1 //===-- AffinePromotion.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation is a prototype that promote FIR loops operations 10 // to affine dialect operations. 11 // It is not part of the production pipeline and would need more work in order 12 // to be used in production. 13 // More information can be found in this presentation: 14 // https://slides.com/rajanwalia/deck 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "PassDetail.h" 19 #include "flang/Optimizer/Dialect/FIRDialect.h" 20 #include "flang/Optimizer/Dialect/FIROps.h" 21 #include "flang/Optimizer/Dialect/FIRType.h" 22 #include "flang/Optimizer/Transforms/Passes.h" 23 #include "mlir/Dialect/Affine/IR/AffineOps.h" 24 #include "mlir/Dialect/SCF/SCF.h" 25 #include "mlir/Dialect/StandardOps/IR/Ops.h" 26 #include "mlir/IR/BuiltinAttributes.h" 27 #include "mlir/IR/IntegerSet.h" 28 #include "mlir/IR/Visitors.h" 29 #include "mlir/Transforms/DialectConversion.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/Support/Debug.h" 33 34 #define DEBUG_TYPE "flang-affine-promotion" 35 36 using namespace fir; 37 38 namespace { 39 struct AffineLoopAnalysis; 40 struct AffineIfAnalysis; 41 42 /// Stores analysis objects for all loops and if operations inside a function 43 /// these analysis are used twice, first for marking operations for rewrite and 44 /// second when doing rewrite. 45 struct AffineFunctionAnalysis { 46 explicit AffineFunctionAnalysis(mlir::FuncOp funcOp) { 47 for (fir::DoLoopOp op : funcOp.getOps<fir::DoLoopOp>()) 48 loopAnalysisMap.try_emplace(op, op, *this); 49 } 50 51 AffineLoopAnalysis getChildLoopAnalysis(fir::DoLoopOp op) const; 52 53 AffineIfAnalysis getChildIfAnalysis(fir::IfOp op) const; 54 55 llvm::DenseMap<mlir::Operation *, AffineLoopAnalysis> loopAnalysisMap; 56 llvm::DenseMap<mlir::Operation *, AffineIfAnalysis> ifAnalysisMap; 57 }; 58 } // namespace 59 60 static bool analyzeCoordinate(mlir::Value coordinate, mlir::Operation *op) { 61 if (auto blockArg = coordinate.dyn_cast<mlir::BlockArgument>()) { 62 if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp())) 63 return true; 64 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a " 65 "loop induction variable (owner not loopOp)\n"; 66 op->dump()); 67 return false; 68 } 69 LLVM_DEBUG( 70 llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a loop " 71 "induction variable (not a block argument)\n"; 72 op->dump(); coordinate.getDefiningOp()->dump()); 73 return false; 74 } 75 76 namespace { 77 struct AffineLoopAnalysis { 78 AffineLoopAnalysis() = default; 79 80 explicit AffineLoopAnalysis(fir::DoLoopOp op, AffineFunctionAnalysis &afa) 81 : legality(analyzeLoop(op, afa)) {} 82 83 bool canPromoteToAffine() { return legality; } 84 85 private: 86 bool analyzeBody(fir::DoLoopOp loopOperation, 87 AffineFunctionAnalysis &functionAnalysis) { 88 for (auto loopOp : loopOperation.getOps<fir::DoLoopOp>()) { 89 auto analysis = functionAnalysis.loopAnalysisMap 90 .try_emplace(loopOp, loopOp, functionAnalysis) 91 .first->getSecond(); 92 if (!analysis.canPromoteToAffine()) 93 return false; 94 } 95 for (auto ifOp : loopOperation.getOps<fir::IfOp>()) 96 functionAnalysis.ifAnalysisMap.try_emplace(ifOp, ifOp, functionAnalysis); 97 return true; 98 } 99 100 bool analyzeLoop(fir::DoLoopOp loopOperation, 101 AffineFunctionAnalysis &functionAnalysis) { 102 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: \n"; loopOperation.dump();); 103 return analyzeMemoryAccess(loopOperation) && 104 analyzeBody(loopOperation, functionAnalysis); 105 } 106 107 bool analyzeReference(mlir::Value memref, mlir::Operation *op) { 108 if (auto acoOp = memref.getDefiningOp<ArrayCoorOp>()) { 109 if (acoOp.memref().getType().isa<fir::BoxType>()) { 110 // TODO: Look if and how fir.box can be promoted to affine. 