS)) { // C774
2123       messages_.Say("Defined input/output procedure '%s' may not have NOPASS "
2124                     "attribute"_err_en_US,
2125           ref->name());
2126       context_.SetError(*ref);
2127     }
2128     if (const auto *subpDetails{specific.detailsIf<SubprogramDetails>()}) {
2129       const std::vector<Symbol *> &dummyArgs{subpDetails->dummyArgs()};
2130       CheckDioArgCount(specific, ioKind, dummyArgs.size());
2131       int argCount{0};
2132       for (auto *arg : dummyArgs) {
2133         switch (argCount++) {
2134         case 0:
2135           // dtv-type-spec, INTENT(INOUT) :: dtv
2136           CheckDioDtvArg(specific, arg, ioKind, symbol);
2137           break;
2138         case 1:
2139           // INTEGER, INTENT(IN) :: unit
2140           CheckDefaultIntegerArg(specific, arg, Attr::INTENT_IN);
2141           break;
2142         case 2:
2143           if (ioKind == GenericKind::DefinedIo::ReadFormatted ||
2144               ioKind == GenericKind::DefinedIo::WriteFormatted) {
2145             // CHARACTER (LEN=*), INTENT(IN) :: iotype
2146             CheckDioAssumedLenCharacterArg(
2147                 specific, arg, argCount, Attr::INTENT_IN);
2148           } else {
2149             // INTEGER, INTENT(OUT) :: iostat
2150             CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT);
2151           }
2152           break;
2153         case 3:
2154           if (ioKind == GenericKind::DefinedIo::ReadFormatted ||
2155               ioKind == GenericKind::DefinedIo::WriteFormatted) {
2156             // INTEGER, INTENT(IN) :: v_list(:)
2157             CheckDioVlistArg(specific, arg, argCount);
2158           } else {
2159             // CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
2160             CheckDioAssumedLenCharacterArg(
2161                 specific, arg, argCount, Attr::INTENT_INOUT);
2162           }
2163           break;
2164         case 4:
2165           // INTEGER, INTENT(OUT) :: iostat
2166           CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT);
2167           break;
2168         case 5:
2169           // CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
2170           CheckDioAssumedLenCharacterArg(
2171               specific, arg, argCount, Attr::INTENT_INOUT);
2172           break;
2173         default:;
2174         }
2175       }
2176     }
2177   }
2178 }
2179 
2180 void SubprogramMatchHelper::Check(
2181     const Symbol &symbol1, const Symbol &symbol2) {
2182   const auto details1{symbol1.get<SubprogramDetails>()};
2183   const auto details2{symbol2.get<SubprogramDetails>()};
2184   if (details1.isFunction() != details2.isFunction()) {
2185     Say(symbol1, symbol2,
2186         details1.isFunction()
2187             ? "Module function '%s' was declared as a subroutine in the"
2188               " corresponding interface body"_err_en_US
2189             : "Module subroutine '%s' was declared as a function in the"
2190               " corresponding interface body"_err_en_US);
2191     return;
2192   }
2193   const auto &args1{details1.dummyArgs()};
2194   const auto &args2{details2.dummyArgs()};
2195   int nargs1{static_cast<int>(args1.size())};
2196   int nargs2{static_cast<int>(args2.size())};
2197   if (nargs1 != nargs2) {
2198     Say(symbol1, symbol2,
2199         "Module subprogram '%s' has %d args but the corresponding interface"
2200         " body has %d"_err_en_US,
2201         nargs1, nargs2);
2202     return;
2203   }
2204   bool nonRecursive1{symbol1.attrs().test(Attr::NON_RECURSIVE)};
2205   if (nonRecursive1 != symbol2.attrs().test(Attr::NON_RECURSIVE)) { // C1551
2206     Say(symbol1, symbol2,
2207         nonRecursive1
2208             ? "Module subprogram '%s' has NON_RECURSIVE prefix but"
2209               " the corresponding interface body does not"_err_en_US
2210             : "Module subprogram '%s' does not have NON_RECURSIVE prefix but "
