1 //===-- FIROps.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Optimizer/Dialect/FIROps.h" 14 #include "flang/Optimizer/Dialect/FIRAttr.h" 15 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 16 #include "flang/Optimizer/Dialect/FIRType.h" 17 #include "flang/Optimizer/Support/Utils.h" 18 #include "mlir/Dialect/CommonFolders.h" 19 #include "mlir/Dialect/StandardOps/IR/Ops.h" 20 #include "mlir/IR/BuiltinAttributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/Diagnostics.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/OpDefinition.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/TypeSwitch.h" 30 31 namespace { 32 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc" 33 } // namespace 34 using namespace fir; 35 36 /// Return true if a sequence type is of some incomplete size or a record type 37 /// is malformed or contains an incomplete sequence type. An incomplete sequence 38 /// type is one with more unknown extents in the type than have been provided 39 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by 40 /// definition. 41 static bool verifyInType(mlir::Type inType, 42 llvm::SmallVectorImpl<llvm::StringRef> &visited, 43 unsigned dynamicExtents = 0) { 44 if (auto st = inType.dyn_cast<fir::SequenceType>()) { 45 auto shape = st.getShape(); 46 if (shape.size() == 0) 47 return true; 48 for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { 49 if (shape[i] != fir::SequenceType::getUnknownExtent()) 50 continue; 51 if (dynamicExtents-- == 0) 52 return true; 53 } 54 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) { 55 // don't recurse if we're already visiting this one 56 if (llvm::is_contained(visited, rt.getName())) 57 return false; 58 // keep track of record types currently being visited 59 visited.push_back(rt.getName()); 60 for (auto &field : rt.getTypeList()) 61 if (verifyInType(field.second, visited)) 62 return true; 63 visited.pop_back(); 64 } 65 return false; 66 } 67 68 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) { 69 auto ty = fir::unwrapSequenceType(inType); 70 if (numParams > 0) { 71 if (auto recTy = ty.dyn_cast<fir::RecordType>()) 72 return numParams != recTy.getNumLenParams(); 73 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 74 return !(numParams == 1 && chrTy.hasDynamicLen()); 75 return true; 76 } 77 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 78 return !chrTy.hasConstantLen(); 79 return false; 80 } 81 82 /// Parser shared by Alloca and Allocmem 83 /// 84 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type 85 /// ( `(` $typeparams `)` )? ( `,` $shape )? 86 /// attr-dict-without-keyword 87 template <typename FN> 88 static mlir::ParseResult parseAllocatableOp(FN wrapResultType, 89 mlir::OpAsmParser &parser, 90 mlir::OperationState &result) { 91 mlir::Type intype; 92 if (parser.parseType(intype)) 93 return mlir::failure(); 94 auto &builder = parser.getBuilder(); 95 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 96 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 97 llvm::SmallVector<mlir::Type> typeVec; 98 bool hasOperands = false; 99 std::int32_t typeparamsSize = 0; 100 if (!parser.parseOptionalLParen()) { 101 // parse the LEN params of the derived type. (<params> : <types>) 102 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 103 parser.parseColonTypeList(typeVec) || parser.parseRParen()) 104 return mlir::failure(); 105 typeparamsSize = operands.size(); 106 hasOperands = true; 107 } 108 std::int32_t shapeSize = 0; 109 if (!parser.parseOptionalComma()) { 110 // parse size to scale by, vector of n dimensions of type index 111 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None)) 112 return mlir::failure(); 113 shapeSize = operands.size() - typeparamsSize; 114 auto idxTy = builder.getIndexType(); 115 for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i) 116 typeVec.push_back(idxTy); 117 hasOperands = true; 118 } 119 if (hasOperands && 120 parser.resolveOperands(operands, typeVec, parser.getNameLoc(), 121 result.operands)) 122 return mlir::failure(); 123 mlir::Type restype = wrapResultType(intype); 124 if (!restype) { 125 parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype; 126 return mlir::failure(); 127 } 128 result.addAttribute("operand_segment_sizes", 129 builder.getI32VectorAttr({typeparamsSize, shapeSize})); 130 if (parser.parseOptionalAttrDict(result.attributes) || 131 parser.addTypeToList(restype, result.types)) 132 return mlir::failure(); 133 return mlir::success(); 134 } 135 136 template <typename OP> 137 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) { 138 p << ' ' << op.in_type(); 139 if (!op.typeparams().empty()) { 140 p << '(' << op.typeparams() << " : " << op.typeparams().getTypes() << ')'; 141 } 142 // print the shape of the allocation (if any); all must be index type 143 for (auto sh : op.shape()) { 144 p << ", "; 145 p.printOperand(sh); 146 } 147 p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"}); 148 } 149 150 //===----------------------------------------------------------------------===// 151 // AllocaOp 152 //===----------------------------------------------------------------------===// 153 154 /// Create a legal memory reference as return type 155 static mlir::Type wrapAllocaResultType(mlir::Type intype) { 156 // FIR semantics: memory references to memory references are disallowed 157 if (intype.isa<ReferenceType>()) 158 return {}; 159 return ReferenceType::get(intype); 160 } 161 162 mlir::Type fir::AllocaOp::getAllocatedType() { 163 return getType().cast<ReferenceType>().getEleTy(); 164 } 165 166 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { 167 return ReferenceType::get(ty); 168 } 169 170 void fir::AllocaOp::build(mlir::OpBuilder &builder, 171 mlir::OperationState &result, mlir::Type inType, 172 llvm::StringRef uniqName, mlir::ValueRange typeparams, 173 mlir::ValueRange shape, 174 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 175 auto nameAttr = builder.getStringAttr(uniqName); 176 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 177 /*pinned=*/false, typeparams, shape); 178 result.addAttributes(attributes); 179 } 180 181 void fir::AllocaOp::build(mlir::OpBuilder &builder, 182 mlir::OperationState &result, mlir::Type inType, 183 llvm::StringRef