1 //===-- FIROps.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Optimizer/Dialect/FIROps.h"
14 #include "flang/Optimizer/Dialect/FIRAttr.h"
15 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
16 #include "flang/Optimizer/Dialect/FIRType.h"
17 #include "flang/Optimizer/Support/Utils.h"
18 #include "mlir/Dialect/CommonFolders.h"
19 #include "mlir/Dialect/StandardOps/IR/Ops.h"
20 #include "mlir/IR/BuiltinAttributes.h"
21 #include "mlir/IR/BuiltinOps.h"
22 #include "mlir/IR/Diagnostics.h"
23 #include "mlir/IR/Matchers.h"
24 #include "mlir/IR/OpDefinition.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/TypeSwitch.h"
30 
31 namespace {
32 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc"
33 } // namespace
34 using namespace fir;
35 
36 /// Return true if a sequence type is of some incomplete size or a record type
37 /// is malformed or contains an incomplete sequence type. An incomplete sequence
38 /// type is one with more unknown extents in the type than have been provided
39 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
40 /// definition.
41 static bool verifyInType(mlir::Type inType,
42                          llvm::SmallVectorImpl<llvm::StringRef> &visited,
43                          unsigned dynamicExtents = 0) {
44   if (auto st = inType.dyn_cast<fir::SequenceType>()) {
45     auto shape = st.getShape();
46     if (shape.size() == 0)
47       return true;
48     for (std::size_t i = 0, end{shape.size()}; i < end; ++i) {
49       if (shape[i] != fir::SequenceType::getUnknownExtent())
50         continue;
51       if (dynamicExtents-- == 0)
52         return true;
53     }
54   } else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
55     // don't recurse if we're already visiting this one
56     if (llvm::is_contained(visited, rt.getName()))
57       return false;
58     // keep track of record types currently being visited
59     visited.push_back(rt.getName());
60     for (auto &field : rt.getTypeList())
61       if (verifyInType(field.second, visited))
62         return true;
63     visited.pop_back();
64   }
65   return false;
66 }
67 
68 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) {
69   auto ty = fir::unwrapSequenceType(inType);
70   if (numParams > 0) {
71     if (auto recTy = ty.dyn_cast<fir::RecordType>())
72       return numParams != recTy.getNumLenParams();
73     if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
74       return !(numParams == 1 && chrTy.hasDynamicLen());
75     return true;
76   }
77   if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
78     return !chrTy.hasConstantLen();
79   return false;
80 }
81 
82 /// Parser shared by Alloca and Allocmem
83 ///
84 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type
85 ///                      ( `(` $typeparams `)` )? ( `,` $shape )?
86 ///                      attr-dict-without-keyword
87 template <typename FN>
88 static mlir::ParseResult parseAllocatableOp(FN wrapResultType,
89                                             mlir::OpAsmParser &parser,
90                                             mlir::OperationState &result) {
91   mlir::Type intype;
92   if (parser.parseType(intype))
93     return mlir::failure();
94   auto &builder = parser.getBuilder();
95   result.addAttribute("in_type", mlir::TypeAttr::get(intype));
96   llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
97   llvm::SmallVector<mlir::Type> typeVec;
98   bool hasOperands = false;
99   std::int32_t typeparamsSize = 0;
100   if (!parser.parseOptionalLParen()) {
101     // parse the LEN params of the derived type. (<params> : <types>)
102     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
103         parser.parseColonTypeList(typeVec) || parser.parseRParen())
104       return mlir::failure();
105     typeparamsSize = operands.size();
106     hasOperands = true;
107   }
108   std::int32_t shapeSize = 0;
109   if (!parser.parseOptionalComma()) {
110     // parse size to scale by, vector of n dimensions of type index
111     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None))
112       return mlir::failure();
113     shapeSize = operands.size() - typeparamsSize;
114     auto idxTy = builder.getIndexType();
115     for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i)
116       typeVec.push_back(idxTy);
117     hasOperands = true;
118   }
119   if (hasOperands &&
120       parser.resolveOperands(operands, typeVec, parser.getNameLoc(),
121                              result.operands))
122     return mlir::failure();
123   mlir::Type restype = wrapResultType(intype);
124   if (!restype) {
125     parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype;
126     return mlir::failure();
127   }
128   result.addAttribute("operand_segment_sizes",
129                       builder.getI32VectorAttr({typeparamsSize, shapeSize}));
130   if (parser.parseOptionalAttrDict(result.attributes) ||
131       parser.addTypeToList(restype, result.types))
132     return mlir::failure();
133   return mlir::success();
134 }
135 
136 template <typename OP>
137 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) {
138   p << ' ' << op.in_type();
139   if (!op.typeparams().empty()) {
140     p << '(' << op.typeparams() << " : " << op.typeparams().getTypes() << ')';
141   }
142   // print the shape of the allocation (if any); all must be index type
143   for (auto sh : op.shape()) {
144     p << ", ";
145     p.printOperand(sh);
146   }
147   p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"});
148 }
149 
150 //===----------------------------------------------------------------------===//
151 // AllocaOp
152 //===----------------------------------------------------------------------===//
153 
154 /// Create a legal memory reference as return type
155 static mlir::Type wrapAllocaResultType(mlir::Type intype) {
156   // FIR semantics: memory references to memory references are disallowed
157   if (intype.isa<ReferenceType>())
158     return {};
159   return ReferenceType::get(intype);
160 }
161 
162 mlir::Type fir::AllocaOp::getAllocatedType() {
163   return getType().cast<ReferenceType>().getEleTy();
164 }
165 
166 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
167   return ReferenceType::get(ty);
168 }
169 
170 void fir::AllocaOp::build(mlir::OpBuilder &builder,
171                           mlir::OperationState &result, mlir::Type inType,
172                           llvm::StringRef uniqName, mlir::ValueRange typeparams,
173                           mlir::ValueRange shape,
174                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
175   auto nameAttr = builder.getStringAttr(uniqName);
176   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
177         /*pinned=*/false, typeparams, shape);
178   result.addAttributes(attributes);
179 }
180 
181 void fir::AllocaOp::build(mlir::OpBuilder &builder,
182                           mlir::OperationState &result, mlir::Type inType,
183                           llvm::StringRef uniqName, bool pinned,
184                           mlir::ValueRange typeparams, mlir::ValueRange shape,
185                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
186   auto nameAttr = builder.getStringAttr(uniqName);
187   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
188         pinned, typeparams, shape);
189   result.addAttributes(attributes);
190 }
191 
192 void fir::AllocaOp::build(mlir::OpBuilder &builder,
193                           mlir::OperationState &result, mlir::Type inType,
194                           llvm::StringRef uniqName, llvm::StringRef bindcName,
195                           mlir::ValueRange typeparams, mlir::ValueRange shape,
196                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
197   auto nameAttr =
198       uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
199   auto bindcAttr =
200       bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
201   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
202         bindcAttr, /*pinned=*/false, typeparams, shape);
203   result.addAttributes(attributes);
204 }
205 
206 void fir::AllocaOp::build(mlir::OpBuilder &builder,
207                           mlir::OperationState &result, mlir::Type inType,
208                           llvm::StringRef uniqName, llvm::StringRef bindcName,
209                           bool pinned, mlir::ValueRange typeparams,
210                           mlir::ValueRange shape,
211                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
212   auto nameAttr =
213       uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
214   auto bindcAttr =
215       bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
216   build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
217         bindcAttr, pinned, typeparams, shape);
218   result.addAttributes(attributes);
219 }
220 
221 void fir::AllocaOp::build(mlir::OpBuilder &builder,
222                           mlir::OperationState &result, mlir::Type inType,
223                           mlir::ValueRange typeparams, mlir::ValueRange shape,
224                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
225   build(builder, result, wrapAllocaResultType(inType), inType, {}, {},
226         /*pinned=*/false, typeparams, shape);
227   result.addAttributes(attributes);
228 }
229 
230 void fir::AllocaOp::build(mlir::OpBuilder &builder,
231                           mlir::OperationState &result, mlir::Type inType,
232                           bool pinned, mlir::ValueRange typeparams,
233                           mlir::ValueRange shape,
234                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
235   build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned,
236         typeparams, shape);
237   result.addAttributes(attributes);
238 }
239 
240 static mlir::LogicalResult verify(fir::AllocaOp &op) {
241   llvm::SmallVector<llvm::StringRef> visited;
242   if (verifyInType(op.getInType(), visited, op.numShapeOperands()))
243     return op.emitOpError("invalid type for allocation");
244   if (verifyTypeParamCount(op.getInType(), op.numLenParams()))
245     return op.emitOpError("LEN params do not correspond to type");
246   mlir::Type outType = op.getType();
247   if (!outType.isa<fir::ReferenceType>())
248     return op.emitOpError("must be a !fir.ref type");
249   if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
250     return op.emitOpError("cannot allocate !fir.box of unknown rank or type");
251   return mlir::success();
252 }
253 
254 //===----------------------------------------------------------------------===//
255 // AllocMemOp
256 //===----------------------------------------------------------------------===//
257 
258 /// Create a legal heap reference as return type
259 static mlir::Type wrapAllocMemResultType(mlir::Type intype) {
260   // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
261   // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
262   // FIR semantics: one may not allocate a memory reference value
263   if (intype.isa<ReferenceType>() || intype.isa<HeapType>() ||
264       intype.isa<PointerType>() || intype.isa<FunctionType>())
265     return {};
266   return HeapType::get(intype);
267 }
268 
269 mlir::Type fir::AllocMemOp::getAllocatedType() {
270   return getType().cast<HeapType>().getEleTy();
271 }
272 
273 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
274   return HeapType::get(ty);
275 }
276 
277 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
278                             mlir::OperationState &result, mlir::Type inType,
279                             llvm::StringRef uniqName,
280                             mlir::ValueRange typeparams, mlir::ValueRange shape,
281                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
282   auto nameAttr = builder.getStringAttr(uniqName);
283   build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {},
284         typeparams, shape);
285   result.addAttributes(attributes);
286 }
287 
288 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
289                             mlir::OperationState &result, mlir::Type inType,
290                             llvm::StringRef uniqName, llvm::StringRef bindcName,
291                             mlir::ValueRange typeparams, mlir::ValueRange shape,
292                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
293   auto nameAttr = builder.getStringAttr(uniqName);
294   auto bindcAttr = builder.getStringAttr(bindcName);
295   build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr,
296         bindcAttr, typeparams, shape);
297   result.addAttributes(attributes);
298 }
299 
300 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
301                             mlir::OperationState &result, mlir::Type inType,
302                             mlir::ValueRange typeparams, mlir::ValueRange shape,
303                             llvm::ArrayRef<mlir::NamedAttribute> attributes) {
304   build(builder, result, wrapAllocMemResultType(inType), inType, {}, {},
305         typeparams, shape);
306   result.addAttributes(attributes);
307 }
308 
309 static mlir::LogicalResult verify(fir::AllocMemOp op) {
310   llvm::SmallVector<llvm::StringRef> visited;
311   if (verifyInType(op.getInType(), visited, op.numShapeOperands()))
312     return op.emitOpError("invalid type for allocation");
313   if (verifyTypeParamCount(op.getInType(), op.numLenParams()))
314     return op.emitOpError("LEN params do not correspond to type");
315   mlir::Type outType = op.getType();
316   if (!outType.dyn_cast<fir::HeapType>())
317     return op.emitOpError("must be a !fir.heap type");
318   if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
319     return op.emitOpError("cannot allocate !fir.box of unknown rank or type");
320   return mlir::success();
321 }
322 
323 //===----------------------------------------------------------------------===//
324 // ArrayCoorOp
325 //===----------------------------------------------------------------------===//
326 
327 static mlir::LogicalResult verify(fir::ArrayCoorOp op) {
328   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
329   auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
330   if (!arrTy)
331     return op.emitOpError("must be a reference to an array");
332   auto arrDim = arrTy.getDimension();
333 
334   if (auto shapeOp = op.shape()) {
335     auto shapeTy = shapeOp.getType();
336     unsigned shapeTyRank = 0;
337     if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
338       shapeTyRank = s.getRank();
339     } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
340       shapeTyRank = ss.getRank();
341     } else {
342       auto s = shapeTy.cast<fir::ShiftType>();
343       shapeTyRank = s.getRank();
344       if (!op.memref().getType().isa<fir::BoxType>())
345         return op.emitOpError("shift can only be provided with fir.box memref");
346     }
347     if (arrDim && arrDim != shapeTyRank)
348       return op.emitOpError("rank of dimension mismatched");
349     if (shapeTyRank != op.indices().size())
350       return op.emitOpError("number of indices do not match dim rank");
351   }
352 
353   if (auto sliceOp = op.slice()) {
354     if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
355       if (!sl.substr().empty())
356         return op.emitOpError("array_coor cannot take a slice with substring");
357     if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
358       if (sliceTy.getRank() != arrDim)
359         return op.emitOpError("rank of dimension in slice mismatched");
360   }
361 
362   return mlir::success();
363 }
364 
365 //===----------------------------------------------------------------------===//
366 // ArrayLoadOp
367 //===----------------------------------------------------------------------===//
368 
369 static mlir::Type adjustedElementType(mlir::Type t) {
370   if (auto ty = t.dyn_cast<fir::ReferenceType>()) {
371     auto eleTy = ty.getEleTy();
372     if (fir::isa_char(eleTy))
373       return eleTy;
374     if (fir::isa_derived(eleTy))
375       return eleTy;
376     if (eleTy.isa<fir::SequenceType>())
377       return eleTy;
378   }
379   return t;
380 }
381 
382 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
383   if (auto sh = shape())
384     if (auto *op = sh.getDefiningOp()) {
385       if (auto shOp = dyn_cast<fir::ShapeOp>(op)) {
386         auto extents = shOp.getExtents();
387         return {extents.begin(), extents.end()};
388       }
389       return cast<fir::ShapeShiftOp>(op).getExtents();
390     }
391   return {};
392 }
393 
394 static mlir::LogicalResult verify(fir::ArrayLoadOp op) {
395   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
396   auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
397   if (!arrTy)
398     return op.emitOpError("must be a reference to an array");
399   auto arrDim = arrTy.getDimension();
400 
401   if (auto shapeOp = op.shape()) {
402     auto shapeTy = shapeOp.getType();
403     unsigned shapeTyRank = 0;
404     if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
405       shapeTyRank = s.getRank();
406     } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
407       shapeTyRank = ss.getRank();
408     } else {
409       auto s = shapeTy.cast<fir::ShiftType>();
410       shapeTyRank = s.getRank();
411       if (!op.memref().getType().isa<fir::BoxType>())
412         return op.emitOpError("shift can only be provided with fir.box memref");
413     }
414     if (arrDim && arrDim != shapeTyRank)
415       return op.emitOpError("rank of dimension mismatched");
416   }
417 
418   if (auto sliceOp = op.slice()) {
419     if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
420       if (!sl.substr().empty())
421         return op.emitOpError("array_load cannot take a slice with substring");
422     if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
423       if (sliceTy.getRank() != arrDim)
424         return op.emitOpError("rank of dimension in slice mismatched");
425   }
426 
427   return mlir::success();
428 }
429 
430 //===----------------------------------------------------------------------===//
431 // ArrayMergeStoreOp
432 //===----------------------------------------------------------------------===//
433 
434 static mlir::LogicalResult verify(fir::ArrayMergeStoreOp op) {
435   if (!isa<ArrayLoadOp>(op.original().getDefiningOp()))
436     return op.emitOpError("operand #0 must be result of a fir.array_load op");
437   if (auto sl = op.slice()) {
438     if (auto sliceOp =
439             mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) {
440       if (!sliceOp.substr().empty())
441         return op.emitOpError(
442             "array_merge_store cannot take a slice with substring");
443       if (!sliceOp.fields().empty()) {
444         // This is an intra-object merge, where the slice is projecting the
445         // subfields that are to be overwritten by the merge operation.
