1 //===-- FIROps.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Optimizer/Dialect/FIROps.h"
14 #include "flang/Optimizer/Dialect/FIRAttr.h"
15 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
16 #include "flang/Optimizer/Dialect/FIRType.h"
17 #include "flang/Optimizer/Support/FIRContext.h"
18 #include "flang/Optimizer/Support/KindMapping.h"
19 #include "flang/Optimizer/Support/Utils.h"
20 #include "mlir/Dialect/CommonFolders.h"
21 #include "mlir/Dialect/Func/IR/FuncOps.h"
22 #include "mlir/IR/BuiltinAttributes.h"
23 #include "mlir/IR/BuiltinOps.h"
24 #include "mlir/IR/Diagnostics.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/OpDefinition.h"
27 #include "mlir/IR/PatternMatch.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/TypeSwitch.h"
32 
33 namespace {
34 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc"
35 } // namespace
36 
37 /// Return true if a sequence type is of some incomplete size or a record type
38 /// is malformed or contains an incomplete sequence type. An incomplete sequence
39 /// type is one with more unknown extents in the type than have been provided
40 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
41 /// definition.
42 static bool verifyInType(mlir::Type inType,
43                          llvm::SmallVectorImpl<llvm::StringRef> &visited,
44                          unsigned dynamicExtents = 0) {
45   if (auto st = inType.dyn_cast<fir::SequenceType>()) {
46     auto shape = st.getShape();
47     if (shape.size() == 0)
48       return true;
49     for (std::size_t i = 0, end = shape.size(); i < end; ++i) {
50       if (shape[i] != fir::SequenceType::getUnknownExtent())
51         continue;
52       if (dynamicExtents-- == 0)
53         return true;
54     }
55   } else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
56     // don't recurse if we're already visiting this one
57     if (llvm::is_contained(visited, rt.getName()))
58       return false;
59     // keep track of record types currently being visited
60     visited.push_back(rt.getName());
61     for (auto &field : rt.getTypeList())
62       if (verifyInType(field.second, visited))
63         return true;
64     visited.pop_back();
65   }
66   return false;
67 }
68 
69 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) {
70   auto ty = fir::unwrapSequenceType(inType);
71   if (numParams > 0) {
72     if (auto recTy = ty.dyn_cast<fir::RecordType>())
73       return numParams != recTy.getNumLenParams();
74     if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
75       return !(numParams == 1 && chrTy.hasDynamicLen());
76     return true;
77   }
78   if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
79     return !chrTy.hasConstantLen();
80   return false;
81 }
82 
83 /// Parser shared by Alloca and Allocmem
84 ///
85 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type
86 ///                      ( `(` $typeparams `)` )? ( `,` $shape )?
87 ///                      attr-dict-without-keyword
88 template <typename FN>
89 static mlir::ParseResult parseAllocatableOp(FN wrapResultType,
90                                             mlir::OpAsmParser &parser,
91                                             mlir::OperationState &result) {
92   mlir::Type intype;
93   if (parser.parseType(intype))
94     return mlir::failure();
95   auto &builder = parser.getBuilder();
96   result.addAttribute("in_type", mlir::TypeAttr::get(intype));
97   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
98   llvm::SmallVector<mlir::Type> typeVec;
99   bool hasOperands = false;
100   std::int32_t typeparamsSize = 0;
101   if (!parser.parseOptionalLParen()) {
102     // parse the LEN params of the derived type. (<params> : <types>)
103     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
104         parser.parseColonTypeList(typeVec) || parser.parseRParen())
105       return mlir::failure();
106     typeparamsSize = operands.size();
107     hasOperands = true;
108   }
109   std::int32_t shapeSize = 0;
110   if (!parser.parseOptionalComma()) {
111     // parse size to scale by, vector of n dimensions of type index
112     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None))
113       return mlir::failure();
114     shapeSize = operands.size() - typeparamsSize;
115     auto idxTy = builder.getIndexType();
116     for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i)
117       typeVec.push_back(idxTy);
118     hasOperands = true;
119   }
120   if (hasOperands &&
121       parser.resolveOperands(operands, typeVec, parser.getNameLoc(),
122                              result.operands))
123     return mlir::failure();
124   mlir::Type restype = wrapResultType(intype);
125   if (!restype) {
126     parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype;
127     return mlir::failure();
128   }
129   result.addAttribute("operand_segment_sizes",
130                       builder.getI32VectorAttr({typeparamsSize, shapeSize}));
131   if (parser.parseOptionalAttrDict(result.attributes) ||
132       parser.addTypeToList(restype, result.types))
133     return mlir::failure();
134   return mlir::success();
135 }
136 
137 template <typename OP>
138 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) {
139   p << ' ' << op.getInType();
140   if (!op.getTypeparams().empty()) {
141     p << '(' << op.getTypeparams() << " : " << op.getTypeparams().getTypes()
142       << ')';
143   }
144   // print the shape of the allocation (if any); all must be index type
145   for (auto sh : op.getShape()) {
146     p << ", ";
147     p.printOperand(sh);
148   }
149   p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"});
150 }
151 
152 //===----------------------------------------------------------------------===//
153 // AllocaOp
154 //===----------------------------------------------------------------------===//
155 
156 /// Create a legal memory reference as return type
157 static mlir::Type wrapAllocaResultType(mlir::Type intype) {
158   // FIR semantics: memory references to memory references are disallowed
159   if (intype.isa<fir::ReferenceType>())
160     return {};
161   return fir::ReferenceType::get(intype);
162 }
163 
164 mlir::Type fir::AllocaOp::getAllocatedType() {
165   return getType().cast<fir::ReferenceType>().getEleTy();
166 }
167 
168 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
169   return fir::ReferenceType::get(ty);
170 }
171 
172 void fir::AllocaOp::build(mlir::OpBuilder &builder,
173                           mlir::OperationState &result, mlir::Type inType,
174                           llvm::StringRef uniqName, mlir::ValueRange typeparams,
175                           mlir::ValueRange shape,
176                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
177   auto nameAttr = builder.getStringAttr(uniqName);
178   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
179         /*pinned=*/false, typeparams, shape);
180   result.addAttributes(attributes);
181 }
182 
183 void fir::AllocaOp::build(mlir::OpBuilder &builder,
184                           mlir::OperationState &result, mlir::Type inType,
185                           llvm::StringRef uniqName, bool pinned,
186                           mlir::ValueRange typeparams, mlir::ValueRange shape,
187                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
188   auto nameAttr = builder.getStringAttr(uniqName);
189   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
190         pinned, typeparams, shape);
191   result.addAttributes(attributes);
192 }
193 
194 void fir::AllocaOp::build(mlir::OpBuilder &builder,
195                           mlir::OperationState &result, mlir::Type inType,
196                           llvm::StringRef uniqName, llvm::StringRef bindcName,
197                           mlir::ValueRange typeparams, mlir::ValueRange shape,
198                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
199   auto nameAttr =
200       uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
201   auto bindcAttr =
202       bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
203   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
204         bindcAttr, /*pinned=*/false, typeparams, shape);
205   result.addAttributes(attributes);
206 }
207 
208 void fir::AllocaOp::build(mlir::OpBuilder &builder,
209                           mlir::OperationState &result, mlir::Type inType,
210                           llvm::StringRef uniqName, llvm::StringRef bindcName,
211                           bool pinned, mlir::ValueRange typeparams,
212                           mlir::ValueRange shape,
213                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
214   auto nameAttr =
215       uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
216   auto bindcAttr =
217       bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
218   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
219         bindcAttr, pinned, typeparams, shape);
220   result.addAttributes(attributes);
221 }
222 
223 void fir::AllocaOp::build(mlir::OpBuilder &builder,
224                           mlir::OperationState &result, mlir::Type inType,
225                           mlir::ValueRange typeparams, mlir::ValueRange shape,
226                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
227   build(builder, result, wrapAllocaResultType(inType), inType, {}, {},
228         /*pinned=*/false, typeparams, shape);
229   result.addAttributes(attributes);
230 }
231 
232 void fir::AllocaOp::build(mlir::OpBuilder &builder,
233                           mlir::OperationState &result, mlir::Type inType,
234                           bool pinned, mlir::ValueRange typeparams,
235                           mlir::ValueRange shape,
236                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
237   build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned,
238         typeparams, shape);
239   result.addAttributes(attributes);
240 }
241 
242 mlir::ParseResult fir::AllocaOp::parse(mlir::OpAsmParser &parser,
243                                        mlir::OperationState &result) {
244   return parseAllocatableOp(wrapAllocaResultType, parser, result);
245 }
246 
247 void fir::AllocaOp::print(mlir::OpAsmPrinter &p) {
248   printAllocatableOp(p, *this);
249 }
250 
251 mlir::LogicalResult fir::AllocaOp::verify() {
252   llvm::SmallVector<llvm::StringRef> visited;
253   if (verifyInType(getInType(), visited, numShapeOperands()))
254     return emitOpError("invalid type for allocation");
255   if (verifyTypeParamCount(getInType(), numLenParams()))
256     return emitOpError("LEN params do not correspond to type");
257   mlir::Type outType = getType();
258   if (!outType.isa<fir::ReferenceType>())
259     return emitOpError("must be a !fir.ref type");
260   if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
261     return emitOpError("cannot allocate !fir.box of unknown rank or type");
262   return mlir::success();
263 }
264 
265 //===----------------------------------------------------------------------===//
266 // AllocMemOp
267 //===----------------------------------------------------------------------===//
268 
269 /// Create a legal heap reference as return type
270 static mlir::Type wrapAllocMemResultType(mlir::Type intype) {
271   // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
272   // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
273   // FIR semantics: one may not allocate a memory reference value
274   if (intype.isa<fir::ReferenceType, fir::HeapType, fir::PointerType,
275                  mlir::FunctionType>())
276     return {};
277   return fir::HeapType::get(intype);
278 }
279 
280 mlir::Type fir::AllocMemOp::getAllocatedType() {
281   return getType().cast<fir::HeapType>().getEleTy();
282 }
283 
284 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
285   return fir::HeapType::get(ty);
286 }
287 
288 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
289                             mlir::OperationState &result, mlir::Type inType,
290                             llvm::StringRef uniqName,
291                             mlir::ValueRange typeparams, mlir::ValueRange shape,
292                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
293   auto nameAttr = builder.getStringAttr(uniqName);
294   build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {},
295         typeparams, shape);
296   result.addAttributes(attributes);
297 }
298 
299 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
300                             mlir::OperationState &result, mlir::Type inType,
301                             llvm::StringRef uniqName, llvm::StringRef bindcName,
302                             mlir::ValueRange typeparams, mlir::ValueRange shape,
303                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
304   auto nameAttr = builder.getStringAttr(uniqName);
305   auto bindcAttr = builder.getStringAttr(bindcName);
306   build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr,
307         bindcAttr, typeparams, shape);
308   result.addAttributes(attributes);
309 }
310 
311 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
312                             mlir::OperationState &result, mlir::Type inType,
313                             mlir::ValueRange typeparams, mlir::ValueRange shape,
314                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
315   build(builder, result, wrapAllocMemResultType(inType), inType, {}, {},
316         typeparams, shape);
317   result.addAttributes(attributes);
318 }
319 
320 mlir::ParseResult fir::AllocMemOp::parse(mlir::OpAsmParser &parser,
321                                          mlir::OperationState &result) {
322   return parseAllocatableOp(wrapAllocMemResultType, parser, result);
323 }
324 
325 void fir::AllocMemOp::print(mlir::OpAsmPrinter &p) {
326   printAllocatableOp(p, *this);
327 }
328 
329 mlir::LogicalResult fir::AllocMemOp::verify() {
330   llvm::SmallVector<llvm::StringRef> visited;
331   if (verifyInType(getInType(), visited, numShapeOperands()))
332     return emitOpError("invalid type for allocation");
333   if (verifyTypeParamCount(getInType(), numLenParams()))
334     return emitOpError("LEN params do not correspond to type");
335   mlir::Type outType = getType();
336   if (!outType.dyn_cast<fir::HeapType>())
337     return emitOpError("must be a !fir.heap type");
338   if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
339     return emitOpError("cannot allocate !fir.box of unknown rank or type");
340   return mlir::success();
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // ArrayCoorOp
345 //===----------------------------------------------------------------------===//
346 
347 mlir::LogicalResult fir::ArrayCoorOp::verify() {
348   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
349   auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
350   if (!arrTy)
351     return emitOpError("must be a reference to an array");
352   auto arrDim = arrTy.getDimension();
353 
354   if (auto shapeOp = getShape()) {
355     auto shapeTy = shapeOp.getType();
356     unsigned shapeTyRank = 0;
357     if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
358       shapeTyRank = s.getRank();
359     } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
360       shapeTyRank = ss.getRank();
361     } else {
362       auto s = shapeTy.cast<fir::ShiftType>();
363       shapeTyRank = s.getRank();
364       if (!getMemref().getType().isa<fir::BoxType>())
365         return emitOpError("shift can only be provided with fir.box memref");
366     }
367     if (arrDim && arrDim != shapeTyRank)
368       return emitOpError("rank of dimension mismatched");
369     if (shapeTyRank != getIndices().size())
370       return emitOpError("number of indices do not match dim rank");
371   }
372 
373   if (auto sliceOp = getSlice()) {
374     if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
375       if (!sl.getSubstr().empty())
376         return emitOpError("array_coor cannot take a slice with substring");
377     if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
378       if (sliceTy.getRank() != arrDim)
379         return emitOpError("rank of dimension in slice mismatched");
380   }
381 
382   return mlir::success();
383 }
384 
385 //===----------------------------------------------------------------------===//
386 // ArrayLoadOp
387 //===----------------------------------------------------------------------===//
388 
389 static mlir::Type adjustedElementType(mlir::Type t) {
390   if (auto ty = t.dyn_cast<fir::ReferenceType>()) {
391     auto eleTy = ty.getEleTy();
392     if (fir::isa_char(eleTy))
393       return eleTy;
394     if (fir::isa_derived(eleTy))
395       return eleTy;
396     if (eleTy.isa<fir::SequenceType>())
397       return eleTy;
398   }
399   return t;
400 }
401 
402 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
403   if (auto sh = getShape())
404     if (auto *op = sh.getDefiningOp()) {
405       if (auto shOp = mlir::dyn_cast<fir::ShapeOp>(op)) {
406         auto extents = shOp.getExtents();
407         return {extents.begin(), extents.end()};
408       }
409       return mlir::cast<fir::ShapeShiftOp>(op).getExtents();
410     }
411   return {};
412 }
413 
414 mlir::LogicalResult fir::ArrayLoadOp::verify() {
415   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
416   auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
417   if (!arrTy)
418     return emitOpError("must be a reference to an array");
419   auto arrDim = arrTy.getDimension();
420 
421   if (auto shapeOp = getShape()) {
422     auto shapeTy = shapeOp.getType();
423     unsigned shapeTyRank = 0u;
424     if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
425       shapeTyRank = s.getRank();
426     } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
427       shapeTyRank = ss.getRank();
428     } else {
429       auto s = shapeTy.cast<fir::ShiftType>();
430       shapeTyRank = s.getRank();
431       if (!getMemref().getType().isa<fir::BoxType>())
432         return emitOpError("shift can only be provided with fir.box memref");
433     }
434     if (arrDim && arrDim != shapeTyRank)
435       return emitOpError("rank of dimension mismatched");
436   }
437 
438   if (auto sliceOp = getSlice()) {
439     if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
440       if (!sl.getSubstr().empty())
441         return emitOpError("array_load cannot take a slice with substring");
442     if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
443       if (sliceTy.getRank() != arrDim)
444         return emitOpError("rank of dimension in slice mismatched");
445   }
446 
447   return mlir::success();
448 }
449 
450 //===----------------------------------------------------------------------===//
451 // ArrayMergeStoreOp
452 //===----------------------------------------------------------------------===//
453 
454 mlir::LogicalResult fir::ArrayMergeStoreOp::verify() {
455   if (!mlir::isa<fir::ArrayLoadOp>(getOriginal().getDefiningOp()))
456     return emitOpError("operand #0 must be result of a fir.array_load op");
457   if (auto sl = getSlice()) {
458     if (auto sliceOp =
459             mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) {
460       if (!sliceOp.getSubstr().empty())
461         return emitOpError(
462             "array_merge_store cannot take a slice with substring");
463       if (!sliceOp.getFields().empty()) {
464         // This is an intra-object merge, where the slice is projecting the
465         // subfields that are to be overwritten by the merge operation.