2211               "the corresponding interface body does"_err_en_US);
2212   }
2213   const std::string *bindName1{details1.bindName()};
2214   const std::string *bindName2{details2.bindName()};
2215   if (!bindName1 && !bindName2) {
2216     // OK - neither has a binding label
2217   } else if (!bindName1) {
2218     Say(symbol1, symbol2,
2219         "Module subprogram '%s' does not have a binding label but the"
2220         " corresponding interface body does"_err_en_US);
2221   } else if (!bindName2) {
2222     Say(symbol1, symbol2,
2223         "Module subprogram '%s' has a binding label but the"
2224         " corresponding interface body does not"_err_en_US);
2225   } else if (*bindName1 != *bindName2) {
2226     Say(symbol1, symbol2,
2227         "Module subprogram '%s' has binding label '%s' but the corresponding"
2228         " interface body has '%s'"_err_en_US,
2229         *details1.bindName(), *details2.bindName());
2230   }
2231   const Procedure *proc1{checkHelper.Characterize(symbol1)};
2232   const Procedure *proc2{checkHelper.Characterize(symbol2)};
2233   if (!proc1 || !proc2) {
2234     return;
2235   }
2236   if (proc1->attrs.test(Procedure::Attr::Pure) !=
2237       proc2->attrs.test(Procedure::Attr::Pure)) {
2238     Say(symbol1, symbol2,
2239         "Module subprogram '%s' and its corresponding interface body are not both PURE"_err_en_US);
2240   }
2241   if (proc1->attrs.test(Procedure::Attr::Elemental) !=
2242       proc2->attrs.test(Procedure::Attr::Elemental)) {
2243     Say(symbol1, symbol2,
2244         "Module subprogram '%s' and its corresponding interface body are not both ELEMENTAL"_err_en_US);
2245   }
2246   if (proc1->attrs.test(Procedure::Attr::BindC) !=
2247       proc2->attrs.test(Procedure::Attr::BindC)) {
2248     Say(symbol1, symbol2,
2249         "Module subprogram '%s' and its corresponding interface body are not both BIND(C)"_err_en_US);
2250   }
2251   if (proc1->functionResult && proc2->functionResult &&
2252       *proc1->functionResult != *proc2->functionResult) {
2253     Say(symbol1, symbol2,
2254         "Return type of function '%s' does not match return type of"
2255         " the corresponding interface body"_err_en_US);
2256   }
2257   for (int i{0}; i < nargs1; ++i) {
2258     const Symbol *arg1{args1[i]};
2259     const Symbol *arg2{args2[i]};
2260     if (arg1 && !arg2) {
2261       Say(symbol1, symbol2,
2262           "Dummy argument %2$d of '%1$s' is not an alternate return indicator"
2263           " but the corresponding argument in the interface body is"_err_en_US,
2264           i + 1);
2265     } else if (!arg1 && arg2) {
2266       Say(symbol1, symbol2,
2267           "Dummy argument %2$d of '%1$s' is an alternate return indicator but"
2268           " the corresponding argument in the interface body is not"_err_en_US,
2269           i + 1);
2270     } else if (arg1 && arg2) {
2271       SourceName name1{arg1->name()};
2272       SourceName name2{arg2->name()};
2273       if (name1 != name2) {
2274         Say(*arg1, *arg2,
2275             "Dummy argument name '%s' does not match corresponding name '%s'"
2276             " in interface body"_err_en_US,
2277             name2);
2278       } else {
2279         CheckDummyArg(
2280             *arg1, *arg2, proc1->dummyArguments[i], proc2->dummyArguments[i]);
2281       }
2282     }
2283   }
2284 }
2285 
2286 void SubprogramMatchHelper::CheckDummyArg(const Symbol &symbol1,
2287     const Symbol &symbol2, const DummyArgument &arg1,
2288     const DummyArgument &arg2) {
2289   common::visit(
2290       common::visitors{
2291           [&](const DummyDataObject &obj1, const DummyDataObject &obj2) {
2292             CheckDummyDataObject(symbol1, symbol2, obj1, obj2);
2293           },
2294           [&](const DummyProcedure &proc1, const DummyProcedure &proc2) {
2295             CheckDummyProcedure(symbol1, symbol2, proc1, proc2);