446         auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
447         if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
448           auto projTy =
449               fir::applyPathToType(seqTy.getEleTy(), sliceOp.fields());
450           if (fir::unwrapSequenceType(op.original().getType()) != projTy)
451             return op.emitOpError(
452                 "type of origin does not match sliced memref type");
453           if (fir::unwrapSequenceType(op.sequence().getType()) != projTy)
454             return op.emitOpError(
455                 "type of sequence does not match sliced memref type");
456           return mlir::success();
457         }
458         return op.emitOpError("referenced type is not an array");
459       }
460     }
461     return mlir::success();
462   }
463   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
464   if (op.original().getType() != eleTy)
465     return op.emitOpError("type of origin does not match memref element type");
466   if (op.sequence().getType() != eleTy)
467     return op.emitOpError(
468         "type of sequence does not match memref element type");
469   return mlir::success();
470 }
471 
472 //===----------------------------------------------------------------------===//
473 // ArrayFetchOp
474 //===----------------------------------------------------------------------===//
475 
476 // Template function used for both array_fetch and array_update verification.
477 template <typename A>
478 mlir::Type validArraySubobject(A op) {
479   auto ty = op.sequence().getType();
480   return fir::applyPathToType(ty, op.indices());
481 }
482 
483 static mlir::LogicalResult verify(fir::ArrayFetchOp op) {
484   auto arrTy = op.sequence().getType().cast<fir::SequenceType>();
485   auto indSize = op.indices().size();
486   if (indSize < arrTy.getDimension())
487     return op.emitOpError("number of indices != dimension of array");
488   if (indSize == arrTy.getDimension() &&
489       ::adjustedElementType(op.element().getType()) != arrTy.getEleTy())
490     return op.emitOpError("return type does not match array");
491   auto ty = validArraySubobject(op);
492   if (!ty || ty != ::adjustedElementType(op.getType()))
493     return op.emitOpError("return type and/or indices do not type check");
494   if (!isa<fir::ArrayLoadOp>(op.sequence().getDefiningOp()))
495     return op.emitOpError("argument #0 must be result of fir.array_load");
496   return mlir::success();
497 }
498 
499 //===----------------------------------------------------------------------===//
500 // ArrayUpdateOp
501 //===----------------------------------------------------------------------===//
502 
503 static mlir::LogicalResult verify(fir::ArrayUpdateOp op) {
504   if (fir::isa_ref_type(op.merge().getType()))
505     return op.emitOpError("does not support reference type for merge");
506   auto arrTy = op.sequence().getType().cast<fir::SequenceType>();
507   auto indSize = op.indices().size();
508   if (indSize < arrTy.getDimension())
509     return op.emitOpError("number of indices != dimension of array");
510   if (indSize == arrTy.getDimension() &&
511       ::adjustedElementType(op.merge().getType()) != arrTy.getEleTy())
512     return op.emitOpError("merged value does not have element type");
513   auto ty = validArraySubobject(op);
514   if (!ty || ty != ::adjustedElementType(op.merge().getType()))
515     return op.emitOpError("merged value and/or indices do not type check");
516   return mlir::success();
517 }
518 
519 //===----------------------------------------------------------------------===//
520 // ArrayModifyOp
521 //===----------------------------------------------------------------------===//
522 
523 static mlir::LogicalResult verify(fir::ArrayModifyOp op) {
524   auto arrTy = op.sequence().getType().cast<fir::SequenceType>();
525   auto indSize = op.indices().size();
526   if (indSize < arrTy.getDimension())
527     return op.emitOpError("number of indices must match array dimension");
528   return mlir::success();
529 }
530 
531 //===----------------------------------------------------------------------===//
532 // BoxAddrOp
533 //===----------------------------------------------------------------------===//
534 
535 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
536   if (auto v = val().getDefiningOp()) {
537     if (auto box = dyn_cast<fir::EmboxOp>(v))
538       return box.memref();
539     if (auto box = dyn_cast<fir::EmboxCharOp>(v))
540       return box.memref();
541   }
542   return {};
543 }
544 
545 //===----------------------------------------------------------------------===//
546 // BoxCharLenOp
547 //===----------------------------------------------------------------------===//
548 
549 mlir::OpFoldResult
550 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
551   if (auto v = val().getDefiningOp()) {
552     if (auto box = dyn_cast<fir::EmboxCharOp>(v))
553       return box.len();
554   }
555   return {};
556 }
557 
558 //===----------------------------------------------------------------------===//
559 // BoxDimsOp
560 //===----------------------------------------------------------------------===//
561 
562 /// Get the result types packed in a tuple tuple
563 mlir::Type fir::BoxDimsOp::getTupleType() {
564   // note: triple, but 4 is nearest power of 2
565   llvm::SmallVector<mlir::Type> triple{
566       getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
567   return mlir::TupleType::get(getContext(), triple);
568 }
569 
570 //===----------------------------------------------------------------------===//
571 // CallOp
572 //===----------------------------------------------------------------------===//
573 
574 mlir::FunctionType fir::CallOp::getFunctionType() {
575   return mlir::FunctionType::get(getContext(), getOperandTypes(),
576                                  getResultTypes());
577 }
578 
579 static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) {
580   auto callee = op.callee();
581   bool isDirect = callee.hasValue();
582   p << ' ';
583   if (isDirect)
584     p << callee.getValue();
585   else
586     p << op.getOperand(0);
587   p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')';
588   p.printOptionalAttrDict(op->getAttrs(), {"callee"});
589   auto resultTypes{op.getResultTypes()};
590   llvm::SmallVector<Type> argTypes(
591       llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1));
592   p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes);
593 }
594 
595 static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser,
596                                      mlir::OperationState &result) {
597   llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
598   if (parser.parseOperandList(operands))
599     return mlir::failure();
600 
601   mlir::NamedAttrList attrs;
602   mlir::SymbolRefAttr funcAttr;
603   bool isDirect = operands.empty();
604   if (isDirect)
605     if (parser.parseAttribute(funcAttr, "callee", attrs))
606       return mlir::failure();
607 
608   Type type;
609   if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
610       parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
611       parser.parseType(type))
612     return mlir::failure();
613 
614   auto funcType = type.dyn_cast<mlir::FunctionType>();
615   if (!funcType)
616     return parser.emitError(parser.getNameLoc(), "expected function type");
617   if (isDirect) {
618     if (parser.resolveOperands(operands, funcType.getInputs(),
619                                parser.getNameLoc(), result.operands))
620       return mlir::failure();
621   } else {
622     auto funcArgs =
623         llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front();
624     if (parser.resolveOperand(operands[0], funcType, result.operands) ||
625         parser.resolveOperands(funcArgs, funcType.getInputs(),
626                                parser.getNameLoc(), result.operands))
627       return mlir::failure();
628   }
629   result.addTypes(funcType.getResults());
630   result.attributes = attrs;
631   return mlir::success();
632 }
633 
634 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
635                         mlir::FuncOp callee, mlir::ValueRange operands) {
636   result.addOperands(operands);
637   result.addAttribute(getCalleeAttrNameStr(), SymbolRefAttr::get(callee));
638   result.addTypes(callee.getType().getResults());
639 }
640 
641 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
642                         mlir::SymbolRefAttr callee,
643                         llvm::ArrayRef<mlir::Type> results,
644                         mlir::ValueRange operands) {
645   result.addOperands(operands);
646   if (callee)
647     result.addAttribute(getCalleeAttrNameStr(), callee);
648   result.addTypes(results);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 // CmpOp
653 //===----------------------------------------------------------------------===//
654 
655 template <typename OPTY>
656 static void printCmpOp(OpAsmPrinter &p, OPTY op) {
657   p << ' ';
658   auto predSym = mlir::arith::symbolizeCmpFPredicate(
659       op->template getAttrOfType<mlir::IntegerAttr>(
660             OPTY::getPredicateAttrName())
661           .getInt());
662   assert(predSym.hasValue() && "invalid symbol value for predicate");
663   p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"'
664     << ", ";
665   p.printOperand(op.lhs());
666   p << ", ";
667   p.printOperand(op.rhs());
668   p.printOptionalAttrDict(op->getAttrs(),
669                           /*elidedAttrs=*/{OPTY::getPredicateAttrName()});
670   p << " : " << op.lhs().getType();
671 }
672 
673 template <typename OPTY>
674 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
675                                     mlir::OperationState &result) {
676   llvm::SmallVector<mlir::OpAsmParser::OperandType> ops;
677   mlir::NamedAttrList attrs;
678   mlir::Attribute predicateNameAttr;
679   mlir::Type type;
680   if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
681                             attrs) ||
682       parser.parseComma() || parser.parseOperandList(ops, 2) ||
683       parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
684       parser.resolveOperands(ops, type, result.operands))
685     return failure();
686 
687   if (!predicateNameAttr.isa<mlir::StringAttr>())
688     return parser.emitError(parser.getNameLoc(),
689                             "expected string comparison predicate attribute");
690 
691   // Rewrite string attribute to an enum value.
692   llvm::StringRef predicateName =
693       predicateNameAttr.cast<mlir::StringAttr>().getValue();
694   auto predicate = fir::CmpcOp::getPredicateByName(predicateName);
695   auto builder = parser.getBuilder();
696   mlir::Type i1Type = builder.getI1Type();
697   attrs.set(OPTY::getPredicateAttrName(),
698             builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
699   result.attributes = attrs;
700   result.addTypes({i1Type});
701   return success();
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // CharConvertOp
706 //===----------------------------------------------------------------------===//
707 
708 static mlir::LogicalResult verify(fir::CharConvertOp op) {
709   auto unwrap = [&](mlir::Type t) {
710     t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t));
711     return t.dyn_cast<fir::CharacterType>();
712   };
713   auto inTy = unwrap(op.from().getType());
714   auto outTy = unwrap(op.to().getType());
715   if (!(inTy && outTy))
716     return op.emitOpError("not a reference to a character");
717   if (inTy.getFKind() == outTy.getFKind())
718     return op.emitOpError("buffers must have different KIND values");
719   return mlir::success();
720 }
721 
722 //===----------------------------------------------------------------------===//
723 // CmpcOp
724 //===----------------------------------------------------------------------===//
725 
726 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result,
727                       arith::CmpFPredicate predicate, Value lhs, Value rhs) {
728   result.addOperands({lhs, rhs});
729   result.types.push_back(builder.getI1Type());
730   result.addAttribute(
731       fir::CmpcOp::getPredicateAttrName(),
732       builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
733 }
734 
735 mlir::arith::CmpFPredicate
736 fir::CmpcOp::getPredicateByName(llvm::StringRef name) {
737   auto pred = mlir::arith::symbolizeCmpFPredicate(name);
738   assert(pred.hasValue() && "invalid predicate name");
739   return pred.getValue();
740 }
741 
742 static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); }
743 
744 mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser,
745                                    mlir::OperationState &result) {
746   return parseCmpOp<fir::CmpcOp>(parser, result);
747 }
748 
749 //===----------------------------------------------------------------------===//
750 // ConstcOp
751 //===----------------------------------------------------------------------===//
752 
753 static mlir::ParseResult parseConstcOp(mlir::OpAsmParser &parser,
754                                        mlir::OperationState &result) {
755   fir::RealAttr realp;
756   fir::RealAttr imagp;
757   mlir::Type type;
758   if (parser.parseLParen() ||
759       parser.parseAttribute(realp, fir::ConstcOp::realAttrName(),
760                             result.attributes) ||
761       parser.parseComma() ||
762       parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(),
763                             result.attributes) ||
764       parser.parseRParen() || parser.parseColonType(type) ||
765       parser.addTypesToList(type, result.types))
766     return mlir::failure();
767   return mlir::success();
768 }
769 
770 static void print(mlir::OpAsmPrinter &p, fir::ConstcOp &op) {
771   p << '(';
772   p << op.getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", ";
773   p << op.getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : ";
774   p.printType(op.getType());
775 }
776 
777 static mlir::LogicalResult verify(fir::ConstcOp &op) {
778   if (!op.getType().isa<fir::ComplexType>())
779     return op.emitOpError("must be a !fir.complex type");
780   return mlir::success();
781 }
782 
783 //===----------------------------------------------------------------------===//
784 // ConvertOp
785 //===----------------------------------------------------------------------===//
786 
787 void fir::ConvertOp::getCanonicalizationPatterns(
788     OwningRewritePatternList &results, MLIRContext *context) {
789   results.insert<ConvertConvertOptPattern, RedundantConvertOptPattern,
790                  CombineConvertOptPattern, ForwardConstantConvertPattern>(
791       context);
792 }
793 
794 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
795   if (value().getType() == getType())
796     return value();
797   if (matchPattern(value(), m_Op<fir::ConvertOp>())) {
798     auto inner = cast<fir::ConvertOp>(value().getDefiningOp());
799     // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
800     if (auto toTy = getType().dyn_cast<fir::LogicalType>())
801       if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>())
802         if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
803           return inner.value();
804     // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
805     if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
806       if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>())
807         if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
808             (fromTy.getWidth() == 1))
809           return inner.value();
810   }
811   return {};
812 }
813 
814 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
815   return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() ||
816          ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>();
817 }
818 
819 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
820   return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>();
821 }
822 
823 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
824   return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() ||
825          ty.isa<fir::HeapType>() || ty.isa<fir::LLVMPointerType>() ||
826          ty.isa<mlir::MemRefType>() || ty.isa<mlir::FunctionType>() ||
827          ty.isa<fir::TypeDescType>();
828 }
829 
830 static mlir::LogicalResult verify(fir::ConvertOp &op) {
831   auto inType = op.value().getType();
832   auto outType = op.getType();
833   if (inType == outType)
834     return mlir::success();
835   if ((op.isPointerCompatible(inType) && op.isPointerCompatible(outType)) ||
836       (op.isIntegerCompatible(inType) && op.isIntegerCompatible(outType)) ||
837       (op.isIntegerCompatible(inType) && op.isFloatCompatible(outType)) ||
838       (op.isFloatCompatible(inType) && op.isIntegerCompatible(outType)) ||
839       (op.isFloatCompatible(inType) && op.isFloatCompatible(outType)) ||
840       (op.isIntegerCompatible(inType) && op.isPointerCompatible(outType)) ||
841       (op.isPointerCompatible(inType) && op.isIntegerCompatible(outType)) ||
842       (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) ||
843       (fir::isa_complex(inType) && fir::isa_complex(outType)))
844     return mlir::success();
845   return op.emitOpError("invalid type conversion");
846 }
847 
848 //===----------------------------------------------------------------------===//
849 // CoordinateOp
850 //===----------------------------------------------------------------------===//
851 
852 static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) {
853   p << ' ' << op.ref() << ", " << op.coor();
854   p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"});
855   p << " : ";
856   p.printFunctionalType(op.getOperandTypes(), op->getResultTypes());
857 }
858 
859 static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser,
860                                                mlir::OperationState &result) {
861   mlir::OpAsmParser::OperandType memref;
862   if (parser.parseOperand(memref) || parser.parseComma())
863     return mlir::failure();
864   llvm::SmallVector<mlir::OpAsmParser::OperandType> coorOperands;
865   if (parser.parseOperandList(coorOperands))
866     return mlir::failure();
867   llvm::SmallVector<mlir::OpAsmParser::OperandType> allOperands;
868   allOperands.push_back(memref);
869   allOperands.append(coorOperands.begin(), coorOperands.end());
870   mlir::FunctionType funcTy;
871   auto loc = parser.getCurrentLocation();
872   if (parser.parseOptionalAttrDict(result.attributes) ||
873       parser.parseColonType(funcTy) ||
874       parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
875                              result.operands))
876     return failure();
877   parser.addTypesToList(funcTy.getResults(), result.types);
878   result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
879   return mlir::success();
880 }
881 
882 static mlir::LogicalResult verify(fir::CoordinateOp op) {
883   auto refTy = op.ref().getType();
884   if (fir::isa_ref_type(refTy)) {
885     auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
886     if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
887       if (arrTy.hasUnknownShape())
888         return op.emitOpError("cannot find coordinate in unknown shape");
889       if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
890         return op.emitOpError("cannot find coordinate with unknown extents");
891     }
892     if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
893           fir::isa_char_string(eleTy)))
894       return op.emitOpError("cannot apply coordinate_of to this type");
895   }
896   // Recovering a LEN type parameter only makes sense from a boxed value. For a
897   // bare reference, the LEN type parameters must be passed as additional
898   // arguments to `op`.
