1 //===-- FIROps.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Optimizer/Dialect/FIROps.h" 14 #include "flang/Optimizer/Dialect/FIRAttr.h" 15 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 16 #include "flang/Optimizer/Dialect/FIRType.h" 17 #include "mlir/Dialect/CommonFolders.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BuiltinOps.h" 20 #include "mlir/IR/Diagnostics.h" 21 #include "mlir/IR/Matchers.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "llvm/ADT/StringSwitch.h" 24 #include "llvm/ADT/TypeSwitch.h" 25 26 using namespace fir; 27 28 /// Return true if a sequence type is of some incomplete size or a record type 29 /// is malformed or contains an incomplete sequence type. An incomplete sequence 30 /// type is one with more unknown extents in the type than have been provided 31 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by 32 /// definition. 33 static bool verifyInType(mlir::Type inType, 34 llvm::SmallVectorImpl<llvm::StringRef> &visited, 35 unsigned dynamicExtents = 0) { 36 if (auto st = inType.dyn_cast<fir::SequenceType>()) { 37 auto shape = st.getShape(); 38 if (shape.size() == 0) 39 return true; 40 for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { 41 if (shape[i] != fir::SequenceType::getUnknownExtent()) 42 continue; 43 if (dynamicExtents-- == 0) 44 return true; 45 } 46 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) { 47 // don't recurse if we're already visiting this one 48 if (llvm::is_contained(visited, rt.getName())) 49 return false; 50 // keep track of record types currently being visited 51 visited.push_back(rt.getName()); 52 for (auto &field : rt.getTypeList()) 53 if (verifyInType(field.second, visited)) 54 return true; 55 visited.pop_back(); 56 } else if (auto rt = inType.dyn_cast<fir::PointerType>()) { 57 return verifyInType(rt.getEleTy(), visited); 58 } 59 return false; 60 } 61 62 static bool verifyRecordLenParams(mlir::Type inType, unsigned numLenParams) { 63 if (numLenParams > 0) { 64 if (auto rt = inType.dyn_cast<fir::RecordType>()) 65 return numLenParams != rt.getNumLenParams(); 66 return true; 67 } 68 return false; 69 } 70 71 //===----------------------------------------------------------------------===// 72 // AllocaOp 73 //===----------------------------------------------------------------------===// 74 75 mlir::Type fir::AllocaOp::getAllocatedType() { 76 return getType().cast<ReferenceType>().getEleTy(); 77 } 78 79 /// Create a legal memory reference as return type 80 mlir::Type fir::AllocaOp::wrapResultType(mlir::Type intype) { 81 // FIR semantics: memory references to memory references are disallowed 82 if (intype.isa<ReferenceType>()) 83 return {}; 84 return ReferenceType::get(intype); 85 } 86 87 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { 88 return ReferenceType::get(ty); 89 } 90 91 //===----------------------------------------------------------------------===// 92 // AllocMemOp 93 //===----------------------------------------------------------------------===// 94 95 mlir::Type fir::AllocMemOp::getAllocatedType() { 96 return getType().cast<HeapType>().getEleTy(); 97 } 98 99 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { 100 return HeapType::get(ty); 101 } 102 103 /// Create a legal heap reference as return type 104 mlir::Type fir::AllocMemOp::wrapResultType(mlir::Type intype) { 105 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER 106 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well 107 // FIR semantics: one may not allocate a memory reference value 108 if (intype.isa<ReferenceType>() || intype.isa<HeapType>() || 109 intype.isa<PointerType>() || intype.isa<FunctionType>()) 110 return {}; 111 return HeapType::get(intype); 112 } 113 114 //===----------------------------------------------------------------------===// 115 // ArrayCoorOp 116 //===----------------------------------------------------------------------===// 117 118 static mlir::LogicalResult verify(fir::ArrayCoorOp op) { 119 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 120 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 121 if (!arrTy) 122 return op.emitOpError("must be a reference to an array"); 123 auto arrDim = arrTy.getDimension(); 124 125 if (auto shapeOp = op.shape()) { 126 auto shapeTy = shapeOp.getType(); 127 unsigned shapeTyRank = 0; 128 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 129 shapeTyRank = s.getRank(); 130 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 131 shapeTyRank = ss.getRank(); 132 } else { 133 auto s = shapeTy.cast<fir::ShiftType>(); 134 shapeTyRank = s.getRank(); 135 if (!op.memref().getType().isa<fir::BoxType>()) 136 return op.emitOpError("shift can only be provided with fir.box memref"); 137 } 138 if (arrDim && arrDim != shapeTyRank) 139 return op.emitOpError("rank of dimension mismatched"); 140 if (shapeTyRank != op.indices().size()) 141 return op.emitOpError("number of indices do not match dim rank"); 142 } 143 144 if (auto sliceOp = op.slice()) 145 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 146 if (sliceTy.getRank() != arrDim) 147 return op.emitOpError("rank of dimension in slice mismatched"); 148 149 return mlir::success(); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // ArrayLoadOp 154 //===----------------------------------------------------------------------===// 155 156 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { 157 if (auto sh = shape()) 158 if (auto *op = sh.getDefiningOp()) { 159 if (auto shOp = dyn_cast<fir::ShapeOp>(op)) 160 return shOp.getExtents(); 161 return cast<fir::ShapeShiftOp>(op).getExtents(); 162 } 163 return {}; 164 } 165 166 static mlir::LogicalResult verify(fir::ArrayLoadOp op) { 167 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 168 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 169 if (!arrTy) 170 return op.emitOpError("must be a reference to an array"); 171 auto arrDim = arrTy.getDimension(); 172 173 if (auto shapeOp = op.shape()) { 174 auto shapeTy = shapeOp.getType(); 175 unsigned shapeTyRank = 0; 176 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 177 shapeTyRank = s.getRank(); 178 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 179 shapeTyRank = ss.getRank(); 180 } else { 181 auto s = shapeTy.cast<fir::ShiftType>(); 182 shapeTyRank = s.getRank(); 183 if (!op.memref().getType().isa<fir::BoxType>()) 184 return op.emitOpError("shift can only be provided with fir.box memref"); 185 } 186 if (arrDim && arrDim != shapeTyRank) 187 return op.emitOpError("rank of dimension mismatched"); 188 } 189 190 if (auto sliceOp = op.slice()) 191 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 192 if (sliceTy.getRank() != arrDim) 193 return op.emitOpError("rank of dimension in slice mismatched"); 194 195 return mlir::success(); 196 } 197 198 //===----------------------------------------------------------------------===// 199 // BoxAddrOp 200 //===----------------------------------------------------------------------===// 201 202 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 203 if (auto v = val().getDefiningOp()) { 204 if (auto box = dyn_cast<fir::EmboxOp>(v)) 205 return box.memref(); 206 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 207 return box.memref(); 208 } 209 return {}; 210 } 211 212 //===----------------------------------------------------------------------===// 213 // BoxCharLenOp 214 //===----------------------------------------------------------------------===// 215 216 mlir::OpFoldResult 217 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 218 if (auto v = val().getDefiningOp()) { 219 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 220 return box.len(); 221 } 222 return {}; 223 } 224 225 //===----------------------------------------------------------------------===// 226 // BoxDimsOp 227 //===----------------------------------------------------------------------===// 228 229 /// Get the result types packed in a tuple tuple 230 mlir::Type fir::BoxDimsOp::getTupleType() { 231 // note: triple, but 4 is nearest power of 2 232 llvm::SmallVector<mlir::Type, 4> triple{ 233 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; 234 return mlir::TupleType::get(getContext(), triple); 235 } 236 237 //===----------------------------------------------------------------------===// 238 // CallOp 239 //===----------------------------------------------------------------------===// 240 241 mlir::FunctionType fir::CallOp::getFunctionType() { 242 return mlir::FunctionType::get(getContext(), getOperandTypes(), 243 getResultTypes()); 244 } 245 246 static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) { 247 auto callee = op.callee(); 248 bool isDirect = callee.hasValue(); 249 p << ' '; 250 if (isDirect) 251 p << callee.getValue(); 252 else 253 p << op.getOperand(0); 254 p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')'; 255 p.printOptionalAttrDict(op->getAttrs(), {"callee"}); 256 auto resultTypes{op.getResultTypes()}; 257 llvm::SmallVector<Type, 8> argTypes( 258 llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1)); 259 p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes); 260 } 261 262 static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser, 263 mlir::OperationState &result) { 264 llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> operands; 265 if (parser.parseOperandList(operands)) 266 return mlir::failure(); 267 268 mlir::NamedAttrList attrs; 269 mlir::SymbolRefAttr funcAttr; 270 bool isDirect = operands.empty(); 271 if (isDirect) 272 if (parser.parseAttribute(funcAttr, "callee", attrs)) 273 return mlir::failure(); 274 275 Type type; 276 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 277 parser.parseOptionalAttrDict(attrs) || parser.parseColon() || 278 parser.parseType(type)) 279 return mlir::failure(); 280 281 auto funcType = type.dyn_cast<mlir::FunctionType>(); 282 if (!funcType) 283 return parser.emitError(parser.getNameLoc(), "expected function type"); 284 if (isDirect) { 285 if (parser.resolveOperands(operands, funcType.getInputs(), 286 parser.getNameLoc(), result.operands)) 287 return mlir::failure(); 288 } else { 289 auto funcArgs = 290 llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front(); 291 if (parser.resolveOperand(operands[0], funcType, result.operands) || 292 parser.resolveOperands(funcArgs, funcType.getInputs(), 293 parser.getNameLoc(), result.operands)) 294 return mlir::failure(); 295 } 296 result.addTypes(funcType.getResults()); 297 result.attributes = attrs; 298 return mlir::success(); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // CmpOp 303 //===----------------------------------------------------------------------===// 304 305 template <typename OPTY> 306 static void printCmpOp(OpAsmPrinter &p, OPTY op) { 307 p << ' '; 308 auto predSym = mlir::symbolizeCmpFPredicate( 309 op->template getAttrOfType<mlir::IntegerAttr>( 310 OPTY::getPredicateAttrName()) 311 .getInt()); 312 assert(predSym.hasValue() && "invalid symbol value for predicate"); 313 p << '"' << mlir::stringifyCmpFPredicate(predSym.getValue()) << '"' << ", "; 314 p.printOperand(op.lhs()); 315 p << ", "; 316 p.printOperand(op.rhs()); 317 p.printOptionalAttrDict(op->getAttrs(), 318 /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); 319 p << " : " << op.lhs().getType(); 320 } 321 322 template <typename OPTY> 323 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, 324 mlir::OperationState &result) { 325 llvm::SmallVector<mlir::OpAsmParser::OperandType, 2> ops; 326 mlir::NamedAttrList attrs; 327 mlir::Attribute predicateNameAttr; 328 mlir::Type type; 329 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), 330 attrs) || 331 parser.parseComma() || parser.parseOperandList(ops, 2) || 332 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || 333 parser.resolveOperands(ops, type, result.operands)) 334 return failure(); 335 336 if (!predicateNameAttr.isa<mlir::StringAttr>()) 337 return parser.emitError(parser.getNameLoc(), 338 "expected string comparison predicate attribute"); 339 340 // Rewrite string attribute to an enum value. 341 llvm::StringRef predicateName = 342 predicateNameAttr.cast<mlir::StringAttr>().getValue(); 343 auto predicate = fir::CmpcOp::getPredicateByName(predicateName); 344 auto builder = parser.getBuilder(); 345 mlir::Type i1Type = builder.getI1Type(); 346 attrs.set(OPTY::getPredicateAttrName(), 347 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 348 result.attributes = attrs; 349 result.addTypes({i1Type}); 350 return success(); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // CmpcOp 355 //===----------------------------------------------------------------------===// 356 357 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, 358 CmpFPredicate predicate, Value lhs, Value rhs) { 359 result.addOperands({lhs, rhs}); 360 result.types.push_back(builder.getI1Type()); 361 result.addAttribute( 362 fir::CmpcOp::getPredicateAttrName(), 363 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 364 } 365 366 mlir::CmpFPredicate fir::CmpcOp::getPredicateByName(llvm::StringRef name) { 367 auto pred = mlir::symbolizeCmpFPredicate(name); 368 assert(pred.hasValue() && "invalid predicate name"); 369 return pred.getValue(); 370 } 371 372 static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); } 373 374 mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser, 375 mlir::OperationState &result) { 376 return parseCmpOp<fir::CmpcOp>(parser, result); 377 } 378 379 //===----------------------------------------------------------------------===// 380 // ConvertOp 381 //===----------------------------------------------------------------------===// 382 383 void fir::ConvertOp::getCanonicalizationPatterns( 384 OwningRewritePatternList &results, MLIRContext *context) {} 385 386 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 387 if (value().getType() == getType()) 388 return value(); 389 if (matchPattern(value(), m_Op<fir::ConvertOp>())) { 390 auto inner = cast<fir::ConvertOp>(value().getDefiningOp()); 391 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a 392 if (auto toTy = getType().dyn_cast<fir::LogicalType>()) 393 if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>()) 394 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy)) 395 return inner.value(); 396 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a 397 if (auto toTy = getType().dyn_cast<mlir::IntegerType>()) 398 if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>()) 399 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) && 400 (fromTy.getWidth() == 1)) 401 return inner.value(); 402 } 403 return {}; 404 } 405 406 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { 407 return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() || 408 ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>(); 409 } 410 411 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { 412 return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>(); 413 } 414 415 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { 416 return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() || 417 ty.isa<fir::HeapType>() || ty.isa<mlir::MemRefType>() || 418 ty.isa<mlir::FunctionType>() || ty.isa<fir::TypeDescType>(); 419 } 420 421 //===----------------------------------------------------------------------===// 422 // CoordinateOp 423 //===----------------------------------------------------------------------===// 424 425 static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) { 426 p << ' ' << op.ref() << ", " << op.coor(); 427 p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"}); 428 p << " : "; 429 p.printFunctionalType(op.getOperandTypes(), op->getResultTypes()); 430 } 431 432 static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser, 433 mlir::OperationState &result) { 434 mlir::OpAsmParser::OperandType memref; 435 if (parser.parseOperand(memref) || parser.parseComma()) 436 return mlir::failure(); 437 llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> coorOperands; 438 if (parser.parseOperandList(coorOperands)) 439 return mlir::failure(); 440 llvm::SmallVector<mlir::OpAsmParser::OperandType, 16> allOperands; 441 allOperands.push_back(memref); 442 allOperands.append(coorOperands.begin(), coorOperands.end()); 443 mlir::FunctionType funcTy; 444 auto loc = parser.getCurrentLocation(); 445 if (parser.parseOptionalAttrDict(result.attributes) || 446 parser.parseColonType(funcTy) || 447 parser.resolveOperands(allOperands, funcTy.getInputs(), loc, 448 result.operands)) 449 return failure(); 450 parser.addTypesToList(funcTy.getResults(), result.types); 451 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); 452 return mlir::success(); 453 } 454 455 static mlir::LogicalResult verify(fir::CoordinateOp op) { 456 auto refTy = op.ref().getType(); 457 if (fir::isa_ref_type(refTy)) { 458 auto eleTy = fir::dyn_cast_ptrEleTy(refTy); 459 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) { 460 if (arrTy.hasUnknownShape()) 461 return op.emitOpError("cannot find coordinate in unknown shape"); 462 if (arrTy.getConstantRows() < arrTy.getDimension() - 1) 463 return op.emitOpError("cannot find coordinate with unknown extents"); 464 } 465 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || 466 fir::isa_char_string(eleTy))) 467 return op.emitOpError("cannot apply coordinate_of to this type"); 468 } 469 // Recovering a LEN type parameter only makes sense from a boxed value. For a 470 // bare reference, the LEN type parameters must be passed as additional 471 // arguments to `op`. 472 for (auto co : op.coor()) 473 if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) { 474 if (op.getNumOperands() != 2) 475 return op.emitOpError("len_param_index must be last argument"); 476 if (!op.ref().getType().isa<BoxType>()) 477 return op.emitOpError("len_param_index must be used on box type"); 478 } 479 return mlir::success(); 480 } 481 482 //===----------------------------------------------------------------------===// 483 // DispatchOp 484 //===----------------------------------------------------------------------===// 485 486 mlir::FunctionType fir::DispatchOp::getFunctionType() { 487 return mlir::FunctionType::get(getContext(), getOperandTypes(), 488 getResultTypes()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // DispatchTableOp 493 //===----------------------------------------------------------------------===// 494 495 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { 496 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp"); 497 auto &block = getBlock(); 498 block.getOperations().insert(block.end(), op); 499 } 500 501 //===----------------------------------------------------------------------===// 502 // EmboxOp 503 //===----------------------------------------------------------------------===// 504 505 static mlir::LogicalResult verify(fir::EmboxOp op) { 506 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 507 bool isArray = false; 508 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 509 eleTy = seqTy.getEleTy(); 510 isArray = true; 511 } 512 if (op.hasLenParams()) { 513 auto lenPs = op.numLenParams(); 514 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) { 515 if (lenPs != rt.getNumLenParams()) 516 return op.emitOpError("number of LEN params does not correspond" 517 " to the !fir.type type"); 518 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) { 519 if (strTy.getLen() != fir::CharacterType::unknownLen()) 520 return op.emitOpError("CHARACTER already has static LEN"); 521 } else { 522 return op.emitOpError("LEN parameters require CHARACTER or derived type"); 523 } 524 for (auto lp : op.typeparams()) 525 if (!fir::isa_integer(lp.getType())) 526 return op.emitOpError("LEN parameters must be integral type"); 527 } 528 if (op.getShape() && !isArray) 529 return op.emitOpError("shape must not be provided for a scalar"); 530 if (op.getSlice() && !isArray) 531 return op.emitOpError("slice must not be provided for a scalar"); 532 return mlir::success(); 533 } 534 535 //===----------------------------------------------------------------------===// 536 // GenTypeDescOp 537 //===----------------------------------------------------------------------===// 538 539 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, 540 mlir::TypeAttr inty) { 541 result.addAttribute("in_type", inty); 542 result.addTypes(TypeDescType::get(inty.getValue())); 543 } 544 545 //===----------------------------------------------------------------------===// 546 // GlobalOp 547 //===----------------------------------------------------------------------===// 548 549 static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { 550 // Parse the optional linkage 551 llvm::StringRef linkage; 552 auto &builder = parser.getBuilder(); 553 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { 554 if (fir::GlobalOp::verifyValidLinkage(linkage)) 555 return mlir::failure(); 556 mlir::StringAttr linkAttr = builder.getStringAttr(linkage); 557 result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); 558 } 559 560 // Parse the name as a symbol reference attribute. 