1 //===-- RewriteLoop.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "flang/Optimizer/Dialect/FIRDialect.h" 11 #include "flang/Optimizer/Dialect/FIROps.h" 12 #include "flang/Optimizer/Transforms/Passes.h" 13 #include "mlir/Dialect/Affine/IR/AffineOps.h" 14 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" 15 #include "mlir/Dialect/Func/IR/FuncOps.h" 16 #include "mlir/Pass/Pass.h" 17 #include "mlir/Transforms/DialectConversion.h" 18 #include "llvm/Support/CommandLine.h" 19 20 using namespace fir; 21 using namespace mlir; 22 23 namespace { 24 25 // Conversion of fir control ops to more primitive control-flow. 26 // 27 // FIR loops that cannot be converted to the affine dialect will remain as 28 // `fir.do_loop` operations. These can be converted to control-flow operations. 29 30 /// Convert `fir.do_loop` to CFG 31 class CfgLoopConv : public mlir::OpRewritePattern<fir::DoLoopOp> { 32 public: 33 using OpRewritePattern::OpRewritePattern; 34 35 CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) 36 : mlir::OpRewritePattern<fir::DoLoopOp>(ctx), 37 forceLoopToExecuteOnce(forceLoopToExecuteOnce) {} 38 39 mlir::LogicalResult 40 matchAndRewrite(DoLoopOp loop, 41 mlir::PatternRewriter &rewriter) const override { 42 auto loc = loop.getLoc(); 43 44 // Create the start and end blocks that will wrap the DoLoopOp with an 45 // initalizer and an end point 46 auto *initBlock = rewriter.getInsertionBlock(); 47 auto initPos = rewriter.getInsertionPoint(); 48 auto *endBlock = rewriter.splitBlock(initBlock, initPos); 49 50 // Split the first DoLoopOp block in two parts. The part before will be the 51 // conditional block since it already has the induction variable and 52 // loop-carried values as arguments. 53 auto *conditionalBlock = &loop.getRegion().front(); 54 conditionalBlock->addArgument(rewriter.getIndexType(), loc); 55 auto *firstBlock = 56 rewriter.splitBlock(conditionalBlock, conditionalBlock->begin()); 57 auto *lastBlock = &loop.getRegion().back(); 58 59 // Move the blocks from the DoLoopOp between initBlock and endBlock 60 rewriter.inlineRegionBefore(loop.getRegion(), endBlock); 61 62 // Get loop values from the DoLoopOp 63 auto low = loop.getLowerBound(); 64 auto high = loop.getUpperBound(); 65 assert(low && high && "must be a Value"); 66 auto step = loop.getStep(); 67 68 // Initalization block 69 rewriter.setInsertionPointToEnd(initBlock); 70 auto diff = rewriter.create<mlir::arith::SubIOp>(loc, high, low); 71 auto distance = rewriter.create<mlir::arith::AddIOp>(loc, diff, step); 72 mlir::Value iters = 73 rewriter.create<mlir::arith::DivSIOp>(loc, distance, step); 74 75 if (forceLoopToExecuteOnce) { 76 auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0); 77 auto cond = rewriter.create<mlir::arith::CmpIOp>( 78 loc, arith::CmpIPredicate::sle, iters, zero); 79 auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1); 80 iters = rewriter.create<mlir::arith::SelectOp>(loc, cond, one, iters); 81 } 82 83 llvm::SmallVector<mlir::Value> loopOperands; 84 loopOperands.push_back(low); 85 auto operands = loop.getIterOperands(); 86 loopOperands.append(operands.begin(), operands.end()); 87 loopOperands.push_back(iters); 88 89 rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopOperands); 90 91 // Last loop block 92 auto *terminator = lastBlock->getTerminator(); 93 rewriter.setInsertionPointToEnd(lastBlock); 94 auto iv = conditionalBlock->getArgument(0); 95 mlir::Value steppedIndex = 96 rewriter.create<mlir::arith::AddIOp>(loc, iv, step); 97 assert(steppedIndex && "must be a Value"); 98 auto lastArg = conditionalBlock->getNumArguments() - 1; 99 auto itersLeft = conditionalBlock->getArgument(lastArg); 100 auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1); 101 mlir::Value itersMinusOne = 102 rewriter.create<mlir::arith::SubIOp>(loc, itersLeft, one); 103 104 llvm::SmallVector<mlir::Value> loopCarried; 105 loopCarried.push_back(steppedIndex); 106 auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin()) 107 : terminator->operand_begin(); 108 loopCarried.append(begin, terminator->operand_end()); 109 loopCarried.push_back(itersMinusOne); 110 rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopCarried); 111 rewriter.eraseOp(terminator); 112 113 // Conditional block 114 rewriter.setInsertionPointToEnd(conditionalBlock); 115 auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0); 116 auto comparison = rewriter.create<mlir::arith::CmpIOp>( 117 loc, arith::CmpIPredicate::sgt, itersLeft, zero); 118 119 rewriter.create<mlir::cf::CondBranchOp>( 120 loc, comparison, firstBlock, llvm::ArrayRef<mlir::Value>(), endBlock, 121 llvm::ArrayRef<mlir::Value>()); 122 123 // The result of the loop operation is the values of the condition block 124 // arguments except the induction variable on the last iteration. 