899   for (auto co : op.coor())
900     if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) {
901       if (op.getNumOperands() != 2)
902         return op.emitOpError("len_param_index must be last argument");
903       if (!op.ref().getType().isa<BoxType>())
904         return op.emitOpError("len_param_index must be used on box type");
905     }
906   return mlir::success();
907 }
908 
909 //===----------------------------------------------------------------------===//
910 // DispatchOp
911 //===----------------------------------------------------------------------===//
912 
913 mlir::FunctionType fir::DispatchOp::getFunctionType() {
914   return mlir::FunctionType::get(getContext(), getOperandTypes(),
915                                  getResultTypes());
916 }
917 
918 static mlir::ParseResult parseDispatchOp(mlir::OpAsmParser &parser,
919                                          mlir::OperationState &result) {
920   mlir::FunctionType calleeType;
921   llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
922   auto calleeLoc = parser.getNameLoc();
923   llvm::StringRef calleeName;
924   if (failed(parser.parseOptionalKeyword(&calleeName))) {
925     mlir::StringAttr calleeAttr;
926     if (parser.parseAttribute(calleeAttr,
927                               fir::DispatchOp::getMethodAttrNameStr(),
928                               result.attributes))
929       return mlir::failure();
930   } else {
931     result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(),
932                         parser.getBuilder().getStringAttr(calleeName));
933   }
934   if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
935       parser.parseOptionalAttrDict(result.attributes) ||
936       parser.parseColonType(calleeType) ||
937       parser.addTypesToList(calleeType.getResults(), result.types) ||
938       parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc,
939                              result.operands))
940     return mlir::failure();
941   return mlir::success();
942 }
943 
944 static void print(mlir::OpAsmPrinter &p, fir::DispatchOp &op) {
945   p << ' ' << op.getMethodAttr() << '(';
946   p.printOperand(op.object());
947   if (!op.args().empty()) {
948     p << ", ";
949     p.printOperands(op.args());
950   }
951   p << ") : ";
952   p.printFunctionalType(op.getOperation()->getOperandTypes(),
953                         op.getOperation()->getResultTypes());
954 }
955 
956 //===----------------------------------------------------------------------===//
957 // DispatchTableOp
958 //===----------------------------------------------------------------------===//
959 
960 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
961   assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
962   auto &block = getBlock();
963   block.getOperations().insert(block.end(), op);
964 }
965 
966 static mlir::ParseResult parseDispatchTableOp(mlir::OpAsmParser &parser,
967                                               mlir::OperationState &result) {
968   // Parse the name as a symbol reference attribute.
969   SymbolRefAttr nameAttr;
970   if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
971                             result.attributes))
972     return failure();
973 
974   // Convert the parsed name attr into a string attr.
975   result.attributes.set(mlir::SymbolTable::getSymbolAttrName(),
976                         nameAttr.getRootReference());
977 
978   // Parse the optional table body.
979   mlir::Region *body = result.addRegion();
980   OptionalParseResult parseResult = parser.parseOptionalRegion(*body);
981   if (parseResult.hasValue() && failed(*parseResult))
982     return mlir::failure();
983 
984   fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(),
985                                          result.location);
986   return mlir::success();
987 }
988 
989 static void print(mlir::OpAsmPrinter &p, fir::DispatchTableOp &op) {
990   auto tableName =
991       op.getOperation()
992           ->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())
993           .getValue();
994   p << " @" << tableName;
995 
996   Region &body = op.getOperation()->getRegion(0);
997   if (!body.empty()) {
998     p << ' ';
999     p.printRegion(body, /*printEntryBlockArgs=*/false,
1000                   /*printBlockTerminators=*/false);
1001   }
1002 }
1003 
1004 static mlir::LogicalResult verify(fir::DispatchTableOp &op) {
1005   for (auto &op : op.getBlock())
1006     if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op)))
1007       return op.emitOpError("dispatch table must contain dt_entry");
1008   return mlir::success();
1009 }
1010 
1011 //===----------------------------------------------------------------------===//
1012 // EmboxOp
1013 //===----------------------------------------------------------------------===//
1014 
1015 static mlir::LogicalResult verify(fir::EmboxOp op) {
1016   auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType());
1017   bool isArray = false;
1018   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
1019     eleTy = seqTy.getEleTy();
1020     isArray = true;
1021   }
1022   if (op.hasLenParams()) {
1023     auto lenPs = op.numLenParams();
1024     if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
1025       if (lenPs != rt.getNumLenParams())
1026         return op.emitOpError("number of LEN params does not correspond"
1027                               " to the !fir.type type");
1028     } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
1029       if (strTy.getLen() != fir::CharacterType::unknownLen())
1030         return op.emitOpError("CHARACTER already has static LEN");
1031     } else {
1032       return op.emitOpError("LEN parameters require CHARACTER or derived type");
1033     }
1034     for (auto lp : op.typeparams())
1035       if (!fir::isa_integer(lp.getType()))
1036         return op.emitOpError("LEN parameters must be integral type");
1037   }
1038   if (op.getShape() && !isArray)
1039     return op.emitOpError("shape must not be provided for a scalar");
1040   if (op.getSlice() && !isArray)
1041     return op.emitOpError("slice must not be provided for a scalar");
1042   return mlir::success();
1043 }
1044 
1045 //===----------------------------------------------------------------------===//
1046 // EmboxCharOp
1047 //===----------------------------------------------------------------------===//
1048 
1049 static mlir::LogicalResult verify(fir::EmboxCharOp &op) {
1050   auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType());
1051   if (!eleTy.dyn_cast_or_null<CharacterType>())
1052     return mlir::failure();
1053   return mlir::success();
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 // EmboxProcOp
1058 //===----------------------------------------------------------------------===//
1059 
1060 static mlir::ParseResult parseEmboxProcOp(mlir::OpAsmParser &parser,
1061                                           mlir::OperationState &result) {
1062   mlir::SymbolRefAttr procRef;
1063   if (parser.parseAttribute(procRef, "funcname", result.attributes))
1064     return mlir::failure();
1065   bool hasTuple = false;
1066   mlir::OpAsmParser::OperandType tupleRef;
1067   if (!parser.parseOptionalComma()) {
1068     if (parser.parseOperand(tupleRef))
1069       return mlir::failure();
1070     hasTuple = true;
1071   }
1072   mlir::FunctionType type;
1073   if (parser.parseColon() || parser.parseLParen() || parser.parseType(type))
1074     return mlir::failure();
1075   result.addAttribute("functype", mlir::TypeAttr::get(type));
1076   if (hasTuple) {
1077     mlir::Type tupleType;
1078     if (parser.parseComma() || parser.parseType(tupleType) ||
1079         parser.resolveOperand(tupleRef, tupleType, result.operands))
1080       return mlir::failure();
1081   }
1082   mlir::Type boxType;
1083   if (parser.parseRParen() || parser.parseArrow() ||
1084       parser.parseType(boxType) || parser.addTypesToList(boxType, result.types))
1085     return mlir::failure();
1086   return mlir::success();
1087 }
1088 
1089 static void print(mlir::OpAsmPrinter &p, fir::EmboxProcOp &op) {
1090   p << ' ' << op.getOperation()->getAttr("funcname");
1091   auto h = op.host();
1092   if (h) {
1093     p << ", ";
1094     p.printOperand(h);
1095   }
1096   p << " : (" << op.getOperation()->getAttr("functype");
1097   if (h)
1098     p << ", " << h.getType();
1099   p << ") -> " << op.getType();
1100 }
1101 
1102 static mlir::LogicalResult verify(fir::EmboxProcOp &op) {
1103   // host bindings (optional) must be a reference to a tuple
1104   if (auto h = op.host()) {
1105     if (auto r = h.getType().dyn_cast<ReferenceType>()) {
1106       if (!r.getEleTy().dyn_cast<mlir::TupleType>())
1107         return mlir::failure();
1108     } else {
1109       return mlir::failure();
1110     }
1111   }
1112   return mlir::success();
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 // GenTypeDescOp
1117 //===----------------------------------------------------------------------===//
1118 
1119 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result,
1120                                mlir::TypeAttr inty) {
1121   result.addAttribute("in_type", inty);
1122   result.addTypes(TypeDescType::get(inty.getValue()));
1123 }
1124 
1125 static mlir::ParseResult parseGenTypeDescOp(mlir::OpAsmParser &parser,
1126                                             mlir::OperationState &result) {
1127   mlir::Type intype;
1128   if (parser.parseType(intype))
1129     return mlir::failure();
1130   result.addAttribute("in_type", mlir::TypeAttr::get(intype));
1131   mlir::Type restype = TypeDescType::get(intype);
1132   if (parser.addTypeToList(restype, result.types))
1133     return mlir::failure();
1134   return mlir::success();
1135 }
1136 
1137 static void print(mlir::OpAsmPrinter &p, fir::GenTypeDescOp &op) {
1138   p << ' ' << op.getOperation()->getAttr("in_type");
1139   p.printOptionalAttrDict(op.getOperation()->getAttrs(), {"in_type"});
1140 }
1141 
1142 static mlir::LogicalResult verify(fir::GenTypeDescOp &op) {
1143   mlir::Type resultTy = op.getType();
1144   if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) {
1145     if (tdesc.getOfTy() != op.getInType())
1146       return op.emitOpError("wrapped type mismatched");
1147   } else {
1148     return op.emitOpError("must be !fir.tdesc type");
1149   }
1150   return mlir::success();
1151 }
1152 
1153 //===----------------------------------------------------------------------===//
1154 // GlobalOp
1155 //===----------------------------------------------------------------------===//
1156 
1157 mlir::Type fir::GlobalOp::resultType() {
1158   return wrapAllocaResultType(getType());
1159 }
1160 
1161 static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) {
1162   // Parse the optional linkage
1163   llvm::StringRef linkage;
1164   auto &builder = parser.getBuilder();
1165   if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
1166     if (fir::GlobalOp::verifyValidLinkage(linkage))
1167       return mlir::failure();
1168     mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
1169     result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr);
1170   }
1171 
1172   // Parse the name as a symbol reference attribute.
1173   mlir::SymbolRefAttr nameAttr;
1174   if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrNameStr(),
1175                             result.attributes))
1176     return mlir::failure();
1177   result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1178                       nameAttr.getRootReference());
1179 
1180   bool simpleInitializer = false;
1181   if (mlir::succeeded(parser.parseOptionalLParen())) {
1182     Attribute attr;
1183     if (parser.parseAttribute(attr, "initVal", result.attributes) ||
1184         parser.parseRParen())
1185       return mlir::failure();
1186     simpleInitializer = true;
1187   }
1188 
1189   if (succeeded(parser.parseOptionalKeyword("constant"))) {
1190     // if "constant" keyword then mark this as a constant, not a variable
1191     result.addAttribute("constant", builder.getUnitAttr());
1192   }
1193 
1194   mlir::Type globalType;
1195   if (parser.parseColonType(globalType))
1196     return mlir::failure();
1197 
1198   result.addAttribute(fir::GlobalOp::typeAttrName(result.name),
1199                       mlir::TypeAttr::get(globalType));
1200 
1201   if (simpleInitializer) {
1202     result.addRegion();
1203   } else {
1204     // Parse the optional initializer body.
