1 //===-- FIROps.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Optimizer/Dialect/FIROps.h"
14 #include "flang/Optimizer/Dialect/FIRAttr.h"
15 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
16 #include "flang/Optimizer/Dialect/FIRType.h"
17 #include "flang/Optimizer/Support/FIRContext.h"
18 #include "flang/Optimizer/Support/KindMapping.h"
19 #include "flang/Optimizer/Support/Utils.h"
20 #include "mlir/Dialect/CommonFolders.h"
21 #include "mlir/Dialect/Func/IR/FuncOps.h"
22 #include "mlir/IR/BuiltinAttributes.h"
23 #include "mlir/IR/BuiltinOps.h"
24 #include "mlir/IR/Diagnostics.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/OpDefinition.h"
27 #include "mlir/IR/PatternMatch.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/TypeSwitch.h"
32 
33 namespace {
34 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc"
35 } // namespace
36 
37 /// Return true if a sequence type is of some incomplete size or a record type
38 /// is malformed or contains an incomplete sequence type. An incomplete sequence
39 /// type is one with more unknown extents in the type than have been provided
40 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
41 /// definition.
42 static bool verifyInType(mlir::Type inType,
43                          llvm::SmallVectorImpl<llvm::StringRef> &visited,
44                          unsigned dynamicExtents = 0) {
45   if (auto st = inType.dyn_cast<fir::SequenceType>()) {
46     auto shape = st.getShape();
47     if (shape.size() == 0)
48       return true;
49     for (std::size_t i = 0, end = shape.size(); i < end; ++i) {
50       if (shape[i] != fir::SequenceType::getUnknownExtent())
51         continue;
52       if (dynamicExtents-- == 0)
53         return true;
54     }
55   } else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
56     // don't recurse if we're already visiting this one
57     if (llvm::is_contained(visited, rt.getName()))
58       return false;
59     // keep track of record types currently being visited
60     visited.push_back(rt.getName());
61     for (auto &field : rt.getTypeList())
62       if (verifyInType(field.second, visited))
63         return true;
64     visited.pop_back();
65   }
66   return false;
67 }
68 
69 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) {
70   auto ty = fir::unwrapSequenceType(inType);
71   if (numParams > 0) {
72     if (auto recTy = ty.dyn_cast<fir::RecordType>())
73       return numParams != recTy.getNumLenParams();
74     if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
75       return !(numParams == 1 && chrTy.hasDynamicLen());
76     return true;
77   }
78   if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
79     return !chrTy.hasConstantLen();
80   return false;
81 }
82 
83 /// Parser shared by Alloca and Allocmem
84 ///
85 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type
86 ///                      ( `(` $typeparams `)` )? ( `,` $shape )?
87 ///                      attr-dict-without-keyword
88 template <typename FN>
89 static mlir::ParseResult parseAllocatableOp(FN wrapResultType,
90                                             mlir::OpAsmParser &parser,
91                                             mlir::OperationState &result) {
92   mlir::Type intype;
93   if (parser.parseType(intype))
94     return mlir::failure();
95   auto &builder = parser.getBuilder();
96   result.addAttribute("in_type", mlir::TypeAttr::get(intype));
97   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
98   llvm::SmallVector<mlir::Type> typeVec;
99   bool hasOperands = false;
100   std::int32_t typeparamsSize = 0;
101   if (!parser.parseOptionalLParen()) {
102     // parse the LEN params of the derived type. (<params> : <types>)
103     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
104         parser.parseColonTypeList(typeVec) || parser.parseRParen())
105       return mlir::failure();
106     typeparamsSize = operands.size();
107     hasOperands = true;
108   }
109   std::int32_t shapeSize = 0;
110   if (!parser.parseOptionalComma()) {
111     // parse size to scale by, vector of n dimensions of type index
112     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None))
113       return mlir::failure();
114     shapeSize = operands.size() - typeparamsSize;
115     auto idxTy = builder.getIndexType();
116     for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i)
117       typeVec.push_back(idxTy);
118     hasOperands = true;
119   }
120   if (hasOperands &&
121       parser.resolveOperands(operands, typeVec, parser.getNameLoc(),
122                              result.operands))
123     return mlir::failure();
124   mlir::Type restype = wrapResultType(intype);
125   if (!restype) {
126     parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype;
127     return mlir::failure();
128   }
129   result.addAttribute("operand_segment_sizes",
130                       builder.getI32VectorAttr({typeparamsSize, shapeSize}));
131   if (parser.parseOptionalAttrDict(result.attributes) ||
132       parser.addTypeToList(restype, result.types))
133     return mlir::failure();
134   return mlir::success();
135 }
136 
137 template <typename OP>
138 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) {
139   p << ' ' << op.getInType();
140   if (!op.getTypeparams().empty()) {
141     p << '(' << op.getTypeparams() << " : " << op.getTypeparams().getTypes()
142       << ')';
143   }
144   // print the shape of the allocation (if any); all must be index type
145   for (auto sh : op.getShape()) {
146     p << ", ";
147     p.printOperand(sh);
148   }
149   p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"});
150 }
151 
152 //===----------------------------------------------------------------------===//
153 // AllocaOp
154 //===----------------------------------------------------------------------===//
155 
156 /// Create a legal memory reference as return type
157 static mlir::Type wrapAllocaResultType(mlir::Type intype) {
158   // FIR semantics: memory references to memory references are disallowed
159   if (intype.isa<fir::ReferenceType>())
160     return {};
161   return fir::ReferenceType::get(intype);
162 }
163 
164 mlir::Type fir::AllocaOp::getAllocatedType() {
165   return getType().cast<fir::ReferenceType>().getEleTy();
166 }
167 
168 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
169   return fir::ReferenceType::get(ty);
170 }
171 
172 void fir::AllocaOp::build(mlir::OpBuilder &builder,
173                           mlir::OperationState &result, mlir::Type inType,
174                           llvm::StringRef uniqName, mlir::ValueRange typeparams,
175                           mlir::ValueRange shape,
176                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
177   auto nameAttr = builder.getStringAttr(uniqName);
178   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
179         /*pinned=*/false, typeparams, shape);
180   result.addAttributes(attributes);
181 }
182 
183 void fir::AllocaOp::build(mlir::OpBuilder &builder,
184                           mlir::OperationState &result, mlir::Type inType,
185                           llvm::StringRef uniqName, bool pinned,
186                           mlir::ValueRange typeparams, mlir::ValueRange shape,
187                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
188   auto nameAttr = builder.getStringAttr(uniqName);
189   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
190         pinned, typeparams, shape);
191   result.addAttributes(attributes);
192 }
193 
194 void fir::AllocaOp::build(mlir::OpBuilder &builder,
195                           mlir::OperationState &result, mlir::Type inType,
196                           llvm::StringRef uniqName, llvm::StringRef bindcName,
197                           mlir::ValueRange typeparams, mlir::ValueRange shape,
198                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
199   auto nameAttr =
200       uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
201   auto bindcAttr =
202       bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
203   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
204         bindcAttr, /*pinned=*/false, typeparams, shape);
205   result.addAttributes(attributes);
206 }
207 
208 void fir::AllocaOp::build(mlir::OpBuilder &builder,
209                           mlir::OperationState &result, mlir::Type inType,
210                           llvm::StringRef uniqName, llvm::StringRef bindcName,
211                           bool pinned, mlir::ValueRange typeparams,
212                           mlir::ValueRange shape,
213                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
214   auto nameAttr =
215       uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
216   auto bindcAttr =
217       bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
218   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
219         bindcAttr, pinned, typeparams, shape);
220   result.addAttributes(attributes);
221 }
222 
223 void fir::AllocaOp::build(mlir::OpBuilder &builder,
224                           mlir::OperationState &result, mlir::Type inType,
225                           mlir::ValueRange typeparams, mlir::ValueRange shape,
226                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
227   build(builder, result, wrapAllocaResultType(inType), inType, {}, {},
228         /*pinned=*/false, typeparams, shape);
229   result.addAttributes(attributes);
230 }
231 
232 void fir::AllocaOp::build(mlir::OpBuilder &builder,
233                           mlir::OperationState &result, mlir::Type inType,
234                           bool pinned, mlir::ValueRange typeparams,
235                           mlir::ValueRange shape,
236                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
237   build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned,
238         typeparams, shape);
239   result.addAttributes(attributes);
240 }
241 
242 mlir::ParseResult fir::AllocaOp::parse(mlir::OpAsmParser &parser,
243                                        mlir::OperationState &result) {
244   return parseAllocatableOp(wrapAllocaResultType, parser, result);
245 }
246 
247 void fir::AllocaOp::print(mlir::OpAsmPrinter &p) {
248   printAllocatableOp(p, *this);
249 }
250 
251 mlir::LogicalResult fir::AllocaOp::verify() {
252   llvm::SmallVector<llvm::StringRef> visited;
253   if (verifyInType(getInType(), visited, numShapeOperands()))
254     return emitOpError("invalid type for allocation");
255   if (verifyTypeParamCount(getInType(), numLenParams()))
256     return emitOpError("LEN params do not correspond to type");
257   mlir::Type outType = getType();
258   if (!outType.isa<fir::ReferenceType>())
259     return emitOpError("must be a !fir.ref type");
260   if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
261     return emitOpError("cannot allocate !fir.box of unknown rank or type");
262   return mlir::success();
263 }
264 
265 //===----------------------------------------------------------------------===//
266 // AllocMemOp
267 //===----------------------------------------------------------------------===//
268 
269 /// Create a legal heap reference as return type
270 static mlir::Type wrapAllocMemResultType(mlir::Type intype) {
271   // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
272   // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
273   // FIR semantics: one may not allocate a memory reference value
274   if (intype.isa<fir::ReferenceType, fir::HeapType, fir::PointerType,
275                  mlir::FunctionType>())
276     return {};
277   return fir::HeapType::get(intype);
278 }
279 
280 mlir::Type fir::AllocMemOp::getAllocatedType() {
281   return getType().cast<fir::HeapType>().getEleTy();
282 }
283 
284 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
285   return fir::HeapType::get(ty);
286 }
287 
288 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
289                             mlir::OperationState &result, mlir::Type inType,
290                             llvm::StringRef uniqName,
291                             mlir::ValueRange typeparams, mlir::ValueRange shape,
292                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
293   auto nameAttr = builder.getStringAttr(uniqName);
294   build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {},
295         typeparams, shape);
296   result.addAttributes(attributes);
297 }
298 
299 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
300                             mlir::OperationState &result, mlir::Type inType,
301                             llvm::StringRef uniqName, llvm::StringRef bindcName,
302                             mlir::ValueRange typeparams, mlir::ValueRange shape,
303                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
304   auto nameAttr = builder.getStringAttr(uniqName);
305   auto bindcAttr = builder.getStringAttr(bindcName);
306   build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr,
307         bindcAttr, typeparams, shape);
308   result.addAttributes(attributes);
309 }
310 
311 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
312                             mlir::OperationState &result, mlir::Type inType,
313                             mlir::ValueRange typeparams, mlir::ValueRange shape,
314                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
315   build(builder, result, wrapAllocMemResultType(inType), inType, {}, {},
316         typeparams, shape);
317   result.addAttributes(attributes);
318 }
319 
320 mlir::ParseResult fir::AllocMemOp::parse(mlir::OpAsmParser &parser,
321                                          mlir::OperationState &result) {
322   return parseAllocatableOp(wrapAllocMemResultType, parser, result);
323 }
324 
325 void fir::AllocMemOp::print(mlir::OpAsmPrinter &p) {
326   printAllocatableOp(p, *this);
327 }
328 
329 mlir::LogicalResult fir::AllocMemOp::verify() {
330   llvm::SmallVector<llvm::StringRef> visited;
331   if (verifyInType(getInType(), visited, numShapeOperands()))
332     return emitOpError("invalid type for allocation");
333   if (verifyTypeParamCount(getInType(), numLenParams()))
334     return emitOpError("LEN params do not correspond to type");
335   mlir::Type outType = getType();
336   if (!outType.dyn_cast<fir::HeapType>())
337     return emitOpError("must be a !fir.heap type");
338   if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
339     return emitOpError("cannot allocate !fir.box of unknown rank or type");
340   return mlir::success();
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // ArrayCoorOp
345 //===----------------------------------------------------------------------===//
346 
347 mlir::LogicalResult fir::ArrayCoorOp::verify() {
348   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
349   auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
350   if (!arrTy)
351     return emitOpError("must be a reference to an array");
352   auto arrDim = arrTy.getDimension();
353 
354   if (auto shapeOp = getShape()) {
355     auto shapeTy = shapeOp.getType();
356     unsigned shapeTyRank = 0;
357     if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
358       shapeTyRank = s.getRank();
359     } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
360       shapeTyRank = ss.getRank();
361     } else {
362       auto s = shapeTy.cast<fir::ShiftType>();
363       shapeTyRank = s.getRank();
364       if (!getMemref().getType().isa<fir::BoxType>())
365         return emitOpError("shift can only be provided with fir.box memref");
366     }
367     if (arrDim && arrDim != shapeTyRank)
368       return emitOpError("rank of dimension mismatched");
369     if (shapeTyRank != getIndices().size())
370       return emitOpError("number of indices do not match dim rank");
371   }
372 
373   if (auto sliceOp = getSlice()) {
374     if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
375       if (!sl.getSubstr().empty())
376         return emitOpError("array_coor cannot take a slice with substring");
377     if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
378       if (sliceTy.getRank() != arrDim)
379         return emitOpError("rank of dimension in slice mismatched");
380   }
381 
382   return mlir::success();
383 }
384 
385 //===----------------------------------------------------------------------===//
386 // ArrayLoadOp
387 //===----------------------------------------------------------------------===//
388 
389 static mlir::Type adjustedElementType(mlir::Type t) {
390   if (auto ty = t.dyn_cast<fir::ReferenceType>()) {
391     auto eleTy = ty.getEleTy();
392     if (fir::isa_char(eleTy))
393       return eleTy;
394     if (fir::isa_derived(eleTy))
395       return eleTy;
396     if (eleTy.isa<fir::SequenceType>())
397       return eleTy;
398   }
399   return t;
400 }
401 
402 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
403   if (auto sh = getShape())
404     if (auto *op = sh.getDefiningOp()) {
405       if (auto shOp = mlir::dyn_cast<fir::ShapeOp>(op)) {
406         auto extents = shOp.getExtents();
407         return {extents.begin(), extents.end()};
408       }
409       return mlir::cast<fir::ShapeShiftOp>(op).getExtents();
410     }
411   return {};
412 }
413 
414 mlir::LogicalResult fir::ArrayLoadOp::verify() {
415   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
416   auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
417   if (!arrTy)
418     return emitOpError("must be a reference to an array");
419   auto arrDim = arrTy.getDimension();
420 
421   if (auto shapeOp = getShape()) {
422     auto shapeTy = shapeOp.getType();
423     unsigned shapeTyRank = 0u;
424     if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
425       shapeTyRank = s.getRank();
426     } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
427       shapeTyRank = ss.getRank();
428     } else {
429       auto s = shapeTy.cast<fir::ShiftType>();
430       shapeTyRank = s.getRank();
431       if (!getMemref().getType().isa<fir::BoxType>())
432         return emitOpError("shift can only be provided with fir.box memref");
433     }
434     if (arrDim && arrDim != shapeTyRank)
435       return emitOpError("rank of dimension mismatched");
436   }
437 
438   if (auto sliceOp = getSlice()) {
439     if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
440       if (!sl.getSubstr().empty())
441         return emitOpError("array_load cannot take a slice with substring");
442     if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
443       if (sliceTy.getRank() != arrDim)
444         return emitOpError("rank of dimension in slice mismatched");
445   }
446 
447   return mlir::success();
448 }
449 
450 //===----------------------------------------------------------------------===//
451 // ArrayMergeStoreOp
452 //===----------------------------------------------------------------------===//
453 
454 mlir::LogicalResult fir::ArrayMergeStoreOp::verify() {
455   if (!mlir::isa<fir::ArrayLoadOp>(getOriginal().getDefiningOp()))
456     return emitOpError("operand #0 must be result of a fir.array_load op");
457   if (auto sl = getSlice()) {
458     if (auto sliceOp =
459             mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) {
460       if (!sliceOp.getSubstr().empty())
461         return emitOpError(
462             "array_merge_store cannot take a slice with substring");
463       if (!sliceOp.getFields().empty()) {
464         // This is an intra-object merge, where the slice is projecting the
465         // subfields that are to be overwritten by the merge operation.
