1 //===-- FIROps.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Optimizer/Dialect/FIROps.h" 14 #include "flang/Optimizer/Dialect/FIRAttr.h" 15 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 16 #include "flang/Optimizer/Dialect/FIRType.h" 17 #include "flang/Optimizer/Support/Utils.h" 18 #include "mlir/Dialect/CommonFolders.h" 19 #include "mlir/Dialect/StandardOps/IR/Ops.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/Diagnostics.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 27 namespace { 28 #include "flang/Optimizer/Transforms/RewritePatterns.inc" 29 } // namespace 30 using namespace fir; 31 32 /// Return true if a sequence type is of some incomplete size or a record type 33 /// is malformed or contains an incomplete sequence type. An incomplete sequence 34 /// type is one with more unknown extents in the type than have been provided 35 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by 36 /// definition. 37 static bool verifyInType(mlir::Type inType, 38 llvm::SmallVectorImpl<llvm::StringRef> &visited, 39 unsigned dynamicExtents = 0) { 40 if (auto st = inType.dyn_cast<fir::SequenceType>()) { 41 auto shape = st.getShape(); 42 if (shape.size() == 0) 43 return true; 44 for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { 45 if (shape[i] != fir::SequenceType::getUnknownExtent()) 46 continue; 47 if (dynamicExtents-- == 0) 48 return true; 49 } 50 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) { 51 // don't recurse if we're already visiting this one 52 if (llvm::is_contained(visited, rt.getName())) 53 return false; 54 // keep track of record types currently being visited 55 visited.push_back(rt.getName()); 56 for (auto &field : rt.getTypeList()) 57 if (verifyInType(field.second, visited)) 58 return true; 59 visited.pop_back(); 60 } else if (auto rt = inType.dyn_cast<fir::PointerType>()) { 61 return verifyInType(rt.getEleTy(), visited); 62 } 63 return false; 64 } 65 66 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) { 67 auto ty = fir::unwrapSequenceType(inType); 68 if (numParams > 0) { 69 if (auto recTy = ty.dyn_cast<fir::RecordType>()) 70 return numParams != recTy.getNumLenParams(); 71 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 72 return !(numParams == 1 && chrTy.hasDynamicLen()); 73 return true; 74 } 75 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 76 return !chrTy.hasConstantLen(); 77 return false; 78 } 79 80 /// Parser shared by Alloca and Allocmem 81 /// 82 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type 83 /// ( `(` $typeparams `)` )? ( `,` $shape )? 84 /// attr-dict-without-keyword 85 template <typename FN> 86 static mlir::ParseResult parseAllocatableOp(FN wrapResultType, 87 mlir::OpAsmParser &parser, 88 mlir::OperationState &result) { 89 mlir::Type intype; 90 if (parser.parseType(intype)) 91 return mlir::failure(); 92 auto &builder = parser.getBuilder(); 93 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 94 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 95 llvm::SmallVector<mlir::Type> typeVec; 96 bool hasOperands = false; 97 std::int32_t typeparamsSize = 0; 98 if (!parser.parseOptionalLParen()) { 99 // parse the LEN params of the derived type. (<params> : <types>) 100 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 101 parser.parseColonTypeList(typeVec) || parser.parseRParen()) 102 return mlir::failure(); 103 typeparamsSize = operands.size(); 104 hasOperands = true; 105 } 106 std::int32_t shapeSize = 0; 107 if (!parser.parseOptionalComma()) { 108 // parse size to scale by, vector of n dimensions of type index 109 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None)) 110 return mlir::failure(); 111 shapeSize = operands.size() - typeparamsSize; 112 auto idxTy = builder.getIndexType(); 113 for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i) 114 typeVec.push_back(idxTy); 115 hasOperands = true; 116 } 117 if (hasOperands && 118 parser.resolveOperands(operands, typeVec, parser.getNameLoc(), 119 result.operands)) 120 return mlir::failure(); 121 mlir::Type restype = wrapResultType(intype); 122 if (!restype) { 123 parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype; 124 return mlir::failure(); 125 } 126 result.addAttribute("operand_segment_sizes", 127 builder.getI32VectorAttr({typeparamsSize, shapeSize})); 128 if (parser.parseOptionalAttrDict(result.attributes) || 129 parser.addTypeToList(restype, result.types)) 130 return mlir::failure(); 131 return mlir::success(); 132 } 133 134 template <typename OP> 135 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) { 136 p << ' ' << op.in_type(); 137 if (!op.typeparams().empty()) { 138 p << '(' << op.typeparams() << " : " << op.typeparams().getTypes() << ')'; 139 } 140 // print the shape of the allocation (if any); all must be index type 141 for (auto sh : op.shape()) { 142 p << ", "; 143 p.printOperand(sh); 144 } 145 p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"}); 146 } 147 148 //===----------------------------------------------------------------------===// 149 // AllocaOp 150 //===----------------------------------------------------------------------===// 151 152 /// Create a legal memory reference as return type 153 static mlir::Type wrapAllocaResultType(mlir::Type intype) { 154 // FIR semantics: memory references to memory references are disallowed 155 if (intype.isa<ReferenceType>()) 156 return {}; 157 return ReferenceType::get(intype); 158 } 159 160 mlir::Type fir::AllocaOp::getAllocatedType() { 161 return getType().cast<ReferenceType>().getEleTy(); 162 } 163 164 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { 165 return ReferenceType::get(ty); 166 } 167 168 void fir::AllocaOp::build(mlir::OpBuilder &builder, 169 mlir::OperationState &result, mlir::Type inType, 170 llvm::StringRef uniqName, mlir::ValueRange typeparams, 171 mlir::ValueRange shape, 172 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 173 auto nameAttr = builder.getStringAttr(uniqName); 174 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 175 /*pinned=*/false, typeparams, shape); 176 result.addAttributes(attributes); 177 } 178 179 void fir::AllocaOp::build(mlir::OpBuilder &builder, 180 mlir::OperationState &result, mlir::Type inType, 181 llvm::StringRef uniqName, bool pinned, 182 mlir::ValueRange typeparams, mlir::ValueRange shape, 183 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 184 auto nameAttr = builder.getStringAttr(uniqName); 185 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 186 pinned, typeparams, shape); 187 result.addAttributes(attributes); 188 } 189 190 void fir::AllocaOp::build(mlir::OpBuilder &builder, 191 mlir::OperationState &result, mlir::Type inType, 192 llvm::StringRef uniqName, llvm::StringRef bindcName, 193 mlir::ValueRange typeparams, mlir::ValueRange shape, 194 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 195 auto nameAttr = 196 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 197 auto bindcAttr = 198 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 199 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 200 bindcAttr, /*pinned=*/false, typeparams, shape); 201 result.addAttributes(attributes); 202 } 203 204 void fir::AllocaOp::build(mlir::OpBuilder &builder, 205 mlir::OperationState &result, mlir::Type inType, 206 llvm::StringRef uniqName, llvm::StringRef bindcName, 207 bool pinned, mlir::ValueRange typeparams, 208 mlir::ValueRange shape, 209 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 210 auto nameAttr = 211 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 212 auto bindcAttr = 213 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 214 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 215 bindcAttr, pinned, typeparams, shape); 216 result.addAttributes(attributes); 217 } 218 219 void fir::AllocaOp::build(mlir::OpBuilder &builder, 220 mlir::OperationState &result, mlir::Type inType, 221 mlir::ValueRange typeparams, mlir::ValueRange shape, 222 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 223 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, 224 /*pinned=*/false, typeparams, shape); 225 result.addAttributes(attributes); 226 } 227 228 void fir::AllocaOp::build(mlir::OpBuilder &builder, 229 mlir::OperationState &result, mlir::Type inType, 230 bool pinned, mlir::ValueRange typeparams, 231 mlir::ValueRange shape, 232 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 233 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned, 234 typeparams, shape); 235 result.addAttributes(attributes); 236 } 237 238 static mlir::LogicalResult verify(fir::AllocaOp &op) { 239 llvm::SmallVector<llvm::StringRef> visited; 240 if (verifyInType(op.getInType(), visited, op.numShapeOperands())) 241 return op.emitOpError("invalid type for allocation"); 242 if (verifyTypeParamCount(op.getInType(), op.numLenParams())) 243 return op.emitOpError("LEN params do not correspond to type"); 244 mlir::Type outType = op.getType(); 245 if (!outType.isa<fir::ReferenceType>()) 246 return op.emitOpError("must be a !fir.ref type"); 247 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 248 return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); 249 return mlir::success(); 250 } 251 252 //===----------------------------------------------------------------------===// 253 // AllocMemOp 254 //===----------------------------------------------------------------------===// 255 256 /// Create a legal heap reference as return type 257 static mlir::Type wrapAllocMemResultType(mlir::Type intype) { 258 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER 259 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well 260 // FIR semantics: one may not allocate a memory reference value 261 if (intype.isa<ReferenceType>() || intype.isa<HeapType>() || 262 intype.isa<PointerType>() || intype.isa<FunctionType>()) 263 return {}; 264 return HeapType::get(intype); 265 } 266 267 mlir::Type fir::AllocMemOp::getAllocatedType() { 268 return getType().cast<HeapType>().getEleTy(); 269 } 270 271 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { 272 return HeapType::get(ty); 273 } 274 275 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 276 mlir::OperationState &result, mlir::Type inType, 277 llvm::StringRef uniqName, 278 mlir::ValueRange typeparams, mlir::ValueRange shape, 279 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 280 auto nameAttr = builder.getStringAttr(uniqName); 281 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {}, 282 typeparams, shape); 283 result.addAttributes(attributes); 284 } 285 286 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 287 mlir::OperationState &result, mlir::Type inType, 288 llvm::StringRef uniqName, llvm::StringRef bindcName, 289 mlir::ValueRange typeparams, mlir::ValueRange shape, 290 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 291 auto nameAttr = builder.getStringAttr(uniqName); 292 auto bindcAttr = builder.getStringAttr(bindcName); 293 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, 294 bindcAttr, typeparams, shape); 295 result.addAttributes(attributes); 296 } 297 298 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 299 mlir::OperationState &result, mlir::Type inType, 300 mlir::ValueRange typeparams, mlir::ValueRange shape, 301 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 302 build(builder, result, wrapAllocMemResultType(inType), inType, {}, {}, 303 typeparams, shape); 304 result.addAttributes(attributes); 305 } 306 307 static mlir::LogicalResult verify(fir::AllocMemOp op) { 308 llvm::SmallVector<llvm::StringRef> visited; 309 if (verifyInType(op.getInType(), visited, op.numShapeOperands())) 310 return op.emitOpError("invalid type for allocation"); 311 if (verifyTypeParamCount(op.getInType(), op.numLenParams())) 312 return op.emitOpError("LEN params do not correspond to type"); 313 mlir::Type outType = op.getType(); 314 if (!outType.dyn_cast<fir::HeapType>()) 315 return op.emitOpError("must be a !fir.heap type"); 316 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 317 return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); 318 return mlir::success(); 319 } 320 321 //===----------------------------------------------------------------------===// 322 // ArrayCoorOp 323 //===----------------------------------------------------------------------===// 324 325 static mlir::LogicalResult verify(fir::ArrayCoorOp op) { 326 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 327 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 328 if (!arrTy) 329 return op.emitOpError("must be a reference to an array"); 330 auto arrDim = arrTy.getDimension(); 331 332 if (auto shapeOp = op.shape()) { 333 auto shapeTy = shapeOp.getType(); 334 unsigned shapeTyRank = 0; 335 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 336 shapeTyRank = s.getRank(); 337 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 338 shapeTyRank = ss.getRank(); 339 } else { 340 auto s = shapeTy.cast<fir::ShiftType>(); 341 shapeTyRank = s.getRank(); 342 if (!op.memref().getType().isa<fir::BoxType>()) 343 return op.emitOpError("shift can only be provided with fir.box memref"); 344 } 345 if (arrDim && arrDim != shapeTyRank) 346 return op.emitOpError("rank of dimension mismatched"); 347 if (shapeTyRank != op.indices().size()) 348 return op.emitOpError("number of indices do not match dim rank"); 349 } 350 351 if (auto sliceOp = op.slice()) 352 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 353 if (sliceTy.getRank() != arrDim) 354 return op.emitOpError("rank of dimension in slice mismatched"); 355 356 return mlir::success(); 357 } 358 359 //===----------------------------------------------------------------------===// 360 // ArrayLoadOp 361 //===----------------------------------------------------------------------===// 362 363 static mlir::Type adjustedElementType(mlir::Type t) { 364 if (auto ty = t.dyn_cast<fir::ReferenceType>()) { 365 auto eleTy = ty.getEleTy(); 366 if (fir::isa_char(eleTy)) 367 return eleTy; 368 if (fir::isa_derived(eleTy)) 369 return eleTy; 370 if (eleTy.isa<fir::SequenceType>()) 371 return eleTy; 372 } 373 return t; 374 } 375 376 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { 377 if (auto sh = shape()) 378 if (auto *op = sh.getDefiningOp()) { 379 if (auto shOp = dyn_cast<fir::ShapeOp>(op)) 380 return shOp.getExtents(); 381 return cast<fir::ShapeShiftOp>(op).getExtents(); 382 } 383 return {}; 384 } 385 386 static mlir::LogicalResult verify(fir::ArrayLoadOp op) { 387 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 388 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 389 if (!arrTy) 390 return op.emitOpError("must be a reference to an array"); 391 auto arrDim = arrTy.getDimension(); 392 393 if (auto shapeOp = op.shape()) { 394 auto shapeTy = shapeOp.getType(); 395 unsigned shapeTyRank = 0; 396 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 397 shapeTyRank = s.getRank(); 398 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 399 shapeTyRank = ss.getRank(); 400 } else { 401 auto s = shapeTy.cast<fir::ShiftType>(); 402 shapeTyRank = s.getRank(); 403 if (!op.memref().getType().isa<fir::BoxType>()) 404 return op.emitOpError("shift can only be provided with fir.box memref"); 405 } 406 if (arrDim && arrDim != shapeTyRank) 407 return op.emitOpError("rank of dimension mismatched"); 408 } 409 410 if (auto sliceOp = op.slice()) 411 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 412 if (sliceTy.getRank() != arrDim) 413 return op.emitOpError("rank of dimension in slice mismatched"); 414 415 return mlir::success(); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // ArrayMergeStoreOp 420 //===----------------------------------------------------------------------===// 421 422 static mlir::LogicalResult verify(fir::ArrayMergeStoreOp op) { 423 if (!isa<ArrayLoadOp>(op.original().getDefiningOp())) 424 return op.emitOpError("operand #0 must be result of a fir.array_load op"); 425 if (auto sl = op.slice()) { 426 if (auto *slOp = sl.getDefiningOp()) { 427 auto sliceOp = mlir::cast<fir::SliceOp>(slOp); 428 if (!sliceOp.fields().empty()) { 429 // This is an intra-object merge, where the slice is projecting the 430 // subfields that are to be overwritten by the merge operation. 