1205     auto parseResult = parser.parseOptionalRegion(
1206         *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None);
1207     if (parseResult.hasValue() && mlir::failed(*parseResult))
1208       return mlir::failure();
1209   }
1210 
1211   return mlir::success();
1212 }
1213 
1214 static void print(mlir::OpAsmPrinter &p, fir::GlobalOp &op) {
1215   if (op.linkName().hasValue())
1216     p << ' ' << op.linkName().getValue();
1217   p << ' ';
1218   p.printAttributeWithoutType(op.getSymrefAttr());
1219   if (auto val = op.getValueOrNull())
1220     p << '(' << val << ')';
1221   if (op.getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr()))
1222     p << " constant";
1223   p << " : ";
1224   p.printType(op.getType());
1225   if (op.hasInitializationBody()) {
1226     p << ' ';
1227     p.printRegion(op.getOperation()->getRegion(0),
1228                   /*printEntryBlockArgs=*/false,
1229                   /*printBlockTerminators=*/true);
1230   }
1231 }
1232 
1233 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
1234   getBlock().getOperations().push_back(op);
1235 }
1236 
1237 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
1238                           StringRef name, bool isConstant, Type type,
1239                           Attribute initialVal, StringAttr linkage,
1240                           ArrayRef<NamedAttribute> attrs) {
1241   result.addRegion();
1242   result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type));
1243   result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1244                       builder.getStringAttr(name));
1245   result.addAttribute(symbolAttrNameStr(),
1246                       SymbolRefAttr::get(builder.getContext(), name));
1247   if (isConstant)
1248     result.addAttribute(constantAttrName(result.name), builder.getUnitAttr());
1249   if (initialVal)
1250     result.addAttribute(initValAttrName(result.name), initialVal);
1251   if (linkage)
1252     result.addAttribute(linkageAttrName(), linkage);
1253   result.attributes.append(attrs.begin(), attrs.end());
1254 }
1255 
1256 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
1257                           StringRef name, Type type, Attribute initialVal,
1258                           StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
1259   build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1260 }
1261 
1262 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
1263                           StringRef name, bool isConstant, Type type,
1264                           StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
1265   build(builder, result, name, isConstant, type, {}, linkage, attrs);
1266 }
1267 
1268 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
1269                           StringRef name, Type type, StringAttr linkage,
1270                           ArrayRef<NamedAttribute> attrs) {
1271   build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1272 }
1273 
1274 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
1275                           StringRef name, bool isConstant, Type type,
1276                           ArrayRef<NamedAttribute> attrs) {
1277   build(builder, result, name, isConstant, type, StringAttr{}, attrs);
1278 }
1279 
1280 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
1281                           StringRef name, Type type,
1282                           ArrayRef<NamedAttribute> attrs) {
1283   build(builder, result, name, /*isConstant=*/false, type, attrs);
1284 }
1285 
1286 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) {
1287   // Supporting only a subset of the LLVM linkage types for now
1288   static const char *validNames[] = {"common", "internal", "linkonce", "weak"};
1289   return mlir::success(llvm::is_contained(validNames, linkage));
1290 }
1291 
1292 //===----------------------------------------------------------------------===//
1293 // GlobalLenOp
1294 //===----------------------------------------------------------------------===//
1295 
1296 static mlir::ParseResult parseGlobalLenOp(mlir::OpAsmParser &parser,
1297                                           mlir::OperationState &result) {
1298   llvm::StringRef fieldName;
1299   if (failed(parser.parseOptionalKeyword(&fieldName))) {
1300     mlir::StringAttr fieldAttr;
1301     if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(),
1302                               result.attributes))
1303       return mlir::failure();
1304   } else {
1305     result.addAttribute(fir::GlobalLenOp::lenParamAttrName(),
1306                         parser.getBuilder().getStringAttr(fieldName));
1307   }
1308   mlir::IntegerAttr constant;
1309   if (parser.parseComma() ||
1310       parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(),
1311                             result.attributes))
1312     return mlir::failure();
1313   return mlir::success();
1314 }
1315 
1316 static void print(mlir::OpAsmPrinter &p, fir::GlobalLenOp &op) {
1317   p << ' ' << op.getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName())
1318     << ", " << op.getOperation()->getAttr(fir::GlobalLenOp::intAttrName());
1319 }
1320 
1321 //===----------------------------------------------------------------------===//
1322 // FieldIndexOp
1323 //===----------------------------------------------------------------------===//
1324 
1325 static mlir::ParseResult parseFieldIndexOp(mlir::OpAsmParser &parser,
1326                                            mlir::OperationState &result) {
1327   llvm::StringRef fieldName;
1328   auto &builder = parser.getBuilder();
1329   mlir::Type recty;
1330   if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
1331       parser.parseType(recty))
1332     return mlir::failure();
1333   result.addAttribute(fir::FieldIndexOp::fieldAttrName(),
1334                       builder.getStringAttr(fieldName));
1335   if (!recty.dyn_cast<RecordType>())
1336     return mlir::failure();
1337   result.addAttribute(fir::FieldIndexOp::typeAttrName(),
1338                       mlir::TypeAttr::get(recty));
1339   if (!parser.parseOptionalLParen()) {
1340     llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
1341     llvm::SmallVector<mlir::Type> types;
1342     auto loc = parser.getNameLoc();
1343     if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
1344         parser.parseColonTypeList(types) || parser.parseRParen() ||
1345         parser.resolveOperands(operands, types, loc, result.operands))
1346       return mlir::failure();
1347   }
1348   mlir::Type fieldType = fir::FieldType::get(builder.getContext());
1349   if (parser.addTypeToList(fieldType, result.types))
1350     return mlir::failure();
1351   return mlir::success();
1352 }
1353 
1354 static void print(mlir::OpAsmPrinter &p, fir::FieldIndexOp &op) {
1355   p << ' '
1356     << op.getOperation()
1357            ->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName())
1358            .getValue()
1359     << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::typeAttrName());
1360   if (op.getNumOperands()) {
1361     p << '(';
1362     p.printOperands(op.typeparams());
1363     const auto *sep = ") : ";
1364     for (auto op : op.typeparams()) {
1365       p << sep;
1366       if (op)
1367         p.printType(op.getType());
1368       else
1369         p << "()";
1370       sep = ", ";
1371     }
1372   }
1373 }
1374 
1375 void fir::FieldIndexOp::build(mlir::OpBuilder &builder,
1376                               mlir::OperationState &result,
1377                               llvm::StringRef fieldName, mlir::Type recTy,
1378                               mlir::ValueRange operands) {
1379   result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName));
1380   result.addAttribute(typeAttrName(), TypeAttr::get(recTy));
1381   result.addOperands(operands);
1382 }
1383 
1384 //===----------------------------------------------------------------------===//
1385 // InsertOnRangeOp
1386 //===----------------------------------------------------------------------===//
1387 
1388 static ParseResult
1389 parseCustomRangeSubscript(mlir::OpAsmParser &parser,
1390                           mlir::DenseIntElementsAttr &coord) {
1391   llvm::SmallVector<int64_t> lbounds;
1392   llvm::SmallVector<int64_t> ubounds;
1393   if (parser.parseKeyword("from") ||
1394       parser.parseCommaSeparatedList(
1395           AsmParser::Delimiter::Paren,
1396           [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) ||
1397       parser.parseKeyword("to") ||
1398       parser.parseCommaSeparatedList(AsmParser::Delimiter::Paren, [&] {
1399         return parser.parseInteger(ubounds.emplace_back(0));
1400       }))
1401     return failure();
1402   llvm::SmallVector<int64_t> zippedBounds;
1403   for (auto zip : llvm::zip(lbounds, ubounds)) {
1404     zippedBounds.push_back(std::get<0>(zip));
1405     zippedBounds.push_back(std::get<1>(zip));
1406   }
1407   coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds);
1408   return success();
1409 }
1410 
1411 void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, InsertOnRangeOp op,
1412                                mlir::DenseIntElementsAttr coord) {
1413   printer << "from (";
1414   auto enumerate = llvm::enumerate(coord.getValues<int64_t>());
1415   // Even entries are the lower bounds.
1416   llvm::interleaveComma(
1417       make_filter_range(
1418           enumerate,
1419           [](auto indexed_value) { return indexed_value.index() % 2 == 0; }),
1420       printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1421   printer << ") to (";
1422   // Odd entries are the upper bounds.
1423   llvm::interleaveComma(
1424       make_filter_range(
1425           enumerate,
1426           [](auto indexed_value) { return indexed_value.index() % 2 != 0; }),
1427       printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1428   printer << ")";
1429 }
1430 
1431 /// Range bounds must be nonnegative, and the range must not be empty.
1432 static mlir::LogicalResult verify(fir::InsertOnRangeOp op) {
1433   if (fir::hasDynamicSize(op.seq().getType()))
1434     return op.emitOpError("must have constant shape and size");
1435   mlir::DenseIntElementsAttr coor = op.coor();
1436   if (coor.size() < 2 || coor.size() % 2 != 0)
1437     return op.emitOpError("has uneven number of values in ranges");
1438   bool rangeIsKnownToBeNonempty = false;
1439   for (auto i = coor.getValues<int64_t>().end(),
1440             b = coor.getValues<int64_t>().begin();
1441        i != b;) {
1442     int64_t ub = (*--i);
1443     int64_t lb = (*--i);
1444     if (lb < 0 || ub < 0)
1445       return op.emitOpError("negative range bound");
1446     if (rangeIsKnownToBeNonempty)
1447       continue;
1448     if (lb > ub)
1449       return op.emitOpError("empty range");
1450     rangeIsKnownToBeNonempty = lb < ub;
1451   }
1452   return mlir::success();
1453 }
1454 
1455 //===----------------------------------------------------------------------===//
1456 // InsertValueOp
1457 //===----------------------------------------------------------------------===//
1458 
1459 static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) {
1460   if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
1461     return iattr.getInt() == conVal;
1462   return false;
1463 }
1464 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); }
1465 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); }
1466 
1467 // Undo some complex patterns created in the front-end and turn them back into
1468 // complex ops.
1469 template <typename FltOp, typename CpxOp>
1470 struct UndoComplexPattern : public mlir::RewritePattern {
1471   UndoComplexPattern(mlir::MLIRContext *ctx)
1472       : mlir::RewritePattern("fir.insert_value", 2, ctx) {}
1473 
1474   mlir::LogicalResult
1475   matchAndRewrite(mlir::Operation *op,
1476                   mlir::PatternRewriter &rewriter) const override {
1477     auto insval = dyn_cast_or_null<fir::InsertValueOp>(op);
1478     if (!insval || !insval.getType().isa<fir::ComplexType>())
1479       return mlir::failure();
1480     auto insval2 =
1481         dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp());
1482     if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp()))
1483       return mlir::failure();
1484     auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp());
1485     auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp());
1486     if (!binf || !binf2 || insval.coor().size() != 1 ||
1487         !isOne(insval.coor()[0]) || insval2.coor().size() != 1 ||
1488         !isZero(insval2.coor()[0]))
1489       return mlir::failure();
1490     auto eai =
1491         dyn_cast_or_null<fir::ExtractValueOp>(binf.getLhs().getDefiningOp());
1492     auto ebi =
1493         dyn_cast_or_null<fir::ExtractValueOp>(binf.getRhs().getDefiningOp());
1494     auto ear =
1495         dyn_cast_or_null<fir::ExtractValueOp>(binf2.getLhs().getDefiningOp());
1496     auto ebr =
1497         dyn_cast_or_null<fir::ExtractValueOp>(binf2.getRhs().getDefiningOp());
1498     if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() ||
1499         ebr.adt() != ebi.adt() || eai.coor().size() != 1 ||
1500         !isOne(eai.coor()[0]) || ebi.coor().size() != 1 ||
1501         !isOne(ebi.coor()[0]) || ear.coor().size() != 1 ||
1502         !isZero(ear.coor()[0]) || ebr.coor().size() != 1 ||
1503         !isZero(ebr.coor()[0]))
1504       return mlir::failure();
1505     rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt());
1506     return mlir::success();
1507   }
1508 };
1509 
1510 void fir::InsertValueOp::getCanonicalizationPatterns(
1511     mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
1512   results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>,
1513                  UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context);
1514 }
1515 
1516 //===----------------------------------------------------------------------===//
1517 // IterWhileOp
1518 //===----------------------------------------------------------------------===//
1519 
1520 void fir::IterWhileOp::build(mlir::OpBuilder &builder,
1521                              mlir::OperationState &result, mlir::Value lb,
1522                              mlir::Value ub, mlir::Value step,
1523                              mlir::Value iterate, bool finalCountValue,
1524                              mlir::ValueRange iterArgs,
1525                              llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1526   result.addOperands({lb, ub, step, iterate});
1527   if (finalCountValue) {
1528     result.addTypes(builder.getIndexType());
1529     result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr());
1530   }
1531   result.addTypes(iterate.getType());
1532   result.addOperands(iterArgs);
1533   for (auto v : iterArgs)
1534     result.addTypes(v.getType());
1535   mlir::Region *bodyRegion = result.addRegion();
1536   bodyRegion->push_back(new Block{});
1537   bodyRegion->front().addArgument(builder.getIndexType());
1538   bodyRegion->front().addArgument(iterate.getType());
1539   bodyRegion->front().addArguments(iterArgs.getTypes());
1540   result.addAttributes(attributes);
1541 }
1542 
1543 static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser,
1544                                           mlir::OperationState &result) {
1545   auto &builder = parser.getBuilder();
1546   mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step;
1547   if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) ||
1548       parser.parseEqual())
1549     return mlir::failure();
1550 
1551   // Parse loop bounds.
1552   auto indexType = builder.getIndexType();
1553   auto i1Type = builder.getIntegerType(1);
1554   if (parser.parseOperand(lb) ||
1555       parser.resolveOperand(lb, indexType, result.operands) ||
1556       parser.parseKeyword("to") || parser.parseOperand(ub) ||
1557       parser.resolveOperand(ub, indexType, result.operands) ||
1558       parser.parseKeyword("step") || parser.parseOperand(step) ||
1559       parser.parseRParen() ||
1560       parser.resolveOperand(step, indexType, result.operands))
1561     return mlir::failure();
1562 
1563   mlir::OpAsmParser::OperandType iterateVar, iterateInput;
1564   if (parser.parseKeyword("and") || parser.parseLParen() ||
1565       parser.parseRegionArgument(iterateVar) || parser.parseEqual() ||
1566       parser.parseOperand(iterateInput) || parser.parseRParen() ||
1567       parser.resolveOperand(iterateInput, i1Type, result.operands))
1568     return mlir::failure();
1569 
1570   // Parse the initial iteration arguments.
1571   llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs;
1572   auto prependCount = false;
1573 
1574   // Induction variable.
1575   regionArgs.push_back(inductionVariable);
1576   regionArgs.push_back(iterateVar);
1577 
1578   if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1579     llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
1580     llvm::SmallVector<mlir::Type> regionTypes;
1581     // Parse assignment list and results type list.
1582     if (parser.parseAssignmentList(regionArgs, operands) ||
1583         parser.parseArrowTypeList(regionTypes))
1584       return failure();
1585     if (regionTypes.size() == operands.size() + 2)
1586       prependCount = true;
1587     llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
1588     resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
1589     // Resolve input operands.
1590     for (auto operandType : llvm::zip(operands, resTypes))
1591       if (parser.resolveOperand(std::get<0>(operandType),
1592                                 std::get<1>(operandType), result.operands))
1593         return failure();
1594     if (prependCount) {
1595       result.addTypes(regionTypes);
1596     } else {
1597       result.addTypes(i1Type);
1598       result.addTypes(resTypes);
1599     }
1600   } else if (succeeded(parser.parseOptionalArrow())) {
1601     llvm::SmallVector<mlir::Type> typeList;
1602     if (parser.parseLParen() || parser.parseTypeList(typeList) ||
1603         parser.parseRParen())
1604       return failure();
1605     // Type list must be "(index, i1)".
1606     if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
1607         !typeList[1].isSignlessInteger(1))
1608       return failure();
1609     result.addTypes(typeList);
1610     prependCount = true;
1611   } else {
1612     result.addTypes(i1Type);
1613   }
1614 
1615   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1616     return mlir::failure();
1617 
1618   llvm::SmallVector<mlir::Type> argTypes;
1619   // Induction variable (hidden)
1620   if (prependCount)
1621     result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(),
1622                         builder.getUnitAttr());
1623   else
1624     argTypes.push_back(indexType);
1625   // Loop carried variables (including iterate)
1626   argTypes.append(result.types.begin(), result.types.end());
1627   // Parse the body region.
1628   auto *body = result.addRegion();
1629   if (regionArgs.size() != argTypes.size())
1630     return parser.emitError(
1631         parser.getNameLoc(),
1632         "mismatch in number of loop-carried values and defined values");
1633 
1634   if (parser.parseRegion(*body, regionArgs, argTypes))
1635     return failure();
1636 
1637   fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
1638 
1639   return mlir::success();
1640 }
1641 
1642 static mlir::LogicalResult verify(fir::IterWhileOp op) {
1643   // Check that the body defines as single block argument for the induction
1644   // variable.
1645   auto *body = op.getBody();
1646   if (!body->getArgument(1).getType().isInteger(1))
1647     return op.emitOpError(
1648         "expected body second argument to be an index argument for "
1649         "the induction variable");
1650   if (!body->getArgument(0).getType().isIndex())
1651     return op.emitOpError(
1652         "expected body first argument to be an index argument for "
1653         "the induction variable");
1654 
1655   auto opNumResults = op.getNumResults();
1656   if (op.finalValue()) {
1657     // Result type must be "(index, i1, ...)".
1658     if (!op.getResult(0).getType().isa<mlir::IndexType>())
1659       return op.emitOpError("result #0 expected to be index");
1660     if (!op.getResult(1).getType().isSignlessInteger(1))
1661       return op.emitOpError("result #1 expected to be i1");
1662     opNumResults--;
1663   } else {
1664     // iterate_while always returns the early exit induction value.
1665     // Result type must be "(i1, ...)"