2296           },
2297           [&](const DummyDataObject &, const auto &) {
2298             Say(symbol1, symbol2,
2299                 "Dummy argument '%s' is a data object; the corresponding"
2300                 " argument in the interface body is not"_err_en_US);
2301           },
2302           [&](const DummyProcedure &, const auto &) {
2303             Say(symbol1, symbol2,
2304                 "Dummy argument '%s' is a procedure; the corresponding"
2305                 " argument in the interface body is not"_err_en_US);
2306           },
2307           [&](const auto &, const auto &) {
2308             llvm_unreachable("Dummy arguments are not data objects or"
2309                              "procedures");
2310           },
2311       },
2312       arg1.u, arg2.u);
2313 }
2314 
2315 void SubprogramMatchHelper::CheckDummyDataObject(const Symbol &symbol1,
2316     const Symbol &symbol2, const DummyDataObject &obj1,
2317     const DummyDataObject &obj2) {
2318   if (!CheckSameIntent(symbol1, symbol2, obj1.intent, obj2.intent)) {
2319   } else if (!CheckSameAttrs(symbol1, symbol2, obj1.attrs, obj2.attrs)) {
2320   } else if (obj1.type.type() != obj2.type.type()) {
2321     Say(symbol1, symbol2,
2322         "Dummy argument '%s' has type %s; the corresponding argument in the"
2323         " interface body has type %s"_err_en_US,
2324         obj1.type.type().AsFortran(), obj2.type.type().AsFortran());
2325   } else if (!ShapesAreCompatible(obj1, obj2)) {
2326     Say(symbol1, symbol2,
2327         "The shape of dummy argument '%s' does not match the shape of the"
2328         " corresponding argument in the interface body"_err_en_US);
2329   }
2330   // TODO: coshape
2331 }
2332 
2333 void SubprogramMatchHelper::CheckDummyProcedure(const Symbol &symbol1,
2334     const Symbol &symbol2, const DummyProcedure &proc1,
2335     const DummyProcedure &proc2) {
2336   if (!CheckSameIntent(symbol1, symbol2, proc1.intent, proc2.intent)) {
2337   } else if (!CheckSameAttrs(symbol1, symbol2, proc1.attrs, proc2.attrs)) {
2338   } else if (proc1 != proc2) {
2339     Say(symbol1, symbol2,
2340         "Dummy procedure '%s' does not match the corresponding argument in"
2341         " the interface body"_err_en_US);
2342   }
2343 }
2344 
2345 bool SubprogramMatchHelper::CheckSameIntent(const Symbol &symbol1,
2346     const Symbol &symbol2, common::Intent intent1, common::Intent intent2) {
2347   if (intent1 == intent2) {
2348     return true;
2349   } else {
2350     Say(symbol1, symbol2,
2351         "The intent of dummy argument '%s' does not match the intent"
2352         " of the corresponding argument in the interface body"_err_en_US);
2353     return false;
2354   }
2355 }
2356 
2357 // Report an error referring to first symbol with declaration of second symbol
2358 template <typename... A>
2359 void SubprogramMatchHelper::Say(const Symbol &symbol1, const Symbol &symbol2,
2360     parser::MessageFixedText &&text, A &&...args) {
2361   auto &message{context().Say(symbol1.name(), std::move(text), symbol1.name(),
2362       std::forward<A>(args)...)};
2363   evaluate::AttachDeclaration(message, symbol2);
2364 }
2365 
2366 template <typename ATTRS>
2367 bool SubprogramMatchHelper::CheckSameAttrs(
2368     const Symbol &symbol1, const Symbol &symbol2, ATTRS attrs1, ATTRS attrs2) {
2369   if (attrs1 == attrs2) {
2370     return true;
2371   }
2372   attrs1.IterateOverMembers([&](auto attr) {
2373     if (!attrs2.test(attr)) {
2374       Say(symbol1, symbol2,
2375           "Dummy argument '%s' has the %s attribute; the corresponding"
2376           " argument in the interface body does not"_err_en_US,
2377           AsFortran(attr));
2378     }
2379   });
2380   attrs2.IterateOverMembers([&](auto attr) {
2381     if (!attrs1.test(attr)) {
2382       Say(symbol1, symbol2,
2383           "Dummy argument '%s' does not have the %s attribute; the"