431 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 432 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 433 auto projTy = 434 fir::applyPathToType(seqTy.getEleTy(), sliceOp.fields()); 435 if (fir::unwrapSequenceType(op.original().getType()) != projTy) 436 return op.emitOpError( 437 "type of origin does not match sliced memref type"); 438 if (fir::unwrapSequenceType(op.sequence().getType()) != projTy) 439 return op.emitOpError( 440 "type of sequence does not match sliced memref type"); 441 return mlir::success(); 442 } 443 return op.emitOpError("referenced type is not an array"); 444 } 445 } 446 return mlir::success(); 447 } 448 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 449 if (op.original().getType() != eleTy) 450 return op.emitOpError("type of origin does not match memref element type"); 451 if (op.sequence().getType() != eleTy) 452 return op.emitOpError( 453 "type of sequence does not match memref element type"); 454 return mlir::success(); 455 } 456 457 //===----------------------------------------------------------------------===// 458 // ArrayFetchOp 459 //===----------------------------------------------------------------------===// 460 461 // Template function used for both array_fetch and array_update verification. 462 template <typename A> 463 mlir::Type validArraySubobject(A op) { 464 auto ty = op.sequence().getType(); 465 return fir::applyPathToType(ty, op.indices()); 466 } 467 468 static mlir::LogicalResult verify(fir::ArrayFetchOp op) { 469 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 470 auto indSize = op.indices().size(); 471 if (indSize < arrTy.getDimension()) 472 return op.emitOpError("number of indices != dimension of array"); 473 if (indSize == arrTy.getDimension() && 474 ::adjustedElementType(op.element().getType()) != arrTy.getEleTy()) 475 return op.emitOpError("return type does not match array"); 476 auto ty = validArraySubobject(op); 477 if (!ty || ty != ::adjustedElementType(op.getType())) 478 return op.emitOpError("return type and/or indices do not type check"); 479 if (!isa<fir::ArrayLoadOp>(op.sequence().getDefiningOp())) 480 return op.emitOpError("argument #0 must be result of fir.array_load"); 481 return mlir::success(); 482 } 483 484 //===----------------------------------------------------------------------===// 485 // ArrayUpdateOp 486 //===----------------------------------------------------------------------===// 487 488 static mlir::LogicalResult verify(fir::ArrayUpdateOp op) { 489 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 490 auto indSize = op.indices().size(); 491 if (indSize < arrTy.getDimension()) 492 return op.emitOpError("number of indices != dimension of array"); 493 if (indSize == arrTy.getDimension() && 494 ::adjustedElementType(op.merge().getType()) != arrTy.getEleTy()) 495 return op.emitOpError("merged value does not have element type"); 496 auto ty = validArraySubobject(op); 497 if (!ty || ty != ::adjustedElementType(op.merge().getType())) 498 return op.emitOpError("merged value and/or indices do not type check"); 499 return mlir::success(); 500 } 501 502 //===----------------------------------------------------------------------===// 503 // ArrayModifyOp 504 //===----------------------------------------------------------------------===// 505 506 static mlir::LogicalResult verify(fir::ArrayModifyOp op) { 507 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 508 auto indSize = op.indices().size(); 509 if (indSize < arrTy.getDimension()) 510 return op.emitOpError("number of indices must match array dimension"); 511 return mlir::success(); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // BoxAddrOp 516 //===----------------------------------------------------------------------===// 517 518 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 519 if (auto v = val().getDefiningOp()) { 520 if (auto box = dyn_cast<fir::EmboxOp>(v)) 521 return box.memref(); 522 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 523 return box.memref(); 524 } 525 return {}; 526 } 527 528 //===----------------------------------------------------------------------===// 529 // BoxCharLenOp 530 //===----------------------------------------------------------------------===// 531 532 mlir::OpFoldResult 533 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 534 if (auto v = val().getDefiningOp()) { 535 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 536 return box.len(); 537 } 538 return {}; 539 } 540 541 //===----------------------------------------------------------------------===// 542 // BoxDimsOp 543 //===----------------------------------------------------------------------===// 544 545 /// Get the result types packed in a tuple tuple 546 mlir::Type fir::BoxDimsOp::getTupleType() { 547 // note: triple, but 4 is nearest power of 2 548 llvm::SmallVector<mlir::Type> triple{ 549 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; 550 return mlir::TupleType::get(getContext(), triple); 551 } 552 553 //===----------------------------------------------------------------------===// 554 // CallOp 555 //===----------------------------------------------------------------------===// 556 557 mlir::FunctionType fir::CallOp::getFunctionType() { 558 return mlir::FunctionType::get(getContext(), getOperandTypes(), 559 getResultTypes()); 560 } 561 562 static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) { 563 auto callee = op.callee(); 564 bool isDirect = callee.hasValue(); 565 p << ' '; 566 if (isDirect) 567 p << callee.getValue(); 568 else 569 p << op.getOperand(0); 570 p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')'; 571 p.printOptionalAttrDict(op->getAttrs(), {"callee"}); 572 auto resultTypes{op.getResultTypes()}; 573 llvm::SmallVector<Type> argTypes( 574 llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1)); 575 p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes); 576 } 577 578 static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser, 579 mlir::OperationState &result) { 580 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 581 if (parser.parseOperandList(operands)) 582 return mlir::failure(); 583 584 mlir::NamedAttrList attrs; 585 mlir::SymbolRefAttr funcAttr; 586 bool isDirect = operands.empty(); 587 if (isDirect) 588 if (parser.parseAttribute(funcAttr, "callee", attrs)) 589 return mlir::failure(); 590 591 Type type; 592 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 593 parser.parseOptionalAttrDict(attrs) || parser.parseColon() || 594 parser.parseType(type)) 595 return mlir::failure(); 596 597 auto funcType = type.dyn_cast<mlir::FunctionType>(); 598 if (!funcType) 599 return parser.emitError(parser.getNameLoc(), "expected function type"); 600 if (isDirect) { 601 if (parser.resolveOperands(operands, funcType.getInputs(), 602 parser.getNameLoc(), result.operands)) 603 return mlir::failure(); 604 } else { 605 auto funcArgs = 606 llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front(); 607 if (parser.resolveOperand(operands[0], funcType, result.operands) || 608 parser.resolveOperands(funcArgs, funcType.getInputs(), 609 parser.getNameLoc(), result.operands)) 610 return mlir::failure(); 611 } 612 result.addTypes(funcType.getResults()); 613 result.attributes = attrs; 614 return mlir::success(); 615 } 616 617 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 618 mlir::FuncOp callee, mlir::ValueRange operands) { 619 result.addOperands(operands); 620 result.addAttribute(getCalleeAttrName(), SymbolRefAttr::get(callee)); 621 result.addTypes(callee.getType().getResults()); 622 } 623 624 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 625 mlir::SymbolRefAttr callee, 626 llvm::ArrayRef<mlir::Type> results, 627 mlir::ValueRange operands) { 628 result.addOperands(operands); 629 if (callee) 630 result.addAttribute(getCalleeAttrName(), callee); 631 result.addTypes(results); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // CmpOp 636 //===----------------------------------------------------------------------===// 637 638 template <typename OPTY> 639 static void printCmpOp(OpAsmPrinter &p, OPTY op) { 640 p << ' '; 641 auto predSym = mlir::arith::symbolizeCmpFPredicate( 642 op->template getAttrOfType<mlir::IntegerAttr>( 643 OPTY::getPredicateAttrName()) 644 .getInt()); 645 assert(predSym.hasValue() && "invalid symbol value for predicate"); 646 p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"' 647 << ", "; 648 p.printOperand(op.lhs()); 649 p << ", "; 650 p.printOperand(op.rhs()); 651 p.printOptionalAttrDict(op->getAttrs(), 652 /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); 653 p << " : " << op.lhs().getType(); 654 } 655 656 template <typename OPTY> 657 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, 658 mlir::OperationState &result) { 659 llvm::SmallVector<mlir::OpAsmParser::OperandType> ops; 660 mlir::NamedAttrList attrs; 661 mlir::Attribute predicateNameAttr; 662 mlir::Type type; 663 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), 664 attrs) || 665 parser.parseComma() || parser.parseOperandList(ops, 2) || 666 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || 667 parser.resolveOperands(ops, type, result.operands)) 668 return failure(); 669 670 if (!predicateNameAttr.isa<mlir::StringAttr>()) 671 return parser.emitError(parser.getNameLoc(), 672 "expected string comparison predicate attribute"); 673 674 // Rewrite string attribute to an enum value. 675 llvm::StringRef predicateName = 676 predicateNameAttr.cast<mlir::StringAttr>().getValue(); 677 auto predicate = fir::CmpcOp::getPredicateByName(predicateName); 678 auto builder = parser.getBuilder(); 679 mlir::Type i1Type = builder.getI1Type(); 680 attrs.set(OPTY::getPredicateAttrName(), 681 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 682 result.attributes = attrs; 683 result.addTypes({i1Type}); 684 return success(); 685 } 686 687 //===----------------------------------------------------------------------===// 688 // CharConvertOp 689 //===----------------------------------------------------------------------===// 690 691 static mlir::LogicalResult verify(fir::CharConvertOp op) { 692 auto unwrap = [&](mlir::Type t) { 693 t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t)); 694 return t.dyn_cast<fir::CharacterType>(); 695 }; 696 auto inTy = unwrap(op.from().getType()); 697 auto outTy = unwrap(op.to().getType()); 698 if (!(inTy && outTy)) 699 return op.emitOpError("not a reference to a character"); 700 if (inTy.getFKind() == outTy.getFKind()) 701 return op.emitOpError("buffers must have different KIND values"); 702 return mlir::success(); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // CmpcOp 707 //===----------------------------------------------------------------------===// 708 709 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, 710 arith::CmpFPredicate predicate, Value lhs, Value rhs) { 711 result.addOperands({lhs, rhs}); 712 result.types.push_back(builder.getI1Type()); 713 result.addAttribute( 714 fir::CmpcOp::getPredicateAttrName(), 715 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 716 } 717 718 mlir::arith::CmpFPredicate 719 fir::CmpcOp::getPredicateByName(llvm::StringRef name) { 720 auto pred = mlir::arith::symbolizeCmpFPredicate(name); 721 assert(pred.hasValue() && "invalid predicate name"); 722 return pred.getValue(); 723 } 724 725 static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); } 726 727 mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser, 728 mlir::OperationState &result) { 729 return parseCmpOp<fir::CmpcOp>(parser, result); 730 } 731 732 //===----------------------------------------------------------------------===// 733 // ConstcOp 734 //===----------------------------------------------------------------------===// 735 736 static mlir::ParseResult parseConstcOp(mlir::OpAsmParser &parser, 737 mlir::OperationState &result) { 738 fir::RealAttr realp; 739 fir::RealAttr imagp; 740 mlir::Type type; 741 if (parser.parseLParen() || 742 parser.parseAttribute(realp, fir::ConstcOp::realAttrName(), 743 result.attributes) || 744 parser.parseComma() || 745 parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(), 746 result.attributes) || 747 parser.parseRParen() || parser.parseColonType(type) || 748 parser.addTypesToList(type, result.types)) 749 return mlir::failure(); 750 return mlir::success(); 751 } 752 753 static void print(mlir::OpAsmPrinter &p, fir::ConstcOp &op) { 754 p << " (0x"; 755 auto f1 = op.getOperation() 756 ->getAttr(fir::ConstcOp::realAttrName()) 757 .cast<mlir::FloatAttr>(); 758 auto i1 = f1.getValue().bitcastToAPInt(); 759 p.getStream().write_hex(i1.getZExtValue()); 760 p << ", 0x"; 761 auto f2 = op.getOperation() 762 ->getAttr(fir::ConstcOp::imagAttrName()) 763 .cast<mlir::FloatAttr>(); 764 auto i2 = f2.getValue().bitcastToAPInt(); 765 p.getStream().write_hex(i2.getZExtValue()); 766 p << ") : "; 767 p.printType(op.getType()); 768 } 769 770 static mlir::LogicalResult verify(fir::ConstcOp &op) { 771 if (!op.getType().isa<fir::ComplexType>()) 772 return op.emitOpError("must be a !fir.complex type"); 773 return mlir::success(); 774 } 775 776 //===----------------------------------------------------------------------===// 777 // ConvertOp 778 //===----------------------------------------------------------------------===// 779 780 void fir::ConvertOp::getCanonicalizationPatterns( 781 OwningRewritePatternList &results, MLIRContext *context) { 782 results.insert<ConvertConvertOptPattern, RedundantConvertOptPattern, 783 CombineConvertOptPattern, ForwardConstantConvertPattern>( 784 context); 785 } 786 787 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 788 if (value().getType() == getType()) 789 return value(); 790 if (matchPattern(value(), m_Op<fir::ConvertOp>())) { 791 auto inner = cast<fir::ConvertOp>(value().getDefiningOp()); 792 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a 793 if (auto toTy = getType().dyn_cast<fir::LogicalType>()) 794 if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>()) 795 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy)) 796 return inner.value(); 797 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a 798 if (auto toTy = getType().dyn_cast<mlir::IntegerType>()) 799 if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>()) 800 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) && 801 (fromTy.getWidth() == 1)) 802 return inner.value(); 803 } 804 return {}; 805 } 806 807 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { 808 return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() || 809 ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>(); 810 } 811 812 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { 813 return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>(); 814 } 815 816 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { 817 return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() || 818 ty.isa<fir::HeapType>() || ty.isa<mlir::MemRefType>() || 819 ty.isa<mlir::FunctionType>() || ty.isa<fir::TypeDescType>(); 820 } 821 822 static mlir::LogicalResult verify(fir::ConvertOp &op) { 823 auto inType = op.value().getType(); 824 auto outType = op.getType(); 825 if (inType == outType) 826 return mlir::success(); 827 if ((op.isPointerCompatible(inType) && op.isPointerCompatible(outType)) || 828 (op.isIntegerCompatible(inType) && op.isIntegerCompatible(outType)) || 829 (op.isIntegerCompatible(inType) && op.isFloatCompatible(outType)) || 830 (op.isFloatCompatible(inType) && op.isIntegerCompatible(outType)) || 831 (op.isFloatCompatible(inType) && op.isFloatCompatible(outType)) || 832 (op.isIntegerCompatible(inType) && op.isPointerCompatible(outType)) || 833 (op.isPointerCompatible(inType) && op.isIntegerCompatible(outType)) || 834 (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) || 835 (fir::isa_complex(inType) && fir::isa_complex(outType))) 836 return mlir::success(); 837 return op.emitOpError("invalid type conversion"); 838 } 839 840 //===----------------------------------------------------------------------===// 841 // CoordinateOp 842 //===----------------------------------------------------------------------===// 843 844 static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) { 845 p << ' ' << op.ref() << ", " << op.coor(); 846 p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"}); 847 p << " : "; 848 p.printFunctionalType(op.getOperandTypes(), op->getResultTypes()); 849 } 850 851 static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser, 852 mlir::OperationState &result) { 853 mlir::OpAsmParser::OperandType memref; 854 if (parser.parseOperand(memref) || parser.parseComma()) 855 return mlir::failure(); 856 llvm::SmallVector<mlir::OpAsmParser::OperandType> coorOperands; 857 if (parser.parseOperandList(coorOperands)) 858 return mlir::failure(); 859 llvm::SmallVector<mlir::OpAsmParser::OperandType> allOperands; 860 allOperands.push_back(memref); 861 allOperands.append(coorOperands.begin(), coorOperands.end()); 862 mlir::FunctionType funcTy; 863 auto loc = parser.getCurrentLocation(); 864 if (parser.parseOptionalAttrDict(result.attributes) || 865 parser.parseColonType(funcTy) || 866 parser.resolveOperands(allOperands, funcTy.getInputs(), loc, 867 result.operands)) 868 return failure(); 869 parser.addTypesToList(funcTy.getResults(), result.types); 870 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); 871 return mlir::success(); 872 } 873 874 static mlir::LogicalResult verify(fir::CoordinateOp op) { 875 auto refTy = op.ref().getType(); 876 if (fir::isa_ref_type(refTy)) { 877 auto eleTy = fir::dyn_cast_ptrEleTy(refTy); 878 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) { 879 if (arrTy.hasUnknownShape()) 880 return op.emitOpError("cannot find coordinate in unknown shape"); 881 if (arrTy.getConstantRows() < arrTy.getDimension() - 1) 882 return op.emitOpError("cannot find coordinate with unknown extents"); 883 } 884 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || 885 fir::isa_char_string(eleTy))) 886 return op.emitOpError("cannot apply coordinate_of to this type"); 887 } 888 // Recovering a LEN type parameter only makes sense from a boxed value. For a 889 // bare reference, the LEN type parameters must be passed as additional 890 // arguments to `op`. 891 for (auto co : op.coor()) 892 if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) { 893 if (op.getNumOperands() != 2) 894 return op.emitOpError("len_param_index must be last argument"); 895 if (!op.ref().getType().isa<BoxType>()) 896 return op.emitOpError("len_param_index must be used on box type"); 897 } 898 return mlir::success(); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // DispatchOp 903 //===----------------------------------------------------------------------===// 904 905 mlir::FunctionType fir::DispatchOp::getFunctionType() { 906 return mlir::FunctionType::get(getContext(), getOperandTypes(), 907 getResultTypes()); 908 } 909 910 static mlir::ParseResult parseDispatchOp(mlir::OpAsmParser &parser, 911 mlir::OperationState &result) { 912 mlir::FunctionType calleeType; 913 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 914 auto calleeLoc = parser.getNameLoc(); 915 llvm::StringRef calleeName; 916 if (failed(parser.parseOptionalKeyword(&calleeName))) { 917 mlir::StringAttr calleeAttr; 918 if (parser.parseAttribute(calleeAttr, fir::DispatchOp::getMethodAttrName(), 919 result.attributes)) 920 return mlir::failure(); 921 } else { 922 result.addAttribute(fir::DispatchOp::getMethodAttrName(), 923 parser.getBuilder().getStringAttr(calleeName)); 924 } 925 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 926 parser.parseOptionalAttrDict(result.attributes) || 927 parser.parseColonType(calleeType) || 928 parser.addTypesToList(calleeType.getResults(), result.types) || 929 parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc, 930 result.operands)) 931 return mlir::failure(); 932 return mlir::success(); 933 } 934 935 static void print(mlir::OpAsmPrinter &p, fir::DispatchOp &op) { 936 p << ' ' << op.getOperation()->getAttr(fir::DispatchOp::getMethodAttrName()) 937 << '('; 938 p.printOperand(op.object()); 939 if (!op.args().empty()) { 940 p << ", "; 941 p.printOperands(op.args()); 942 } 943 p << ") : "; 944 p.printFunctionalType(op.getOperation()->getOperandTypes(), 945 op.getOperation()->getResultTypes()); 946 } 947 948 //===----------------------------------------------------------------------===// 949 // DispatchTableOp 950 //===----------------------------------------------------------------------===// 951 952 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { 953 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp"); 954 auto &block = getBlock(); 955 block.getOperations().insert(block.end(), op); 956 } 957 958 static mlir::ParseResult parseDispatchTableOp(mlir::OpAsmParser &parser, 959 mlir::OperationState &result) { 960 // Parse the name as a symbol reference attribute. 961 SymbolRefAttr nameAttr; 962 if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 963 result.attributes)) 964 return failure(); 965 966 // Convert the parsed name attr into a string attr. 967 result.attributes.set(mlir::SymbolTable::getSymbolAttrName(), 968 nameAttr.getRootReference()); 969 970 // Parse the optional table body. 971 mlir::Region *body = result.addRegion(); 972 OptionalParseResult parseResult = parser.parseOptionalRegion(*body); 973 if (parseResult.hasValue() && failed(*parseResult)) 974 return mlir::failure(); 975 976 fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(), 977 result.location); 978 return mlir::success(); 979 } 980 981 static void print(mlir::OpAsmPrinter &p, fir::DispatchTableOp &op) { 982 auto tableName = 983 op.getOperation() 984 ->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()) 985 .getValue(); 986 p << " @" << tableName; 987 988 Region &body = op.getOperation()->getRegion(0); 989 if (!body.empty()) 990 p.printRegion(body, /*printEntryBlockArgs=*/false, 991 /*printBlockTerminators=*/false); 992 } 993 994 static mlir::LogicalResult verify(fir::DispatchTableOp &op) { 995 for (auto &op : op.getBlock()) 996 if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op))) 997 return op.emitOpError("dispatch table must contain dt_entry"); 998 return mlir::success(); 999 } 1000 1001 //===----------------------------------------------------------------------===// 1002 // EmboxOp 1003 //===----------------------------------------------------------------------===// 1004 1005 static mlir::LogicalResult verify(fir::EmboxOp op) { 1006 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 1007 bool isArray = false; 1008 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 1009 eleTy = seqTy.getEleTy(); 1010 isArray = true; 1011 } 1012 if (op.hasLenParams()) { 1013 auto lenPs = op.numLenParams(); 1014 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) { 1015 if (lenPs != rt.getNumLenParams()) 1016 return op.emitOpError("number of LEN params does not correspond" 1017 " to the !fir.type type"); 1018 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) { 1019 if (strTy.getLen() != fir::CharacterType::unknownLen()) 1020 return op.emitOpError("CHARACTER already has static LEN"); 1021 } else { 1022 return op.emitOpError("LEN parameters require CHARACTER or derived type"); 1023 } 1024 for (auto lp : op.typeparams()) 1025 if (!fir::isa_integer(lp.getType())) 1026 return op.emitOpError("LEN parameters must be integral type"); 1027 } 1028 if (op.getShape() && !isArray) 1029 return op.emitOpError("shape must not be provided for a scalar"); 1030 if (op.getSlice() && !isArray) 1031 return op.emitOpError("slice must not be provided for a scalar"); 1032 return mlir::success(); 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // EmboxCharOp 1037 //===----------------------------------------------------------------------===// 1038 1039 static mlir::LogicalResult verify(fir::EmboxCharOp &op) { 1040 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 1041 if (!eleTy.dyn_cast_or_null<CharacterType>()) 1042 return mlir::failure(); 1043 return mlir::success(); 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // EmboxProcOp 1048 //===----------------------------------------------------------------------===// 1049 1050 static mlir::ParseResult parseEmboxProcOp(mlir::OpAsmParser &parser, 1051 mlir::OperationState &result) { 1052 mlir::SymbolRefAttr procRef; 1053 if (parser.parseAttribute(procRef, "funcname", result.attributes)) 1054 return mlir::failure(); 1055 bool hasTuple = false; 1056 mlir::OpAsmParser::OperandType tupleRef; 1057 if (!parser.parseOptionalComma()) { 1058 if (parser.parseOperand(tupleRef)) 1059 return mlir::failure(); 1060 hasTuple = true; 1061 } 1062 mlir::FunctionType type; 1063 if (parser.parseColon() || parser.parseLParen() || parser.parseType(type)) 1064 return mlir::failure(); 1065 result.addAttribute("functype", mlir::TypeAttr::get(type)); 1066 if (hasTuple) { 1067 mlir::Type tupleType; 1068 if (parser.parseComma() || parser.parseType(tupleType) || 1069 parser.resolveOperand(tupleRef, tupleType, result.operands)) 1070 return mlir::failure(); 1071 } 1072 mlir::Type boxType; 1073 if (parser.parseRParen() || parser.parseArrow() || 1074 parser.parseType(boxType) || parser.addTypesToList(boxType, result.types)) 1075 return mlir::failure(); 1076 return mlir::success(); 1077 } 1078 1079 static void print(mlir::OpAsmPrinter &p, fir::EmboxProcOp &op) { 1080 p << ' ' << op.getOperation()->getAttr("funcname"); 1081 auto h = op.host(); 1082 if (h) { 1083 p << ", "; 1084 p.printOperand(h); 1085 } 1086 p << " : (" << op.getOperation()->getAttr("functype"); 1087 if (h) 1088 p << ", " << h.getType(); 1089 p << ") -> " << op.getType(); 1090 } 1091 1092 static mlir::LogicalResult verify(fir::EmboxProcOp &op) { 1093 // host bindings (optional) must be a reference to a tuple 1094 if (auto h = op.host()) { 1095 if (auto r = h.getType().dyn_cast<ReferenceType>()) { 1096 if (!r.getEleTy().dyn_cast<mlir::TupleType>()) 1097 return mlir::failure(); 1098 } else { 1099 return mlir::failure(); 1100 } 1101 } 1102 return mlir::success(); 1103 } 1104 1105 //===----------------------------------------------------------------------===// 1106 // GenTypeDescOp 1107 //===----------------------------------------------------------------------===// 1108 1109 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, 1110 mlir::TypeAttr inty) { 1111 result.addAttribute("in_type", inty); 1112 result.addTypes(TypeDescType::get(inty.getValue())); 1113 } 1114 1115 static mlir::ParseResult parseGenTypeDescOp(mlir::OpAsmParser &parser, 1116 mlir::OperationState &result) { 1117 mlir::Type intype; 1118 if (parser.parseType(intype)) 1119 return mlir::failure(); 1120 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 1121 mlir::Type restype = TypeDescType::get(intype); 1122 if (parser.addTypeToList(restype, result.types)) 1123 return mlir::failure(); 1124 return mlir::success(); 1125 } 1126 1127 static void print(mlir::OpAsmPrinter &p, fir::GenTypeDescOp &op) { 1128 p << ' ' << op.getOperation()->getAttr("in_type"); 1129 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {"in_type"}); 1130 } 1131 1132 static mlir::LogicalResult verify(fir::GenTypeDescOp &op) { 1133 mlir::Type resultTy = op.getType(); 1134 if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) { 1135 if (tdesc.getOfTy() != op.getInType()) 1136 return op.emitOpError("wrapped type mismatched"); 1137 } else { 1138 return op.emitOpError("must be !fir.tdesc type"); 1139 } 1140 return mlir::success(); 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // GlobalOp 1145 //===----------------------------------------------------------------------===// 1146 1147 static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { 1148 // Parse the optional linkage 1149 llvm::StringRef linkage; 1150 auto &builder = parser.getBuilder(); 1151 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { 1152 if (fir::GlobalOp::verifyValidLinkage(linkage)) 1153 return mlir::failure(); 1154 mlir::StringAttr linkAttr = builder.getStringAttr(linkage); 1155 result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); 1156 } 1157 1158 // Parse the name as a symbol reference attribute. 1159 mlir::SymbolRefAttr nameAttr; 1160 if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(), 1161 result.attributes)) 1162 return mlir::failure(); 1163 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1164 nameAttr.getRootReference()); 1165 1166 bool simpleInitializer = false; 1167 if (mlir::succeeded(parser.parseOptionalLParen())) { 1168 Attribute attr; 1169 if (parser.parseAttribute(attr, "initVal", result.attributes) || 1170 parser.parseRParen()) 1171 return mlir::failure(); 1172 simpleInitializer = true; 1173 } 1174 1175 if (succeeded(parser.parseOptionalKeyword("constant"))) { 1176 // if "constant" keyword then mark this as a constant, not a variable 1177 result.addAttribute("constant", builder.getUnitAttr()); 1178 } 1179 1180 mlir::Type globalType; 1181 if (parser.parseColonType(globalType)) 1182 return mlir::failure(); 1183 1184 result.addAttribute(fir::GlobalOp::typeAttrName(result.name), 1185 mlir::TypeAttr::get(globalType)); 1186 1187 if (simpleInitializer) { 1188 result.addRegion(); 1189 } else { 1190 // Parse the optional initializer body. 1191 auto parseResult = parser.parseOptionalRegion( 1192 *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); 1193 if (parseResult.hasValue() && mlir::failed(*parseResult)) 1194 return mlir::failure(); 1195 } 1196 1197 return mlir::success(); 1198 } 1199 1200 static void print(mlir::OpAsmPrinter &p, fir::GlobalOp &op) { 1201 if (op.linkName().hasValue()) 1202 p << ' ' << op.linkName().getValue(); 1203 p << ' '; 1204 p.printAttributeWithoutType( 1205 op.getOperation()->getAttr(fir::GlobalOp::symbolAttrName())); 1206 if (auto val = op.getValueOrNull()) 1207 p << '(' << val << ')'; 1208 if (op.getOperation()->getAttr(fir::GlobalOp::getConstantAttrName())) 1209 p << " constant"; 1210 p << " : "; 1211 p.printType(op.getType()); 1212 if (op.hasInitializationBody()) 1213 p.printRegion(op.getOperation()->getRegion(0), 1214 /*printEntryBlockArgs=*/false, 1215 /*printBlockTerminators=*/true); 1216 } 1217 1218 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { 1219 getBlock().getOperations().push_back(op); 1220 } 1221 1222 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1223 StringRef name, bool isConstant, Type type, 1224 Attribute initialVal, StringAttr linkage, 1225 ArrayRef<NamedAttribute> attrs) { 1226 result.addRegion(); 1227 result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type)); 1228 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1229 builder.getStringAttr(name)); 1230 result.addAttribute(symbolAttrName(), 1231 SymbolRefAttr::get(builder.getContext(), name)); 1232 if (isConstant) 1233 result.addAttribute(constantAttrName(result.name), builder.getUnitAttr()); 1234 if (initialVal) 1235 result.addAttribute(initValAttrName(result.name), initialVal); 