466         auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
467         if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
468           auto projTy =
469               fir::applyPathToType(seqTy.getEleTy(), sliceOp.getFields());
470           if (fir::unwrapSequenceType(getOriginal().getType()) != projTy)
471             return emitOpError(
472                 "type of origin does not match sliced memref type");
473           if (fir::unwrapSequenceType(getSequence().getType()) != projTy)
474             return emitOpError(
475                 "type of sequence does not match sliced memref type");
476           return mlir::success();
477         }
478         return emitOpError("referenced type is not an array");
479       }
480     }
481     return mlir::success();
482   }
483   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
484   if (getOriginal().getType() != eleTy)
485     return emitOpError("type of origin does not match memref element type");
486   if (getSequence().getType() != eleTy)
487     return emitOpError("type of sequence does not match memref element type");
488   return mlir::success();
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // ArrayFetchOp
493 //===----------------------------------------------------------------------===//
494 
495 // Template function used for both array_fetch and array_update verification.
496 template <typename A>
497 mlir::Type validArraySubobject(A op) {
498   auto ty = op.getSequence().getType();
499   return fir::applyPathToType(ty, op.getIndices());
500 }
501 
502 mlir::LogicalResult fir::ArrayFetchOp::verify() {
503   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
504   auto indSize = getIndices().size();
505   if (indSize < arrTy.getDimension())
506     return emitOpError("number of indices != dimension of array");
507   if (indSize == arrTy.getDimension() &&
508       ::adjustedElementType(getElement().getType()) != arrTy.getEleTy())
509     return emitOpError("return type does not match array");
510   auto ty = validArraySubobject(*this);
511   if (!ty || ty != ::adjustedElementType(getType()))
512     return emitOpError("return type and/or indices do not type check");
513   if (!mlir::isa<fir::ArrayLoadOp>(getSequence().getDefiningOp()))
514     return emitOpError("argument #0 must be result of fir.array_load");
515   return mlir::success();
516 }
517 
518 //===----------------------------------------------------------------------===//
519 // ArrayAccessOp
520 //===----------------------------------------------------------------------===//
521 
522 mlir::LogicalResult fir::ArrayAccessOp::verify() {
523   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
524   std::size_t indSize = getIndices().size();
525   if (indSize < arrTy.getDimension())
526     return emitOpError("number of indices != dimension of array");
527   if (indSize == arrTy.getDimension() &&
528       getElement().getType() != fir::ReferenceType::get(arrTy.getEleTy()))
529     return emitOpError("return type does not match array");
530   mlir::Type ty = validArraySubobject(*this);
531   if (!ty || fir::ReferenceType::get(ty) != getType())
532     return emitOpError("return type and/or indices do not type check");
533   return mlir::success();
534 }
535 
536 //===----------------------------------------------------------------------===//
537 // ArrayUpdateOp
538 //===----------------------------------------------------------------------===//
539 
540 mlir::LogicalResult fir::ArrayUpdateOp::verify() {
541   if (fir::isa_ref_type(getMerge().getType()))
542     return emitOpError("does not support reference type for merge");
543   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
544   auto indSize = getIndices().size();
545   if (indSize < arrTy.getDimension())
546     return emitOpError("number of indices != dimension of array");
547   if (indSize == arrTy.getDimension() &&
548       ::adjustedElementType(getMerge().getType()) != arrTy.getEleTy())
549     return emitOpError("merged value does not have element type");
550   auto ty = validArraySubobject(*this);
551   if (!ty || ty != ::adjustedElementType(getMerge().getType()))
552     return emitOpError("merged value and/or indices do not type check");
553   return mlir::success();
554 }
555 
556 //===----------------------------------------------------------------------===//
557 // ArrayModifyOp
558 //===----------------------------------------------------------------------===//
559 
560 mlir::LogicalResult fir::ArrayModifyOp::verify() {
561   auto arrTy = getSequence().getType().cast<fir::SequenceType>();
562   auto indSize = getIndices().size();
563   if (indSize < arrTy.getDimension())
564     return emitOpError("number of indices must match array dimension");
565   return mlir::success();
566 }
567 
568 //===----------------------------------------------------------------------===//
569 // BoxAddrOp
570 //===----------------------------------------------------------------------===//
571 
572 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
573   if (auto *v = getVal().getDefiningOp()) {
574     if (auto box = mlir::dyn_cast<fir::EmboxOp>(v)) {
575       if (!box.getSlice()) // Fold only if not sliced
576         return box.getMemref();
577     }
578     if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v))
579       return box.getMemref();
580   }
581   return {};
582 }
583 
584 //===----------------------------------------------------------------------===//
585 // BoxCharLenOp
586 //===----------------------------------------------------------------------===//
587 
588 mlir::OpFoldResult
589 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
590   if (auto v = getVal().getDefiningOp()) {
591     if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v))
592       return box.getLen();
593   }
594   return {};
595 }
596 
597 //===----------------------------------------------------------------------===//
598 // BoxDimsOp
599 //===----------------------------------------------------------------------===//
600 
601 /// Get the result types packed in a tuple tuple
602 mlir::Type fir::BoxDimsOp::getTupleType() {
603   // note: triple, but 4 is nearest power of 2
604   llvm::SmallVector<mlir::Type> triple{
605       getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
606   return mlir::TupleType::get(getContext(), triple);
607 }
608 
609 //===----------------------------------------------------------------------===//
610 // CallOp
611 //===----------------------------------------------------------------------===//
612 
613 mlir::FunctionType fir::CallOp::getFunctionType() {
614   return mlir::FunctionType::get(getContext(), getOperandTypes(),
615                                  getResultTypes());
616 }
617 
618 void fir::CallOp::print(mlir::OpAsmPrinter &p) {
619   bool isDirect = getCallee().hasValue();
620   p << ' ';
621   if (isDirect)
622     p << getCallee().getValue();
623   else
624     p << getOperand(0);
625   p << '(' << (*this)->getOperands().drop_front(isDirect ? 0 : 1) << ')';
626   p.printOptionalAttrDict((*this)->getAttrs(),
627                           {fir::CallOp::getCalleeAttrNameStr()});
628   auto resultTypes{getResultTypes()};
629   llvm::SmallVector<mlir::Type> argTypes(
630       llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1));
631   p << " : " << mlir::FunctionType::get(getContext(), argTypes, resultTypes);
632 }
633 
634 mlir::ParseResult fir::CallOp::parse(mlir::OpAsmParser &parser,
635                                      mlir::OperationState &result) {
636   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
637   if (parser.parseOperandList(operands))
638     return mlir::failure();
639 
640   mlir::NamedAttrList attrs;
641   mlir::SymbolRefAttr funcAttr;
642   bool isDirect = operands.empty();
643   if (isDirect)
644     if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(),
645                               attrs))
646       return mlir::failure();
647 
648   mlir::Type type;
649   if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
650       parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
651       parser.parseType(type))
652     return mlir::failure();
653 
654   auto funcType = type.dyn_cast<mlir::FunctionType>();
655   if (!funcType)
656     return parser.emitError(parser.getNameLoc(), "expected function type");
657   if (isDirect) {
658     if (parser.resolveOperands(operands, funcType.getInputs(),
659                                parser.getNameLoc(), result.operands))
660       return mlir::failure();
661   } else {
662     auto funcArgs =
663         llvm::ArrayRef<mlir::OpAsmParser::UnresolvedOperand>(operands)
664             .drop_front();
665     if (parser.resolveOperand(operands[0], funcType, result.operands) ||
666         parser.resolveOperands(funcArgs, funcType.getInputs(),
667                                parser.getNameLoc(), result.operands))
668       return mlir::failure();
669   }
670   result.addTypes(funcType.getResults());
671   result.attributes = attrs;
672   return mlir::success();
673 }
674 
675 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
676                         mlir::func::FuncOp callee, mlir::ValueRange operands) {
677   result.addOperands(operands);
678   result.addAttribute(getCalleeAttrNameStr(), mlir::SymbolRefAttr::get(callee));
679   result.addTypes(callee.getFunctionType().getResults());
680 }
681 
682 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
683                         mlir::SymbolRefAttr callee,
684                         llvm::ArrayRef<mlir::Type> results,
685                         mlir::ValueRange operands) {
686   result.addOperands(operands);
687   if (callee)
688     result.addAttribute(getCalleeAttrNameStr(), callee);
689   result.addTypes(results);
690 }
691 
692 //===----------------------------------------------------------------------===//
693 // CmpOp
694 //===----------------------------------------------------------------------===//
695 
696 template <typename OPTY>
697 static void printCmpOp(mlir::OpAsmPrinter &p, OPTY op) {
698   p << ' ';
699   auto predSym = mlir::arith::symbolizeCmpFPredicate(
700       op->template getAttrOfType<mlir::IntegerAttr>(
701             OPTY::getPredicateAttrName())
702           .getInt());
703   assert(predSym.hasValue() && "invalid symbol value for predicate");
704   p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"'
705     << ", ";
706   p.printOperand(op.getLhs());
707   p << ", ";
708   p.printOperand(op.getRhs());
709   p.printOptionalAttrDict(op->getAttrs(),
710                           /*elidedAttrs=*/{OPTY::getPredicateAttrName()});
711   p << " : " << op.getLhs().getType();
712 }
713 
714 template <typename OPTY>
715 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
716                                     mlir::OperationState &result) {
717   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> ops;
718   mlir::NamedAttrList attrs;
719   mlir::Attribute predicateNameAttr;
720   mlir::Type type;
721   if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
722                             attrs) ||
723       parser.parseComma() || parser.parseOperandList(ops, 2) ||
724       parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
725       parser.resolveOperands(ops, type, result.operands))
726     return mlir::failure();
727 
728   if (!predicateNameAttr.isa<mlir::StringAttr>())
729     return parser.emitError(parser.getNameLoc(),
730                             "expected string comparison predicate attribute");
731 
732   // Rewrite string attribute to an enum value.
733   llvm::StringRef predicateName =
734       predicateNameAttr.cast<mlir::StringAttr>().getValue();
735   auto predicate = fir::CmpcOp::getPredicateByName(predicateName);
736   auto builder = parser.getBuilder();
737   mlir::Type i1Type = builder.getI1Type();
738   attrs.set(OPTY::getPredicateAttrName(),
739             builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate)));
740   result.attributes = attrs;
741   result.addTypes({i1Type});
742   return mlir::success();
743 }
744 
745 //===----------------------------------------------------------------------===//
746 // CharConvertOp
747 //===----------------------------------------------------------------------===//
748 
749 mlir::LogicalResult fir::CharConvertOp::verify() {
750   auto unwrap = [&](mlir::Type t) {
751     t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t));
752     return t.dyn_cast<fir::CharacterType>();
753   };
754   auto inTy = unwrap(getFrom().getType());
755   auto outTy = unwrap(getTo().getType());
756   if (!(inTy && outTy))
757     return emitOpError("not a reference to a character");
758   if (inTy.getFKind() == outTy.getFKind())
759     return emitOpError("buffers must have different KIND values");
760   return mlir::success();
761 }
762 
763 //===----------------------------------------------------------------------===//
764 // CmpcOp
765 //===----------------------------------------------------------------------===//
766 
767 void fir::buildCmpCOp(mlir::OpBuilder &builder, mlir::OperationState &result,
768                       mlir::arith::CmpFPredicate predicate, mlir::Value lhs,
769                       mlir::Value rhs) {
770   result.addOperands({lhs, rhs});
771   result.types.push_back(builder.getI1Type());
772   result.addAttribute(
773       fir::CmpcOp::getPredicateAttrName(),
774       builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate)));
775 }
776 
777 mlir::arith::CmpFPredicate
778 fir::CmpcOp::getPredicateByName(llvm::StringRef name) {
779   auto pred = mlir::arith::symbolizeCmpFPredicate(name);
780   assert(pred.hasValue() && "invalid predicate name");
781   return pred.getValue();
782 }
783 
784 void fir::CmpcOp::print(mlir::OpAsmPrinter &p) { printCmpOp(p, *this); }
785 
786 mlir::ParseResult fir::CmpcOp::parse(mlir::OpAsmParser &parser,
787                                      mlir::OperationState &result) {
788   return parseCmpOp<fir::CmpcOp>(parser, result);
789 }
790 
791 //===----------------------------------------------------------------------===//
792 // ConstcOp
793 //===----------------------------------------------------------------------===//
794 
795 mlir::ParseResult fir::ConstcOp::parse(mlir::OpAsmParser &parser,
796                                        mlir::OperationState &result) {
797   fir::RealAttr realp;
798   fir::RealAttr imagp;
799   mlir::Type type;
800   if (parser.parseLParen() ||
801       parser.parseAttribute(realp, fir::ConstcOp::realAttrName(),
802                             result.attributes) ||
803       parser.parseComma() ||
804       parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(),
805                             result.attributes) ||
806       parser.parseRParen() || parser.parseColonType(type) ||
807       parser.addTypesToList(type, result.types))
808     return mlir::failure();
809   return mlir::success();
810 }
811 
812 void fir::ConstcOp::print(mlir::OpAsmPrinter &p) {
813   p << '(';
814   p << getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", ";
815   p << getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : ";
816   p.printType(getType());
817 }
818 
819 mlir::LogicalResult fir::ConstcOp::verify() {
820   if (!getType().isa<fir::ComplexType>())
821     return emitOpError("must be a !fir.complex type");
822   return mlir::success();
823 }
824 
825 //===----------------------------------------------------------------------===//
826 // ConvertOp
827 //===----------------------------------------------------------------------===//
828 
829 void fir::ConvertOp::getCanonicalizationPatterns(
830     mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
831   results.insert<ConvertConvertOptPattern, ConvertAscendingIndexOptPattern,
832                  ConvertDescendingIndexOptPattern, RedundantConvertOptPattern,
833                  CombineConvertOptPattern, CombineConvertTruncOptPattern,
834                  ForwardConstantConvertPattern>(context);
835 }
836 
837 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
838   if (getValue().getType() == getType())
839     return getValue();
840   if (matchPattern(getValue(), mlir::m_Op<fir::ConvertOp>())) {
841     auto inner = mlir::cast<fir::ConvertOp>(getValue().getDefiningOp());
842     // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
843     if (auto toTy = getType().dyn_cast<fir::LogicalType>())
844       if (auto fromTy = inner.getValue().getType().dyn_cast<fir::LogicalType>())
845         if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
846           return inner.getValue();
847     // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
848     if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
849       if (auto fromTy =
850               inner.getValue().getType().dyn_cast<mlir::IntegerType>())
851         if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
852             (fromTy.getWidth() == 1))
853           return inner.getValue();
854   }
855   return {};
856 }
857 
858 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
859   return ty.isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType,
860                 fir::LogicalType>();
861 }
862 
863 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
864   return ty.isa<mlir::FloatType, fir::RealType>();
865 }
866 
867 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
868   return ty.isa<fir::ReferenceType, fir::PointerType, fir::HeapType,
869                 fir::LLVMPointerType, mlir::MemRefType, mlir::FunctionType,
870                 fir::TypeDescType>();
871 }
872 
873 mlir::LogicalResult fir::ConvertOp::verify() {
874   auto inType = getValue().getType();
875   auto outType = getType();
876   if (inType == outType)
877     return mlir::success();
878   if ((isPointerCompatible(inType) && isPointerCompatible(outType)) ||
879       (isIntegerCompatible(inType) && isIntegerCompatible(outType)) ||
880       (isIntegerCompatible(inType) && isFloatCompatible(outType)) ||
881       (isFloatCompatible(inType) && isIntegerCompatible(outType)) ||
882       (isFloatCompatible(inType) && isFloatCompatible(outType)) ||
883       (isIntegerCompatible(inType) && isPointerCompatible(outType)) ||
884       (isPointerCompatible(inType) && isIntegerCompatible(outType)) ||
885       (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) ||
886       (inType.isa<fir::BoxProcType>() && outType.isa<fir::BoxProcType>()) ||
887       (fir::isa_complex(inType) && fir::isa_complex(outType)))
888     return mlir::success();
889   return emitOpError("invalid type conversion");
890 }
891 
892 //===----------------------------------------------------------------------===//
893 // CoordinateOp
894 //===----------------------------------------------------------------------===//
895 
896 void fir::CoordinateOp::print(mlir::OpAsmPrinter &p) {
897   p << ' ' << getRef() << ", " << getCoor();
898   p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{"baseType"});
899   p << " : ";
900   p.printFunctionalType(getOperandTypes(), (*this)->getResultTypes());
901 }
902 
903 mlir::ParseResult fir::CoordinateOp::parse(mlir::OpAsmParser &parser,
904                                            mlir::OperationState &result) {
905   mlir::OpAsmParser::UnresolvedOperand memref;
906   if (parser.parseOperand(memref) || parser.parseComma())
907     return mlir::failure();
908   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> coorOperands;
909   if (parser.parseOperandList(coorOperands))
910     return mlir::failure();
911   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> allOperands;
912   allOperands.push_back(memref);
913   allOperands.append(coorOperands.begin(), coorOperands.end());
914   mlir::FunctionType funcTy;
915   auto loc = parser.getCurrentLocation();
916   if (parser.parseOptionalAttrDict(result.attributes) ||
917       parser.parseColonType(funcTy) ||
918       parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
919                              result.operands) ||
920       parser.addTypesToList(funcTy.getResults(), result.types))
921     return mlir::failure();
922   result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
923   return mlir::success();
924 }
925 
926 mlir::LogicalResult fir::CoordinateOp::verify() {
927   const mlir::Type refTy = getRef().getType();
928   if (fir::isa_ref_type(refTy)) {
929     auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
930     if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
931       if (arrTy.hasUnknownShape())
932         return emitOpError("cannot find coordinate in unknown shape");
933       if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
934         return emitOpError("cannot find coordinate with unknown extents");
935     }
936     if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
937           fir::isa_char_string(eleTy)))
938       return emitOpError("cannot apply to this element type");
939   }
940   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(refTy);
941   unsigned dimension = 0;
942   const unsigned numCoors = getCoor().size();
943   for (auto coorOperand : llvm::enumerate(getCoor())) {
944     auto co = coorOperand.value();
945     if (dimension == 0 && eleTy.isa<fir::SequenceType>()) {
946       dimension = eleTy.cast<fir::SequenceType>().getDimension();
947       if (dimension == 0)
948         return emitOpError("cannot apply to array of unknown rank");
949     }
950     if (auto *defOp = co.getDefiningOp()) {
951       if (auto index = mlir::dyn_cast<fir::LenParamIndexOp>(defOp)) {
952         // Recovering a LEN type parameter only makes sense from a boxed
953         // value. For a bare reference, the LEN type parameters must be
954         // passed as additional arguments to `index`.
