1 //===-- FIROps.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Optimizer/Dialect/FIROps.h" 14 #include "flang/Optimizer/Dialect/FIRAttr.h" 15 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 16 #include "flang/Optimizer/Dialect/FIRType.h" 17 #include "mlir/Dialect/CommonFolders.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BuiltinOps.h" 20 #include "mlir/IR/Diagnostics.h" 21 #include "mlir/IR/Matchers.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "llvm/ADT/StringSwitch.h" 24 #include "llvm/ADT/TypeSwitch.h" 25 26 using namespace fir; 27 28 /// Return true if a sequence type is of some incomplete size or a record type 29 /// is malformed or contains an incomplete sequence type. An incomplete sequence 30 /// type is one with more unknown extents in the type than have been provided 31 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by 32 /// definition. 33 static bool verifyInType(mlir::Type inType, 34 llvm::SmallVectorImpl<llvm::StringRef> &visited, 35 unsigned dynamicExtents = 0) { 36 if (auto st = inType.dyn_cast<fir::SequenceType>()) { 37 auto shape = st.getShape(); 38 if (shape.size() == 0) 39 return true; 40 for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { 41 if (shape[i] != fir::SequenceType::getUnknownExtent()) 42 continue; 43 if (dynamicExtents-- == 0) 44 return true; 45 } 46 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) { 47 // don't recurse if we're already visiting this one 48 if (llvm::is_contained(visited, rt.getName())) 49 return false; 50 // keep track of record types currently being visited 51 visited.push_back(rt.getName()); 52 for (auto &field : rt.getTypeList()) 53 if (verifyInType(field.second, visited)) 54 return true; 55 visited.pop_back(); 56 } else if (auto rt = inType.dyn_cast<fir::PointerType>()) { 57 return verifyInType(rt.getEleTy(), visited); 58 } 59 return false; 60 } 61 62 static bool verifyRecordLenParams(mlir::Type inType, unsigned numLenParams) { 63 if (numLenParams > 0) { 64 if (auto rt = inType.dyn_cast<fir::RecordType>()) 65 return numLenParams != rt.getNumLenParams(); 66 return true; 67 } 68 return false; 69 } 70 71 //===----------------------------------------------------------------------===// 72 // AllocaOp 73 //===----------------------------------------------------------------------===// 74 75 mlir::Type fir::AllocaOp::getAllocatedType() { 76 return getType().cast<ReferenceType>().getEleTy(); 77 } 78 79 /// Create a legal memory reference as return type 80 mlir::Type fir::AllocaOp::wrapResultType(mlir::Type intype) { 81 // FIR semantics: memory references to memory references are disallowed 82 if (intype.isa<ReferenceType>()) 83 return {}; 84 return ReferenceType::get(intype); 85 } 86 87 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { 88 return ReferenceType::get(ty); 89 } 90 91 //===----------------------------------------------------------------------===// 92 // AllocMemOp 93 //===----------------------------------------------------------------------===// 94 95 mlir::Type fir::AllocMemOp::getAllocatedType() { 96 return getType().cast<HeapType>().getEleTy(); 97 } 98 99 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { 100 return HeapType::get(ty); 101 } 102 103 /// Create a legal heap reference as return type 104 mlir::Type fir::AllocMemOp::wrapResultType(mlir::Type intype) { 105 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER 106 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well 107 // FIR semantics: one may not allocate a memory reference value 108 if (intype.isa<ReferenceType>() || intype.isa<HeapType>() || 109 intype.isa<PointerType>() || intype.isa<FunctionType>()) 110 return {}; 111 return HeapType::get(intype); 112 } 113 114 //===----------------------------------------------------------------------===// 115 // ArrayCoorOp 116 //===----------------------------------------------------------------------===// 117 118 static mlir::LogicalResult verify(fir::ArrayCoorOp op) { 119 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 120 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 121 if (!arrTy) 122 return op.emitOpError("must be a reference to an array"); 123 auto arrDim = arrTy.getDimension(); 124 125 if (auto shapeOp = op.shape()) { 126 auto shapeTy = shapeOp.getType(); 127 unsigned shapeTyRank = 0; 128 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 129 shapeTyRank = s.getRank(); 130 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 131 shapeTyRank = ss.getRank(); 132 } else { 133 auto s = shapeTy.cast<fir::ShiftType>(); 134 shapeTyRank = s.getRank(); 135 if (!op.memref().getType().isa<fir::BoxType>()) 136 return op.emitOpError("shift can only be provided with fir.box memref"); 137 } 138 if (arrDim && arrDim != shapeTyRank) 139 return op.emitOpError("rank of dimension mismatched"); 140 if (shapeTyRank != op.indices().size()) 141 return op.emitOpError("number of indices do not match dim rank"); 142 } 143 144 if (auto sliceOp = op.slice()) 145 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 146 if (sliceTy.getRank() != arrDim) 147 return op.emitOpError("rank of dimension in slice mismatched"); 148 149 return mlir::success(); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // ArrayLoadOp 154 //===----------------------------------------------------------------------===// 155 156 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { 157 if (auto sh = shape()) 158 if (auto *op = sh.getDefiningOp()) { 159 if (auto shOp = dyn_cast<fir::ShapeOp>(op)) 160 return shOp.getExtents(); 161 return cast<fir::ShapeShiftOp>(op).getExtents(); 162 } 163 return {}; 164 } 165 166 static mlir::LogicalResult verify(fir::ArrayLoadOp op) { 167 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 168 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 169 if (!arrTy) 170 return op.emitOpError("must be a reference to an array"); 171 auto arrDim = arrTy.getDimension(); 172 173 if (auto shapeOp = op.shape()) { 174 auto shapeTy = shapeOp.getType(); 175 unsigned shapeTyRank = 0; 176 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 177 shapeTyRank = s.getRank(); 178 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 179 shapeTyRank = ss.getRank(); 180 } else { 181 auto s = shapeTy.cast<fir::ShiftType>(); 182 shapeTyRank = s.getRank(); 183 if (!op.memref().getType().isa<fir::BoxType>()) 184 return op.emitOpError("shift can only be provided with fir.box memref"); 185 } 186 if (arrDim && arrDim != shapeTyRank) 187 return op.emitOpError("rank of dimension mismatched"); 188 } 189 190 if (auto sliceOp = op.slice()) 191 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 192 if (sliceTy.getRank() != arrDim) 193 return op.emitOpError("rank of dimension in slice mismatched"); 194 195 return mlir::success(); 196 } 197 198 //===----------------------------------------------------------------------===// 199 // BoxAddrOp 200 //===----------------------------------------------------------------------===// 201 202 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 203 if (auto v = val().getDefiningOp()) { 204 if (auto box = dyn_cast<fir::EmboxOp>(v)) 205 return box.memref(); 206 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 207 return box.memref(); 208 } 209 return {}; 210 } 211 212 //===----------------------------------------------------------------------===// 213 // BoxCharLenOp 214 //===----------------------------------------------------------------------===// 215 216 mlir::OpFoldResult 217 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 218 if (auto v = val().getDefiningOp()) { 219 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 220 return box.len(); 221 } 222 return {}; 223 } 224 225 //===----------------------------------------------------------------------===// 226 // BoxDimsOp 227 //===----------------------------------------------------------------------===// 228 229 /// Get the result types packed in a tuple tuple 230 mlir::Type fir::BoxDimsOp::getTupleType() { 231 // note: triple, but 4 is nearest power of 2 232 llvm::SmallVector<mlir::Type, 4> triple{ 233 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; 234 return mlir::TupleType::get(getContext(), triple); 235 } 236 237 //===----------------------------------------------------------------------===// 238 // CallOp 239 //===----------------------------------------------------------------------===// 240 241 mlir::FunctionType fir::CallOp::getFunctionType() { 242 return mlir::FunctionType::get(getContext(), getOperandTypes(), 243 getResultTypes()); 244 } 245 246 static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) { 247 auto callee = op.callee(); 248 bool isDirect = callee.hasValue(); 249 p << ' '; 250 if (isDirect) 251 p << callee.getValue(); 252 else 253 p << op.getOperand(0); 254 p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')'; 255 p.printOptionalAttrDict(op->getAttrs(), {"callee"}); 256 auto resultTypes{op.getResultTypes()}; 257 llvm::SmallVector<Type, 8> argTypes( 258 llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1)); 259 p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes); 260 } 261 262 static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser, 263 mlir::OperationState &result) { 264 llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> operands; 265 if (parser.parseOperandList(operands)) 266 return mlir::failure(); 267 268 mlir::NamedAttrList attrs; 269 mlir::SymbolRefAttr funcAttr; 270 bool isDirect = operands.empty(); 271 if (isDirect) 272 if (parser.parseAttribute(funcAttr, "callee", attrs)) 273 return mlir::failure(); 274 275 Type type; 276 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 277 parser.parseOptionalAttrDict(attrs) || parser.parseColon() || 278 parser.parseType(type)) 279 return mlir::failure(); 280 281 auto funcType = type.dyn_cast<mlir::FunctionType>(); 282 if (!funcType) 283 return parser.emitError(parser.getNameLoc(), "expected function type"); 284 if (isDirect) { 285 if (parser.resolveOperands(operands, funcType.getInputs(), 286 parser.getNameLoc(), result.operands)) 287 return mlir::failure(); 288 } else { 289 auto funcArgs = 290 llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front(); 291 if (parser.resolveOperand(operands[0], funcType, result.operands) || 292 parser.resolveOperands(funcArgs, funcType.getInputs(), 293 parser.getNameLoc(), result.operands)) 294 return mlir::failure(); 295 } 296 result.addTypes(funcType.getResults()); 297 result.attributes = attrs; 298 return mlir::success(); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // CmpfOp 303 //===----------------------------------------------------------------------===// 304 305 // Note: getCmpFPredicateNames() is inline static in StandardOps/IR/Ops.cpp 306 mlir::CmpFPredicate fir::CmpfOp::getPredicateByName(llvm::StringRef name) { 307 auto pred = mlir::symbolizeCmpFPredicate(name); 308 assert(pred.hasValue() && "invalid predicate name"); 309 return pred.getValue(); 310 } 311 312 void fir::buildCmpFOp(OpBuilder &builder, OperationState &result, 313 CmpFPredicate predicate, Value lhs, Value rhs) { 314 result.addOperands({lhs, rhs}); 315 result.types.push_back(builder.getI1Type()); 316 result.addAttribute( 317 CmpfOp::getPredicateAttrName(), 318 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 319 } 320 321 template <typename OPTY> 322 static void printCmpOp(OpAsmPrinter &p, OPTY op) { 323 p << ' '; 324 auto predSym = mlir::symbolizeCmpFPredicate( 325 op->template getAttrOfType<mlir::IntegerAttr>( 326 OPTY::getPredicateAttrName()) 327 .getInt()); 328 assert(predSym.hasValue() && "invalid symbol value for predicate"); 329 p << '"' << mlir::stringifyCmpFPredicate(predSym.getValue()) << '"' << ", "; 330 p.printOperand(op.lhs()); 331 p << ", "; 332 p.printOperand(op.rhs()); 333 p.printOptionalAttrDict(op->getAttrs(), 334 /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); 335 p << " : " << op.lhs().getType(); 336 } 337 338 static void printCmpfOp(OpAsmPrinter &p, CmpfOp op) { printCmpOp(p, op); } 339 340 template <typename OPTY> 341 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, 342 mlir::OperationState &result) { 343 llvm::SmallVector<mlir::OpAsmParser::OperandType, 2> ops; 344 mlir::NamedAttrList attrs; 345 mlir::Attribute predicateNameAttr; 346 mlir::Type type; 347 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), 348 attrs) || 349 parser.parseComma() || parser.parseOperandList(ops, 2) || 350 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || 351 parser.resolveOperands(ops, type, result.operands)) 352 return failure(); 353 354 if (!predicateNameAttr.isa<mlir::StringAttr>()) 355 return parser.emitError(parser.getNameLoc(), 356 "expected string comparison predicate attribute"); 357 358 // Rewrite string attribute to an enum value. 359 llvm::StringRef predicateName = 360 predicateNameAttr.cast<mlir::StringAttr>().getValue(); 361 auto predicate = fir::CmpfOp::getPredicateByName(predicateName); 362 auto builder = parser.getBuilder(); 363 mlir::Type i1Type = builder.getI1Type(); 364 attrs.set(OPTY::getPredicateAttrName(), 365 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 366 result.attributes = attrs; 367 result.addTypes({i1Type}); 368 return success(); 369 } 370 371 mlir::ParseResult fir::parseCmpfOp(mlir::OpAsmParser &parser, 372 mlir::OperationState &result) { 373 return parseCmpOp<fir::CmpfOp>(parser, result); 374 } 375 376 //===----------------------------------------------------------------------===// 377 // CmpcOp 378 //===----------------------------------------------------------------------===// 379 380 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, 381 CmpFPredicate predicate, Value lhs, Value rhs) { 382 result.addOperands({lhs, rhs}); 383 result.types.push_back(builder.getI1Type()); 384 result.addAttribute( 385 fir::CmpcOp::getPredicateAttrName(), 386 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 387 } 388 389 static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); } 390 391 mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser, 392 mlir::OperationState &result) { 393 return parseCmpOp<fir::CmpcOp>(parser, result); 394 } 395 396 //===----------------------------------------------------------------------===// 397 // ConvertOp 398 //===----------------------------------------------------------------------===// 399 400 void fir::ConvertOp::getCanonicalizationPatterns( 401 OwningRewritePatternList &results, MLIRContext *context) {} 402 403 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 404 if (value().getType() == getType()) 405 return value(); 406 if (matchPattern(value(), m_Op<fir::ConvertOp>())) { 407 auto inner = cast<fir::ConvertOp>(value().getDefiningOp()); 408 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a 409 if (auto toTy = getType().dyn_cast<fir::LogicalType>()) 410 if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>()) 411 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy)) 412 return inner.value(); 413 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a 414 if (auto toTy = getType().dyn_cast<mlir::IntegerType>()) 415 if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>()) 416 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) && 417 (fromTy.getWidth() == 1)) 418 return inner.value(); 419 } 420 return {}; 421 } 422 423 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { 424 return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() || 425 ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>(); 426 } 427 428 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { 429 return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>(); 430 } 431 432 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { 433 return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() || 434 ty.isa<fir::HeapType>() || ty.isa<mlir::MemRefType>() || 435 ty.isa<mlir::FunctionType>() || ty.isa<fir::TypeDescType>(); 436 } 437 438 //===----------------------------------------------------------------------===// 439 // CoordinateOp 440 //===----------------------------------------------------------------------===// 441 442 static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) { 443 p << ' ' << op.ref() << ", " << op.coor(); 444 p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"}); 445 p << " : "; 446 p.printFunctionalType(op.getOperandTypes(), op->getResultTypes()); 447 } 448 449 static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser, 450 mlir::OperationState &result) { 451 mlir::OpAsmParser::OperandType memref; 452 if (parser.parseOperand(memref) || parser.parseComma()) 453 return mlir::failure(); 454 llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> coorOperands; 455 if (parser.parseOperandList(coorOperands)) 456 return mlir::failure(); 457 llvm::SmallVector<mlir::OpAsmParser::OperandType, 16> allOperands; 458 allOperands.push_back(memref); 459 allOperands.append(coorOperands.begin(), coorOperands.end()); 460 mlir::FunctionType funcTy; 461 auto loc = parser.getCurrentLocation(); 462 if (parser.parseOptionalAttrDict(result.attributes) || 463 parser.parseColonType(funcTy) || 464 parser.resolveOperands(allOperands, funcTy.getInputs(), loc, 465 result.operands)) 466 return failure(); 467 parser.addTypesToList(funcTy.getResults(), result.types); 468 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); 469 return mlir::success(); 470 } 471 472 static mlir::LogicalResult verify(fir::CoordinateOp op) { 473 auto refTy = op.ref().getType(); 474 if (fir::isa_ref_type(refTy)) { 475 auto eleTy = fir::dyn_cast_ptrEleTy(refTy); 476 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) { 477 if (arrTy.hasUnknownShape()) 478 return op.emitOpError("cannot find coordinate in unknown shape"); 479 if (arrTy.getConstantRows() < arrTy.getDimension() - 1) 480 return op.emitOpError("cannot find coordinate with unknown extents"); 481 } 482 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || 483 fir::isa_char_string(eleTy))) 484 return op.emitOpError("cannot apply coordinate_of to this type"); 485 } 486 // Recovering a LEN type parameter only makes sense from a boxed value. For a 487 // bare reference, the LEN type parameters must be passed as additional 488 // arguments to `op`. 