1236 if (linkage) 1237 result.addAttribute(linkageAttrName(), linkage); 1238 result.attributes.append(attrs.begin(), attrs.end()); 1239 } 1240 1241 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1242 StringRef name, Type type, Attribute initialVal, 1243 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1244 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1245 } 1246 1247 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1248 StringRef name, bool isConstant, Type type, 1249 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1250 build(builder, result, name, isConstant, type, {}, linkage, attrs); 1251 } 1252 1253 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1254 StringRef name, Type type, StringAttr linkage, 1255 ArrayRef<NamedAttribute> attrs) { 1256 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1257 } 1258 1259 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1260 StringRef name, bool isConstant, Type type, 1261 ArrayRef<NamedAttribute> attrs) { 1262 build(builder, result, name, isConstant, type, StringAttr{}, attrs); 1263 } 1264 1265 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1266 StringRef name, Type type, 1267 ArrayRef<NamedAttribute> attrs) { 1268 build(builder, result, name, /*isConstant=*/false, type, attrs); 1269 } 1270 1271 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { 1272 // Supporting only a subset of the LLVM linkage types for now 1273 static const char *validNames[] = {"common", "internal", "linkonce", "weak"}; 1274 return mlir::success(llvm::is_contained(validNames, linkage)); 1275 } 1276 1277 template <bool AllowFields> 1278 static void appendAsAttribute(llvm::SmallVectorImpl<mlir::Attribute> &attrs, 1279 mlir::Value val) { 1280 if (auto *op = val.getDefiningOp()) { 1281 if (auto cop = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) { 1282 // append the integer constant value 1283 if (auto iattr = cop.value().dyn_cast<mlir::IntegerAttr>()) { 1284 attrs.push_back(iattr); 1285 return; 1286 } 1287 } else if (auto fld = mlir::dyn_cast<fir::FieldIndexOp>(op)) { 1288 if constexpr (AllowFields) { 1289 // append the field name and the record type 1290 attrs.push_back(fld.field_idAttr()); 1291 attrs.push_back(fld.on_typeAttr()); 1292 return; 1293 } 1294 } 1295 } 1296 llvm::report_fatal_error("cannot build Op with these arguments"); 1297 } 1298 1299 template <bool AllowFields = true> 1300 static mlir::ArrayAttr collectAsAttributes(mlir::MLIRContext *ctxt, 1301 OperationState &result, 1302 llvm::ArrayRef<mlir::Value> inds) { 1303 llvm::SmallVector<mlir::Attribute> attrs; 1304 for (auto v : inds) 1305 appendAsAttribute<AllowFields>(attrs, v); 1306 assert(!attrs.empty()); 1307 return mlir::ArrayAttr::get(ctxt, attrs); 1308 } 1309 1310 //===----------------------------------------------------------------------===// 1311 // GlobalLenOp 1312 //===----------------------------------------------------------------------===// 1313 1314 static mlir::ParseResult parseGlobalLenOp(mlir::OpAsmParser &parser, 1315 mlir::OperationState &result) { 1316 llvm::StringRef fieldName; 1317 if (failed(parser.parseOptionalKeyword(&fieldName))) { 1318 mlir::StringAttr fieldAttr; 1319 if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(), 1320 result.attributes)) 1321 return mlir::failure(); 1322 } else { 1323 result.addAttribute(fir::GlobalLenOp::lenParamAttrName(), 1324 parser.getBuilder().getStringAttr(fieldName)); 1325 } 1326 mlir::IntegerAttr constant; 1327 if (parser.parseComma() || 1328 parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(), 1329 result.attributes)) 1330 return mlir::failure(); 1331 return mlir::success(); 1332 } 1333 1334 static void print(mlir::OpAsmPrinter &p, fir::GlobalLenOp &op) { 1335 p << ' ' << op.getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName()) 1336 << ", " << op.getOperation()->getAttr(fir::GlobalLenOp::intAttrName()); 1337 } 1338 1339 //===----------------------------------------------------------------------===// 1340 // ExtractValueOp 1341 //===----------------------------------------------------------------------===// 1342 1343 void fir::ExtractValueOp::build(mlir::OpBuilder &builder, 1344 OperationState &result, mlir::Type resTy, 1345 mlir::Value aggVal, 1346 llvm::ArrayRef<mlir::Value> inds) { 1347 auto aa = collectAsAttributes<>(builder.getContext(), result, inds); 1348 build(builder, result, resTy, aggVal, aa); 1349 } 1350 1351 //===----------------------------------------------------------------------===// 1352 // FieldIndexOp 1353 //===----------------------------------------------------------------------===// 1354 1355 static mlir::ParseResult parseFieldIndexOp(mlir::OpAsmParser &parser, 1356 mlir::OperationState &result) { 1357 llvm::StringRef fieldName; 1358 auto &builder = parser.getBuilder(); 1359 mlir::Type recty; 1360 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1361 parser.parseType(recty)) 1362 return mlir::failure(); 1363 result.addAttribute(fir::FieldIndexOp::fieldAttrName(), 1364 builder.getStringAttr(fieldName)); 1365 if (!recty.dyn_cast<RecordType>()) 1366 return mlir::failure(); 1367 result.addAttribute(fir::FieldIndexOp::typeAttrName(), 1368 mlir::TypeAttr::get(recty)); 1369 if (!parser.parseOptionalLParen()) { 1370 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1371 llvm::SmallVector<mlir::Type> types; 1372 auto loc = parser.getNameLoc(); 1373 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 1374 parser.parseColonTypeList(types) || parser.parseRParen() || 1375 parser.resolveOperands(operands, types, loc, result.operands)) 1376 return mlir::failure(); 1377 } 1378 mlir::Type fieldType = fir::FieldType::get(builder.getContext()); 1379 if (parser.addTypeToList(fieldType, result.types)) 1380 return mlir::failure(); 1381 return mlir::success(); 1382 } 1383 1384 static void print(mlir::OpAsmPrinter &p, fir::FieldIndexOp &op) { 1385 p << ' ' 1386 << op.getOperation() 1387 ->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName()) 1388 .getValue() 1389 << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::typeAttrName()); 1390 if (op.getNumOperands()) { 1391 p << '('; 1392 p.printOperands(op.typeparams()); 1393 const auto *sep = ") : "; 1394 for (auto op : op.typeparams()) { 1395 p << sep; 1396 if (op) 1397 p.printType(op.getType()); 1398 else 1399 p << "()"; 1400 sep = ", "; 1401 } 1402 } 1403 } 1404 1405 void fir::FieldIndexOp::build(mlir::OpBuilder &builder, 1406 mlir::OperationState &result, 1407 llvm::StringRef fieldName, mlir::Type recTy, 1408 mlir::ValueRange operands) { 1409 result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName)); 1410 result.addAttribute(typeAttrName(), TypeAttr::get(recTy)); 1411 result.addOperands(operands); 1412 } 1413 1414 //===----------------------------------------------------------------------===// 1415 // InsertOnRangeOp 1416 //===----------------------------------------------------------------------===// 1417 1418 void fir::InsertOnRangeOp::build(mlir::OpBuilder &builder, 1419 OperationState &result, mlir::Type resTy, 1420 mlir::Value aggVal, mlir::Value eleVal, 1421 llvm::ArrayRef<mlir::Value> inds) { 1422 auto aa = collectAsAttributes<false>(builder.getContext(), result, inds); 1423 build(builder, result, resTy, aggVal, eleVal, aa); 1424 } 1425 1426 /// Range bounds must be nonnegative, and the range must not be empty. 1427 static mlir::LogicalResult verify(fir::InsertOnRangeOp op) { 1428 if (op.coor().size() < 2 || op.coor().size() % 2 != 0) 1429 return op.emitOpError("has uneven number of values in ranges"); 1430 bool rangeIsKnownToBeNonempty = false; 1431 for (auto i = op.coor().end(), b = op.coor().begin(); i != b;) { 1432 int64_t ub = (*--i).cast<IntegerAttr>().getInt(); 1433 int64_t lb = (*--i).cast<IntegerAttr>().getInt(); 1434 if (lb < 0 || ub < 0) 1435 return op.emitOpError("negative range bound"); 1436 if (rangeIsKnownToBeNonempty) 1437 continue; 1438 if (lb > ub) 1439 return op.emitOpError("empty range"); 1440 rangeIsKnownToBeNonempty = lb < ub; 1441 } 1442 return mlir::success(); 1443 } 1444 1445 //===----------------------------------------------------------------------===// 1446 // InsertValueOp 1447 //===----------------------------------------------------------------------===// 1448 1449 void fir::InsertValueOp::build(mlir::OpBuilder &builder, OperationState &result, 1450 mlir::Type resTy, mlir::Value aggVal, 1451 mlir::Value eleVal, 1452 llvm::ArrayRef<mlir::Value> inds) { 1453 auto aa = collectAsAttributes<>(builder.getContext(), result, inds); 1454 build(builder, result, resTy, aggVal, eleVal, aa); 1455 } 1456 1457 static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) { 1458 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>()) 1459 return iattr.getInt() == conVal; 1460 return false; 1461 } 1462 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); } 1463 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); } 1464 1465 // Undo some complex patterns created in the front-end and turn them back into 1466 // complex ops. 1467 template <typename FltOp, typename CpxOp> 1468 struct UndoComplexPattern : public mlir::RewritePattern { 1469 UndoComplexPattern(mlir::MLIRContext *ctx) 1470 : mlir::RewritePattern("fir.insert_value", 2, ctx) {} 1471 1472 mlir::LogicalResult 1473 matchAndRewrite(mlir::Operation *op, 1474 mlir::PatternRewriter &rewriter) const override { 1475 auto insval = dyn_cast_or_null<fir::InsertValueOp>(op); 1476 if (!insval || !insval.getType().isa<fir::ComplexType>()) 1477 return mlir::failure(); 1478 auto insval2 = 1479 dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp()); 1480 if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp())) 1481 return mlir::failure(); 1482 auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp()); 1483 auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp()); 1484 if (!binf || !binf2 || insval.coor().size() != 1 || 1485 !isOne(insval.coor()[0]) || insval2.coor().size() != 1 || 1486 !isZero(insval2.coor()[0])) 1487 return mlir::failure(); 1488 auto eai = 1489 dyn_cast_or_null<fir::ExtractValueOp>(binf.lhs().getDefiningOp()); 1490 auto ebi = 1491 dyn_cast_or_null<fir::ExtractValueOp>(binf.rhs().getDefiningOp()); 1492 auto ear = 1493 dyn_cast_or_null<fir::ExtractValueOp>(binf2.lhs().getDefiningOp()); 1494 auto ebr = 1495 dyn_cast_or_null<fir::ExtractValueOp>(binf2.rhs().getDefiningOp()); 1496 if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() || 1497 ebr.adt() != ebi.adt() || eai.coor().size() != 1 || 1498 !isOne(eai.coor()[0]) || ebi.coor().size() != 1 || 1499 !isOne(ebi.coor()[0]) || ear.coor().size() != 1 || 1500 !isZero(ear.coor()[0]) || ebr.coor().size() != 1 || 1501 !isZero(ebr.coor()[0])) 1502 return mlir::failure(); 1503 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt()); 1504 return mlir::success(); 1505 } 1506 }; 1507 1508 void fir::InsertValueOp::getCanonicalizationPatterns( 1509 mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { 1510 results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>, 1511 UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context); 1512 } 1513 1514 //===----------------------------------------------------------------------===// 1515 // IterWhileOp 1516 //===----------------------------------------------------------------------===// 1517 1518 void fir::IterWhileOp::build(mlir::OpBuilder &builder, 1519 mlir::OperationState &result, mlir::Value lb, 1520 mlir::Value ub, mlir::Value step, 1521 mlir::Value iterate, bool finalCountValue, 1522 mlir::ValueRange iterArgs, 1523 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1524 result.addOperands({lb, ub, step, iterate}); 1525 if (finalCountValue) { 1526 result.addTypes(builder.getIndexType()); 1527 result.addAttribute(getFinalValueAttrName(), builder.getUnitAttr()); 1528 } 1529 result.addTypes(iterate.getType()); 1530 result.addOperands(iterArgs); 1531 for (auto v : iterArgs) 1532 result.addTypes(v.getType()); 1533 mlir::Region *bodyRegion = result.addRegion(); 1534 bodyRegion->push_back(new Block{}); 1535 bodyRegion->front().addArgument(builder.getIndexType()); 1536 bodyRegion->front().addArgument(iterate.getType()); 1537 bodyRegion->front().addArguments(iterArgs.getTypes()); 1538 result.addAttributes(attributes); 1539 } 1540 1541 static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser, 1542 mlir::OperationState &result) { 1543 auto &builder = parser.getBuilder(); 1544 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1545 if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || 1546 parser.parseEqual()) 1547 return mlir::failure(); 1548 1549 // Parse loop bounds. 1550 auto indexType = builder.getIndexType(); 1551 auto i1Type = builder.getIntegerType(1); 1552 if (parser.parseOperand(lb) || 1553 parser.resolveOperand(lb, indexType, result.operands) || 1554 parser.parseKeyword("to") || parser.parseOperand(ub) || 1555 parser.resolveOperand(ub, indexType, result.operands) || 1556 parser.parseKeyword("step") || parser.parseOperand(step) || 1557 parser.parseRParen() || 1558 parser.resolveOperand(step, indexType, result.operands)) 1559 return mlir::failure(); 1560 1561 mlir::OpAsmParser::OperandType iterateVar, iterateInput; 1562 if (parser.parseKeyword("and") || parser.parseLParen() || 1563 parser.parseRegionArgument(iterateVar) || parser.parseEqual() || 1564 parser.parseOperand(iterateInput) || parser.parseRParen() || 1565 parser.resolveOperand(iterateInput, i1Type, result.operands)) 1566 return mlir::failure(); 1567 1568 // Parse the initial iteration arguments. 1569 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs; 1570 auto prependCount = false; 1571 1572 // Induction variable. 1573 regionArgs.push_back(inductionVariable); 1574 regionArgs.push_back(iterateVar); 1575 1576 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1577 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1578 llvm::SmallVector<mlir::Type> regionTypes; 1579 // Parse assignment list and results type list. 1580 if (parser.parseAssignmentList(regionArgs, operands) || 1581 parser.parseArrowTypeList(regionTypes)) 1582 return failure(); 1583 if (regionTypes.size() == operands.size() + 2) 1584 prependCount = true; 1585 llvm::ArrayRef<mlir::Type> resTypes = regionTypes; 1586 resTypes = prependCount ? resTypes.drop_front(2) : resTypes; 1587 // Resolve input operands. 1588 for (auto operandType : llvm::zip(operands, resTypes)) 1589 if (parser.resolveOperand(std::get<0>(operandType), 1590 std::get<1>(operandType), result.operands)) 1591 return failure(); 1592 if (prependCount) { 1593 result.addTypes(regionTypes); 1594 } else { 1595 result.addTypes(i1Type); 1596 result.addTypes(resTypes); 1597 } 1598 } else if (succeeded(parser.parseOptionalArrow())) { 1599 llvm::SmallVector<mlir::Type> typeList; 1600 if (parser.parseLParen() || parser.parseTypeList(typeList) || 1601 parser.parseRParen()) 1602 return failure(); 1603 // Type list must be "(index, i1)". 1604 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() || 1605 !typeList[1].isSignlessInteger(1)) 1606 return failure(); 1607 result.addTypes(typeList); 1608 prependCount = true; 1609 } else { 1610 result.addTypes(i1Type); 1611 } 1612 1613 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1614 return mlir::failure(); 1615 1616 llvm::SmallVector<mlir::Type> argTypes; 1617 // Induction variable (hidden) 1618 if (prependCount) 1619 result.addAttribute(IterWhileOp::getFinalValueAttrName(), 1620 builder.getUnitAttr()); 1621 else 1622 argTypes.push_back(indexType); 1623 // Loop carried variables (including iterate) 1624 argTypes.append(result.types.begin(), result.types.end()); 1625 // Parse the body region. 