466         auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
467         if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
468           auto projTy =
469               fir::applyPathToType(seqTy.getEleTy(), sliceOp.getFields());
470           if (fir::unwrapSequenceType(getOriginal().getType()) != projTy)
471             return emitOpError(
472                 "type of origin does not match sliced memref type");
473           if (fir::unwrapSequenceType(getSequence().getType()) != projTy)
474             return emitOpError(
475                 "type of sequence does not match sliced memref type");
476           return mlir::success();
477         }
478         return emitOpError("referenced type is not an array");
479       }
480     }
481     return mlir::success();
482   }
483   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
484   if (getOriginal().getType() != eleTy)
485     return emitOpError("type of origin does not match memref element type");
486   if (getSequence().getType() != eleTy)
487     return emitOpError("type of sequence does not match memref element type");
488   return mlir::success();
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // ArrayFetchOp
493 //===----------------------------------------------------------------------===//
494 
495 // Template function used for both array_fetch and array_update verification.
496 template <typename A>
497 mlir::Type validArraySubobject(A op) {
498   auto ty = op.getSequence().getType();
499   return fir::applyPathToType(ty, op.getIndices());
500 }
501 
502 mlir::LogicalResult fir::ArrayFetchOp::verify() {
503   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
504   auto indSize = getIndices().size();
505   if (indSize < arrTy.getDimension())
506     return emitOpError("number of indices != dimension of array");
507   if (indSize == arrTy.getDimension() &&
508       ::adjustedElementType(getElement().getType()) != arrTy.getEleTy())
509     return emitOpError("return type does not match array");
510   auto ty = validArraySubobject(*this);
511   if (!ty || ty != ::adjustedElementType(getType()))
512     return emitOpError("return type and/or indices do not type check");
513   if (!mlir::isa<fir::ArrayLoadOp>(getSequence().getDefiningOp()))
514     return emitOpError("argument #0 must be result of fir.array_load");
515   return mlir::success();
516 }
517 
518 //===----------------------------------------------------------------------===//
519 // ArrayAccessOp
520 //===----------------------------------------------------------------------===//
521 
522 mlir::LogicalResult fir::ArrayAccessOp::verify() {
523   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
524   std::size_t indSize = getIndices().size();
525   if (indSize < arrTy.getDimension())
526     return emitOpError("number of indices != dimension of array");
527   if (indSize == arrTy.getDimension() &&
528       getElement().getType() != fir::ReferenceType::get(arrTy.getEleTy()))
529     return emitOpError("return type does not match array");
530   mlir::Type ty = validArraySubobject(*this);
531   if (!ty || fir::ReferenceType::get(ty) != getType())
532     return emitOpError("return type and/or indices do not type check");
533   return mlir::success();
534 }
535 
536 //===----------------------------------------------------------------------===//
537 // ArrayUpdateOp
538 //===----------------------------------------------------------------------===//
539 
540 mlir::LogicalResult fir::ArrayUpdateOp::verify() {
541   if (fir::isa_ref_type(getMerge().getType()))
542     return emitOpError("does not support reference type for merge");
543   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
544   auto indSize = getIndices().size();
545   if (indSize < arrTy.getDimension())
546     return emitOpError("number of indices != dimension of array");
547   if (indSize == arrTy.getDimension() &&
548       ::adjustedElementType(getMerge().getType()) != arrTy.getEleTy())
549     return emitOpError("merged value does not have element type");
550   auto ty = validArraySubobject(*this);
551   if (!ty || ty != ::adjustedElementType(getMerge().getType()))
552     return emitOpError("merged value and/or indices do not type check");
553   return mlir::success();
554 }
555 
556 //===----------------------------------------------------------------------===//
557 // ArrayModifyOp
558 //===----------------------------------------------------------------------===//
559 
560 mlir::LogicalResult fir::ArrayModifyOp::verify() {
561   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
562   auto indSize = getIndices().size();
563   if (indSize < arrTy.getDimension())
564     return emitOpError("number of indices must match array dimension");
565   return mlir::success();
566 }
567 
568 //===----------------------------------------------------------------------===//
569 // BoxAddrOp
570 //===----------------------------------------------------------------------===//
571 
572 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
573   if (auto *v = getVal().getDefiningOp()) {
574     if (auto box = mlir::dyn_cast<fir::EmboxOp>(v)) {
575       if (!box.getSlice()) // Fold only if not sliced
576         return box.getMemref();
577     }
578     if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v))
579       return box.getMemref();
580   }
581   return {};
582 }
583 
584 //===----------------------------------------------------------------------===//
585 // BoxCharLenOp
586 //===----------------------------------------------------------------------===//
587 
588 mlir::OpFoldResult
589 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
590   if (auto v = getVal().getDefiningOp()) {
591     if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v))
592       return box.getLen();
593   }
594   return {};
595 }
596 
597 //===----------------------------------------------------------------------===//
598 // BoxDimsOp
599 //===----------------------------------------------------------------------===//
600 
601 /// Get the result types packed in a tuple tuple
602 mlir::Type fir::BoxDimsOp::getTupleType() {
603   // note: triple, but 4 is nearest power of 2
604   llvm::SmallVector<mlir::Type> triple{
605       getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
606   return mlir::TupleType::get(getContext(), triple);
607 }
608 
609 //===----------------------------------------------------------------------===//
610 // CallOp
611 //===----------------------------------------------------------------------===//
612 
613 mlir::FunctionType fir::CallOp::getFunctionType() {
614   return mlir::FunctionType::get(getContext(), getOperandTypes(),
615                                  getResultTypes());
616 }
617 
618 void fir::CallOp::print(mlir::OpAsmPrinter &p) {
619   bool isDirect = getCallee().hasValue();
620   p << ' ';
621   if (isDirect)
622     p << getCallee().getValue();
623   else
624     p << getOperand(0);
625   p << '(' << (*this)->getOperands().drop_front(isDirect ? 0 : 1) << ')';
626   p.printOptionalAttrDict((*this)->getAttrs(),
627                           {fir::CallOp::getCalleeAttrNameStr()});
628   auto resultTypes{getResultTypes()};
629   llvm::SmallVector<mlir::Type> argTypes(
630       llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1));
631   p << " : " << mlir::FunctionType::get(getContext(), argTypes, resultTypes);
632 }
633 
634 mlir::ParseResult fir::CallOp::parse(mlir::OpAsmParser &parser,
635                                      mlir::OperationState &result) {
636   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
637   if (parser.parseOperandList(operands))
638     return mlir::failure();
639 
640   mlir::NamedAttrList attrs;
641   mlir::SymbolRefAttr funcAttr;
642   bool isDirect = operands.empty();
643   if (isDirect)
644     if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(),
645                               attrs))
646       return mlir::failure();
647 
648   mlir::Type type;
649   if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
650       parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
651       parser.parseType(type))
652     return mlir::failure();
653 
654   auto funcType = type.dyn_cast<mlir::FunctionType>();
655   if (!funcType)
656     return parser.emitError(parser.getNameLoc(), "expected function type");
657   if (isDirect) {
658     if (parser.resolveOperands(operands, funcType.getInputs(),
659                                parser.getNameLoc(), result.operands))
660       return mlir::failure();
661   } else {
662     auto funcArgs =
663         llvm::ArrayRef<mlir::OpAsmParser::UnresolvedOperand>(operands)
664             .drop_front();
665     if (parser.resolveOperand(operands[0], funcType, result.operands) ||
666         parser.resolveOperands(funcArgs, funcType.getInputs(),
667                                parser.getNameLoc(), result.operands))
668       return mlir::failure();
669   }
670   result.addTypes(funcType.getResults());
671   result.attributes = attrs;
672   return mlir::success();
673 }
674 
675 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
676                         mlir::func::FuncOp callee, mlir::ValueRange operands) {
677   result.addOperands(operands);
678   result.addAttribute(getCalleeAttrNameStr(), mlir::SymbolRefAttr::get(callee));
679   result.addTypes(callee.getFunctionType().getResults());
680 }
681 
682 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
683                         mlir::SymbolRefAttr callee,
684                         llvm::ArrayRef<mlir::Type> results,
685                         mlir::ValueRange operands) {
686   result.addOperands(operands);
687   if (callee)
688     result.addAttribute(getCalleeAttrNameStr(), callee);
689   result.addTypes(results);
690 }
691 
692 //===----------------------------------------------------------------------===//
693 // CmpOp
694 //===----------------------------------------------------------------------===//
695 
696 template <typename OPTY>
697 static void printCmpOp(mlir::OpAsmPrinter &p, OPTY op) {
698   p << ' ';
699   auto predSym = mlir::arith::symbolizeCmpFPredicate(
700       op->template getAttrOfType<mlir::IntegerAttr>(
701             OPTY::getPredicateAttrName())
702           .getInt());
703   assert(predSym.hasValue() && "invalid symbol value for predicate");
704   p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"'
705     << ", ";
706   p.printOperand(op.getLhs());
707   p << ", ";
708   p.printOperand(op.getRhs());
709   p.printOptionalAttrDict(op->getAttrs(),
710                           /*elidedAttrs=*/{OPTY::getPredicateAttrName()});
711   p << " : " << op.getLhs().getType();
712 }
713 
714 template <typename OPTY>
715 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
716                                     mlir::OperationState &result) {
717   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> ops;
718   mlir::NamedAttrList attrs;
719   mlir::Attribute predicateNameAttr;
720   mlir::Type type;
721   if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
722                             attrs) ||
723       parser.parseComma() || parser.parseOperandList(ops, 2) ||
724       parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
725       parser.resolveOperands(ops, type, result.operands))
726     return mlir::failure();
727 
728   if (!predicateNameAttr.isa<mlir::StringAttr>())
729     return parser.emitError(parser.getNameLoc(),
730                             "expected string comparison predicate attribute");
731 
732   // Rewrite string attribute to an enum value.
733   llvm::StringRef predicateName =
734       predicateNameAttr.cast<mlir::StringAttr>().getValue();
735   auto predicate = fir::CmpcOp::getPredicateByName(predicateName);
736   auto builder = parser.getBuilder();
737   mlir::Type i1Type = builder.getI1Type();
738   attrs.set(OPTY::getPredicateAttrName(),
739             builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate)));
740   result.attributes = attrs;
741   result.addTypes({i1Type});
742   return mlir::success();
743 }
744 
745 //===----------------------------------------------------------------------===//
746 // CharConvertOp
747 //===----------------------------------------------------------------------===//
748 
749 mlir::LogicalResult fir::CharConvertOp::verify() {
750   auto unwrap = [&](mlir::Type t) {
751     t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t));
752     return t.dyn_cast<fir::CharacterType>();
753   };
754   auto inTy = unwrap(getFrom().getType());
755   auto outTy = unwrap(getTo().getType());
756   if (!(inTy && outTy))
757     return emitOpError("not a reference to a character");
758   if (inTy.getFKind() == outTy.getFKind())
759     return emitOpError("buffers must have different KIND values");
760   return mlir::success();
761 }
762 
763 //===----------------------------------------------------------------------===//
764 // CmpcOp
765 //===----------------------------------------------------------------------===//
766 
767 void fir::buildCmpCOp(mlir::OpBuilder &builder, mlir::OperationState &result,
768                       mlir::arith::CmpFPredicate predicate, mlir::Value lhs,
769                       mlir::Value rhs) {
770   result.addOperands({lhs, rhs});
771   result.types.push_back(builder.getI1Type());
772   result.addAttribute(
773       fir::CmpcOp::getPredicateAttrName(),
774       builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate)));
775 }
776 
777 mlir::arith::CmpFPredicate
778 fir::CmpcOp::getPredicateByName(llvm::StringRef name) {
779   auto pred = mlir::arith::symbolizeCmpFPredicate(name);
780   assert(pred.hasValue() && "invalid predicate name");
781   return pred.getValue();
782 }
783 
784 void fir::CmpcOp::print(mlir::OpAsmPrinter &p) { printCmpOp(p, *this); }
785 
786 mlir::ParseResult fir::CmpcOp::parse(mlir::OpAsmParser &parser,
787                                      mlir::OperationState &result) {
788   return parseCmpOp<fir::CmpcOp>(parser, result);
789 }
790 
791 //===----------------------------------------------------------------------===//
792 // ConstcOp
793 //===----------------------------------------------------------------------===//
794 
795 mlir::ParseResult fir::ConstcOp::parse(mlir::OpAsmParser &parser,
796                                        mlir::OperationState &result) {
797   fir::RealAttr realp;
798   fir::RealAttr imagp;
799   mlir::Type type;
800   if (parser.parseLParen() ||
801       parser.parseAttribute(realp, fir::ConstcOp::realAttrName(),
802                             result.attributes) ||
803       parser.parseComma() ||
804       parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(),
805                             result.attributes) ||
806       parser.parseRParen() || parser.parseColonType(type) ||
807       parser.addTypesToList(type, result.types))
808     return mlir::failure();
809   return mlir::success();
810 }
811 
812 void fir::ConstcOp::print(mlir::OpAsmPrinter &p) {
813   p << '(';
814   p << getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", ";
815   p << getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : ";
816   p.printType(getType());
817 }
818 
819 mlir::LogicalResult fir::ConstcOp::verify() {
820   if (!getType().isa<fir::ComplexType>())
821     return emitOpError("must be a !fir.complex type");
822   return mlir::success();
823 }
824 
825 //===----------------------------------------------------------------------===//
826 // ConvertOp
827 //===----------------------------------------------------------------------===//
828 
829 void fir::ConvertOp::getCanonicalizationPatterns(
830     mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
831   results.insert<ConvertConvertOptPattern, ConvertAscendingIndexOptPattern,
832                  ConvertDescendingIndexOptPattern, RedundantConvertOptPattern,
833                  CombineConvertOptPattern, CombineConvertTruncOptPattern,
834                  ForwardConstantConvertPattern>(context);
835 }
836 
837 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
838   if (getValue().getType() == getType())
839     return getValue();
840   if (matchPattern(getValue(), mlir::m_Op<fir::ConvertOp>())) {
841     auto inner = mlir::cast<fir::ConvertOp>(getValue().getDefiningOp());
842     // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
843     if (auto toTy = getType().dyn_cast<fir::LogicalType>())
844       if (auto fromTy = inner.getValue().getType().dyn_cast<fir::LogicalType>())
845         if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
846           return inner.getValue();
847     // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
848     if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
849       if (auto fromTy =
850               inner.getValue().getType().dyn_cast<mlir::IntegerType>())
851         if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
852             (fromTy.getWidth() == 1))
853           return inner.getValue();
854   }
855   return {};
856 }
857 
858 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
859   return ty.isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType,
860                 fir::LogicalType>();
861 }
862 
863 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
864   return ty.isa<mlir::FloatType, fir::RealType>();
865 }
866 
867 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
868   return ty.isa<fir::ReferenceType, fir::PointerType, fir::HeapType,
869                 fir::LLVMPointerType, mlir::MemRefType, mlir::FunctionType,
870                 fir::TypeDescType>();
871 }
872 
873 mlir::LogicalResult fir::ConvertOp::verify() {
874   auto inType = getValue().getType();
875   auto outType = getType();
876   if (inType == outType)
877     return mlir::success();
878   if ((isPointerCompatible(inType) && isPointerCompatible(outType)) ||
879       (isIntegerCompatible(inType) && isIntegerCompatible(outType)) ||
880       (isIntegerCompatible(inType) && isFloatCompatible(outType)) ||
881       (isFloatCompatible(inType) && isIntegerCompatible(outType)) ||
882       (isFloatCompatible(inType) && isFloatCompatible(outType)) ||
883       (isIntegerCompatible(inType) && isPointerCompatible(outType)) ||
884       (isPointerCompatible(inType) && isIntegerCompatible(outType)) ||
885       (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) ||
886       (inType.isa<fir::BoxProcType>() && outType.isa<fir::BoxProcType>()) ||
887       (fir::isa_complex(inType) && fir::isa_complex(outType)))
888     return mlir::success();
889   return emitOpError("invalid type conversion");
890 }
891 
892 //===----------------------------------------------------------------------===//
893 // CoordinateOp
894 //===----------------------------------------------------------------------===//
895 
896 void fir::CoordinateOp::print(mlir::OpAsmPrinter &p) {
897   p << ' ' << getRef() << ", " << getCoor();
898   p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{"baseType"});
899   p << " : ";
900   p.printFunctionalType(getOperandTypes(), (*this)->getResultTypes());
901 }
902 
903 mlir::ParseResult fir::CoordinateOp::parse(mlir::OpAsmParser &parser,
904                                            mlir::OperationState &result) {
905   mlir::OpAsmParser::UnresolvedOperand memref;
906   if (parser.parseOperand(memref) || parser.parseComma())
907     return mlir::failure();
908   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> coorOperands;
909   if (parser.parseOperandList(coorOperands))
910     return mlir::failure();
911   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> allOperands;
912   allOperands.push_back(memref);
913   allOperands.append(coorOperands.begin(), coorOperands.end());
914   mlir::FunctionType funcTy;
915   auto loc = parser.getCurrentLocation();
916   if (parser.parseOptionalAttrDict(result.attributes) ||
917       parser.parseColonType(funcTy) ||
918       parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
919                              result.operands) ||
920       parser.addTypesToList(funcTy.getResults(), result.types))
921     return mlir::failure();
922   result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
923   return mlir::success();
924 }
925 
926 mlir::LogicalResult fir::CoordinateOp::verify() {
927   auto refTy = getRef().getType();
928   if (fir::isa_ref_type(refTy)) {
929     auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
930     if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
931       if (arrTy.hasUnknownShape())
932         return emitOpError("cannot find coordinate in unknown shape");
933       if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
934         return emitOpError("cannot find coordinate with unknown extents");
935     }
936     if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
937           fir::isa_char_string(eleTy)))
938       return emitOpError("cannot apply coordinate_of to this type");
939   }
940   // Recovering a LEN type parameter only makes sense from a boxed value. For a
941   // bare reference, the LEN type parameters must be passed as additional
942   // arguments to `op`.