uniqName, bool pinned, 184 mlir::ValueRange typeparams, mlir::ValueRange shape, 185 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 186 auto nameAttr = builder.getStringAttr(uniqName); 187 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 188 pinned, typeparams, shape); 189 result.addAttributes(attributes); 190 } 191 192 void fir::AllocaOp::build(mlir::OpBuilder &builder, 193 mlir::OperationState &result, mlir::Type inType, 194 llvm::StringRef uniqName, llvm::StringRef bindcName, 195 mlir::ValueRange typeparams, mlir::ValueRange shape, 196 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 197 auto nameAttr = 198 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 199 auto bindcAttr = 200 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 201 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 202 bindcAttr, /*pinned=*/false, typeparams, shape); 203 result.addAttributes(attributes); 204 } 205 206 void fir::AllocaOp::build(mlir::OpBuilder &builder, 207 mlir::OperationState &result, mlir::Type inType, 208 llvm::StringRef uniqName, llvm::StringRef bindcName, 209 bool pinned, mlir::ValueRange typeparams, 210 mlir::ValueRange shape, 211 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 212 auto nameAttr = 213 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 214 auto bindcAttr = 215 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 216 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 217 bindcAttr, pinned, typeparams, shape); 218 result.addAttributes(attributes); 219 } 220 221 void fir::AllocaOp::build(mlir::OpBuilder &builder, 222 mlir::OperationState &result, mlir::Type inType, 223 mlir::ValueRange typeparams, mlir::ValueRange shape, 224 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 225 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, 226 /*pinned=*/false, typeparams, shape); 227 result.addAttributes(attributes); 228 } 229 230 void fir::AllocaOp::build(mlir::OpBuilder &builder, 231 mlir::OperationState &result, mlir::Type inType, 232 bool pinned, mlir::ValueRange typeparams, 233 mlir::ValueRange shape, 234 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 235 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned, 236 typeparams, shape); 237 result.addAttributes(attributes); 238 } 239 240 static mlir::LogicalResult verify(fir::AllocaOp &op) { 241 llvm::SmallVector<llvm::StringRef> visited; 242 if (verifyInType(op.getInType(), visited, op.numShapeOperands())) 243 return op.emitOpError("invalid type for allocation"); 244 if (verifyTypeParamCount(op.getInType(), op.numLenParams())) 245 return op.emitOpError("LEN params do not correspond to type"); 246 mlir::Type outType = op.getType(); 247 if (!outType.isa<fir::ReferenceType>()) 248 return op.emitOpError("must be a !fir.ref type"); 249 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 250 return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); 251 return mlir::success(); 252 } 253 254 //===----------------------------------------------------------------------===// 255 // AllocMemOp 256 //===----------------------------------------------------------------------===// 257 258 /// Create a legal heap reference as return type 259 static mlir::Type wrapAllocMemResultType(mlir::Type intype) { 260 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER 261 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well 262 // FIR semantics: one may not allocate a memory reference value 263 if (intype.isa<ReferenceType>() || intype.isa<HeapType>() || 264 intype.isa<PointerType>() || intype.isa<FunctionType>()) 265 return {}; 266 return HeapType::get(intype); 267 } 268 269 mlir::Type fir::AllocMemOp::getAllocatedType() { 270 return getType().cast<HeapType>().getEleTy(); 271 } 272 273 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { 274 return HeapType::get(ty); 275 } 276 277 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 278 mlir::OperationState &result, mlir::Type inType, 279 llvm::StringRef uniqName, 280 mlir::ValueRange typeparams, mlir::ValueRange shape, 281 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 282 auto nameAttr = builder.getStringAttr(uniqName); 283 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {}, 284 typeparams, shape); 285 result.addAttributes(attributes); 286 } 287 288 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 289 mlir::OperationState &result, mlir::Type inType, 290 llvm::StringRef uniqName, llvm::StringRef bindcName, 291 mlir::ValueRange typeparams, mlir::ValueRange shape, 292 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 293 auto nameAttr = builder.getStringAttr(uniqName); 294 auto bindcAttr = builder.getStringAttr(bindcName); 295 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, 296 bindcAttr, typeparams, shape); 297 result.addAttributes(attributes); 298 } 299 300 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 301 mlir::OperationState &result, mlir::Type inType, 302 mlir::ValueRange typeparams, mlir::ValueRange shape, 303 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 304 build(builder, result, wrapAllocMemResultType(inType), inType, {}, {}, 305 typeparams, shape); 306 result.addAttributes(attributes); 307 } 308 309 static mlir::LogicalResult verify(fir::AllocMemOp op) { 310 llvm::SmallVector<llvm::StringRef> visited; 311 if (verifyInType(op.getInType(), visited, op.numShapeOperands())) 312 return op.emitOpError("invalid type for allocation"); 313 if (verifyTypeParamCount(op.getInType(), op.numLenParams())) 314 return op.emitOpError("LEN params do not correspond to type"); 315 mlir::Type outType = op.getType(); 316 if (!outType.dyn_cast<fir::HeapType>()) 317 return op.emitOpError("must be a !fir.heap type"); 318 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 319 return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); 320 return mlir::success(); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // ArrayCoorOp 325 //===----------------------------------------------------------------------===// 326 327 static mlir::LogicalResult verify(fir::ArrayCoorOp op) { 328 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 329 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 330 if (!arrTy) 331 return op.emitOpError("must be a