489 for (auto co : op.coor()) 490 if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) { 491 if (op.getNumOperands() != 2) 492 return op.emitOpError("len_param_index must be last argument"); 493 if (!op.ref().getType().isa<BoxType>()) 494 return op.emitOpError("len_param_index must be used on box type"); 495 } 496 return mlir::success(); 497 } 498 499 //===----------------------------------------------------------------------===// 500 // DispatchOp 501 //===----------------------------------------------------------------------===// 502 503 mlir::FunctionType fir::DispatchOp::getFunctionType() { 504 return mlir::FunctionType::get(getContext(), getOperandTypes(), 505 getResultTypes()); 506 } 507 508 //===----------------------------------------------------------------------===// 509 // DispatchTableOp 510 //===----------------------------------------------------------------------===// 511 512 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { 513 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp"); 514 auto &block = getBlock(); 515 block.getOperations().insert(block.end(), op); 516 } 517 518 //===----------------------------------------------------------------------===// 519 // EmboxOp 520 //===----------------------------------------------------------------------===// 521 522 static mlir::LogicalResult verify(fir::EmboxOp op) { 523 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 524 bool isArray = false; 525 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 526 eleTy = seqTy.getEleTy(); 527 isArray = true; 528 } 529 if (op.hasLenParams()) { 530 auto lenPs = op.numLenParams(); 531 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) { 532 if (lenPs != rt.getNumLenParams()) 533 return op.emitOpError("number of LEN params does not correspond" 534 " to the !fir.type type"); 535 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) { 536 if (strTy.getLen() != fir::CharacterType::unknownLen()) 537 return op.emitOpError("CHARACTER already has static LEN"); 538 } else { 539 return op.emitOpError("LEN parameters require CHARACTER or derived type"); 540 } 541 for (auto lp : op.lenParams()) 542 if (!fir::isa_integer(lp.getType())) 543 return op.emitOpError("LEN parameters must be integral type"); 544 } 545 if (op.getShape() && !isArray) 546 return op.emitOpError("shape must not be provided for a scalar"); 547 if (op.getSlice() && !isArray) 548 return op.emitOpError("slice must not be provided for a scalar"); 549 return mlir::success(); 550 } 551 552 //===----------------------------------------------------------------------===// 553 // GenTypeDescOp 554 //===----------------------------------------------------------------------===// 555 556 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, 557 mlir::TypeAttr inty) { 558 result.addAttribute("in_type", inty); 559 result.addTypes(TypeDescType::get(inty.getValue())); 560 } 561 562 //===----------------------------------------------------------------------===// 563 // GlobalOp 564 //===----------------------------------------------------------------------===// 565 566 static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { 567 // Parse the optional linkage 568 llvm::StringRef linkage; 569 auto &builder = parser.getBuilder(); 570 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { 571 if (fir::GlobalOp::verifyValidLinkage(linkage)) 572 return mlir::failure(); 573 mlir::StringAttr linkAttr = builder.getStringAttr(linkage); 574 result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); 575 } 576 577 // Parse the name as a symbol reference attribute. 578 mlir::SymbolRefAttr nameAttr; 579 if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(), 580 result.attributes)) 581 return mlir::failure(); 582 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 583 nameAttr.getRootReference()); 584 585 bool simpleInitializer = false; 586 if (mlir::succeeded(parser.parseOptionalLParen())) { 587 Attribute attr; 588 if (parser.parseAttribute(attr, "initVal", result.attributes) || 589 parser.parseRParen()) 590 return mlir::failure(); 591 simpleInitializer = true; 592 } 593 594 if (succeeded(parser.parseOptionalKeyword("constant"))) { 595 // if "constant" keyword then mark this as a constant, not a variable 596 result.addAttribute("constant", builder.getUnitAttr()); 597 } 598 599 mlir::Type globalType; 600 if (parser.parseColonType(globalType)) 601 return mlir::failure(); 602 603 result.addAttribute(fir::GlobalOp::typeAttrName(result.name), 604 mlir::TypeAttr::get(globalType)); 605 606 if (simpleInitializer) { 607 result.addRegion(); 608 } else { 609 // Parse the optional initializer body. 610 auto parseResult = parser.parseOptionalRegion( 611 *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); 612 if (parseResult.hasValue() && mlir::failed(*parseResult)) 613 return mlir::failure(); 614 } 615 616 return mlir::success(); 617 } 618 619 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { 620 getBlock().getOperations().push_back(op); 621 } 622 623 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 624 StringRef name, bool isConstant, Type type, 625 Attribute initialVal, StringAttr linkage, 626 ArrayRef<NamedAttribute> attrs) { 627 result.addRegion(); 628 result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type)); 629 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 630 builder.getStringAttr(name)); 631 result.addAttribute(symbolAttrName(), 632 SymbolRefAttr::get(builder.getContext(), name)); 633 if (isConstant) 634 result.addAttribute(constantAttrName(result.name), builder.getUnitAttr()); 635 if (initialVal) 636 result.addAttribute(initValAttrName(result.name), initialVal); 637 if (linkage) 638 result.addAttribute(linkageAttrName(), linkage); 639 result.attributes.append(attrs.begin(), attrs.end()); 640 } 641 642 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 643 StringRef name, Type type, Attribute initialVal, 644 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 645 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 646 } 647 648 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 649 StringRef name, bool isConstant, Type type, 650 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 651 build(builder, result, name, isConstant, type, {}, linkage, attrs); 652 } 653 654 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 655 StringRef name, Type type, StringAttr linkage, 656 ArrayRef<NamedAttribute> attrs) { 657 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 658 } 659 660 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 661 StringRef name, bool isConstant, Type type, 662 ArrayRef<NamedAttribute> attrs) { 663 build(builder, result, name, isConstant, type, StringAttr{}, attrs); 664 } 665 666 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 667 StringRef name, Type type, 668 ArrayRef<NamedAttribute> attrs) { 669 build(builder, result, name, /*isConstant=*/false, type, attrs); 670 } 671 672 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { 673 // Supporting only a subset of the LLVM linkage types for now 674 static const char *validNames[] = {"common", "internal", "linkonce", "weak"}; 675 return mlir::success(llvm::is_contained(validNames, linkage)); 676 } 677 678 //===----------------------------------------------------------------------===// 679 // InsertValueOp 680 //===----------------------------------------------------------------------===// 681 682 static bool checkIsIntegerConstant(mlir::Value v, int64_t conVal) { 683 if (auto c = dyn_cast_or_null<mlir::ConstantOp>(v.getDefiningOp())) { 684 auto attr = c.getValue(); 685 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>()) 686 return iattr.getInt() == conVal; 687 } 688 return false; 689 } 690 static bool isZero(mlir::Value v) { return checkIsIntegerConstant(v, 0); } 691 static bool isOne(mlir::Value v) { return checkIsIntegerConstant(v, 1); } 692 693 // Undo some complex patterns created in the front-end and turn them back into 694 // complex ops. 695 template <typename FltOp, typename CpxOp> 696 struct UndoComplexPattern : public mlir::RewritePattern { 697 UndoComplexPattern(mlir::MLIRContext *ctx) 698 : mlir::RewritePattern("fir.insert_value", 2, ctx) {} 699 700 mlir::LogicalResult 701 matchAndRewrite(mlir::Operation *op, 702 mlir::PatternRewriter &rewriter) const override { 703 auto insval = dyn_cast_or_null<fir::InsertValueOp>(op); 704 if (!insval || !insval.getType().isa<fir::ComplexType>()) 705 return mlir::failure(); 706 auto insval2 = 707 dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp()); 708 if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp())) 709 return mlir::failure(); 710 auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp()); 711 auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp()); 712 if (!binf || !binf2 || insval.coor().size() != 1 || 713 !isOne(insval.coor()[0]) || insval2.coor().size() != 1 || 714 !isZero(insval2.coor()[0])) 715 return mlir::failure(); 716 auto eai = 717 dyn_cast_or_null<fir::ExtractValueOp>(binf.lhs().getDefiningOp()); 718 auto ebi = 719 dyn_cast_or_null<fir::ExtractValueOp>(binf.rhs().getDefiningOp()); 720 auto ear = 721 dyn_cast_or_null<fir::ExtractValueOp>(binf2.lhs().getDefiningOp()); 722 auto ebr = 723 dyn_cast_or_null<fir::ExtractValueOp>(binf2.rhs().getDefiningOp()); 724 if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() || 725 ebr.adt() != ebi.adt() || eai.coor().size() != 1 || 726 !isOne(eai.coor()[0]) || ebi.coor().size() != 1 || 727 !isOne(ebi.coor()[0]) || ear.coor().size() != 1 || 728 !isZero(ear.coor()[0]) || ebr.coor().size() != 1 || 729 !isZero(ebr.coor()[0])) 730 return mlir::failure(); 731 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt()); 732 return mlir::success(); 