1666     if (!op.getResult(0).getType().isSignlessInteger(1))
1667       return op.emitOpError("result #0 expected to be i1");
1668   }
1669   if (opNumResults == 0)
1670     return mlir::failure();
1671   if (op.getNumIterOperands() != opNumResults)
1672     return op.emitOpError(
1673         "mismatch in number of loop-carried values and defined values");
1674   if (op.getNumRegionIterArgs() != opNumResults)
1675     return op.emitOpError(
1676         "mismatch in number of basic block args and defined values");
1677   auto iterOperands = op.getIterOperands();
1678   auto iterArgs = op.getRegionIterArgs();
1679   auto opResults =
1680       op.finalValue() ? op.getResults().drop_front() : op.getResults();
1681   unsigned i = 0;
1682   for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
1683     if (std::get<0>(e).getType() != std::get<2>(e).getType())
1684       return op.emitOpError() << "types mismatch between " << i
1685                               << "th iter operand and defined value";
1686     if (std::get<1>(e).getType() != std::get<2>(e).getType())
1687       return op.emitOpError() << "types mismatch between " << i
1688                               << "th iter region arg and defined value";
1689 
1690     i++;
1691   }
1692   return mlir::success();
1693 }
1694 
1695 static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) {
1696   p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to "
1697     << op.upperBound() << " step " << op.step() << ") and (";
1698   assert(op.hasIterOperands());
1699   auto regionArgs = op.getRegionIterArgs();
1700   auto operands = op.getIterOperands();
1701   p << regionArgs.front() << " = " << *operands.begin() << ")";
1702   if (regionArgs.size() > 1) {
1703     p << " iter_args(";
1704     llvm::interleaveComma(
1705         llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
1706         [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
1707     p << ") -> (";
1708     llvm::interleaveComma(
1709         llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p);
1710     p << ")";
1711   } else if (op.finalValue()) {
1712     p << " -> (" << op.getResultTypes() << ')';
1713   }
1714   p.printOptionalAttrDictWithKeyword(op->getAttrs(),
1715                                      {op.getFinalValueAttrNameStr()});
1716   p << ' ';
1717   p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
1718                 /*printBlockTerminators=*/true);
1719 }
1720 
1721 mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); }
1722 
1723 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) {
1724   return !region().isAncestor(value.getParentRegion());
1725 }
1726 
1727 mlir::LogicalResult
1728 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) {
1729   for (auto *op : ops)
1730     op->moveBefore(*this);
1731   return success();
1732 }
1733 
1734 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
1735   for (auto i : llvm::enumerate(initArgs()))
1736     if (iterArg == i.value())
1737       return region().front().getArgument(i.index() + 1);
1738   return {};
1739 }
1740 
1741 void fir::IterWhileOp::resultToSourceOps(
1742     llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
1743   auto oper = finalValue() ? resultNum + 1 : resultNum;
1744   auto *term = region().front().getTerminator();
1745   if (oper < term->getNumOperands())
1746     results.push_back(term->getOperand(oper));
1747 }
1748 
1749 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
1750   if (blockArgNum > 0 && blockArgNum <= initArgs().size())
1751     return initArgs()[blockArgNum - 1];
1752   return {};
1753 }
1754 
1755 //===----------------------------------------------------------------------===//
1756 // LenParamIndexOp
1757 //===----------------------------------------------------------------------===//
1758 
1759 static mlir::ParseResult parseLenParamIndexOp(mlir::OpAsmParser &parser,
1760                                               mlir::OperationState &result) {
1761   llvm::StringRef fieldName;
1762   auto &builder = parser.getBuilder();
1763   mlir::Type recty;
1764   if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
1765       parser.parseType(recty))
1766     return mlir::failure();
1767   result.addAttribute(fir::LenParamIndexOp::fieldAttrName(),
1768                       builder.getStringAttr(fieldName));
1769   if (!recty.dyn_cast<RecordType>())
1770     return mlir::failure();
1771   result.addAttribute(fir::LenParamIndexOp::typeAttrName(),
1772                       mlir::TypeAttr::get(recty));
1773   mlir::Type lenType = fir::LenType::get(builder.getContext());
1774   if (parser.addTypeToList(lenType, result.types))
1775     return mlir::failure();
1776   return mlir::success();
1777 }
1778 
1779 static void print(mlir::OpAsmPrinter &p, fir::LenParamIndexOp &op) {
1780   p << ' '
1781     << op.getOperation()
1782            ->getAttrOfType<mlir::StringAttr>(
1783                fir::LenParamIndexOp::fieldAttrName())
1784            .getValue()
1785     << ", " << op.getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName());
1786 }
1787 
1788 //===----------------------------------------------------------------------===//
1789 // LoadOp
1790 //===----------------------------------------------------------------------===//
1791 
1792 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
1793                         mlir::Value refVal) {
1794   if (!refVal) {
1795     mlir::emitError(result.location, "LoadOp has null argument");
1796     return;
1797   }
1798   auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType());
1799   if (!eleTy) {
1800     mlir::emitError(result.location, "not a memory reference type");
1801     return;
1802   }
1803   result.addOperands(refVal);
1804   result.addTypes(eleTy);
1805 }
1806 
1807 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
1808   if ((ele = fir::dyn_cast_ptrEleTy(ref)))
1809     return mlir::success();
1810   return mlir::failure();
1811 }
1812 
1813 static mlir::ParseResult parseLoadOp(mlir::OpAsmParser &parser,
1814                                      mlir::OperationState &result) {
1815   mlir::Type type;
1816   mlir::OpAsmParser::OperandType oper;
1817   if (parser.parseOperand(oper) ||
1818       parser.parseOptionalAttrDict(result.attributes) ||
1819       parser.parseColonType(type) ||
1820       parser.resolveOperand(oper, type, result.operands))
1821     return mlir::failure();
1822   mlir::Type eleTy;
1823   if (fir::LoadOp::getElementOf(eleTy, type) ||
1824       parser.addTypeToList(eleTy, result.types))
1825     return mlir::failure();
1826   return mlir::success();
1827 }
1828 
1829 static void print(mlir::OpAsmPrinter &p, fir::LoadOp &op) {
1830   p << ' ';
1831   p.printOperand(op.memref());
1832   p.printOptionalAttrDict(op.getOperation()->getAttrs(), {});
1833   p << " : " << op.memref().getType();
1834 }
1835 
1836 //===----------------------------------------------------------------------===//
1837 // DoLoopOp
1838 //===----------------------------------------------------------------------===//
1839 
1840 void fir::DoLoopOp::build(mlir::OpBuilder &builder,
1841                           mlir::OperationState &result, mlir::Value lb,
1842                           mlir::Value ub, mlir::Value step, bool unordered,
1843                           bool finalCountValue, mlir::ValueRange iterArgs,
1844                           llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1845   result.addOperands({lb, ub, step});
1846   result.addOperands(iterArgs);
1847   if (finalCountValue) {
1848     result.addTypes(builder.getIndexType());
1849     result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr());
1850   }
1851   for (auto v : iterArgs)
1852     result.addTypes(v.getType());
1853   mlir::Region *bodyRegion = result.addRegion();
1854   bodyRegion->push_back(new Block{});
1855   if (iterArgs.empty() && !finalCountValue)
1856     DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
1857   bodyRegion->front().addArgument(builder.getIndexType());
1858   bodyRegion->front().addArguments(iterArgs.getTypes());
1859   if (unordered)
1860     result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr());
1861   result.addAttributes(attributes);
1862 }
1863 
1864 static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser,
1865                                        mlir::OperationState &result) {
1866   auto &builder = parser.getBuilder();
1867   mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step;
1868   // Parse the induction variable followed by '='.
1869   if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
1870     return mlir::failure();
1871 
1872   // Parse loop bounds.
1873   auto indexType = builder.getIndexType();
1874   if (parser.parseOperand(lb) ||
1875       parser.resolveOperand(lb, indexType, result.operands) ||
1876       parser.parseKeyword("to") || parser.parseOperand(ub) ||
1877       parser.resolveOperand(ub, indexType, result.operands) ||
1878       parser.parseKeyword("step") || parser.parseOperand(step) ||
1879       parser.resolveOperand(step, indexType, result.operands))
1880     return failure();
1881 
1882   if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
1883     result.addAttribute("unordered", builder.getUnitAttr());
1884 
1885   // Parse the optional initial iteration arguments.
1886   llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs, operands;
1887   llvm::SmallVector<mlir::Type> argTypes;
1888   auto prependCount = false;
1889   regionArgs.push_back(inductionVariable);
1890 
1891   if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1892     // Parse assignment list and results type list.
1893     if (parser.parseAssignmentList(regionArgs, operands) ||
1894         parser.parseArrowTypeList(result.types))
1895       return failure();
1896     if (result.types.size() == operands.size() + 1)
1897       prependCount = true;
1898     // Resolve input operands.
1899     llvm::ArrayRef<mlir::Type> resTypes = result.types;
1900     for (auto operand_type :
1901          llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
1902       if (parser.resolveOperand(std::get<0>(operand_type),
1903                                 std::get<1>(operand_type), result.operands))
1904         return failure();
1905   } else if (succeeded(parser.parseOptionalArrow())) {
1906     if (parser.parseKeyword("index"))
1907       return failure();
1908     result.types.push_back(indexType);
1909     prependCount = true;
1910   }
1911 
1912   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1913     return mlir::failure();
1914 
1915   // Induction variable.
1916   if (prependCount)
1917     result.addAttribute(DoLoopOp::finalValueAttrName(result.name),
1918                         builder.getUnitAttr());
1919   else
1920     argTypes.push_back(indexType);
1921   // Loop carried variables
1922   argTypes.append(result.types.begin(), result.types.end());
1923   // Parse the body region.
1924   auto *body = result.addRegion();
1925   if (regionArgs.size() != argTypes.size())
1926     return parser.emitError(
1927         parser.getNameLoc(),
1928         "mismatch in number of loop-carried values and defined values");
1929 
1930   if (parser.parseRegion(*body, regionArgs, argTypes))
1931     return failure();
1932 
1933   DoLoopOp::ensureTerminator(*body, builder, result.location);
1934 
1935   return mlir::success();
1936 }
1937 
1938 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
1939   auto ivArg = val.dyn_cast<mlir::BlockArgument>();
1940   if (!ivArg)
1941     return {};
1942   assert(ivArg.getOwner() && "unlinked block argument");
1943   auto *containingInst = ivArg.getOwner()->getParentOp();
1944   return dyn_cast_or_null<fir::DoLoopOp>(containingInst);
1945 }
1946 
1947 // Lifted from loop.loop
1948 static mlir::LogicalResult verify(fir::DoLoopOp op) {
1949   // Check that the body defines as single block argument for the induction
1950   // variable.
1951   auto *body = op.getBody();
1952   if (!body->getArgument(0).getType().isIndex())
1953     return op.emitOpError(
1954         "expected body first argument to be an index argument for "
1955         "the induction variable");
1956 
1957   auto opNumResults = op.getNumResults();
1958   if (opNumResults == 0)
1959     return success();
1960 
1961   if (op.finalValue()) {
1962     if (op.unordered())
1963       return op.emitOpError("unordered loop has no final value");
1964     opNumResults--;
1965   }
1966   if (op.getNumIterOperands() != opNumResults)
1967     return op.emitOpError(
1968         "mismatch in number of loop-carried values and defined values");
1969   if (op.getNumRegionIterArgs() != opNumResults)
1970     return op.emitOpError(
1971         "mismatch in number of basic block args and defined values");
1972   auto iterOperands = op.getIterOperands();
1973   auto iterArgs = op.getRegionIterArgs();
1974   auto opResults =
1975       op.finalValue() ? op.getResults().drop_front() : op.getResults();
1976   unsigned i = 0;
1977   for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
1978     if (std::get<0>(e).getType() != std::get<2>(e).getType())
1979       return op.emitOpError() << "types mismatch between " << i
1980                               << "th iter operand and defined value";
1981     if (std::get<1>(e).getType() != std::get<2>(e).getType())
1982       return op.emitOpError() << "types mismatch between " << i
1983                               << "th iter region arg and defined value";
1984 
1985     i++;
1986   }
1987   return success();
1988 }
1989 
1990 static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) {
1991   bool printBlockTerminators = false;
1992   p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to "
1993     << op.upperBound() << " step " << op.step();
1994   if (op.unordered())
1995     p << " unordered";
1996   if (op.hasIterOperands()) {
1997     p << " iter_args(";
1998     auto regionArgs = op.getRegionIterArgs();
1999     auto operands = op.getIterOperands();
2000     llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
2001       p << std::get<0>(it) << " = " << std::get<1>(it);
2002     });
2003     p << ") -> (" << op.getResultTypes() << ')';
2004     printBlockTerminators = true;
2005   } else if (op.finalValue()) {
2006     p << " -> " << op.getResultTypes();
2007     printBlockTerminators = true;
2008   }
2009   p.printOptionalAttrDictWithKeyword(op->getAttrs(),
2010                                      {"unordered", "finalValue"});
2011   p << ' ';
2012   p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
2013                 printBlockTerminators);
2014 }
2015 
2016 mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); }
2017 
2018 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) {
2019   return !region().isAncestor(value.getParentRegion());
2020 }
2021 
2022 mlir::LogicalResult
2023 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) {
2024   for (auto op : ops)
2025     op->moveBefore(*this);
2026   return success();
2027 }
2028 
2029 /// Translate a value passed as an iter_arg to the corresponding block
2030 /// argument in the body of the loop.
2031 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
2032   for (auto i : llvm::enumerate(initArgs()))
2033     if (iterArg == i.value())
2034       return region().front().getArgument(i.index() + 1);
2035   return {};
2036 }
2037 
2038 /// Translate the result vector (by index number) to the corresponding value
2039 /// to the `fir.result` Op.
2040 void fir::DoLoopOp::resultToSourceOps(
2041     llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
2042   auto oper = finalValue() ? resultNum + 1 : resultNum;
2043   auto *term = region().front().getTerminator();
2044   if (oper < term->getNumOperands())
2045     results.push_back(term->getOperand(oper));
2046 }
2047 
2048 /// Translate the block argument (by index number) to the corresponding value
2049 /// passed as an iter_arg to the parent DoLoopOp.
2050 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
2051   if (blockArgNum > 0 && blockArgNum <= initArgs().size())
2052     return initArgs()[blockArgNum - 1];
2053   return {};
2054 }
2055 
2056 //===----------------------------------------------------------------------===//
2057 // DTEntryOp
2058 //===----------------------------------------------------------------------===//
2059 
2060 static mlir::ParseResult parseDTEntryOp(mlir::OpAsmParser &parser,
2061                                         mlir::OperationState &result) {
2062   llvm::StringRef methodName;
2063   // allow `methodName` or `"methodName"`
2064   if (failed(parser.parseOptionalKeyword(&methodName))) {
2065     mlir::StringAttr methodAttr;
2066     if (parser.parseAttribute(methodAttr,
2067                               fir::DTEntryOp::getMethodAttrNameStr(),
2068                               result.attributes))
2069       return mlir::failure();
2070   } else {
2071     result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(),
2072                         parser.getBuilder().getStringAttr(methodName));
2073   }
2074   mlir::SymbolRefAttr calleeAttr;
2075   if (parser.parseComma() ||
2076       parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(),
2077                             result.attributes))
2078     return mlir::failure();
2079   return mlir::success();
2080 }
2081 
2082 static void print(mlir::OpAsmPrinter &p, fir::DTEntryOp &op) {
2083   p << ' ' << op.getMethodAttr() << ", " << op.getProcAttr();
2084 }
2085 
2086 //===----------------------------------------------------------------------===//
2087 // ReboxOp
2088 //===----------------------------------------------------------------------===//
2089 
2090 /// Get the scalar type related to a fir.box type.