943   for (auto co : getCoor())
944     if (mlir::dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) {
945       if (getNumOperands() != 2)
946         return emitOpError("len_param_index must be last argument");
947       if (!getRef().getType().isa<BoxType>())
948         return emitOpError("len_param_index must be used on box type");
949     }
950   return mlir::success();
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // DispatchOp
955 //===----------------------------------------------------------------------===//
956 
957 mlir::FunctionType fir::DispatchOp::getFunctionType() {
958   return mlir::FunctionType::get(getContext(), getOperandTypes(),
959                                  getResultTypes());
960 }
961 
962 mlir::ParseResult fir::DispatchOp::parse(mlir::OpAsmParser &parser,
963                                          mlir::OperationState &result) {
964   mlir::FunctionType calleeType;
965   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
966   auto calleeLoc = parser.getNameLoc();
967   llvm::StringRef calleeName;
968   if (failed(parser.parseOptionalKeyword(&calleeName))) {
969     mlir::StringAttr calleeAttr;
970     if (parser.parseAttribute(calleeAttr,
971                               fir::DispatchOp::getMethodAttrNameStr(),
972                               result.attributes))
973       return mlir::failure();
974   } else {
975     result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(),
976                         parser.getBuilder().getStringAttr(calleeName));
977   }
978   if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
979       parser.parseOptionalAttrDict(result.attributes) ||
980       parser.parseColonType(calleeType) ||
981       parser.addTypesToList(calleeType.getResults(), result.types) ||
982       parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc,
983                              result.operands))
984     return mlir::failure();
985   return mlir::success();
986 }
987 
988 void fir::DispatchOp::print(mlir::OpAsmPrinter &p) {
989   p << ' ' << getMethodAttr() << '(';
990   p.printOperand(getObject());
991   if (!getArgs().empty()) {
992     p << ", ";
993     p.printOperands(getArgs());
994   }
995   p << ") : ";
996   p.printFunctionalType(getOperation()->getOperandTypes(),
997                         getOperation()->getResultTypes());
998 }
999 
1000 //===----------------------------------------------------------------------===//
1001 // DispatchTableOp
1002 //===----------------------------------------------------------------------===//
1003 
1004 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
1005   assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
1006   auto &block = getBlock();
1007   block.getOperations().insert(block.end(), op);
1008 }
1009 
1010 mlir::ParseResult fir::DispatchTableOp::parse(mlir::OpAsmParser &parser,
1011                                               mlir::OperationState &result) {
1012   // Parse the name as a symbol reference attribute.
1013   mlir::SymbolRefAttr nameAttr;
1014   if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
1015                             result.attributes))
1016     return mlir::failure();
1017 
1018   // Convert the parsed name attr into a string attr.
1019   result.attributes.set(mlir::SymbolTable::getSymbolAttrName(),
1020                         nameAttr.getRootReference());
1021 
1022   // Parse the optional table body.
1023   mlir::Region *body = result.addRegion();
1024   mlir::OptionalParseResult parseResult = parser.parseOptionalRegion(*body);
1025   if (parseResult.hasValue() && failed(*parseResult))
1026     return mlir::failure();
1027 
1028   fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(),
1029                                          result.location);
1030   return mlir::success();
1031 }
1032 
1033 void fir::DispatchTableOp::print(mlir::OpAsmPrinter &p) {
1034   auto tableName = getOperation()
1035                        ->getAttrOfType<mlir::StringAttr>(
1036                            mlir::SymbolTable::getSymbolAttrName())
1037                        .getValue();
1038   p << " @" << tableName;
1039 
1040   mlir::Region &body = getOperation()->getRegion(0);
1041   if (!body.empty()) {
1042     p << ' ';
1043     p.printRegion(body, /*printEntryBlockArgs=*/false,
1044                   /*printBlockTerminators=*/false);
1045   }
1046 }
1047 
1048 mlir::LogicalResult fir::DispatchTableOp::verify() {
1049   for (auto &op : getBlock())
1050     if (!mlir::isa<fir::DTEntryOp, fir::FirEndOp>(op))
1051       return op.emitOpError("dispatch table must contain dt_entry");
1052   return mlir::success();
1053 }
1054 
1055 //===----------------------------------------------------------------------===//
1056 // EmboxOp
1057 //===----------------------------------------------------------------------===//
1058 
1059 mlir::LogicalResult fir::EmboxOp::verify() {
1060   auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
1061   bool isArray = false;
1062   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
1063     eleTy = seqTy.getEleTy();
1064     isArray = true;
1065   }
1066   if (hasLenParams()) {
1067     auto lenPs = numLenParams();
1068     if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
1069       if (lenPs != rt.getNumLenParams())
1070         return emitOpError("number of LEN params does not correspond"
1071                            " to the !fir.type type");
1072     } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
1073       if (strTy.getLen() != fir::CharacterType::unknownLen())
1074         return emitOpError("CHARACTER already has static LEN");
1075     } else {
1076       return emitOpError("LEN parameters require CHARACTER or derived type");
1077     }
1078     for (auto lp : getTypeparams())
1079       if (!fir::isa_integer(lp.getType()))
1080         return emitOpError("LEN parameters must be integral type");
1081   }
1082   if (getShape() && !isArray)
1083     return emitOpError("shape must not be provided for a scalar");
1084   if (getSlice() && !isArray)
1085     return emitOpError("slice must not be provided for a scalar");
1086   return mlir::success();
1087 }
1088 
1089 //===----------------------------------------------------------------------===//
1090 // EmboxCharOp
1091 //===----------------------------------------------------------------------===//
1092 
1093 mlir::LogicalResult fir::EmboxCharOp::verify() {
1094   auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
1095   if (!eleTy.dyn_cast_or_null<fir::CharacterType>())
1096     return mlir::failure();
1097   return mlir::success();
1098 }
1099 
1100 //===----------------------------------------------------------------------===//
1101 // EmboxProcOp
1102 //===----------------------------------------------------------------------===//
1103 
1104 mlir::LogicalResult fir::EmboxProcOp::verify() {
1105   // host bindings (optional) must be a reference to a tuple
1106   if (auto h = getHost()) {
1107     if (auto r = h.getType().dyn_cast<fir::ReferenceType>())
1108       if (r.getEleTy().isa<mlir::TupleType>())
1109         return mlir::success();
1110     return mlir::failure();
1111   }
1112   return mlir::success();
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 // GenTypeDescOp
1117 //===----------------------------------------------------------------------===//
1118 
1119 void fir::GenTypeDescOp::build(mlir::OpBuilder &, mlir::OperationState &result,
1120                                mlir::TypeAttr inty) {
1121   result.addAttribute("in_type", inty);
1122   result.addTypes(TypeDescType::get(inty.getValue()));
1123 }
1124 
1125 mlir::ParseResult fir::GenTypeDescOp::parse(mlir::OpAsmParser &parser,
1126                                             mlir::OperationState &result) {
1127   mlir::Type intype;
1128   if (parser.parseType(intype))
1129     return mlir::failure();
1130   result.addAttribute("in_type", mlir::TypeAttr::get(intype));
1131   mlir::Type restype = fir::TypeDescType::get(intype);
1132   if (parser.addTypeToList(restype, result.types))
1133     return mlir::failure();
1134   return mlir::success();
1135 }
1136 
1137 void fir::GenTypeDescOp::print(mlir::OpAsmPrinter &p) {
1138   p << ' ' << getOperation()->getAttr("in_type");
1139   p.printOptionalAttrDict(getOperation()->getAttrs(), {"in_type"});
1140 }
1141 
1142 mlir::LogicalResult fir::GenTypeDescOp::verify() {
1143   mlir::Type resultTy = getType();
1144   if (auto tdesc = resultTy.dyn_cast<fir::TypeDescType>()) {
1145     if (tdesc.getOfTy() != getInType())
1146       return emitOpError("wrapped type mismatched");
1147     return mlir::success();
1148   }
1149   return emitOpError("must be !fir.tdesc type");
1150 }
1151 
1152 //===----------------------------------------------------------------------===//
1153 // GlobalOp
1154 //===----------------------------------------------------------------------===//
1155 
1156 mlir::Type fir::GlobalOp::resultType() {
1157   return wrapAllocaResultType(getType());
1158 }
1159 
1160 mlir::ParseResult fir::GlobalOp::parse(mlir::OpAsmParser &parser,
1161                                        mlir::OperationState &result) {
1162   // Parse the optional linkage
1163   llvm::StringRef linkage;
1164   auto &builder = parser.getBuilder();
1165   if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
1166     if (fir::GlobalOp::verifyValidLinkage(linkage))
1167       return mlir::failure();
1168     mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
1169     result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr);
1170   }
1171 
1172   // Parse the name as a symbol reference attribute.
1173   mlir::SymbolRefAttr nameAttr;
1174   if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrNameStr(),
1175                             result.attributes))
1176     return mlir::failure();
1177   result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1178                       nameAttr.getRootReference());
1179 
1180   bool simpleInitializer = false;
1181   if (mlir::succeeded(parser.parseOptionalLParen())) {
1182     mlir::Attribute attr;
1183     if (parser.parseAttribute(attr, "initVal", result.attributes) ||
1184         parser.parseRParen())
1185       return mlir::failure();
1186     simpleInitializer = true;
1187   }
1188 
1189   if (succeeded(parser.parseOptionalKeyword("constant"))) {
1190     // if "constant" keyword then mark this as a constant, not a variable
1191     result.addAttribute("constant", builder.getUnitAttr());
1192   }
1193 
1194   mlir::Type globalType;
1195   if (parser.parseColonType(globalType))
1196     return mlir::failure();
1197 
1198   result.addAttribute(fir::GlobalOp::getTypeAttrName(result.name),
1199                       mlir::TypeAttr::get(globalType));
1200 
1201   if (simpleInitializer) {
1202     result.addRegion();
1203   } else {
1204     // Parse the optional initializer body.
1205     auto parseResult =
1206         parser.parseOptionalRegion(*result.addRegion(), /*arguments=*/{});
1207     if (parseResult.hasValue() && mlir::failed(*parseResult))
1208       return mlir::failure();
1209   }
1210   return mlir::success();
1211 }
1212 
1213 void fir::GlobalOp::print(mlir::OpAsmPrinter &p) {
1214   if (getLinkName().hasValue())
1215     p << ' ' << getLinkName().getValue();
1216   p << ' ';
1217   p.printAttributeWithoutType(getSymrefAttr());
1218   if (auto val = getValueOrNull())
1219     p << '(' << val << ')';
1220   if (getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr()))
1221     p << " constant";
1222   p << " : ";
1223   p.printType(getType());
1224   if (hasInitializationBody()) {
1225     p << ' ';
1226     p.printRegion(getOperation()->getRegion(0),
1227                   /*printEntryBlockArgs=*/false,
1228                   /*printBlockTerminators=*/true);
1229   }
1230 }
1231 
1232 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
1233   getBlock().getOperations().push_back(op);
1234 }
1235 
1236 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1237                           mlir::OperationState &result, llvm::StringRef name,
1238                           bool isConstant, mlir::Type type,
1239                           mlir::Attribute initialVal, mlir::StringAttr linkage,
1240                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1241   result.addRegion();
1242   result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type));
1243   result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1244                       builder.getStringAttr(name));
1245   result.addAttribute(symbolAttrNameStr(),
1246                       mlir::SymbolRefAttr::get(builder.getContext(), name));
1247   if (isConstant)
1248     result.addAttribute(getConstantAttrName(result.name),
1249                         builder.getUnitAttr());
1250   if (initialVal)
1251     result.addAttribute(getInitValAttrName(result.name), initialVal);
1252   if (linkage)
1253     result.addAttribute(linkageAttrName(), linkage);
1254   result.attributes.append(attrs.begin(), attrs.end());
1255 }
1256 
1257 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1258                           mlir::OperationState &result, llvm::StringRef name,
1259                           mlir::Type type, mlir::Attribute initialVal,
1260                           mlir::StringAttr linkage,
1261                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1262   build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1263 }
1264 
1265 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1266                           mlir::OperationState &result, llvm::StringRef name,
1267                           bool isConstant, mlir::Type type,
1268                           mlir::StringAttr linkage,
1269                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1270   build(builder, result, name, isConstant, type, {}, linkage, attrs);
1271 }
1272 
1273 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1274                           mlir::OperationState &result, llvm::StringRef name,
1275                           mlir::Type type, mlir::StringAttr linkage,
1276                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1277   build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1278 }
1279 
1280 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1281                           mlir::OperationState &result, llvm::StringRef name,
1282                           bool isConstant, mlir::Type type,
1283                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1284   build(builder, result, name, isConstant, type, mlir::StringAttr{}, attrs);
1285 }
1286 
1287 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1288                           mlir::OperationState &result, llvm::StringRef name,
1289                           mlir::Type type,
1290                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1291   build(builder, result, name, /*isConstant=*/false, type, attrs);
1292 }
1293 
1294 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(llvm::StringRef linkage) {
1295   // Supporting only a subset of the LLVM linkage types for now
1296   static const char *validNames[] = {"common", "internal", "linkonce",
1297                                      "linkonce_odr", "weak"};
1298   return mlir::success(llvm::is_contained(validNames, linkage));
1299 }
1300 
1301 //===----------------------------------------------------------------------===//
1302 // GlobalLenOp
1303 //===----------------------------------------------------------------------===//
1304 
1305 mlir::ParseResult fir::GlobalLenOp::parse(mlir::OpAsmParser &parser,
1306                                           mlir::OperationState &result) {
1307   llvm::StringRef fieldName;
1308   if (failed(parser.parseOptionalKeyword(&fieldName))) {
1309     mlir::StringAttr fieldAttr;
1310     if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(),
1311                               result.attributes))
1312       return mlir::failure();
1313   } else {
1314     result.addAttribute(fir::GlobalLenOp::lenParamAttrName(),
1315                         parser.getBuilder().getStringAttr(fieldName));
1316   }
1317   mlir::IntegerAttr constant;
1318   if (parser.parseComma() ||
1319       parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(),
1320                             result.attributes))
1321     return mlir::failure();
1322   return mlir::success();
1323 }
1324 
1325 void fir::GlobalLenOp::print(mlir::OpAsmPrinter &p) {
1326   p << ' ' << getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName())
1327     << ", " << getOperation()->getAttr(fir::GlobalLenOp::intAttrName());
1328 }
1329 
1330 //===----------------------------------------------------------------------===//
1331 // FieldIndexOp
1332 //===----------------------------------------------------------------------===//
1333 
1334 mlir::ParseResult fir::FieldIndexOp::parse(mlir::OpAsmParser &parser,
1335                                            mlir::OperationState &result) {
1336   llvm::StringRef fieldName;
1337   auto &builder = parser.getBuilder();
1338   mlir::Type recty;
1339   if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
1340       parser.parseType(recty))
1341     return mlir::failure();
1342   result.addAttribute(fir::FieldIndexOp::fieldAttrName(),
1343                       builder.getStringAttr(fieldName));
1344   if (!recty.dyn_cast<fir::RecordType>())
1345     return mlir::failure();
1346   result.addAttribute(fir::FieldIndexOp::typeAttrName(),
1347                       mlir::TypeAttr::get(recty));
1348   if (!parser.parseOptionalLParen()) {
1349     llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1350     llvm::SmallVector<mlir::Type> types;
1351     auto loc = parser.getNameLoc();
1352     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
1353         parser.parseColonTypeList(types) || parser.parseRParen() ||
1354         parser.resolveOperands(operands, types, loc, result.operands))
1355       return mlir::failure();
1356   }
1357   mlir::Type fieldType = fir::FieldType::get(builder.getContext());
1358   if (parser.addTypeToList(fieldType, result.types))
1359     return mlir::failure();
1360   return mlir::success();
1361 }
1362 
1363 void fir::FieldIndexOp::print(mlir::OpAsmPrinter &p) {
1364   p << ' '
1365     << getOperation()
1366            ->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName())
1367            .getValue()
1368     << ", " << getOperation()->getAttr(fir::FieldIndexOp::typeAttrName());
1369   if (getNumOperands()) {
1370     p << '(';
1371     p.printOperands(getTypeparams());
1372     const auto *sep = ") : ";
1373     for (auto op : getTypeparams()) {
1374       p << sep;
1375       if (op)
1376         p.printType(op.getType());
1377       else
1378         p << "()";
1379       sep = ", ";
1380     }
1381   }
1382 }
1383 
1384 void fir::FieldIndexOp::build(mlir::OpBuilder &builder,
1385                               mlir::OperationState &result,
1386                               llvm::StringRef fieldName, mlir::Type recTy,
1387                               mlir::ValueRange operands) {
1388   result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName));
1389   result.addAttribute(typeAttrName(), mlir::TypeAttr::get(recTy));
1390   result.addOperands(operands);
1391 }
1392 
1393 llvm::SmallVector<mlir::Attribute> fir::FieldIndexOp::getAttributes() {
1394   llvm::SmallVector<mlir::Attribute> attrs;
1395   attrs.push_back(getFieldIdAttr());
1396   attrs.push_back(getOnTypeAttr());
1397   return attrs;
1398 }
1399 
1400 //===----------------------------------------------------------------------===//
1401 // InsertOnRangeOp
1402 //===----------------------------------------------------------------------===//
1403 
1404 static mlir::ParseResult
1405 parseCustomRangeSubscript(mlir::OpAsmParser &parser,
1406                           mlir::DenseIntElementsAttr &coord) {
1407   llvm::SmallVector<std::int64_t> lbounds;
1408   llvm::SmallVector<std::int64_t> ubounds;
1409   if (parser.parseKeyword("from") ||
1410       parser.parseCommaSeparatedList(
1411           mlir::AsmParser::Delimiter::Paren,
1412           [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) ||
1413       parser.parseKeyword("to") ||
1414       parser.parseCommaSeparatedList(mlir::AsmParser::Delimiter::Paren, [&] {
1415         return parser.parseInteger(ubounds.emplace_back(0));
1416       }))
1417     return mlir::failure();
1418   llvm::SmallVector<std::int64_t> zippedBounds;
1419   for (auto zip : llvm::zip(lbounds, ubounds)) {
1420     zippedBounds.push_back(std::get<0>(zip));
1421     zippedBounds.push_back(std::get<1>(zip));
1422   }
1423   coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds);
1424   return mlir::success();
1425 }
1426 
1427 static void printCustomRangeSubscript(mlir::OpAsmPrinter &printer,
1428                                       fir::InsertOnRangeOp op,
1429                                       mlir::DenseIntElementsAttr coord) {
1430   printer << "from (";
1431   auto enumerate = llvm::enumerate(coord.getValues<std::int64_t>());
1432   // Even entries are the lower bounds.