111 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: cannot promote loop, " 112 "array memory operation uses fir.box\n"; 113 op->dump(); acoOp.dump();); 114 return false; 115 } 116 bool canPromote = true; 117 for (auto coordinate : acoOp.indices()) 118 canPromote = canPromote && analyzeCoordinate(coordinate, op); 119 return canPromote; 120 } 121 if (auto coOp = memref.getDefiningOp<CoordinateOp>()) { 122 LLVM_DEBUG(llvm::dbgs() 123 << "AffineLoopAnalysis: cannot promote loop, " 124 "array memory operation uses non ArrayCoorOp\n"; 125 op->dump(); coOp.dump();); 126 127 return false; 128 } 129 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: unknown type of memory " 130 "reference for array load\n"; 131 op->dump();); 132 return false; 133 } 134 135 bool analyzeMemoryAccess(fir::DoLoopOp loopOperation) { 136 for (auto loadOp : loopOperation.getOps<fir::LoadOp>()) 137 if (!analyzeReference(loadOp.memref(), loadOp)) 138 return false; 139 for (auto storeOp : loopOperation.getOps<fir::StoreOp>()) 140 if (!analyzeReference(storeOp.memref(), storeOp)) 141 return false; 142 return true; 143 } 144 145 bool legality{}; 146 }; 147 } // namespace 148 149 AffineLoopAnalysis 150 AffineFunctionAnalysis::getChildLoopAnalysis(fir::DoLoopOp op) const { 151 auto it = loopAnalysisMap.find_as(op); 152 if (it == loopAnalysisMap.end()) { 153 LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n"; 154 op.dump();); 155 op.emitError("error in fetching loop analysis in AffineFunctionAnalysis\n"); 156 return {}; 157 } 158 return it->getSecond(); 159 } 160 161 namespace { 162 /// Calculates arguments for creating an IntegerSet. symCount, dimCount are the 163 /// final number of symbols and dimensions of the affine map. Integer set if 164 /// possible is in Optional IntegerSet. 165 struct AffineIfCondition { 166 using MaybeAffineExpr = llvm::Optional<mlir::AffineExpr>; 167 168 explicit AffineIfCondition(mlir::Value fc) : firCondition(fc) { 169 if (auto condDef = firCondition.getDefiningOp<mlir::arith::CmpIOp>()) 170 fromCmpIOp(condDef); 171 } 172 173 bool hasIntegerSet() const { return integerSet.hasValue(); } 174 175 mlir::IntegerSet getIntegerSet() const { 176 assert(hasIntegerSet() && "integer set is missing"); 177 return integerSet.getValue(); 178 } 179 180 mlir::ValueRange getAffineArgs() const { return affineArgs; } 181 182 private: 183 MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, mlir::Value lhs, 184 mlir::Value rhs) { 185 return affineBinaryOp(kind, toAffineExpr(lhs), toAffineExpr(rhs)); 186 } 187 188 MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, MaybeAffineExpr lhs, 189 MaybeAffineExpr rhs) { 190 if (lhs.hasValue() && rhs.hasValue()) 191 return mlir::getAffineBinaryOpExpr(kind, lhs.getValue(), rhs.getValue()); 192 return {}; 193 } 194 195 MaybeAffineExpr toAffineExpr(MaybeAffineExpr e) { return e; } 196 197 MaybeAffineExpr toAffineExpr(int64_t value) { 198 return {mlir::getAffineConstantExpr(value, firCondition.getContext())}; 199 } 200 201 /// Returns an AffineExpr if it is a result of operations that can be done 202 /// in an affine expression, this includes -, +, *, rem, constant. 