733 } 734 }; 735 736 void fir::InsertValueOp::getCanonicalizationPatterns( 737 mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { 738 results.insert<UndoComplexPattern<mlir::AddFOp, fir::AddcOp>, 739 UndoComplexPattern<mlir::SubFOp, fir::SubcOp>>(context); 740 } 741 742 //===----------------------------------------------------------------------===// 743 // IterWhileOp 744 //===----------------------------------------------------------------------===// 745 746 void fir::IterWhileOp::build(mlir::OpBuilder &builder, 747 mlir::OperationState &result, mlir::Value lb, 748 mlir::Value ub, mlir::Value step, 749 mlir::Value iterate, bool finalCountValue, 750 mlir::ValueRange iterArgs, 751 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 752 result.addOperands({lb, ub, step, iterate}); 753 if (finalCountValue) { 754 result.addTypes(builder.getIndexType()); 755 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 756 } 757 result.addTypes(iterate.getType()); 758 result.addOperands(iterArgs); 759 for (auto v : iterArgs) 760 result.addTypes(v.getType()); 761 mlir::Region *bodyRegion = result.addRegion(); 762 bodyRegion->push_back(new Block{}); 763 bodyRegion->front().addArgument(builder.getIndexType()); 764 bodyRegion->front().addArgument(iterate.getType()); 765 bodyRegion->front().addArguments(iterArgs.getTypes()); 766 result.addAttributes(attributes); 767 } 768 769 static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser, 770 mlir::OperationState &result) { 771 auto &builder = parser.getBuilder(); 772 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 773 if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || 774 parser.parseEqual()) 775 return mlir::failure(); 776 777 // Parse loop bounds. 778 auto indexType = builder.getIndexType(); 779 auto i1Type = builder.getIntegerType(1); 780 if (parser.parseOperand(lb) || 781 parser.resolveOperand(lb, indexType, result.operands) || 782 parser.parseKeyword("to") || parser.parseOperand(ub) || 783 parser.resolveOperand(ub, indexType, result.operands) || 784 parser.parseKeyword("step") || parser.parseOperand(step) || 785 parser.parseRParen() || 786 parser.resolveOperand(step, indexType, result.operands)) 787 return mlir::failure(); 788 789 mlir::OpAsmParser::OperandType iterateVar, iterateInput; 790 if (parser.parseKeyword("and") || parser.parseLParen() || 791 parser.parseRegionArgument(iterateVar) || parser.parseEqual() || 792 parser.parseOperand(iterateInput) || parser.parseRParen() || 793 parser.resolveOperand(iterateInput, i1Type, result.operands)) 794 return mlir::failure(); 795 796 // Parse the initial iteration arguments. 797 llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> regionArgs; 798 auto prependCount = false; 799 800 // Induction variable. 801 regionArgs.push_back(inductionVariable); 802 regionArgs.push_back(iterateVar); 803 804 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 805 llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> operands; 806 llvm::SmallVector<mlir::Type, 4> regionTypes; 807 // Parse assignment list and results type list. 808 if (parser.parseAssignmentList(regionArgs, operands) || 809 parser.parseArrowTypeList(regionTypes)) 810 return failure(); 811 if (regionTypes.size() == operands.size() + 2) 812 prependCount = true; 813 llvm::ArrayRef<mlir::Type> resTypes = regionTypes; 814 resTypes = prependCount ? resTypes.drop_front(2) : resTypes; 815 // Resolve input operands. 816 for (auto operand_type : llvm::zip(operands, resTypes)) 817 if (parser.resolveOperand(std::get<0>(operand_type), 818 std::get<1>(operand_type), result.operands)) 819 return failure(); 820 if (prependCount) { 821 result.addTypes(regionTypes); 822 } else { 823 result.addTypes(i1Type); 824 result.addTypes(resTypes); 825 } 826 } else if (succeeded(parser.parseOptionalArrow())) { 827 llvm::SmallVector<mlir::Type, 4> typeList; 828 if (parser.parseLParen() || parser.parseTypeList(typeList) || 829 parser.parseRParen()) 830 return failure(); 831 // Type list must be "(index, i1)". 832 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() || 833 !typeList[1].isSignlessInteger(1)) 834 return failure(); 835 result.addTypes(typeList); 836 prependCount = true; 837 } else { 838 result.addTypes(i1Type); 839 } 840 841 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 842 return mlir::failure(); 843 844 llvm::SmallVector<mlir::Type, 4> argTypes; 845 // Induction variable (hidden) 846 if (prependCount) 847 result.addAttribute(IterWhileOp::finalValueAttrName(result.name), 848 builder.getUnitAttr()); 849 else 850 argTypes.push_back(indexType); 851 // Loop carried variables (including iterate) 852 argTypes.append(result.types.begin(), result.types.end()); 853 // Parse the body region. 854 auto *body = result.addRegion(); 855 if (regionArgs.size() != argTypes.size()) 856 return parser.emitError( 857 parser.getNameLoc(), 858 "mismatch in number of loop-carried values and defined values"); 859 860 if (parser.parseRegion(*body, regionArgs, argTypes)) 861 return failure(); 862 863 fir::IterWhileOp::ensureTerminator(*body, builder, result.location); 864 865 return mlir::success(); 866 } 867 868 static mlir::LogicalResult verify(fir::IterWhileOp op) { 869 // Check that the body defines as single block argument for the induction 870 // variable. 871 auto *body = op.getBody(); 872 if (!body->getArgument(1).getType().isInteger(1)) 873 return op.emitOpError( 874 "expected body second argument to be an index argument for " 875 "the induction variable"); 876 if (!body->getArgument(0).getType().isIndex()) 877 return op.emitOpError( 878 "expected body first argument to be an index argument for " 879 "the induction variable"); 880 881 auto opNumResults = op.getNumResults(); 882 if (op.finalValue()) { 883 // Result type must be "(index, i1, ...)". 884 if (!op.getResult(0).getType().isa<mlir::IndexType>()) 885 return op.emitOpError("result #0 expected to be index"); 886 if (!op.getResult(1).getType().isSignlessInteger(1)) 887 return op.emitOpError("result #1 expected to be i1"); 888 opNumResults--; 889 } else { 890 // iterate_while always returns the early exit induction value. 891 // Result type must be "(i1, ...)" 892 if (!op.getResult(0).getType().isSignlessInteger(1)) 893 return op.emitOpError("result #0 expected to be i1"); 894 } 895 if (opNumResults == 0) 896 return mlir::failure(); 897 if (op.getNumIterOperands() != opNumResults) 898 return op.emitOpError( 899 "mismatch in number of loop-carried values and defined values"); 900 if (op.getNumRegionIterArgs() != opNumResults) 901 return op.emitOpError( 902 "mismatch in number of basic block args and defined values"); 903 auto iterOperands = op.getIterOperands(); 904 auto iterArgs = op.getRegionIterArgs(); 905 auto opResults = 906 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 907 unsigned i = 0; 908 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 909 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 910 return op.emitOpError() << "types mismatch between " << i 911 << "th iter operand and defined value"; 912 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 913 return op.emitOpError() << "types mismatch between " << i 914 << "th iter region arg and defined value"; 915 916 i++; 917 } 918 return mlir::success(); 919 } 920 921 static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) { 922 p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to " 923 << op.upperBound() << " step " << op.step() << ") and ("; 924 assert(op.hasIterOperands()); 925 auto regionArgs = op.getRegionIterArgs(); 926 auto operands = op.getIterOperands(); 927 p << regionArgs.front() << " = " << *operands.begin() << ")"; 928 if (regionArgs.size() > 1) { 929 p << " iter_args("; 930 llvm::interleaveComma( 931 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, 932 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); 933 p << ") -> ("; 934 llvm::interleaveComma( 935 llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p); 936 p << ")"; 937 } else if (op.finalValue()) { 938 p << " -> (" << op.getResultTypes() << ')'; 939 } 940 p.printOptionalAttrDictWithKeyword(op->getAttrs(), {"finalValue"}); 941 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 942 /*printBlockTerminators=*/true); 943 } 944 945 mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); } 946 947 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { 948 return !region().isAncestor(value.getParentRegion()); 949 } 950 951 mlir::LogicalResult 952 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 953 for (auto op : ops) 954 op->moveBefore(*this); 955 return success(); 956 } 957 958 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { 959 for (auto i : llvm::enumerate(initArgs())) 960 if (iterArg == i.value()) 961 return region().front().getArgument(i.index() + 1); 962 return {}; 963 } 964 965 void fir::IterWhileOp::resultToSourceOps( 966 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 967 auto oper = finalValue() ? resultNum + 1 : resultNum; 968 auto *term = region().front().getTerminator(); 969 if (oper < term->getNumOperands()) 970 results.push_back(term->getOperand(oper)); 971 } 972 973 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { 974 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 975 return initArgs()[blockArgNum - 1]; 976 return {}; 977 } 978 979 //===----------------------------------------------------------------------===// 980 // LoadOp 981 //===----------------------------------------------------------------------===// 982 983 /// Get the element type of a reference like type; otherwise null 984 static mlir::Type elementTypeOf(mlir::Type ref) { 985 return llvm::TypeSwitch<mlir::Type, mlir::Type>(ref) 986 .Case<ReferenceType, PointerType, HeapType>( 987 [](auto type) { return type.getEleTy(); }) 988 .Default([](mlir::Type) { return mlir::Type{}; }); 989 } 990 991 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { 992 if ((ele = elementTypeOf(ref))) 993 return mlir::success(); 994 return mlir::failure(); 995 } 996 997 //===----------------------------------------------------------------------===// 998 // DoLoopOp 999 //===----------------------------------------------------------------------===// 1000 1001 void fir::DoLoopOp::build(mlir::OpBuilder &builder, 1002 mlir::OperationState &result, mlir::Value lb, 1003 mlir::Value ub, mlir::Value step, bool unordered, 1004 bool finalCountValue, mlir::ValueRange iterArgs, 1005 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1006 result.addOperands({lb, ub, step}); 1007 result.addOperands(iterArgs); 1008 if (finalCountValue) { 1009 result.addTypes(builder.getIndexType()); 1010 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 1011 } 1012 for (auto v : iterArgs) 1013 result.addTypes(v.getType()); 1014 mlir::Region *bodyRegion = result.addRegion(); 1015 bodyRegion->push_back(new Block{}); 1016 if (iterArgs.empty() && !finalCountValue) 1017 DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); 1018 bodyRegion->front().addArgument(builder.getIndexType()); 1019 bodyRegion->front().addArguments(iterArgs.getTypes()); 1020 if (unordered) 1021 result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr()); 1022 result.addAttributes(attributes); 1023 } 1024 1025 static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser, 1026 mlir::OperationState &result) { 1027 auto &builder = parser.getBuilder(); 1028 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1029 // Parse the induction variable followed by '='. 1030 if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) 1031 return mlir::failure(); 1032 1033 // Parse loop bounds. 1034 auto indexType = builder.getIndexType(); 1035 if (parser.parseOperand(lb) || 1036 parser.resolveOperand(lb, indexType, result.operands) || 1037 parser.parseKeyword("to") || parser.parseOperand(ub) || 1038 parser.resolveOperand(ub, indexType, result.operands) || 1039 parser.parseKeyword("step") || parser.parseOperand(step) || 1040 parser.resolveOperand(step, indexType, result.operands)) 1041 return failure(); 1042 1043 if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) 1044 result.addAttribute("unordered", builder.getUnitAttr()); 1045 1046 // Parse the optional initial iteration arguments. 1047 llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> regionArgs, operands; 1048 llvm::SmallVector<mlir::Type, 4> argTypes; 1049 auto prependCount = false; 1050 regionArgs.push_back(inductionVariable); 1051 1052 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1053 // Parse assignment list and results type list. 1054 if (parser.parseAssignmentList(regionArgs, operands) || 1055 parser.parseArrowTypeList(result.types)) 1056 return failure(); 1057 if (result.types.size() == operands.size() + 1) 1058 prependCount = true; 1059 // Resolve input operands. 1060 llvm::ArrayRef<mlir::Type> resTypes = result.types; 1061 for (auto operand_type : 1062 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) 1063 if (parser.resolveOperand(std::get<0>(operand_type), 1064 std::get<1>(operand_type), result.operands)) 1065 return failure(); 1066 } else if (succeeded(parser.parseOptionalArrow())) { 1067 if (parser.parseKeyword("index")) 1068 return failure(); 1069 result.types.push_back(indexType); 1070 prependCount = true; 1071 } 1072 1073 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1074 return mlir::failure(); 1075 1076 // Induction variable. 1077 if (prependCount) 1078 result.addAttribute(DoLoopOp::finalValueAttrName(result.name), 1079 builder.getUnitAttr()); 1080 else 1081 argTypes.push_back(indexType); 1082 // Loop carried variables 1083 argTypes.append(result.types.begin(), result.types.end()); 1084 // Parse the body region. 1085 auto *body = result.addRegion(); 1086 if (regionArgs.size() != argTypes.size()) 1087 return parser.emitError( 1088 parser.getNameLoc(), 1089 "mismatch in number of loop-carried values and defined values"); 1090 1091 if (parser.parseRegion(*body, regionArgs, argTypes)) 1092 return failure(); 1093 1094 DoLoopOp::ensureTerminator(*body, builder, result.location); 1095 1096 return mlir::success(); 1097 } 1098 1099 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { 1100 auto ivArg = val.dyn_cast<mlir::BlockArgument>(); 1101 if (!ivArg) 1102 return {}; 1103 assert(ivArg.getOwner() && "unlinked block argument"); 1104 auto *containingInst = ivArg.getOwner()->getParentOp(); 1105 return dyn_cast_or_null<fir::DoLoopOp>(containingInst); 1106 } 1107 1108 // Lifted from loop.loop 1109 static mlir::LogicalResult verify(fir::DoLoopOp op) { 1110 // Check that the body defines as single block argument for the induction 1111 // variable. 1112 auto *body = op.getBody(); 1113 if (!body->getArgument(0).getType().isIndex()) 1114 return op.emitOpError( 1115 "expected body first argument to be an index argument for " 1116 "the induction variable"); 1117 1118 auto opNumResults = op.getNumResults(); 1119 if (opNumResults == 0) 1120 return success(); 1121 1122 if (op.finalValue()) { 1123 if (op.unordered()) 1124 return op.emitOpError("unordered loop has no final value"); 1125 opNumResults--; 1126 } 1127 if (op.getNumIterOperands() != opNumResults) 1128 return op.emitOpError( 1129 "mismatch in number of loop-carried values and defined values"); 1130 if (op.getNumRegionIterArgs() != opNumResults) 1131 return op.emitOpError( 1132 "mismatch in number of basic block args and defined values"); 1133 auto iterOperands = op.getIterOperands(); 1134 auto iterArgs = op.getRegionIterArgs(); 1135 auto opResults = 1136 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1137 unsigned i = 0; 1138 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1139 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1140 return op.emitOpError() << "types mismatch between " << i 1141 << "th iter operand and defined value"; 1142 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1143 return op.emitOpError() << "types mismatch between " << i 1144 << "th iter region arg and defined value"; 1145 1146 i++; 1147 } 1148 return success(); 1149 } 1150 1151 static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) { 1152 bool printBlockTerminators = false; 1153 p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to " 1154 << op.upperBound() << " step " << op.step(); 1155 if (op.unordered()) 1156 p << " unordered"; 1157 if (op.hasIterOperands()) { 1158 p << " iter_args("; 1159 auto regionArgs = op.getRegionIterArgs(); 1160 auto operands = op.getIterOperands(); 1161 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { 1162 p << std::get<0>(it) << " = " << std::get<1>(it); 1163 }); 1164 p << ") -> (" << op.getResultTypes() << ')'; 1165 printBlockTerminators = true; 1166 } else if (op.finalValue()) { 1167 p << " -> " << op.getResultTypes(); 1168 printBlockTerminators = true; 1169 } 1170 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 1171 {"unordered", "finalValue"}); 1172 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 1173 printBlockTerminators); 1174 } 1175 1176 mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); } 1177 1178 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { 1179 return !region().isAncestor(value.getParentRegion()); 1180 } 1181 1182 mlir::LogicalResult 1183 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1184 for (auto op : ops) 1185 op->moveBefore(*this); 1186 return success(); 1187 } 1188 1189 /// Translate a value passed as an iter_arg to the corresponding block 1190 /// argument in the body of the loop. 1191 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { 1192 for (auto i : llvm::enumerate(initArgs())) 1193 if (iterArg == i.value()) 1194 return region().front().getArgument(i.index() + 1); 1195 return {}; 1196 } 1197 1198 /// Translate the result vector (by index number) to the corresponding value 1199 /// to the `fir.result` Op. 1200 void fir::DoLoopOp::resultToSourceOps( 1201 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1202 auto oper = finalValue() ? resultNum + 1 : resultNum; 1203 auto *term = region().front().getTerminator(); 1204 if (oper < term->getNumOperands()) 1205 results.push_back(term->getOperand(oper)); 1206 } 1207 1208 /// Translate the block argument (by index number) to the corresponding value 1209 /// passed as an iter_arg to the parent DoLoopOp. 1210 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { 1211 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 1212 return initArgs()[blockArgNum - 1]; 1213 return {}; 1214 } 1215 1216 //===----------------------------------------------------------------------===// 1217 // ReboxOp 1218 //===----------------------------------------------------------------------===// 1219 1220 /// Get the scalar type related to a fir.box type. 1221 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>. 