955         if (refTy.isa<fir::BoxType>()) {
956           if (coorOperand.index() != numCoors - 1)
957             return emitOpError("len_param_index must be last argument");
958           if (getNumOperands() != 2)
959             return emitOpError("too many operands for len_param_index case");
960         }
961         if (eleTy != index.getOnType())
962           emitOpError(
963               "len_param_index type not compatible with reference type");
964         return mlir::success();
965       } else if (auto index = mlir::dyn_cast<fir::FieldIndexOp>(defOp)) {
966         if (eleTy != index.getOnType())
967           emitOpError("field_index type not compatible with reference type");
968         if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
969           eleTy = recTy.getType(index.getFieldName());
970           continue;
971         }
972         return emitOpError("field_index not applied to !fir.type");
973       }
974     }
975     if (dimension) {
976       if (--dimension == 0)
977         eleTy = eleTy.cast<fir::SequenceType>().getEleTy();
978     } else {
979       if (auto t = eleTy.dyn_cast<mlir::TupleType>()) {
980         // FIXME: Generally, we don't know which field of the tuple is being
981         // referred to unless the operand is a constant. Just assume everything
982         // is good in the tuple case for now.
983         return mlir::success();
984       } else if (auto t = eleTy.dyn_cast<fir::RecordType>()) {
985         // FIXME: This is the same as the tuple case.
986         return mlir::success();
987       } else if (auto t = eleTy.dyn_cast<fir::ComplexType>()) {
988         eleTy = t.getElementType();
989       } else if (auto t = eleTy.dyn_cast<mlir::ComplexType>()) {
990         eleTy = t.getElementType();
991       } else if (auto t = eleTy.dyn_cast<fir::CharacterType>()) {
992         if (t.getLen() == fir::CharacterType::singleton())
993           return emitOpError("cannot apply to character singleton");
994         eleTy = fir::CharacterType::getSingleton(t.getContext(), t.getFKind());
995         if (fir::unwrapRefType(getType()) != eleTy)
996           return emitOpError("character type mismatch");
997       } else {
998         return emitOpError("invalid parameters (too many)");
999       }
1000     }
1001   }
1002   return mlir::success();
1003 }
1004 
1005 //===----------------------------------------------------------------------===//
1006 // DispatchOp
1007 //===----------------------------------------------------------------------===//
1008 
1009 mlir::FunctionType fir::DispatchOp::getFunctionType() {
1010   return mlir::FunctionType::get(getContext(), getOperandTypes(),
1011                                  getResultTypes());
1012 }
1013 
1014 mlir::ParseResult fir::DispatchOp::parse(mlir::OpAsmParser &parser,
1015                                          mlir::OperationState &result) {
1016   mlir::FunctionType calleeType;
1017   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1018   auto calleeLoc = parser.getNameLoc();
1019   llvm::StringRef calleeName;
1020   if (failed(parser.parseOptionalKeyword(&calleeName))) {
1021     mlir::StringAttr calleeAttr;
1022     if (parser.parseAttribute(calleeAttr,
1023                               fir::DispatchOp::getMethodAttrNameStr(),
1024                               result.attributes))
1025       return mlir::failure();
1026   } else {
1027     result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(),
1028                         parser.getBuilder().getStringAttr(calleeName));
1029   }
1030   if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
1031       parser.parseOptionalAttrDict(result.attributes) ||
1032       parser.parseColonType(calleeType) ||
1033       parser.addTypesToList(calleeType.getResults(), result.types) ||
1034       parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc,
1035                              result.operands))
1036     return mlir::failure();
1037   return mlir::success();
1038 }
1039 
1040 void fir::DispatchOp::print(mlir::OpAsmPrinter &p) {
1041   p << ' ' << getMethodAttr() << '(';
1042   p.printOperand(getObject());
1043   if (!getArgs().empty()) {
1044     p << ", ";
1045     p.printOperands(getArgs());
1046   }
1047   p << ") : ";
1048   p.printFunctionalType(getOperation()->getOperandTypes(),
1049                         getOperation()->getResultTypes());
1050 }
1051 
1052 //===----------------------------------------------------------------------===//
1053 // DispatchTableOp
1054 //===----------------------------------------------------------------------===//
1055 
1056 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
1057   assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
1058   auto &block = getBlock();
1059   block.getOperations().insert(block.end(), op);
1060 }
1061 
1062 mlir::ParseResult fir::DispatchTableOp::parse(mlir::OpAsmParser &parser,
1063                                               mlir::OperationState &result) {
1064   // Parse the name as a symbol reference attribute.
1065   mlir::SymbolRefAttr nameAttr;
1066   if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
1067                             result.attributes))
1068     return mlir::failure();
1069 
1070   // Convert the parsed name attr into a string attr.
1071   result.attributes.set(mlir::SymbolTable::getSymbolAttrName(),
1072                         nameAttr.getRootReference());
1073 
1074   // Parse the optional table body.
1075   mlir::Region *body = result.addRegion();
1076   mlir::OptionalParseResult parseResult = parser.parseOptionalRegion(*body);
1077   if (parseResult.hasValue() && failed(*parseResult))
1078     return mlir::failure();
1079 
1080   fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(),
1081                                          result.location);
1082   return mlir::success();
1083 }
1084 
1085 void fir::DispatchTableOp::print(mlir::OpAsmPrinter &p) {
1086   auto tableName = getOperation()
1087                        ->getAttrOfType<mlir::StringAttr>(
1088                            mlir::SymbolTable::getSymbolAttrName())
1089                        .getValue();
1090   p << " @" << tableName;
1091 
1092   mlir::Region &body = getOperation()->getRegion(0);
1093   if (!body.empty()) {
1094     p << ' ';
1095     p.printRegion(body, /*printEntryBlockArgs=*/false,
1096                   /*printBlockTerminators=*/false);
1097   }
1098 }
1099 
1100 mlir::LogicalResult fir::DispatchTableOp::verify() {
1101   for (auto &op : getBlock())
1102     if (!mlir::isa<fir::DTEntryOp, fir::FirEndOp>(op))
1103       return op.emitOpError("dispatch table must contain dt_entry");
1104   return mlir::success();
1105 }
1106 
1107 //===----------------------------------------------------------------------===//
1108 // EmboxOp
1109 //===----------------------------------------------------------------------===//
1110 
1111 mlir::LogicalResult fir::EmboxOp::verify() {
1112   auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
1113   bool isArray = false;
1114   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
1115     eleTy = seqTy.getEleTy();
1116     isArray = true;
1117   }
1118   if (hasLenParams()) {
1119     auto lenPs = numLenParams();
1120     if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
1121       if (lenPs != rt.getNumLenParams())
1122         return emitOpError("number of LEN params does not correspond"
1123                            " to the !fir.type type");
1124     } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
1125       if (strTy.getLen() != fir::CharacterType::unknownLen())
1126         return emitOpError("CHARACTER already has static LEN");
1127     } else {
1128       return emitOpError("LEN parameters require CHARACTER or derived type");
1129     }
1130     for (auto lp : getTypeparams())
1131       if (!fir::isa_integer(lp.getType()))
1132         return emitOpError("LEN parameters must be integral type");
1133   }
1134   if (getShape() && !isArray)
1135     return emitOpError("shape must not be provided for a scalar");
1136   if (getSlice() && !isArray)
1137     return emitOpError("slice must not be provided for a scalar");
1138   return mlir::success();
1139 }
1140 
1141 //===----------------------------------------------------------------------===//
1142 // EmboxCharOp
1143 //===----------------------------------------------------------------------===//
1144 
1145 mlir::LogicalResult fir::EmboxCharOp::verify() {
1146   auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
1147   if (!eleTy.dyn_cast_or_null<fir::CharacterType>())
1148     return mlir::failure();
1149   return mlir::success();
1150 }
1151 
1152 //===----------------------------------------------------------------------===//
1153 // EmboxProcOp
1154 //===----------------------------------------------------------------------===//
1155 
1156 mlir::LogicalResult fir::EmboxProcOp::verify() {
1157   // host bindings (optional) must be a reference to a tuple
1158   if (auto h = getHost()) {
1159     if (auto r = h.getType().dyn_cast<fir::ReferenceType>())
1160       if (r.getEleTy().isa<mlir::TupleType>())
1161         return mlir::success();
1162     return mlir::failure();
1163   }
1164   return mlir::success();
1165 }
1166 
1167 //===----------------------------------------------------------------------===//
1168 // GenTypeDescOp
1169 //===----------------------------------------------------------------------===//
1170 
1171 void fir::GenTypeDescOp::build(mlir::OpBuilder &, mlir::OperationState &result,
1172                                mlir::TypeAttr inty) {
1173   result.addAttribute("in_type", inty);
1174   result.addTypes(TypeDescType::get(inty.getValue()));
1175 }
1176 
1177 mlir::ParseResult fir::GenTypeDescOp::parse(mlir::OpAsmParser &parser,
1178                                             mlir::OperationState &result) {
1179   mlir::Type intype;
1180   if (parser.parseType(intype))
1181     return mlir::failure();
1182   result.addAttribute("in_type", mlir::TypeAttr::get(intype));
1183   mlir::Type restype = fir::TypeDescType::get(intype);
1184   if (parser.addTypeToList(restype, result.types))
1185     return mlir::failure();
1186   return mlir::success();
1187 }
1188 
1189 void fir::GenTypeDescOp::print(mlir::OpAsmPrinter &p) {
1190   p << ' ' << getOperation()->getAttr("in_type");
1191   p.printOptionalAttrDict(getOperation()->getAttrs(), {"in_type"});
1192 }
1193 
1194 mlir::LogicalResult fir::GenTypeDescOp::verify() {
1195   mlir::Type resultTy = getType();
1196   if (auto tdesc = resultTy.dyn_cast<fir::TypeDescType>()) {
1197     if (tdesc.getOfTy() != getInType())
1198       return emitOpError("wrapped type mismatched");
1199     return mlir::success();
1200   }
1201   return emitOpError("must be !fir.tdesc type");
1202 }
1203 
1204 //===----------------------------------------------------------------------===//
1205 // GlobalOp
1206 //===----------------------------------------------------------------------===//
1207 
1208 mlir::Type fir::GlobalOp::resultType() {
1209   return wrapAllocaResultType(getType());
1210 }
1211 
1212 mlir::ParseResult fir::GlobalOp::parse(mlir::OpAsmParser &parser,
1213                                        mlir::OperationState &result) {
1214   // Parse the optional linkage
1215   llvm::StringRef linkage;
1216   auto &builder = parser.getBuilder();
1217   if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
1218     if (fir::GlobalOp::verifyValidLinkage(linkage))
1219       return mlir::failure();
1220     mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
1221     result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr);
1222   }
1223 
1224   // Parse the name as a symbol reference attribute.
1225   mlir::SymbolRefAttr nameAttr;
1226   if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrNameStr(),
1227                             result.attributes))
1228     return mlir::failure();
1229   result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1230                       nameAttr.getRootReference());
1231 
1232   bool simpleInitializer = false;
1233   if (mlir::succeeded(parser.parseOptionalLParen())) {
1234     mlir::Attribute attr;
1235     if (parser.parseAttribute(attr, "initVal", result.attributes) ||
1236         parser.parseRParen())
1237       return mlir::failure();
1238     simpleInitializer = true;
1239   }
1240 
1241   if (succeeded(parser.parseOptionalKeyword("constant"))) {
1242     // if "constant" keyword then mark this as a constant, not a variable
1243     result.addAttribute("constant", builder.getUnitAttr());
1244   }
1245 
1246   mlir::Type globalType;
1247   if (parser.parseColonType(globalType))
1248     return mlir::failure();
1249 
1250   result.addAttribute(fir::GlobalOp::getTypeAttrName(result.name),
1251                       mlir::TypeAttr::get(globalType));
1252 
1253   if (simpleInitializer) {
1254     result.addRegion();
1255   } else {
1256     // Parse the optional initializer body.