1626 auto *body = result.addRegion(); 1627 if (regionArgs.size() != argTypes.size()) 1628 return parser.emitError( 1629 parser.getNameLoc(), 1630 "mismatch in number of loop-carried values and defined values"); 1631 1632 if (parser.parseRegion(*body, regionArgs, argTypes)) 1633 return failure(); 1634 1635 fir::IterWhileOp::ensureTerminator(*body, builder, result.location); 1636 1637 return mlir::success(); 1638 } 1639 1640 static mlir::LogicalResult verify(fir::IterWhileOp op) { 1641 // Check that the body defines as single block argument for the induction 1642 // variable. 1643 auto *body = op.getBody(); 1644 if (!body->getArgument(1).getType().isInteger(1)) 1645 return op.emitOpError( 1646 "expected body second argument to be an index argument for " 1647 "the induction variable"); 1648 if (!body->getArgument(0).getType().isIndex()) 1649 return op.emitOpError( 1650 "expected body first argument to be an index argument for " 1651 "the induction variable"); 1652 1653 auto opNumResults = op.getNumResults(); 1654 if (op.finalValue()) { 1655 // Result type must be "(index, i1, ...)". 1656 if (!op.getResult(0).getType().isa<mlir::IndexType>()) 1657 return op.emitOpError("result #0 expected to be index"); 1658 if (!op.getResult(1).getType().isSignlessInteger(1)) 1659 return op.emitOpError("result #1 expected to be i1"); 1660 opNumResults--; 1661 } else { 1662 // iterate_while always returns the early exit induction value. 1663 // Result type must be "(i1, ...)" 1664 if (!op.getResult(0).getType().isSignlessInteger(1)) 1665 return op.emitOpError("result #0 expected to be i1"); 1666 } 1667 if (opNumResults == 0) 1668 return mlir::failure(); 1669 if (op.getNumIterOperands() != opNumResults) 1670 return op.emitOpError( 1671 "mismatch in number of loop-carried values and defined values"); 1672 if (op.getNumRegionIterArgs() != opNumResults) 1673 return op.emitOpError( 1674 "mismatch in number of basic block args and defined values"); 1675 auto iterOperands = op.getIterOperands(); 1676 auto iterArgs = op.getRegionIterArgs(); 1677 auto opResults = 1678 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1679 unsigned i = 0; 1680 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1681 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1682 return op.emitOpError() << "types mismatch between " << i 1683 << "th iter operand and defined value"; 1684 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1685 return op.emitOpError() << "types mismatch between " << i 1686 << "th iter region arg and defined value"; 1687 1688 i++; 1689 } 1690 return mlir::success(); 1691 } 1692 1693 static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) { 1694 p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to " 1695 << op.upperBound() << " step " << op.step() << ") and ("; 1696 assert(op.hasIterOperands()); 1697 auto regionArgs = op.getRegionIterArgs(); 1698 auto operands = op.getIterOperands(); 1699 p << regionArgs.front() << " = " << *operands.begin() << ")"; 1700 if (regionArgs.size() > 1) { 1701 p << " iter_args("; 1702 llvm::interleaveComma( 1703 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, 1704 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); 1705 p << ") -> ("; 1706 llvm::interleaveComma( 1707 llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p); 1708 p << ")"; 1709 } else if (op.finalValue()) { 1710 p << " -> (" << op.getResultTypes() << ')'; 1711 } 1712 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 1713 {IterWhileOp::getFinalValueAttrName()}); 1714 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 1715 /*printBlockTerminators=*/true); 1716 } 1717 1718 mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); } 1719 1720 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { 1721 return !region().isAncestor(value.getParentRegion()); 1722 } 1723 1724 mlir::LogicalResult 1725 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1726 for (auto *op : ops) 1727 op->moveBefore(*this); 1728 return success(); 1729 } 1730 1731 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { 1732 for (auto i : llvm::enumerate(initArgs())) 1733 if (iterArg == i.value()) 1734 return region().front().getArgument(i.index() + 1); 1735 return {}; 1736 } 1737 1738 void fir::IterWhileOp::resultToSourceOps( 1739 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1740 auto oper = finalValue() ? resultNum + 1 : resultNum; 1741 auto *term = region().front().getTerminator(); 1742 if (oper < term->getNumOperands()) 1743 results.push_back(term->getOperand(oper)); 1744 } 1745 1746 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { 1747 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 1748 return initArgs()[blockArgNum - 1]; 1749 return {}; 1750 } 1751 1752 //===----------------------------------------------------------------------===// 1753 // LenParamIndexOp 1754 //===----------------------------------------------------------------------===// 1755 1756 static mlir::ParseResult parseLenParamIndexOp(mlir::OpAsmParser &parser, 1757 mlir::OperationState &result) { 1758 llvm::StringRef fieldName; 1759 auto &builder = parser.getBuilder(); 1760 mlir::Type recty; 1761 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1762 parser.parseType(recty)) 1763 return mlir::failure(); 1764 result.addAttribute(fir::LenParamIndexOp::fieldAttrName(), 1765 builder.getStringAttr(fieldName)); 1766 if (!recty.dyn_cast<RecordType>()) 1767 return mlir::failure(); 1768 result.addAttribute(fir::LenParamIndexOp::typeAttrName(), 1769 mlir::TypeAttr::get(recty)); 1770 mlir::Type lenType = fir::LenType::get(builder.getContext()); 1771 if (parser.addTypeToList(lenType, result.types)) 1772 return mlir::failure(); 1773 return mlir::success(); 1774 } 1775 1776 static void print(mlir::OpAsmPrinter &p, fir::LenParamIndexOp &op) { 1777 p << ' ' 1778 << op.getOperation() 1779 ->getAttrOfType<mlir::StringAttr>( 1780 fir::LenParamIndexOp::fieldAttrName()) 1781 .getValue() 1782 << ", " << op.getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName()); 1783 } 1784 1785 //===----------------------------------------------------------------------===// 1786 // LoadOp 1787 //===----------------------------------------------------------------------===// 1788 1789 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 1790 mlir::Value refVal) { 1791 if (!refVal) { 1792 mlir::emitError(result.location, "LoadOp has null argument"); 1793 return; 1794 } 1795 auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType()); 1796 if (!eleTy) { 1797 mlir::emitError(result.location, "not a memory reference type"); 1798 return; 1799 } 1800 result.addOperands(refVal); 1801 result.addTypes(eleTy); 1802 } 1803 1804 /// Get the element type of a reference like type; otherwise null 1805 static mlir::Type elementTypeOf(mlir::Type ref) { 1806 return llvm::TypeSwitch<mlir::Type, mlir::Type>(ref) 1807 .Case<ReferenceType, PointerType, HeapType>( 1808 [](auto type) { return type.getEleTy(); }) 1809 .Default([](mlir::Type) { return mlir::Type{}; }); 1810 } 1811 1812 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { 1813 if ((ele = elementTypeOf(ref))) 1814 return mlir::success(); 1815 return mlir::failure(); 1816 } 1817 1818 static mlir::ParseResult parseLoadOp(mlir::OpAsmParser &parser, 1819 mlir::OperationState &result) { 1820 mlir::Type type; 1821 mlir::OpAsmParser::OperandType oper; 1822 if (parser.parseOperand(oper) || 1823 parser.parseOptionalAttrDict(result.attributes) || 1824 parser.parseColonType(type) || 1825 parser.resolveOperand(oper, type, result.operands)) 1826 return mlir::failure(); 1827 mlir::Type eleTy; 1828 if (fir::LoadOp::getElementOf(eleTy, type) || 1829 parser.addTypeToList(eleTy, result.types)) 1830 return mlir::failure(); 1831 return mlir::success(); 1832 } 1833 1834 static void print(mlir::OpAsmPrinter &p, fir::LoadOp &op) { 1835 p << ' '; 1836 p.printOperand(op.memref()); 1837 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); 1838 p << " : " << op.memref().getType(); 1839 } 1840 1841 //===----------------------------------------------------------------------===// 1842 // DoLoopOp 1843 //===----------------------------------------------------------------------===// 1844 1845 void fir::DoLoopOp::build(mlir::OpBuilder &builder, 1846 mlir::OperationState &result, mlir::Value lb, 1847 mlir::Value ub, mlir::Value step, bool unordered, 1848 bool finalCountValue, mlir::ValueRange iterArgs, 1849 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1850 result.addOperands({lb, ub, step}); 1851 result.addOperands(iterArgs); 1852 if (finalCountValue) { 1853 result.addTypes(builder.getIndexType()); 1854 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 1855 } 1856 for (auto v : iterArgs) 1857 result.addTypes(v.getType()); 1858 mlir::Region *bodyRegion = result.addRegion(); 1859 bodyRegion->push_back(new Block{}); 1860 if (iterArgs.empty() && !finalCountValue) 1861 DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); 1862 bodyRegion->front().addArgument(builder.getIndexType()); 1863 bodyRegion->front().addArguments(iterArgs.getTypes()); 1864 if (unordered) 1865 result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr()); 1866 result.addAttributes(attributes); 1867 } 1868 1869 static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser, 1870 mlir::OperationState &result) { 1871 auto &builder = parser.getBuilder(); 1872 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1873 // Parse the induction variable followed by '='. 1874 if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) 1875 return mlir::failure(); 1876 1877 // Parse loop bounds. 1878 auto indexType = builder.getIndexType(); 1879 if (parser.parseOperand(lb) || 1880 parser.resolveOperand(lb, indexType, result.operands) || 1881 parser.parseKeyword("to") || parser.parseOperand(ub) || 1882 parser.resolveOperand(ub, indexType, result.operands) || 1883 parser.parseKeyword("step") || parser.parseOperand(step) || 1884 parser.resolveOperand(step, indexType, result.operands)) 1885 return failure(); 1886 1887 if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) 1888 result.addAttribute("unordered", builder.getUnitAttr()); 1889 1890 // Parse the optional initial iteration arguments. 1891 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs, operands; 1892 llvm::SmallVector<mlir::Type> argTypes; 1893 auto prependCount = false; 1894 regionArgs.push_back(inductionVariable); 1895 1896 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1897 // Parse assignment list and results type list. 1898 if (parser.parseAssignmentList(regionArgs, operands) || 1899 parser.parseArrowTypeList(result.types)) 1900 return failure(); 1901 if (result.types.size() == operands.size() + 1) 1902 prependCount = true; 1903 // Resolve input operands. 1904 llvm::ArrayRef<mlir::Type> resTypes = result.types; 1905 for (auto operand_type : 1906 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) 1907 if (parser.resolveOperand(std::get<0>(operand_type), 1908 std::get<1>(operand_type), result.operands)) 1909 return failure(); 1910 } else if (succeeded(parser.parseOptionalArrow())) { 1911 if (parser.parseKeyword("index")) 1912 return failure(); 1913 result.types.push_back(indexType); 1914 prependCount = true; 1915 } 1916 1917 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1918 return mlir::failure(); 1919 1920 // Induction variable. 1921 if (prependCount) 1922 result.addAttribute(DoLoopOp::finalValueAttrName(result.name), 1923 builder.getUnitAttr()); 1924 else 1925 argTypes.push_back(indexType); 1926 // Loop carried variables 1927 argTypes.append(result.types.begin(), result.types.end()); 1928 // Parse the body region. 1929 auto *body = result.addRegion(); 1930 if (regionArgs.size() != argTypes.size()) 1931 return parser.emitError( 1932 parser.getNameLoc(), 1933 "mismatch in number of loop-carried values and defined values"); 1934 1935 if (parser.parseRegion(*body, regionArgs, argTypes)) 1936 return failure(); 1937 1938 DoLoopOp::ensureTerminator(*body, builder, result.location); 1939 1940 return mlir::success(); 1941 } 1942 1943 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { 1944 auto ivArg = val.dyn_cast<mlir::BlockArgument>(); 1945 if (!ivArg) 1946 return {}; 1947 assert(ivArg.getOwner() && "unlinked block argument"); 1948 auto *containingInst = ivArg.getOwner()->getParentOp(); 1949 return dyn_cast_or_null<fir::DoLoopOp>(containingInst); 1950 } 1951 1952 // Lifted from loop.loop 1953 static mlir::LogicalResult verify(fir::DoLoopOp op) { 1954 // Check that the body defines as single block argument for the induction 1955 // variable. 1956 auto *body = op.getBody(); 1957 if (!body->getArgument(0).getType().isIndex()) 1958 return op.emitOpError( 1959 "expected body first argument to be an index argument for " 1960 "the induction variable"); 1961 1962 auto opNumResults = op.getNumResults(); 1963 if (opNumResults == 0) 1964 return success(); 1965 1966 if (op.finalValue()) { 1967 if (op.unordered()) 1968 return op.emitOpError("unordered loop has no final value"); 1969 opNumResults--; 1970 } 1971 if (op.getNumIterOperands() != opNumResults) 1972 return op.emitOpError( 1973 "mismatch in number of loop-carried values and defined values"); 1974 if (op.getNumRegionIterArgs() != opNumResults) 1975 return op.emitOpError( 1976 "mismatch in number of basic block args and defined values"); 1977 auto iterOperands = op.getIterOperands(); 1978 auto iterArgs = op.getRegionIterArgs(); 1979 auto opResults = 1980 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1981 unsigned i = 0; 1982 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1983 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1984 return op.emitOpError() << "types mismatch between " << i 1985 << "th iter operand and defined value"; 1986 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1987 return op.emitOpError() << "types mismatch between " << i 1988 << "th iter region arg and defined value"; 1989 1990 i++; 1991 } 1992 return success(); 1993 } 1994 1995 static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) { 1996 bool printBlockTerminators = false; 1997 p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to " 1998 << op.upperBound() << " step " << op.step(); 1999 if (op.unordered()) 2000 p << " unordered"; 2001 if (op.hasIterOperands()) { 2002 p << " iter_args("; 2003 auto regionArgs = op.getRegionIterArgs(); 2004 auto operands = op.getIterOperands(); 2005 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { 2006 p << std::get<0>(it) << " = " << std::get<1>(it); 2007 }); 2008 p << ") -> (" << op.getResultTypes() << ')'; 2009 printBlockTerminators = true; 2010 } else if (op.finalValue()) { 2011 p << " -> " << op.getResultTypes(); 2012 printBlockTerminators = true; 2013 } 2014 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 2015 {"unordered", "finalValue"}); 2016 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 2017 printBlockTerminators); 2018 } 2019 2020 mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); } 2021 2022 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { 2023 return !region().isAncestor(value.getParentRegion()); 2024 } 2025 2026 mlir::LogicalResult 2027 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 2028 for (auto op : ops) 2029 op->moveBefore(*this); 2030 return success(); 2031 } 2032 2033 /// Translate a value passed as an iter_arg to the corresponding block 2034 /// argument in the body of the loop. 2035 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { 2036 for (auto i : llvm::enumerate(initArgs())) 2037 if (iterArg == i.value()) 2038 return region().front().getArgument(i.index() + 1); 2039 return {}; 2040 } 2041 2042 /// Translate the result vector (by index number) to the corresponding value 2043 /// to the `fir.result` Op. 2044 void fir::DoLoopOp::resultToSourceOps( 2045 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 2046 auto oper = finalValue() ? resultNum + 1 : resultNum; 2047 auto *term = region().front().getTerminator(); 2048 if (oper < term->getNumOperands()) 2049 results.push_back(term->getOperand(oper)); 2050 } 2051 2052 /// Translate the block argument (by index number) to the corresponding value 2053 /// passed as an iter_arg to the parent DoLoopOp. 