2091 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
2092 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
2093   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2094   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2095     return seqTy.getEleTy();
2096   return eleTy;
2097 }
2098 
2099 /// Get the rank from a !fir.box type
2100 static unsigned getBoxRank(mlir::Type boxTy) {
2101   auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2102   if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2103     return seqTy.getDimension();
2104   return 0;
2105 }
2106 
2107 static mlir::LogicalResult verify(fir::ReboxOp op) {
2108   auto inputBoxTy = op.box().getType();
2109   if (fir::isa_unknown_size_box(inputBoxTy))
2110     return op.emitOpError("box operand must not have unknown rank or type");
2111   auto outBoxTy = op.getType();
2112   if (fir::isa_unknown_size_box(outBoxTy))
2113     return op.emitOpError("result type must not have unknown rank or type");
2114   auto inputRank = getBoxRank(inputBoxTy);
2115   auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
2116   auto outRank = getBoxRank(outBoxTy);
2117   auto outEleTy = getBoxScalarEleTy(outBoxTy);
2118 
2119   if (auto slice = op.slice()) {
2120     // Slicing case
2121     if (slice.getType().cast<fir::SliceType>().getRank() != inputRank)
2122       return op.emitOpError("slice operand rank must match box operand rank");
2123     if (auto shape = op.shape()) {
2124       if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) {
2125         if (shiftTy.getRank() != inputRank)
2126           return op.emitOpError("shape operand and input box ranks must match "
2127                                 "when there is a slice");
2128       } else {
2129         return op.emitOpError("shape operand must absent or be a fir.shift "
2130                               "when there is a slice");
2131       }
2132     }
2133     if (auto sliceOp = slice.getDefiningOp()) {
2134       auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
2135       if (slicedRank != outRank)
2136         return op.emitOpError("result type rank and rank after applying slice "
2137                               "operand must match");
2138     }
2139   } else {
2140     // Reshaping case
2141     unsigned shapeRank = inputRank;
2142     if (auto shape = op.shape()) {
2143       auto ty = shape.getType();
2144       if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
2145         shapeRank = shapeTy.getRank();
2146       } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
2147         shapeRank = shapeShiftTy.getRank();
2148       } else {
2149         auto shiftTy = ty.cast<fir::ShiftType>();
2150         shapeRank = shiftTy.getRank();
2151         if (shapeRank != inputRank)
2152           return op.emitOpError("shape operand and input box ranks must match "
2153                                 "when the shape is a fir.shift");
2154       }
2155     }
2156     if (shapeRank != outRank)
2157       return op.emitOpError("result type and shape operand ranks must match");
2158   }
2159 
2160   if (inputEleTy != outEleTy)
2161     // TODO: check that outBoxTy is a parent type of inputBoxTy for derived
2162     // types.
2163     if (!inputEleTy.isa<fir::RecordType>())
2164       return op.emitOpError(
2165           "op input and output element types must match for intrinsic types");
2166   return mlir::success();
2167 }
2168 
2169 //===----------------------------------------------------------------------===//
2170 // ResultOp
2171 //===----------------------------------------------------------------------===//
2172 
2173 static mlir::LogicalResult verify(fir::ResultOp op) {
2174   auto *parentOp = op->getParentOp();
2175   auto results = parentOp->getResults();
2176   auto operands = op->getOperands();
2177 
2178   if (parentOp->getNumResults() != op.getNumOperands())
2179     return op.emitOpError() << "parent of result must have same arity";
2180   for (auto e : llvm::zip(results, operands))
2181     if (std::get<0>(e).getType() != std::get<1>(e).getType())
2182       return op.emitOpError()
2183              << "types mismatch between result op and its parent";
2184   return success();
2185 }
2186 
2187 //===----------------------------------------------------------------------===//
2188 // SaveResultOp
2189 //===----------------------------------------------------------------------===//
2190 
2191 static mlir::LogicalResult verify(fir::SaveResultOp op) {
2192   auto resultType = op.value().getType();
2193   if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType()))
2194     return op.emitOpError("value type must match memory reference type");
2195   if (fir::isa_unknown_size_box(resultType))
2196     return op.emitOpError("cannot save !fir.box of unknown rank or type");
2197 
2198   if (resultType.isa<fir::BoxType>()) {
2199     if (op.shape() || !op.typeparams().empty())
2200       return op.emitOpError(
2201           "must not have shape or length operands if the value is a fir.box");
2202     return mlir::success();
2203   }
2204 
2205   // fir.record or fir.array case.
2206   unsigned shapeTyRank = 0;
2207   if (auto shapeOp = op.shape()) {
2208     auto shapeTy = shapeOp.getType();
2209     if (auto s = shapeTy.dyn_cast<fir::ShapeType>())
2210       shapeTyRank = s.getRank();
2211     else
2212       shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank();
2213   }
2214 
2215   auto eleTy = resultType;
2216   if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) {
2217     if (seqTy.getDimension() != shapeTyRank)
2218       op.emitOpError("shape operand must be provided and have the value rank "
2219                      "when the value is a fir.array");
2220     eleTy = seqTy.getEleTy();
2221   } else {
2222     if (shapeTyRank != 0)
2223       op.emitOpError(
2224           "shape operand should only be provided if the value is a fir.array");
2225   }
2226 
2227   if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
2228     if (recTy.getNumLenParams() != op.typeparams().size())
2229       op.emitOpError("length parameters number must match with the value type "
2230                      "length parameters");
2231   } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
2232     if (op.typeparams().size() > 1)
2233       op.emitOpError("no more than one length parameter must be provided for "
2234                      "character value");
2235   } else {
2236     if (!op.typeparams().empty())
2237       op.emitOpError(
2238           "length parameters must not be provided for this value type");
2239   }
2240 
2241   return mlir::success();
2242 }
2243 
2244 //===----------------------------------------------------------------------===//
2245 // SelectOp
2246 //===----------------------------------------------------------------------===//
2247 
2248 static constexpr llvm::StringRef getCompareOffsetAttr() {
2249   return "compare_operand_offsets";
2250 }
2251 
2252 static constexpr llvm::StringRef getTargetOffsetAttr() {
2253   return "target_operand_offsets";
2254 }
2255 
2256 template <typename A, typename... AdditionalArgs>
2257 static A getSubOperands(unsigned pos, A allArgs,
2258                         mlir::DenseIntElementsAttr ranges,
2259                         AdditionalArgs &&...additionalArgs) {
2260   unsigned start = 0;
2261   for (unsigned i = 0; i < pos; ++i)
2262     start += (*(ranges.begin() + i)).getZExtValue();
2263   return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
2264                        std::forward<AdditionalArgs>(additionalArgs)...);
2265 }
2266 
2267 static mlir::MutableOperandRange
2268 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
2269                             StringRef offsetAttr) {
2270   Operation *owner = operands.getOwner();
2271   NamedAttribute targetOffsetAttr =
2272       *owner->getAttrDictionary().getNamed(offsetAttr);
2273   return getSubOperands(
2274       pos, operands, targetOffsetAttr.getValue().cast<DenseIntElementsAttr>(),
2275       mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
2276 }
2277 
2278 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
2279   return attr.getNumElements();
2280 }
2281 
2282 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
2283   return {};
2284 }
2285 
2286 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2287 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2288   return {};
2289 }
2290 
2291 llvm::Optional<mlir::MutableOperandRange>
2292 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) {
2293   return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
2294                                        getTargetOffsetAttr());
2295 }
2296 
2297 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2298 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2299                                     unsigned oper) {
2300   auto a =
2301       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2302   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2303       getOperandSegmentSizeAttr());
2304   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2305 }
2306 
2307 llvm::Optional<mlir::ValueRange>
2308 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) {
2309   auto a =
2310       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2311   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2312       getOperandSegmentSizeAttr());
2313   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2314 }
2315 
2316 unsigned fir::SelectOp::targetOffsetSize() {
2317   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2318       getTargetOffsetAttr()));
2319 }
2320 
2321 //===----------------------------------------------------------------------===//
2322 // SelectCaseOp
2323 //===----------------------------------------------------------------------===//
2324 
2325 llvm::Optional<mlir::OperandRange>
2326 fir::SelectCaseOp::getCompareOperands(unsigned cond) {
2327   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2328       getCompareOffsetAttr());
2329   return {getSubOperands(cond, compareArgs(), a)};
2330 }
2331 
2332 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2333 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands,
2334                                       unsigned cond) {
2335   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2336       getCompareOffsetAttr());
2337   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2338       getOperandSegmentSizeAttr());
2339   return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2340 }
2341 
2342 llvm::Optional<mlir::ValueRange>
2343 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands,
2344                                       unsigned cond) {
2345   auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2346       getCompareOffsetAttr());
2347   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2348       getOperandSegmentSizeAttr());
2349   return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2350 }
2351 
2352 llvm::Optional<mlir::MutableOperandRange>
2353 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) {
2354   return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
2355                                        getTargetOffsetAttr());
2356 }
2357 
2358 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2359 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2360                                         unsigned oper) {
2361   auto a =
2362       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2363   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2364       getOperandSegmentSizeAttr());
2365   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2366 }
2367 
2368 llvm::Optional<mlir::ValueRange>
2369 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands,
2370                                         unsigned oper) {
2371   auto a =
2372       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2373   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2374       getOperandSegmentSizeAttr());
2375   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2376 }
2377 
2378 // parser for fir.select_case Op
2379 static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser,
2380                                          mlir::OperationState &result) {
2381   mlir::OpAsmParser::OperandType selector;
2382   mlir::Type type;
2383   if (parseSelector(parser, result, selector, type))
2384     return mlir::failure();
2385 
2386   llvm::SmallVector<mlir::Attribute> attrs;
2387   llvm::SmallVector<mlir::OpAsmParser::OperandType> opers;
2388   llvm::SmallVector<mlir::Block *> dests;
2389   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2390   llvm::SmallVector<int32_t> argOffs;
2391   int32_t offSize = 0;
2392   while (true) {
2393     mlir::Attribute attr;
2394     mlir::Block *dest;
2395     llvm::SmallVector<mlir::Value> destArg;
2396     mlir::NamedAttrList temp;
2397     if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) ||
2398         parser.parseComma())
2399       return mlir::failure();
2400     attrs.push_back(attr);
2401     if (attr.dyn_cast_or_null<mlir::UnitAttr>()) {
2402       argOffs.push_back(0);
2403     } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) {
2404       mlir::OpAsmParser::OperandType oper1;
2405       mlir::OpAsmParser::OperandType oper2;
2406       if (parser.parseOperand(oper1) || parser.parseComma() ||
2407           parser.parseOperand(oper2) || parser.parseComma())
2408         return mlir::failure();
2409       opers.push_back(oper1);
2410       opers.push_back(oper2);
2411       argOffs.push_back(2);
2412       offSize += 2;
2413     } else {
2414       mlir::OpAsmParser::OperandType oper;
2415       if (parser.parseOperand(oper) || parser.parseComma())
2416         return mlir::failure();
2417       opers.push_back(oper);
2418       argOffs.push_back(1);
2419       ++offSize;
2420     }
2421     if (parser.parseSuccessorAndUseList(dest, destArg))
2422       return mlir::failure();
2423     dests.push_back(dest);
2424     destArgs.push_back(destArg);
2425     if (mlir::succeeded(parser.parseOptionalRSquare()))
2426       break;
2427     if (parser.parseComma())
2428       return mlir::failure();
2429   }
2430   result.addAttribute(fir::SelectCaseOp::getCasesAttr(),
2431                       parser.getBuilder().getArrayAttr(attrs));
2432   if (parser.resolveOperands(opers, type, result.operands))
2433     return mlir::failure();
2434   llvm::SmallVector<int32_t> targOffs;
2435   int32_t toffSize = 0;
2436   const auto count = dests.size();
2437   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2438     result.addSuccessors(dests[i]);
2439     result.addOperands(destArgs[i]);
2440     auto argSize = destArgs[i].size();
2441     targOffs.push_back(argSize);
2442     toffSize += argSize;
2443   }
2444   auto &bld = parser.getBuilder();
2445   result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(),
2446                       bld.getI32VectorAttr({1, offSize, toffSize}));
2447   result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs));
2448   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs));
2449   return mlir::success();
2450 }
2451 
2452 static void print(mlir::OpAsmPrinter &p, fir::SelectCaseOp &op) {
2453   p << ' ';
2454   p.printOperand(op.getSelector());
2455   p << " : " << op.getSelector().getType() << " [";
2456   auto cases = op.getOperation()
2457                    ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr())
2458                    .getValue();
2459   auto count = op.getNumConditions();
2460   for (decltype(count) i = 0; i != count; ++i) {
2461     if (i)
2462       p << ", ";
2463     p << cases[i] << ", ";
2464     if (!cases[i].isa<mlir::UnitAttr>()) {
2465       auto caseArgs = *op.getCompareOperands(i);
2466       p.printOperand(*caseArgs.begin());
2467       p << ", ";
2468       if (cases[i].isa<fir::ClosedIntervalAttr>()) {
2469         p.printOperand(*(++caseArgs.begin()));
2470         p << ", ";
2471       }
2472     }
2473     op.printSuccessorAtIndex(p, i);
2474   }
2475   p << ']';
2476   p.printOptionalAttrDict(op.getOperation()->getAttrs(),
2477                           {op.getCasesAttr(), getCompareOffsetAttr(),
2478                            getTargetOffsetAttr(),
2479                            op.getOperandSegmentSizeAttr()});
2480 }
2481 
2482 unsigned fir::SelectCaseOp::compareOffsetSize() {
2483   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2484       getCompareOffsetAttr()));
2485 }
2486 
2487 unsigned fir::SelectCaseOp::targetOffsetSize() {
2488   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2489       getTargetOffsetAttr()));
2490 }
2491 
2492 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2493                               mlir::OperationState &result,
2494                               mlir::Value selector,
2495                               llvm::ArrayRef<mlir::Attribute> compareAttrs,
2496                               llvm::ArrayRef<mlir::ValueRange> cmpOperands,
2497                               llvm::ArrayRef<mlir::Block *> destinations,
2498                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2499                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2500   result.addOperands(selector);
2501   result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs));
2502   llvm::SmallVector<int32_t> operOffs;
2503   int32_t operSize = 0;
2504   for (auto attr : compareAttrs) {
2505     if (attr.isa<fir::ClosedIntervalAttr>()) {
2506       operOffs.push_back(2);
2507       operSize += 2;
2508     } else if (attr.isa<mlir::UnitAttr>()) {
2509       operOffs.push_back(0);
2510     } else {
2511       operOffs.push_back(1);
2512       ++operSize;
2513     }
2514   }
2515   for (auto ops : cmpOperands)
2516     result.addOperands(ops);
2517   result.addAttribute(getCompareOffsetAttr(),
2518                       builder.getI32VectorAttr(operOffs));
2519   const auto count = destinations.size();
2520   for (auto d : destinations)
2521     result.addSuccessors(d);
2522   const auto opCount = destOperands.size();
2523   llvm::SmallVector<int32_t> argOffs;
2524   int32_t sumArgs = 0;
2525   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2526     if (i < opCount) {
2527       result.addOperands(destOperands[i]);
2528       const auto argSz = destOperands[i].size();
2529       argOffs.push_back(argSz);
2530       sumArgs += argSz;
2531     } else {
2532       argOffs.push_back(0);
2533     }
2534   }
2535   result.addAttribute(getOperandSegmentSizeAttr(),
2536                       builder.getI32VectorAttr({1, operSize, sumArgs}));
2537   result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2538   result.addAttributes(attributes);
2539 }
2540 
2541 /// This builder has a slightly simplified interface in that the list of
2542 /// operands need not be partitioned by the builder. Instead the operands are
2543 /// partitioned here, before being passed to the default builder. This
2544 /// partitioning is unchecked, so can go awry on bad input.