1257     auto parseResult =
1258         parser.parseOptionalRegion(*result.addRegion(), /*arguments=*/{});
1259     if (parseResult.hasValue() && mlir::failed(*parseResult))
1260       return mlir::failure();
1261   }
1262   return mlir::success();
1263 }
1264 
1265 void fir::GlobalOp::print(mlir::OpAsmPrinter &p) {
1266   if (getLinkName().hasValue())
1267     p << ' ' << getLinkName().getValue();
1268   p << ' ';
1269   p.printAttributeWithoutType(getSymrefAttr());
1270   if (auto val = getValueOrNull())
1271     p << '(' << val << ')';
1272   if (getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr()))
1273     p << " constant";
1274   p << " : ";
1275   p.printType(getType());
1276   if (hasInitializationBody()) {
1277     p << ' ';
1278     p.printRegion(getOperation()->getRegion(0),
1279                   /*printEntryBlockArgs=*/false,
1280                   /*printBlockTerminators=*/true);
1281   }
1282 }
1283 
1284 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
1285   getBlock().getOperations().push_back(op);
1286 }
1287 
1288 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1289                           mlir::OperationState &result, llvm::StringRef name,
1290                           bool isConstant, mlir::Type type,
1291                           mlir::Attribute initialVal, mlir::StringAttr linkage,
1292                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1293   result.addRegion();
1294   result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type));
1295   result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1296                       builder.getStringAttr(name));
1297   result.addAttribute(symbolAttrNameStr(),
1298                       mlir::SymbolRefAttr::get(builder.getContext(), name));
1299   if (isConstant)
1300     result.addAttribute(getConstantAttrName(result.name),
1301                         builder.getUnitAttr());
1302   if (initialVal)
1303     result.addAttribute(getInitValAttrName(result.name), initialVal);
1304   if (linkage)
1305     result.addAttribute(linkageAttrName(), linkage);
1306   result.attributes.append(attrs.begin(), attrs.end());
1307 }
1308 
1309 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1310                           mlir::OperationState &result, llvm::StringRef name,
1311                           mlir::Type type, mlir::Attribute initialVal,
1312                           mlir::StringAttr linkage,
1313                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1314   build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1315 }
1316 
1317 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1318                           mlir::OperationState &result, llvm::StringRef name,
1319                           bool isConstant, mlir::Type type,
1320                           mlir::StringAttr linkage,
1321                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1322   build(builder, result, name, isConstant, type, {}, linkage, attrs);
1323 }
1324 
1325 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1326                           mlir::OperationState &result, llvm::StringRef name,
1327                           mlir::Type type, mlir::StringAttr linkage,
1328                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1329   build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1330 }
1331 
1332 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1333                           mlir::OperationState &result, llvm::StringRef name,
1334                           bool isConstant, mlir::Type type,
1335                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1336   build(builder, result, name, isConstant, type, mlir::StringAttr{}, attrs);
1337 }
1338 
1339 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1340                           mlir::OperationState &result, llvm::StringRef name,
1341                           mlir::Type type,
1342                           llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1343   build(builder, result, name, /*isConstant=*/false, type, attrs);
1344 }
1345 
1346 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(llvm::StringRef linkage) {
1347   // Supporting only a subset of the LLVM linkage types for now
1348   static const char *validNames[] = {"common", "internal", "linkonce",
1349                                      "linkonce_odr", "weak"};
1350   return mlir::success(llvm::is_contained(validNames, linkage));
1351 }
1352 
1353 //===----------------------------------------------------------------------===//
1354 // GlobalLenOp
1355 //===----------------------------------------------------------------------===//
1356 
1357 mlir::ParseResult fir::GlobalLenOp::parse(mlir::OpAsmParser &parser,
1358                                           mlir::OperationState &result) {
1359   llvm::StringRef fieldName;
1360   if (failed(parser.parseOptionalKeyword(&fieldName))) {
1361     mlir::StringAttr fieldAttr;
1362     if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(),
1363                               result.attributes))
1364       return mlir::failure();
1365   } else {
1366     result.addAttribute(fir::GlobalLenOp::lenParamAttrName(),
1367                         parser.getBuilder().getStringAttr(fieldName));
1368   }
1369   mlir::IntegerAttr constant;
1370   if (parser.parseComma() ||
1371       parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(),
1372                             result.attributes))
1373     return mlir::failure();
1374   return mlir::success();
1375 }
1376 
1377 void fir::GlobalLenOp::print(mlir::OpAsmPrinter &p) {
1378   p << ' ' << getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName())
1379     << ", " << getOperation()->getAttr(fir::GlobalLenOp::intAttrName());
1380 }
1381 
1382 //===----------------------------------------------------------------------===//
1383 // FieldIndexOp
1384 //===----------------------------------------------------------------------===//
1385 
1386 template <typename TY>
1387 mlir::ParseResult parseFieldLikeOp(mlir::OpAsmParser &parser,
1388                                    mlir::OperationState &result) {
1389   llvm::StringRef fieldName;
1390   auto &builder = parser.getBuilder();
1391   mlir::Type recty;
1392   if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
1393       parser.parseType(recty))
1394     return mlir::failure();
1395   result.addAttribute(fir::FieldIndexOp::getFieldAttrName(),
1396                       builder.getStringAttr(fieldName));
1397   if (!recty.dyn_cast<fir::RecordType>())
1398     return mlir::failure();
1399   result.addAttribute(fir::FieldIndexOp::getTypeAttrName(),
1400                       mlir::TypeAttr::get(recty));
1401   if (!parser.parseOptionalLParen()) {
1402     llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1403     llvm::SmallVector<mlir::Type> types;
1404     auto loc = parser.getNameLoc();
1405     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
1406         parser.parseColonTypeList(types) || parser.parseRParen() ||
1407         parser.resolveOperands(operands, types, loc, result.operands))
1408       return mlir::failure();
1409   }
1410   mlir::Type fieldType = TY::get(builder.getContext());
1411   if (parser.addTypeToList(fieldType, result.types))
1412     return mlir::failure();
1413   return mlir::success();
1414 }
1415 
1416 mlir::ParseResult fir::FieldIndexOp::parse(mlir::OpAsmParser &parser,
1417                                            mlir::OperationState &result) {
1418   return parseFieldLikeOp<fir::FieldType>(parser, result);
1419 }
1420 
1421 template <typename OP>
1422 void printFieldLikeOp(mlir::OpAsmPrinter &p, OP &op) {
1423   p << ' '
1424     << op.getOperation()
1425            ->template getAttrOfType<mlir::StringAttr>(
1426                fir::FieldIndexOp::getFieldAttrName())
1427            .getValue()
1428     << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::getTypeAttrName());
1429   if (op.getNumOperands()) {
1430     p << '(';
1431     p.printOperands(op.getTypeparams());
1432     auto sep = ") : ";
1433     for (auto op : op.getTypeparams()) {
1434       p << sep;
1435       if (op)
1436         p.printType(op.getType());
1437       else
1438         p << "()";
1439       sep = ", ";
1440     }
1441   }
1442 }
1443 
1444 void fir::FieldIndexOp::print(mlir::OpAsmPrinter &p) {
1445   printFieldLikeOp(p, *this);
1446 }
1447 
1448 void fir::FieldIndexOp::build(mlir::OpBuilder &builder,
1449                               mlir::OperationState &result,
1450                               llvm::StringRef fieldName, mlir::Type recTy,
1451                               mlir::ValueRange operands) {
1452   result.addAttribute(getFieldAttrName(), builder.getStringAttr(fieldName));
1453   result.addAttribute(getTypeAttrName(), mlir::TypeAttr::get(recTy));
1454   result.addOperands(operands);
1455 }
1456 
1457 llvm::SmallVector<mlir::Attribute> fir::FieldIndexOp::getAttributes() {
1458   llvm::SmallVector<mlir::Attribute> attrs;
1459   attrs.push_back(getFieldIdAttr());
1460   attrs.push_back(getOnTypeAttr());
1461   return attrs;
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // InsertOnRangeOp
1466 //===----------------------------------------------------------------------===//
1467 
1468 static mlir::ParseResult
1469 parseCustomRangeSubscript(mlir::OpAsmParser &parser,
1470                           mlir::DenseIntElementsAttr &coord) {
1471   llvm::SmallVector<std::int64_t> lbounds;
1472   llvm::SmallVector<std::int64_t> ubounds;
1473   if (parser.parseKeyword("from") ||
1474       parser.parseCommaSeparatedList(
1475           mlir::AsmParser::Delimiter::Paren,
1476           [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) ||
1477       parser.parseKeyword("to") ||
1478       parser.parseCommaSeparatedList(mlir::AsmParser::Delimiter::Paren, [&] {
1479         return parser.parseInteger(ubounds.emplace_back(0));
1480       }))
1481     return mlir::failure();
1482   llvm::SmallVector<std::int64_t> zippedBounds;
1483   for (auto zip : llvm::zip(lbounds, ubounds)) {
1484     zippedBounds.push_back(std::get<0>(zip));
1485     zippedBounds.push_back(std::get<1>(zip));
1486   }
1487   coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds);
1488   return mlir::success();
1489 }
1490 
1491 static void printCustomRangeSubscript(mlir::OpAsmPrinter &printer,
1492                                       fir::InsertOnRangeOp op,
1493                                       mlir::DenseIntElementsAttr coord) {
1494   printer << "from (";
1495   auto enumerate = llvm::enumerate(coord.getValues<std::int64_t>());
1496   // Even entries are the lower bounds.
1497   llvm::interleaveComma(
1498       make_filter_range(
1499           enumerate,
1500           [](auto indexed_value) { return indexed_value.index() % 2 == 0; }),
1501       printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1502   printer << ") to (";
1503   // Odd entries are the upper bounds.
1504   llvm::interleaveComma(
1505       make_filter_range(
1506           enumerate,
1507           [](auto indexed_value) { return indexed_value.index() % 2 != 0; }),
1508       printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1509   printer << ")";
1510 }
1511 
1512 /// Range bounds must be nonnegative, and the range must not be empty.
1513 mlir::LogicalResult fir::InsertOnRangeOp::verify() {
1514   if (fir::hasDynamicSize(getSeq().getType()))
1515     return emitOpError("must have constant shape and size");
1516   mlir::DenseIntElementsAttr coorAttr = getCoor();
1517   if (coorAttr.size() < 2 || coorAttr.size() % 2 != 0)
1518     return emitOpError("has uneven number of values in ranges");
1519   bool rangeIsKnownToBeNonempty = false;
1520   for (auto i = coorAttr.getValues<std::int64_t>().end(),
1521             b = coorAttr.getValues<std::int64_t>().begin();
1522        i != b;) {
1523     int64_t ub = (*--i);
1524     int64_t lb = (*--i);
1525     if (lb < 0 || ub < 0)
1526       return emitOpError("negative range bound");
1527     if (rangeIsKnownToBeNonempty)
1528       continue;
1529     if (lb > ub)
1530       return emitOpError("empty range");
1531     rangeIsKnownToBeNonempty = lb < ub;
1532   }
1533   return mlir::success();
1534 }
1535 
1536 //===----------------------------------------------------------------------===//
1537 // InsertValueOp
1538 //===----------------------------------------------------------------------===//
1539 
1540 static bool checkIsIntegerConstant(mlir::Attribute attr, std::int64_t conVal) {
1541   if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
1542     return iattr.getInt() == conVal;
1543   return false;
1544 }
1545 
1546 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); }
1547 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); }
1548 
1549 // Undo some complex patterns created in the front-end and turn them back into
1550 // complex ops.
1551 template <typename FltOp, typename CpxOp>
1552 struct UndoComplexPattern : public mlir::RewritePattern {
1553   UndoComplexPattern(mlir::MLIRContext *ctx)
1554       : mlir::RewritePattern("fir.insert_value", 2, ctx) {}
1555 
1556   mlir::LogicalResult
1557   matchAndRewrite(mlir::Operation *op,
1558                   mlir::PatternRewriter &rewriter) const override {
1559     auto insval = mlir::dyn_cast_or_null<fir::InsertValueOp>(op);
1560     if (!insval || !insval.getType().isa<fir::ComplexType>())
1561       return mlir::failure();
1562     auto insval2 = mlir::dyn_cast_or_null<fir::InsertValueOp>(
1563         insval.getAdt().getDefiningOp());
1564     if (!insval2)
1565       return mlir::failure();
1566     auto binf = mlir::dyn_cast_or_null<FltOp>(insval.getVal().getDefiningOp());
1567     auto binf2 =
1568         mlir::dyn_cast_or_null<FltOp>(insval2.getVal().getDefiningOp());
1569     if (!binf || !binf2 || insval.getCoor().size() != 1 ||
1570         !isOne(insval.getCoor()[0]) || insval2.getCoor().size() != 1 ||
1571         !isZero(insval2.getCoor()[0]))
1572       return mlir::failure();
1573     auto eai = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1574         binf.getLhs().getDefiningOp());
1575     auto ebi = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1576         binf.getRhs().getDefiningOp());
1577     auto ear = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1578         binf2.getLhs().getDefiningOp());
1579     auto ebr = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1580         binf2.getRhs().getDefiningOp());
1581     if (!eai || !ebi || !ear || !ebr || ear.getAdt() != eai.getAdt() ||
1582         ebr.getAdt() != ebi.getAdt() || eai.getCoor().size() != 1 ||
1583         !isOne(eai.getCoor()[0]) || ebi.getCoor().size() != 1 ||
1584         !isOne(ebi.getCoor()[0]) || ear.getCoor().size() != 1 ||
1585         !isZero(ear.getCoor()[0]) || ebr.getCoor().size() != 1 ||
1586         !isZero(ebr.getCoor()[0]))
1587       return mlir::failure();
1588     rewriter.replaceOpWithNewOp<CpxOp>(op, ear.getAdt(), ebr.getAdt());
1589     return mlir::success();
1590   }
1591 };
1592 
1593 void fir::InsertValueOp::getCanonicalizationPatterns(
1594     mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
1595   results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>,
1596                  UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context);
1597 }
1598 
1599 //===----------------------------------------------------------------------===//
1600 // IterWhileOp
1601 //===----------------------------------------------------------------------===//
1602 
1603 void fir::IterWhileOp::build(mlir::OpBuilder &builder,
1604                              mlir::OperationState &result, mlir::Value lb,
1605                              mlir::Value ub, mlir::Value step,
1606                              mlir::Value iterate, bool finalCountValue,
1607                              mlir::ValueRange iterArgs,
1608                              llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1609   result.addOperands({lb, ub, step, iterate});
1610   if (finalCountValue) {
1611     result.addTypes(builder.getIndexType());
1612     result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr());
1613   }
1614   result.addTypes(iterate.getType());
1615   result.addOperands(iterArgs);
1616   for (auto v : iterArgs)
1617     result.addTypes(v.getType());
1618   mlir::Region *bodyRegion = result.addRegion();
1619   bodyRegion->push_back(new mlir::Block{});
1620   bodyRegion->front().addArgument(builder.getIndexType(), result.location);
1621   bodyRegion->front().addArgument(iterate.getType(), result.location);
1622   bodyRegion->front().addArguments(
1623       iterArgs.getTypes(),
1624       llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location));
1625   result.addAttributes(attributes);
1626 }
1627 
1628 mlir::ParseResult fir::IterWhileOp::parse(mlir::OpAsmParser &parser,
1629                                           mlir::OperationState &result) {
1630   auto &builder = parser.getBuilder();
1631   mlir::OpAsmParser::Argument inductionVariable, iterateVar;
1632   mlir::OpAsmParser::UnresolvedOperand lb, ub, step, iterateInput;
1633   if (parser.parseLParen() || parser.parseArgument(inductionVariable) ||
1634       parser.parseEqual())
1635     return mlir::failure();
1636 
1637   // Parse loop bounds.
1638   auto indexType = builder.getIndexType();
1639   auto i1Type = builder.getIntegerType(1);
1640   if (parser.parseOperand(lb) ||
1641       parser.resolveOperand(lb, indexType, result.operands) ||
1642       parser.parseKeyword("to") || parser.parseOperand(ub) ||
1643       parser.resolveOperand(ub, indexType, result.operands) ||
1644       parser.parseKeyword("step") || parser.parseOperand(step) ||
1645       parser.parseRParen() ||
1646       parser.resolveOperand(step, indexType, result.operands) ||
1647       parser.parseKeyword("and") || parser.parseLParen() ||
1648       parser.parseArgument(iterateVar) || parser.parseEqual() ||
1649       parser.parseOperand(iterateInput) || parser.parseRParen() ||
1650       parser.resolveOperand(iterateInput, i1Type, result.operands))
1651     return mlir::failure();
1652 
1653   // Parse the initial iteration arguments.
1654   auto prependCount = false;
1655 
1656   // Induction variable.
1657   llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs;
1658   regionArgs.push_back(inductionVariable);
1659   regionArgs.push_back(iterateVar);
1660 
1661   if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1662     llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1663     llvm::SmallVector<mlir::Type> regionTypes;
1664     // Parse assignment list and results type list.
1665     if (parser.parseAssignmentList(regionArgs, operands) ||
1666         parser.parseArrowTypeList(regionTypes))
1667       return mlir::failure();
1668     if (regionTypes.size() == operands.size() + 2)
1669       prependCount = true;
1670     llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
1671     resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
1672     // Resolve input operands.
1673     for (auto operandType : llvm::zip(operands, resTypes))
1674       if (parser.resolveOperand(std::get<0>(operandType),
1675                                 std::get<1>(operandType), result.operands))
1676         return mlir::failure();
1677     if (prependCount) {
1678       result.addTypes(regionTypes);
1679     } else {
1680       result.addTypes(i1Type);
1681       result.addTypes(resTypes);
1682     }
1683   } else if (succeeded(parser.parseOptionalArrow())) {
1684     llvm::SmallVector<mlir::Type> typeList;
1685     if (parser.parseLParen() || parser.parseTypeList(typeList) ||
1686         parser.parseRParen())
1687       return mlir::failure();
1688     // Type list must be "(index, i1)".
1689     if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
1690         !typeList[1].isSignlessInteger(1))
1691       return mlir::failure();
1692     result.addTypes(typeList);
1693     prependCount = true;
1694   } else {
1695     result.addTypes(i1Type);
1696   }
1697 
1698   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1699     return mlir::failure();
1700 
1701   llvm::SmallVector<mlir::Type> argTypes;
1702   // Induction variable (hidden)
1703   if (prependCount)
1704     result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(),
1705                         builder.getUnitAttr());
1706   else
1707     argTypes.push_back(indexType);
1708   // Loop carried variables (including iterate)
1709   argTypes.append(result.types.begin(), result.types.end());
1710   // Parse the body region.
1711   auto *body = result.addRegion();
1712   if (regionArgs.size() != argTypes.size())
1713     return parser.emitError(
1714         parser.getNameLoc(),
1715         "mismatch in number of loop-carried values and defined values");
1716 
1717   for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
1718     regionArgs[i].type = argTypes[i];
1719 
1720   if (parser.parseRegion(*body, regionArgs))
1721     return mlir::failure();
1722 
1723   fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
1724   return mlir::success();
1725 }
1726 
1727 mlir::LogicalResult fir::IterWhileOp::verify() {
1728   // Check that the body defines as single block argument for the induction
1729   // variable.
1730   auto *body = getBody();
1731   if (!body->getArgument(1).getType().isInteger(1))
1732     return emitOpError(
1733         "expected body second argument to be an index argument for "
1734         "the induction variable");
1735   if (!body->getArgument(0).getType().isIndex())
1736     return emitOpError(
1737         "expected body first argument to be an index argument for "
1738         "the induction variable");
1739 
1740   auto opNumResults = getNumResults();
1741   if (getFinalValue()) {
1742     // Result type must be "(index, i1, ...)".
1743     if (!getResult(0).getType().isa<mlir::IndexType>())
1744       return emitOpError("result #0 expected to be index");
1745     if (!getResult(1).getType().isSignlessInteger(1))
1746       return emitOpError("result #1 expected to be i1");
1747     opNumResults--;
1748   } else {
1749     // iterate_while always returns the early exit induction value.
1750     // Result type must be "(i1, ...)"