561 mlir::SymbolRefAttr nameAttr; 562 if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(), 563 result.attributes)) 564 return mlir::failure(); 565 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 566 nameAttr.getRootReference()); 567 568 bool simpleInitializer = false; 569 if (mlir::succeeded(parser.parseOptionalLParen())) { 570 Attribute attr; 571 if (parser.parseAttribute(attr, "initVal", result.attributes) || 572 parser.parseRParen()) 573 return mlir::failure(); 574 simpleInitializer = true; 575 } 576 577 if (succeeded(parser.parseOptionalKeyword("constant"))) { 578 // if "constant" keyword then mark this as a constant, not a variable 579 result.addAttribute("constant", builder.getUnitAttr()); 580 } 581 582 mlir::Type globalType; 583 if (parser.parseColonType(globalType)) 584 return mlir::failure(); 585 586 result.addAttribute(fir::GlobalOp::typeAttrName(result.name), 587 mlir::TypeAttr::get(globalType)); 588 589 if (simpleInitializer) { 590 result.addRegion(); 591 } else { 592 // Parse the optional initializer body. 593 auto parseResult = parser.parseOptionalRegion( 594 *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); 595 if (parseResult.hasValue() && mlir::failed(*parseResult)) 596 return mlir::failure(); 597 } 598 599 return mlir::success(); 600 } 601 602 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { 603 getBlock().getOperations().push_back(op); 604 } 605 606 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 607 StringRef name, bool isConstant, Type type, 608 Attribute initialVal, StringAttr linkage, 609 ArrayRef<NamedAttribute> attrs) { 610 result.addRegion(); 611 result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type)); 612 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 613 builder.getStringAttr(name)); 614 result.addAttribute(symbolAttrName(), 615 SymbolRefAttr::get(builder.getContext(), name)); 616 if (isConstant) 617 result.addAttribute(constantAttrName(result.name), builder.getUnitAttr()); 618 if (initialVal) 619 result.addAttribute(initValAttrName(result.name), initialVal); 620 if (linkage) 621 result.addAttribute(linkageAttrName(), linkage); 622 result.attributes.append(attrs.begin(), attrs.end()); 623 } 624 625 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 626 StringRef name, Type type, Attribute initialVal, 627 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 628 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 629 } 630 631 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 632 StringRef name, bool isConstant, Type type, 633 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 634 build(builder, result, name, isConstant, type, {}, linkage, attrs); 635 } 636 637 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 638 StringRef name, Type type, StringAttr linkage, 639 ArrayRef<NamedAttribute> attrs) { 640 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 641 } 642 643 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 644 StringRef name, bool isConstant, Type type, 645 ArrayRef<NamedAttribute> attrs) { 646 build(builder, result, name, isConstant, type, StringAttr{}, attrs); 647 } 648 649 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 650 StringRef name, Type type, 651 ArrayRef<NamedAttribute> attrs) { 652 build(builder, result, name, /*isConstant=*/false, type, attrs); 653 } 654 655 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { 656 // Supporting only a subset of the LLVM linkage types for now 657 static const char *validNames[] = {"common", "internal", "linkonce", "weak"}; 658 return mlir::success(llvm::is_contained(validNames, linkage)); 659 } 660 661 template <bool AllowFields> 662 static void appendAsAttribute(llvm::SmallVectorImpl<mlir::Attribute> &attrs, 663 mlir::Value val) { 664 if (auto *op = val.getDefiningOp()) { 665 if (auto cop = mlir::dyn_cast<mlir::ConstantOp>(op)) { 666 // append the integer constant value 667 if (auto iattr = cop.getValue().dyn_cast<mlir::IntegerAttr>()) { 668 attrs.push_back(iattr); 669 return; 670 } 671 } else if (auto fld = mlir::dyn_cast<fir::FieldIndexOp>(op)) { 672 if constexpr (AllowFields) { 673 // append the field name and the record type 674 attrs.push_back(fld.field_idAttr()); 675 attrs.push_back(fld.on_typeAttr()); 676 return; 677 } 678 } 679 } 680 llvm::report_fatal_error("cannot build Op with these arguments"); 681 } 682 683 template <bool AllowFields = true> 684 static mlir::ArrayAttr collectAsAttributes(mlir::MLIRContext *ctxt, 685 OperationState &result, 686 llvm::ArrayRef<mlir::Value> inds) { 687 llvm::SmallVector<mlir::Attribute> attrs; 688 for (auto v : inds) 689 appendAsAttribute<AllowFields>(attrs, v); 690 assert(!attrs.empty()); 691 return mlir::ArrayAttr::get(ctxt, attrs); 692 } 693 694 //===----------------------------------------------------------------------===// 695 // InsertOnRangeOp 696 //===----------------------------------------------------------------------===// 697 698 void fir::InsertOnRangeOp::build(mlir::OpBuilder &builder, 699 OperationState &result, mlir::Type resTy, 700 mlir::Value aggVal, mlir::Value eleVal, 701 llvm::ArrayRef<mlir::Value> inds) { 702 auto aa = collectAsAttributes<false>(builder.getContext(), result, inds); 703 build(builder, result, resTy, aggVal, eleVal, aa); 704 } 705 706 /// Range bounds must be nonnegative, and the range must not be empty. 707 static mlir::LogicalResult verify(fir::InsertOnRangeOp op) { 708 if (op.coor().size() < 2 || op.coor().size() % 2 != 0) 709 return op.emitOpError("has uneven number of values in ranges"); 710 bool rangeIsKnownToBeNonempty = false; 711 for (auto i = op.coor().end(), b = op.coor().begin(); i != b;) { 712 int64_t ub = (*--i).cast<IntegerAttr>().getInt(); 713 int64_t lb = (*--i).cast<IntegerAttr>().getInt(); 714 if (lb < 0 || ub < 0) 715 return op.emitOpError("negative range bound"); 716 if (rangeIsKnownToBeNonempty) 717 continue; 718 if (lb > ub) 719 return op.emitOpError("empty range"); 720 rangeIsKnownToBeNonempty = lb < ub; 721 } 722 return mlir::success(); 723 } 724 725 //===----------------------------------------------------------------------===// 726 // InsertValueOp 727 //===----------------------------------------------------------------------===// 728 729 static bool checkIsIntegerConstant(mlir::Value v, int64_t conVal) { 730 if (auto c = dyn_cast_or_null<mlir::ConstantOp>(v.getDefiningOp())) { 731 auto attr = c.getValue(); 732 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>()) 733 return iattr.getInt() == conVal; 734 } 735 return false; 736 } 737 static bool isZero(mlir::Value v) { return checkIsIntegerConstant(v, 0); } 738 static bool isOne(mlir::Value v) { return checkIsIntegerConstant(v, 1); } 739 740 // Undo some complex patterns created in the front-end and turn them back into 741 // complex ops. 742 template <typename FltOp, typename CpxOp> 743 struct UndoComplexPattern : public mlir::RewritePattern { 744 UndoComplexPattern(mlir::MLIRContext *ctx) 745 : mlir::RewritePattern("fir.insert_value", 2, ctx) {} 746 747 mlir::LogicalResult 748 matchAndRewrite(mlir::Operation *op, 749 mlir::PatternRewriter &rewriter) const override { 750 auto insval = dyn_cast_or_null<fir::InsertValueOp>(op); 751 if (!insval || !insval.getType().isa<fir::ComplexType>()) 752 return mlir::failure(); 753 auto insval2 = 754 dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp()); 755 if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp())) 756 return mlir::failure(); 757 auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp()); 758 auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp()); 759 if (!binf || !binf2 || insval.coor().size() != 1 || 760 !isOne(insval.coor()[0]) || insval2.coor().size() != 1 || 761 !isZero(insval2.coor()[0])) 762 return mlir::failure(); 763 auto eai = 764 dyn_cast_or_null<fir::ExtractValueOp>(binf.lhs().getDefiningOp()); 765 auto ebi = 766 dyn_cast_or_null<fir::ExtractValueOp>(binf.rhs().getDefiningOp()); 767 auto ear = 768 dyn_cast_or_null<fir::ExtractValueOp>(binf2.lhs().getDefiningOp()); 769 auto ebr = 770 dyn_cast_or_null<fir::ExtractValueOp>(binf2.rhs().getDefiningOp()); 771 if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() || 772 ebr.adt() != ebi.adt() || eai.coor().size() != 1 || 773 !isOne(eai.coor()[0]) || ebi.coor().size() != 1 || 774 !isOne(ebi.coor()[0]) || ear.coor().size() != 1 || 775 !isZero(ear.coor()[0]) || ebr.coor().size() != 1 || 776 !isZero(ebr.coor()[0])) 777 return mlir::failure(); 778 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt()); 779 return mlir::success(); 780 } 781 }; 782 783 void fir::InsertValueOp::getCanonicalizationPatterns( 784 mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { 785 results.insert<UndoComplexPattern<mlir::AddFOp, fir::AddcOp>, 786 UndoComplexPattern<mlir::SubFOp, fir::SubcOp>>(context); 787 } 788 789 //===----------------------------------------------------------------------===// 790 // IterWhileOp 791 //===----------------------------------------------------------------------===// 792 793 void fir::IterWhileOp::build(mlir::OpBuilder &builder, 794 mlir::OperationState &result, mlir::Value lb, 795 mlir::Value ub, mlir::Value step, 796 mlir::Value iterate, bool finalCountValue, 797 mlir::ValueRange iterArgs, 798 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 799 result.addOperands({lb, ub, step, iterate}); 800 if (finalCountValue) { 801 result.addTypes(builder.getIndexType()); 802 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 803 } 804 result.addTypes(iterate.getType()); 805 result.addOperands(iterArgs); 806 for (auto v : iterArgs) 807 result.addTypes(v.getType()); 808 mlir::Region *bodyRegion = result.addRegion(); 809 bodyRegion->push_back(new Block{}); 810 bodyRegion->front().addArgument(builder.getIndexType()); 811 bodyRegion->front().addArgument(iterate.getType()); 812 bodyRegion->front().addArguments(iterArgs.getTypes()); 813 result.addAttributes(attributes); 814 } 815 816 static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser, 817 mlir::OperationState &result) { 818 auto &builder = parser.getBuilder(); 819 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 820 if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || 821 parser.parseEqual()) 822 return mlir::failure(); 823 824 // Parse loop bounds. 825 auto indexType = builder.getIndexType(); 826 auto i1Type = builder.getIntegerType(1); 827 if (parser.parseOperand(lb) || 828 parser.resolveOperand(lb, indexType, result.operands) || 829 parser.parseKeyword("to") || parser.parseOperand(ub) || 830 parser.resolveOperand(ub, indexType, result.operands) || 831 parser.parseKeyword("step") || parser.parseOperand(step) || 832 parser.parseRParen() || 833 parser.resolveOperand(step, indexType, result.operands)) 834 return mlir::failure(); 835 836 mlir::OpAsmParser::OperandType iterateVar, iterateInput; 837 if (parser.parseKeyword("and") || parser.parseLParen() || 838 parser.parseRegionArgument(iterateVar) || parser.parseEqual() || 839 parser.parseOperand(iterateInput) || parser.parseRParen() || 840 parser.resolveOperand(iterateInput, i1Type, result.operands)) 841 return mlir::failure(); 842 843 // Parse the initial iteration arguments. 844 llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> regionArgs; 845 auto prependCount = false; 846 847 // Induction variable. 848 regionArgs.push_back(inductionVariable); 849 regionArgs.push_back(iterateVar); 850 851 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 852 llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> operands; 853 llvm::SmallVector<mlir::Type, 4> regionTypes; 854 // Parse assignment list and results type list. 855 if (parser.parseAssignmentList(regionArgs, operands) || 856 parser.parseArrowTypeList(regionTypes)) 857 return failure(); 858 if (regionTypes.size() == operands.size() + 2) 859 prependCount = true; 860 llvm::ArrayRef<mlir::Type> resTypes = regionTypes; 861 resTypes = prependCount ? resTypes.drop_front(2) : resTypes; 862 // Resolve input operands. 863 for (auto operand_type : llvm::zip(operands, resTypes)) 864 if (parser.resolveOperand(std::get<0>(operand_type), 865 std::get<1>(operand_type), result.operands)) 866 return failure(); 867 if (prependCount) { 868 result.addTypes(regionTypes); 869 } else { 870 result.addTypes(i1Type); 871 result.addTypes(resTypes); 872 } 873 } else if (succeeded(parser.parseOptionalArrow())) { 874 llvm::SmallVector<mlir::Type, 4> typeList; 875 if (parser.parseLParen() || parser.parseTypeList(typeList) || 876 parser.parseRParen()) 877 return failure(); 878 // Type list must be "(index, i1)". 879 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() || 880 !typeList[1].isSignlessInteger(1)) 881 return failure(); 882 result.addTypes(typeList); 883 prependCount = true; 884 } else { 885 result.addTypes(i1Type); 886 } 887 888 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 889 return mlir::failure(); 890 891 llvm::SmallVector<mlir::Type, 4> argTypes; 892 // Induction variable (hidden) 893 if (prependCount) 894 result.addAttribute(IterWhileOp::finalValueAttrName(result.name), 895 builder.getUnitAttr()); 896 else 897 argTypes.push_back(indexType); 898 // Loop carried variables (including iterate) 899 argTypes.append(result.types.begin(), result.types.end()); 900 // Parse the body region. 901 auto *body = result.addRegion(); 902 if (regionArgs.size() != argTypes.size()) 903 return parser.emitError( 904 parser.getNameLoc(), 905 "mismatch in number of loop-carried values and defined values"); 906 907 if (parser.parseRegion(*body, regionArgs, argTypes)) 908 return failure(); 909 910 fir::IterWhileOp::ensureTerminator(*body, builder, result.location); 911 912 return mlir::success(); 913 } 914 915 static mlir::LogicalResult verify(fir::IterWhileOp op) { 916 // Check that the body defines as single block argument for the induction 917 // variable. 918 auto *body = op.getBody(); 919 if (!body->getArgument(1).getType().isInteger(1)) 920 return op.emitOpError( 921 "expected body second argument to be an index argument for " 922 "the induction variable"); 923 if (!body->getArgument(0).getType().isIndex()) 924 return op.emitOpError( 925 "expected body first argument to be an index argument for " 926 "the induction variable"); 927 928 auto opNumResults = op.getNumResults(); 929 if (op.finalValue()) { 930 // Result type must be "(index, i1, ...)". 931 if (!op.getResult(0).getType().isa<mlir::IndexType>()) 932 return op.emitOpError("result #0 expected to be index"); 933 if (!op.getResult(1).getType().isSignlessInteger(1)) 934 return op.emitOpError("result #1 expected to be i1"); 935 opNumResults--; 936 } else { 937 // iterate_while always returns the early exit induction value. 938 // Result type must be "(i1, ...)" 939 if (!op.getResult(0).getType().isSignlessInteger(1)) 940 return op.emitOpError("result #0 expected to be i1"); 941 } 942 if (opNumResults == 0) 943 return mlir::failure(); 944 if (op.getNumIterOperands() != opNumResults) 945 return op.emitOpError( 946 "mismatch in number of loop-carried values and defined values"); 947 if (op.getNumRegionIterArgs() != opNumResults) 948 return op.emitOpError( 949 "mismatch in number of basic block args and defined values"); 950 auto iterOperands = op.getIterOperands(); 951 auto iterArgs = op.getRegionIterArgs(); 952 auto opResults = 953 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 954 unsigned i = 0; 955 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 956 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 957 return op.emitOpError() << "types mismatch between " << i 958 << "th iter operand and defined value"; 959 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 960 return op.emitOpError() << "types mismatch between " << i 961 << "th iter region arg and defined value"; 962 963 i++; 964 } 965 return mlir::success(); 966 } 967 968 static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) { 969 p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to " 970 << op.upperBound() << " step " << op.step() << ") and ("; 971 assert(op.hasIterOperands()); 972 auto regionArgs = op.getRegionIterArgs(); 973 auto operands = op.getIterOperands(); 974 p << regionArgs.front() << " = " << *operands.begin() << ")"; 975 if (regionArgs.size() > 1) { 976 p << " iter_args("; 977 llvm::interleaveComma( 978 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, 979 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); 980 p << ") -> ("; 981 llvm::interleaveComma( 982 llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p); 983 p << ")"; 984 } else if (op.finalValue()) { 985 p << " -> (" << op.getResultTypes() << ')'; 986 } 987 p.printOptionalAttrDictWithKeyword(op->getAttrs(), {"finalValue"}); 988 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 989 /*printBlockTerminators=*/true); 990 } 991 992 mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); } 993 994 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { 995 return !region().isAncestor(value.getParentRegion()); 996 } 997 998 mlir::LogicalResult 999 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1000 for (auto op : ops) 1001 op->moveBefore(*this); 1002 return success(); 1003 } 1004 1005 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { 1006 for (auto i : llvm::enumerate(initArgs())) 1007 if (iterArg == i.value()) 1008 return region().front().getArgument(i.index() + 1); 1009 return {}; 1010 } 1011 1012 void fir::IterWhileOp::resultToSourceOps( 1013 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1014 auto oper = finalValue() ? resultNum + 1 : resultNum; 1015 auto *term = region().front().getTerminator(); 1016 if (oper < term->getNumOperands()) 1017 results.push_back(term->getOperand(oper)); 1018 } 1019 1020 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { 1021 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 1022 return initArgs()[blockArgNum - 1]; 1023 return {}; 1024 } 1025 1026 //===----------------------------------------------------------------------===// 1027 // LoadOp 1028 //===----------------------------------------------------------------------===// 1029 1030 /// Get the element type of a reference like