1222 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { 1223 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 1224 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 1225 return seqTy.getEleTy(); 1226 return eleTy; 1227 } 1228 1229 /// Get the rank from a !fir.box type 1230 static unsigned getBoxRank(mlir::Type boxTy) { 1231 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 1232 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 1233 return seqTy.getDimension(); 1234 return 0; 1235 } 1236 1237 static mlir::LogicalResult verify(fir::ReboxOp op) { 1238 auto inputBoxTy = op.box().getType(); 1239 if (fir::isa_unknown_size_box(inputBoxTy)) 1240 return op.emitOpError("box operand must not have unknown rank or type"); 1241 auto outBoxTy = op.getType(); 1242 if (fir::isa_unknown_size_box(outBoxTy)) 1243 return op.emitOpError("result type must not have unknown rank or type"); 1244 auto inputRank = getBoxRank(inputBoxTy); 1245 auto inputEleTy = getBoxScalarEleTy(inputBoxTy); 1246 auto outRank = getBoxRank(outBoxTy); 1247 auto outEleTy = getBoxScalarEleTy(outBoxTy); 1248 1249 if (auto slice = op.slice()) { 1250 // Slicing case 1251 if (slice.getType().cast<fir::SliceType>().getRank() != inputRank) 1252 return op.emitOpError("slice operand rank must match box operand rank"); 1253 if (auto shape = op.shape()) { 1254 if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) { 1255 if (shiftTy.getRank() != inputRank) 1256 return op.emitOpError("shape operand and input box ranks must match " 1257 "when there is a slice"); 1258 } else { 1259 return op.emitOpError("shape operand must absent or be a fir.shift " 1260 "when there is a slice"); 1261 } 1262 } 1263 if (auto sliceOp = slice.getDefiningOp()) { 1264 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank(); 1265 if (slicedRank != outRank) 1266 return op.emitOpError("result type rank and rank after applying slice " 1267 "operand must match"); 1268 } 1269 } else { 1270 // Reshaping case 1271 unsigned shapeRank = inputRank; 1272 if (auto shape = op.shape()) { 1273 auto ty = shape.getType(); 1274 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) { 1275 shapeRank = shapeTy.getRank(); 1276 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) { 1277 shapeRank = shapeShiftTy.getRank(); 1278 } else { 1279 auto shiftTy = ty.cast<fir::ShiftType>(); 1280 shapeRank = shiftTy.getRank(); 1281 if (shapeRank != inputRank) 1282 return op.emitOpError("shape operand and input box ranks must match " 1283 "when the shape is a fir.shift"); 1284 } 1285 } 1286 if (shapeRank != outRank) 1287 return op.emitOpError("result type and shape operand ranks must match"); 1288 } 1289 1290 if (inputEleTy != outEleTy) 1291 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived 1292 // types. 1293 if (!inputEleTy.isa<fir::RecordType>()) 1294 return op.emitOpError( 1295 "op input and output element types must match for intrinsic types"); 1296 return mlir::success(); 1297 } 1298 1299 //===----------------------------------------------------------------------===// 1300 // ResultOp 1301 //===----------------------------------------------------------------------===// 1302 1303 static mlir::LogicalResult verify(fir::ResultOp op) { 1304 auto *parentOp = op->getParentOp(); 1305 auto results = parentOp->getResults(); 1306 auto operands = op->getOperands(); 1307 1308 if (parentOp->getNumResults() != op.getNumOperands()) 1309 return op.emitOpError() << "parent of result must have same arity"; 1310 for (auto e : llvm::zip(results, operands)) 1311 if (std::get<0>(e).getType() != std::get<1>(e).getType()) 1312 return op.emitOpError() 1313 << "types mismatch between result op and its parent"; 1314 return success(); 1315 } 1316 1317 //===----------------------------------------------------------------------===// 1318 // SelectOp 1319 //===----------------------------------------------------------------------===// 1320 1321 static constexpr llvm::StringRef getCompareOffsetAttr() { 1322 return "compare_operand_offsets"; 1323 } 1324 1325 static constexpr llvm::StringRef getTargetOffsetAttr() { 1326 return "target_operand_offsets"; 1327 } 1328 1329 template <typename A, typename... AdditionalArgs> 1330 static A getSubOperands(unsigned pos, A allArgs, 1331 mlir::DenseIntElementsAttr ranges, 1332 AdditionalArgs &&...additionalArgs) { 1333 unsigned start = 0; 1334 for (unsigned i = 0; i < pos; ++i) 1335 start += (*(ranges.begin() + i)).getZExtValue(); 1336 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), 1337 std::forward<AdditionalArgs>(additionalArgs)...); 1338 } 1339 1340 static mlir::MutableOperandRange 1341 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, 1342 StringRef offsetAttr) { 1343 Operation *owner = operands.getOwner(); 1344 NamedAttribute targetOffsetAttr = 1345 *owner->getAttrDictionary().getNamed(offsetAttr); 1346 return getSubOperands( 1347 pos, operands, targetOffsetAttr.second.cast<DenseIntElementsAttr>(), 1348 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); 1349 } 1350 1351 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { 1352 return attr.getNumElements(); 1353 } 1354 1355 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) { 1356 return {}; 1357 } 1358 1359 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1360 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 1361 return {}; 1362 } 1363 1364 llvm::Optional<mlir::MutableOperandRange> 1365 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { 1366 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1367 getTargetOffsetAttr()); 1368 } 1369 1370 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1371 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1372 unsigned oper) { 1373 auto a = 1374 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1375 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1376 getOperandSegmentSizeAttr()); 1377 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1378 } 1379 1380 unsigned fir::SelectOp::targetOffsetSize() { 1381 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1382 getTargetOffsetAttr())); 1383 } 1384 1385 //===----------------------------------------------------------------------===// 1386 // SelectCaseOp 1387 //===----------------------------------------------------------------------===// 1388 1389 llvm::Optional<mlir::OperandRange> 1390 fir::SelectCaseOp::getCompareOperands(unsigned cond) { 1391 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1392 getCompareOffsetAttr()); 1393 return {getSubOperands(cond, compareArgs(), a)}; 1394 } 1395 1396 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1397 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands, 1398 unsigned cond) { 1399 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1400 getCompareOffsetAttr()); 1401 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1402 getOperandSegmentSizeAttr()); 1403 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 1404 } 1405 1406 llvm::Optional<mlir::MutableOperandRange> 1407 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { 1408 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1409 getTargetOffsetAttr()); 1410 } 1411 1412 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1413 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1414 unsigned oper) { 1415 auto a = 1416 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1417 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1418 getOperandSegmentSizeAttr()); 1419 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1420 } 1421 1422 // parser for fir.select_case Op 1423 static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser, 1424 mlir::OperationState &result) { 1425 mlir::OpAsmParser::OperandType selector; 1426 mlir::Type type; 1427 if (parseSelector(parser, result, selector, type)) 1428 return mlir::failure(); 1429 1430 llvm::SmallVector<mlir::Attribute, 8> attrs; 1431 llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> opers; 1432 llvm::SmallVector<mlir::Block *, 8> dests; 1433 llvm::SmallVector<llvm::SmallVector<mlir::Value, 8>, 8> destArgs; 1434 llvm::SmallVector<int32_t, 8> argOffs; 1435 int32_t offSize = 0; 1436 while (true) { 1437 mlir::Attribute attr; 1438 mlir::Block *dest; 1439 llvm::SmallVector<mlir::Value, 8> destArg; 1440 mlir::NamedAttrList temp; 1441 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || 1442 parser.parseComma()) 1443 return mlir::failure(); 1444 attrs.push_back(attr); 1445 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) { 1446 argOffs.push_back(0); 1447 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) { 1448 mlir::OpAsmParser::OperandType oper1; 1449 mlir::OpAsmParser::OperandType oper2; 1450 if (parser.parseOperand(oper1) || parser.parseComma() || 1451 parser.parseOperand(oper2) || parser.parseComma()) 1452 return mlir::failure(); 1453 opers.push_back(oper1); 1454 opers.push_back(oper2); 1455 argOffs.push_back(2); 1456 offSize += 2; 1457 } else { 1458 mlir::OpAsmParser::OperandType oper; 1459 if (parser.parseOperand(oper) || parser.parseComma()) 1460 return mlir::failure(); 1461 opers.push_back(oper); 1462 argOffs.push_back(1); 1463 ++offSize; 1464 } 1465 if (parser.parseSuccessorAndUseList(dest, destArg)) 1466 