203 /// block arguments of a loopOp or forOp are used as dimensions 204 MaybeAffineExpr toAffineExpr(mlir::Value value) { 205 if (auto op = value.getDefiningOp<mlir::arith::SubIOp>()) 206 return affineBinaryOp( 207 mlir::AffineExprKind::Add, toAffineExpr(op.getLhs()), 208 affineBinaryOp(mlir::AffineExprKind::Mul, toAffineExpr(op.getRhs()), 209 toAffineExpr(-1))); 210 if (auto op = value.getDefiningOp<mlir::arith::AddIOp>()) 211 return affineBinaryOp(mlir::AffineExprKind::Add, op.getLhs(), 212 op.getRhs()); 213 if (auto op = value.getDefiningOp<mlir::arith::MulIOp>()) 214 return affineBinaryOp(mlir::AffineExprKind::Mul, op.getLhs(), 215 op.getRhs()); 216 if (auto op = value.getDefiningOp<mlir::arith::RemUIOp>()) 217 return affineBinaryOp(mlir::AffineExprKind::Mod, op.getLhs(), 218 op.getRhs()); 219 if (auto op = value.getDefiningOp<mlir::arith::ConstantOp>()) 220 if (auto intConstant = op.getValue().dyn_cast<IntegerAttr>()) 221 return toAffineExpr(intConstant.getInt()); 222 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 223 affineArgs.push_back(value); 224 if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()) || 225 isa<mlir::AffineForOp>(blockArg.getOwner()->getParentOp())) 226 return {mlir::getAffineDimExpr(dimCount++, value.getContext())}; 227 return {mlir::getAffineSymbolExpr(symCount++, value.getContext())}; 228 } 229 return {}; 230 } 231 232 void fromCmpIOp(mlir::arith::CmpIOp cmpOp) { 233 auto lhsAffine = toAffineExpr(cmpOp.getLhs()); 234 auto rhsAffine = toAffineExpr(cmpOp.getRhs()); 235 if (!lhsAffine.hasValue() || !rhsAffine.hasValue()) 236 return; 237 auto constraintPair = constraint( 238 cmpOp.getPredicate(), rhsAffine.getValue() - lhsAffine.getValue()); 239 if (!constraintPair) 240 return; 241 integerSet = mlir::IntegerSet::get(dimCount, symCount, 242 {constraintPair.getValue().first}, 243 {constraintPair.getValue().second}); 244 return; 245 } 246 247 llvm::Optional<std::pair<AffineExpr, bool>> 248 constraint(mlir::arith::CmpIPredicate predicate, mlir::AffineExpr basic) { 249 switch (predicate) { 250 case mlir::arith::CmpIPredicate::slt: 251 return {std::make_pair(basic - 1, false)}; 252 case mlir::arith::CmpIPredicate::sle: 253 return {std::make_pair(basic, false)}; 254 case mlir::arith::CmpIPredicate::sgt: 255 return {std::make_pair(1 - basic, false)}; 256 case mlir::arith::CmpIPredicate::sge: 257 return {std::make_pair(0 - basic, false)}; 258 case mlir::arith::CmpIPredicate::eq: 259 return {std::make_pair(basic, true)}; 260 default: 261 return {}; 262 } 263 } 264 265 llvm::SmallVector<mlir::Value> affineArgs; 266 llvm::Optional<mlir::IntegerSet> integerSet; 267 mlir::Value firCondition; 268 unsigned symCount{0u}; 269 unsigned dimCount{0u}; 270 }; 271 } // namespace 272 273 namespace { 274 /// Analysis for affine promotion of fir.if 275 struct AffineIfAnalysis { 276 AffineIfAnalysis() = default; 277 278 explicit AffineIfAnalysis(fir::IfOp op, AffineFunctionAnalysis &afa) 279 : legality(analyzeIf(op, afa)) {} 280 281 bool canPromoteToAffine() { return legality; } 282 283 private: 284 bool analyzeIf(fir::IfOp op, AffineFunctionAnalysis &afa) { 285 if (op.getNumResults() == 0) 286 return true; 287 LLVM_DEBUG(llvm::dbgs() 288 << "AffineIfAnalysis: not promoting as op has results\n";); 289 return false; 290 } 291 292 bool legality{}; 293 }; 294 } // namespace 295 296 AffineIfAnalysis 297 AffineFunctionAnalysis::getChildIfAnalysis(fir::IfOp op) const { 298 auto it = ifAnalysisMap.find_as(op); 299 if (it == ifAnalysisMap.end()) { 300 LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n"; 301 op.dump();); 302 op.emitError("error in fetching if analysis in AffineFunctionAnalysis\n"); 303 return {}; 304 } 305 return it->getSecond(); 306 } 307 308 /// AffineMap rewriting fir.array_coor operation to affine apply, 309 /// %dim = fir.gendim %lowerBound, %upperBound, %stride 310 /// %a = fir.array_coor %arr(%dim) %i 311 /// returning affineMap = affine_map<(i)[lb, ub, st] -> (i*st - lb)> 312 static mlir::AffineMap createArrayIndexAffineMap(unsigned dimensions, 313 MLIRContext *context) { 314 auto index = mlir::getAffineConstantExpr(0, context); 315 auto accuExtent = mlir::getAffineConstantExpr(1, context); 316 for (unsigned i = 0; i < dimensions; ++i) { 317 mlir::AffineExpr idx = mlir::getAffineDimExpr(i, context), 318 lowerBound = mlir::getAffineSymbolExpr(i * 3, context), 319 currentExtent = 320 mlir::getAffineSymbolExpr(i * 3 + 1, context), 321 stride = mlir::getAffineSymbolExpr(i * 3 + 2, context), 322 currentPart = (idx * stride - lowerBound) * accuExtent; 323 index = currentPart + index; 324 accuExtent = accuExtent * currentExtent; 325 } 326 return mlir::AffineMap::get(dimensions, dimensions * 3, index); 327 } 328 329 static Optional<int64_t> constantIntegerLike(const mlir::Value value) { 330 if (auto definition = value.getDefiningOp<mlir::arith::ConstantOp>()) 331 if (auto stepAttr = definition.getValue().dyn_cast<IntegerAttr>()) 332 return stepAttr.getInt(); 333 return {}; 334 } 335 336 static mlir::Type coordinateArrayElement(fir::ArrayCoorOp op) { 337 if (auto refType = op.memref().getType().dyn_cast_or_null<ReferenceType>()) { 338 if (auto seqType = refType.getEleTy().dyn_cast_or_null<SequenceType>()) { 339 return seqType.getEleTy(); 340 } 341 } 342 op.emitError( 343 "AffineLoopConversion: array type in coordinate operation not valid\n"); 344 return mlir::Type(); 345 } 346 347 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeOp shape, 348 SmallVectorImpl<mlir::Value> &indexArgs, 349 mlir::PatternRewriter &rewriter) { 350 auto one = rewriter.create<mlir::arith::ConstantOp>( 351 acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1)); 352 auto extents = shape.extents(); 353 for (auto i = extents.begin(); i < extents.end(); i++) { 354 indexArgs.push_back(one); 355 indexArgs.push_back(*i); 356 indexArgs.push_back(one); 357 } 358 } 359 360 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeShiftOp shape, 361 SmallVectorImpl<mlir::Value> &indexArgs, 362 mlir::PatternRewriter &rewriter) { 363 auto one = rewriter.create<mlir::arith::ConstantOp>( 364 acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1)); 365 auto extents = shape.pairs(); 366 for (auto i = extents.begin(); i < extents.end();) { 367 indexArgs.push_back(*i++); 368 indexArgs.push_back(*i++); 369 indexArgs.push_back(one); 370 } 371 } 372 373 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::SliceOp slice, 374 SmallVectorImpl<mlir::Value> &indexArgs, 375 mlir::PatternRewriter &rewriter) { 376 auto extents = slice.triples(); 377 for (auto i = extents.begin(); i < extents.end();) { 378 