1433   llvm::interleaveComma(
1434       make_filter_range(
1435           enumerate,
1436           [](auto indexed_value) { return indexed_value.index() % 2 == 0; }),
1437       printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1438   printer << ") to (";
1439   // Odd entries are the upper bounds.
1440   llvm::interleaveComma(
1441       make_filter_range(
1442           enumerate,
1443           [](auto indexed_value) { return indexed_value.index() % 2 != 0; }),
1444       printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1445   printer << ")";
1446 }
1447 
1448 /// Range bounds must be nonnegative, and the range must not be empty.
1449 mlir::LogicalResult fir::InsertOnRangeOp::verify() {
1450   if (fir::hasDynamicSize(getSeq().getType()))
1451     return emitOpError("must have constant shape and size");
1452   mlir::DenseIntElementsAttr coorAttr = getCoor();
1453   if (coorAttr.size() < 2 || coorAttr.size() % 2 != 0)
1454     return emitOpError("has uneven number of values in ranges");
1455   bool rangeIsKnownToBeNonempty = false;
1456   for (auto i = coorAttr.getValues<std::int64_t>().end(),
1457             b = coorAttr.getValues<std::int64_t>().begin();
1458        i != b;) {
1459     int64_t ub = (*--i);
1460     int64_t lb = (*--i);
1461     if (lb < 0 || ub < 0)
1462       return emitOpError("negative range bound");
1463     if (rangeIsKnownToBeNonempty)
1464       continue;
1465     if (lb > ub)
1466       return emitOpError("empty range");
1467     rangeIsKnownToBeNonempty = lb < ub;
1468   }
1469   return mlir::success();
1470 }
1471 
1472 //===----------------------------------------------------------------------===//
1473 // InsertValueOp
1474 //===----------------------------------------------------------------------===//
1475 
1476 static bool checkIsIntegerConstant(mlir::Attribute attr, std::int64_t conVal) {
1477   if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
1478     return iattr.getInt() == conVal;
1479   return false;
1480 }
1481 
1482 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); }
1483 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); }
1484 
1485 // Undo some complex patterns created in the front-end and turn them back into
1486 // complex ops.
1487 template <typename FltOp, typename CpxOp>
1488 struct UndoComplexPattern : public mlir::RewritePattern {
1489   UndoComplexPattern(mlir::MLIRContext *ctx)
1490       : mlir::RewritePattern("fir.insert_value", 2, ctx) {}
1491 
1492   mlir::LogicalResult
1493   matchAndRewrite(mlir::Operation *op,
1494                   mlir::PatternRewriter &rewriter) const override {
1495     auto insval = mlir::dyn_cast_or_null<fir::InsertValueOp>(op);
1496     if (!insval || !insval.getType().isa<fir::ComplexType>())
1497       return mlir::failure();
1498     auto insval2 = mlir::dyn_cast_or_null<fir::InsertValueOp>(
1499         insval.getAdt().getDefiningOp());
1500     if (!insval2 || !mlir::isa<fir::UndefOp>(insval2.getAdt().getDefiningOp()))
1501       return mlir::failure();
1502     auto binf = mlir::dyn_cast_or_null<FltOp>(insval.getVal().getDefiningOp());
1503     auto binf2 =
1504         mlir::dyn_cast_or_null<FltOp>(insval2.getVal().getDefiningOp());
1505     if (!binf || !binf2 || insval.getCoor().size() != 1 ||
1506         !isOne(insval.getCoor()[0]) || insval2.getCoor().size() != 1 ||
1507         !isZero(insval2.getCoor()[0]))
1508       return mlir::failure();
1509     auto eai = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1510         binf.getLhs().getDefiningOp());
1511     auto ebi = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1512         binf.getRhs().getDefiningOp());
1513     auto ear = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1514         binf2.getLhs().getDefiningOp());
1515     auto ebr = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1516         binf2.getRhs().getDefiningOp());
1517     if (!eai || !ebi || !ear || !ebr || ear.getAdt() != eai.getAdt() ||
1518         ebr.getAdt() != ebi.getAdt() || eai.getCoor().size() != 1 ||
1519         !isOne(eai.getCoor()[0]) || ebi.getCoor().size() != 1 ||
1520         !isOne(ebi.getCoor()[0]) || ear.getCoor().size() != 1 ||
1521         !isZero(ear.getCoor()[0]) || ebr.getCoor().size() != 1 ||
1522         !isZero(ebr.getCoor()[0]))
1523       return mlir::failure();
1524     rewriter.replaceOpWithNewOp<CpxOp>(op, ear.getAdt(), ebr.getAdt());
1525     return mlir::success();
1526   }
1527 };
1528 
1529 void fir::InsertValueOp::getCanonicalizationPatterns(
1530     mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
1531   results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>,
1532                  UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context);
1533 }
1534 
1535 //===----------------------------------------------------------------------===//
1536 // IterWhileOp
1537 //===----------------------------------------------------------------------===//
1538 
1539 void fir::IterWhileOp::build(mlir::OpBuilder &builder,
1540                              mlir::OperationState &result, mlir::Value lb,
1541                              mlir::Value ub, mlir::Value step,
1542                              mlir::Value iterate, bool finalCountValue,
1543                              mlir::ValueRange iterArgs,
1544                              llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1545   result.addOperands({lb, ub, step, iterate});
1546   if (finalCountValue) {
1547     result.addTypes(builder.getIndexType());
1548     result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr());
1549   }
1550   result.addTypes(iterate.getType());
1551   result.addOperands(iterArgs);
1552   for (auto v : iterArgs)
1553     result.addTypes(v.getType());
1554   mlir::Region *bodyRegion = result.addRegion();
1555   bodyRegion->push_back(new mlir::Block{});
1556   bodyRegion->front().addArgument(builder.getIndexType(), result.location);
1557   bodyRegion->front().addArgument(iterate.getType(), result.location);
1558   bodyRegion->front().addArguments(
1559       iterArgs.getTypes(),
1560       llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location));
1561   result.addAttributes(attributes);
1562 }
1563 
1564 mlir::ParseResult fir::IterWhileOp::parse(mlir::OpAsmParser &parser,
1565                                           mlir::OperationState &result) {
1566   auto &builder = parser.getBuilder();
1567   mlir::OpAsmParser::Argument inductionVariable, iterateVar;
1568   mlir::OpAsmParser::UnresolvedOperand lb, ub, step, iterateInput;
1569   if (parser.parseLParen() || parser.parseArgument(inductionVariable) ||
1570       parser.parseEqual())
1571     return mlir::failure();
1572 
1573   // Parse loop bounds.
1574   auto indexType = builder.getIndexType();
1575   auto i1Type = builder.getIntegerType(1);
1576   if (parser.parseOperand(lb) ||
1577       parser.resolveOperand(lb, indexType, result.operands) ||
1578       parser.parseKeyword("to") || parser.parseOperand(ub) ||
1579       parser.resolveOperand(ub, indexType, result.operands) ||
1580       parser.parseKeyword("step") || parser.parseOperand(step) ||
1581       parser.parseRParen() ||
1582       parser.resolveOperand(step, indexType, result.operands) ||
1583       parser.parseKeyword("and") || parser.parseLParen() ||
1584       parser.parseArgument(iterateVar) || parser.parseEqual() ||
1585       parser.parseOperand(iterateInput) || parser.parseRParen() ||
1586       parser.resolveOperand(iterateInput, i1Type, result.operands))
1587     return mlir::failure();
1588 
1589   // Parse the initial iteration arguments.
1590   auto prependCount = false;
1591 
1592   // Induction variable.
1593   llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs;
1594   regionArgs.push_back(inductionVariable);
1595   regionArgs.push_back(iterateVar);
1596 
1597   if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1598     llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1599     llvm::SmallVector<mlir::Type> regionTypes;
1600     // Parse assignment list and results type list.
1601     if (parser.parseAssignmentList(regionArgs, operands) ||
1602         parser.parseArrowTypeList(regionTypes))
1603       return mlir::failure();
1604     if (regionTypes.size() == operands.size() + 2)
1605       prependCount = true;
1606     llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
1607     resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
1608     // Resolve input operands.
1609     for (auto operandType : llvm::zip(operands, resTypes))
1610       if (parser.resolveOperand(std::get<0>(operandType),
1611                                 std::get<1>(operandType), result.operands))
1612         return mlir::failure();
1613     if (prependCount) {
1614       result.addTypes(regionTypes);
1615     } else {
1616       result.addTypes(i1Type);
1617       result.addTypes(resTypes);
1618     }
1619   } else if (succeeded(parser.parseOptionalArrow())) {
1620     llvm::SmallVector<mlir::Type> typeList;
1621     if (parser.parseLParen() || parser.parseTypeList(typeList) ||
1622         parser.parseRParen())
1623       return mlir::failure();
1624     // Type list must be "(index, i1)".
1625     if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
1626         !typeList[1].isSignlessInteger(1))
1627       return mlir::failure();
1628     result.addTypes(typeList);
1629     prependCount = true;
1630   } else {
1631     result.addTypes(i1Type);
1632   }
1633 
1634   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1635     return mlir::failure();
1636 
1637   llvm::SmallVector<mlir::Type> argTypes;
1638   // Induction variable (hidden)
1639   if (prependCount)
1640     result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(),
1641                         builder.getUnitAttr());
1642   else
1643     argTypes.push_back(indexType);
1644   // Loop carried variables (including iterate)
1645   argTypes.append(result.types.begin(), result.types.end());
1646   // Parse the body region.
1647   auto *body = result.addRegion();
1648   if (regionArgs.size() != argTypes.size())
1649     return parser.emitError(
1650         parser.getNameLoc(),
1651         "mismatch in number of loop-carried values and defined values");
1652 
1653   for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
1654     regionArgs[i].type = argTypes[i];
1655 
1656   if (parser.parseRegion(*body, regionArgs))
1657     return mlir::failure();
1658 
1659   fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
1660   return mlir::success();
1661 }
1662 
1663 mlir::LogicalResult fir::IterWhileOp::verify() {
1664   // Check that the body defines as single block argument for the induction
1665   // variable.
1666   auto *body = getBody();
1667   if (!body->getArgument(1).getType().isInteger(1))
1668     return emitOpError(
1669         "expected body second argument to be an index argument for "
1670         "the induction variable");
1671   if (!body->getArgument(0).getType().isIndex())
1672     return emitOpError(
1673         "expected body first argument to be an index argument for "
1674         "the induction variable");
1675 
1676   auto opNumResults = getNumResults();
1677   if (getFinalValue()) {
1678     // Result type must be "(index, i1, ...)".
1679     if (!getResult(0).getType().isa<mlir::IndexType>())
1680       return emitOpError("result #0 expected to be index");
1681     if (!getResult(1).getType().isSignlessInteger(1))
1682       return emitOpError("result #1 expected to be i1");
1683     opNumResults--;
1684   } else {
1685     // iterate_while always returns the early exit induction value.
1686     // Result type must be "(i1, ...)"