1751     if (!getResult(0).getType().isSignlessInteger(1))
1752       return emitOpError("result #0 expected to be i1");
1753   }
1754   if (opNumResults == 0)
1755     return mlir::failure();
1756   if (getNumIterOperands() != opNumResults)
1757     return emitOpError(
1758         "mismatch in number of loop-carried values and defined values");
1759   if (getNumRegionIterArgs() != opNumResults)
1760     return emitOpError(
1761         "mismatch in number of basic block args and defined values");
1762   auto iterOperands = getIterOperands();
1763   auto iterArgs = getRegionIterArgs();
1764   auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
1765   unsigned i = 0u;
1766   for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
1767     if (std::get<0>(e).getType() != std::get<2>(e).getType())
1768       return emitOpError() << "types mismatch between " << i
1769                            << "th iter operand and defined value";
1770     if (std::get<1>(e).getType() != std::get<2>(e).getType())
1771       return emitOpError() << "types mismatch between " << i
1772                            << "th iter region arg and defined value";
1773 
1774     i++;
1775   }
1776   return mlir::success();
1777 }
1778 
1779 void fir::IterWhileOp::print(mlir::OpAsmPrinter &p) {
1780   p << " (" << getInductionVar() << " = " << getLowerBound() << " to "
1781     << getUpperBound() << " step " << getStep() << ") and (";
1782   assert(hasIterOperands());
1783   auto regionArgs = getRegionIterArgs();
1784   auto operands = getIterOperands();
1785   p << regionArgs.front() << " = " << *operands.begin() << ")";
1786   if (regionArgs.size() > 1) {
1787     p << " iter_args(";
1788     llvm::interleaveComma(
1789         llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
1790         [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
1791     p << ") -> (";
1792     llvm::interleaveComma(
1793         llvm::drop_begin(getResultTypes(), getFinalValue() ? 0 : 1), p);
1794     p << ")";
1795   } else if (getFinalValue()) {
1796     p << " -> (" << getResultTypes() << ')';
1797   }
1798   p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
1799                                      {getFinalValueAttrNameStr()});
1800   p << ' ';
1801   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
1802                 /*printBlockTerminators=*/true);
1803 }
1804 
1805 mlir::Region &fir::IterWhileOp::getLoopBody() { return getRegion(); }
1806 
1807 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
1808   for (auto i : llvm::enumerate(getInitArgs()))
1809     if (iterArg == i.value())
1810       return getRegion().front().getArgument(i.index() + 1);
1811   return {};
1812 }
1813 
1814 void fir::IterWhileOp::resultToSourceOps(
1815     llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
1816   auto oper = getFinalValue() ? resultNum + 1 : resultNum;
1817   auto *term = getRegion().front().getTerminator();
1818   if (oper < term->getNumOperands())
1819     results.push_back(term->getOperand(oper));
1820 }
1821 
1822 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
1823   if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
1824     return getInitArgs()[blockArgNum - 1];
1825   return {};
1826 }
1827 
1828 //===----------------------------------------------------------------------===//
1829 // LenParamIndexOp
1830 //===----------------------------------------------------------------------===//
1831 
1832 mlir::ParseResult fir::LenParamIndexOp::parse(mlir::OpAsmParser &parser,
1833                                               mlir::OperationState &result) {
1834   return parseFieldLikeOp<fir::LenType>(parser, result);
1835 }
1836 
1837 void fir::LenParamIndexOp::print(mlir::OpAsmPrinter &p) {
1838   printFieldLikeOp(p, *this);
1839 }
1840 
1841 void fir::LenParamIndexOp::build(mlir::OpBuilder &builder,
1842                                  mlir::OperationState &result,
1843                                  llvm::StringRef fieldName, mlir::Type recTy,
1844                                  mlir::ValueRange operands) {
1845   result.addAttribute(getFieldAttrName(), builder.getStringAttr(fieldName));
1846   result.addAttribute(getTypeAttrName(), mlir::TypeAttr::get(recTy));
1847   result.addOperands(operands);
1848 }
1849 
1850 llvm::SmallVector<mlir::Attribute> fir::LenParamIndexOp::getAttributes() {
1851   llvm::SmallVector<mlir::Attribute> attrs;
1852   attrs.push_back(getFieldIdAttr());
1853   attrs.push_back(getOnTypeAttr());
1854   return attrs;
1855 }
1856 
1857 //===----------------------------------------------------------------------===//
1858 // LoadOp
1859 //===----------------------------------------------------------------------===//
1860 
1861 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
1862                         mlir::Value refVal) {
1863   if (!refVal) {
1864     mlir::emitError(result.location, "LoadOp has null argument");
1865     return;
1866   }
1867   auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType());
1868   if (!eleTy) {
1869     mlir::emitError(result.location, "not a memory reference type");
1870     return;
1871   }
1872   result.addOperands(refVal);
1873   result.addTypes(eleTy);
1874 }
1875 
1876 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
1877   if ((ele = fir::dyn_cast_ptrEleTy(ref)))
1878     return mlir::success();
1879   return mlir::failure();
1880 }
1881 
1882 mlir::ParseResult fir::LoadOp::parse(mlir::OpAsmParser &parser,
1883                                      mlir::OperationState &result) {
1884   mlir::Type type;
1885   mlir::OpAsmParser::UnresolvedOperand oper;
1886   if (parser.parseOperand(oper) ||
1887       parser.parseOptionalAttrDict(result.attributes) ||
1888       parser.parseColonType(type) ||
1889       parser.resolveOperand(oper, type, result.operands))
1890     return mlir::failure();
1891   mlir::Type eleTy;
1892   if (fir::LoadOp::getElementOf(eleTy, type) ||
1893       parser.addTypeToList(eleTy, result.types))
1894     return mlir::failure();
1895   return mlir::success();
1896 }
1897 
1898 void fir::LoadOp::print(mlir::OpAsmPrinter &p) {
1899   p << ' ';
1900   p.printOperand(getMemref());
1901   p.printOptionalAttrDict(getOperation()->getAttrs(), {});
1902   p << " : " << getMemref().getType();
1903 }
1904 
1905 //===----------------------------------------------------------------------===//
1906 // DoLoopOp
1907 //===----------------------------------------------------------------------===//
1908 
1909 void fir::DoLoopOp::build(mlir::OpBuilder &builder,
1910                           mlir::OperationState &result, mlir::Value lb,
1911                           mlir::Value ub, mlir::Value step, bool unordered,
1912                           bool finalCountValue, mlir::ValueRange iterArgs,
1913                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1914   result.addOperands({lb, ub, step});
1915   result.addOperands(iterArgs);
1916   if (finalCountValue) {
1917     result.addTypes(builder.getIndexType());
1918     result.addAttribute(getFinalValueAttrName(result.name),
1919                         builder.getUnitAttr());
1920   }
1921   for (auto v : iterArgs)
1922     result.addTypes(v.getType());
1923   mlir::Region *bodyRegion = result.addRegion();
1924   bodyRegion->push_back(new mlir::Block{});
1925   if (iterArgs.empty() && !finalCountValue)
1926     fir::DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
1927   bodyRegion->front().addArgument(builder.getIndexType(), result.location);
1928   bodyRegion->front().addArguments(
1929       iterArgs.getTypes(),
1930       llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location));
1931   if (unordered)
1932     result.addAttribute(getUnorderedAttrName(result.name),
1933                         builder.getUnitAttr());
1934   result.addAttributes(attributes);
1935 }
1936 
1937 mlir::ParseResult fir::DoLoopOp::parse(mlir::OpAsmParser &parser,
1938                                        mlir::OperationState &result) {
1939   auto &builder = parser.getBuilder();
1940   mlir::OpAsmParser::Argument inductionVariable;
1941   mlir::OpAsmParser::UnresolvedOperand lb, ub, step;
1942   // Parse the induction variable followed by '='.
1943   if (parser.parseArgument(inductionVariable) || parser.parseEqual())
1944     return mlir::failure();
1945 
1946   // Parse loop bounds.
1947   auto indexType = builder.getIndexType();
1948   if (parser.parseOperand(lb) ||
1949       parser.resolveOperand(lb, indexType, result.operands) ||
1950       parser.parseKeyword("to") || parser.parseOperand(ub) ||
1951       parser.resolveOperand(ub, indexType, result.operands) ||
1952       parser.parseKeyword("step") || parser.parseOperand(step) ||
1953       parser.resolveOperand(step, indexType, result.operands))
1954     return mlir::failure();
1955 
1956   if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
1957     result.addAttribute("unordered", builder.getUnitAttr());
1958 
1959   // Parse the optional initial iteration arguments.
1960   llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs;
1961   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1962   llvm::SmallVector<mlir::Type> argTypes;
1963   bool prependCount = false;
1964   regionArgs.push_back(inductionVariable);
1965 
1966   if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1967     // Parse assignment list and results type list.
1968     if (parser.parseAssignmentList(regionArgs, operands) ||
1969         parser.parseArrowTypeList(result.types))
1970       return mlir::failure();
1971     if (result.types.size() == operands.size() + 1)
1972       prependCount = true;
1973     // Resolve input operands.
1974     llvm::ArrayRef<mlir::Type> resTypes = result.types;
1975     for (auto operand_type :
1976          llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
1977       if (parser.resolveOperand(std::get<0>(operand_type),
1978                                 std::get<1>(operand_type), result.operands))
1979         return mlir::failure();
1980   } else if (succeeded(parser.parseOptionalArrow())) {
1981     if (parser.parseKeyword("index"))
1982       return mlir::failure();
1983     result.types.push_back(indexType);
1984     prependCount = true;
1985   }
1986 
1987   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1988     return mlir::failure();
1989 
1990   // Induction variable.
1991   if (prependCount)
1992     result.addAttribute(DoLoopOp::getFinalValueAttrName(result.name),
1993                         builder.getUnitAttr());
1994   else
1995     argTypes.push_back(indexType);
1996   // Loop carried variables
1997   argTypes.append(result.types.begin(), result.types.end());
1998   // Parse the body region.
1999   auto *body = result.addRegion();
2000   if (regionArgs.size() != argTypes.size())
2001     return parser.emitError(
2002         parser.getNameLoc(),
2003         "mismatch in number of loop-carried values and defined values");
2004   for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
2005     regionArgs[i].type = argTypes[i];
2006 
2007   if (parser.parseRegion(*body, regionArgs))
2008     return mlir::failure();
2009 
2010   DoLoopOp::ensureTerminator(*body, builder, result.location);
2011 
2012   return mlir::success();
2013 }
2014 
2015 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
2016   auto ivArg = val.dyn_cast<mlir::BlockArgument>();
2017   if (!ivArg)
2018     return {};
2019   assert(ivArg.getOwner() && "unlinked block argument");
2020   auto *containingInst = ivArg.getOwner()->getParentOp();
2021   return mlir::dyn_cast_or_null<fir::DoLoopOp>(containingInst);
2022 }
2023 
2024 // Lifted from loop.loop
2025 mlir::LogicalResult fir::DoLoopOp::verify() {
2026   // Check that the body defines as single block argument for the induction
2027   // variable.
2028   auto *body = getBody();
2029   if (!body->getArgument(0).getType().isIndex())
2030     return emitOpError(
2031         "expected body first argument to be an index argument for "
2032         "the induction variable");
2033 
2034   auto opNumResults = getNumResults();
2035   if (opNumResults == 0)
2036     return mlir::success();
2037 
2038   if (getFinalValue()) {
2039     if (getUnordered())
2040       return emitOpError("unordered loop has no final value");
2041     opNumResults--;
2042   }
2043   if (getNumIterOperands() != opNumResults)
2044     return emitOpError(
2045         "mismatch in number of loop-carried values and defined values");
2046   if (getNumRegionIterArgs() != opNumResults)
2047     return emitOpError(
2048         "mismatch in number of basic block args and defined values");
2049   auto iterOperands = getIterOperands();
2050   auto iterArgs = getRegionIterArgs();
2051   auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
2052   unsigned i = 0u;
2053   for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
2054     if (std::get<0>(e).getType() != std::get<2>(e).getType())
2055       return emitOpError() << "types mismatch between " << i
2056                            << "th iter operand and defined value";
2057     if (std::get<1>(e).getType() != std::get<2>(e).getType())
2058       return emitOpError() << "types mismatch between " << i
2059                            << "th iter region arg and defined value";
2060 
2061     i++;
2062   }
2063   return mlir::success();
2064 }
2065 
2066 void fir::DoLoopOp::print(mlir::OpAsmPrinter &p) {
2067   bool printBlockTerminators = false;
2068   p << ' ' << getInductionVar() << " = " << getLowerBound() << " to "
2069     << getUpperBound() << " step " << getStep();
2070   if (getUnordered())
2071     p << " unordered";
2072   if (hasIterOperands()) {
2073     p << " iter_args(";
2074     auto regionArgs = getRegionIterArgs();
2075     auto operands = getIterOperands();
2076     llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
2077       p << std::get<0>(it) << " = " << std::get<1>(it);
2078     });
2079     p << ") -> (" << getResultTypes() << ')';
2080     printBlockTerminators = true;
2081   } else if (getFinalValue()) {
2082     p << " -> " << getResultTypes();
2083     printBlockTerminators = true;
2084   }
2085   p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
2086                                      {"unordered", "finalValue"});
2087   p << ' ';
2088   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
2089                 printBlockTerminators);
2090 }
2091 
2092 mlir::Region &fir::DoLoopOp::getLoopBody() { return getRegion(); }
2093 
2094 /// Translate a value passed as an iter_arg to the corresponding block
2095 /// argument in the body of the loop.
2096 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
2097   for (auto i : llvm::enumerate(getInitArgs()))
2098     if (iterArg == i.value())
2099       return getRegion().front().getArgument(i.index() + 1);
2100   return {};
2101 }
2102 
2103 /// Translate the result vector (by index number) to the corresponding value
2104 /// to the `fir.result` Op.
2105 void fir::DoLoopOp::resultToSourceOps(
2106     llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
2107   auto oper = getFinalValue() ? resultNum + 1 : resultNum;
2108   auto *term = getRegion().front().getTerminator();
2109   if (oper < term->getNumOperands())
2110     results.push_back(term->getOperand(oper));
2111 }
2112 
2113 /// Translate the block argument (by index number) to the corresponding value
2114 /// passed as an iter_arg to the parent DoLoopOp.
2115 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
2116   if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
2117     return getInitArgs()[blockArgNum - 1];
2118   return {};
2119 }
2120 
2121 //===----------------------------------------------------------------------===//
2122 // DTEntryOp
2123 //===----------------------------------------------------------------------===//
2124 
2125 mlir::ParseResult fir::DTEntryOp::parse(mlir::OpAsmParser &parser,
2126                                         mlir::OperationState &result) {
2127   llvm::StringRef methodName;
2128   // allow `methodName` or `"methodName"`
2129   if (failed(parser.parseOptionalKeyword(&methodName))) {
2130     mlir::StringAttr methodAttr;
2131     if (parser.parseAttribute(methodAttr,
2132                               fir::DTEntryOp::getMethodAttrNameStr(),
2133                               result.attributes))
2134       return mlir::failure();
2135   } else {
2136     result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(),
2137                         parser.getBuilder().getStringAttr(methodName));
2138   }
2139   mlir::SymbolRefAttr calleeAttr;
2140   if (parser.parseComma() ||
2141       parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(),
2142                             result.attributes))
2143     return mlir::failure();
2144   return mlir::success();
2145 }
2146 
2147 void fir::DTEntryOp::print(mlir::OpAsmPrinter &p) {
2148   p << ' ' << getMethodAttr() << ", " << getProcAttr();
2149 }
2150 
2151 //===----------------------------------------------------------------------===//
2152 // ReboxOp
2153 //===----------------------------------------------------------------------===//
2154 
2155 /// Get the scalar type related to a fir.box type.
2156 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
2157 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
2158   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2159   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2160     return seqTy.getEleTy();
2161   return eleTy;
2162 }
2163 
2164 /// Get the rank from a !fir.box type
2165 static unsigned getBoxRank(mlir::Type boxTy) {
2166   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2167   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2168     return seqTy.getDimension();
2169   return 0;
2170 }
2171 
2172 /// Test if \p t1 and \p t2 are compatible character types (if they can
2173 /// represent the same type at runtime).