indexArgs.push_back(*i++); 379 indexArgs.push_back(*i++); 380 indexArgs.push_back(*i++); 381 } 382 } 383 384 static void populateIndexArgs(fir::ArrayCoorOp acoOp, 385 SmallVectorImpl<mlir::Value> &indexArgs, 386 mlir::PatternRewriter &rewriter) { 387 if (auto shape = acoOp.shape().getDefiningOp<ShapeOp>()) 388 return populateIndexArgs(acoOp, shape, indexArgs, rewriter); 389 if (auto shapeShift = acoOp.shape().getDefiningOp<ShapeShiftOp>()) 390 return populateIndexArgs(acoOp, shapeShift, indexArgs, rewriter); 391 if (auto slice = acoOp.shape().getDefiningOp<SliceOp>()) 392 return populateIndexArgs(acoOp, slice, indexArgs, rewriter); 393 return; 394 } 395 396 /// Returns affine.apply and fir.convert from array_coor and gendims 397 static std::pair<mlir::AffineApplyOp, fir::ConvertOp> 398 createAffineOps(mlir::Value arrayRef, mlir::PatternRewriter &rewriter) { 399 auto acoOp = arrayRef.getDefiningOp<ArrayCoorOp>(); 400 auto affineMap = 401 createArrayIndexAffineMap(acoOp.indices().size(), acoOp.getContext()); 402 SmallVector<mlir::Value> indexArgs; 403 indexArgs.append(acoOp.indices().begin(), acoOp.indices().end()); 404 405 populateIndexArgs(acoOp, indexArgs, rewriter); 406 407 auto affineApply = rewriter.create<mlir::AffineApplyOp>(acoOp.getLoc(), 408 affineMap, indexArgs); 409 auto arrayElementType = coordinateArrayElement(acoOp); 410 auto newType = mlir::MemRefType::get({-1}, arrayElementType); 411 auto arrayConvert = 412 rewriter.create<fir::ConvertOp>(acoOp.getLoc(), newType, acoOp.memref()); 413 return std::make_pair(affineApply, arrayConvert); 414 } 415 416 static void rewriteLoad(fir::LoadOp loadOp, mlir::PatternRewriter &rewriter) { 417 rewriter.setInsertionPoint(loadOp); 418 auto affineOps = createAffineOps(loadOp.memref(), rewriter); 419 rewriter.replaceOpWithNewOp<mlir::AffineLoadOp>( 420 loadOp, affineOps.second.getResult(), affineOps.first.getResult()); 421 } 422 423 static void rewriteStore(fir::StoreOp storeOp, 424 mlir::PatternRewriter &rewriter) { 425 rewriter.setInsertionPoint(storeOp); 426 auto affineOps = createAffineOps(storeOp.memref(), rewriter); 427 rewriter.replaceOpWithNewOp<mlir::AffineStoreOp>(storeOp, storeOp.value(), 428 affineOps.second.getResult(), 429 affineOps.first.getResult()); 430 } 431 432 static void rewriteMemoryOps(Block *block, mlir::PatternRewriter &rewriter) { 433 for (auto &bodyOp : block->getOperations()) { 434 if (isa<fir::LoadOp>(bodyOp)) 435 rewriteLoad(cast<fir::LoadOp>(bodyOp), rewriter); 436 if (isa<fir::StoreOp>(bodyOp)) 437 rewriteStore(cast<fir::StoreOp>(bodyOp), rewriter); 438 } 439 } 440 441 namespace { 442 /// Convert `fir.do_loop` to `affine.for`, creates fir.convert for arrays to 443 /// memref, rewrites array_coor to affine.apply with affine_map. Rewrites fir 444 /// loads and stores to affine. 445 class AffineLoopConversion : public mlir::OpRewritePattern<fir::DoLoopOp> { 446 public: 447 using OpRewritePattern::OpRewritePattern; 448 AffineLoopConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa) 449 : OpRewritePattern(context), functionAnalysis(afa) {} 450 451 mlir::LogicalResult 452 matchAndRewrite(fir::DoLoopOp loop, 453 mlir::PatternRewriter &rewriter) const override { 454 LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: rewriting loop:\n"; 455 loop.dump();); 456 LLVM_ATTRIBUTE_UNUSED auto loopAnalysis = 457 functionAnalysis.getChildLoopAnalysis(loop); 