reference to an array"); 332 auto arrDim = arrTy.getDimension(); 333 334 if (auto shapeOp = op.shape()) { 335 auto shapeTy = shapeOp.getType(); 336 unsigned shapeTyRank = 0; 337 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 338 shapeTyRank = s.getRank(); 339 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 340 shapeTyRank = ss.getRank(); 341 } else { 342 auto s = shapeTy.cast<fir::ShiftType>(); 343 shapeTyRank = s.getRank(); 344 if (!op.memref().getType().isa<fir::BoxType>()) 345 return op.emitOpError("shift can only be provided with fir.box memref"); 346 } 347 if (arrDim && arrDim != shapeTyRank) 348 return op.emitOpError("rank of dimension mismatched"); 349 if (shapeTyRank != op.indices().size()) 350 return op.emitOpError("number of indices do not match dim rank"); 351 } 352 353 if (auto sliceOp = op.slice()) { 354 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) 355 if (!sl.substr().empty()) 356 return op.emitOpError("array_coor cannot take a slice with substring"); 357 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 358 if (sliceTy.getRank() != arrDim) 359 return op.emitOpError("rank of dimension in slice mismatched"); 360 } 361 362 return mlir::success(); 363 } 364 365 //===----------------------------------------------------------------------===// 366 // ArrayLoadOp 367 //===----------------------------------------------------------------------===// 368 369 static mlir::Type adjustedElementType(mlir::Type t) { 370 if (auto ty = t.dyn_cast<fir::ReferenceType>()) { 371 auto eleTy = ty.getEleTy(); 372 if (fir::isa_char(eleTy)) 373 return eleTy; 374 if (fir::isa_derived(eleTy)) 375 return eleTy; 376 if (eleTy.isa<fir::SequenceType>()) 377 return eleTy; 378 } 379 return t; 380 } 381 382 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { 383 if (auto sh = shape()) 384 if (auto *op = sh.getDefiningOp()) { 385 if (auto shOp = dyn_cast<fir::ShapeOp>(op)) 386 return shOp.getExtents(); 387 return cast<fir::ShapeShiftOp>(op).getExtents(); 388 } 389 return {}; 390 } 391 392 static mlir::LogicalResult verify(fir::ArrayLoadOp op) { 393 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 394 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 395 if (!arrTy) 396 return op.emitOpError("must be a reference to an array"); 397 auto arrDim = arrTy.getDimension(); 398 399 if (auto shapeOp = op.shape()) { 400 auto shapeTy = shapeOp.getType(); 401 unsigned shapeTyRank = 0; 402 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 403 shapeTyRank = s.getRank(); 404 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 405 shapeTyRank = ss.getRank(); 406 } else { 407 auto s = shapeTy.cast<fir::ShiftType>(); 408 shapeTyRank = s.getRank(); 409 if (!op.memref().getType().isa<fir::BoxType>()) 410 return op.emitOpError("shift can only be provided with fir.box memref"); 411 } 412 if (arrDim && arrDim != shapeTyRank) 413 return op.emitOpError("rank of dimension mismatched"); 414 } 415 416 if (auto sliceOp = op.slice()) { 417 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) 418 if (!sl.substr().empty()) 419 return op.emitOpError("array_load cannot take a slice with substring"); 420 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 421 if (sliceTy.getRank() != arrDim) 422 return op.emitOpError("rank of dimension in slice mismatched"); 423 } 424 425 return mlir::success(); 426 } 427 428 //===----------------------------------------------------------------------===// 429 // ArrayMergeStoreOp 430 //===----------------------------------------------------------------------===// 431 432 static mlir::LogicalResult verify(fir::ArrayMergeStoreOp op) { 433 if (!isa<ArrayLoadOp>(op.original().getDefiningOp())) 434 return op.emitOpError("operand #0 must be result of a fir.array_load op"); 435 if (auto sl = op.slice()) { 436 if (auto sliceOp = 437 mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) { 438 if (!sliceOp.substr().empty()) 439 return op.emitOpError( 440 "array_merge_store cannot take a slice with substring"); 441 if (!sliceOp.fields().empty()) { 442 // This is an intra-object merge, where the slice is projecting the 443 // subfields that are to be overwritten by the merge operation. 444 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 445 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 446 auto projTy = 447 fir::applyPathToType(seqTy.getEleTy(), sliceOp.fields()); 448 if (fir::unwrapSequenceType(op.original().getType()) != projTy) 449 return op.emitOpError( 450 "type of origin does not match sliced memref type"); 451 if (fir::unwrapSequenceType(op.sequence().getType()) != projTy) 452 return op.emitOpError( 453 "type of sequence does not match sliced memref type"); 454 return mlir::success(); 455 } 456 return op.emitOpError("referenced type is not an array"); 457 } 458 } 459 return mlir::success(); 460 } 461 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 462 if (op.original().getType() != eleTy) 463 return op.emitOpError("type of origin does not match memref element type"); 464 if (op.sequence().getType() != eleTy) 465 return op.emitOpError( 466 "type of sequence does not match memref element type"); 467 return mlir::success(); 468 } 469 470 //===----------------------------------------------------------------------===// 471 // ArrayFetchOp 472 //===----------------------------------------------------------------------===// 473 474 // Template function used for both array_fetch and array_update verification. 