125 auto args = loop.getFinalValue() 126 ? conditionalBlock->getArguments() 127 : conditionalBlock->getArguments().drop_front(); 128 rewriter.replaceOp(loop, args.drop_back()); 129 return success(); 130 } 131 132 private: 133 bool forceLoopToExecuteOnce; 134 }; 135 136 /// Convert `fir.if` to control-flow 137 class CfgIfConv : public mlir::OpRewritePattern<fir::IfOp> { 138 public: 139 using OpRewritePattern::OpRewritePattern; 140 141 CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) 142 : mlir::OpRewritePattern<fir::IfOp>(ctx) {} 143 144 mlir::LogicalResult 145 matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override { 146 auto loc = ifOp.getLoc(); 147 148 // Split the block containing the 'fir.if' into two parts. The part before 149 // will contain the condition, the part after will be the continuation 150 // point. 151 auto *condBlock = rewriter.getInsertionBlock(); 152 auto opPosition = rewriter.getInsertionPoint(); 153 auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition); 154 mlir::Block *continueBlock; 155 if (ifOp.getNumResults() == 0) { 156 continueBlock = remainingOpsBlock; 157 } else { 158 continueBlock = rewriter.createBlock( 159 remainingOpsBlock, ifOp.getResultTypes(), 160 llvm::SmallVector<mlir::Location>(ifOp.getNumResults(), loc)); 161 rewriter.create<mlir::cf::BranchOp>(loc, remainingOpsBlock); 162 } 163 164 // Move blocks from the "then" region to the region containing 'fir.if', 165 // place it before the continuation block, and branch to it. 166 auto &ifOpRegion = ifOp.getThenRegion(); 167 auto *ifOpBlock = &ifOpRegion.front(); 168 auto *ifOpTerminator = ifOpRegion.back().getTerminator(); 169 auto ifOpTerminatorOperands = ifOpTerminator->getOperands(); 170 rewriter.setInsertionPointToEnd(&ifOpRegion.back()); 171 rewriter.create<mlir::cf::BranchOp>(loc, continueBlock, 172 ifOpTerminatorOperands); 173 rewriter.eraseOp(ifOpTerminator); 174 rewriter.inlineRegionBefore(ifOpRegion, continueBlock); 175 176 // Move blocks from the "else" region (if present) to the region containing 177 // 'fir.if', place it before the continuation block and branch to it. It 178 // will be placed after the "then" regions. 179 auto *otherwiseBlock = continueBlock; 180 auto &otherwiseRegion = ifOp.getElseRegion(); 181 if (!otherwiseRegion.empty()) { 182 otherwiseBlock = &otherwiseRegion.front(); 183 auto *otherwiseTerm = otherwiseRegion.back().getTerminator(); 184 auto otherwiseTermOperands = otherwiseTerm->getOperands(); 185 rewriter.setInsertionPointToEnd(&otherwiseRegion.back()); 186 rewriter.create<mlir::cf::BranchOp>(loc, continueBlock, 187 otherwiseTermOperands); 188 rewriter.eraseOp(otherwiseTerm); 189 rewriter.inlineRegionBefore(otherwiseRegion, continueBlock); 190 } 191 192 rewriter.setInsertionPointToEnd(condBlock); 193 rewriter.create<mlir::cf::CondBranchOp>( 194 loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef<mlir::Value>(), 195 otherwiseBlock, llvm::ArrayRef<mlir::Value>()); 196 rewriter.replaceOp(ifOp, continueBlock->getArguments()); 197 return success(); 198 } 199 }; 200 201 /// Convert `fir.iter_while` to control-flow. 202 class CfgIterWhileConv : public mlir::OpRewritePattern<fir::IterWhileOp> { 203 public: 204 using OpRewritePattern::OpRewritePattern; 205 206 CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) 207 : mlir::OpRewritePattern<fir::IterWhileOp>(ctx) {} 208 209 mlir::LogicalResult 210 matchAndRewrite(fir::IterWhileOp whileOp, 211 mlir::PatternRewriter &rewriter) const override { 212 auto loc = whileOp.getLoc(); 213 214 // Start by splitting the block containing the 'fir.do_loop' into two parts. 215 // The part before will get the init code, the part after will be the end 216 // point. 217 auto *initBlock = rewriter.getInsertionBlock(); 218 auto initPosition = rewriter.getInsertionPoint(); 219 auto *endBlock = rewriter.splitBlock(initBlock, initPosition); 220 221 // Use the first block of the loop body as the condition block since it is 222 // the block that has the induction variable and loop-carried values as 223 // arguments. Split out all operations from the first block into a new 224 // block. Move all body blocks from the loop body region to the region 225 // containing the loop. 226 auto *conditionBlock = &whileOp.getRegion().front(); 227 auto *firstBodyBlock = 228 rewriter.splitBlock(conditionBlock, conditionBlock->begin()); 229 auto *lastBodyBlock = &whileOp.getRegion().back(); 230 rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock); 231 auto iv = conditionBlock->getArgument(0); 232 auto iterateVar = conditionBlock->getArgument(1); 233 234 // Append the induction variable stepping logic to the last body block and 235 // branch back to the condition block. Loop-carried values are taken from 236 // operands of the loop terminator. 