458 auto &loopOps = loop.getBody()->getOperations(); 459 auto loopAndIndex = createAffineFor(loop, rewriter); 460 auto affineFor = loopAndIndex.first; 461 auto inductionVar = loopAndIndex.second; 462 463 rewriter.startRootUpdate(affineFor.getOperation()); 464 affineFor.getBody()->getOperations().splice( 465 std::prev(affineFor.getBody()->end()), loopOps, loopOps.begin(), 466 std::prev(loopOps.end())); 467 rewriter.finalizeRootUpdate(affineFor.getOperation()); 468 469 rewriter.startRootUpdate(loop.getOperation()); 470 loop.getInductionVar().replaceAllUsesWith(inductionVar); 471 rewriter.finalizeRootUpdate(loop.getOperation()); 472 473 rewriteMemoryOps(affineFor.getBody(), rewriter); 474 475 LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: loop rewriten to:\n"; 476 affineFor.dump();); 477 rewriter.replaceOp(loop, affineFor.getOperation()->getResults()); 478 return success(); 479 } 480 481 private: 482 std::pair<mlir::AffineForOp, mlir::Value> 483 createAffineFor(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const { 484 if (auto constantStep = constantIntegerLike(op.step())) 485 if (constantStep.getValue() > 0) 486 return positiveConstantStep(op, constantStep.getValue(), rewriter); 487 return genericBounds(op, rewriter); 488 } 489 490 // when step for the loop is positive compile time constant 491 std::pair<mlir::AffineForOp, mlir::Value> 492 positiveConstantStep(fir::DoLoopOp op, int64_t step, 493 mlir::PatternRewriter &rewriter) const { 494 auto affineFor = rewriter.create<mlir::AffineForOp>( 495 op.getLoc(), ValueRange(op.lowerBound()), 496 mlir::AffineMap::get(0, 1, 497 mlir::getAffineSymbolExpr(0, op.getContext())), 498 ValueRange(op.upperBound()), 499 mlir::AffineMap::get(0, 1, 500 1 + mlir::getAffineSymbolExpr(0, op.getContext())), 501 step); 502 return std::make_pair(affineFor, affineFor.getInductionVar()); 503 } 504 505 std::pair<mlir::AffineForOp, mlir::Value> 506 genericBounds(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const { 507 auto lowerBound = mlir::getAffineSymbolExpr(0, op.getContext()); 508 auto upperBound = mlir::getAffineSymbolExpr(1, op.getContext()); 509 auto step = mlir::getAffineSymbolExpr(2, op.getContext()); 510 mlir::AffineMap upperBoundMap = mlir::AffineMap::get( 511 0, 3, (upperBound - lowerBound + step).floorDiv(step)); 512 auto genericUpperBound = rewriter.create<mlir::AffineApplyOp>( 513 op.getLoc(), upperBoundMap, 514 ValueRange({op.lowerBound(), op.upperBound(), op.step()})); 515 auto actualIndexMap = mlir::AffineMap::get( 516 1, 2, 517 (lowerBound + mlir::getAffineDimExpr(0, op.getContext())) * 518 mlir::getAffineSymbolExpr(1, op.getContext())); 519 520 auto affineFor = rewriter.create<mlir::AffineForOp>( 521 op.getLoc(), ValueRange(), 522 AffineMap::getConstantMap(0, op.getContext()), 523 genericUpperBound.getResult(), 524 mlir::AffineMap::get(0, 1, 525 1 + mlir::getAffineSymbolExpr(0, op.getContext())), 526 1); 527 rewriter.setInsertionPointToStart(affineFor.getBody()); 528 auto actualIndex = rewriter.create<mlir::AffineApplyOp>( 529 op.getLoc(), actualIndexMap, 530 ValueRange({affineFor.getInductionVar(), op.lowerBound(), op.step()})); 531 return std::make_pair(affineFor, actualIndex.getResult()); 532 } 533 534 AffineFunctionAnalysis &functionAnalysis; 535 }; 536 537 /// Convert `fir.if` to `affine.if`. 