475 template <typename A> 476 mlir::Type validArraySubobject(A op) { 477 auto ty = op.sequence().getType(); 478 return fir::applyPathToType(ty, op.indices()); 479 } 480 481 static mlir::LogicalResult verify(fir::ArrayFetchOp op) { 482 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 483 auto indSize = op.indices().size(); 484 if (indSize < arrTy.getDimension()) 485 return op.emitOpError("number of indices != dimension of array"); 486 if (indSize == arrTy.getDimension() && 487 ::adjustedElementType(op.element().getType()) != arrTy.getEleTy()) 488 return op.emitOpError("return type does not match array"); 489 auto ty = validArraySubobject(op); 490 if (!ty || ty != ::adjustedElementType(op.getType())) 491 return op.emitOpError("return type and/or indices do not type check"); 492 if (!isa<fir::ArrayLoadOp>(op.sequence().getDefiningOp())) 493 return op.emitOpError("argument #0 must be result of fir.array_load"); 494 return mlir::success(); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // ArrayUpdateOp 499 //===----------------------------------------------------------------------===// 500 501 static mlir::LogicalResult verify(fir::ArrayUpdateOp op) { 502 if (fir::isa_ref_type(op.merge().getType())) 503 return op.emitOpError("does not support reference type for merge"); 504 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 505 auto indSize = op.indices().size(); 506 if (indSize < arrTy.getDimension()) 507 return op.emitOpError("number of indices != dimension of array"); 508 if (indSize == arrTy.getDimension() && 509 ::adjustedElementType(op.merge().getType()) != arrTy.getEleTy()) 510 return op.emitOpError("merged value does not have element type"); 511 auto ty = validArraySubobject(op); 512 if (!ty || ty != ::adjustedElementType(op.merge().getType())) 513 return op.emitOpError("merged value and/or indices do not type check"); 514 return mlir::success(); 515 } 516 517 //===----------------------------------------------------------------------===// 518 // ArrayModifyOp 519 //===----------------------------------------------------------------------===// 520 521 static mlir::LogicalResult verify(fir::ArrayModifyOp op) { 522 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 523 auto indSize = op.indices().size(); 524 if (indSize < arrTy.getDimension()) 525 return op.emitOpError("number of indices must match array dimension"); 526 return mlir::success(); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // BoxAddrOp 531 //===----------------------------------------------------------------------===// 532 533 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 534 if (auto v = val().getDefiningOp()) { 535 if (auto box = dyn_cast<fir::EmboxOp>(v)) 536 return box.memref(); 537 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 538 return box.memref(); 539 } 540 return {}; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // BoxCharLenOp 545 //===----------------------------------------------------------------------===// 546 547 mlir::OpFoldResult 548 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 549 if (auto v = val().getDefiningOp()) { 550 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 551 return box.len(); 552 } 553 return {}; 554 } 555 556 //===----------------------------------------------------------------------===// 557 // BoxDimsOp 558 //===----------------------------------------------------------------------===// 559 560 /// Get the result types packed in a tuple tuple 561 mlir::Type fir::BoxDimsOp::getTupleType() { 562 // note: triple, but 4 is nearest power of 2 563 llvm::SmallVector<mlir::Type> triple{ 564 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; 565 return mlir::TupleType::get(getContext(), triple); 566 } 567 568 //===----------------------------------------------------------------------===// 569 // CallOp 570 //===----------------------------------------------------------------------===// 571 572 mlir::FunctionType fir::CallOp::getFunctionType() { 573 return mlir::FunctionType::get(getContext(), getOperandTypes(), 574 getResultTypes()); 575 } 576 577 static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) { 578 auto callee = op.callee(); 579 bool isDirect = callee.hasValue(); 580 p << ' '; 581 if (isDirect) 582 p << callee.getValue(); 583 else 584 p << op.getOperand(0); 585 p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')'; 586 p.printOptionalAttrDict(op->getAttrs(), {"callee"}); 587 auto resultTypes{op.getResultTypes()}; 588 llvm::SmallVector<Type> argTypes( 589 llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1)); 590 p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes); 591 } 592 593 static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser, 594 mlir::OperationState &result) { 595 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 596 if (parser.parseOperandList(operands)) 597 return mlir::failure(); 598 599 mlir::NamedAttrList attrs; 600 mlir::SymbolRefAttr funcAttr; 601 bool isDirect = operands.empty(); 602 if (isDirect) 603 if (parser.parseAttribute(funcAttr, "callee", attrs)) 604 return mlir::failure(); 605 606 Type type; 607 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 608 parser.parseOptionalAttrDict(attrs) || parser.parseColon() || 609 parser.parseType(type)) 610 return mlir::failure(); 611 612 auto funcType = type.dyn_cast<mlir::FunctionType>(); 613 if (!funcType) 614 return parser.emitError(parser.getNameLoc(), "expected function type"); 615 if (isDirect) { 616 if (parser.resolveOperands(operands, funcType.getInputs(), 617 parser.getNameLoc(), result.operands)) 618 return mlir::failure(); 619 } else { 620 auto funcArgs = 621 llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front(); 622 if (parser.resolveOperand(operands[0], funcType, result.operands) || 623 parser.resolveOperands(funcArgs, funcType.getInputs(), 624 parser.getNameLoc(), result.operands)) 625 return mlir::failure(); 626 } 627 result.addTypes(funcType.getResults()); 628 result.attributes = attrs; 629 return mlir::success(); 630 } 631 632 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 633 mlir::FuncOp callee, mlir::ValueRange operands) { 634 result.addOperands(operands); 635 result.addAttribute(getCalleeAttrName(), SymbolRefAttr::get(callee)); 636 result.addTypes(callee.getType().getResults()); 637 } 638 639 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 640 mlir::SymbolRefAttr callee, 641 llvm::ArrayRef<mlir::Type> results, 642 mlir::ValueRange operands) { 643 result.addOperands(operands); 644 if (callee) 645 result.addAttribute(getCalleeAttrName(), callee); 646 result.addTypes(results); 647 } 648 649 //===----------------------------------------------------------------------===// 650 // CmpOp 651 //===----------------------------------------------------------------------===// 652 653 template <typename OPTY> 654 static void printCmpOp(OpAsmPrinter &p, OPTY op) { 655 p << ' '; 656 auto predSym = mlir::arith::symbolizeCmpFPredicate( 657 op->template getAttrOfType<mlir::IntegerAttr>( 658 OPTY::getPredicateAttrName()) 