type; otherwise null 1031 static mlir::Type elementTypeOf(mlir::Type ref) { 1032 return llvm::TypeSwitch<mlir::Type, mlir::Type>(ref) 1033 .Case<ReferenceType, PointerType, HeapType>( 1034 [](auto type) { return type.getEleTy(); }) 1035 .Default([](mlir::Type) { return mlir::Type{}; }); 1036 } 1037 1038 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { 1039 if ((ele = elementTypeOf(ref))) 1040 return mlir::success(); 1041 return mlir::failure(); 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // DoLoopOp 1046 //===----------------------------------------------------------------------===// 1047 1048 void fir::DoLoopOp::build(mlir::OpBuilder &builder, 1049 mlir::OperationState &result, mlir::Value lb, 1050 mlir::Value ub, mlir::Value step, bool unordered, 1051 bool finalCountValue, mlir::ValueRange iterArgs, 1052 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1053 result.addOperands({lb, ub, step}); 1054 result.addOperands(iterArgs); 1055 if (finalCountValue) { 1056 result.addTypes(builder.getIndexType()); 1057 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 1058 } 1059 for (auto v : iterArgs) 1060 result.addTypes(v.getType()); 1061 mlir::Region *bodyRegion = result.addRegion(); 1062 bodyRegion->push_back(new Block{}); 1063 if (iterArgs.empty() && !finalCountValue) 1064 DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); 1065 bodyRegion->front().addArgument(builder.getIndexType()); 1066 bodyRegion->front().addArguments(iterArgs.getTypes()); 1067 if (unordered) 1068 result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr()); 1069 result.addAttributes(attributes); 1070 } 1071 1072 static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser, 1073 mlir::OperationState &result) { 1074 auto &builder = parser.getBuilder(); 1075 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1076 // Parse the induction variable followed by '='. 1077 if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) 1078 return mlir::failure(); 1079 1080 // Parse loop bounds. 1081 auto indexType = builder.getIndexType(); 1082 if (parser.parseOperand(lb) || 1083 parser.resolveOperand(lb, indexType, result.operands) || 1084 parser.parseKeyword("to") || parser.parseOperand(ub) || 1085 parser.resolveOperand(ub, indexType, result.operands) || 1086 parser.parseKeyword("step") || parser.parseOperand(step) || 1087 parser.resolveOperand(step, indexType, result.operands)) 1088 return failure(); 1089 1090 if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) 1091 result.addAttribute("unordered", builder.getUnitAttr()); 1092 1093 // Parse the optional initial iteration arguments. 1094 llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> regionArgs, operands; 1095 llvm::SmallVector<mlir::Type, 4> argTypes; 1096 auto prependCount = false; 1097 regionArgs.push_back(inductionVariable); 1098 1099 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1100 // Parse assignment list and results type list. 1101 if (parser.parseAssignmentList(regionArgs, operands) || 1102 parser.parseArrowTypeList(result.types)) 1103 return failure(); 1104 if (result.types.size() == operands.size() + 1) 1105 prependCount = true; 1106 // Resolve input operands. 1107 llvm::ArrayRef<mlir::Type> resTypes = result.types; 1108 for (auto operand_type : 1109 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) 1110 if (parser.resolveOperand(std::get<0>(operand_type), 1111 std::get<1>(operand_type), result.operands)) 1112 return failure(); 1113 } else if (succeeded(parser.parseOptionalArrow())) { 1114 if (parser.parseKeyword("index")) 1115 return failure(); 1116 result.types.push_back(indexType); 1117 prependCount = true; 1118 } 1119 1120 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1121 return mlir::failure(); 1122 1123 // Induction variable. 1124 if (prependCount) 1125 result.addAttribute(DoLoopOp::finalValueAttrName(result.name), 1126 builder.getUnitAttr()); 1127 else 1128 argTypes.push_back(indexType); 1129 // Loop carried variables 1130 argTypes.append(result.types.begin(), result.types.end()); 1131 // Parse the body region. 1132 auto *body = result.addRegion(); 1133 if (regionArgs.size() != argTypes.size()) 1134 return parser.emitError( 1135 parser.getNameLoc(), 1136 "mismatch in number of loop-carried values and defined values"); 1137 1138 if (parser.parseRegion(*body, regionArgs, argTypes)) 1139 return failure(); 1140 1141 DoLoopOp::ensureTerminator(*body, builder, result.location); 1142 1143 return mlir::success(); 1144 } 1145 1146 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { 1147 auto ivArg = val.dyn_cast<mlir::BlockArgument>(); 1148 if (!ivArg) 1149 return {}; 1150 assert(ivArg.getOwner() && "unlinked block argument"); 1151 auto *containingInst = ivArg.getOwner()->getParentOp(); 1152 return dyn_cast_or_null<fir::DoLoopOp>(containingInst); 1153 } 1154 1155 // Lifted from loop.loop 1156 static mlir::LogicalResult verify(fir::DoLoopOp op) { 1157 // Check that the body defines as single block argument for the induction 1158 // variable. 1159 auto *body = op.getBody(); 1160 if (!body->getArgument(0).getType().isIndex()) 1161 return op.emitOpError( 1162 "expected body first argument to be an index argument for " 1163 "the induction variable"); 1164 1165 auto opNumResults = op.getNumResults(); 1166 if (opNumResults == 0) 1167 return success(); 1168 1169 if (op.finalValue()) { 1170 if (op.unordered()) 1171 return op.emitOpError("unordered loop has no final value"); 1172 opNumResults--; 1173 } 1174 if (op.getNumIterOperands() != opNumResults) 1175 return op.emitOpError( 1176 "mismatch in number of loop-carried values and defined values"); 1177 if (op.getNumRegionIterArgs() != opNumResults) 1178 return op.emitOpError( 1179 "mismatch in number of basic block args and defined values"); 1180 auto iterOperands = op.getIterOperands(); 1181 auto iterArgs = op.getRegionIterArgs(); 1182 auto opResults = 1183 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1184 unsigned i = 0; 1185 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1186 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1187 return op.emitOpError() << "types mismatch between " << i 1188 << "th iter operand and defined value"; 1189 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1190 return op.emitOpError() << "types mismatch between " << i 1191 << "th iter region arg and defined value"; 1192 1193 i++; 1194 } 1195 return success(); 1196 } 1197 1198 static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) { 1199 bool printBlockTerminators = false; 1200 p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to " 1201 << op.upperBound() << " step " << op.step(); 1202 if (op.unordered()) 1203 p << " unordered"; 1204 if (op.hasIterOperands()) { 1205 p << " iter_args("; 1206 auto regionArgs = op.getRegionIterArgs(); 1207 auto operands = op.getIterOperands(); 1208 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { 1209 p << std::get<0>(it) << " = " << std::get<1>(it); 1210 }); 1211 p << ") -> (" << op.getResultTypes() << ')'; 1212 printBlockTerminators = true; 1213 } else if (op.finalValue()) { 1214 p << " -> " << op.getResultTypes(); 1215 printBlockTerminators = true; 1216 } 1217 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 1218 {"unordered", "finalValue"}); 1219 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 1220 printBlockTerminators); 1221 } 1222 1223 mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); } 1224 1225 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { 1226 return !region().isAncestor(value.getParentRegion()); 1227 } 1228 1229 mlir::LogicalResult 1230 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1231 for (auto op : ops) 1232 op->moveBefore(*this); 1233 return success(); 1234 } 1235 1236 /// Translate a value passed as an iter_arg to the corresponding block 1237 /// argument in the body of the loop. 1238 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { 1239 for (auto i : llvm::enumerate(initArgs())) 1240 if (iterArg == i.value()) 1241 return region().front().getArgument(i.index() + 1); 1242 return {}; 1243 } 1244 1245 /// Translate the result vector (by index number) to the corresponding value 1246 /// to the `fir.result` Op. 1247 void fir::DoLoopOp::resultToSourceOps( 1248 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1249 auto oper = finalValue() ? resultNum + 1 : resultNum; 1250 auto *term = region().front().getTerminator(); 1251 if (oper < term->getNumOperands()) 1252 results.push_back(term->getOperand(oper)); 1253 } 1254 1255 /// Translate the block argument (by index number) to the corresponding value 1256 /// passed as an iter_arg to the parent DoLoopOp. 1257 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { 1258 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 1259 return initArgs()[blockArgNum - 1]; 1260 return {}; 1261 } 1262 1263 //===----------------------------------------------------------------------===// 1264 // ReboxOp 1265 //===----------------------------------------------------------------------===// 1266 1267 /// Get the scalar type related to a fir.box type. 1268 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>. 