2054 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { 2055 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 2056 return initArgs()[blockArgNum - 1]; 2057 return {}; 2058 } 2059 2060 //===----------------------------------------------------------------------===// 2061 // DTEntryOp 2062 //===----------------------------------------------------------------------===// 2063 2064 static mlir::ParseResult parseDTEntryOp(mlir::OpAsmParser &parser, 2065 mlir::OperationState &result) { 2066 llvm::StringRef methodName; 2067 // allow `methodName` or `"methodName"` 2068 if (failed(parser.parseOptionalKeyword(&methodName))) { 2069 mlir::StringAttr methodAttr; 2070 if (parser.parseAttribute(methodAttr, fir::DTEntryOp::getMethodAttrName(), 2071 result.attributes)) 2072 return mlir::failure(); 2073 } else { 2074 result.addAttribute(fir::DTEntryOp::getMethodAttrName(), 2075 parser.getBuilder().getStringAttr(methodName)); 2076 } 2077 mlir::SymbolRefAttr calleeAttr; 2078 if (parser.parseComma() || 2079 parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrName(), 2080 result.attributes)) 2081 return mlir::failure(); 2082 return mlir::success(); 2083 } 2084 2085 static void print(mlir::OpAsmPrinter &p, fir::DTEntryOp &op) { 2086 p << ' ' << op.getOperation()->getAttr(fir::DTEntryOp::getMethodAttrName()) 2087 << ", " << op.getOperation()->getAttr(fir::DTEntryOp::getProcAttrName()); 2088 } 2089 2090 //===----------------------------------------------------------------------===// 2091 // ReboxOp 2092 //===----------------------------------------------------------------------===// 2093 2094 /// Get the scalar type related to a fir.box type. 2095 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>. 2096 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { 2097 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2098 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2099 return seqTy.getEleTy(); 2100 return eleTy; 2101 } 2102 2103 /// Get the rank from a !fir.box type 2104 static unsigned getBoxRank(mlir::Type boxTy) { 2105 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2106 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2107 return seqTy.getDimension(); 2108 return 0; 2109 } 2110 2111 static mlir::LogicalResult verify(fir::ReboxOp op) { 2112 auto inputBoxTy = op.box().getType(); 2113 if (fir::isa_unknown_size_box(inputBoxTy)) 2114 return op.emitOpError("box operand must not have unknown rank or type"); 2115 auto outBoxTy = op.getType(); 2116 if (fir::isa_unknown_size_box(outBoxTy)) 2117 return op.emitOpError("result type must not have unknown rank or type"); 2118 auto inputRank = getBoxRank(inputBoxTy); 2119 auto inputEleTy = getBoxScalarEleTy(inputBoxTy); 2120 auto outRank = getBoxRank(outBoxTy); 2121 auto outEleTy = getBoxScalarEleTy(outBoxTy); 2122 2123 if (auto slice = op.slice()) { 2124 // Slicing case 2125 if (slice.getType().cast<fir::SliceType>().getRank() != inputRank) 2126 return op.emitOpError("slice operand rank must match box operand rank"); 2127 if (auto shape = op.shape()) { 2128 if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) { 2129 if (shiftTy.getRank() != inputRank) 2130 return op.emitOpError("shape operand and input box ranks must match " 2131 "when there is a slice"); 2132 } else { 2133 return op.emitOpError("shape operand must absent or be a fir.shift " 2134 "when there is a slice"); 2135 } 2136 } 2137 if (auto sliceOp = slice.getDefiningOp()) { 2138 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank(); 2139 if (slicedRank != outRank) 2140 return op.emitOpError("result type rank and rank after applying slice " 2141 "operand must match"); 2142 } 2143 } else { 2144 // Reshaping case 2145 unsigned shapeRank = inputRank; 2146 if (auto shape = op.shape()) { 2147 auto ty = shape.getType(); 2148 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) { 2149 shapeRank = shapeTy.getRank(); 2150 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) { 2151 shapeRank = shapeShiftTy.getRank(); 2152 } else { 2153 auto shiftTy = ty.cast<fir::ShiftType>(); 2154 shapeRank = shiftTy.getRank(); 2155 if (shapeRank != inputRank) 2156 return op.emitOpError("shape operand and input box ranks must match " 2157 "when the shape is a fir.shift"); 2158 } 2159 } 2160 if (shapeRank != outRank) 2161 return op.emitOpError("result type and shape operand ranks must match"); 2162 } 2163 2164 if (inputEleTy != outEleTy) 2165 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived 2166 // types. 2167 if (!inputEleTy.isa<fir::RecordType>()) 2168 return op.emitOpError( 2169 "op input and output element types must match for intrinsic types"); 2170 return mlir::success(); 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // ResultOp 2175 //===----------------------------------------------------------------------===// 2176 2177 static mlir::LogicalResult verify(fir::ResultOp op) { 2178 auto *parentOp = op->getParentOp(); 2179 auto results = parentOp->getResults(); 2180 auto operands = op->getOperands(); 2181 2182 if (parentOp->getNumResults() != op.getNumOperands()) 2183 return op.emitOpError() << "parent of result must have same arity"; 2184 for (auto e : llvm::zip(results, operands)) 2185 if (std::get<0>(e).getType() != std::get<1>(e).getType()) 2186 return op.emitOpError() 2187 << "types mismatch between result op and its parent"; 2188 return success(); 2189 } 2190 2191 //===----------------------------------------------------------------------===// 2192 // SaveResultOp 2193 //===----------------------------------------------------------------------===// 2194 2195 static mlir::LogicalResult verify(fir::SaveResultOp op) { 2196 auto resultType = op.value().getType(); 2197 if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType())) 2198 return op.emitOpError("value type must match memory reference type"); 2199 if (fir::isa_unknown_size_box(resultType)) 2200 return op.emitOpError("cannot save !fir.box of unknown rank or type"); 2201 2202 if (resultType.isa<fir::BoxType>()) { 2203 if (op.shape() || !op.typeparams().empty()) 2204 return op.emitOpError( 2205 "must not have shape or length operands if the value is a fir.box"); 2206 return mlir::success(); 2207 } 2208 2209 // fir.record or fir.array case. 2210 unsigned shapeTyRank = 0; 2211 if (auto shapeOp = op.shape()) { 2212 auto shapeTy = shapeOp.getType(); 2213 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) 2214 shapeTyRank = s.getRank(); 2215 else 2216 shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank(); 2217 } 2218 2219 auto eleTy = resultType; 2220 if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) { 2221 if (seqTy.getDimension() != shapeTyRank) 2222 op.emitOpError("shape operand must be provided and have the value rank " 2223 "when the value is a fir.array"); 2224 eleTy = seqTy.getEleTy(); 2225 } else { 2226 if (shapeTyRank != 0) 2227 op.emitOpError( 2228 "shape operand should only be provided if the value is a fir.array"); 2229 } 2230 2231 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) { 2232 if (recTy.getNumLenParams() != op.typeparams().size()) 2233 op.emitOpError("length parameters number must match with the value type " 2234 "length parameters"); 2235 } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 2236 if (op.typeparams().size() > 1) 2237 op.emitOpError("no more than one length parameter must be provided for " 2238 "character value"); 2239 } else { 2240 if (!op.typeparams().empty()) 2241 op.emitOpError( 2242 "length parameters must not be provided for this value type"); 2243 } 2244 2245 return mlir::success(); 2246 } 2247 2248 //===----------------------------------------------------------------------===// 2249 // SelectOp 2250 //===----------------------------------------------------------------------===// 2251 2252 static constexpr llvm::StringRef getCompareOffsetAttr() { 2253 return "compare_operand_offsets"; 2254 } 2255 2256 static constexpr llvm::StringRef getTargetOffsetAttr() { 2257 return "target_operand_offsets"; 2258 } 2259 2260 template <typename A, typename... AdditionalArgs> 2261 static A getSubOperands(unsigned pos, A allArgs, 2262 mlir::DenseIntElementsAttr ranges, 2263 AdditionalArgs &&...additionalArgs) { 2264 unsigned start = 0; 2265 for (unsigned i = 0; i < pos; ++i) 2266 start += (*(ranges.begin() + i)).getZExtValue(); 2267 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), 2268 std::forward<AdditionalArgs>(additionalArgs)...); 2269 } 2270 2271 static mlir::MutableOperandRange 2272 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, 2273 StringRef offsetAttr) { 2274 Operation *owner = operands.getOwner(); 2275 NamedAttribute targetOffsetAttr = 2276 *owner->getAttrDictionary().getNamed(offsetAttr); 2277 return getSubOperands( 2278 pos, operands, targetOffsetAttr.second.cast<DenseIntElementsAttr>(), 2279 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); 2280 } 2281 2282 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { 2283 return attr.getNumElements(); 2284 } 2285 2286 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) { 2287 return {}; 2288 } 2289 2290 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2291 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2292 return {}; 2293 } 2294 2295 llvm::Optional<mlir::MutableOperandRange> 2296 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { 2297 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2298 getTargetOffsetAttr()); 2299 } 2300 2301 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2302 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2303 unsigned oper) { 2304 auto a = 2305 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2306 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2307 getOperandSegmentSizeAttr()); 2308 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2309 } 2310 2311 unsigned fir::SelectOp::targetOffsetSize() { 2312 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2313 getTargetOffsetAttr())); 2314 } 2315 2316 //===----------------------------------------------------------------------===// 2317 // SelectCaseOp 2318 //===----------------------------------------------------------------------===// 2319 2320 llvm::Optional<mlir::OperandRange> 2321 fir::SelectCaseOp::getCompareOperands(unsigned cond) { 2322 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2323 getCompareOffsetAttr()); 2324 return {getSubOperands(cond, compareArgs(), a)}; 2325 } 2326 2327 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2328 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands, 2329 unsigned cond) { 2330 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2331 getCompareOffsetAttr()); 2332 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2333 getOperandSegmentSizeAttr()); 2334 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2335 } 2336 2337 llvm::Optional<mlir::MutableOperandRange> 2338 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { 2339 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2340 getTargetOffsetAttr()); 2341 } 2342 2343 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2344 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2345 unsigned oper) { 2346 auto a = 2347 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2348 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2349 getOperandSegmentSizeAttr()); 2350 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2351 } 2352 2353 // parser for fir.select_case Op 2354 static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser, 2355 mlir::OperationState &result) { 2356 mlir::OpAsmParser::OperandType selector; 2357 mlir::Type type; 2358 if (parseSelector(parser, result, selector, type)) 2359 return mlir::failure(); 2360 2361 llvm::SmallVector<mlir::Attribute> attrs; 2362 llvm::SmallVector<mlir::OpAsmParser::OperandType> opers; 2363 llvm::SmallVector<mlir::Block *> dests; 2364 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2365 llvm::SmallVector<int32_t> argOffs; 2366 int32_t offSize = 0; 2367 while (true) { 2368 mlir::Attribute attr; 2369 mlir::Block *dest; 2370 llvm::SmallVector<mlir::Value> destArg; 2371 mlir::NamedAttrList temp; 2372 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || 2373 parser.parseComma()) 2374 return mlir::failure(); 2375 attrs.push_back(attr); 2376 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) { 2377 argOffs.push_back(0); 2378 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) { 2379 mlir::OpAsmParser::OperandType oper1; 2380 mlir::OpAsmParser::OperandType oper2; 2381 if (parser.parseOperand(oper1) || parser.parseComma() || 2382 parser.parseOperand(oper2) || parser.parseComma()) 2383 return mlir::failure(); 2384 opers.push_back(oper1); 2385 opers.push_back(oper2); 2386 argOffs.push_back(2); 2387 offSize += 2; 2388 } else { 2389 mlir::OpAsmParser::OperandType oper; 2390 if (parser.parseOperand(oper) || parser.parseComma()) 2391 return mlir::failure(); 2392 opers.push_back(oper); 2393 argOffs.push_back(1); 2394 ++offSize; 2395 } 2396 if (parser.parseSuccessorAndUseList(dest, destArg)) 2397 return mlir::failure(); 2398 dests.push_back(dest); 2399 destArgs.push_back(destArg); 2400 if (mlir::succeeded(parser.parseOptionalRSquare())) 2401 break; 2402 if (parser.parseComma()) 2403 return mlir::failure(); 2404 } 2405 result.addAttribute(fir::SelectCaseOp::getCasesAttr(), 2406 parser.getBuilder().getArrayAttr(attrs)); 2407 if (parser.resolveOperands(opers, type, result.operands)) 2408 return mlir::failure(); 2409 llvm::SmallVector<int32_t> targOffs; 2410 int32_t toffSize = 0; 2411 const auto count = dests.size(); 2412 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2413 result.addSuccessors(dests[i]); 2414 result.addOperands(destArgs[i]); 2415 auto argSize = destArgs[i].size(); 2416 targOffs.push_back(argSize); 2417 toffSize += argSize; 2418 } 2419 auto &bld = parser.getBuilder(); 2420 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), 2421 bld.getI32VectorAttr({1, offSize, toffSize})); 2422 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2423 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); 2424 return mlir::success(); 2425 } 2426 2427 static void print(mlir::OpAsmPrinter &p, fir::SelectCaseOp &op) { 2428 p << ' '; 2429 p.printOperand(op.getSelector()); 2430 p << " : " << op.getSelector().getType() << " ["; 2431 auto cases = op.getOperation() 2432 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2433 .getValue(); 2434 auto count = op.getNumConditions(); 2435 for (decltype(count) i = 0; i != count; ++i) { 2436 if (i) 2437 p << ", "; 2438 p << cases[i] << ", "; 2439 if (!cases[i].isa<mlir::UnitAttr>()) { 2440 auto caseArgs = *op.getCompareOperands(i); 2441 p.printOperand(*caseArgs.begin()); 2442 p << ", "; 2443 if (cases[i].isa<fir::ClosedIntervalAttr>()) { 2444 p.printOperand(*(++caseArgs.begin())); 2445 p << ", "; 2446 } 2447 } 2448 op.printSuccessorAtIndex(p, i); 2449 } 2450 p << ']'; 2451 p.printOptionalAttrDict(op.getOperation()->getAttrs(), 2452 {op.getCasesAttr(), getCompareOffsetAttr(), 2453 getTargetOffsetAttr(), 2454 op.getOperandSegmentSizeAttr()}); 2455 } 2456 2457 unsigned fir::SelectCaseOp::compareOffsetSize() { 2458 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2459 getCompareOffsetAttr())); 2460 } 2461 2462 unsigned fir::SelectCaseOp::targetOffsetSize() { 2463 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2464 getTargetOffsetAttr())); 2465 } 2466 2467 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2468 mlir::OperationState &result, 2469 mlir::Value selector, 2470 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2471 llvm::ArrayRef<mlir::ValueRange> cmpOperands, 2472 llvm::ArrayRef<mlir::Block *> destinations, 2473 llvm::ArrayRef<mlir::ValueRange> destOperands, 2474 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2475 result.addOperands(selector); 2476 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); 2477 llvm::SmallVector<int32_t> operOffs; 2478 int32_t operSize = 0; 2479 for (auto attr : compareAttrs) { 2480 if (attr.isa<fir::ClosedIntervalAttr>()) { 2481 operOffs.push_back(2); 2482 operSize += 2; 2483 } else if (attr.isa<mlir::UnitAttr>()) { 2484 operOffs.push_back(0); 2485 } else { 2486 operOffs.push_back(1); 2487 ++operSize; 2488 } 2489 } 2490 for (auto ops : cmpOperands) 2491 result.addOperands(ops); 2492 result.addAttribute(getCompareOffsetAttr(), 2493 builder.getI32VectorAttr(operOffs)); 2494 const auto count = destinations.size(); 2495 for (auto d : destinations) 2496 result.addSuccessors(d); 2497 const auto opCount = destOperands.size(); 2498 llvm::SmallVector<int32_t> argOffs; 2499 int32_t sumArgs = 0; 2500 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2501 if (i < opCount) { 2502 result.addOperands(destOperands[i]); 2503 const auto argSz = destOperands[i].size(); 2504 argOffs.push_back(argSz); 2505 sumArgs += argSz; 2506 } else { 2507 argOffs.push_back(0); 2508 } 2509 } 2510 result.addAttribute(getOperandSegmentSizeAttr(), 2511 builder.getI32VectorAttr({1, operSize, sumArgs})); 2512 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2513 result.addAttributes(attributes); 2514 } 2515 2516 /// This builder has a slightly simplified interface in that the list of 2517 /// operands need not be partitioned by the builder. Instead the operands are 2518 /// partitioned here, before being passed to the default builder. This 2519 /// partitioning is unchecked, so can go awry on bad input. 