1687     if (!getResult(0).getType().isSignlessInteger(1))
1688       return emitOpError("result #0 expected to be i1");
1689   }
1690   if (opNumResults == 0)
1691     return mlir::failure();
1692   if (getNumIterOperands() != opNumResults)
1693     return emitOpError(
1694         "mismatch in number of loop-carried values and defined values");
1695   if (getNumRegionIterArgs() != opNumResults)
1696     return emitOpError(
1697         "mismatch in number of basic block args and defined values");
1698   auto iterOperands = getIterOperands();
1699   auto iterArgs = getRegionIterArgs();
1700   auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
1701   unsigned i = 0u;
1702   for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
1703     if (std::get<0>(e).getType() != std::get<2>(e).getType())
1704       return emitOpError() << "types mismatch between " << i
1705                            << "th iter operand and defined value";
1706     if (std::get<1>(e).getType() != std::get<2>(e).getType())
1707       return emitOpError() << "types mismatch between " << i
1708                            << "th iter region arg and defined value";
1709 
1710     i++;
1711   }
1712   return mlir::success();
1713 }
1714 
1715 void fir::IterWhileOp::print(mlir::OpAsmPrinter &p) {
1716   p << " (" << getInductionVar() << " = " << getLowerBound() << " to "
1717     << getUpperBound() << " step " << getStep() << ") and (";
1718   assert(hasIterOperands());
1719   auto regionArgs = getRegionIterArgs();
1720   auto operands = getIterOperands();
1721   p << regionArgs.front() << " = " << *operands.begin() << ")";
1722   if (regionArgs.size() > 1) {
1723     p << " iter_args(";
1724     llvm::interleaveComma(
1725         llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
1726         [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
1727     p << ") -> (";
1728     llvm::interleaveComma(
1729         llvm::drop_begin(getResultTypes(), getFinalValue() ? 0 : 1), p);
1730     p << ")";
1731   } else if (getFinalValue()) {
1732     p << " -> (" << getResultTypes() << ')';
1733   }
1734   p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
1735                                      {getFinalValueAttrNameStr()});
1736   p << ' ';
1737   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
1738                 /*printBlockTerminators=*/true);
1739 }
1740 
1741 mlir::Region &fir::IterWhileOp::getLoopBody() { return getRegion(); }
1742 
1743 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
1744   for (auto i : llvm::enumerate(getInitArgs()))
1745     if (iterArg == i.value())
1746       return getRegion().front().getArgument(i.index() + 1);
1747   return {};
1748 }
1749 
1750 void fir::IterWhileOp::resultToSourceOps(
1751     llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
1752   auto oper = getFinalValue() ? resultNum + 1 : resultNum;
1753   auto *term = getRegion().front().getTerminator();
1754   if (oper < term->getNumOperands())
1755     results.push_back(term->getOperand(oper));
1756 }
1757 
1758 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
1759   if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
1760     return getInitArgs()[blockArgNum - 1];
1761   return {};
1762 }
1763 
1764 //===----------------------------------------------------------------------===//
1765 // LenParamIndexOp
1766 //===----------------------------------------------------------------------===//
1767 
1768 mlir::ParseResult fir::LenParamIndexOp::parse(mlir::OpAsmParser &parser,
1769                                               mlir::OperationState &result) {
1770   llvm::StringRef fieldName;
1771   auto &builder = parser.getBuilder();
1772   mlir::Type recty;
1773   if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
1774       parser.parseType(recty))
1775     return mlir::failure();
1776   result.addAttribute(fir::LenParamIndexOp::fieldAttrName(),
1777                       builder.getStringAttr(fieldName));
1778   if (!recty.dyn_cast<fir::RecordType>())
1779     return mlir::failure();
1780   result.addAttribute(fir::LenParamIndexOp::typeAttrName(),
1781                       mlir::TypeAttr::get(recty));
1782   mlir::Type lenType = fir::LenType::get(builder.getContext());
1783   if (parser.addTypeToList(lenType, result.types))
1784     return mlir::failure();
1785   return mlir::success();
1786 }
1787 
1788 void fir::LenParamIndexOp::print(mlir::OpAsmPrinter &p) {
1789   p << ' '
1790     << getOperation()
1791            ->getAttrOfType<mlir::StringAttr>(
1792                fir::LenParamIndexOp::fieldAttrName())
1793            .getValue()
1794     << ", " << getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName());
1795 }
1796 
1797 //===----------------------------------------------------------------------===//
1798 // LoadOp
1799 //===----------------------------------------------------------------------===//
1800 
1801 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
1802                         mlir::Value refVal) {
1803   if (!refVal) {
1804     mlir::emitError(result.location, "LoadOp has null argument");
1805     return;
1806   }
1807   auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType());
1808   if (!eleTy) {
1809     mlir::emitError(result.location, "not a memory reference type");
1810     return;
1811   }
1812   result.addOperands(refVal);
1813   result.addTypes(eleTy);
1814 }
1815 
1816 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
1817   if ((ele = fir::dyn_cast_ptrEleTy(ref)))
1818     return mlir::success();
1819   return mlir::failure();
1820 }
1821 
1822 mlir::ParseResult fir::LoadOp::parse(mlir::OpAsmParser &parser,
1823                                      mlir::OperationState &result) {
1824   mlir::Type type;
1825   mlir::OpAsmParser::UnresolvedOperand oper;
1826   if (parser.parseOperand(oper) ||
1827       parser.parseOptionalAttrDict(result.attributes) ||
1828       parser.parseColonType(type) ||
1829       parser.resolveOperand(oper, type, result.operands))
1830     return mlir::failure();
1831   mlir::Type eleTy;
1832   if (fir::LoadOp::getElementOf(eleTy, type) ||
1833       parser.addTypeToList(eleTy, result.types))
1834     return mlir::failure();
1835   return mlir::success();
1836 }
1837 
1838 void fir::LoadOp::print(mlir::OpAsmPrinter &p) {
1839   p << ' ';
1840   p.printOperand(getMemref());
1841   p.printOptionalAttrDict(getOperation()->getAttrs(), {});
1842   p << " : " << getMemref().getType();
1843 }
1844 
1845 //===----------------------------------------------------------------------===//
1846 // DoLoopOp
1847 //===----------------------------------------------------------------------===//
1848 
1849 void fir::DoLoopOp::build(mlir::OpBuilder &builder,
1850                           mlir::OperationState &result, mlir::Value lb,
1851                           mlir::Value ub, mlir::Value step, bool unordered,
1852                           bool finalCountValue, mlir::ValueRange iterArgs,
1853                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1854   result.addOperands({lb, ub, step});
1855   result.addOperands(iterArgs);
1856   if (finalCountValue) {
1857     result.addTypes(builder.getIndexType());
1858     result.addAttribute(getFinalValueAttrName(result.name),
1859                         builder.getUnitAttr());
1860   }
1861   for (auto v : iterArgs)
1862     result.addTypes(v.getType());
1863   mlir::Region *bodyRegion = result.addRegion();
1864   bodyRegion->push_back(new mlir::Block{});
1865   if (iterArgs.empty() && !finalCountValue)
1866     fir::DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
1867   bodyRegion->front().addArgument(builder.getIndexType(), result.location);
1868   bodyRegion->front().addArguments(
1869       iterArgs.getTypes(),
1870       llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location));
1871   if (unordered)
1872     result.addAttribute(getUnorderedAttrName(result.name),
1873                         builder.getUnitAttr());
1874   result.addAttributes(attributes);
1875 }
1876 
1877 mlir::ParseResult fir::DoLoopOp::parse(mlir::OpAsmParser &parser,
1878                                        mlir::OperationState &result) {
1879   auto &builder = parser.getBuilder();
1880   mlir::OpAsmParser::Argument inductionVariable;
1881   mlir::OpAsmParser::UnresolvedOperand lb, ub, step;
1882   // Parse the induction variable followed by '='.
1883   if (parser.parseArgument(inductionVariable) || parser.parseEqual())
1884     return mlir::failure();
1885 
1886   // Parse loop bounds.
1887   auto indexType = builder.getIndexType();
1888   if (parser.parseOperand(lb) ||
1889       parser.resolveOperand(lb, indexType, result.operands) ||
1890       parser.parseKeyword("to") || parser.parseOperand(ub) ||
1891       parser.resolveOperand(ub, indexType, result.operands) ||
1892       parser.parseKeyword("step") || parser.parseOperand(step) ||
1893       parser.resolveOperand(step, indexType, result.operands))
1894     return mlir::failure();
1895 
1896   if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
1897     result.addAttribute("unordered", builder.getUnitAttr());
1898 
1899   // Parse the optional initial iteration arguments.
1900   llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs;
1901   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1902   llvm::SmallVector<mlir::Type> argTypes;
1903   bool prependCount = false;
1904   regionArgs.push_back(inductionVariable);
1905 
1906   if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1907     // Parse assignment list and results type list.
1908     if (parser.parseAssignmentList(regionArgs, operands) ||
1909         parser.parseArrowTypeList(result.types))
1910       return mlir::failure();
1911     if (result.types.size() == operands.size() + 1)
1912       prependCount = true;
1913     // Resolve input operands.
1914     llvm::ArrayRef<mlir::Type> resTypes = result.types;
1915     for (auto operand_type :
1916          llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
1917       if (parser.resolveOperand(std::get<0>(operand_type),
1918                                 std::get<1>(operand_type), result.operands))
1919         return mlir::failure();
1920   } else if (succeeded(parser.parseOptionalArrow())) {
1921     if (parser.parseKeyword("index"))
1922       return mlir::failure();
1923     result.types.push_back(indexType);
1924     prependCount = true;
1925   }
1926 
1927   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1928     return mlir::failure();
1929 
1930   // Induction variable.
1931   if (prependCount)
1932     result.addAttribute(DoLoopOp::getFinalValueAttrName(result.name),
1933                         builder.getUnitAttr());
1934   else
1935     argTypes.push_back(indexType);
1936   // Loop carried variables
1937   argTypes.append(result.types.begin(), result.types.end());
1938   // Parse the body region.
1939   auto *body = result.addRegion();
1940   if (regionArgs.size() != argTypes.size())
1941     return parser.emitError(
1942         parser.getNameLoc(),
1943         "mismatch in number of loop-carried values and defined values");
1944   for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
1945     regionArgs[i].type = argTypes[i];
1946 
1947   if (parser.parseRegion(*body, regionArgs))
1948     return mlir::failure();
1949 
1950   DoLoopOp::ensureTerminator(*body, builder, result.location);
1951 
1952   return mlir::success();
1953 }
1954 
1955 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
1956   auto ivArg = val.dyn_cast<mlir::BlockArgument>();
1957   if (!ivArg)
1958     return {};
1959   assert(ivArg.getOwner() && "unlinked block argument");
1960   auto *containingInst = ivArg.getOwner()->getParentOp();
1961   return mlir::dyn_cast_or_null<fir::DoLoopOp>(containingInst);
1962 }
1963 
1964 // Lifted from loop.loop
1965 mlir::LogicalResult fir::DoLoopOp::verify() {
1966   // Check that the body defines as single block argument for the induction
1967   // variable.
1968   auto *body = getBody();
1969   if (!body->getArgument(0).getType().isIndex())
1970     return emitOpError(
1971         "expected body first argument to be an index argument for "
1972         "the induction variable");
1973 
1974   auto opNumResults = getNumResults();
1975   if (opNumResults == 0)
1976     return mlir::success();
1977 
1978   if (getFinalValue()) {
1979     if (getUnordered())
1980       return emitOpError("unordered loop has no final value");
1981     opNumResults--;
1982   }
1983   if (getNumIterOperands() != opNumResults)
1984     return emitOpError(
1985         "mismatch in number of loop-carried values and defined values");
1986   if (getNumRegionIterArgs() != opNumResults)
1987     return emitOpError(
1988         "mismatch in number of basic block args and defined values");
1989   auto iterOperands = getIterOperands();
1990   auto iterArgs = getRegionIterArgs();
1991   auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
1992   unsigned i = 0u;
1993   for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
1994     if (std::get<0>(e).getType() != std::get<2>(e).getType())
1995       return emitOpError() << "types mismatch between " << i
1996                            << "th iter operand and defined value";
1997     if (std::get<1>(e).getType() != std::get<2>(e).getType())
1998       return emitOpError() << "types mismatch between " << i
1999                            << "th iter region arg and defined value";
2000 
2001     i++;
2002   }
2003   return mlir::success();
2004 }
2005 
2006 void fir::DoLoopOp::print(mlir::OpAsmPrinter &p) {
2007   bool printBlockTerminators = false;
2008   p << ' ' << getInductionVar() << " = " << getLowerBound() << " to "
2009     << getUpperBound() << " step " << getStep();
2010   if (getUnordered())
2011     p << " unordered";
2012   if (hasIterOperands()) {
2013     p << " iter_args(";
2014     auto regionArgs = getRegionIterArgs();
2015     auto operands = getIterOperands();
2016     llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
2017       p << std::get<0>(it) << " = " << std::get<1>(it);
2018     });
2019     p << ") -> (" << getResultTypes() << ')';
2020     printBlockTerminators = true;
2021   } else if (getFinalValue()) {
2022     p << " -> " << getResultTypes();
2023     printBlockTerminators = true;
2024   }
2025   p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
2026                                      {"unordered", "finalValue"});
2027   p << ' ';
2028   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
2029                 printBlockTerminators);
2030 }
2031 
2032 mlir::Region &fir::DoLoopOp::getLoopBody() { return getRegion(); }
2033 
2034 /// Translate a value passed as an iter_arg to the corresponding block
2035 /// argument in the body of the loop.
2036 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
2037   for (auto i : llvm::enumerate(getInitArgs()))
2038     if (iterArg == i.value())
2039       return getRegion().front().getArgument(i.index() + 1);
2040   return {};
2041 }
2042 
2043 /// Translate the result vector (by index number) to the corresponding value
2044 /// to the `fir.result` Op.
2045 void fir::DoLoopOp::resultToSourceOps(
2046     llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
2047   auto oper = getFinalValue() ? resultNum + 1 : resultNum;
2048   auto *term = getRegion().front().getTerminator();
2049   if (oper < term->getNumOperands())
2050     results.push_back(term->getOperand(oper));
2051 }
2052 
2053 /// Translate the block argument (by index number) to the corresponding value
2054 /// passed as an iter_arg to the parent DoLoopOp.
2055 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
2056   if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
2057     return getInitArgs()[blockArgNum - 1];
2058   return {};
2059 }
2060 
2061 //===----------------------------------------------------------------------===//
2062 // DTEntryOp
2063 //===----------------------------------------------------------------------===//
2064 
2065 mlir::ParseResult fir::DTEntryOp::parse(mlir::OpAsmParser &parser,
2066                                         mlir::OperationState &result) {
2067   llvm::StringRef methodName;
2068   // allow `methodName` or `"methodName"`
2069   if (failed(parser.parseOptionalKeyword(&methodName))) {
2070     mlir::StringAttr methodAttr;
2071     if (parser.parseAttribute(methodAttr,
2072                               fir::DTEntryOp::getMethodAttrNameStr(),
2073                               result.attributes))
2074       return mlir::failure();
2075   } else {
2076     result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(),
2077                         parser.getBuilder().getStringAttr(methodName));
2078   }
2079   mlir::SymbolRefAttr calleeAttr;
2080   if (parser.parseComma() ||
2081       parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(),
2082                             result.attributes))
2083     return mlir::failure();
2084   return mlir::success();
2085 }
2086 
2087 void fir::DTEntryOp::print(mlir::OpAsmPrinter &p) {
2088   p << ' ' << getMethodAttr() << ", " << getProcAttr();
2089 }
2090 
2091 //===----------------------------------------------------------------------===//
2092 // ReboxOp
2093 //===----------------------------------------------------------------------===//
2094 
2095 /// Get the scalar type related to a fir.box type.
2096 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
2097 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
2098   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2099   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2100     return seqTy.getEleTy();
2101   return eleTy;
2102 }
2103 
2104 /// Get the rank from a !fir.box type
2105 static unsigned getBoxRank(mlir::Type boxTy) {
2106   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2107   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2108     return seqTy.getDimension();
2109   return 0;
2110 }
2111 
2112 /// Test if \p t1 and \p t2 are compatible character types (if they can
2113 /// represent the same type at runtime).
2114 static bool areCompatibleCharacterTypes(mlir::Type t1, mlir::Type t2) {
2115   auto c1 = t1.dyn_cast<fir::CharacterType>();
2116   auto c2 = t2.dyn_cast<fir::CharacterType>();
2117   if (!c1 || !c2)
2118     return false;
2119   if (c1.hasDynamicLen() || c2.hasDynamicLen())
2120     return true;
2121   return c1.getLen() == c2.getLen();
2122 }
2123 
2124 mlir::LogicalResult fir::ReboxOp::verify() {
2125   auto inputBoxTy = getBox().getType();
2126   if (fir::isa_unknown_size_box(inputBoxTy))
2127     return emitOpError("box operand must not have unknown rank or type");
2128   auto outBoxTy = getType();
2129   if (fir::isa_unknown_size_box(outBoxTy))
2130     return emitOpError("result type must not have unknown rank or type");
2131   auto inputRank = getBoxRank(inputBoxTy);
2132   auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
2133   auto outRank = getBoxRank(outBoxTy);
2134   auto outEleTy = getBoxScalarEleTy(outBoxTy);
2135 
2136   if (auto sliceVal = getSlice()) {
2137     // Slicing case
2138     if (sliceVal.getType().cast<fir::SliceType>().getRank() != inputRank)
2139       return emitOpError("slice operand rank must match box operand rank");
2140     if (auto shapeVal = getShape()) {
2141       if (auto shiftTy = shapeVal.getType().dyn_cast<fir::ShiftType>()) {
2142         if (shiftTy.getRank() != inputRank)
2143           return emitOpError("shape operand and input box ranks must match "
2144                              "when there is a slice");
2145       } else {
2146         return emitOpError("shape operand must absent or be a fir.shift "
2147                            "when there is a slice");
2148       }
2149     }
2150     if (auto sliceOp = sliceVal.getDefiningOp()) {
2151       auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
2152       if (slicedRank != outRank)
2153         return emitOpError("result type rank and rank after applying slice "
2154                            "operand must match");
2155     }
2156   } else {
2157     // Reshaping case
2158     unsigned shapeRank = inputRank;
2159     if (auto shapeVal = getShape()) {
2160       auto ty = shapeVal.getType();
2161       if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
2162         shapeRank = shapeTy.getRank();
2163       } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
2164         shapeRank = shapeShiftTy.getRank();
2165       } else {
2166         auto shiftTy = ty.cast<fir::ShiftType>();
2167         shapeRank = shiftTy.getRank();
2168         if (shapeRank != inputRank)
2169           return emitOpError("shape operand and input box ranks must match "
2170                              "when the shape is a fir.shift");
2171       }
2172     }
2173     if (shapeRank != outRank)
2174       return emitOpError("result type and shape operand ranks must match");
2175   }
2176 
2177   if (inputEleTy != outEleTy) {
2178     // TODO: check that outBoxTy is a parent type of inputBoxTy for derived
2179     // types.