1269 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { 1270 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 1271 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 1272 return seqTy.getEleTy(); 1273 return eleTy; 1274 } 1275 1276 /// Get the rank from a !fir.box type 1277 static unsigned getBoxRank(mlir::Type boxTy) { 1278 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 1279 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 1280 return seqTy.getDimension(); 1281 return 0; 1282 } 1283 1284 static mlir::LogicalResult verify(fir::ReboxOp op) { 1285 auto inputBoxTy = op.box().getType(); 1286 if (fir::isa_unknown_size_box(inputBoxTy)) 1287 return op.emitOpError("box operand must not have unknown rank or type"); 1288 auto outBoxTy = op.getType(); 1289 if (fir::isa_unknown_size_box(outBoxTy)) 1290 return op.emitOpError("result type must not have unknown rank or type"); 1291 auto inputRank = getBoxRank(inputBoxTy); 1292 auto inputEleTy = getBoxScalarEleTy(inputBoxTy); 1293 auto outRank = getBoxRank(outBoxTy); 1294 auto outEleTy = getBoxScalarEleTy(outBoxTy); 1295 1296 if (auto slice = op.slice()) { 1297 // Slicing case 1298 if (slice.getType().cast<fir::SliceType>().getRank() != inputRank) 1299 return op.emitOpError("slice operand rank must match box operand rank"); 1300 if (auto shape = op.shape()) { 1301 if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) { 1302 if (shiftTy.getRank() != inputRank) 1303 return op.emitOpError("shape operand and input box ranks must match " 1304 "when there is a slice"); 1305 } else { 1306 return op.emitOpError("shape operand must absent or be a fir.shift " 1307 "when there is a slice"); 1308 } 1309 } 1310 if (auto sliceOp = slice.getDefiningOp()) { 1311 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank(); 1312 if (slicedRank != outRank) 1313 return op.emitOpError("result type rank and rank after applying slice " 1314 "operand must match"); 1315 } 1316 } else { 1317 // Reshaping case 1318 unsigned shapeRank = inputRank; 1319 if (auto shape = op.shape()) { 1320 auto ty = shape.getType(); 1321 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) { 1322 shapeRank = shapeTy.getRank(); 1323 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) { 1324 shapeRank = shapeShiftTy.getRank(); 1325 } else { 1326 auto shiftTy = ty.cast<fir::ShiftType>(); 1327 shapeRank = shiftTy.getRank(); 1328 if (shapeRank != inputRank) 1329 return op.emitOpError("shape operand and input box ranks must match " 1330 "when the shape is a fir.shift"); 1331 } 1332 } 1333 if (shapeRank != outRank) 1334 return op.emitOpError("result type and shape operand ranks must match"); 1335 } 1336 1337 if (inputEleTy != outEleTy) 1338 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived 1339 // types. 1340 if (!inputEleTy.isa<fir::RecordType>()) 1341 return op.emitOpError( 1342 "op input and output element types must match for intrinsic types"); 1343 return mlir::success(); 1344 } 1345 1346 //===----------------------------------------------------------------------===// 1347 // ResultOp 1348 //===----------------------------------------------------------------------===// 1349 1350 static mlir::LogicalResult verify(fir::ResultOp op) { 1351 auto *parentOp = op->getParentOp(); 1352 auto results = parentOp->getResults(); 1353 auto operands = op->getOperands(); 1354 1355 if (parentOp->getNumResults() != op.getNumOperands()) 1356 return op.emitOpError() << "parent of result must have same arity"; 1357 for (auto e : llvm::zip(results, operands)) 1358 if (std::get<0>(e).getType() != std::get<1>(e).getType()) 1359 return op.emitOpError() 1360 << "types mismatch between result op and its parent"; 1361 return success(); 1362 } 1363 1364 //===----------------------------------------------------------------------===// 1365 // SaveResultOp 1366 //===----------------------------------------------------------------------===// 1367 1368 static mlir::LogicalResult verify(fir::SaveResultOp op) { 1369 auto resultType = op.value().getType(); 1370 if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType())) 1371 return op.emitOpError("value type must match memory reference type"); 1372 if (fir::isa_unknown_size_box(resultType)) 1373 return op.emitOpError("cannot save !fir.box of unknown rank or type"); 1374 1375 if (resultType.isa<fir::BoxType>()) { 1376 if (op.shape() || !op.typeparams().empty()) 1377 return op.emitOpError( 1378 "must not have shape or length operands if the value is a fir.box"); 1379 return mlir::success(); 1380 } 1381 1382 // fir.record or fir.array case. 1383 unsigned shapeTyRank = 0; 1384 if (auto shapeOp = op.shape()) { 1385 auto shapeTy = shapeOp.getType(); 1386 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) 1387 shapeTyRank = s.getRank(); 1388 else 1389 shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank(); 1390 } 1391 1392 auto eleTy = resultType; 1393 if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) { 1394 if (seqTy.getDimension() != shapeTyRank) 1395 op.emitOpError("shape operand must be provided and have the value rank " 1396 "when the value is a fir.array"); 1397 eleTy = seqTy.getEleTy(); 1398 } else { 1399 if (shapeTyRank != 0) 1400 op.emitOpError( 1401 "shape operand should only be provided if the value is a fir.array"); 1402 } 1403 1404 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) { 1405 if (recTy.getNumLenParams() != op.typeparams().size()) 1406 op.emitOpError("length parameters number must match with the value type " 1407 "length parameters"); 1408 } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 1409 if (op.typeparams().size() > 1) 1410 op.emitOpError("no more than one length parameter must be provided for " 1411 "character value"); 1412 } else { 1413 if (!op.typeparams().empty()) 1414 op.emitOpError( 1415 "length parameters must not be provided for this value type"); 1416 } 1417 1418 return mlir::success(); 1419 } 1420 1421 //===----------------------------------------------------------------------===// 1422 // SelectOp 1423 //===----------------------------------------------------------------------===// 1424 1425 static constexpr llvm::StringRef getCompareOffsetAttr() { 1426 return "compare_operand_offsets"; 1427 } 1428 1429 static constexpr llvm::StringRef getTargetOffsetAttr() { 1430 return "target_operand_offsets"; 1431 } 1432 1433 template <typename A, typename... AdditionalArgs> 1434 static A getSubOperands(unsigned pos, A allArgs, 1435 mlir::DenseIntElementsAttr ranges, 1436 AdditionalArgs &&...additionalArgs) { 1437 unsigned start = 0; 1438 for (unsigned i = 0; i < pos; ++i) 1439 start += (*(ranges.begin() + i)).getZExtValue(); 1440 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), 1441 std::forward<AdditionalArgs>(additionalArgs)...); 1442 } 1443 1444 static mlir::MutableOperandRange 1445 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, 1446 StringRef offsetAttr) { 1447 Operation *owner = operands.getOwner(); 1448 NamedAttribute targetOffsetAttr = 1449 *owner->getAttrDictionary().getNamed(offsetAttr); 1450 return getSubOperands( 1451 pos, operands, targetOffsetAttr.second.cast<DenseIntElementsAttr>(), 1452 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); 1453 } 1454 1455 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { 1456 return attr.getNumElements(); 1457 } 1458 1459 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) { 1460 return {}; 1461 } 1462 1463 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1464 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 1465 return {}; 1466 } 1467 1468 llvm::Optional<mlir::MutableOperandRange> 1469 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { 1470 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1471 getTargetOffsetAttr()); 1472 } 1473 1474 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1475 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1476 unsigned oper) { 1477 auto a = 1478 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1479 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1480 getOperandSegmentSizeAttr()); 1481 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1482 } 1483 1484 unsigned fir::SelectOp::targetOffsetSize() { 1485 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1486 getTargetOffsetAttr())); 1487 } 1488 1489 //===----------------------------------------------------------------------===// 1490 // SelectCaseOp 1491 //===----------------------------------------------------------------------===// 1492 1493 llvm::Optional<mlir::OperandRange> 1494 fir::SelectCaseOp::getCompareOperands(unsigned cond) { 1495 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1496 getCompareOffsetAttr()); 1497 return {getSubOperands(cond, compareArgs(), a)}; 1498 } 1499 1500 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1501 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands, 1502 unsigned cond) { 1503 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1504 getCompareOffsetAttr()); 1505 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1506 getOperandSegmentSizeAttr()); 1507 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 1508 } 1509 1510 llvm::Optional<mlir::MutableOperandRange> 1511 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { 1512 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1513 getTargetOffsetAttr()); 1514 } 1515 1516 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1517 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1518 unsigned oper) { 1519 auto a = 1520 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1521 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1522 getOperandSegmentSizeAttr()); 1523 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1524 } 1525 1526 // parser for fir.select_case Op 1527 static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser, 1528 mlir::OperationState &result) { 1529 mlir::OpAsmParser::OperandType selector; 1530 mlir::Type type; 1531 if (parseSelector(parser, result, selector, type)) 1532 return mlir::failure(); 1533 1534 llvm::SmallVector<mlir::Attribute, 8> attrs; 1535 llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> opers; 1536 llvm::SmallVector<mlir::Block *, 8> dests; 1537 llvm::SmallVector<llvm::SmallVector<mlir::Value, 8>, 8> destArgs; 1538 llvm::SmallVector<int32_t, 8> argOffs; 1539 int32_t offSize = 0; 1540 while (true) { 1541 mlir::Attribute attr; 1542 mlir::Block *dest; 1543 llvm::SmallVector<mlir::Value, 