2520 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2521 mlir::OperationState &result, 2522 mlir::Value selector, 2523 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2524 llvm::ArrayRef<mlir::Value> cmpOpList, 2525 llvm::ArrayRef<mlir::Block *> destinations, 2526 llvm::ArrayRef<mlir::ValueRange> destOperands, 2527 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2528 llvm::SmallVector<mlir::ValueRange> cmpOpers; 2529 auto iter = cmpOpList.begin(); 2530 for (auto &attr : compareAttrs) { 2531 if (attr.isa<fir::ClosedIntervalAttr>()) { 2532 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); 2533 iter += 2; 2534 } else if (attr.isa<UnitAttr>()) { 2535 cmpOpers.push_back(mlir::ValueRange{}); 2536 } else { 2537 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); 2538 ++iter; 2539 } 2540 } 2541 build(builder, result, selector, compareAttrs, cmpOpers, destinations, 2542 destOperands, attributes); 2543 } 2544 2545 static mlir::LogicalResult verify(fir::SelectCaseOp &op) { 2546 if (!(op.getSelector().getType().isa<mlir::IntegerType>() || 2547 op.getSelector().getType().isa<mlir::IndexType>() || 2548 op.getSelector().getType().isa<fir::IntegerType>() || 2549 op.getSelector().getType().isa<fir::LogicalType>() || 2550 op.getSelector().getType().isa<fir::CharacterType>())) 2551 return op.emitOpError("must be an integer, character, or logical"); 2552 auto cases = op.getOperation() 2553 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2554 .getValue(); 2555 auto count = op.getNumDest(); 2556 if (count == 0) 2557 return op.emitOpError("must have at least one successor"); 2558 if (op.getNumConditions() != count) 2559 return op.emitOpError("number of conditions and successors don't match"); 2560 if (op.compareOffsetSize() != count) 2561 return op.emitOpError("incorrect number of compare operand groups"); 2562 if (op.targetOffsetSize() != count) 2563 return op.emitOpError("incorrect number of successor operand groups"); 2564 for (decltype(count) i = 0; i != count; ++i) { 2565 auto &attr = cases[i]; 2566 if (!(attr.isa<fir::PointIntervalAttr>() || 2567 attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() || 2568 attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>())) 2569 return op.emitOpError("incorrect select case attribute type"); 2570 } 2571 return mlir::success(); 2572 } 2573 2574 //===----------------------------------------------------------------------===// 2575 // SelectRankOp 2576 //===----------------------------------------------------------------------===// 2577 2578 llvm::Optional<mlir::OperandRange> 2579 fir::SelectRankOp::getCompareOperands(unsigned) { 2580 return {}; 2581 } 2582 2583 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2584 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2585 return {}; 2586 } 2587 2588 llvm::Optional<mlir::MutableOperandRange> 2589 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { 2590 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2591 getTargetOffsetAttr()); 2592 } 2593 2594 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2595 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2596 unsigned oper) { 2597 auto a = 2598 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2599 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2600 getOperandSegmentSizeAttr()); 2601 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2602 } 2603 2604 unsigned fir::SelectRankOp::targetOffsetSize() { 2605 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2606 getTargetOffsetAttr())); 2607 } 2608 2609 //===----------------------------------------------------------------------===// 2610 // SelectTypeOp 2611 //===----------------------------------------------------------------------===// 2612 2613 llvm::Optional<mlir::OperandRange> 2614 fir::SelectTypeOp::getCompareOperands(unsigned) { 2615 return {}; 2616 } 2617 2618 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2619 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2620 return {}; 2621 } 2622 2623 llvm::Optional<mlir::MutableOperandRange> 2624 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { 2625 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2626 getTargetOffsetAttr()); 2627 } 2628 2629 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2630 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2631 unsigned oper) { 2632 auto a = 2633 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2634 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2635 getOperandSegmentSizeAttr()); 2636 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2637 } 2638 2639 static ParseResult parseSelectType(OpAsmParser &parser, 2640 OperationState &result) { 2641 mlir::OpAsmParser::OperandType selector; 2642 mlir::Type type; 2643 if (parseSelector(parser, result, selector, type)) 2644 return mlir::failure(); 2645 2646 llvm::SmallVector<mlir::Attribute> attrs; 2647 llvm::SmallVector<mlir::Block *> dests; 2648 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2649 while (true) { 2650 mlir::Attribute attr; 2651 mlir::Block *dest; 2652 llvm::SmallVector<mlir::Value> destArg; 2653 mlir::NamedAttrList temp; 2654 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || 2655 parser.parseSuccessorAndUseList(dest, destArg)) 2656 return mlir::failure(); 2657 attrs.push_back(attr); 2658 dests.push_back(dest); 2659 destArgs.push_back(destArg); 2660 if (mlir::succeeded(parser.parseOptionalRSquare())) 2661 break; 2662 if (parser.parseComma()) 2663 return mlir::failure(); 2664 } 2665 auto &bld = parser.getBuilder(); 2666 result.addAttribute(fir::SelectTypeOp::getCasesAttr(), 2667 bld.getArrayAttr(attrs)); 2668 llvm::SmallVector<int32_t> argOffs; 2669 int32_t offSize = 0; 2670 const auto count = dests.size(); 2671 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2672 result.addSuccessors(dests[i]); 2673 result.addOperands(destArgs[i]); 2674 auto argSize = destArgs[i].size(); 2675 argOffs.push_back(argSize); 2676 offSize += argSize; 2677 } 2678 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), 2679 bld.getI32VectorAttr({1, 0, offSize})); 2680 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2681 return mlir::success(); 2682 } 2683 2684 unsigned fir::SelectTypeOp::targetOffsetSize() { 2685 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2686 getTargetOffsetAttr())); 2687 } 2688 2689 static void print(mlir::OpAsmPrinter &p, fir::SelectTypeOp &op) { 2690 p << ' '; 2691 p.printOperand(op.getSelector()); 2692 p << " : " << op.getSelector().getType() << " ["; 2693 auto cases = op.getOperation() 2694 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2695 .getValue(); 2696 auto count = op.getNumConditions(); 2697 for (decltype(count) i = 0; i != count; ++i) { 2698 if (i) 2699 p << ", "; 2700 p << cases[i] << ", "; 2701 op.printSuccessorAtIndex(p, i); 2702 } 2703 p << ']'; 2704 p.printOptionalAttrDict(op.getOperation()->getAttrs(), 2705 {op.getCasesAttr(), getCompareOffsetAttr(), 2706 getTargetOffsetAttr(), 2707 fir::SelectTypeOp::getOperandSegmentSizeAttr()}); 2708 } 2709 2710 static mlir::LogicalResult verify(fir::SelectTypeOp &op) { 2711 if (!(op.getSelector().getType().isa<fir::BoxType>())) 2712 return op.emitOpError("must be a boxed type"); 2713 auto cases = op.getOperation() 2714 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2715 .getValue(); 2716 auto count = op.getNumDest(); 2717 if (count == 0) 2718 return op.emitOpError("must have at least one successor"); 2719 if (op.getNumConditions() != count) 2720 return op.emitOpError("number of conditions and successors don't match"); 2721 if (op.targetOffsetSize() != count) 2722 return op.emitOpError("incorrect number of successor operand groups"); 2723 for (decltype(count) i = 0; i != count; ++i) { 2724 auto &attr = cases[i]; 2725 if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() || 2726 attr.isa<mlir::UnitAttr>())) 2727 return op.emitOpError("invalid type-case alternative"); 2728 } 2729 return mlir::success(); 2730 } 2731 2732 void fir::SelectTypeOp::build(mlir::OpBuilder &builder, 2733 mlir::OperationState &result, 2734 mlir::Value selector, 2735 llvm::ArrayRef<mlir::Attribute> typeOperands, 2736 llvm::ArrayRef<mlir::Block *> destinations, 2737 llvm::ArrayRef<mlir::ValueRange> destOperands, 2738 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2739 result.addOperands(selector); 2740 result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands)); 2741 const auto count = destinations.size(); 2742 for (mlir::Block *dest : destinations) 2743 result.addSuccessors(dest); 2744 const auto opCount = destOperands.size(); 2745 llvm::SmallVector<int32_t> argOffs; 2746 int32_t sumArgs = 0; 2747 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2748 if (i < opCount) { 2749 result.addOperands(destOperands[i]); 2750 const auto argSz = destOperands[i].size(); 2751 argOffs.push_back(argSz); 2752 sumArgs += argSz; 2753 } else { 2754 argOffs.push_back(0); 2755 } 2756 } 2757 result.addAttribute(getOperandSegmentSizeAttr(), 2758 builder.getI32VectorAttr({1, 0, sumArgs})); 2759 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2760 result.addAttributes(attributes); 2761 } 2762 2763 //===----------------------------------------------------------------------===// 2764 // ShapeOp 2765 //===----------------------------------------------------------------------===// 2766 2767 static mlir::LogicalResult verify(fir::ShapeOp &op) { 2768 auto size = op.extents().size(); 2769 auto shapeTy = op.getType().dyn_cast<fir::ShapeType>(); 2770 assert(shapeTy && "must be a shape type"); 2771 if (shapeTy.getRank() != size) 2772 return op.emitOpError("shape type rank mismatch"); 2773 return mlir::success(); 2774 } 2775 2776 //===----------------------------------------------------------------------===// 2777 // ShapeShiftOp 2778 //===----------------------------------------------------------------------===// 2779 2780 static mlir::LogicalResult verify(fir::ShapeShiftOp &op) { 2781 auto size = op.pairs().size(); 2782 if (size < 2 || size > 16 * 2) 2783 return op.emitOpError("incorrect number of args"); 2784 if (size % 2 != 0) 2785 return op.emitOpError("requires a multiple of 2 args"); 2786 auto shapeTy = op.getType().dyn_cast<fir::ShapeShiftType>(); 2787 assert(shapeTy && "must be a shape shift type"); 2788 if (shapeTy.getRank() * 2 != size) 2789 return op.emitOpError("shape type rank mismatch"); 2790 return mlir::success(); 2791 } 2792 2793 //===----------------------------------------------------------------------===// 2794 // ShiftOp 2795 //===----------------------------------------------------------------------===// 2796 2797 static mlir::LogicalResult verify(fir::ShiftOp &op) { 2798 auto size = op.origins().size(); 2799 auto shiftTy = op.getType().dyn_cast<fir::ShiftType>(); 2800 assert(shiftTy && "must be a shift type"); 2801 if (shiftTy.getRank() != size) 2802 return op.emitOpError("shift type rank mismatch"); 2803 return mlir::success(); 2804 } 2805 2806 //===----------------------------------------------------------------------===// 2807 // SliceOp 2808 //===----------------------------------------------------------------------===// 2809 2810 /// Return the output rank of a slice op. The output rank must be between 1 and 2811 /// the rank of the array being sliced (inclusive). 