2180     // Character input and output types with constant length may be different if
2181     // there is a substring in the slice, otherwise, they must match. If any of
2182     // the types is a character with dynamic length, the other type can be any
2183     // character type.
2184     const bool typeCanMismatch =
2185         inputEleTy.isa<fir::RecordType>() ||
2186         (getSlice() && inputEleTy.isa<fir::CharacterType>()) ||
2187         areCompatibleCharacterTypes(inputEleTy, outEleTy);
2188     if (!typeCanMismatch)
2189       return emitOpError(
2190           "op input and output element types must match for intrinsic types");
2191   }
2192   return mlir::success();
2193 }
2194 
2195 //===----------------------------------------------------------------------===//
2196 // ResultOp
2197 //===----------------------------------------------------------------------===//
2198 
2199 mlir::LogicalResult fir::ResultOp::verify() {
2200   auto *parentOp = (*this)->getParentOp();
2201   auto results = parentOp->getResults();
2202   auto operands = (*this)->getOperands();
2203 
2204   if (parentOp->getNumResults() != getNumOperands())
2205     return emitOpError() << "parent of result must have same arity";
2206   for (auto e : llvm::zip(results, operands))
2207     if (std::get<0>(e).getType() != std::get<1>(e).getType())
2208       return emitOpError() << "types mismatch between result op and its parent";
2209   return mlir::success();
2210 }
2211 
2212 //===----------------------------------------------------------------------===//
2213 // SaveResultOp
2214 //===----------------------------------------------------------------------===//
2215 
2216 mlir::LogicalResult fir::SaveResultOp::verify() {
2217   auto resultType = getValue().getType();
2218   if (resultType != fir::dyn_cast_ptrEleTy(getMemref().getType()))
2219     return emitOpError("value type must match memory reference type");
2220   if (fir::isa_unknown_size_box(resultType))
2221     return emitOpError("cannot save !fir.box of unknown rank or type");
2222 
2223   if (resultType.isa<fir::BoxType>()) {
2224     if (getShape() || !getTypeparams().empty())
2225       return emitOpError(
2226           "must not have shape or length operands if the value is a fir.box");
2227     return mlir::success();
2228   }
2229 
2230   // fir.record or fir.array case.
2231   unsigned shapeTyRank = 0;
2232   if (auto shapeVal = getShape()) {
2233     auto shapeTy = shapeVal.getType();
2234     if (auto s = shapeTy.dyn_cast<fir::ShapeType>())
2235       shapeTyRank = s.getRank();
2236     else
2237       shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank();
2238   }
2239 
2240   auto eleTy = resultType;
2241   if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) {
2242     if (seqTy.getDimension() != shapeTyRank)
2243       emitOpError("shape operand must be provided and have the value rank "
2244                   "when the value is a fir.array");
2245     eleTy = seqTy.getEleTy();
2246   } else {
2247     if (shapeTyRank != 0)
2248       emitOpError(
2249           "shape operand should only be provided if the value is a fir.array");
2250   }
2251 
2252   if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
2253     if (recTy.getNumLenParams() != getTypeparams().size())
2254       emitOpError("length parameters number must match with the value type "
2255                   "length parameters");
2256   } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
2257     if (getTypeparams().size() > 1)
2258       emitOpError("no more than one length parameter must be provided for "
2259                   "character value");
2260   } else {
2261     if (!getTypeparams().empty())
2262       emitOpError("length parameters must not be provided for this value type");
2263   }
2264 
2265   return mlir::success();
2266 }
2267 
2268 //===----------------------------------------------------------------------===//
2269 // IntegralSwitchTerminator
2270 //===----------------------------------------------------------------------===//
2271 static constexpr llvm::StringRef getCompareOffsetAttr() {
2272   return "compare_operand_offsets";
2273 }
2274 
2275 static constexpr llvm::StringRef getTargetOffsetAttr() {
2276   return "target_operand_offsets";
2277 }
2278 
2279 template <typename OpT>
2280 static mlir::LogicalResult verifyIntegralSwitchTerminator(OpT op) {
2281   if (!op.getSelector()
2282            .getType()
2283            .template isa<mlir::IntegerType, mlir::IndexType,
2284                          fir::IntegerType>())
2285     return op.emitOpError("must be an integer");
2286   auto cases =
2287       op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
2288   auto count = op.getNumDest();
2289   if (count == 0)
2290     return op.emitOpError("must have at least one successor");
2291   if (op.getNumConditions() != count)
2292     return op.emitOpError("number of cases and targets don't match");
2293   if (op.targetOffsetSize() != count)
2294     return op.emitOpError("incorrect number of successor operand groups");
2295   for (decltype(count) i = 0; i != count; ++i) {
2296     if (!cases[i].template isa<mlir::IntegerAttr, mlir::UnitAttr>())
2297       return op.emitOpError("invalid case alternative");
2298   }
2299   return mlir::success();
2300 }
2301 
2302 static mlir::ParseResult parseIntegralSwitchTerminator(
2303     mlir::OpAsmParser &parser, mlir::OperationState &result,
2304     llvm::StringRef casesAttr, llvm::StringRef operandSegmentAttr) {
2305   mlir::OpAsmParser::UnresolvedOperand selector;
2306   mlir::Type type;
2307   if (fir::parseSelector(parser, result, selector, type))
2308     return mlir::failure();
2309 
2310   llvm::SmallVector<mlir::Attribute> ivalues;
2311   llvm::SmallVector<mlir::Block *> dests;
2312   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2313   while (true) {
2314     mlir::Attribute ivalue; // Integer or Unit
2315     mlir::Block *dest;
2316     llvm::SmallVector<mlir::Value> destArg;
2317     mlir::NamedAttrList temp;
2318     if (parser.parseAttribute(ivalue, "i", temp) || parser.parseComma() ||
2319         parser.parseSuccessorAndUseList(dest, destArg))
2320       return mlir::failure();
2321     ivalues.push_back(ivalue);
2322     dests.push_back(dest);
2323     destArgs.push_back(destArg);
2324     if (!parser.parseOptionalRSquare())
2325       break;
2326     if (parser.parseComma())
2327       return mlir::failure();
2328   }
2329   auto &bld = parser.getBuilder();
2330   result.addAttribute(casesAttr, bld.getArrayAttr(ivalues));
2331   llvm::SmallVector<int32_t> argOffs;
2332   int32_t sumArgs = 0;
2333   const auto count = dests.size();
2334   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2335     result.addSuccessors(dests[i]);
2336     result.addOperands(destArgs[i]);
2337     auto argSize = destArgs[i].size();
2338     argOffs.push_back(argSize);
2339     sumArgs += argSize;
2340   }
2341   result.addAttribute(operandSegmentAttr,
2342                       bld.getI32VectorAttr({1, 0, sumArgs}));
2343   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2344   return mlir::success();
2345 }
2346 
2347 template <typename OpT>
2348 static void printIntegralSwitchTerminator(OpT op, mlir::OpAsmPrinter &p) {
2349   p << ' ';
2350   p.printOperand(op.getSelector());
2351   p << " : " << op.getSelector().getType() << " [";
2352   auto cases =
2353       op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
2354   auto count = op.getNumConditions();
2355   for (decltype(count) i = 0; i != count; ++i) {
2356     if (i)
2357       p << ", ";
2358     auto &attr = cases[i];
2359     if (auto intAttr = attr.template dyn_cast_or_null<mlir::IntegerAttr>())
2360       p << intAttr.getValue();
2361     else
2362       p.printAttribute(attr);
2363     p << ", ";
2364     op.printSuccessorAtIndex(p, i);
2365   }
2366   p << ']';
2367   p.printOptionalAttrDict(
2368       op->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(),
2369                        getTargetOffsetAttr(), op.getOperandSegmentSizeAttr()});
2370 }
2371 
2372 //===----------------------------------------------------------------------===//
2373 // SelectOp
2374 //===----------------------------------------------------------------------===//
2375 
2376 mlir::LogicalResult fir::SelectOp::verify() {
2377   return verifyIntegralSwitchTerminator(*this);
2378 }
2379 
2380 mlir::ParseResult fir::SelectOp::parse(mlir::OpAsmParser &parser,
2381                                        mlir::OperationState &result) {
2382   return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
2383                                        getOperandSegmentSizeAttr());
2384 }
2385 
2386 void fir::SelectOp::print(mlir::OpAsmPrinter &p) {
2387   printIntegralSwitchTerminator(*this, p);
2388 }
2389 
2390 template <typename A, typename... AdditionalArgs>
2391 static A getSubOperands(unsigned pos, A allArgs,
2392                         mlir::DenseIntElementsAttr ranges,
2393                         AdditionalArgs &&...additionalArgs) {
2394   unsigned start = 0;
2395   for (unsigned i = 0; i < pos; ++i)
2396     start += (*(ranges.begin() + i)).getZExtValue();
2397   return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
2398                        std::forward<AdditionalArgs>(additionalArgs)...);
2399 }
2400 
2401 static mlir::MutableOperandRange
2402 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
2403                             llvm::StringRef offsetAttr) {
2404   mlir::Operation *owner = operands.getOwner();
2405   mlir::NamedAttribute targetOffsetAttr =
2406       *owner->getAttrDictionary().getNamed(offsetAttr);
2407   return getSubOperands(
2408       pos, operands,
2409       targetOffsetAttr.getValue().cast<mlir::DenseIntElementsAttr>(),
2410       mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
2411 }
2412 
2413 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
2414   return attr.getNumElements();
2415 }
2416 
2417 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
2418   return {};
2419 }
2420 
2421 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2422 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2423   return {};
2424 }
2425 
2426 mlir::SuccessorOperands fir::SelectOp::getSuccessorOperands(unsigned oper) {
2427   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2428       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2429 }
2430 
2431 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2432 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2433                                     unsigned oper) {
2434   auto a =
2435       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2436   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2437       getOperandSegmentSizeAttr());
2438   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2439 }
2440 
2441 llvm::Optional<mlir::ValueRange>
2442 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) {
2443   auto a =
2444       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2445   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2446       getOperandSegmentSizeAttr());
2447   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2448 }
2449 
2450 unsigned fir::SelectOp::targetOffsetSize() {
2451   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2452       getTargetOffsetAttr()));
2453 }
2454 
2455 //===----------------------------------------------------------------------===//
2456 // SelectCaseOp
2457 //===----------------------------------------------------------------------===//
2458 
2459 llvm::Optional<mlir::OperandRange>
2460 fir::SelectCaseOp::getCompareOperands(unsigned cond) {
2461   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2462       getCompareOffsetAttr());
2463   return {getSubOperands(cond, getCompareArgs(), a)};
2464 }
2465 
2466 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2467 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands,
2468                                       unsigned cond) {
2469   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2470       getCompareOffsetAttr());
2471   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2472       getOperandSegmentSizeAttr());
2473   return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2474 }
2475 
2476 llvm::Optional<mlir::ValueRange>
2477 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands,
2478                                       unsigned cond) {
2479   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2480       getCompareOffsetAttr());
2481   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2482       getOperandSegmentSizeAttr());
2483   return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2484 }
2485 
2486 mlir::SuccessorOperands fir::SelectCaseOp::getSuccessorOperands(unsigned oper) {
2487   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2488       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2489 }
2490 
2491 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2492 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2493                                         unsigned oper) {
2494   auto a =
2495       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2496   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2497       getOperandSegmentSizeAttr());
2498   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2499 }
2500 
2501 llvm::Optional<mlir::ValueRange>
2502 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands,
2503                                         unsigned oper) {
2504   auto a =
2505       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2506   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2507       getOperandSegmentSizeAttr());
2508   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2509 }
2510 
2511 // parser for fir.select_case Op
2512 mlir::ParseResult fir::SelectCaseOp::parse(mlir::OpAsmParser &parser,
2513                                            mlir::OperationState &result) {
2514   mlir::OpAsmParser::UnresolvedOperand selector;
2515   mlir::Type type;
2516   if (fir::parseSelector(parser, result, selector, type))
2517     return mlir::failure();
2518 
2519   llvm::SmallVector<mlir::Attribute> attrs;
2520   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> opers;
2521   llvm::SmallVector<mlir::Block *> dests;
2522   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2523   llvm::SmallVector<std::int32_t> argOffs;
2524   std::int32_t offSize = 0;
2525   while (true) {
2526     mlir::Attribute attr;
2527     mlir::Block *dest;
2528     llvm::SmallVector<mlir::Value> destArg;
2529     mlir::NamedAttrList temp;
2530     if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) ||
2531         parser.parseComma())
2532       return mlir::failure();
2533     attrs.push_back(attr);
2534     if (attr.dyn_cast_or_null<mlir::UnitAttr>()) {
2535       argOffs.push_back(0);
2536     } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) {
2537       mlir::OpAsmParser::UnresolvedOperand oper1;
2538       mlir::OpAsmParser::UnresolvedOperand oper2;
2539       if (parser.parseOperand(oper1) || parser.parseComma() ||
2540           parser.parseOperand(oper2) || parser.parseComma())
2541         return mlir::failure();
2542       opers.push_back(oper1);
2543       opers.push_back(oper2);
2544       argOffs.push_back(2);
2545       offSize += 2;
2546     } else {
2547       mlir::OpAsmParser::UnresolvedOperand oper;
2548       if (parser.parseOperand(oper) || parser.parseComma())
2549         return mlir::failure();
2550       opers.push_back(oper);
2551       argOffs.push_back(1);
2552       ++offSize;
2553     }
2554     if (parser.parseSuccessorAndUseList(dest, destArg))
2555       return mlir::failure();
2556     dests.push_back(dest);
2557     destArgs.push_back(destArg);
2558     if (mlir::succeeded(parser.parseOptionalRSquare()))
2559       break;
2560     if (parser.parseComma())
2561       return mlir::failure();
2562   }
2563   result.addAttribute(fir::SelectCaseOp::getCasesAttr(),
2564                       parser.getBuilder().getArrayAttr(attrs));
2565   if (parser.resolveOperands(opers, type, result.operands))
2566     return mlir::failure();
2567   llvm::SmallVector<int32_t> targOffs;
2568   int32_t toffSize = 0;
2569   const auto count = dests.size();
2570   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2571     result.addSuccessors(dests[i]);
2572     result.addOperands(destArgs[i]);
2573     auto argSize = destArgs[i].size();
2574     targOffs.push_back(argSize);
2575     toffSize += argSize;
2576   }
2577   auto &bld = parser.getBuilder();
2578   result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(),
2579                       bld.getI32VectorAttr({1, offSize, toffSize}));
2580   result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs));
2581   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs));
2582   return mlir::success();
2583 }
2584 
2585 void fir::SelectCaseOp::print(mlir::OpAsmPrinter &p) {
2586   p << ' ';
2587   p.printOperand(getSelector());
2588   p << " : " << getSelector().getType() << " [";
2589   auto cases =
2590       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2591   auto count = getNumConditions();
2592   for (decltype(count) i = 0; i != count; ++i) {
2593     if (i)
2594       p << ", ";
2595     p << cases[i] << ", ";
2596     if (!cases[i].isa<mlir::UnitAttr>()) {
2597       auto caseArgs = *getCompareOperands(i);
2598       p.printOperand(*caseArgs.begin());
2599       p << ", ";
2600       if (cases[i].isa<fir::ClosedIntervalAttr>()) {
2601         p.printOperand(*(++caseArgs.begin()));
2602         p << ", ";
2603       }
2604     }
2605     printSuccessorAtIndex(p, i);
2606   }
2607   p << ']';
2608   p.printOptionalAttrDict(getOperation()->getAttrs(),
2609                           {getCasesAttr(), getCompareOffsetAttr(),
2610                            getTargetOffsetAttr(), getOperandSegmentSizeAttr()});
2611 }
2612 
2613 unsigned fir::SelectCaseOp::compareOffsetSize() {
2614   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2615       getCompareOffsetAttr()));
2616 }
2617 
2618 unsigned fir::SelectCaseOp::targetOffsetSize() {
2619   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2620       getTargetOffsetAttr()));
2621 }
2622 
2623 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2624                               mlir::OperationState &result,
2625                               mlir::Value selector,
2626                               llvm::ArrayRef<mlir::Attribute> compareAttrs,
2627                               llvm::ArrayRef<mlir::ValueRange> cmpOperands,
2628                               llvm::ArrayRef<mlir::Block *> destinations,
2629                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2630                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2631   result.addOperands(selector);
2632   result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs));
2633   llvm::SmallVector<int32_t> operOffs;
2634   int32_t operSize = 0;
2635   for (auto attr : compareAttrs) {
2636     if (attr.isa<fir::ClosedIntervalAttr>()) {
2637       operOffs.push_back(2);
2638       operSize += 2;
2639     } else if (attr.isa<mlir::UnitAttr>()) {
2640       operOffs.push_back(0);
2641     } else {
2642       operOffs.push_back(1);
2643       ++operSize;
2644     }
2645   }
2646   for (auto ops : cmpOperands)
2647     result.addOperands(ops);
2648   result.addAttribute(getCompareOffsetAttr(),
2649                       builder.getI32VectorAttr(operOffs));
2650   const auto count = destinations.size();
2651   for (auto d : destinations)
2652     result.addSuccessors(d);
2653   const auto opCount = destOperands.size();
2654   llvm::SmallVector<std::int32_t> argOffs;
2655   std::int32_t sumArgs = 0;
2656   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2657     if (i < opCount) {
2658       result.addOperands(destOperands[i]);
2659       const auto argSz = destOperands[i].size();
2660       argOffs.push_back(argSz);
2661       sumArgs += argSz;
2662     } else {
2663       argOffs.push_back(0);
2664     }
2665   }
2666   result.addAttribute(getOperandSegmentSizeAttr(),
2667                       builder.getI32VectorAttr({1, operSize, sumArgs}));
2668   result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2669   result.addAttributes(attributes);
2670 }
2671 
2672 /// This builder has a slightly simplified interface in that the list of
2673 /// operands need not be partitioned by the builder. Instead the operands are
2674 /// partitioned here, before being passed to the default builder. This
2675 /// partitioning is unchecked, so can go awry on bad input.