8> destArg; 1544 mlir::NamedAttrList temp; 1545 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || 1546 parser.parseComma()) 1547 return mlir::failure(); 1548 attrs.push_back(attr); 1549 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) { 1550 argOffs.push_back(0); 1551 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) { 1552 mlir::OpAsmParser::OperandType oper1; 1553 mlir::OpAsmParser::OperandType oper2; 1554 if (parser.parseOperand(oper1) || parser.parseComma() || 1555 parser.parseOperand(oper2) || parser.parseComma()) 1556 return mlir::failure(); 1557 opers.push_back(oper1); 1558 opers.push_back(oper2); 1559 argOffs.push_back(2); 1560 offSize += 2; 1561 } else { 1562 mlir::OpAsmParser::OperandType oper; 1563 if (parser.parseOperand(oper) || parser.parseComma()) 1564 return mlir::failure(); 1565 opers.push_back(oper); 1566 argOffs.push_back(1); 1567 ++offSize; 1568 } 1569 if (parser.parseSuccessorAndUseList(dest, destArg)) 1570 return mlir::failure(); 1571 dests.push_back(dest); 1572 destArgs.push_back(destArg); 1573 if (mlir::succeeded(parser.parseOptionalRSquare())) 1574 break; 1575 if (parser.parseComma()) 1576 return mlir::failure(); 1577 } 1578 result.addAttribute(fir::SelectCaseOp::getCasesAttr(), 1579 parser.getBuilder().getArrayAttr(attrs)); 1580 if (parser.resolveOperands(opers, type, result.operands)) 1581 return mlir::failure(); 1582 llvm::SmallVector<int32_t, 8> targOffs; 1583 int32_t toffSize = 0; 1584 const auto count = dests.size(); 1585 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 1586 result.addSuccessors(dests[i]); 1587 result.addOperands(destArgs[i]); 1588 auto argSize = destArgs[i].size(); 1589 targOffs.push_back(argSize); 1590 toffSize += argSize; 1591 } 1592 auto &bld = parser.getBuilder(); 1593 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), 1594 bld.getI32VectorAttr({1, offSize, toffSize})); 1595 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); 1596 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); 1597 return mlir::success(); 1598 } 1599 1600 unsigned fir::SelectCaseOp::compareOffsetSize() { 1601 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1602 getCompareOffsetAttr())); 1603 } 1604 1605 unsigned fir::SelectCaseOp::targetOffsetSize() { 1606 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1607 getTargetOffsetAttr())); 1608 } 1609 1610 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 1611 mlir::OperationState &result, 1612 mlir::Value selector, 1613 llvm::ArrayRef<mlir::Attribute> compareAttrs, 1614 llvm::ArrayRef<mlir::ValueRange> cmpOperands, 1615 llvm::ArrayRef<mlir::Block *> destinations, 1616 llvm::ArrayRef<mlir::ValueRange> destOperands, 1617 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1618 result.addOperands(selector); 1619 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); 1620 llvm::SmallVector<int32_t, 8> operOffs; 1621 int32_t operSize = 0; 1622 for (auto attr : compareAttrs) { 1623 if (attr.isa<fir::ClosedIntervalAttr>()) { 1624 operOffs.push_back(2); 1625 operSize += 2; 1626 } else if (attr.isa<mlir::UnitAttr>()) { 1627 operOffs.push_back(0); 1628 } else { 1629 operOffs.push_back(1); 1630 ++operSize; 1631 } 1632 } 1633 for (auto ops : cmpOperands) 1634 result.addOperands(ops); 1635 result.addAttribute(getCompareOffsetAttr(), 1636 builder.getI32VectorAttr(operOffs)); 1637 const auto count = destinations.size(); 1638 for (auto d : destinations) 1639 result.addSuccessors(d); 1640 const auto opCount = destOperands.size(); 1641 llvm::SmallVector<int32_t, 8> argOffs; 1642 int32_t sumArgs = 0; 1643 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 1644 if (i < opCount) { 1645 result.addOperands(destOperands[i]); 1646 const auto argSz = destOperands[i].size(); 1647 argOffs.push_back(argSz); 1648 sumArgs += argSz; 1649 } else { 1650 argOffs.push_back(0); 1651 } 1652 } 1653 result.addAttribute(getOperandSegmentSizeAttr(), 1654 builder.getI32VectorAttr({1, operSize, sumArgs})); 1655 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 1656 result.addAttributes(attributes); 1657 } 1658 1659 /// This builder has a slightly simplified interface in that the list of 1660 /// operands need not be partitioned by the builder. Instead the operands are 1661 /// partitioned here, before being passed to the default builder. This 1662 /// partitioning is unchecked, so can go awry on bad input. 1663 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 1664 mlir::OperationState &result, 1665 mlir::Value selector, 1666 llvm::ArrayRef<mlir::Attribute> compareAttrs, 1667 llvm::ArrayRef<mlir::Value> cmpOpList, 1668 llvm::ArrayRef<mlir::Block *> destinations, 1669 llvm::ArrayRef<mlir::ValueRange> destOperands, 1670 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1671 llvm::SmallVector<mlir::ValueRange, 16> cmpOpers; 1672 auto iter = cmpOpList.begin(); 1673 for (auto &attr : compareAttrs) { 1674 if (attr.isa<fir::ClosedIntervalAttr>()) { 1675 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); 1676 iter += 2; 1677 } else if (attr.isa<UnitAttr>()) { 1678 cmpOpers.push_back(mlir::ValueRange{}); 1679 } else { 1680 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); 1681 ++iter; 1682 } 1683 } 1684 build(builder, result, selector, compareAttrs, cmpOpers, destinations, 1685 destOperands, attributes); 1686 } 1687 1688 //===----------------------------------------------------------------------===// 1689 // SelectRankOp 1690 //===----------------------------------------------------------------------===// 1691 1692 llvm::Optional<mlir::OperandRange> 1693 fir::SelectRankOp::getCompareOperands(unsigned) { 1694 return {}; 1695 } 1696 1697 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1698 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 1699 return {}; 1700 } 1701 1702 llvm::Optional<mlir::MutableOperandRange> 1703 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { 1704 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1705 getTargetOffsetAttr()); 1706 } 1707 1708 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1709 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1710 unsigned oper) { 1711 auto a = 1712 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1713 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1714 getOperandSegmentSizeAttr()); 1715 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1716 } 1717 1718 unsigned fir::SelectRankOp::targetOffsetSize() { 1719 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1720 getTargetOffsetAttr())); 1721 } 1722 1723 //===----------------------------------------------------------------------===// 1724 // SelectTypeOp 1725 //===----------------------------------------------------------------------===// 1726 1727 llvm::Optional<mlir::OperandRange> 1728 fir::SelectTypeOp::getCompareOperands(unsigned) { 1729 return {}; 1730 } 1731 1732 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1733 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 1734 return {}; 1735 } 1736 1737 llvm::Optional<mlir::MutableOperandRange> 1738 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { 1739 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 1740 getTargetOffsetAttr()); 1741 } 1742 1743 llvm::Optional<llvm::ArrayRef<mlir::Value>> 1744 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 1745 unsigned oper) { 1746 auto a = 1747 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 1748 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1749 getOperandSegmentSizeAttr()); 1750 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 1751 } 1752 1753 static ParseResult parseSelectType(OpAsmParser &parser, 1754 OperationState &result) { 1755 mlir::OpAsmParser::OperandType selector; 1756 mlir::Type type; 1757 if (parseSelector(parser, result, selector, type)) 1758 return mlir::failure(); 1759 1760 llvm::SmallVector<mlir::Attribute, 8> attrs; 1761 llvm::SmallVector<mlir::Block *, 8> dests; 1762 llvm::SmallVector<llvm::SmallVector<mlir::Value, 8>, 8> destArgs; 1763 while (true) { 1764 mlir::Attribute attr; 1765 mlir::Block *dest; 1766 llvm::SmallVector<mlir::Value, 8> destArg; 1767 mlir::NamedAttrList temp; 1768 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || 1769 parser.parseSuccessorAndUseList(dest, destArg)) 1770 return mlir::failure(); 1771 attrs.push_back(attr); 1772 dests.push_back(dest); 1773 destArgs.push_back(destArg); 1774 if (mlir::succeeded(parser.parseOptionalRSquare())) 1775 break; 1776 if (parser.parseComma()) 1777 return mlir::failure(); 1778 } 1779 auto &bld = parser.getBuilder(); 1780 result.addAttribute(fir::SelectTypeOp::getCasesAttr(), 1781 bld.getArrayAttr(attrs)); 1782 llvm::SmallVector<int32_t, 8> argOffs; 1783 int32_t offSize = 0; 1784 const auto count = dests.size(); 1785 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 1786 result.addSuccessors(dests[i]); 1787 result.addOperands(destArgs[i]); 1788 auto argSize = destArgs[i].size(); 1789 argOffs.push_back(argSize); 1790 offSize += argSize; 1791 } 1792 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), 1793 bld.getI32VectorAttr({1, 0, offSize})); 1794 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 1795 return mlir::success(); 1796 } 1797 1798 unsigned fir::SelectTypeOp::targetOffsetSize() { 1799 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 1800 getTargetOffsetAttr())); 1801 } 1802 1803 //===----------------------------------------------------------------------===// 1804 // SliceOp 1805 //===----------------------------------------------------------------------===// 1806 1807 /// Return the output rank of a slice op. The output rank must be between 1 and 1808 /// the rank of the array being sliced (inclusive). 