2384           " corresponding argument in the interface body does"_err_en_US,
2385           AsFortran(attr));
2386     }
2387   });
2388   return false;
2389 }
2390 
2391 bool SubprogramMatchHelper::ShapesAreCompatible(
2392     const DummyDataObject &obj1, const DummyDataObject &obj2) {
2393   return characteristics::ShapesAreCompatible(
2394       FoldShape(obj1.type.shape()), FoldShape(obj2.type.shape()));
2395 }
2396 
2397 evaluate::Shape SubprogramMatchHelper::FoldShape(const evaluate::Shape &shape) {
2398   evaluate::Shape result;
2399   for (const auto &extent : shape) {
2400     result.emplace_back(
2401         evaluate::Fold(context().foldingContext(), common::Clone(extent)));
2402   }
2403   return result;
2404 }
2405 
2406 void DistinguishabilityHelper::Add(const Symbol &generic, GenericKind kind,
2407     const Symbol &specific, const Procedure &procedure) {
2408   if (!context_.HasError(specific)) {
2409     nameToInfo_[generic.name()].emplace_back(
2410         ProcedureInfo{kind, specific, procedure});
2411   }
2412 }
2413 
2414 void DistinguishabilityHelper::Check(const Scope &scope) {
2415   for (const auto &[name, info] : nameToInfo_) {
2416     auto count{info.size()};
2417     for (std::size_t i1{0}; i1 < count - 1; ++i1) {
2418       const auto &[kind, symbol, proc]{info[i1]};
2419       for (std::size_t i2{i1 + 1}; i2 < count; ++i2) {
2420         auto distinguishable{kind.IsName()
2421                 ? evaluate::characteristics::Distinguishable
2422                 : evaluate::characteristics::DistinguishableOpOrAssign};
2423         if (!distinguishable(
2424                 context_.languageFeatures(), proc, info[i2].procedure)) {
2425           SayNotDistinguishable(GetTopLevelUnitContaining(scope), name, kind,
2426               symbol, info[i2].symbol);
2427         }
2428       }
2429     }
2430   }
2431 }
2432 
2433 void DistinguishabilityHelper::SayNotDistinguishable(const Scope &scope,
2434     const SourceName &name, GenericKind kind, const Symbol &proc1,
2435     const Symbol &proc2) {
2436   std::string name1{proc1.name().ToString()};
2437   std::string name2{proc2.name().ToString()};
2438   if (kind.IsOperator() || kind.IsAssignment()) {
2439     // proc1 and proc2 may come from different scopes so qualify their names
2440     if (proc1.owner().IsDerivedType()) {
2441       name1 = proc1.owner().GetName()->ToString() + '%' + name1;
2442     }
2443     if (proc2.owner().IsDerivedType()) {
2444       name2 = proc2.owner().GetName()->ToString() + '%' + name2;
2445     }
2446   }
2447   parser::Message *msg;
2448   if (scope.sourceRange().Contains(name)) {
2449     msg = &context_.Say(name,
2450         "Generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US,
2451         MakeOpName(name), name1, name2);
2452   } else {
2453     msg = &context_.Say(*GetTopLevelUnitContaining(proc1).GetName(),
2454         "USE-associated generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US,
2455         MakeOpName(name), name1, name2);
2456   }
2457   AttachDeclaration(*msg, scope, proc1);
2458   AttachDeclaration(*msg, scope, proc2);
2459 }
2460 
2461 // `evaluate::AttachDeclaration` doesn't handle the generic case where `proc`
2462 // comes from a different module but is not necessarily use-associated.
2463 void DistinguishabilityHelper::AttachDeclaration(
2464     parser::Message &msg, const Scope &scope, const Symbol &proc) {
2465   const Scope &unit{GetTopLevelUnitContaining(proc)};
2466   if (unit == scope) {
2467     evaluate::AttachDeclaration(msg, proc);
2468   } else {
2469     msg.Attach(unit.GetName().value(),
2470         "'%s' is USE-associated from module '%s'"_en_US, proc.name(),
2471         unit.GetName().value());
2472   }
2473 }
2474 
2475 void CheckDeclarations(SemanticsContext &context) {
2476   CheckHelper{context}.Check();
2477 }
2478 } // namespace Fortran::semantics
2479