2676 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2677                               mlir::OperationState &result,
2678                               mlir::Value selector,
2679                               llvm::ArrayRef<mlir::Attribute> compareAttrs,
2680                               llvm::ArrayRef<mlir::Value> cmpOpList,
2681                               llvm::ArrayRef<mlir::Block *> destinations,
2682                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2683                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2684   llvm::SmallVector<mlir::ValueRange> cmpOpers;
2685   auto iter = cmpOpList.begin();
2686   for (auto &attr : compareAttrs) {
2687     if (attr.isa<fir::ClosedIntervalAttr>()) {
2688       cmpOpers.push_back(mlir::ValueRange({iter, iter + 2}));
2689       iter += 2;
2690     } else if (attr.isa<mlir::UnitAttr>()) {
2691       cmpOpers.push_back(mlir::ValueRange{});
2692     } else {
2693       cmpOpers.push_back(mlir::ValueRange({iter, iter + 1}));
2694       ++iter;
2695     }
2696   }
2697   build(builder, result, selector, compareAttrs, cmpOpers, destinations,
2698         destOperands, attributes);
2699 }
2700 
2701 mlir::LogicalResult fir::SelectCaseOp::verify() {
2702   if (!getSelector()
2703            .getType()
2704            .isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType,
2705                 fir::LogicalType, fir::CharacterType>())
2706     return emitOpError("must be an integer, character, or logical");
2707   auto cases =
2708       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2709   auto count = getNumDest();
2710   if (count == 0)
2711     return emitOpError("must have at least one successor");
2712   if (getNumConditions() != count)
2713     return emitOpError("number of conditions and successors don't match");
2714   if (compareOffsetSize() != count)
2715     return emitOpError("incorrect number of compare operand groups");
2716   if (targetOffsetSize() != count)
2717     return emitOpError("incorrect number of successor operand groups");
2718   for (decltype(count) i = 0; i != count; ++i) {
2719     auto &attr = cases[i];
2720     if (!(attr.isa<fir::PointIntervalAttr>() ||
2721           attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() ||
2722           attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>()))
2723       return emitOpError("incorrect select case attribute type");
2724   }
2725   return mlir::success();
2726 }
2727 
2728 //===----------------------------------------------------------------------===//
2729 // SelectRankOp
2730 //===----------------------------------------------------------------------===//
2731 
2732 mlir::LogicalResult fir::SelectRankOp::verify() {
2733   return verifyIntegralSwitchTerminator(*this);
2734 }
2735 
2736 mlir::ParseResult fir::SelectRankOp::parse(mlir::OpAsmParser &parser,
2737                                            mlir::OperationState &result) {
2738   return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
2739                                        getOperandSegmentSizeAttr());
2740 }
2741 
2742 void fir::SelectRankOp::print(mlir::OpAsmPrinter &p) {
2743   printIntegralSwitchTerminator(*this, p);
2744 }
2745 
2746 llvm::Optional<mlir::OperandRange>
2747 fir::SelectRankOp::getCompareOperands(unsigned) {
2748   return {};
2749 }
2750 
2751 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2752 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2753   return {};
2754 }
2755 
2756 mlir::SuccessorOperands fir::SelectRankOp::getSuccessorOperands(unsigned oper) {
2757   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2758       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2759 }
2760 
2761 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2762 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2763                                         unsigned oper) {
2764   auto a =
2765       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2766   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2767       getOperandSegmentSizeAttr());
2768   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2769 }
2770 
2771 llvm::Optional<mlir::ValueRange>
2772 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands,
2773                                         unsigned oper) {
2774   auto a =
2775       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2776   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2777       getOperandSegmentSizeAttr());
2778   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2779 }
2780 
2781 unsigned fir::SelectRankOp::targetOffsetSize() {
2782   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2783       getTargetOffsetAttr()));
2784 }
2785 
2786 //===----------------------------------------------------------------------===//
2787 // SelectTypeOp
2788 //===----------------------------------------------------------------------===//
2789 
2790 llvm::Optional<mlir::OperandRange>
2791 fir::SelectTypeOp::getCompareOperands(unsigned) {
2792   return {};
2793 }
2794 
2795 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2796 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2797   return {};
2798 }
2799 
2800 mlir::SuccessorOperands fir::SelectTypeOp::getSuccessorOperands(unsigned oper) {
2801   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2802       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2803 }
2804 
2805 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2806 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2807                                         unsigned oper) {
2808   auto a =
2809       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2810   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2811       getOperandSegmentSizeAttr());
2812   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2813 }
2814 
2815 mlir::ParseResult fir::SelectTypeOp::parse(mlir::OpAsmParser &parser,
2816                                            mlir::OperationState &result) {
2817   mlir::OpAsmParser::UnresolvedOperand selector;
2818   mlir::Type type;
2819   if (fir::parseSelector(parser, result, selector, type))
2820     return mlir::failure();
2821 
2822   llvm::SmallVector<mlir::Attribute> attrs;
2823   llvm::SmallVector<mlir::Block *> dests;
2824   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2825   while (true) {
2826     mlir::Attribute attr;
2827     mlir::Block *dest;
2828     llvm::SmallVector<mlir::Value> destArg;
2829     mlir::NamedAttrList temp;
2830     if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() ||
2831         parser.parseSuccessorAndUseList(dest, destArg))
2832       return mlir::failure();
2833     attrs.push_back(attr);
2834     dests.push_back(dest);
2835     destArgs.push_back(destArg);
2836     if (mlir::succeeded(parser.parseOptionalRSquare()))
2837       break;
2838     if (parser.parseComma())
2839       return mlir::failure();
2840   }
2841   auto &bld = parser.getBuilder();
2842   result.addAttribute(fir::SelectTypeOp::getCasesAttr(),
2843                       bld.getArrayAttr(attrs));
2844   llvm::SmallVector<int32_t> argOffs;
2845   int32_t offSize = 0;
2846   const auto count = dests.size();
2847   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2848     result.addSuccessors(dests[i]);
2849     result.addOperands(destArgs[i]);
2850     auto argSize = destArgs[i].size();
2851     argOffs.push_back(argSize);
2852     offSize += argSize;
2853   }
2854   result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(),
2855                       bld.getI32VectorAttr({1, 0, offSize}));
2856   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2857   return mlir::success();
2858 }
2859 
2860 unsigned fir::SelectTypeOp::targetOffsetSize() {
2861   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2862       getTargetOffsetAttr()));
2863 }
2864 
2865 void fir::SelectTypeOp::print(mlir::OpAsmPrinter &p) {
2866   p << ' ';
2867   p.printOperand(getSelector());
2868   p << " : " << getSelector().getType() << " [";
2869   auto cases =
2870       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2871   auto count = getNumConditions();
2872   for (decltype(count) i = 0; i != count; ++i) {
2873     if (i)
2874       p << ", ";
2875     p << cases[i] << ", ";
2876     printSuccessorAtIndex(p, i);
2877   }
2878   p << ']';
2879   p.printOptionalAttrDict(getOperation()->getAttrs(),
2880                           {getCasesAttr(), getCompareOffsetAttr(),
2881                            getTargetOffsetAttr(),
2882                            fir::SelectTypeOp::getOperandSegmentSizeAttr()});
2883 }
2884 
2885 mlir::LogicalResult fir::SelectTypeOp::verify() {
2886   if (!(getSelector().getType().isa<fir::BoxType>()))
2887     return emitOpError("must be a boxed type");
2888   auto cases =
2889       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2890   auto count = getNumDest();
2891   if (count == 0)
2892     return emitOpError("must have at least one successor");
2893   if (getNumConditions() != count)
2894     return emitOpError("number of conditions and successors don't match");
2895   if (targetOffsetSize() != count)
2896     return emitOpError("incorrect number of successor operand groups");
2897   for (decltype(count) i = 0; i != count; ++i) {
2898     auto &attr = cases[i];
2899     if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() ||
2900           attr.isa<mlir::UnitAttr>()))
2901       return emitOpError("invalid type-case alternative");
2902   }
2903   return mlir::success();
2904 }
2905 
2906 void fir::SelectTypeOp::build(mlir::OpBuilder &builder,
2907                               mlir::OperationState &result,
2908                               mlir::Value selector,
2909                               llvm::ArrayRef<mlir::Attribute> typeOperands,
2910                               llvm::ArrayRef<mlir::Block *> destinations,
2911                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2912                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2913   result.addOperands(selector);
2914   result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands));
2915   const auto count = destinations.size();
2916   for (mlir::Block *dest : destinations)
2917     result.addSuccessors(dest);
2918   const auto opCount = destOperands.size();
2919   llvm::SmallVector<int32_t> argOffs;
2920   int32_t sumArgs = 0;
2921   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2922     if (i < opCount) {
2923       result.addOperands(destOperands[i]);
2924       const auto argSz = destOperands[i].size();
2925       argOffs.push_back(argSz);
2926       sumArgs += argSz;
2927     } else {
2928       argOffs.push_back(0);
2929     }
2930   }
2931   result.addAttribute(getOperandSegmentSizeAttr(),
2932                       builder.getI32VectorAttr({1, 0, sumArgs}));
2933   result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2934   result.addAttributes(attributes);
2935 }
2936 
2937 //===----------------------------------------------------------------------===//
2938 // ShapeOp
2939 //===----------------------------------------------------------------------===//
2940 
2941 mlir::LogicalResult fir::ShapeOp::verify() {
2942   auto size = getExtents().size();
2943   auto shapeTy = getType().dyn_cast<fir::ShapeType>();
2944   assert(shapeTy && "must be a shape type");
2945   if (shapeTy.getRank() != size)
2946     return emitOpError("shape type rank mismatch");
2947   return mlir::success();
2948 }
2949 
2950 //===----------------------------------------------------------------------===//
2951 // ShapeShiftOp
2952 //===----------------------------------------------------------------------===//
2953 
2954 mlir::LogicalResult fir::ShapeShiftOp::verify() {
2955   auto size = getPairs().size();
2956   if (size < 2 || size > 16 * 2)
2957     return emitOpError("incorrect number of args");
2958   if (size % 2 != 0)
2959     return emitOpError("requires a multiple of 2 args");
2960   auto shapeTy = getType().dyn_cast<fir::ShapeShiftType>();
2961   assert(shapeTy && "must be a shape shift type");
2962   if (shapeTy.getRank() * 2 != size)
2963     return emitOpError("shape type rank mismatch");
2964   return mlir::success();
2965 }
2966 
2967 //===----------------------------------------------------------------------===//
2968 // ShiftOp
2969 //===----------------------------------------------------------------------===//
2970 
2971 mlir::LogicalResult fir::ShiftOp::verify() {
2972   auto size = getOrigins().size();
2973   auto shiftTy = getType().dyn_cast<fir::ShiftType>();
2974   assert(shiftTy && "must be a shift type");
2975   if (shiftTy.getRank() != size)
2976     return emitOpError("shift type rank mismatch");
2977   return mlir::success();
2978 }
2979 
2980 //===----------------------------------------------------------------------===//
2981 // SliceOp
2982 //===----------------------------------------------------------------------===//
2983 
2984 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
2985                          mlir::ValueRange trips, mlir::ValueRange path,
2986                          mlir::ValueRange substr) {
2987   const auto rank = trips.size() / 3;
2988   auto sliceTy = fir::SliceType::get(builder.getContext(), rank);
2989   build(builder, result, sliceTy, trips, path, substr);
2990 }
2991 
2992 /// Return the output rank of a slice op. The output rank must be between 1 and
2993 /// the rank of the array being sliced (inclusive).