659 .getInt()); 660 assert(predSym.hasValue() && "invalid symbol value for predicate"); 661 p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"' 662 << ", "; 663 p.printOperand(op.lhs()); 664 p << ", "; 665 p.printOperand(op.rhs()); 666 p.printOptionalAttrDict(op->getAttrs(), 667 /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); 668 p << " : " << op.lhs().getType(); 669 } 670 671 template <typename OPTY> 672 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, 673 mlir::OperationState &result) { 674 llvm::SmallVector<mlir::OpAsmParser::OperandType> ops; 675 mlir::NamedAttrList attrs; 676 mlir::Attribute predicateNameAttr; 677 mlir::Type type; 678 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), 679 attrs) || 680 parser.parseComma() || parser.parseOperandList(ops, 2) || 681 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || 682 parser.resolveOperands(ops, type, result.operands)) 683 return failure(); 684 685 if (!predicateNameAttr.isa<mlir::StringAttr>()) 686 return parser.emitError(parser.getNameLoc(), 687 "expected string comparison predicate attribute"); 688 689 // Rewrite string attribute to an enum value. 690 llvm::StringRef predicateName = 691 predicateNameAttr.cast<mlir::StringAttr>().getValue(); 692 auto predicate = fir::CmpcOp::getPredicateByName(predicateName); 693 auto builder = parser.getBuilder(); 694 mlir::Type i1Type = builder.getI1Type(); 695 attrs.set(OPTY::getPredicateAttrName(), 696 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 697 result.attributes = attrs; 698 result.addTypes({i1Type}); 699 return success(); 700 } 701 702 //===----------------------------------------------------------------------===// 703 // CharConvertOp 704 //===----------------------------------------------------------------------===// 705 706 static mlir::LogicalResult verify(fir::CharConvertOp op) { 707 auto unwrap = [&](mlir::Type t) { 708 t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t)); 709 return t.dyn_cast<fir::CharacterType>(); 710 }; 711 auto inTy = unwrap(op.from().getType()); 712 auto outTy = unwrap(op.to().getType()); 713 if (!(inTy && outTy)) 714 return op.emitOpError("not a reference to a character"); 715 if (inTy.getFKind() == outTy.getFKind()) 716 return op.emitOpError("buffers must have different KIND values"); 717 return mlir::success(); 718 } 719 720 //===----------------------------------------------------------------------===// 721 // CmpcOp 722 //===----------------------------------------------------------------------===// 723 724 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, 725 arith::CmpFPredicate predicate, Value lhs, Value rhs) { 726 result.addOperands({lhs, rhs}); 727 result.types.push_back(builder.getI1Type()); 728 result.addAttribute( 729 fir::CmpcOp::getPredicateAttrName(), 730 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 731 } 732 733 mlir::arith::CmpFPredicate 734 fir::CmpcOp::getPredicateByName(llvm::StringRef name) { 735 auto pred = mlir::arith::symbolizeCmpFPredicate(name); 736 assert(pred.hasValue() && "invalid predicate name"); 737 return pred.getValue(); 738 } 739 740 static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); } 741 742 mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser, 743 mlir::OperationState &result) { 744 return parseCmpOp<fir::CmpcOp>(parser, result); 745 } 746 747 //===----------------------------------------------------------------------===// 748 // ConstcOp 749 //===----------------------------------------------------------------------===// 750 751 static mlir::ParseResult parseConstcOp(mlir::OpAsmParser &parser, 752 mlir::OperationState &result) { 753 fir::RealAttr realp; 754 fir::RealAttr imagp; 755 mlir::Type type; 756 if (parser.parseLParen() || 757 parser.parseAttribute(realp, fir::ConstcOp::realAttrName(), 758 result.attributes) || 759 parser.parseComma() || 760 parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(), 761 result.attributes) || 762 parser.parseRParen() || parser.parseColonType(type) || 763 parser.addTypesToList(type, result.types)) 764 return mlir::failure(); 765 return mlir::success(); 766 } 767 768 static void print(mlir::OpAsmPrinter &p, fir::ConstcOp &op) { 769 p << '('; 770 p << op.getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", "; 771 p << op.getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : "; 772 p.printType(op.getType()); 773 } 774 775 static mlir::LogicalResult verify(fir::ConstcOp &op) { 776 if (!op.getType().isa<fir::ComplexType>()) 777 return op.emitOpError("must be a !fir.complex type"); 778 return mlir::success(); 779 } 780 781 //===----------------------------------------------------------------------===// 782 // ConvertOp 783 //===----------------------------------------------------------------------===// 784 785 void fir::ConvertOp::getCanonicalizationPatterns( 786 OwningRewritePatternList &results, MLIRContext *context) { 787 results.insert<ConvertConvertOptPattern, RedundantConvertOptPattern, 788 CombineConvertOptPattern, ForwardConstantConvertPattern>( 789 context); 790 } 791 792 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 793 if (value().getType() == getType()) 794 return value(); 795 if (matchPattern(value(), m_Op<fir::ConvertOp>())) { 796 auto inner = cast<fir::ConvertOp>(value().getDefiningOp()); 797 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a 798 if (auto toTy = getType().dyn_cast<fir::LogicalType>()) 799 if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>()) 800 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy)) 801 return inner.value(); 802 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a 803 if (auto toTy = getType().dyn_cast<mlir::IntegerType>()) 804 if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>()) 805 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) && 806 (fromTy.getWidth() == 1)) 807 return inner.value(); 808 } 809 return {}; 810 } 811 812 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { 813 return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() || 814 ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>(); 815 } 816 817 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { 818 return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>(); 819 } 