return mlir::failure(); 1467 dests.push_back(dest); 1468 destArgs.push_back(destArg); 1469 if (mlir::succeeded(parser.parseOptionalRSquare())) 1470 break; 1471 if (parser.parseComma()) 1472 return mlir::failure(); 1473 } 1474 result.addAttribute(fir::SelectCaseOp::getCasesAttr(), 1475 parser.getBuilder().getArrayAttr(attrs)); 1476 if (parser.resolveOperands(opers, type, result.operands)) 1477 return mlir::failure(); 1478 llvm::SmallVector<int32_t, 8> targOffs; 1479 int32_t toffSize = 0; 1480 const auto count = dests.size(); 1481 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 1482 result.addSuccessors(dests[i]); 1483 result.addOperands(destArgs[i]); 1484 auto argSize = destArgs[i].size(); 1485 targOffs.push_back(argSize); 1486 toffSize += argSize; 1487 } 1488 auto &bld = parser.getBuilder(); 1489 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), 1490 bld.getI32VectorAttr({1, offSize, toffSize})); 1491 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); 1492 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); 1493 return mlir::success(); 1494 } 1495 1496 unsigned fir::SelectCaseOp::compareOffsetSize() { 1497 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1498 getCompareOffsetAttr())); 1499 } 1500 1501 unsigned fir::SelectCaseOp::targetOffsetSize() { 1502 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1503 getTargetOffsetAttr())); 1504 } 1505 1506 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 1507 mlir::OperationState &result, 1508 mlir::Value selector, 1509 llvm::ArrayRef<mlir::Attribute> compareAttrs, 1510 llvm::ArrayRef<mlir::ValueRange> cmpOperands, 1511 llvm::ArrayRef<mlir::Block *> destinations, 1512 llvm::ArrayRef<mlir::ValueRange> destOperands, 1513 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1514 result.addOperands(selector); 1515 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); 1516 llvm::SmallVector<int32_t, 8> operOffs; 1517 int32_t operSize = 0; 1518 for (auto attr : compareAttrs) { 1519 if (attr.isa<fir::ClosedIntervalAttr>()) { 1520 operOffs.push_back(2); 1521 operSize += 2; 1522 } else if (attr.isa<mlir::UnitAttr>()) { 1523 operOffs.push_back(0); 1524 } else { 1525 operOffs.push_back(1); 1526 ++operSize; 1527 } 1528 } 1529 for (auto ops : cmpOperands) 1530 result.addOperands(ops); 1531 result.addAttribute(getCompareOffsetAttr(), 1532 builder.getI32VectorAttr(operOffs)); 1533 const auto count = destinations.size(); 1534 for (auto d : destinations) 1535 result.addSuccessors(d); 1536 const auto opCount = destOperands.size(); 1537 llvm::SmallVector<int32_t, 8> argOffs; 1538 int32_t sumArgs = 0; 1539 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 1540 if (i < opCount) { 1541 result.addOperands(destOperands[i]); 1542 const auto argSz = destOperands[i].size(); 1543 argOffs.push_back(argSz); 1544 sumArgs += argSz; 1545 } else { 1546 argOffs.push_back(0); 1547 } 1548 } 1549 result.addAttribute(getOperandSegmentSizeAttr(), 1550 builder.getI32VectorAttr({1, operSize, sumArgs})); 1551 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 1552 result.addAttributes(attributes); 1553 } 1554 1555 /// This builder has a slightly simplified interface in that the list of 1556 /// operands need not be partitioned by the builder. Instead the operands are 1557 /// partitioned here, before being passed to the default builder. This 1558 /// partitioning is unchecked, so can go awry on bad input. 1559 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 1560 mlir::OperationState &result, 1561 mlir::Value selector, 1562 llvm::ArrayRef<mlir::Attribute> compareAttrs, 1563 llvm::ArrayRef<mlir::Value> cmpOpList, 1564 llvm::ArrayRef<mlir::Block *> destinations, 1565 llvm::ArrayRef<mlir::ValueRange> destOperands, 1566 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1567 llvm::SmallVector<mlir::ValueRange, 16> cmpOpers; 1568 auto iter = cmpOpList.begin(); 1569 for (auto &attr : compareAttrs) { 1570 if (attr.isa<fir::ClosedIntervalAttr>()) { 1571 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); 1572 iter += 2; 1573 } else if (attr.isa<UnitAttr>()) { 1574 cmpOpers.push_back(mlir::ValueRange{}); 1575 } else { 1576 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); 1577 ++iter; 1578 } 1579 } 1580 build(builder, result, selector, compareAttrs, cmpOpers, destinations, 1581 destOperands, attributes); 1582 } 1583 1584 //===----------------------------------------------------------------------===// 1585 // SelectRankOp 1586 //===----------------------------------------------------------------------===// 1587 1588 llvm::Optional<mlir::OperandRange> 1589 fir::SelectRankOp::getCompareOperands(unsigned) { 1590 return {}; 1591 } 1592 1593 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1594 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 1595 return {}; 1596 } 1597 1598 llvm::Optional<mlir::MutableOperandRange> 1599 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { 1600 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1601 getTargetOffsetAttr()); 1602 } 1603 1604 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1605 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1606 unsigned oper) { 1607 auto a = 1608 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1609 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1610 getOperandSegmentSizeAttr()); 1611 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1612 } 1613 1614 unsigned fir::SelectRankOp::targetOffsetSize() { 1615 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1616 getTargetOffsetAttr())); 1617 } 1618 1619 //===----------------------------------------------------------------------===// 1620 // SelectTypeOp 1621 //===----------------------------------------------------------------------===// 1622 1623 llvm::Optional<mlir::OperandRange> 1624 fir::SelectTypeOp::getCompareOperands(unsigned) { 1625 return {}; 1626 } 1627 1628 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1629 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 1630 return {}; 1631 } 1632 1633 llvm::Optional<mlir::MutableOperandRange> 1634 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { 1635 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1636 getTargetOffsetAttr()); 1637 } 1638 1639 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1640 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1641 unsigned oper) { 1642 auto a = 1643 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1644 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1645 getOperandSegmentSizeAttr()); 1646 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1647 } 1648 1649 static ParseResult parseSelectType(OpAsmParser &parser, 1650 OperationState &result) { 1651 mlir::OpAsmParser::OperandType selector; 1652 mlir::Type type; 1653 if (parseSelector(parser, result, selector, type)) 1654 return mlir::failure(); 1655 1656 llvm::SmallVector<mlir::Attribute, 8> attrs; 1657 llvm::SmallVector<mlir::Block *, 8> dests; 1658 llvm::SmallVector<llvm::SmallVector<mlir::Value, 8>, 8> destArgs; 1659 while (true) { 1660 mlir::Attribute attr; 1661 mlir::Block *dest; 1662 llvm::SmallVector<mlir::Value, 8> destArg; 1663 mlir::NamedAttrList temp; 1664 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || 1665 parser.parseSuccessorAndUseList(dest, destArg)) 1666 return mlir::failure(); 1667 attrs.push_back(attr); 1668 dests.push_back(dest); 1669 destArgs.push_back(destArg); 1670 if (mlir::succeeded(parser.parseOptionalRSquare())) 1671 break; 1672 if (parser.parseComma()) 1673 return mlir::failure(); 1674 } 1675 auto &bld = parser.getBuilder(); 1676 result.addAttribute(fir::SelectTypeOp::getCasesAttr(), 1677 bld.getArrayAttr(attrs)); 1678 llvm::SmallVector<int32_t, 8> argOffs; 1679 int32_t offSize = 0; 1680 const auto count = dests.size(); 1681 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 1682 result.addSuccessors(dests[i]); 1683 result.addOperands(destArgs[i]); 1684 auto argSize = destArgs[i].size(); 1685 argOffs.push_back(argSize); 1686 offSize += argSize; 1687 } 1688 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), 1689 bld.getI32VectorAttr({1, 0, offSize})); 1690 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 1691 return mlir::success(); 1692 } 1693 1694 unsigned fir::SelectTypeOp::targetOffsetSize() { 1695 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1696 getTargetOffsetAttr())); 1697 } 1698 1699 //===----------------------------------------------------------------------===// 1700 // SliceOp 1701 //===----------------------------------------------------------------------===// 1702 1703 /// Return the output rank of a slice op. The output rank must be between 1 and 1704 /// the rank of the array being sliced (inclusive). 