2994 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) {
2995   unsigned rank = 0;
2996   if (!triples.empty()) {
2997     for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
2998       auto *op = triples[i].getDefiningOp();
2999       if (!mlir::isa_and_nonnull<fir::UndefOp>(op))
3000         ++rank;
3001     }
3002     assert(rank > 0);
3003   }
3004   return rank;
3005 }
3006 
3007 mlir::LogicalResult fir::SliceOp::verify() {
3008   auto size = getTriples().size();
3009   if (size < 3 || size > 16 * 3)
3010     return emitOpError("incorrect number of args for triple");
3011   if (size % 3 != 0)
3012     return emitOpError("requires a multiple of 3 args");
3013   auto sliceTy = getType().dyn_cast<fir::SliceType>();
3014   assert(sliceTy && "must be a slice type");
3015   if (sliceTy.getRank() * 3 != size)
3016     return emitOpError("slice type rank mismatch");
3017   return mlir::success();
3018 }
3019 
3020 //===----------------------------------------------------------------------===//
3021 // StoreOp
3022 //===----------------------------------------------------------------------===//
3023 
3024 mlir::Type fir::StoreOp::elementType(mlir::Type refType) {
3025   return fir::dyn_cast_ptrEleTy(refType);
3026 }
3027 
3028 mlir::ParseResult fir::StoreOp::parse(mlir::OpAsmParser &parser,
3029                                       mlir::OperationState &result) {
3030   mlir::Type type;
3031   mlir::OpAsmParser::UnresolvedOperand oper;
3032   mlir::OpAsmParser::UnresolvedOperand store;
3033   if (parser.parseOperand(oper) || parser.parseKeyword("to") ||
3034       parser.parseOperand(store) ||
3035       parser.parseOptionalAttrDict(result.attributes) ||
3036       parser.parseColonType(type) ||
3037       parser.resolveOperand(oper, fir::StoreOp::elementType(type),
3038                             result.operands) ||
3039       parser.resolveOperand(store, type, result.operands))
3040     return mlir::failure();
3041   return mlir::success();
3042 }
3043 
3044 void fir::StoreOp::print(mlir::OpAsmPrinter &p) {
3045   p << ' ';
3046   p.printOperand(getValue());
3047   p << " to ";
3048   p.printOperand(getMemref());
3049   p.printOptionalAttrDict(getOperation()->getAttrs(), {});
3050   p << " : " << getMemref().getType();
3051 }
3052 
3053 mlir::LogicalResult fir::StoreOp::verify() {
3054   if (getValue().getType() != fir::dyn_cast_ptrEleTy(getMemref().getType()))
3055     return emitOpError("store value type must match memory reference type");
3056   if (fir::isa_unknown_size_box(getValue().getType()))
3057     return emitOpError("cannot store !fir.box of unknown rank or type");
3058   return mlir::success();
3059 }
3060 
3061 //===----------------------------------------------------------------------===//
3062 // StringLitOp
3063 //===----------------------------------------------------------------------===//
3064 
3065 bool fir::StringLitOp::isWideValue() {
3066   auto eleTy = getType().cast<fir::SequenceType>().getEleTy();
3067   return eleTy.cast<fir::CharacterType>().getFKind() != 1;
3068 }
3069 
3070 static mlir::NamedAttribute
3071 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) {
3072   assert(v > 0);
3073   return builder.getNamedAttr(
3074       name, builder.getIntegerAttr(builder.getIntegerType(64), v));
3075 }
3076 
3077 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3078                              mlir::OperationState &result,
3079                              fir::CharacterType inType, llvm::StringRef val,
3080                              llvm::Optional<int64_t> len) {
3081   auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val));
3082   int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
3083   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3084   result.addAttributes({valAttr, lenAttr});
3085   result.addTypes(inType);
3086 }
3087 
3088 template <typename C>
3089 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder,
3090                                           llvm::ArrayRef<C> xlist) {
3091   llvm::SmallVector<mlir::Attribute> attrs;
3092   auto ty = builder.getIntegerType(8 * sizeof(C));
3093   for (auto ch : xlist)
3094     attrs.push_back(builder.getIntegerAttr(ty, ch));
3095   return builder.getArrayAttr(attrs);
3096 }
3097 
3098 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3099                              mlir::OperationState &result,
3100                              fir::CharacterType inType,
3101                              llvm::ArrayRef<char> vlist,
3102                              llvm::Optional<std::int64_t> len) {
3103   auto valAttr =
3104       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3105   std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
3106   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3107   result.addAttributes({valAttr, lenAttr});
3108   result.addTypes(inType);
3109 }
3110 
3111 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3112                              mlir::OperationState &result,
3113                              fir::CharacterType inType,
3114                              llvm::ArrayRef<char16_t> vlist,
3115                              llvm::Optional<std::int64_t> len) {
3116   auto valAttr =
3117       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3118   std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
3119   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3120   result.addAttributes({valAttr, lenAttr});
3121   result.addTypes(inType);
3122 }
3123 
3124 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3125                              mlir::OperationState &result,
3126                              fir::CharacterType inType,
3127                              llvm::ArrayRef<char32_t> vlist,
3128                              llvm::Optional<std::int64_t> len) {
3129   auto valAttr =
3130       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3131   std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
3132   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3133   result.addAttributes({valAttr, lenAttr});
3134   result.addTypes(inType);
3135 }
3136 
3137 mlir::ParseResult fir::StringLitOp::parse(mlir::OpAsmParser &parser,
3138                                           mlir::OperationState &result) {
3139   auto &builder = parser.getBuilder();
3140   mlir::Attribute val;
3141   mlir::NamedAttrList attrs;
3142   llvm::SMLoc trailingTypeLoc;
3143   if (parser.parseAttribute(val, "fake", attrs))
3144     return mlir::failure();
3145   if (auto v = val.dyn_cast<mlir::StringAttr>())
3146     result.attributes.push_back(
3147         builder.getNamedAttr(fir::StringLitOp::value(), v));
3148   else if (auto v = val.dyn_cast<mlir::ArrayAttr>())
3149     result.attributes.push_back(
3150         builder.getNamedAttr(fir::StringLitOp::xlist(), v));
3151   else
3152     return parser.emitError(parser.getCurrentLocation(),
3153                             "found an invalid constant");
3154   mlir::IntegerAttr sz;
3155   mlir::Type type;
3156   if (parser.parseLParen() ||
3157       parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) ||
3158       parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) ||
3159       parser.parseColonType(type))
3160     return mlir::failure();
3161   auto charTy = type.dyn_cast<fir::CharacterType>();
3162   if (!charTy)
3163     return parser.emitError(trailingTypeLoc, "must have character type");
3164   type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(),
3165                                  sz.getInt());
3166   if (!type || parser.addTypesToList(type, result.types))
3167     return mlir::failure();
3168   return mlir::success();
3169 }
3170 
3171 void fir::StringLitOp::print(mlir::OpAsmPrinter &p) {
3172   p << ' ' << getValue() << '(';
3173   p << getSize().cast<mlir::IntegerAttr>().getValue() << ") : ";
3174   p.printType(getType());
3175 }
3176 
3177 mlir::LogicalResult fir::StringLitOp::verify() {
3178   if (getSize().cast<mlir::IntegerAttr>().getValue().isNegative())
3179     return emitOpError("size must be non-negative");
3180   if (auto xl = getOperation()->getAttr(fir::StringLitOp::xlist())) {
3181     auto xList = xl.cast<mlir::ArrayAttr>();
3182     for (auto a : xList)
3183       if (!a.isa<mlir::IntegerAttr>())
3184         return emitOpError("values in list must be integers");
3185   }
3186   return mlir::success();
3187 }
3188 
3189 //===----------------------------------------------------------------------===//
3190 // UnboxProcOp
3191 //===----------------------------------------------------------------------===//
3192 
3193 mlir::LogicalResult fir::UnboxProcOp::verify() {
3194   if (auto eleTy = fir::dyn_cast_ptrEleTy(getRefTuple().getType()))
3195     if (eleTy.isa<mlir::TupleType>())
3196       return mlir::success();
3197   return emitOpError("second output argument has bad type");
3198 }
3199 
3200 //===----------------------------------------------------------------------===//
3201 // IfOp
3202 //===----------------------------------------------------------------------===//
3203 
3204 void fir::IfOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3205                       mlir::Value cond, bool withElseRegion) {
3206   build(builder, result, llvm::None, cond, withElseRegion);
3207 }
3208 
3209 void fir::IfOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3210                       mlir::TypeRange resultTypes, mlir::Value cond,
3211                       bool withElseRegion) {
3212   result.addOperands(cond);
3213   result.addTypes(resultTypes);
3214 
3215   mlir::Region *thenRegion = result.addRegion();
3216   thenRegion->push_back(new mlir::Block());
3217   if (resultTypes.empty())
3218     IfOp::ensureTerminator(*thenRegion, builder, result.location);
3219 
3220   mlir::Region *elseRegion = result.addRegion();
3221   if (withElseRegion) {
3222     elseRegion->push_back(new mlir::Block());
3223     if (resultTypes.empty())
3224       IfOp::ensureTerminator(*elseRegion, builder, result.location);
3225   }
3226 }
3227 
3228 mlir::ParseResult fir::IfOp::parse(mlir::OpAsmParser &parser,
3229                                    mlir::OperationState &result) {
3230   result.regions.reserve(2);
3231   mlir::Region *thenRegion = result.addRegion();
3232   mlir::Region *elseRegion = result.addRegion();
3233 
3234   auto &builder = parser.getBuilder();
3235   mlir::OpAsmParser::UnresolvedOperand cond;
3236   mlir::Type i1Type = builder.getIntegerType(1);
3237   if (parser.parseOperand(cond) ||
3238       parser.resolveOperand(cond, i1Type, result.operands))
3239     return mlir::failure();
3240 
3241   if (parser.parseOptionalArrowTypeList(result.types))
3242     return mlir::failure();
3243 
3244   if (parser.parseRegion(*thenRegion, {}, {}))
3245     return mlir::failure();
3246   fir::IfOp::ensureTerminator(*thenRegion, parser.getBuilder(),
3247                               result.location);
3248 
3249   if (mlir::succeeded(parser.parseOptionalKeyword("else"))) {
3250     if (parser.parseRegion(*elseRegion, {}, {}))
3251       return mlir::failure();
3252     fir::IfOp::ensureTerminator(*elseRegion, parser.getBuilder(),
3253                                 result.location);
3254   }
3255 
3256   // Parse the optional attribute list.
3257   if (parser.parseOptionalAttrDict(result.attributes))
3258     return mlir::failure();
3259   return mlir::success();
3260 }
3261 
3262 mlir::LogicalResult fir::IfOp::verify() {
3263   if (getNumResults() != 0 && getElseRegion().empty())
3264     return emitOpError("must have an else block if defining values");
3265 
3266   return mlir::success();
3267 }
3268 
3269 void fir::IfOp::print(mlir::OpAsmPrinter &p) {
3270   bool printBlockTerminators = false;
3271   p << ' ' << getCondition();
3272   if (!getResults().empty()) {
3273     p << " -> (" << getResultTypes() << ')';
3274     printBlockTerminators = true;
3275   }
3276   p << ' ';
3277   p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false,
3278                 printBlockTerminators);
3279 
3280   // Print the 'else' regions if it exists and has a block.
3281   auto &otherReg = getElseRegion();
3282   if (!otherReg.empty()) {
3283     p << " else ";
3284     p.printRegion(otherReg, /*printEntryBlockArgs=*/false,
3285                   printBlockTerminators);
3286   }
3287   p.printOptionalAttrDict((*this)->getAttrs());
3288 }
3289 
3290 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results,
3291                                   unsigned resultNum) {
3292   auto *term = getThenRegion().front().getTerminator();
3293   if (resultNum < term->getNumOperands())
3294     results.push_back(term->getOperand(resultNum));
3295   term = getElseRegion().front().getTerminator();
3296   if (resultNum < term->getNumOperands())
3297     results.push_back(term->getOperand(resultNum));
3298 }
3299 
3300 //===----------------------------------------------------------------------===//
3301 
3302 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) {
3303   if (attr.isa<mlir::UnitAttr, fir::ClosedIntervalAttr, fir::PointIntervalAttr,
3304                fir::LowerBoundAttr, fir::UpperBoundAttr>())
3305     return mlir::success();
3306   return mlir::failure();
3307 }
3308 
3309 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,
3310                                     unsigned dest) {
3311   unsigned o = 0;
3312   for (unsigned i = 0; i < dest; ++i) {
3313     auto &attr = cases[i];
3314     if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) {
3315       ++o;
3316       if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>())
3317         ++o;
3318     }
3319   }
3320   return o;
3321 }
3322 
3323 mlir::ParseResult
3324 fir::parseSelector(mlir::OpAsmParser &parser, mlir::OperationState &result,
3325                    mlir::OpAsmParser::UnresolvedOperand &selector,
3326                    mlir::Type &type) {
3327   if (parser.parseOperand(selector) || parser.parseColonType(type) ||
3328       parser.resolveOperand(selector, type, result.operands) ||
3329       parser.parseLSquare())
3330     return mlir::failure();
3331   return mlir::success();
3332 }
3333 
3334 mlir::func::FuncOp
3335 fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module,
3336                   llvm::StringRef name, mlir::FunctionType type,
3337                   llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3338   if (auto f = module.lookupSymbol<mlir::func::FuncOp>(name))
3339     return f;
3340   mlir::OpBuilder modBuilder(module.getBodyRegion());
3341   modBuilder.setInsertionPointToEnd(module.getBody());
3342   auto result = modBuilder.create<mlir::func::FuncOp>(loc, name, type, attrs);
3343   result.setVisibility(mlir::SymbolTable::Visibility::Private);
3344   return result;
3345 }
3346 
3347 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module,
3348                                   llvm::StringRef name, mlir::Type type,
3349                                   llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3350   if (auto g = module.lookupSymbol<fir::GlobalOp>(name))
3351     return g;
3352   mlir::OpBuilder modBuilder(module.getBodyRegion());
3353   auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs);
3354   result.setVisibility(mlir::SymbolTable::Visibility::Private);
3355   return result;
3356 }
3357 
3358 bool fir::hasHostAssociationArgument(mlir::func::FuncOp func) {
3359   if (auto allArgAttrs = func.getAllArgAttrs())
3360     for (auto attr : allArgAttrs)
3361       if (auto dict = attr.template dyn_cast_or_null<mlir::DictionaryAttr>())
3362         if (dict.get(fir::getHostAssocAttrName()))
3363           return true;
3364   return false;
3365 }
3366 
3367 bool fir::valueHasFirAttribute(mlir::Value value,
3368                                llvm::StringRef attributeName) {
3369   // If this is a fir.box that was loaded, the fir attributes will be on the
3370   // related fir.ref<fir.box> creation.
3371   if (value.getType().isa<fir::BoxType>())
3372     if (auto definingOp = value.getDefiningOp())
3373       if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp))
3374         value = loadOp.getMemref();
3375   // If this is a function argument, look in the argument attributes.
3376   if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
3377     if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock())
3378       if (auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(
3379               blockArg.getOwner()->getParentOp()))
3380         if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName))
3381           return true;
3382     return false;
3383   }
3384 
3385   if (auto definingOp = value.getDefiningOp()) {
3386     // If this is an allocated value, look at the allocation attributes.
3387     if (mlir::isa<fir::AllocMemOp>(definingOp) ||
3388         mlir::isa<AllocaOp>(definingOp))
3389       return definingOp->hasAttr(attributeName);
3390     // If this is an imported global, look at AddrOfOp and GlobalOp attributes.
3391     // Both operations are looked at because use/host associated variable (the
3392     // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate
3393     // entity (the globalOp) does not have them.
3394     if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) {
3395       if (addressOfOp->hasAttr(attributeName))
3396         return true;
3397       if (auto module = definingOp->getParentOfType<mlir::ModuleOp>())
3398         if (auto globalOp =
3399                 module.lookupSymbol<fir::GlobalOp>(addressOfOp.getSymbol()))
3400           return globalOp->hasAttr(attributeName);
3401     }
3402   }
3403   // TODO: Construct associated entities attributes. Decide where the fir
3404   // attributes must be placed/looked for in this case.
3405   return false;
3406 }
3407 
3408 bool fir::anyFuncArgsHaveAttr(mlir::func::FuncOp func, llvm::StringRef attr) {
3409   for (unsigned i = 0, end = func.getNumArguments(); i < end; ++i)
3410     if (func.getArgAttr(i, attr))
3411       return true;
3412   return false;
3413 }
3414 
3415 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) {
3416   for (auto i = path.begin(), end = path.end(); eleTy && i < end;) {
3417     eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy)
3418                 .Case<fir::RecordType>([&](fir::RecordType ty) {
3419                   if (auto *op = (*i++).getDefiningOp()) {
3420                     if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op))
3421                       return ty.getType(off.getFieldName());
3422                     if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3423                       return ty.getType(fir::toInt(off));
3424                   }
3425                   return mlir::Type{};
3426                 })
3427                 .Case<fir::SequenceType>([&](fir::SequenceType ty) {
3428                   bool valid = true;
3429                   const auto rank = ty.getDimension();
3430                   for (std::remove_const_t<decltype(rank)> ii = 0;
3431                        valid && ii < rank; ++ii)
3432                     valid = i < end && fir::isa_integer((*i++).getType());
3433                   return valid ? ty.getEleTy() : mlir::Type{};
3434                 })
3435                 .Case<mlir::TupleType>([&](mlir::TupleType ty) {
3436                   if (auto *op = (*i++).getDefiningOp())
3437                     if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3438                       return ty.getType(fir::toInt(off));
3439                   return mlir::Type{};
3440                 })
3441                 .Case<fir::ComplexType>([&](fir::ComplexType ty) {
3442                   auto x = *i;
3443                   if (auto *op = (*i++).getDefiningOp())
3444                     if (fir::isa_integer(x.getType()))
3445                       return ty.getEleType(fir::getKindMapping(
3446                           op->getParentOfType<mlir::ModuleOp>()));
3447                   return mlir::Type{};
3448                 })
3449                 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
3450                   if (fir::isa_integer((*i++).getType()))
3451                     return ty.getElementType();
3452                   return mlir::Type{};
3453                 })
3454                 .Default([&](const auto &) { return mlir::Type{}; });
3455   }
3456   return eleTy;
3457 }
3458 
3459 // Tablegen operators
3460 
3461 #define GET_OP_CLASSES
3462 #include "flang/Optimizer/Dialect/FIROps.cpp.inc"
3463