2174 static bool areCompatibleCharacterTypes(mlir::Type t1, mlir::Type t2) {
2175   auto c1 = t1.dyn_cast<fir::CharacterType>();
2176   auto c2 = t2.dyn_cast<fir::CharacterType>();
2177   if (!c1 || !c2)
2178     return false;
2179   if (c1.hasDynamicLen() || c2.hasDynamicLen())
2180     return true;
2181   return c1.getLen() == c2.getLen();
2182 }
2183 
2184 mlir::LogicalResult fir::ReboxOp::verify() {
2185   auto inputBoxTy = getBox().getType();
2186   if (fir::isa_unknown_size_box(inputBoxTy))
2187     return emitOpError("box operand must not have unknown rank or type");
2188   auto outBoxTy = getType();
2189   if (fir::isa_unknown_size_box(outBoxTy))
2190     return emitOpError("result type must not have unknown rank or type");
2191   auto inputRank = getBoxRank(inputBoxTy);
2192   auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
2193   auto outRank = getBoxRank(outBoxTy);
2194   auto outEleTy = getBoxScalarEleTy(outBoxTy);
2195 
2196   if (auto sliceVal = getSlice()) {
2197     // Slicing case
2198     if (sliceVal.getType().cast<fir::SliceType>().getRank() != inputRank)
2199       return emitOpError("slice operand rank must match box operand rank");
2200     if (auto shapeVal = getShape()) {
2201       if (auto shiftTy = shapeVal.getType().dyn_cast<fir::ShiftType>()) {
2202         if (shiftTy.getRank() != inputRank)
2203           return emitOpError("shape operand and input box ranks must match "
2204                              "when there is a slice");
2205       } else {
2206         return emitOpError("shape operand must absent or be a fir.shift "
2207                            "when there is a slice");
2208       }
2209     }
2210     if (auto sliceOp = sliceVal.getDefiningOp()) {
2211       auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
2212       if (slicedRank != outRank)
2213         return emitOpError("result type rank and rank after applying slice "
2214                            "operand must match");
2215     }
2216   } else {
2217     // Reshaping case
2218     unsigned shapeRank = inputRank;
2219     if (auto shapeVal = getShape()) {
2220       auto ty = shapeVal.getType();
2221       if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
2222         shapeRank = shapeTy.getRank();
2223       } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
2224         shapeRank = shapeShiftTy.getRank();
2225       } else {
2226         auto shiftTy = ty.cast<fir::ShiftType>();
2227         shapeRank = shiftTy.getRank();
2228         if (shapeRank != inputRank)
2229           return emitOpError("shape operand and input box ranks must match "
2230                              "when the shape is a fir.shift");
2231       }
2232     }
2233     if (shapeRank != outRank)
2234       return emitOpError("result type and shape operand ranks must match");
2235   }
2236 
2237   if (inputEleTy != outEleTy) {
2238     // TODO: check that outBoxTy is a parent type of inputBoxTy for derived
2239     // types.
2240     // Character input and output types with constant length may be different if
2241     // there is a substring in the slice, otherwise, they must match. If any of
2242     // the types is a character with dynamic length, the other type can be any
2243     // character type.
2244     const bool typeCanMismatch =
2245         inputEleTy.isa<fir::RecordType>() ||
2246         (getSlice() && inputEleTy.isa<fir::CharacterType>()) ||
2247         areCompatibleCharacterTypes(inputEleTy, outEleTy);
2248     if (!typeCanMismatch)
2249       return emitOpError(
2250           "op input and output element types must match for intrinsic types");
2251   }
2252   return mlir::success();
2253 }
2254 
2255 //===----------------------------------------------------------------------===//
2256 // ResultOp
2257 //===----------------------------------------------------------------------===//
2258 
2259 mlir::LogicalResult fir::ResultOp::verify() {
2260   auto *parentOp = (*this)->getParentOp();
2261   auto results = parentOp->getResults();
2262   auto operands = (*this)->getOperands();
2263 
2264   if (parentOp->getNumResults() != getNumOperands())
2265     return emitOpError() << "parent of result must have same arity";
2266   for (auto e : llvm::zip(results, operands))
2267     if (std::get<0>(e).getType() != std::get<1>(e).getType())
2268       return emitOpError() << "types mismatch between result op and its parent";
2269   return mlir::success();
2270 }
2271 
2272 //===----------------------------------------------------------------------===//
2273 // SaveResultOp
2274 //===----------------------------------------------------------------------===//
2275 
2276 mlir::LogicalResult fir::SaveResultOp::verify() {
2277   auto resultType = getValue().getType();
2278   if (resultType != fir::dyn_cast_ptrEleTy(getMemref().getType()))
2279     return emitOpError("value type must match memory reference type");
2280   if (fir::isa_unknown_size_box(resultType))
2281     return emitOpError("cannot save !fir.box of unknown rank or type");
2282 
2283   if (resultType.isa<fir::BoxType>()) {
2284     if (getShape() || !getTypeparams().empty())
2285       return emitOpError(
2286           "must not have shape or length operands if the value is a fir.box");
2287     return mlir::success();
2288   }
2289 
2290   // fir.record or fir.array case.
2291   unsigned shapeTyRank = 0;
2292   if (auto shapeVal = getShape()) {
2293     auto shapeTy = shapeVal.getType();
2294     if (auto s = shapeTy.dyn_cast<fir::ShapeType>())
2295       shapeTyRank = s.getRank();
2296     else
2297       shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank();
2298   }
2299 
2300   auto eleTy = resultType;
2301   if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) {
2302     if (seqTy.getDimension() != shapeTyRank)
2303       emitOpError("shape operand must be provided and have the value rank "
2304                   "when the value is a fir.array");
2305     eleTy = seqTy.getEleTy();
2306   } else {
2307     if (shapeTyRank != 0)
2308       emitOpError(
2309           "shape operand should only be provided if the value is a fir.array");
2310   }
2311 
2312   if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
2313     if (recTy.getNumLenParams() != getTypeparams().size())
2314       emitOpError("length parameters number must match with the value type "
2315                   "length parameters");
2316   } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
2317     if (getTypeparams().size() > 1)
2318       emitOpError("no more than one length parameter must be provided for "
2319                   "character value");
2320   } else {
2321     if (!getTypeparams().empty())
2322       emitOpError("length parameters must not be provided for this value type");
2323   }
2324 
2325   return mlir::success();
2326 }
2327 
2328 //===----------------------------------------------------------------------===//
2329 // IntegralSwitchTerminator
2330 //===----------------------------------------------------------------------===//
2331 static constexpr llvm::StringRef getCompareOffsetAttr() {
2332   return "compare_operand_offsets";
2333 }
2334 
2335 static constexpr llvm::StringRef getTargetOffsetAttr() {
2336   return "target_operand_offsets";
2337 }
2338 
2339 template <typename OpT>
2340 static mlir::LogicalResult verifyIntegralSwitchTerminator(OpT op) {
2341   if (!op.getSelector()
2342            .getType()
2343            .template isa<mlir::IntegerType, mlir::IndexType,
2344                          fir::IntegerType>())
2345     return op.emitOpError("must be an integer");
2346   auto cases =
2347       op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
2348   auto count = op.getNumDest();
2349   if (count == 0)
2350     return op.emitOpError("must have at least one successor");
2351   if (op.getNumConditions() != count)
2352     return op.emitOpError("number of cases and targets don't match");
2353   if (op.targetOffsetSize() != count)
2354     return op.emitOpError("incorrect number of successor operand groups");
2355   for (decltype(count) i = 0; i != count; ++i) {
2356     if (!cases[i].template isa<mlir::IntegerAttr, mlir::UnitAttr>())
2357       return op.emitOpError("invalid case alternative");
2358   }
2359   return mlir::success();
2360 }
2361 
2362 static mlir::ParseResult parseIntegralSwitchTerminator(
2363     mlir::OpAsmParser &parser, mlir::OperationState &result,
2364     llvm::StringRef casesAttr, llvm::StringRef operandSegmentAttr) {
2365   mlir::OpAsmParser::UnresolvedOperand selector;
2366   mlir::Type type;
2367   if (fir::parseSelector(parser, result, selector, type))
2368     return mlir::failure();
2369 
2370   llvm::SmallVector<mlir::Attribute> ivalues;
2371   llvm::SmallVector<mlir::Block *> dests;
2372   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2373   while (true) {
2374     mlir::Attribute ivalue; // Integer or Unit
2375     mlir::Block *dest;
2376     llvm::SmallVector<mlir::Value> destArg;
2377     mlir::NamedAttrList temp;
2378     if (parser.parseAttribute(ivalue, "i", temp) || parser.parseComma() ||
2379         parser.parseSuccessorAndUseList(dest, destArg))
2380       return mlir::failure();
2381     ivalues.push_back(ivalue);
2382     dests.push_back(dest);
2383     destArgs.push_back(destArg);
2384     if (!parser.parseOptionalRSquare())
2385       break;
2386     if (parser.parseComma())
2387       return mlir::failure();
2388   }
2389   auto &bld = parser.getBuilder();
2390   result.addAttribute(casesAttr, bld.getArrayAttr(ivalues));
2391   llvm::SmallVector<int32_t> argOffs;
2392   int32_t sumArgs = 0;
2393   const auto count = dests.size();
2394   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2395     result.addSuccessors(dests[i]);
2396     result.addOperands(destArgs[i]);
2397     auto argSize = destArgs[i].size();
2398     argOffs.push_back(argSize);
2399     sumArgs += argSize;
2400   }
2401   result.addAttribute(operandSegmentAttr,
2402                       bld.getI32VectorAttr({1, 0, sumArgs}));
2403   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2404   return mlir::success();
2405 }
2406 
2407 template <typename OpT>
2408 static void printIntegralSwitchTerminator(OpT op, mlir::OpAsmPrinter &p) {
2409   p << ' ';
2410   p.printOperand(op.getSelector());
2411   p << " : " << op.getSelector().getType() << " [";
2412   auto cases =
2413       op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
2414   auto count = op.getNumConditions();
2415   for (decltype(count) i = 0; i != count; ++i) {
2416     if (i)
2417       p << ", ";
2418     auto &attr = cases[i];
2419     if (auto intAttr = attr.template dyn_cast_or_null<mlir::IntegerAttr>())
2420       p << intAttr.getValue();
2421     else
2422       p.printAttribute(attr);
2423     p << ", ";
2424     op.printSuccessorAtIndex(p, i);
2425   }
2426   p << ']';
2427   p.printOptionalAttrDict(
2428       op->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(),
2429                        getTargetOffsetAttr(), op.getOperandSegmentSizeAttr()});
2430 }
2431 
2432 //===----------------------------------------------------------------------===//
2433 // SelectOp
2434 //===----------------------------------------------------------------------===//
2435 
2436 mlir::LogicalResult fir::SelectOp::verify() {
2437   return verifyIntegralSwitchTerminator(*this);
2438 }
2439 
2440 mlir::ParseResult fir::SelectOp::parse(mlir::OpAsmParser &parser,
2441                                        mlir::OperationState &result) {
2442   return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
2443                                        getOperandSegmentSizeAttr());
2444 }
2445 
2446 void fir::SelectOp::print(mlir::OpAsmPrinter &p) {
2447   printIntegralSwitchTerminator(*this, p);
2448 }
2449 
2450 template <typename A, typename... AdditionalArgs>
2451 static A getSubOperands(unsigned pos, A allArgs,
2452                         mlir::DenseIntElementsAttr ranges,
2453                         AdditionalArgs &&...additionalArgs) {
2454   unsigned start = 0;
2455   for (unsigned i = 0; i < pos; ++i)
2456     start += (*(ranges.begin() + i)).getZExtValue();
2457   return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
2458                        std::forward<AdditionalArgs>(additionalArgs)...);
2459 }
2460 
2461 static mlir::MutableOperandRange
2462 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
2463                             llvm::StringRef offsetAttr) {
2464   mlir::Operation *owner = operands.getOwner();
2465   mlir::NamedAttribute targetOffsetAttr =
2466       *owner->getAttrDictionary().getNamed(offsetAttr);
2467   return getSubOperands(
2468       pos, operands,
2469       targetOffsetAttr.getValue().cast<mlir::DenseIntElementsAttr>(),
2470       mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
2471 }
2472 
2473 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
2474   return attr.getNumElements();
2475 }
2476 
2477 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
2478   return {};
2479 }
2480 
2481 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2482 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2483   return {};
2484 }
2485 
2486 mlir::SuccessorOperands fir::SelectOp::getSuccessorOperands(unsigned oper) {
2487   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2488       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2489 }
2490 
2491 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2492 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2493                                     unsigned oper) {
2494   auto a =
2495       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2496   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2497       getOperandSegmentSizeAttr());
2498   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2499 }
2500 
2501 llvm::Optional<mlir::ValueRange>
2502 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) {
2503   auto a =
2504       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2505   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2506       getOperandSegmentSizeAttr());
2507   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2508 }
2509 
2510 unsigned fir::SelectOp::targetOffsetSize() {
2511   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2512       getTargetOffsetAttr()));
2513 }
2514 
2515 //===----------------------------------------------------------------------===//
2516 // SelectCaseOp
2517 //===----------------------------------------------------------------------===//
2518 
2519 llvm::Optional<mlir::OperandRange>
2520 fir::SelectCaseOp::getCompareOperands(unsigned cond) {
2521   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2522       getCompareOffsetAttr());
2523   return {getSubOperands(cond, getCompareArgs(), a)};
2524 }
2525 
2526 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2527 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands,
2528                                       unsigned cond) {
2529   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2530       getCompareOffsetAttr());
2531   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2532       getOperandSegmentSizeAttr());
2533   return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2534 }
2535 
2536 llvm::Optional<mlir::ValueRange>
2537 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands,
2538                                       unsigned cond) {
2539   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2540       getCompareOffsetAttr());
2541   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2542       getOperandSegmentSizeAttr());
2543   return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2544 }
2545 
2546 mlir::SuccessorOperands fir::SelectCaseOp::getSuccessorOperands(unsigned oper) {
2547   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2548       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2549 }
2550 
2551 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2552 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2553                                         unsigned oper) {
2554   auto a =
2555       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2556   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2557       getOperandSegmentSizeAttr());
2558   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2559 }
2560 
2561 llvm::Optional<mlir::ValueRange>
2562 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands,
2563                                         unsigned oper) {
2564   auto a =
2565       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2566   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2567       getOperandSegmentSizeAttr());
2568   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2569 }
2570 
2571 // parser for fir.select_case Op
2572 mlir::ParseResult fir::SelectCaseOp::parse(mlir::OpAsmParser &parser,
2573                                            mlir::OperationState &result) {
2574   mlir::OpAsmParser::UnresolvedOperand selector;
2575   mlir::Type type;
2576   if (fir::parseSelector(parser, result, selector, type))
2577     return mlir::failure();
2578 
2579   llvm::SmallVector<mlir::Attribute> attrs;
2580   llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> opers;
2581   llvm::SmallVector<mlir::Block *> dests;
2582   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2583   llvm::SmallVector<std::int32_t> argOffs;
2584   std::int32_t offSize = 0;
2585   while (true) {
2586     mlir::Attribute attr;
2587     mlir::Block *dest;
2588     llvm::SmallVector<mlir::Value> destArg;
2589     mlir::NamedAttrList temp;
2590     if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) ||
2591         parser.parseComma())
2592       return mlir::failure();
2593     attrs.push_back(attr);
2594     if (attr.dyn_cast_or_null<mlir::UnitAttr>()) {
2595       argOffs.push_back(0);
2596     } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) {
2597       mlir::OpAsmParser::UnresolvedOperand oper1;
2598       mlir::OpAsmParser::UnresolvedOperand oper2;
2599       if (parser.parseOperand(oper1) || parser.parseComma() ||
2600           parser.parseOperand(oper2) || parser.parseComma())
2601         return mlir::failure();
2602       opers.push_back(oper1);
2603       opers.push_back(oper2);
2604       argOffs.push_back(2);
2605       offSize += 2;
2606     } else {
2607       mlir::OpAsmParser::UnresolvedOperand oper;
2608       if (parser.parseOperand(oper) || parser.parseComma())
2609         return mlir::failure();
2610       opers.push_back(oper);
2611       argOffs.push_back(1);
2612       ++offSize;
2613     }
2614     if (parser.parseSuccessorAndUseList(dest, destArg))
2615       return mlir::failure();
2616     dests.push_back(dest);
2617     destArgs.push_back(destArg);
2618     if (mlir::succeeded(parser.parseOptionalRSquare()))
2619       break;
2620     if (parser.parseComma())
2621       return mlir::failure();
2622   }
2623   result.addAttribute(fir::SelectCaseOp::getCasesAttr(),
2624                       parser.getBuilder().getArrayAttr(attrs));
2625   if (parser.resolveOperands(opers, type, result.operands))
2626     return mlir::failure();
2627   llvm::SmallVector<int32_t> targOffs;
2628   int32_t toffSize = 0;
2629   const auto count = dests.size();
2630   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2631     result.addSuccessors(dests[i]);
2632     result.addOperands(destArgs[i]);
2633     auto argSize = destArgs[i].size();
2634     targOffs.push_back(argSize);
2635     toffSize += argSize;
2636   }
2637   auto &bld = parser.getBuilder();
2638   result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(),
2639                       bld.getI32VectorAttr({1, offSize, toffSize}));
2640   result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs));
2641   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs));
2642   return mlir::success();
2643 }
2644 
2645 void fir::SelectCaseOp::print(mlir::OpAsmPrinter &p) {
2646   p << ' ';
2647   p.printOperand(getSelector());
2648   p << " : " << getSelector().getType() << " [";
2649   auto cases =
2650       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2651   auto count = getNumConditions();
2652   for (decltype(count) i = 0; i != count; ++i) {
2653     if (i)
2654       p << ", ";
2655     p << cases[i] << ", ";
2656     if (!cases[i].isa<mlir::UnitAttr>()) {
2657       auto caseArgs = *getCompareOperands(i);
2658       p.printOperand(*caseArgs.begin());
2659       p << ", ";
2660       if (cases[i].isa<fir::ClosedIntervalAttr>()) {
2661         p.printOperand(*(++caseArgs.begin()));
2662         p << ", ";
2663       }
2664     }
2665     printSuccessorAtIndex(p, i);
2666   }
2667   p << ']';
2668   p.printOptionalAttrDict(getOperation()->getAttrs(),
2669                           {getCasesAttr(), getCompareOffsetAttr(),
2670                            getTargetOffsetAttr(), getOperandSegmentSizeAttr()});
2671 }
2672 
2673 unsigned fir::SelectCaseOp::compareOffsetSize() {
2674   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2675       getCompareOffsetAttr()));
2676 }
2677 
2678 unsigned fir::SelectCaseOp::targetOffsetSize() {
2679   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2680       getTargetOffsetAttr()));
2681 }
2682 
2683 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2684                               mlir::OperationState &result,
2685                               mlir::Value selector,
2686                               llvm::ArrayRef<mlir::Attribute> compareAttrs,
2687                               llvm::ArrayRef<mlir::ValueRange> cmpOperands,
2688                               llvm::ArrayRef<mlir::Block *> destinations,
2689                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2690                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2691   result.addOperands(selector);
2692   result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs));
2693   llvm::SmallVector<int32_t> operOffs;
2694   int32_t operSize = 0;
2695   for (auto attr : compareAttrs) {
2696     if (attr.isa<fir::ClosedIntervalAttr>()) {
2697       operOffs.push_back(2);
2698       operSize += 2;
2699     } else if (attr.isa<mlir::UnitAttr>()) {
2700       operOffs.push_back(0);
2701     } else {
2702       operOffs.push_back(1);
2703       ++operSize;
2704     }
2705   }
2706   for (auto ops : cmpOperands)
2707     result.addOperands(ops);
2708   result.addAttribute(getCompareOffsetAttr(),
2709                       builder.getI32VectorAttr(operOffs));
2710   const auto count = destinations.size();
2711   for (auto d : destinations)
2712     result.addSuccessors(d);
2713   const auto opCount = destOperands.size();
2714   llvm::SmallVector<std::int32_t> argOffs;
2715   std::int32_t sumArgs = 0;
2716   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2717     if (i < opCount) {
2718       result.addOperands(destOperands[i]);
2719       const auto argSz = destOperands[i].size();
2720       argOffs.push_back(argSz);
2721       sumArgs += argSz;
2722     } else {
2723       argOffs.push_back(0);
2724     }
2725   }
2726   result.addAttribute(getOperandSegmentSizeAttr(),
2727                       builder.getI32VectorAttr({1, operSize, sumArgs}));
2728   result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2729   result.addAttributes(attributes);
2730 }
2731 
2732 /// This builder has a slightly simplified interface in that the list of
2733 /// operands need not be partitioned by the builder. Instead the operands are
2734 /// partitioned here, before being passed to the default builder. This
2735 /// partitioning is unchecked, so can go awry on bad input.