1809 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { 1810 unsigned rank = 0; 1811 if (!triples.empty()) { 1812 for (unsigned i = 1, end = triples.size(); i < end; i += 3) { 1813 auto op = triples[i].getDefiningOp(); 1814 if (!mlir::isa_and_nonnull<fir::UndefOp>(op)) 1815 ++rank; 1816 } 1817 assert(rank > 0); 1818 } 1819 return rank; 1820 } 1821 1822 //===----------------------------------------------------------------------===// 1823 // StoreOp 1824 //===----------------------------------------------------------------------===// 1825 1826 mlir::Type fir::StoreOp::elementType(mlir::Type refType) { 1827 if (auto ref = refType.dyn_cast<ReferenceType>()) 1828 return ref.getEleTy(); 1829 if (auto ref = refType.dyn_cast<PointerType>()) 1830 return ref.getEleTy(); 1831 if (auto ref = refType.dyn_cast<HeapType>()) 1832 return ref.getEleTy(); 1833 return {}; 1834 } 1835 1836 //===----------------------------------------------------------------------===// 1837 // StringLitOp 1838 //===----------------------------------------------------------------------===// 1839 1840 bool fir::StringLitOp::isWideValue() { 1841 auto eleTy = getType().cast<fir::SequenceType>().getEleTy(); 1842 return eleTy.cast<fir::CharacterType>().getFKind() != 1; 1843 } 1844 1845 //===----------------------------------------------------------------------===// 1846 // IfOp 1847 //===----------------------------------------------------------------------===// 1848 1849 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 1850 mlir::Value cond, bool withElseRegion) { 1851 build(builder, result, llvm::None, cond, withElseRegion); 1852 } 1853 1854 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 1855 mlir::TypeRange resultTypes, mlir::Value cond, 1856 bool withElseRegion) { 1857 result.addOperands(cond); 1858 result.addTypes(resultTypes); 1859 1860 mlir::Region *thenRegion = result.addRegion(); 1861 thenRegion->push_back(new mlir::Block()); 1862 if (resultTypes.empty()) 1863 IfOp::ensureTerminator(*thenRegion, builder, result.location); 1864 1865 mlir::Region *elseRegion = result.addRegion(); 1866 if (withElseRegion) { 1867 elseRegion->push_back(new mlir::Block()); 1868 if (resultTypes.empty()) 1869 IfOp::ensureTerminator(*elseRegion, builder, result.location); 1870 } 1871 } 1872 1873 static mlir::ParseResult parseIfOp(OpAsmParser &parser, 1874 OperationState &result) { 1875 result.regions.reserve(2); 1876 mlir::Region *thenRegion = result.addRegion(); 1877 mlir::Region *elseRegion = result.addRegion(); 1878 1879 auto &builder = parser.getBuilder(); 1880 OpAsmParser::OperandType cond; 1881 mlir::Type i1Type = builder.getIntegerType(1); 1882 if (parser.parseOperand(cond) || 1883 parser.resolveOperand(cond, i1Type, result.operands)) 1884 return mlir::failure(); 1885 1886 if (parser.parseOptionalArrowTypeList(result.types)) 1887 return mlir::failure(); 1888 1889 if (parser.parseRegion(*thenRegion, {}, {})) 1890 return mlir::failure(); 1891 IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); 1892 1893 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { 1894 if (parser.parseRegion(*elseRegion, {}, {})) 1895 return mlir::failure(); 1896 IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); 1897 } 1898 1899 // Parse the optional attribute list. 1900 if (parser.parseOptionalAttrDict(result.attributes)) 1901 return mlir::failure(); 1902 return mlir::success(); 1903 } 1904 1905 static LogicalResult verify(fir::IfOp op) { 1906 if (op.getNumResults() != 0 && op.elseRegion().empty()) 1907 return op.emitOpError("must have an else block if defining values"); 1908 1909 return mlir::success(); 1910 } 1911 1912 static void print(mlir::OpAsmPrinter &p, fir::IfOp op) { 1913 bool printBlockTerminators = false; 1914 p << ' ' << op.condition(); 1915 if (!op.results().empty()) { 1916 p << " -> (" << op.getResultTypes() << ')'; 1917 printBlockTerminators = true; 1918 } 1919 p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false, 1920 printBlockTerminators); 1921 1922 // Print the 'else' regions if it exists and has a block. 1923 auto &otherReg = op.elseRegion(); 1924 if (!otherReg.empty()) { 1925 p << " else"; 1926 p.printRegion(otherReg, /*printEntryBlockArgs=*/false, 1927 printBlockTerminators); 1928 } 1929 p.printOptionalAttrDict(op->getAttrs()); 1930 } 1931 1932 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results, 1933 unsigned resultNum) { 1934 auto *term = thenRegion().front().getTerminator(); 1935 if (resultNum < term->getNumOperands()) 1936 results.push_back(term->getOperand(resultNum)); 1937 term = elseRegion().front().getTerminator(); 1938 if (resultNum < term->getNumOperands()) 1939 results.push_back(term->getOperand(resultNum)); 1940 } 1941 1942 //===----------------------------------------------------------------------===// 1943 1944 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { 1945 if (attr.dyn_cast_or_null<mlir::UnitAttr>() || 1946 attr.dyn_cast_or_null<ClosedIntervalAttr>() || 1947 attr.dyn_cast_or_null<PointIntervalAttr>() || 1948 attr.dyn_cast_or_null<LowerBoundAttr>() || 1949 attr.dyn_cast_or_null<UpperBoundAttr>()) 1950 return mlir::success(); 1951 return mlir::failure(); 1952 } 1953 1954 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases, 1955 unsigned dest) { 1956 unsigned o = 0; 1957 for (unsigned i = 0; i < dest; ++i) { 1958 auto &attr = cases[i]; 1959 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) { 1960 ++o; 1961 if (attr.dyn_cast_or_null<ClosedIntervalAttr>()) 1962 ++o; 1963 } 1964 } 1965 return o; 1966 } 1967 1968 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, 1969 mlir::OperationState &result, 1970 mlir::OpAsmParser::OperandType &selector, 1971 mlir::Type &type) { 1972 if (parser.parseOperand(selector) || parser.parseColonType(type) || 1973 parser.resolveOperand(selector, type, result.operands) || 1974 parser.parseLSquare()) 1975 return mlir::failure(); 1976 return mlir::success(); 1977 } 1978 1979 /// Generic pretty-printer of a binary operation 1980 static void printBinaryOp(Operation *op, OpAsmPrinter &p) { 1981 assert(op->getNumOperands() == 2 && "binary op must have two operands"); 1982 assert(op->getNumResults() == 1 && "binary op must have one result"); 1983 1984 p << ' ' << op->getOperand(0) << ", " << op->getOperand(1); 1985 p.printOptionalAttrDict(op->getAttrs()); 1986 p << " : " << op->getResult(0).getType(); 1987 } 1988 1989 /// Generic pretty-printer of an unary operation 1990 static void printUnaryOp(Operation *op, OpAsmPrinter &p) { 1991 assert(op->getNumOperands() == 1 && "unary op must have one operand"); 1992 assert(op->getNumResults() == 1 && "unary op must have one result"); 1993 1994 p << ' ' << op->getOperand(0); 1995 p.printOptionalAttrDict(op->getAttrs()); 1996 p << " : " << op->getResult(0).getType(); 1997 } 1998 1999 bool fir::isReferenceLike(mlir::Type type) { 2000 return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() || 2001 type.isa<fir::PointerType>(); 2002 } 2003 2004 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, 2005 StringRef name, mlir::FunctionType type, 2006 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 2007 if (auto f = module.lookupSymbol<mlir::FuncOp>(name)) 2008 return f; 2009 mlir::OpBuilder modBuilder(module.getBodyRegion()); 2010 modBuilder.setInsertionPoint(module.getBody()->getTerminator()); 2011 auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs); 2012 result.setVisibility(mlir::SymbolTable::Visibility::Private); 2013 return result; 2014 } 2015 2016 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, 2017 StringRef name, mlir::Type type, 2018 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 2019 if (auto g = module.lookupSymbol<fir::GlobalOp>(name)) 2020 return g; 2021 mlir::OpBuilder modBuilder(module.getBodyRegion()); 2022 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs); 2023 result.setVisibility(mlir::SymbolTable::Visibility::Private); 2024 return result; 2025 } 2026 2027 bool fir::valueHasFirAttribute(mlir::Value value, 2028 llvm::StringRef attributeName) { 2029 // If this is a fir.box that was loaded, the fir attributes will be on the 2030 // related fir.ref<fir.box> creation. 2031 if (value.getType().isa<fir::BoxType>()) 2032 if (auto definingOp = value.getDefiningOp()) 2033 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp)) 2034 value = loadOp.memref(); 2035 // If this is a function argument, look in the argument attributes. 2036 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 2037 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) 2038 if (auto funcOp = 2039 mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp())) 2040 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) 2041 return true; 2042 return false; 2043 } 2044 2045 if (auto definingOp = value.getDefiningOp()) { 2046 // If this is an allocated value, look at the allocation attributes. 2047 if (mlir::isa<fir::AllocMemOp>(definingOp) || 2048 mlir::isa<AllocaOp>(definingOp)) 2049 return definingOp->hasAttr(attributeName); 2050 // If this is an imported global, look at AddrOfOp and GlobalOp attributes. 2051 // Both operations are looked at because use/host associated variable (the 2052 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate 2053 // entity (the globalOp) does not have them. 2054 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) { 2055 if (addressOfOp->hasAttr(attributeName)) 2056 return true; 2057 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>()) 2058 if (auto globalOp = 2059 module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol())) 2060 return globalOp->hasAttr(attributeName); 2061 } 2062 } 2063 // TODO: Construct associated entities attributes. Decide where the fir 2064 // attributes must be placed/looked for in this case. 2065 return false; 2066 } 2067 2068 // Tablegen operators 2069 2070 #define GET_OP_CLASSES 2071 #include "flang/Optimizer/Dialect/FIROps.cpp.inc" 2072