237 auto *terminator = lastBodyBlock->getTerminator(); 238 rewriter.setInsertionPointToEnd(lastBodyBlock); 239 auto step = whileOp.getStep(); 240 mlir::Value stepped = rewriter.create<mlir::arith::AddIOp>(loc, iv, step); 241 assert(stepped && "must be a Value"); 242 243 llvm::SmallVector<mlir::Value> loopCarried; 244 loopCarried.push_back(stepped); 245 auto begin = whileOp.getFinalValue() 246 ? std::next(terminator->operand_begin()) 247 : terminator->operand_begin(); 248 loopCarried.append(begin, terminator->operand_end()); 249 rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, loopCarried); 250 rewriter.eraseOp(terminator); 251 252 // Compute loop bounds before branching to the condition. 253 rewriter.setInsertionPointToEnd(initBlock); 254 auto lowerBound = whileOp.getLowerBound(); 255 auto upperBound = whileOp.getUpperBound(); 256 assert(lowerBound && upperBound && "must be a Value"); 257 258 // The initial values of loop-carried values is obtained from the operands 259 // of the loop operation. 260 llvm::SmallVector<mlir::Value> destOperands; 261 destOperands.push_back(lowerBound); 262 auto iterOperands = whileOp.getIterOperands(); 263 destOperands.append(iterOperands.begin(), iterOperands.end()); 264 rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, destOperands); 265 266 // With the body block done, we can fill in the condition block. 267 rewriter.setInsertionPointToEnd(conditionBlock); 268 // The comparison depends on the sign of the step value. We fully expect 269 // this expression to be folded by the optimizer or LLVM. This expression 270 // is written this way so that `step == 0` always returns `false`. 271 auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0); 272 auto compl0 = rewriter.create<mlir::arith::CmpIOp>( 273 loc, arith::CmpIPredicate::slt, zero, step); 274 auto compl1 = rewriter.create<mlir::arith::CmpIOp>( 275 loc, arith::CmpIPredicate::sle, iv, upperBound); 276 auto compl2 = rewriter.create<mlir::arith::CmpIOp>( 277 loc, arith::CmpIPredicate::slt, step, zero); 278 auto compl3 = rewriter.create<mlir::arith::CmpIOp>( 279 loc, arith::CmpIPredicate::sle, upperBound, iv); 280 auto cmp0 = rewriter.create<mlir::arith::AndIOp>(loc, compl0, compl1); 281 auto cmp1 = rewriter.create<mlir::arith::AndIOp>(loc, compl2, compl3); 282 auto cmp2 = rewriter.create<mlir::arith::OrIOp>(loc, cmp0, cmp1); 283 // Remember to AND in the early-exit bool. 284 auto comparison = 285 rewriter.create<mlir::arith::AndIOp>(loc, iterateVar, cmp2); 286 rewriter.create<mlir::cf::CondBranchOp>( 287 loc, comparison, firstBodyBlock, llvm::ArrayRef<mlir::Value>(), 288 endBlock, llvm::ArrayRef<mlir::Value>()); 289 // The result of the loop operation is the values of the condition block 290 // arguments except the induction variable on the last iteration. 291 auto args = whileOp.getFinalValue() 292 ? conditionBlock->getArguments() 293 : conditionBlock->getArguments().drop_front(); 294 rewriter.replaceOp(whileOp, args); 295 return success(); 296 } 297 }; 298 299 /// Convert FIR structured control flow ops to CFG ops. 300 class CfgConversion : public CFGConversionBase<CfgConversion> { 301 public: 302 void runOnOperation() override { 303 auto *context = &getContext(); 304 mlir::RewritePatternSet patterns(context); 305 patterns.insert<CfgLoopConv, CfgIfConv, CfgIterWhileConv>( 306 context, forceLoopToExecuteOnce); 307 mlir::ConversionTarget target(*context); 308 target.addLegalDialect<mlir::AffineDialect, mlir::cf::ControlFlowDialect, 309 FIROpsDialect, mlir::func::FuncDialect>(); 310 311 // apply the patterns 312 target.addIllegalOp<ResultOp, DoLoopOp, IfOp, IterWhileOp>(); 313 target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); 314 if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, 315 std::move(patterns)))) { 316 mlir::emitError(mlir::UnknownLoc::get(context), 317 "error in converting to CFG\n"); 318 signalPassFailure(); 319 } 320 } 321 }; 322 } // namespace 323 324 /// Convert FIR's structured control flow ops to CFG ops. This 325 /// conversion enables the `createLowerToCFGPass` to transform these to CFG 326 /// form. 327 std::unique_ptr<mlir::Pass> fir::createFirToCfgPass() { 328 return std::make_unique<CfgConversion>(); 329 } 330