2545 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2546                               mlir::OperationState &result,
2547                               mlir::Value selector,
2548                               llvm::ArrayRef<mlir::Attribute> compareAttrs,
2549                               llvm::ArrayRef<mlir::Value> cmpOpList,
2550                               llvm::ArrayRef<mlir::Block *> destinations,
2551                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2552                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2553   llvm::SmallVector<mlir::ValueRange> cmpOpers;
2554   auto iter = cmpOpList.begin();
2555   for (auto &attr : compareAttrs) {
2556     if (attr.isa<fir::ClosedIntervalAttr>()) {
2557       cmpOpers.push_back(mlir::ValueRange({iter, iter + 2}));
2558       iter += 2;
2559     } else if (attr.isa<UnitAttr>()) {
2560       cmpOpers.push_back(mlir::ValueRange{});
2561     } else {
2562       cmpOpers.push_back(mlir::ValueRange({iter, iter + 1}));
2563       ++iter;
2564     }
2565   }
2566   build(builder, result, selector, compareAttrs, cmpOpers, destinations,
2567         destOperands, attributes);
2568 }
2569 
2570 static mlir::LogicalResult verify(fir::SelectCaseOp &op) {
2571   if (!(op.getSelector().getType().isa<mlir::IntegerType>() ||
2572         op.getSelector().getType().isa<mlir::IndexType>() ||
2573         op.getSelector().getType().isa<fir::IntegerType>() ||
2574         op.getSelector().getType().isa<fir::LogicalType>() ||
2575         op.getSelector().getType().isa<fir::CharacterType>()))
2576     return op.emitOpError("must be an integer, character, or logical");
2577   auto cases = op.getOperation()
2578                    ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr())
2579                    .getValue();
2580   auto count = op.getNumDest();
2581   if (count == 0)
2582     return op.emitOpError("must have at least one successor");
2583   if (op.getNumConditions() != count)
2584     return op.emitOpError("number of conditions and successors don't match");
2585   if (op.compareOffsetSize() != count)
2586     return op.emitOpError("incorrect number of compare operand groups");
2587   if (op.targetOffsetSize() != count)
2588     return op.emitOpError("incorrect number of successor operand groups");
2589   for (decltype(count) i = 0; i != count; ++i) {
2590     auto &attr = cases[i];
2591     if (!(attr.isa<fir::PointIntervalAttr>() ||
2592           attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() ||
2593           attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>()))
2594       return op.emitOpError("incorrect select case attribute type");
2595   }
2596   return mlir::success();
2597 }
2598 
2599 //===----------------------------------------------------------------------===//
2600 // SelectRankOp
2601 //===----------------------------------------------------------------------===//
2602 
2603 llvm::Optional<mlir::OperandRange>
2604 fir::SelectRankOp::getCompareOperands(unsigned) {
2605   return {};
2606 }
2607 
2608 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2609 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2610   return {};
2611 }
2612 
2613 llvm::Optional<mlir::MutableOperandRange>
2614 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) {
2615   return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
2616                                        getTargetOffsetAttr());
2617 }
2618 
2619 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2620 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2621                                         unsigned oper) {
2622   auto a =
2623       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2624   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2625       getOperandSegmentSizeAttr());
2626   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2627 }
2628 
2629 llvm::Optional<mlir::ValueRange>
2630 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands,
2631                                         unsigned oper) {
2632   auto a =
2633       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2634   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2635       getOperandSegmentSizeAttr());
2636   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2637 }
2638 
2639 unsigned fir::SelectRankOp::targetOffsetSize() {
2640   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2641       getTargetOffsetAttr()));
2642 }
2643 
2644 //===----------------------------------------------------------------------===//
2645 // SelectTypeOp
2646 //===----------------------------------------------------------------------===//
2647 
2648 llvm::Optional<mlir::OperandRange>
2649 fir::SelectTypeOp::getCompareOperands(unsigned) {
2650   return {};
2651 }
2652 
2653 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2654 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2655   return {};
2656 }
2657 
2658 llvm::Optional<mlir::MutableOperandRange>
2659 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) {
2660   return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
2661                                        getTargetOffsetAttr());
2662 }
2663 
2664 llvm::Optional<llvm::ArrayRef<mlir::Value>>
2665 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2666                                         unsigned oper) {
2667   auto a =
2668       (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2669   auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2670       getOperandSegmentSizeAttr());
2671   return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2672 }
2673 
2674 static ParseResult parseSelectType(OpAsmParser &parser,
2675                                    OperationState &result) {
2676   mlir::OpAsmParser::OperandType selector;
2677   mlir::Type type;
2678   if (parseSelector(parser, result, selector, type))
2679     return mlir::failure();
2680 
2681   llvm::SmallVector<mlir::Attribute> attrs;
2682   llvm::SmallVector<mlir::Block *> dests;
2683   llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2684   while (true) {
2685     mlir::Attribute attr;
2686     mlir::Block *dest;
2687     llvm::SmallVector<mlir::Value> destArg;
2688     mlir::NamedAttrList temp;
2689     if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() ||
2690         parser.parseSuccessorAndUseList(dest, destArg))
2691       return mlir::failure();
2692     attrs.push_back(attr);
2693     dests.push_back(dest);
2694     destArgs.push_back(destArg);
2695     if (mlir::succeeded(parser.parseOptionalRSquare()))
2696       break;
2697     if (parser.parseComma())
2698       return mlir::failure();
2699   }
2700   auto &bld = parser.getBuilder();
2701   result.addAttribute(fir::SelectTypeOp::getCasesAttr(),
2702                       bld.getArrayAttr(attrs));
2703   llvm::SmallVector<int32_t> argOffs;
2704   int32_t offSize = 0;
2705   const auto count = dests.size();
2706   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2707     result.addSuccessors(dests[i]);
2708     result.addOperands(destArgs[i]);
2709     auto argSize = destArgs[i].size();
2710     argOffs.push_back(argSize);
2711     offSize += argSize;
2712   }
2713   result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(),
2714                       bld.getI32VectorAttr({1, 0, offSize}));
2715   result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2716   return mlir::success();
2717 }
2718 
2719 unsigned fir::SelectTypeOp::targetOffsetSize() {
2720   return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2721       getTargetOffsetAttr()));
2722 }
2723 
2724 static void print(mlir::OpAsmPrinter &p, fir::SelectTypeOp &op) {
2725   p << ' ';
2726   p.printOperand(op.getSelector());
2727   p << " : " << op.getSelector().getType() << " [";
2728   auto cases = op.getOperation()
2729                    ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr())
2730                    .getValue();
2731   auto count = op.getNumConditions();
2732   for (decltype(count) i = 0; i != count; ++i) {
2733     if (i)
2734       p << ", ";
2735     p << cases[i] << ", ";
2736     op.printSuccessorAtIndex(p, i);
2737   }
2738   p << ']';
2739   p.printOptionalAttrDict(op.getOperation()->getAttrs(),
2740                           {op.getCasesAttr(), getCompareOffsetAttr(),
2741                            getTargetOffsetAttr(),
2742                            fir::SelectTypeOp::getOperandSegmentSizeAttr()});
2743 }
2744 
2745 static mlir::LogicalResult verify(fir::SelectTypeOp &op) {
2746   if (!(op.getSelector().getType().isa<fir::BoxType>()))
2747     return op.emitOpError("must be a boxed type");
2748   auto cases = op.getOperation()
2749                    ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr())
2750                    .getValue();
2751   auto count = op.getNumDest();
2752   if (count == 0)
2753     return op.emitOpError("must have at least one successor");
2754   if (op.getNumConditions() != count)
2755     return op.emitOpError("number of conditions and successors don't match");
2756   if (op.targetOffsetSize() != count)
2757     return op.emitOpError("incorrect number of successor operand groups");
2758   for (decltype(count) i = 0; i != count; ++i) {
2759     auto &attr = cases[i];
2760     if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() ||
2761           attr.isa<mlir::UnitAttr>()))
2762       return op.emitOpError("invalid type-case alternative");
2763   }
2764   return mlir::success();
2765 }
2766 
2767 void fir::SelectTypeOp::build(mlir::OpBuilder &builder,
2768                               mlir::OperationState &result,
2769                               mlir::Value selector,
2770                               llvm::ArrayRef<mlir::Attribute> typeOperands,
2771                               llvm::ArrayRef<mlir::Block *> destinations,
2772                               llvm::ArrayRef<mlir::ValueRange> destOperands,
2773                               llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2774   result.addOperands(selector);
2775   result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands));
2776   const auto count = destinations.size();
2777   for (mlir::Block *dest : destinations)
2778     result.addSuccessors(dest);
2779   const auto opCount = destOperands.size();
2780   llvm::SmallVector<int32_t> argOffs;
2781   int32_t sumArgs = 0;
2782   for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2783     if (i < opCount) {
2784       result.addOperands(destOperands[i]);
2785       const auto argSz = destOperands[i].size();
2786       argOffs.push_back(argSz);
2787       sumArgs += argSz;
2788     } else {
2789       argOffs.push_back(0);
2790     }
2791   }
2792   result.addAttribute(getOperandSegmentSizeAttr(),
2793                       builder.getI32VectorAttr({1, 0, sumArgs}));
2794   result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2795   result.addAttributes(attributes);
2796 }
2797 
2798 //===----------------------------------------------------------------------===//
2799 // ShapeOp
2800 //===----------------------------------------------------------------------===//
2801 
2802 static mlir::LogicalResult verify(fir::ShapeOp &op) {
2803   auto size = op.extents().size();
2804   auto shapeTy = op.getType().dyn_cast<fir::ShapeType>();
2805   assert(shapeTy && "must be a shape type");
2806   if (shapeTy.getRank() != size)
2807     return op.emitOpError("shape type rank mismatch");
2808   return mlir::success();
2809 }
2810 
2811 //===----------------------------------------------------------------------===//
2812 // ShapeShiftOp
2813 //===----------------------------------------------------------------------===//
2814 
2815 static mlir::LogicalResult verify(fir::ShapeShiftOp &op) {
2816   auto size = op.pairs().size();
2817   if (size < 2 || size > 16 * 2)
2818     return op.emitOpError("incorrect number of args");
2819   if (size % 2 != 0)
2820     return op.emitOpError("requires a multiple of 2 args");
2821   auto shapeTy = op.getType().dyn_cast<fir::ShapeShiftType>();
2822   assert(shapeTy && "must be a shape shift type");
2823   if (shapeTy.getRank() * 2 != size)
2824     return op.emitOpError("shape type rank mismatch");
2825   return mlir::success();
2826 }
2827 
2828 //===----------------------------------------------------------------------===//
2829 // ShiftOp
2830 //===----------------------------------------------------------------------===//
2831 
2832 static mlir::LogicalResult verify(fir::ShiftOp &op) {
2833   auto size = op.origins().size();
2834   auto shiftTy = op.getType().dyn_cast<fir::ShiftType>();
2835   assert(shiftTy && "must be a shift type");
2836   if (shiftTy.getRank() != size)
2837     return op.emitOpError("shift type rank mismatch");
2838   return mlir::success();
2839 }
2840 
2841 //===----------------------------------------------------------------------===//
2842 // SliceOp
2843 //===----------------------------------------------------------------------===//
2844 
2845 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
2846                          mlir::ValueRange trips, mlir::ValueRange path,
2847                          mlir::ValueRange substr) {
2848   const auto rank = trips.size() / 3;
2849   auto sliceTy = fir::SliceType::get(builder.getContext(), rank);
2850   build(builder, result, sliceTy, trips, path, substr);
2851 }
2852 
2853 /// Return the output rank of a slice op. The output rank must be between 1 and
2854 /// the rank of the array being sliced (inclusive).