1705 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { 1706 unsigned rank = 0; 1707 if (!triples.empty()) { 1708 for (unsigned i = 1, end = triples.size(); i < end; i += 3) { 1709 auto op = triples[i].getDefiningOp(); 1710 if (!mlir::isa_and_nonnull<fir::UndefOp>(op)) 1711 ++rank; 1712 } 1713 assert(rank > 0); 1714 } 1715 return rank; 1716 } 1717 1718 //===----------------------------------------------------------------------===// 1719 // StoreOp 1720 //===----------------------------------------------------------------------===// 1721 1722 mlir::Type fir::StoreOp::elementType(mlir::Type refType) { 1723 if (auto ref = refType.dyn_cast<ReferenceType>()) 1724 return ref.getEleTy(); 1725 if (auto ref = refType.dyn_cast<PointerType>()) 1726 return ref.getEleTy(); 1727 if (auto ref = refType.dyn_cast<HeapType>()) 1728 return ref.getEleTy(); 1729 return {}; 1730 } 1731 1732 //===----------------------------------------------------------------------===// 1733 // StringLitOp 1734 //===----------------------------------------------------------------------===// 1735 1736 bool fir::StringLitOp::isWideValue() { 1737 auto eleTy = getType().cast<fir::SequenceType>().getEleTy(); 1738 return eleTy.cast<fir::CharacterType>().getFKind() != 1; 1739 } 1740 1741 //===----------------------------------------------------------------------===// 1742 // IfOp 1743 //===----------------------------------------------------------------------===// 1744 1745 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 1746 mlir::Value cond, bool withElseRegion) { 1747 build(builder, result, llvm::None, cond, withElseRegion); 1748 } 1749 1750 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 1751 mlir::TypeRange resultTypes, mlir::Value cond, 1752 bool withElseRegion) { 1753 result.addOperands(cond); 1754 result.addTypes(resultTypes); 1755 1756 mlir::Region *thenRegion = result.addRegion(); 1757 thenRegion->push_back(new mlir::Block()); 1758 if (resultTypes.empty()) 1759 IfOp::ensureTerminator(*thenRegion, builder, result.location); 1760 1761 mlir::Region *elseRegion = result.addRegion(); 1762 if (withElseRegion) { 1763 elseRegion->push_back(new mlir::Block()); 1764 if (resultTypes.empty()) 1765 IfOp::ensureTerminator(*elseRegion, builder, result.location); 1766 } 1767 } 1768 1769 static mlir::ParseResult parseIfOp(OpAsmParser &parser, 1770 OperationState &result) { 1771 result.regions.reserve(2); 1772 mlir::Region *thenRegion = result.addRegion(); 1773 mlir::Region *elseRegion = result.addRegion(); 1774 1775 auto &builder = parser.getBuilder(); 1776 OpAsmParser::OperandType cond; 1777 mlir::Type i1Type = builder.getIntegerType(1); 1778 if (parser.parseOperand(cond) || 1779 parser.resolveOperand(cond, i1Type, result.operands)) 1780 return mlir::failure(); 1781 1782 if (parser.parseOptionalArrowTypeList(result.types)) 1783 return mlir::failure(); 1784 1785 if (parser.parseRegion(*thenRegion, {}, {})) 1786 return mlir::failure(); 1787 IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); 1788 1789 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { 1790 if (parser.parseRegion(*elseRegion, {}, {})) 1791 return mlir::failure(); 1792 IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); 1793 } 1794 1795 // Parse the optional attribute list. 1796 if (parser.parseOptionalAttrDict(result.attributes)) 1797 return mlir::failure(); 1798 return mlir::success(); 1799 } 1800 1801 static LogicalResult verify(fir::IfOp op) { 1802 if (op.getNumResults() != 0 && op.elseRegion().empty()) 1803 return op.emitOpError("must have an else block if defining values"); 1804 1805 return mlir::success(); 1806 } 1807 1808 static void print(mlir::OpAsmPrinter &p, fir::IfOp op) { 1809 bool printBlockTerminators = false; 1810 p << ' ' << op.condition(); 1811 if (!op.results().empty()) { 1812 p << " -> (" << op.getResultTypes() << ')'; 1813 printBlockTerminators = true; 1814 } 1815 p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false, 1816 printBlockTerminators); 1817 1818 // Print the 'else' regions if it exists and has a block. 1819 auto &otherReg = op.elseRegion(); 1820 if (!otherReg.empty()) { 1821 p << " else"; 1822 p.printRegion(otherReg, /*printEntryBlockArgs=*/false, 1823 printBlockTerminators); 1824 } 1825 p.printOptionalAttrDict(op->getAttrs()); 1826 } 1827 1828 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results, 1829 unsigned resultNum) { 1830 auto *term = thenRegion().front().getTerminator(); 1831 if (resultNum < term->getNumOperands()) 1832 results.push_back(term->getOperand(resultNum)); 1833 term = elseRegion().front().getTerminator(); 1834 if (resultNum < term->getNumOperands()) 1835 results.push_back(term->getOperand(resultNum)); 1836 } 1837 1838 //===----------------------------------------------------------------------===// 1839 1840 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { 1841 if (attr.dyn_cast_or_null<mlir::UnitAttr>() || 1842 attr.dyn_cast_or_null<ClosedIntervalAttr>() || 1843 attr.dyn_cast_or_null<PointIntervalAttr>() || 1844 attr.dyn_cast_or_null<LowerBoundAttr>() || 1845 attr.dyn_cast_or_null<UpperBoundAttr>()) 1846 return mlir::success(); 1847 return mlir::failure(); 1848 } 1849 1850 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases, 1851 unsigned dest) { 1852 unsigned o = 0; 1853 for (unsigned i = 0; i < dest; ++i) { 1854 auto &attr = cases[i]; 1855 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) { 1856 ++o; 1857 if (attr.dyn_cast_or_null<ClosedIntervalAttr>()) 1858 ++o; 1859 } 1860 } 1861 return o; 1862 } 1863 1864 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, 1865 mlir::OperationState &result, 1866 mlir::OpAsmParser::OperandType &selector, 1867 mlir::Type &type) { 1868 if (parser.parseOperand(selector) || parser.parseColonType(type) || 1869 parser.resolveOperand(selector, type, result.operands) || 1870 parser.parseLSquare()) 1871 return mlir::failure(); 1872 return mlir::success(); 1873 } 1874 1875 /// Generic pretty-printer of a binary operation 1876 static void printBinaryOp(Operation *op, OpAsmPrinter &p) { 1877 assert(op->getNumOperands() == 2 && "binary op must have two operands"); 1878 assert(op->getNumResults() == 1 && "binary op must have one result"); 1879 1880 p << ' ' << op->getOperand(0) << ", " << op->getOperand(1); 1881 p.printOptionalAttrDict(op->getAttrs()); 1882 p << " : " << op->getResult(0).getType(); 1883 } 1884 1885 /// Generic pretty-printer of an unary operation 1886 static void printUnaryOp(Operation *op, OpAsmPrinter &p) { 1887 assert(op->getNumOperands() == 1 && "unary op must have one operand"); 1888 assert(op->getNumResults() == 1 && "unary op must have one result"); 1889 1890 p << ' ' << op->getOperand(0); 1891 p.printOptionalAttrDict(op->getAttrs()); 1892 p << " : " << op->getResult(0).getType(); 1893 } 1894 1895 bool fir::isReferenceLike(mlir::Type type) { 1896 return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() || 1897 type.isa<fir::PointerType>(); 1898 } 1899 1900 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, 1901 StringRef name, mlir::FunctionType type, 1902 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 1903 if (auto f = module.lookupSymbol<mlir::FuncOp>(name)) 1904 return f; 1905 mlir::OpBuilder modBuilder(module.getBodyRegion()); 1906 modBuilder.setInsertionPoint(module.getBody()->getTerminator()); 1907 auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs); 1908 result.setVisibility(mlir::SymbolTable::Visibility::Private); 1909 return result; 1910 } 1911 1912 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, 1913 StringRef name, mlir::Type type, 1914 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 1915 if (auto g = module.lookupSymbol<fir::GlobalOp>(name)) 1916 return g; 1917 mlir::OpBuilder modBuilder(module.getBodyRegion()); 1918 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs); 1919 result.setVisibility(mlir::SymbolTable::Visibility::Private); 1920 return result; 1921 } 1922 1923 bool fir::valueHasFirAttribute(mlir::Value value, 1924 llvm::StringRef attributeName) { 1925 // If this is a fir.box that was loaded, the fir attributes will be on the 1926 // related fir.ref<fir.box> creation. 1927 if (value.getType().isa<fir::BoxType>()) 1928 if (auto definingOp = value.getDefiningOp()) 1929 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp)) 1930 value = loadOp.memref(); 1931 // If this is a function argument, look in the argument attributes. 1932 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 1933 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) 1934 if (auto funcOp = 1935 mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp())) 1936 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) 1937 return true; 1938 return false; 1939 } 1940 1941 if (auto definingOp = value.getDefiningOp()) { 1942 // If this is an allocated value, look at the allocation attributes. 1943 if (mlir::isa<fir::AllocMemOp>(definingOp) || 1944 mlir::isa<AllocaOp>(definingOp)) 1945 return definingOp->hasAttr(attributeName); 1946 // If this is an imported global, look at AddrOfOp and GlobalOp attributes. 1947 // Both operations are looked at because use/host associated variable (the 1948 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate 1949 // entity (the globalOp) does not have them. 1950 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) { 1951 if (addressOfOp->hasAttr(attributeName)) 1952 return true; 1953 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>()) 1954 if (auto globalOp = 1955 module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol())) 1956 return globalOp->hasAttr(attributeName); 1957 } 1958 } 1959 // TODO: Construct associated entities attributes. Decide where the fir 1960 // attributes must be placed/looked for in this case. 1961 return false; 1962 } 1963 1964 // Tablegen operators 1965 1966 #define GET_OP_CLASSES 1967 #include "flang/Optimizer/Dialect/FIROps.cpp.inc" 1968