2736 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2737                               mlir::OperationState &result,
2738                               mlir::Value selector,
2739                               llvm::ArrayRef<mlir::Attribute> compareAttrs,
2740                               llvm::ArrayRef<mlir::Value> cmpOpList,
2741                               llvm::ArrayRef<mlir::Block *> destinations,
2742                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2743                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2744   llvm::SmallVector<mlir::ValueRange> cmpOpers;
2745   auto iter = cmpOpList.begin();
2746   for (auto &attr : compareAttrs) {
2747     if (attr.isa<fir::ClosedIntervalAttr>()) {
2748       cmpOpers.push_back(mlir::ValueRange({iter, iter + 2}));
2749       iter += 2;
2750     } else if (attr.isa<mlir::UnitAttr>()) {
2751       cmpOpers.push_back(mlir::ValueRange{});
2752     } else {
2753       cmpOpers.push_back(mlir::ValueRange({iter, iter + 1}));
2754       ++iter;
2755     }
2756   }
2757   build(builder, result, selector, compareAttrs, cmpOpers, destinations,
2758         destOperands, attributes);
2759 }
2760 
2761 mlir::LogicalResult fir::SelectCaseOp::verify() {
2762   if (!getSelector()
2763            .getType()
2764            .isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType,
2765                 fir::LogicalType, fir::CharacterType>())
2766     return emitOpError("must be an integer, character, or logical");
2767   auto cases =
2768       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2769   auto count = getNumDest();
2770   if (count == 0)
2771     return emitOpError("must have at least one successor");
2772   if (getNumConditions() != count)
2773     return emitOpError("number of conditions and successors don't match");
2774   if (compareOffsetSize() != count)
2775     return emitOpError("incorrect number of compare operand groups");
2776   if (targetOffsetSize() != count)
2777     return emitOpError("incorrect number of successor operand groups");
2778   for (decltype(count) i = 0; i != count; ++i) {
2779     auto &attr = cases[i];
2780     if (!(attr.isa<fir::PointIntervalAttr>() ||
2781           attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() ||
2782           attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>()))
2783       return emitOpError("incorrect select case attribute type");
2784   }
2785   return mlir::success();
2786 }
2787 
2788 //===----------------------------------------------------------------------===//
2789 // SelectRankOp
2790 //===----------------------------------------------------------------------===//
2791 
2792 mlir::LogicalResult fir::SelectRankOp::verify() {
2793   return verifyIntegralSwitchTerminator(*this);
2794 }
2795 
2796 mlir::ParseResult fir::SelectRankOp::parse(mlir::OpAsmParser &parser,
2797                                            mlir::OperationState &result) {
2798   return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
2799                                        getOperandSegmentSizeAttr());
2800 }
2801 
2802 void fir::SelectRankOp::print(mlir::OpAsmPrinter &p) {
2803   printIntegralSwitchTerminator(*this, p);
2804 }
2805 
2806 llvm::Optional<mlir::OperandRange>
2807 fir::SelectRankOp::getCompareOperands(unsigned) {
2808   return {};
2809 }
2810 
2811 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2812 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2813   return {};
2814 }
2815 
2816 mlir::SuccessorOperands fir::SelectRankOp::getSuccessorOperands(unsigned oper) {
2817   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2818       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2819 }
2820 
2821 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2822 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2823                                         unsigned oper) {
2824   auto a =
2825       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2826   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2827       getOperandSegmentSizeAttr());
2828   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2829 }
2830 
2831 llvm::Optional<mlir::ValueRange>
2832 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands,
2833                                         unsigned oper) {
2834   auto a =
2835       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2836   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2837       getOperandSegmentSizeAttr());
2838   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2839 }
2840 
2841 unsigned fir::SelectRankOp::targetOffsetSize() {
2842   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2843       getTargetOffsetAttr()));
2844 }
2845 
2846 //===----------------------------------------------------------------------===//
2847 // SelectTypeOp
2848 //===----------------------------------------------------------------------===//
2849 
2850 llvm::Optional<mlir::OperandRange>
2851 fir::SelectTypeOp::getCompareOperands(unsigned) {
2852   return {};
2853 }
2854 
2855 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2856 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2857   return {};
2858 }
2859 
2860 mlir::SuccessorOperands fir::SelectTypeOp::getSuccessorOperands(unsigned oper) {
2861   return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2862       oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2863 }
2864 
2865 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2866 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2867                                         unsigned oper) {
2868   auto a =
2869       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2870   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2871       getOperandSegmentSizeAttr());
2872   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2873 }
2874 
2875 mlir::ParseResult fir::SelectTypeOp::parse(mlir::OpAsmParser &parser,
2876                                            mlir::OperationState &result) {
2877   mlir::OpAsmParser::UnresolvedOperand selector;
2878   mlir::Type type;
2879   if (fir::parseSelector(parser, result, selector, type))
2880     return mlir::failure();
2881 
2882   llvm::SmallVector<mlir::Attribute> attrs;
2883   llvm::SmallVector<mlir::Block *> dests;
2884   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2885   while (true) {
2886     mlir::Attribute attr;
2887     mlir::Block *dest;
2888     llvm::SmallVector<mlir::Value> destArg;
2889     mlir::NamedAttrList temp;
2890     if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() ||
2891         parser.parseSuccessorAndUseList(dest, destArg))
2892       return mlir::failure();
2893     attrs.push_back(attr);
2894     dests.push_back(dest);
2895     destArgs.push_back(destArg);
2896     if (mlir::succeeded(parser.parseOptionalRSquare()))
2897       break;
2898     if (parser.parseComma())
2899       return mlir::failure();
2900   }
2901   auto &bld = parser.getBuilder();
2902   result.addAttribute(fir::SelectTypeOp::getCasesAttr(),
2903                       bld.getArrayAttr(attrs));
2904   llvm::SmallVector<int32_t> argOffs;
2905   int32_t offSize = 0;
2906   const auto count = dests.size();
2907   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2908     result.addSuccessors(dests[i]);
2909     result.addOperands(destArgs[i]);
2910     auto argSize = destArgs[i].size();
2911     argOffs.push_back(argSize);
2912     offSize += argSize;
2913   }
2914   result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(),
2915                       bld.getI32VectorAttr({1, 0, offSize}));
2916   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2917   return mlir::success();
2918 }
2919 
2920 unsigned fir::SelectTypeOp::targetOffsetSize() {
2921   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2922       getTargetOffsetAttr()));
2923 }
2924 
2925 void fir::SelectTypeOp::print(mlir::OpAsmPrinter &p) {
2926   p << ' ';
2927   p.printOperand(getSelector());
2928   p << " : " << getSelector().getType() << " [";
2929   auto cases =
2930       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2931   auto count = getNumConditions();
2932   for (decltype(count) i = 0; i != count; ++i) {
2933     if (i)
2934       p << ", ";
2935     p << cases[i] << ", ";
2936     printSuccessorAtIndex(p, i);
2937   }
2938   p << ']';
2939   p.printOptionalAttrDict(getOperation()->getAttrs(),
2940                           {getCasesAttr(), getCompareOffsetAttr(),
2941                            getTargetOffsetAttr(),
2942                            fir::SelectTypeOp::getOperandSegmentSizeAttr()});
2943 }
2944 
2945 mlir::LogicalResult fir::SelectTypeOp::verify() {
2946   if (!(getSelector().getType().isa<fir::BoxType>()))
2947     return emitOpError("must be a boxed type");
2948   auto cases =
2949       getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2950   auto count = getNumDest();
2951   if (count == 0)
2952     return emitOpError("must have at least one successor");
2953   if (getNumConditions() != count)
2954     return emitOpError("number of conditions and successors don't match");
2955   if (targetOffsetSize() != count)
2956     return emitOpError("incorrect number of successor operand groups");
2957   for (decltype(count) i = 0; i != count; ++i) {
2958     auto &attr = cases[i];
2959     if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() ||
2960           attr.isa<mlir::UnitAttr>()))
2961       return emitOpError("invalid type-case alternative");
2962   }
2963   return mlir::success();
2964 }
2965 
2966 void fir::SelectTypeOp::build(mlir::OpBuilder &builder,
2967                               mlir::OperationState &result,
2968                               mlir::Value selector,
2969                               llvm::ArrayRef<mlir::Attribute> typeOperands,
2970                               llvm::ArrayRef<mlir::Block *> destinations,
2971                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2972                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2973   result.addOperands(selector);
2974   result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands));
2975   const auto count = destinations.size();
2976   for (mlir::Block *dest : destinations)
2977     result.addSuccessors(dest);
2978   const auto opCount = destOperands.size();
2979   llvm::SmallVector<int32_t> argOffs;
2980   int32_t sumArgs = 0;
2981   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2982     if (i < opCount) {
2983       result.addOperands(destOperands[i]);
2984       const auto argSz = destOperands[i].size();
2985       argOffs.push_back(argSz);
2986       sumArgs += argSz;
2987     } else {
2988       argOffs.push_back(0);
2989     }
2990   }
2991   result.addAttribute(getOperandSegmentSizeAttr(),
2992                       builder.getI32VectorAttr({1, 0, sumArgs}));
2993   result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2994   result.addAttributes(attributes);
2995 }
2996 
2997 //===----------------------------------------------------------------------===//
2998 // ShapeOp
2999 //===----------------------------------------------------------------------===//
3000 
3001 mlir::LogicalResult fir::ShapeOp::verify() {
3002   auto size = getExtents().size();
3003   auto shapeTy = getType().dyn_cast<fir::ShapeType>();
3004   assert(shapeTy && "must be a shape type");
3005   if (shapeTy.getRank() != size)
3006     return emitOpError("shape type rank mismatch");
3007   return mlir::success();
3008 }
3009 
3010 //===----------------------------------------------------------------------===//
3011 // ShapeShiftOp
3012 //===----------------------------------------------------------------------===//
3013 
3014 mlir::LogicalResult fir::ShapeShiftOp::verify() {
3015   auto size = getPairs().size();
3016   if (size < 2 || size > 16 * 2)
3017     return emitOpError("incorrect number of args");
3018   if (size % 2 != 0)
3019     return emitOpError("requires a multiple of 2 args");
3020   auto shapeTy = getType().dyn_cast<fir::ShapeShiftType>();
3021   assert(shapeTy && "must be a shape shift type");
3022   if (shapeTy.getRank() * 2 != size)
3023     return emitOpError("shape type rank mismatch");
3024   return mlir::success();
3025 }
3026 
3027 //===----------------------------------------------------------------------===//
3028 // ShiftOp
3029 //===----------------------------------------------------------------------===//
3030 
3031 mlir::LogicalResult fir::ShiftOp::verify() {
3032   auto size = getOrigins().size();
3033   auto shiftTy = getType().dyn_cast<fir::ShiftType>();
3034   assert(shiftTy && "must be a shift type");
3035   if (shiftTy.getRank() != size)
3036     return emitOpError("shift type rank mismatch");
3037   return mlir::success();
3038 }
3039 
3040 //===----------------------------------------------------------------------===//
3041 // SliceOp
3042 //===----------------------------------------------------------------------===//
3043 
3044 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3045                          mlir::ValueRange trips, mlir::ValueRange path,
3046                          mlir::ValueRange substr) {
3047   const auto rank = trips.size() / 3;
3048   auto sliceTy = fir::SliceType::get(builder.getContext(), rank);
3049   build(builder, result, sliceTy, trips, path, substr);
3050 }
3051 
3052 /// Return the output rank of a slice op. The output rank must be between 1 and
3053 /// the rank of the array being sliced (inclusive).