820 821 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { 822 return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() || 823 ty.isa<fir::HeapType>() || ty.isa<fir::LLVMPointerType>() || 824 ty.isa<mlir::MemRefType>() || ty.isa<mlir::FunctionType>() || 825 ty.isa<fir::TypeDescType>(); 826 } 827 828 static mlir::LogicalResult verify(fir::ConvertOp &op) { 829 auto inType = op.value().getType(); 830 auto outType = op.getType(); 831 if (inType == outType) 832 return mlir::success(); 833 if ((op.isPointerCompatible(inType) && op.isPointerCompatible(outType)) || 834 (op.isIntegerCompatible(inType) && op.isIntegerCompatible(outType)) || 835 (op.isIntegerCompatible(inType) && op.isFloatCompatible(outType)) || 836 (op.isFloatCompatible(inType) && op.isIntegerCompatible(outType)) || 837 (op.isFloatCompatible(inType) && op.isFloatCompatible(outType)) || 838 (op.isIntegerCompatible(inType) && op.isPointerCompatible(outType)) || 839 (op.isPointerCompatible(inType) && op.isIntegerCompatible(outType)) || 840 (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) || 841 (fir::isa_complex(inType) && fir::isa_complex(outType))) 842 return mlir::success(); 843 return op.emitOpError("invalid type conversion"); 844 } 845 846 //===----------------------------------------------------------------------===// 847 // CoordinateOp 848 //===----------------------------------------------------------------------===// 849 850 static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) { 851 p << ' ' << op.ref() << ", " << op.coor(); 852 p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"}); 853 p << " : "; 854 p.printFunctionalType(op.getOperandTypes(), op->getResultTypes()); 855 } 856 857 static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser, 858 mlir::OperationState &result) { 859 mlir::OpAsmParser::OperandType memref; 860 if (parser.parseOperand(memref) || parser.parseComma()) 861 return mlir::failure(); 862 llvm::SmallVector<mlir::OpAsmParser::OperandType> coorOperands; 863 if (parser.parseOperandList(coorOperands)) 864 return mlir::failure(); 865 llvm::SmallVector<mlir::OpAsmParser::OperandType> allOperands; 866 allOperands.push_back(memref); 867 allOperands.append(coorOperands.begin(), coorOperands.end()); 868 mlir::FunctionType funcTy; 869 auto loc = parser.getCurrentLocation(); 870 if (parser.parseOptionalAttrDict(result.attributes) || 871 parser.parseColonType(funcTy) || 872 parser.resolveOperands(allOperands, funcTy.getInputs(), loc, 873 result.operands)) 874 return failure(); 875 parser.addTypesToList(funcTy.getResults(), result.types); 876 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); 877 return mlir::success(); 878 } 879 880 static mlir::LogicalResult verify(fir::CoordinateOp op) { 881 auto refTy = op.ref().getType(); 882 if (fir::isa_ref_type(refTy)) { 883 auto eleTy = fir::dyn_cast_ptrEleTy(refTy); 884 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) { 885 if (arrTy.hasUnknownShape()) 886 return op.emitOpError("cannot find coordinate in unknown shape"); 887 if (arrTy.getConstantRows() < arrTy.getDimension() - 1) 888 return op.emitOpError("cannot find coordinate with unknown extents"); 889 } 890 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || 891 fir::isa_char_string(eleTy))) 892 return op.emitOpError("cannot apply coordinate_of to this type"); 893 } 894 // Recovering a LEN type parameter only makes sense from a boxed value. For a 895 // bare reference, the LEN type parameters must be passed as additional 896 // arguments to `op`. 897 for (auto co : op.coor()) 898 if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) { 899 if (op.getNumOperands() != 2) 900 return op.emitOpError("len_param_index must be last argument"); 901 if (!op.ref().getType().isa<BoxType>()) 902 return op.emitOpError("len_param_index must be used on box type"); 903 } 904 return mlir::success(); 905 } 906 907 //===----------------------------------------------------------------------===// 908 // DispatchOp 909 //===----------------------------------------------------------------------===// 910 911 mlir::FunctionType fir::DispatchOp::getFunctionType() { 912 return mlir::FunctionType::get(getContext(), getOperandTypes(), 913 getResultTypes()); 914 } 915 916 static mlir::ParseResult parseDispatchOp(mlir::OpAsmParser &parser, 917 mlir::OperationState &result) { 918 mlir::FunctionType calleeType; 919 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 920 auto calleeLoc = parser.getNameLoc(); 921 llvm::StringRef calleeName; 922 if (failed(parser.parseOptionalKeyword(&calleeName))) { 923 mlir::StringAttr calleeAttr; 924 if (parser.parseAttribute(calleeAttr, fir::DispatchOp::getMethodAttrName(), 925 result.attributes)) 926 return mlir::failure(); 927 } else { 928 result.addAttribute(fir::DispatchOp::getMethodAttrName(), 929 parser.getBuilder().getStringAttr(calleeName)); 930 } 931 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 932 parser.parseOptionalAttrDict(result.attributes) || 933 parser.parseColonType(calleeType) || 934 parser.addTypesToList(calleeType.getResults(), result.types) || 935 parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc, 936 result.operands)) 937 return mlir::failure(); 938 return mlir::success(); 939 } 940 941 static void print(mlir::OpAsmPrinter &p, fir::DispatchOp &op) { 942 p << ' ' << op.getOperation()->getAttr(fir::DispatchOp::getMethodAttrName()) 943 << '('; 944 p.printOperand(op.object()); 945 if (!op.args().empty()) { 946 p << ", "; 947 p.printOperands(op.args()); 948 } 949 p << ") : "; 950 p.printFunctionalType(op.getOperation()->getOperandTypes(), 951 op.getOperation()->getResultTypes()); 952 } 953 954 //===----------------------------------------------------------------------===// 955 // DispatchTableOp 956 //===----------------------------------------------------------------------===// 957 958 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { 959 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp"); 960 auto &block = getBlock(); 961 block.getOperations().insert(block.end(), op); 962 } 963 964 static mlir::ParseResult parseDispatchTableOp(mlir::OpAsmParser &parser, 965 mlir::OperationState &result) { 966 // Parse the name as a symbol reference attribute. 