2855 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) {
2856   unsigned rank = 0;
2857   if (!triples.empty()) {
2858     for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
2859       auto *op = triples[i].getDefiningOp();
2860       if (!mlir::isa_and_nonnull<fir::UndefOp>(op))
2861         ++rank;
2862     }
2863     assert(rank > 0);
2864   }
2865   return rank;
2866 }
2867 
2868 static mlir::LogicalResult verify(fir::SliceOp &op) {
2869   auto size = op.triples().size();
2870   if (size < 3 || size > 16 * 3)
2871     return op.emitOpError("incorrect number of args for triple");
2872   if (size % 3 != 0)
2873     return op.emitOpError("requires a multiple of 3 args");
2874   auto sliceTy = op.getType().dyn_cast<fir::SliceType>();
2875   assert(sliceTy && "must be a slice type");
2876   if (sliceTy.getRank() * 3 != size)
2877     return op.emitOpError("slice type rank mismatch");
2878   return mlir::success();
2879 }
2880 
2881 //===----------------------------------------------------------------------===//
2882 // StoreOp
2883 //===----------------------------------------------------------------------===//
2884 
2885 mlir::Type fir::StoreOp::elementType(mlir::Type refType) {
2886   return fir::dyn_cast_ptrEleTy(refType);
2887 }
2888 
2889 static mlir::ParseResult parseStoreOp(mlir::OpAsmParser &parser,
2890                                       mlir::OperationState &result) {
2891   mlir::Type type;
2892   mlir::OpAsmParser::OperandType oper;
2893   mlir::OpAsmParser::OperandType store;
2894   if (parser.parseOperand(oper) || parser.parseKeyword("to") ||
2895       parser.parseOperand(store) ||
2896       parser.parseOptionalAttrDict(result.attributes) ||
2897       parser.parseColonType(type) ||
2898       parser.resolveOperand(oper, fir::StoreOp::elementType(type),
2899                             result.operands) ||
2900       parser.resolveOperand(store, type, result.operands))
2901     return mlir::failure();
2902   return mlir::success();
2903 }
2904 
2905 static void print(mlir::OpAsmPrinter &p, fir::StoreOp &op) {
2906   p << ' ';
2907   p.printOperand(op.value());
2908   p << " to ";
2909   p.printOperand(op.memref());
2910   p.printOptionalAttrDict(op.getOperation()->getAttrs(), {});
2911   p << " : " << op.memref().getType();
2912 }
2913 
2914 static mlir::LogicalResult verify(fir::StoreOp &op) {
2915   if (op.value().getType() != fir::dyn_cast_ptrEleTy(op.memref().getType()))
2916     return op.emitOpError("store value type must match memory reference type");
2917   if (fir::isa_unknown_size_box(op.value().getType()))
2918     return op.emitOpError("cannot store !fir.box of unknown rank or type");
2919   return mlir::success();
2920 }
2921 
2922 //===----------------------------------------------------------------------===//
2923 // StringLitOp
2924 //===----------------------------------------------------------------------===//
2925 
2926 bool fir::StringLitOp::isWideValue() {
2927   auto eleTy = getType().cast<fir::SequenceType>().getEleTy();
2928   return eleTy.cast<fir::CharacterType>().getFKind() != 1;
2929 }
2930 
2931 static mlir::NamedAttribute
2932 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) {
2933   assert(v > 0);
2934   return builder.getNamedAttr(
2935       name, builder.getIntegerAttr(builder.getIntegerType(64), v));
2936 }
2937 
2938 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
2939                              fir::CharacterType inType, llvm::StringRef val,
2940                              llvm::Optional<int64_t> len) {
2941   auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val));
2942   int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
2943   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
2944   result.addAttributes({valAttr, lenAttr});
2945   result.addTypes(inType);
2946 }
2947 
2948 template <typename C>
2949 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder,
2950                                           llvm::ArrayRef<C> xlist) {
2951   llvm::SmallVector<mlir::Attribute> attrs;
2952   auto ty = builder.getIntegerType(8 * sizeof(C));
2953   for (auto ch : xlist)
2954     attrs.push_back(builder.getIntegerAttr(ty, ch));
2955   return builder.getArrayAttr(attrs);
2956 }
2957 
2958 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
2959                              fir::CharacterType inType,
2960                              llvm::ArrayRef<char> vlist,
2961                              llvm::Optional<int64_t> len) {
2962   auto valAttr =
2963       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
2964   std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
2965   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
2966   result.addAttributes({valAttr, lenAttr});
2967   result.addTypes(inType);
2968 }
2969 
2970 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
2971                              fir::CharacterType inType,
2972                              llvm::ArrayRef<char16_t> vlist,
2973                              llvm::Optional<int64_t> len) {
2974   auto valAttr =
2975       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
2976   std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
2977   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
2978   result.addAttributes({valAttr, lenAttr});
2979   result.addTypes(inType);
2980 }
2981 
2982 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
2983                              fir::CharacterType inType,
2984                              llvm::ArrayRef<char32_t> vlist,
2985                              llvm::Optional<int64_t> len) {
2986   auto valAttr =
2987       builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
2988   std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
2989   auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
2990   result.addAttributes({valAttr, lenAttr});
2991   result.addTypes(inType);
2992 }
2993 
2994 static mlir::ParseResult parseStringLitOp(mlir::OpAsmParser &parser,
2995                                           mlir::OperationState &result) {
2996   auto &builder = parser.getBuilder();
2997   mlir::Attribute val;
2998   mlir::NamedAttrList attrs;
2999   llvm::SMLoc trailingTypeLoc;
3000   if (parser.parseAttribute(val, "fake", attrs))
3001     return mlir::failure();
3002   if (auto v = val.dyn_cast<mlir::StringAttr>())
3003     result.attributes.push_back(
3004         builder.getNamedAttr(fir::StringLitOp::value(), v));
3005   else if (auto v = val.dyn_cast<mlir::ArrayAttr>())
3006     result.attributes.push_back(
3007         builder.getNamedAttr(fir::StringLitOp::xlist(), v));
3008   else
3009     return parser.emitError(parser.getCurrentLocation(),
3010                             "found an invalid constant");
3011   mlir::IntegerAttr sz;
3012   mlir::Type type;
3013   if (parser.parseLParen() ||
3014       parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) ||
3015       parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) ||
3016       parser.parseColonType(type))
3017     return mlir::failure();
3018   auto charTy = type.dyn_cast<fir::CharacterType>();
3019   if (!charTy)
3020     return parser.emitError(trailingTypeLoc, "must have character type");
3021   type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(),
3022                                  sz.getInt());
3023   if (!type || parser.addTypesToList(type, result.types))
3024     return mlir::failure();
3025   return mlir::success();
3026 }
3027 
3028 static void print(mlir::OpAsmPrinter &p, fir::StringLitOp &op) {
3029   p << ' ' << op.getValue() << '(';
3030   p << op.getSize().cast<mlir::IntegerAttr>().getValue() << ") : ";
3031   p.printType(op.getType());
3032 }
3033 
3034 static mlir::LogicalResult verify(fir::StringLitOp &op) {
3035   if (op.getSize().cast<mlir::IntegerAttr>().getValue().isNegative())
3036     return op.emitOpError("size must be non-negative");
3037   if (auto xl = op.getOperation()->getAttr(fir::StringLitOp::xlist())) {
3038     auto xList = xl.cast<mlir::ArrayAttr>();
3039     for (auto a : xList)
3040       if (!a.isa<mlir::IntegerAttr>())
3041         return op.emitOpError("values in list must be integers");
3042   }
3043   return mlir::success();
3044 }
3045 
3046 //===----------------------------------------------------------------------===//
3047 // UnboxProcOp
3048 //===----------------------------------------------------------------------===//
3049 
3050 static mlir::LogicalResult verify(fir::UnboxProcOp &op) {
3051   if (auto eleTy = fir::dyn_cast_ptrEleTy(op.refTuple().getType()))
3052     if (eleTy.isa<mlir::TupleType>())
3053       return mlir::success();
3054   return op.emitOpError("second output argument has bad type");
3055 }
3056 
3057 //===----------------------------------------------------------------------===//
3058 // IfOp
3059 //===----------------------------------------------------------------------===//
3060 
3061 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result,
3062                       mlir::Value cond, bool withElseRegion) {
3063   build(builder, result, llvm::None, cond, withElseRegion);
3064 }
3065 
3066 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result,
3067                       mlir::TypeRange resultTypes, mlir::Value cond,
3068                       bool withElseRegion) {
3069   result.addOperands(cond);
3070   result.addTypes(resultTypes);
3071 
3072   mlir::Region *thenRegion = result.addRegion();
3073   thenRegion->push_back(new mlir::Block());
3074   if (resultTypes.empty())
3075     IfOp::ensureTerminator(*thenRegion, builder, result.location);
3076 
3077   mlir::Region *elseRegion = result.addRegion();
3078   if (withElseRegion) {
3079     elseRegion->push_back(new mlir::Block());
3080     if (resultTypes.empty())
3081       IfOp::ensureTerminator(*elseRegion, builder, result.location);
3082   }
3083 }
3084 
3085 static mlir::ParseResult parseIfOp(OpAsmParser &parser,
3086                                    OperationState &result) {
3087   result.regions.reserve(2);
3088   mlir::Region *thenRegion = result.addRegion();
3089   mlir::Region *elseRegion = result.addRegion();
3090 
3091   auto &builder = parser.getBuilder();
3092   OpAsmParser::OperandType cond;
3093   mlir::Type i1Type = builder.getIntegerType(1);
3094   if (parser.parseOperand(cond) ||
3095       parser.resolveOperand(cond, i1Type, result.operands))
3096     return mlir::failure();
3097 
3098   if (parser.parseOptionalArrowTypeList(result.types))
3099     return mlir::failure();
3100 
3101   if (parser.parseRegion(*thenRegion, {}, {}))
3102     return mlir::failure();
3103   IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
3104 
3105   if (mlir::succeeded(parser.parseOptionalKeyword("else"))) {
3106     if (parser.parseRegion(*elseRegion, {}, {}))
3107       return mlir::failure();
3108     IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
3109   }
3110 
3111   // Parse the optional attribute list.
3112   if (parser.parseOptionalAttrDict(result.attributes))
3113     return mlir::failure();
3114   return mlir::success();
3115 }
3116 
3117 static LogicalResult verify(fir::IfOp op) {
3118   if (op.getNumResults() != 0 && op.elseRegion().empty())
3119     return op.emitOpError("must have an else block if defining values");
3120 
3121   return mlir::success();
3122 }
3123 
3124 static void print(mlir::OpAsmPrinter &p, fir::IfOp op) {
3125   bool printBlockTerminators = false;
3126   p << ' ' << op.condition();
3127   if (!op.results().empty()) {
3128     p << " -> (" << op.getResultTypes() << ')';
3129     printBlockTerminators = true;
3130   }
3131   p << ' ';
3132   p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false,
3133                 printBlockTerminators);
3134 
3135   // Print the 'else' regions if it exists and has a block.
3136   auto &otherReg = op.elseRegion();
3137   if (!otherReg.empty()) {
3138     p << " else ";
3139     p.printRegion(otherReg, /*printEntryBlockArgs=*/false,
3140                   printBlockTerminators);
3141   }
3142   p.printOptionalAttrDict(op->getAttrs());
3143 }
3144 
3145 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results,
3146                                   unsigned resultNum) {
3147   auto *term = thenRegion().front().getTerminator();
3148   if (resultNum < term->getNumOperands())
3149     results.push_back(term->getOperand(resultNum));
3150   term = elseRegion().front().getTerminator();
3151   if (resultNum < term->getNumOperands())
3152     results.push_back(term->getOperand(resultNum));
3153 }
3154 
3155 //===----------------------------------------------------------------------===//
3156 
3157 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) {
3158   if (attr.dyn_cast_or_null<mlir::UnitAttr>() ||
3159       attr.dyn_cast_or_null<ClosedIntervalAttr>() ||
3160       attr.dyn_cast_or_null<PointIntervalAttr>() ||
3161       attr.dyn_cast_or_null<LowerBoundAttr>() ||
3162       attr.dyn_cast_or_null<UpperBoundAttr>())
3163     return mlir::success();
3164   return mlir::failure();
3165 }
3166 
3167 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,
3168                                     unsigned dest) {
3169   unsigned o = 0;
3170   for (unsigned i = 0; i < dest; ++i) {
3171     auto &attr = cases[i];
3172     if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) {
3173       ++o;
3174       if (attr.dyn_cast_or_null<ClosedIntervalAttr>())
3175         ++o;
3176     }
3177   }
3178   return o;
3179 }
3180 
3181 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser,
3182                                      mlir::OperationState &result,
3183                                      mlir::OpAsmParser::OperandType &selector,
3184                                      mlir::Type &type) {
3185   if (parser.parseOperand(selector) || parser.parseColonType(type) ||
3186       parser.resolveOperand(selector, type, result.operands) ||
3187       parser.parseLSquare())
3188     return mlir::failure();
3189   return mlir::success();
3190 }
3191 
3192 /// Generic pretty-printer of a binary operation
3193 static void printBinaryOp(Operation *op, OpAsmPrinter &p) {
3194   assert(op->getNumOperands() == 2 && "binary op must have two operands");
3195   assert(op->getNumResults() == 1 && "binary op must have one result");
3196 
3197   p << ' ' << op->getOperand(0) << ", " << op->getOperand(1);
3198   p.printOptionalAttrDict(op->getAttrs());
3199   p << " : " << op->getResult(0).getType();
3200 }
3201 
3202 /// Generic pretty-printer of an unary operation
3203 static void printUnaryOp(Operation *op, OpAsmPrinter &p) {
3204   assert(op->getNumOperands() == 1 && "unary op must have one operand");
3205   assert(op->getNumResults() == 1 && "unary op must have one result");
3206 
3207   p << ' ' << op->getOperand(0);
3208   p.printOptionalAttrDict(op->getAttrs());
3209   p << " : " << op->getResult(0).getType();
3210 }
3211 
3212 bool fir::isReferenceLike(mlir::Type type) {
3213   return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() ||
3214          type.isa<fir::PointerType>();
3215 }
3216 
3217 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module,
3218                                StringRef name, mlir::FunctionType type,
3219                                llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3220   if (auto f = module.lookupSymbol<mlir::FuncOp>(name))
3221     return f;
3222   mlir::OpBuilder modBuilder(module.getBodyRegion());
3223   modBuilder.setInsertionPointToEnd(module.getBody());
3224   auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs);
3225   result.setVisibility(mlir::SymbolTable::Visibility::Private);
3226   return result;
3227 }
3228 
3229 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module,
3230                                   StringRef name, mlir::Type type,
3231                                   llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3232   if (auto g = module.lookupSymbol<fir::GlobalOp>(name))
3233     return g;
3234   mlir::OpBuilder modBuilder(module.getBodyRegion());
3235   auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs);
3236   result.setVisibility(mlir::SymbolTable::Visibility::Private);
3237   return result;
3238 }
3239 
3240 bool fir::valueHasFirAttribute(mlir::Value value,
3241                                llvm::StringRef attributeName) {
3242   // If this is a fir.box that was loaded, the fir attributes will be on the
3243   // related fir.ref<fir.box> creation.
3244   if (value.getType().isa<fir::BoxType>())
3245     if (auto definingOp = value.getDefiningOp())
3246       if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp))
3247         value = loadOp.memref();
3248   // If this is a function argument, look in the argument attributes.
3249   if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
3250     if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock())
3251       if (auto funcOp =
3252               mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp()))
3253         if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName))
3254           return true;
3255     return false;
3256   }
3257 
3258   if (auto definingOp = value.getDefiningOp()) {
3259     // If this is an allocated value, look at the allocation attributes.
3260     if (mlir::isa<fir::AllocMemOp>(definingOp) ||
3261         mlir::isa<AllocaOp>(definingOp))
3262       return definingOp->hasAttr(attributeName);
3263     // If this is an imported global, look at AddrOfOp and GlobalOp attributes.
3264     // Both operations are looked at because use/host associated variable (the
3265     // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate
3266     // entity (the globalOp) does not have them.
3267     if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) {
3268       if (addressOfOp->hasAttr(attributeName))
3269         return true;
3270       if (auto module = definingOp->getParentOfType<mlir::ModuleOp>())
3271         if (auto globalOp =
3272                 module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol()))
3273           return globalOp->hasAttr(attributeName);
3274     }
3275   }
3276   // TODO: Construct associated entities attributes. Decide where the fir
3277   // attributes must be placed/looked for in this case.
3278   return false;
3279 }
3280 
3281 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) {
3282   for (auto i = path.begin(), end = path.end(); eleTy && i < end;) {
3283     eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy)
3284                 .Case<fir::RecordType>([&](fir::RecordType ty) {
3285                   if (auto *op = (*i++).getDefiningOp()) {
3286                     if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op))
3287                       return ty.getType(off.getFieldName());
3288                     if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3289                       return ty.getType(fir::toInt(off));
3290                   }
3291                   return mlir::Type{};
3292                 })
3293                 .Case<fir::SequenceType>([&](fir::SequenceType ty) {
3294                   bool valid = true;
3295                   const auto rank = ty.getDimension();
3296                   for (std::remove_const_t<decltype(rank)> ii = 0;
3297                        valid && ii < rank; ++ii)
3298                     valid = i < end && fir::isa_integer((*i++).getType());
3299                   return valid ? ty.getEleTy() : mlir::Type{};
3300                 })
3301                 .Case<mlir::TupleType>([&](mlir::TupleType ty) {
3302                   if (auto *op = (*i++).getDefiningOp())
3303                     if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3304                       return ty.getType(fir::toInt(off));
3305                   return mlir::Type{};
3306                 })
3307                 .Case<fir::ComplexType>([&](fir::ComplexType ty) {
3308                   if (fir::isa_integer((*i++).getType()))
3309                     return ty.getElementType();
3310                   return mlir::Type{};
3311                 })
3312                 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
3313                   if (fir::isa_integer((*i++).getType()))
3314                     return ty.getElementType();
3315                   return mlir::Type{};
3316                 })
3317                 .Default([&](const auto &) { return mlir::Type{}; });
3318   }
3319   return eleTy;
3320 }
3321 
3322 // Tablegen operators
3323 
3324 #define GET_OP_CLASSES
3325 #include "flang/Optimizer/Dialect/FIROps.cpp.inc"
3326