538 class AffineIfConversion : public mlir::OpRewritePattern<fir::IfOp> { 539 public: 540 using OpRewritePattern::OpRewritePattern; 541 AffineIfConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa) 542 : OpRewritePattern(context) {} 543 mlir::LogicalResult 544 matchAndRewrite(fir::IfOp op, 545 mlir::PatternRewriter &rewriter) const override { 546 LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: rewriting if:\n"; 547 op.dump();); 548 auto &ifOps = op.thenRegion().front().getOperations(); 549 auto affineCondition = AffineIfCondition(op.condition()); 550 if (!affineCondition.hasIntegerSet()) { 551 LLVM_DEBUG( 552 llvm::dbgs() 553 << "AffineIfConversion: couldn't calculate affine condition\n";); 554 return failure(); 555 } 556 auto affineIf = rewriter.create<mlir::AffineIfOp>( 557 op.getLoc(), affineCondition.getIntegerSet(), 558 affineCondition.getAffineArgs(), !op.elseRegion().empty()); 559 rewriter.startRootUpdate(affineIf); 560 affineIf.getThenBlock()->getOperations().splice( 561 std::prev(affineIf.getThenBlock()->end()), ifOps, ifOps.begin(), 562 std::prev(ifOps.end())); 563 if (!op.elseRegion().empty()) { 564 auto &otherOps = op.elseRegion().front().getOperations(); 565 affineIf.getElseBlock()->getOperations().splice( 566 std::prev(affineIf.getElseBlock()->end()), otherOps, otherOps.begin(), 567 std::prev(otherOps.end())); 568 } 569 rewriter.finalizeRootUpdate(affineIf); 570 rewriteMemoryOps(affineIf.getBody(), rewriter); 571 572 LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: if converted to:\n"; 573 affineIf.dump();); 574 rewriter.replaceOp(op, affineIf.getOperation()->getResults()); 575 return success(); 576 } 577 }; 578 579 /// Promote fir.do_loop and fir.if to affine.for and affine.if, in the cases 580 /// where such a promotion is possible. 581 class AffineDialectPromotion 582 : public AffineDialectPromotionBase<AffineDialectPromotion> { 583 public: 584 void runOnOperation() override { 585 586 auto *context = &getContext(); 587 auto function = getOperation(); 588 markAllAnalysesPreserved(); 589 auto functionAnalysis = AffineFunctionAnalysis(function); 590 mlir::OwningRewritePatternList patterns(context); 591 patterns.insert<AffineIfConversion>(context, functionAnalysis); 592 patterns.insert<AffineLoopConversion>(context, functionAnalysis); 593 mlir::ConversionTarget target = *context; 594 target.addLegalDialect< 595 mlir::AffineDialect, FIROpsDialect, mlir::scf::SCFDialect, 596 mlir::arith::ArithmeticDialect, mlir::StandardOpsDialect>(); 597 target.addDynamicallyLegalOp<IfOp>([&functionAnalysis](fir::IfOp op) { 598 return !(functionAnalysis.getChildIfAnalysis(op).canPromoteToAffine()); 599 }); 600 target.addDynamicallyLegalOp<DoLoopOp>([&functionAnalysis]( 601 fir::DoLoopOp op) { 602 return !(functionAnalysis.getChildLoopAnalysis(op).canPromoteToAffine()); 603 }); 604 605 LLVM_DEBUG(llvm::dbgs() 606 << "AffineDialectPromotion: running promotion on: \n"; 607 function.print(llvm::dbgs());); 608 // apply the patterns 609 if (mlir::failed(mlir::applyPartialConversion(function, target, 610 std::move(patterns)))) { 611 mlir::emitError(mlir::UnknownLoc::get(context), 612 "error in converting to affine dialect\n"); 613 signalPassFailure(); 614 } 615 } 616 }; 617 } // namespace 618 619 /// Convert FIR loop constructs to the Affine dialect 620 std::unique_ptr<mlir::Pass> fir::createPromoteToAffinePass() { 621 return std::make_unique<AffineDialectPromotion>(); 622 } 623