967 SymbolRefAttr nameAttr; 968 if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 969 result.attributes)) 970 return failure(); 971 972 // Convert the parsed name attr into a string attr. 973 result.attributes.set(mlir::SymbolTable::getSymbolAttrName(), 974 nameAttr.getRootReference()); 975 976 // Parse the optional table body. 977 mlir::Region *body = result.addRegion(); 978 OptionalParseResult parseResult = parser.parseOptionalRegion(*body); 979 if (parseResult.hasValue() && failed(*parseResult)) 980 return mlir::failure(); 981 982 fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(), 983 result.location); 984 return mlir::success(); 985 } 986 987 static void print(mlir::OpAsmPrinter &p, fir::DispatchTableOp &op) { 988 auto tableName = 989 op.getOperation() 990 ->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()) 991 .getValue(); 992 p << " @" << tableName; 993 994 Region &body = op.getOperation()->getRegion(0); 995 if (!body.empty()) 996 p.printRegion(body, /*printEntryBlockArgs=*/false, 997 /*printBlockTerminators=*/false); 998 } 999 1000 static mlir::LogicalResult verify(fir::DispatchTableOp &op) { 1001 for (auto &op : op.getBlock()) 1002 if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op))) 1003 return op.emitOpError("dispatch table must contain dt_entry"); 1004 return mlir::success(); 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // EmboxOp 1009 //===----------------------------------------------------------------------===// 1010 1011 static mlir::LogicalResult verify(fir::EmboxOp op) { 1012 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 1013 bool isArray = false; 1014 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 1015 eleTy = seqTy.getEleTy(); 1016 isArray = true; 1017 } 1018 if (op.hasLenParams()) { 1019 auto lenPs = op.numLenParams(); 1020 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) { 1021 if (lenPs != rt.getNumLenParams()) 1022 return op.emitOpError("number of LEN params does not correspond" 1023 " to the !fir.type type"); 1024 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) { 1025 if (strTy.getLen() != fir::CharacterType::unknownLen()) 1026 return op.emitOpError("CHARACTER already has static LEN"); 1027 } else { 1028 return op.emitOpError("LEN parameters require CHARACTER or derived type"); 1029 } 1030 for (auto lp : op.typeparams()) 1031 if (!fir::isa_integer(lp.getType())) 1032 return op.emitOpError("LEN parameters must be integral type"); 1033 } 1034 if (op.getShape() && !isArray) 1035 return op.emitOpError("shape must not be provided for a scalar"); 1036 if (op.getSlice() && !isArray) 1037 return op.emitOpError("slice must not be provided for a scalar"); 1038 return mlir::success(); 1039 } 1040 1041 //===----------------------------------------------------------------------===// 1042 // EmboxCharOp 1043 //===----------------------------------------------------------------------===// 1044 1045 static mlir::LogicalResult verify(fir::EmboxCharOp &op) { 1046 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 1047 if (!eleTy.dyn_cast_or_null<CharacterType>()) 1048 return mlir::failure(); 1049 return mlir::success(); 1050 } 1051 1052 //===----------------------------------------------------------------------===// 1053 // EmboxProcOp 1054 //===----------------------------------------------------------------------===// 1055 1056 static mlir::ParseResult parseEmboxProcOp(mlir::OpAsmParser &parser, 1057 mlir::OperationState &result) { 1058 mlir::SymbolRefAttr procRef; 1059 if (parser.parseAttribute(procRef, "funcname", result.attributes)) 1060 return mlir::failure(); 1061 bool hasTuple = false; 1062 mlir::OpAsmParser::OperandType tupleRef; 1063 if (!parser.parseOptionalComma()) { 1064 if (parser.parseOperand(tupleRef)) 1065 return mlir::failure(); 1066 hasTuple = true; 1067 } 1068 mlir::FunctionType type; 1069 if (parser.parseColon() || parser.parseLParen() || parser.parseType(type)) 1070 return mlir::failure(); 1071 result.addAttribute("functype", mlir::TypeAttr::get(type)); 1072 if (hasTuple) { 1073 mlir::Type tupleType; 1074 if (parser.parseComma() || parser.parseType(tupleType) || 1075 parser.resolveOperand(tupleRef, tupleType, result.operands)) 1076 return mlir::failure(); 1077 } 1078 mlir::Type boxType; 1079 if (parser.parseRParen() || parser.parseArrow() || 1080 parser.parseType(boxType) || parser.addTypesToList(boxType, result.types)) 1081 return mlir::failure(); 1082 return mlir::success(); 1083 } 1084 1085 static void print(mlir::OpAsmPrinter &p, fir::EmboxProcOp &op) { 1086 p << ' ' << op.getOperation()->getAttr("funcname"); 1087 auto h = op.host(); 1088 if (h) { 1089 p << ", "; 1090 p.printOperand(h); 1091 } 1092 p << " : (" << op.getOperation()->getAttr("functype"); 1093 if (h) 1094 p << ", " << h.getType(); 1095 p << ") -> " << op.getType(); 1096 } 1097 1098 static mlir::LogicalResult verify(fir::EmboxProcOp &op) { 1099 // host bindings (optional) must be a reference to a tuple 1100 if (auto h = op.host()) { 1101 if (auto r = h.getType().dyn_cast<ReferenceType>()) { 1102 if (!r.getEleTy().dyn_cast<mlir::TupleType>()) 1103 return mlir::failure(); 1104 } else { 1105 return mlir::failure(); 1106 } 1107 } 1108 return mlir::success(); 1109 } 1110 1111 //===----------------------------------------------------------------------===// 1112 // GenTypeDescOp 1113 //===----------------------------------------------------------------------===// 1114 1115 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, 1116 mlir::TypeAttr inty) { 1117 result.addAttribute("in_type", inty); 1118 result.addTypes(TypeDescType::get(inty.getValue())); 1119 } 1120 1121 static mlir::ParseResult parseGenTypeDescOp(mlir::OpAsmParser &parser, 1122 mlir::OperationState &result) { 1123 mlir::Type intype; 1124 if (parser.parseType(intype)) 1125 return mlir::failure(); 1126 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 1127 mlir::Type restype = TypeDescType::get(intype); 1128 if (parser.addTypeToList(restype, result.types)) 1129 return mlir::failure(); 1130 return mlir::success(); 1131 } 1132 1133 static void print(mlir::OpAsmPrinter &p, fir::GenTypeDescOp &op) { 1134 p << ' ' << op.getOperation()->getAttr("in_type"); 1135 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {"in_type"}); 