3054 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) {
3055   unsigned rank = 0;
3056   if (!triples.empty()) {
3057     for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
3058       auto *op = triples[i].getDefiningOp();
3059       if (!mlir::isa_and_nonnull<fir::UndefOp>(op))
3060         ++rank;
3061     }
3062     assert(rank > 0);
3063   }
3064   return rank;
3065 }
3066 
3067 mlir::LogicalResult fir::SliceOp::verify() {
3068   auto size = getTriples().size();
3069   if (size < 3 || size > 16 * 3)
3070     return emitOpError("incorrect number of args for triple");
3071   if (size % 3 != 0)
3072     return emitOpError("requires a multiple of 3 args");
3073   auto sliceTy = getType().dyn_cast<fir::SliceType>();
3074   assert(sliceTy && "must be a slice type");
3075   if (sliceTy.getRank() * 3 != size)
3076     return emitOpError("slice type rank mismatch");
3077   return mlir::success();
3078 }
3079 
3080 //===----------------------------------------------------------------------===//
3081 // StoreOp
3082 //===----------------------------------------------------------------------===//
3083 
3084 mlir::Type fir::StoreOp::elementType(mlir::Type refType) {
3085   return fir::dyn_cast_ptrEleTy(refType);
3086 }
3087 
3088 mlir::ParseResult fir::StoreOp::parse(mlir::OpAsmParser &parser,
3089                                       mlir::OperationState &result) {
3090   mlir::Type type;
3091   mlir::OpAsmParser::UnresolvedOperand oper;
3092   mlir::OpAsmParser::UnresolvedOperand store;
3093   if (parser.parseOperand(oper) || parser.parseKeyword("to") ||
3094       parser.parseOperand(store) ||
3095       parser.parseOptionalAttrDict(result.attributes) ||
3096       parser.parseColonType(type) ||
3097       parser.resolveOperand(oper, fir::StoreOp::elementType(type),
3098                             result.operands) ||
3099       parser.resolveOperand(store, type, result.operands))
3100     return mlir::failure();
3101   return mlir::success();
3102 }
3103 
3104 void fir::StoreOp::print(mlir::OpAsmPrinter &p) {
3105   p << ' ';
3106   p.printOperand(getValue());
3107   p << " to ";
3108   p.printOperand(getMemref());
3109   p.printOptionalAttrDict(getOperation()->getAttrs(), {});
3110   p << " : " << getMemref().getType();
3111 }
3112 
3113 mlir::LogicalResult fir::StoreOp::verify() {
3114   if (getValue().getType() != fir::dyn_cast_ptrEleTy(getMemref().getType()))
3115     return emitOpError("store value type must match memory reference type");
3116   if (fir::isa_unknown_size_box(getValue().getType()))
3117     return emitOpError("cannot store !fir.box of unknown rank or type");
3118   return mlir::success();
3119 }
3120 
3121 //===----------------------------------------------------------------------===//
3122 // StringLitOp
3123 //===----------------------------------------------------------------------===//
3124 
3125 bool fir::StringLitOp::isWideValue() {
3126   auto eleTy = getType().cast<fir::SequenceType>().getEleTy();
3127   return eleTy.cast<fir::CharacterType>().getFKind() != 1;
3128 }
3129 
3130 static mlir::NamedAttribute
3131 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) {
3132   assert(v > 0);
3133   return builder.getNamedAttr(
3134       name, builder.getIntegerAttr(builder.getIntegerType(64), v));
3135 }
3136 
3137 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3138                              mlir::OperationState &result,
3139                              fir::CharacterType inType, llvm::StringRef val,
3140                              llvm::Optional<int64_t> len) {
3141   auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val));
3142   int64_t length = len ? *len : inType.getLen();
3143   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3144   result.addAttributes({valAttr, lenAttr});
3145   result.addTypes(inType);
3146 }
3147 
3148 template <typename C>
3149 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder,
3150                                           llvm::ArrayRef<C> xlist) {
3151   llvm::SmallVector<mlir::Attribute> attrs;
3152   auto ty = builder.getIntegerType(8 * sizeof(C));
3153   for (auto ch : xlist)
3154     attrs.push_back(builder.getIntegerAttr(ty, ch));
3155   return builder.getArrayAttr(attrs);
3156 }
3157 
3158 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3159                              mlir::OperationState &result,
3160                              fir::CharacterType inType,
3161                              llvm::ArrayRef<char> vlist,
3162                              llvm::Optional<std::int64_t> len) {
3163   auto valAttr =
3164       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3165   std::int64_t length = len ? *len : inType.getLen();
3166   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3167   result.addAttributes({valAttr, lenAttr});
3168   result.addTypes(inType);
3169 }
3170 
3171 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3172                              mlir::OperationState &result,
3173                              fir::CharacterType inType,
3174                              llvm::ArrayRef<char16_t> vlist,
3175                              llvm::Optional<std::int64_t> len) {
3176   auto valAttr =
3177       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3178   std::int64_t length = len ? *len : inType.getLen();
3179   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3180   result.addAttributes({valAttr, lenAttr});
3181   result.addTypes(inType);
3182 }
3183 
3184 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3185                              mlir::OperationState &result,
3186                              fir::CharacterType inType,
3187                              llvm::ArrayRef<char32_t> vlist,
3188                              llvm::Optional<std::int64_t> len) {
3189   auto valAttr =
3190       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3191   std::int64_t length = len ? *len : inType.getLen();
3192   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3193   result.addAttributes({valAttr, lenAttr});
3194   result.addTypes(inType);
3195 }
3196 
3197 mlir::ParseResult fir::StringLitOp::parse(mlir::OpAsmParser &parser,
3198                                           mlir::OperationState &result) {
3199   auto &builder = parser.getBuilder();
3200   mlir::Attribute val;
3201   mlir::NamedAttrList attrs;
3202   llvm::SMLoc trailingTypeLoc;
3203   if (parser.parseAttribute(val, "fake", attrs))
3204     return mlir::failure();
3205   if (auto v = val.dyn_cast<mlir::StringAttr>())
3206     result.attributes.push_back(
3207         builder.getNamedAttr(fir::StringLitOp::value(), v));
3208   else if (auto v = val.dyn_cast<mlir::ArrayAttr>())
3209     result.attributes.push_back(
3210         builder.getNamedAttr(fir::StringLitOp::xlist(), v));
3211   else
3212     return parser.emitError(parser.getCurrentLocation(),
3213                             "found an invalid constant");
3214   mlir::IntegerAttr sz;
3215   mlir::Type type;
3216   if (parser.parseLParen() ||
3217       parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) ||
3218       parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) ||
3219       parser.parseColonType(type))
3220     return mlir::failure();
3221   auto charTy = type.dyn_cast<fir::CharacterType>();
3222   if (!charTy)
3223     return parser.emitError(trailingTypeLoc, "must have character type");
3224   type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(),
3225                                  sz.getInt());
3226   if (!type || parser.addTypesToList(type, result.types))
3227     return mlir::failure();
3228   return mlir::success();
3229 }
3230 
3231 void fir::StringLitOp::print(mlir::OpAsmPrinter &p) {
3232   p << ' ' << getValue() << '(';
3233   p << getSize().cast<mlir::IntegerAttr>().getValue() << ") : ";
3234   p.printType(getType());
3235 }
3236 
3237 mlir::LogicalResult fir::StringLitOp::verify() {
3238   if (getSize().cast<mlir::IntegerAttr>().getValue().isNegative())
3239     return emitOpError("size must be non-negative");
3240   if (auto xl = getOperation()->getAttr(fir::StringLitOp::xlist())) {
3241     auto xList = xl.cast<mlir::ArrayAttr>();
3242     for (auto a : xList)
3243       if (!a.isa<mlir::IntegerAttr>())
3244         return emitOpError("values in list must be integers");
3245   }
3246   return mlir::success();
3247 }
3248 
3249 //===----------------------------------------------------------------------===//
3250 // UnboxProcOp
3251 //===----------------------------------------------------------------------===//
3252 
3253 mlir::LogicalResult fir::UnboxProcOp::verify() {
3254   if (auto eleTy = fir::dyn_cast_ptrEleTy(getRefTuple().getType()))
3255     if (eleTy.isa<mlir::TupleType>())
3256       return mlir::success();
3257   return emitOpError("second output argument has bad type");
3258 }
3259 
3260 //===----------------------------------------------------------------------===//
3261 // IfOp
3262 //===----------------------------------------------------------------------===//
3263 
3264 void fir::IfOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3265                       mlir::Value cond, bool withElseRegion) {
3266   build(builder, result, llvm::None, cond, withElseRegion);
3267 }
3268 
3269 void fir::IfOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3270                       mlir::TypeRange resultTypes, mlir::Value cond,
3271                       bool withElseRegion) {
3272   result.addOperands(cond);
3273   result.addTypes(resultTypes);
3274 
3275   mlir::Region *thenRegion = result.addRegion();
3276   thenRegion->push_back(new mlir::Block());
3277   if (resultTypes.empty())
3278     IfOp::ensureTerminator(*thenRegion, builder, result.location);
3279 
3280   mlir::Region *elseRegion = result.addRegion();
3281   if (withElseRegion) {
3282     elseRegion->push_back(new mlir::Block());
3283     if (resultTypes.empty())
3284       IfOp::ensureTerminator(*elseRegion, builder, result.location);
3285   }
3286 }
3287 
3288 mlir::ParseResult fir::IfOp::parse(mlir::OpAsmParser &parser,
3289                                    mlir::OperationState &result) {
3290   result.regions.reserve(2);
3291   mlir::Region *thenRegion = result.addRegion();
3292   mlir::Region *elseRegion = result.addRegion();
3293 
3294   auto &builder = parser.getBuilder();
3295   mlir::OpAsmParser::UnresolvedOperand cond;
3296   mlir::Type i1Type = builder.getIntegerType(1);
3297   if (parser.parseOperand(cond) ||
3298       parser.resolveOperand(cond, i1Type, result.operands))
3299     return mlir::failure();
3300 
3301   if (parser.parseOptionalArrowTypeList(result.types))
3302     return mlir::failure();
3303 
3304   if (parser.parseRegion(*thenRegion, {}, {}))
3305     return mlir::failure();
3306   fir::IfOp::ensureTerminator(*thenRegion, parser.getBuilder(),
3307                               result.location);
3308 
3309   if (mlir::succeeded(parser.parseOptionalKeyword("else"))) {
3310     if (parser.parseRegion(*elseRegion, {}, {}))
3311       return mlir::failure();
3312     fir::IfOp::ensureTerminator(*elseRegion, parser.getBuilder(),
3313                                 result.location);
3314   }
3315 
3316   // Parse the optional attribute list.
3317   if (parser.parseOptionalAttrDict(result.attributes))
3318     return mlir::failure();
3319   return mlir::success();
3320 }
3321 
3322 mlir::LogicalResult fir::IfOp::verify() {
3323   if (getNumResults() != 0 && getElseRegion().empty())
3324     return emitOpError("must have an else block if defining values");
3325 
3326   return mlir::success();
3327 }
3328 
3329 void fir::IfOp::print(mlir::OpAsmPrinter &p) {
3330   bool printBlockTerminators = false;
3331   p << ' ' << getCondition();
3332   if (!getResults().empty()) {
3333     p << " -> (" << getResultTypes() << ')';
3334     printBlockTerminators = true;
3335   }
3336   p << ' ';
3337   p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false,
3338                 printBlockTerminators);
3339 
3340   // Print the 'else' regions if it exists and has a block.
3341   auto &otherReg = getElseRegion();
3342   if (!otherReg.empty()) {
3343     p << " else ";
3344     p.printRegion(otherReg, /*printEntryBlockArgs=*/false,
3345                   printBlockTerminators);
3346   }
3347   p.printOptionalAttrDict((*this)->getAttrs());
3348 }
3349 
3350 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results,
3351                                   unsigned resultNum) {
3352   auto *term = getThenRegion().front().getTerminator();
3353   if (resultNum < term->getNumOperands())
3354     results.push_back(term->getOperand(resultNum));
3355   term = getElseRegion().front().getTerminator();
3356   if (resultNum < term->getNumOperands())
3357     results.push_back(term->getOperand(resultNum));
3358 }
3359 
3360 //===----------------------------------------------------------------------===//
3361 
3362 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) {
3363   if (attr.isa<mlir::UnitAttr, fir::ClosedIntervalAttr, fir::PointIntervalAttr,
3364                fir::LowerBoundAttr, fir::UpperBoundAttr>())
3365     return mlir::success();
3366   return mlir::failure();
3367 }
3368 
3369 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,
3370                                     unsigned dest) {
3371   unsigned o = 0;
3372   for (unsigned i = 0; i < dest; ++i) {
3373     auto &attr = cases[i];
3374     if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) {
3375       ++o;
3376       if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>())
3377         ++o;
3378     }
3379   }
3380   return o;
3381 }
3382 
3383 mlir::ParseResult
3384 fir::parseSelector(mlir::OpAsmParser &parser, mlir::OperationState &result,
3385                    mlir::OpAsmParser::UnresolvedOperand &selector,
3386                    mlir::Type &type) {
3387   if (parser.parseOperand(selector) || parser.parseColonType(type) ||
3388       parser.resolveOperand(selector, type, result.operands) ||
3389       parser.parseLSquare())
3390     return mlir::failure();
3391   return mlir::success();
3392 }
3393 
3394 mlir::func::FuncOp
3395 fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module,
3396                   llvm::StringRef name, mlir::FunctionType type,
3397                   llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3398   if (auto f = module.lookupSymbol<mlir::func::FuncOp>(name))
3399     return f;
3400   mlir::OpBuilder modBuilder(module.getBodyRegion());
3401   modBuilder.setInsertionPointToEnd(module.getBody());
3402   auto result = modBuilder.create<mlir::func::FuncOp>(loc, name, type, attrs);
3403   result.setVisibility(mlir::SymbolTable::Visibility::Private);
3404   return result;
3405 }
3406 
3407 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module,
3408                                   llvm::StringRef name, mlir::Type type,
3409                                   llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3410   if (auto g = module.lookupSymbol<fir::GlobalOp>(name))
3411     return g;
3412   mlir::OpBuilder modBuilder(module.getBodyRegion());
3413   auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs);
3414   result.setVisibility(mlir::SymbolTable::Visibility::Private);
3415   return result;
3416 }
3417 
3418 bool fir::hasHostAssociationArgument(mlir::func::FuncOp func) {
3419   if (auto allArgAttrs = func.getAllArgAttrs())
3420     for (auto attr : allArgAttrs)
3421       if (auto dict = attr.template dyn_cast_or_null<mlir::DictionaryAttr>())
3422         if (dict.get(fir::getHostAssocAttrName()))
3423           return true;
3424   return false;
3425 }
3426 
3427 bool fir::valueHasFirAttribute(mlir::Value value,
3428                                llvm::StringRef attributeName) {
3429   // If this is a fir.box that was loaded, the fir attributes will be on the
3430   // related fir.ref<fir.box> creation.
3431   if (value.getType().isa<fir::BoxType>())
3432     if (auto definingOp = value.getDefiningOp())
3433       if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp))
3434         value = loadOp.getMemref();
3435   // If this is a function argument, look in the argument attributes.
3436   if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
3437     if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock())
3438       if (auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(
3439               blockArg.getOwner()->getParentOp()))
3440         if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName))
3441           return true;
3442     return false;
3443   }
3444 
3445   if (auto definingOp = value.getDefiningOp()) {
3446     // If this is an allocated value, look at the allocation attributes.
3447     if (mlir::isa<fir::AllocMemOp>(definingOp) ||
3448         mlir::isa<AllocaOp>(definingOp))
3449       return definingOp->hasAttr(attributeName);
3450     // If this is an imported global, look at AddrOfOp and GlobalOp attributes.
3451     // Both operations are looked at because use/host associated variable (the
3452     // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate
3453     // entity (the globalOp) does not have them.
3454     if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) {
3455       if (addressOfOp->hasAttr(attributeName))
3456         return true;
3457       if (auto module = definingOp->getParentOfType<mlir::ModuleOp>())
3458         if (auto globalOp =
3459                 module.lookupSymbol<fir::GlobalOp>(addressOfOp.getSymbol()))
3460           return globalOp->hasAttr(attributeName);
3461     }
3462   }
3463   // TODO: Construct associated entities attributes. Decide where the fir
3464   // attributes must be placed/looked for in this case.
3465   return false;
3466 }
3467 
3468 bool fir::anyFuncArgsHaveAttr(mlir::func::FuncOp func, llvm::StringRef attr) {
3469   for (unsigned i = 0, end = func.getNumArguments(); i < end; ++i)
3470     if (func.getArgAttr(i, attr))
3471       return true;
3472   return false;
3473 }
3474 
3475 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) {
3476   for (auto i = path.begin(), end = path.end(); eleTy && i < end;) {
3477     eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy)
3478                 .Case<fir::RecordType>([&](fir::RecordType ty) {
3479                   if (auto *op = (*i++).getDefiningOp()) {
3480                     if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op))
3481                       return ty.getType(off.getFieldName());
3482                     if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3483                       return ty.getType(fir::toInt(off));
3484                   }
3485                   return mlir::Type{};
3486                 })
3487                 .Case<fir::SequenceType>([&](fir::SequenceType ty) {
3488                   bool valid = true;
3489                   const auto rank = ty.getDimension();
3490                   for (std::remove_const_t<decltype(rank)> ii = 0;
3491                        valid && ii < rank; ++ii)
3492                     valid = i < end && fir::isa_integer((*i++).getType());
3493                   return valid ? ty.getEleTy() : mlir::Type{};
3494                 })
3495                 .Case<mlir::TupleType>([&](mlir::TupleType ty) {
3496                   if (auto *op = (*i++).getDefiningOp())
3497                     if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3498                       return ty.getType(fir::toInt(off));
3499                   return mlir::Type{};
3500                 })
3501                 .Case<fir::ComplexType>([&](fir::ComplexType ty) {
3502                   auto x = *i;
3503                   if (auto *op = (*i++).getDefiningOp())
3504                     if (fir::isa_integer(x.getType()))
3505                       return ty.getEleType(fir::getKindMapping(
3506                           op->getParentOfType<mlir::ModuleOp>()));
3507                   return mlir::Type{};
3508                 })
3509                 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
3510                   if (fir::isa_integer((*i++).getType()))
3511                     return ty.getElementType();
3512                   return mlir::Type{};
3513                 })
3514                 .Default([&](const auto &) { return mlir::Type{}; });
3515   }
3516   return eleTy;
3517 }
3518 
3519 // Tablegen operators
3520 
3521 #define GET_OP_CLASSES
3522 #include "flang/Optimizer/Dialect/FIROps.cpp.inc"
3523