2812 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { 2813 unsigned rank = 0; 2814 if (!triples.empty()) { 2815 for (unsigned i = 1, end = triples.size(); i < end; i += 3) { 2816 auto op = triples[i].getDefiningOp(); 2817 if (!mlir::isa_and_nonnull<fir::UndefOp>(op)) 2818 ++rank; 2819 } 2820 assert(rank > 0); 2821 } 2822 return rank; 2823 } 2824 2825 static mlir::LogicalResult verify(fir::SliceOp &op) { 2826 auto size = op.triples().size(); 2827 if (size < 3 || size > 16 * 3) 2828 return op.emitOpError("incorrect number of args for triple"); 2829 if (size % 3 != 0) 2830 return op.emitOpError("requires a multiple of 3 args"); 2831 auto sliceTy = op.getType().dyn_cast<fir::SliceType>(); 2832 assert(sliceTy && "must be a slice type"); 2833 if (sliceTy.getRank() * 3 != size) 2834 return op.emitOpError("slice type rank mismatch"); 2835 return mlir::success(); 2836 } 2837 2838 //===----------------------------------------------------------------------===// 2839 // StoreOp 2840 //===----------------------------------------------------------------------===// 2841 2842 mlir::Type fir::StoreOp::elementType(mlir::Type refType) { 2843 return fir::dyn_cast_ptrEleTy(refType); 2844 } 2845 2846 static mlir::ParseResult parseStoreOp(mlir::OpAsmParser &parser, 2847 mlir::OperationState &result) { 2848 mlir::Type type; 2849 mlir::OpAsmParser::OperandType oper; 2850 mlir::OpAsmParser::OperandType store; 2851 if (parser.parseOperand(oper) || parser.parseKeyword("to") || 2852 parser.parseOperand(store) || 2853 parser.parseOptionalAttrDict(result.attributes) || 2854 parser.parseColonType(type) || 2855 parser.resolveOperand(oper, fir::StoreOp::elementType(type), 2856 result.operands) || 2857 parser.resolveOperand(store, type, result.operands)) 2858 return mlir::failure(); 2859 return mlir::success(); 2860 } 2861 2862 static void print(mlir::OpAsmPrinter &p, fir::StoreOp &op) { 2863 p << ' '; 2864 p.printOperand(op.value()); 2865 p << " to "; 2866 p.printOperand(op.memref()); 2867 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); 2868 p << " : " << op.memref().getType(); 2869 } 2870 2871 static mlir::LogicalResult verify(fir::StoreOp &op) { 2872 if (op.value().getType() != fir::dyn_cast_ptrEleTy(op.memref().getType())) 2873 return op.emitOpError("store value type must match memory reference type"); 2874 if (fir::isa_unknown_size_box(op.value().getType())) 2875 return op.emitOpError("cannot store !fir.box of unknown rank or type"); 2876 return mlir::success(); 2877 } 2878 2879 //===----------------------------------------------------------------------===// 2880 // StringLitOp 2881 //===----------------------------------------------------------------------===// 2882 2883 bool fir::StringLitOp::isWideValue() { 2884 auto eleTy = getType().cast<fir::SequenceType>().getEleTy(); 2885 return eleTy.cast<fir::CharacterType>().getFKind() != 1; 2886 } 2887 2888 static mlir::NamedAttribute 2889 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) { 2890 assert(v > 0); 2891 return builder.getNamedAttr( 2892 name, builder.getIntegerAttr(builder.getIntegerType(64), v)); 2893 } 2894 2895 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2896 fir::CharacterType inType, llvm::StringRef val, 2897 llvm::Optional<int64_t> len) { 2898 auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val)); 2899 int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2900 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2901 result.addAttributes({valAttr, lenAttr}); 2902 result.addTypes(inType); 2903 } 2904 2905 template <typename C> 2906 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder, 2907 llvm::ArrayRef<C> xlist) { 2908 llvm::SmallVector<mlir::Attribute> attrs; 2909 auto ty = builder.getIntegerType(8 * sizeof(C)); 2910 for (auto ch : xlist) 2911 attrs.push_back(builder.getIntegerAttr(ty, ch)); 2912 return builder.getArrayAttr(attrs); 2913 } 2914 2915 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2916 fir::CharacterType inType, 2917 llvm::ArrayRef<char> vlist, 2918 llvm::Optional<int64_t> len) { 2919 auto valAttr = 2920 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2921 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2922 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2923 result.addAttributes({valAttr, lenAttr}); 2924 result.addTypes(inType); 2925 } 2926 2927 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2928 fir::CharacterType inType, 2929 llvm::ArrayRef<char16_t> vlist, 2930 llvm::Optional<int64_t> len) { 2931 auto valAttr = 2932 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2933 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2934 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2935 result.addAttributes({valAttr, lenAttr}); 2936 result.addTypes(inType); 2937 } 2938 2939 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2940 fir::CharacterType inType, 2941 llvm::ArrayRef<char32_t> vlist, 2942 llvm::Optional<int64_t> len) { 2943 auto valAttr = 2944 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2945 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2946 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2947 result.addAttributes({valAttr, lenAttr}); 2948 result.addTypes(inType); 2949 } 2950 2951 static mlir::ParseResult parseStringLitOp(mlir::OpAsmParser &parser, 2952 mlir::OperationState &result) { 2953 auto &builder = parser.getBuilder(); 2954 mlir::Attribute val; 2955 mlir::NamedAttrList attrs; 2956 llvm::SMLoc trailingTypeLoc; 2957 if (parser.parseAttribute(val, "fake", attrs)) 2958 return mlir::failure(); 2959 if (auto v = val.dyn_cast<mlir::StringAttr>()) 2960 result.attributes.push_back( 2961 builder.getNamedAttr(fir::StringLitOp::value(), v)); 2962 else if (auto v = val.dyn_cast<mlir::ArrayAttr>()) 2963 result.attributes.push_back( 2964 builder.getNamedAttr(fir::StringLitOp::xlist(), v)); 2965 else 2966 return parser.emitError(parser.getCurrentLocation(), 2967 "found an invalid constant"); 2968 mlir::IntegerAttr sz; 2969 mlir::Type type; 2970 if (parser.parseLParen() || 2971 parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) || 2972 parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) || 2973 parser.parseColonType(type)) 2974 return mlir::failure(); 2975 auto charTy = type.dyn_cast<fir::CharacterType>(); 2976 if (!charTy) 2977 return parser.emitError(trailingTypeLoc, "must have character type"); 2978 type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(), 2979 sz.getInt()); 2980 if (!type || parser.addTypesToList(type, result.types)) 2981 return mlir::failure(); 2982 return mlir::success(); 2983 } 2984 2985 static void print(mlir::OpAsmPrinter &p, fir::StringLitOp &op) { 2986 p << ' ' << op.getValue() << '('; 2987 p << op.getSize().cast<mlir::IntegerAttr>().getValue() << ") : "; 2988 p.printType(op.getType()); 2989 } 2990 2991 static mlir::LogicalResult verify(fir::StringLitOp &op) { 2992 if (op.getSize().cast<mlir::IntegerAttr>().getValue().isNegative()) 2993 return op.emitOpError("size must be non-negative"); 2994 if (auto xl = op.getOperation()->getAttr(fir::StringLitOp::xlist())) { 2995 auto xList = xl.cast<mlir::ArrayAttr>(); 2996 for (auto a : xList) 2997 if (!a.isa<mlir::IntegerAttr>()) 2998 return op.emitOpError("values in list must be integers"); 2999 } 3000 return mlir::success(); 3001 } 3002 3003 //===----------------------------------------------------------------------===// 3004 // UnboxProcOp 3005 //===----------------------------------------------------------------------===// 3006 3007 static mlir::LogicalResult verify(fir::UnboxProcOp &op) { 3008 if (auto eleTy = fir::dyn_cast_ptrEleTy(op.refTuple().getType())) 3009 if (eleTy.isa<mlir::TupleType>()) 3010 return mlir::success(); 3011 return op.emitOpError("second output argument has bad type"); 3012 } 3013 3014 //===----------------------------------------------------------------------===// 3015 // IfOp 3016 //===----------------------------------------------------------------------===// 3017 3018 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3019 mlir::Value cond, bool withElseRegion) { 3020 build(builder, result, llvm::None, cond, withElseRegion); 3021 } 3022 3023 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3024 mlir::TypeRange resultTypes, mlir::Value cond, 3025 bool withElseRegion) { 3026 result.addOperands(cond); 3027 result.addTypes(resultTypes); 3028 3029 mlir::Region *thenRegion = result.addRegion(); 3030 thenRegion->push_back(new mlir::Block()); 3031 if (resultTypes.empty()) 3032 IfOp::ensureTerminator(*thenRegion, builder, result.location); 3033 3034 mlir::Region *elseRegion = result.addRegion(); 3035 if (withElseRegion) { 3036 elseRegion->push_back(new mlir::Block()); 3037 if (resultTypes.empty()) 3038 IfOp::ensureTerminator(*elseRegion, builder, result.location); 3039 } 3040 } 3041 3042 static mlir::ParseResult parseIfOp(OpAsmParser &parser, 3043 OperationState &result) { 3044 result.regions.reserve(2); 3045 mlir::Region *thenRegion = result.addRegion(); 3046 mlir::Region *elseRegion = result.addRegion(); 3047 3048 auto &builder = parser.getBuilder(); 3049 OpAsmParser::OperandType cond; 3050 mlir::Type i1Type = builder.getIntegerType(1); 3051 if (parser.parseOperand(cond) || 3052 parser.resolveOperand(cond, i1Type, result.operands)) 3053 return mlir::failure(); 3054 3055 if (parser.parseOptionalArrowTypeList(result.types)) 3056 return mlir::failure(); 3057 3058 if (parser.parseRegion(*thenRegion, {}, {})) 3059 return mlir::failure(); 3060 IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); 3061 3062 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { 3063 if (parser.parseRegion(*elseRegion, {}, {})) 3064 return mlir::failure(); 3065 IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); 3066 } 3067 3068 // Parse the optional attribute list. 3069 if (parser.parseOptionalAttrDict(result.attributes)) 3070 return mlir::failure(); 3071 return mlir::success(); 3072 } 3073 3074 static LogicalResult verify(fir::IfOp op) { 3075 if (op.getNumResults() != 0 && op.elseRegion().empty()) 3076 return op.emitOpError("must have an else block if defining values"); 3077 3078 return mlir::success(); 3079 } 3080 3081 static void print(mlir::OpAsmPrinter &p, fir::IfOp op) { 3082 bool printBlockTerminators = false; 3083 p << ' ' << op.condition(); 3084 if (!op.results().empty()) { 3085 p << " -> (" << op.getResultTypes() << ')'; 3086 printBlockTerminators = true; 3087 } 3088 p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false, 3089 printBlockTerminators); 3090 3091 // Print the 'else' regions if it exists and has a block. 3092 auto &otherReg = op.elseRegion(); 3093 if (!otherReg.empty()) { 3094 p << " else"; 3095 p.printRegion(otherReg, /*printEntryBlockArgs=*/false, 3096 printBlockTerminators); 3097 } 3098 p.printOptionalAttrDict(op->getAttrs()); 3099 } 3100 3101 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results, 3102 unsigned resultNum) { 3103 auto *term = thenRegion().front().getTerminator(); 3104 if (resultNum < term->getNumOperands()) 3105 results.push_back(term->getOperand(resultNum)); 3106 term = elseRegion().front().getTerminator(); 3107 if (resultNum < term->getNumOperands()) 3108 results.push_back(term->getOperand(resultNum)); 3109 } 3110 3111 //===----------------------------------------------------------------------===// 3112 3113 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { 3114 if (attr.dyn_cast_or_null<mlir::UnitAttr>() || 3115 attr.dyn_cast_or_null<ClosedIntervalAttr>() || 3116 attr.dyn_cast_or_null<PointIntervalAttr>() || 3117 attr.dyn_cast_or_null<LowerBoundAttr>() || 3118 attr.dyn_cast_or_null<UpperBoundAttr>()) 3119 return mlir::success(); 3120 return mlir::failure(); 3121 } 3122 3123 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases, 3124 unsigned dest) { 3125 unsigned o = 0; 3126 for (unsigned i = 0; i < dest; ++i) { 3127 auto &attr = cases[i]; 3128 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) { 3129 ++o; 3130 if (attr.dyn_cast_or_null<ClosedIntervalAttr>()) 3131 ++o; 3132 } 3133 } 3134 return o; 3135 } 3136 3137 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, 3138 mlir::OperationState &result, 3139 mlir::OpAsmParser::OperandType &selector, 3140 mlir::Type &type) { 3141 if (parser.parseOperand(selector) || parser.parseColonType(type) || 3142 parser.resolveOperand(selector, type, result.operands) || 3143 parser.parseLSquare()) 3144 return mlir::failure(); 3145 return mlir::success(); 3146 } 3147 3148 /// Generic pretty-printer of a binary operation 3149 static void printBinaryOp(Operation *op, OpAsmPrinter &p) { 3150 assert(op->getNumOperands() == 2 && "binary op must have two operands"); 3151 assert(op->getNumResults() == 1 && "binary op must have one result"); 3152 3153 p << ' ' << op->getOperand(0) << ", " << op->getOperand(1); 3154 p.printOptionalAttrDict(op->getAttrs()); 3155 p << " : " << op->getResult(0).getType(); 3156 } 3157 3158 /// Generic pretty-printer of an unary operation 3159 static void printUnaryOp(Operation *op, OpAsmPrinter &p) { 3160 assert(op->getNumOperands() == 1 && "unary op must have one operand"); 3161 assert(op->getNumResults() == 1 && "unary op must have one result"); 3162 3163 p << ' ' << op->getOperand(0); 3164 p.printOptionalAttrDict(op->getAttrs()); 3165 p << " : " << op->getResult(0).getType(); 3166 } 3167 3168 bool fir::isReferenceLike(mlir::Type type) { 3169 return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() || 3170 type.isa<fir::PointerType>(); 3171 } 3172 3173 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, 3174 StringRef name, mlir::FunctionType type, 3175 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3176 if (auto f = module.lookupSymbol<mlir::FuncOp>(name)) 3177 return f; 3178 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3179 modBuilder.setInsertionPoint(module.getBody()->getTerminator()); 3180 auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs); 3181 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3182 return result; 3183 } 3184 3185 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, 3186 StringRef name, mlir::Type type, 3187 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3188 if (auto g = module.lookupSymbol<fir::GlobalOp>(name)) 3189 return g; 3190 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3191 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs); 3192 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3193 return result; 3194 } 3195 3196 bool fir::valueHasFirAttribute(mlir::Value value, 3197 llvm::StringRef attributeName) { 3198 // If this is a fir.box that was loaded, the fir attributes will be on the 3199 // related fir.ref<fir.box> creation. 3200 if (value.getType().isa<fir::BoxType>()) 3201 if (auto definingOp = value.getDefiningOp()) 3202 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp)) 3203 value = loadOp.memref(); 3204 // If this is a function argument, look in the argument attributes. 3205 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 3206 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) 3207 if (auto funcOp = 3208 mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp())) 3209 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) 3210 return true; 3211 return false; 3212 } 3213 3214 if (auto definingOp = value.getDefiningOp()) { 3215 // If this is an allocated value, look at the allocation attributes. 3216 if (mlir::isa<fir::AllocMemOp>(definingOp) || 3217 mlir::isa<AllocaOp>(definingOp)) 3218 return definingOp->hasAttr(attributeName); 3219 // If this is an imported global, look at AddrOfOp and GlobalOp attributes. 3220 // Both operations are looked at because use/host associated variable (the 3221 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate 3222 // entity (the globalOp) does not have them. 3223 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) { 3224 if (addressOfOp->hasAttr(attributeName)) 3225 return true; 3226 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>()) 3227 if (auto globalOp = 3228 module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol())) 3229 return globalOp->hasAttr(attributeName); 3230 } 3231 } 3232 // TODO: Construct associated entities attributes. Decide where the fir 3233 // attributes must be placed/looked for in this case. 3234 return false; 3235 } 3236 3237 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) { 3238 for (auto i = path.begin(), end = path.end(); eleTy && i < end;) { 3239 eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy) 3240 .Case<fir::RecordType>([&](fir::RecordType ty) { 3241 if (auto *op = (*i++).getDefiningOp()) { 3242 if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op)) 3243 return ty.getType(off.getFieldName()); 3244 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3245 return ty.getType(fir::toInt(off)); 3246 } 3247 return mlir::Type{}; 3248 }) 3249 .Case<fir::SequenceType>([&](fir::SequenceType ty) { 3250 bool valid = true; 3251 const auto rank = ty.getDimension(); 3252 for (std::remove_const_t<decltype(rank)> ii = 0; 3253 valid && ii < rank; ++ii) 3254 valid = i < end && fir::isa_integer((*i++).getType()); 3255 return valid ? ty.getEleTy() : mlir::Type{}; 3256 }) 3257 .Case<mlir::TupleType>([&](mlir::TupleType ty) { 3258 if (auto *op = (*i++).getDefiningOp()) 3259 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3260 return ty.getType(fir::toInt(off)); 3261 return mlir::Type{}; 3262 }) 3263 .Case<fir::ComplexType>([&](fir::ComplexType ty) { 3264 if (fir::isa_integer((*i++).getType())) 3265 return ty.getElementType(); 3266 return mlir::Type{}; 3267 }) 3268 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { 3269 if (fir::isa_integer((*i++).getType())) 3270 return ty.getElementType(); 3271 return mlir::Type{}; 3272 }) 3273 .Default([&](const auto &) { return mlir::Type{}; }); 3274 } 3275 return eleTy; 3276 } 3277 3278 // Tablegen operators 3279 3280 #define GET_OP_CLASSES 3281 #include "flang/Optimizer/Dialect/FIROps.cpp.inc" 3282