1136 } 1137 1138 static mlir::LogicalResult verify(fir::GenTypeDescOp &op) { 1139 mlir::Type resultTy = op.getType(); 1140 if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) { 1141 if (tdesc.getOfTy() != op.getInType()) 1142 return op.emitOpError("wrapped type mismatched"); 1143 } else { 1144 return op.emitOpError("must be !fir.tdesc type"); 1145 } 1146 return mlir::success(); 1147 } 1148 1149 //===----------------------------------------------------------------------===// 1150 // GlobalOp 1151 //===----------------------------------------------------------------------===// 1152 1153 mlir::Type fir::GlobalOp::resultType() { 1154 return wrapAllocaResultType(getType()); 1155 } 1156 1157 static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { 1158 // Parse the optional linkage 1159 llvm::StringRef linkage; 1160 auto &builder = parser.getBuilder(); 1161 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { 1162 if (fir::GlobalOp::verifyValidLinkage(linkage)) 1163 return mlir::failure(); 1164 mlir::StringAttr linkAttr = builder.getStringAttr(linkage); 1165 result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); 1166 } 1167 1168 // Parse the name as a symbol reference attribute. 1169 mlir::SymbolRefAttr nameAttr; 1170 if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(), 1171 result.attributes)) 1172 return mlir::failure(); 1173 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1174 nameAttr.getRootReference()); 1175 1176 bool simpleInitializer = false; 1177 if (mlir::succeeded(parser.parseOptionalLParen())) { 1178 Attribute attr; 1179 if (parser.parseAttribute(attr, "initVal", result.attributes) || 1180 parser.parseRParen()) 1181 return mlir::failure(); 1182 simpleInitializer = true; 1183 } 1184 1185 if (succeeded(parser.parseOptionalKeyword("constant"))) { 1186 // if "constant" keyword then mark this as a constant, not a variable 1187 result.addAttribute("constant", builder.getUnitAttr()); 1188 } 1189 1190 mlir::Type globalType; 1191 if (parser.parseColonType(globalType)) 1192 return mlir::failure(); 1193 1194 result.addAttribute(fir::GlobalOp::typeAttrName(result.name), 1195 mlir::TypeAttr::get(globalType)); 1196 1197 if (simpleInitializer) { 1198 result.addRegion(); 1199 } else { 1200 // Parse the optional initializer body. 1201 auto parseResult = parser.parseOptionalRegion( 1202 *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); 1203 if (parseResult.hasValue() && mlir::failed(*parseResult)) 1204 return mlir::failure(); 1205 } 1206 1207 return mlir::success(); 1208 } 1209 1210 static void print(mlir::OpAsmPrinter &p, fir::GlobalOp &op) { 1211 if (op.linkName().hasValue()) 1212 p << ' ' << op.linkName().getValue(); 1213 p << ' '; 1214 p.printAttributeWithoutType( 1215 op.getOperation()->getAttr(fir::GlobalOp::symbolAttrName())); 1216 if (auto val = op.getValueOrNull()) 1217 p << '(' << val << ')'; 1218 if (op.getOperation()->getAttr(fir::GlobalOp::getConstantAttrName())) 1219 p << " constant"; 1220 p << " : "; 1221 p.printType(op.getType()); 1222 if (op.hasInitializationBody()) 1223 p.printRegion(op.getOperation()->getRegion(0), 1224 /*printEntryBlockArgs=*/false, 1225 /*printBlockTerminators=*/true); 1226 } 1227 1228 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { 1229 getBlock().getOperations().push_back(op); 1230 } 1231 1232 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1233 StringRef name, bool isConstant, Type type, 1234 Attribute initialVal, StringAttr linkage, 1235 ArrayRef<NamedAttribute> attrs) { 1236 result.addRegion(); 1237 result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type)); 1238 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1239 builder.getStringAttr(name)); 1240 result.addAttribute(symbolAttrName(), 1241 SymbolRefAttr::get(builder.getContext(), name)); 1242 if (isConstant) 1243 result.addAttribute(constantAttrName(result.name), builder.getUnitAttr()); 1244 if (initialVal) 1245 result.addAttribute(initValAttrName(result.name), initialVal); 1246 if (linkage) 1247 result.addAttribute(linkageAttrName(), linkage); 1248 result.attributes.append(attrs.begin(), attrs.end()); 1249 } 1250 1251 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1252 StringRef name, Type type, Attribute initialVal, 1253 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1254 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1255 } 1256 1257 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1258 StringRef name, bool isConstant, Type type, 1259 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1260 build(builder, result, name, isConstant, type, {}, linkage, attrs); 1261 } 1262 1263 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1264 StringRef name, Type type, StringAttr linkage, 1265 ArrayRef<NamedAttribute> attrs) { 1266 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1267 } 1268 1269 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1270 StringRef name, bool isConstant, Type type, 1271 ArrayRef<NamedAttribute> attrs) { 1272 build(builder, result, name, isConstant, type, StringAttr{}, attrs); 1273 } 1274 1275 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1276 StringRef name, Type type, 1277 ArrayRef<NamedAttribute> attrs) { 1278 build(builder, result, name, /*isConstant=*/false, type, attrs); 1279 } 1280 1281 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { 1282 // Supporting only a subset of the LLVM linkage types for now 1283 static const char *validNames[] = {"common", "internal", "linkonce", "weak"}; 1284 return mlir::success(llvm::is_contained(validNames, linkage)); 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // GlobalLenOp 1289 //===----------------------------------------------------------------------===// 1290 1291 static mlir::ParseResult parseGlobalLenOp(mlir::OpAsmParser &parser, 1292 mlir::OperationState &result) { 1293 llvm::StringRef fieldName; 1294 if (failed(parser.parseOptionalKeyword(&fieldName))) { 1295 mlir::StringAttr fieldAttr; 1296 if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(), 1297 result.attributes)) 1298 return mlir::failure(); 1299 } else { 1300 result.addAttribute(fir::GlobalLenOp::lenParamAttrName(), 1301 parser.getBuilder().getStringAttr(fieldName)); 1302 } 1303 mlir::IntegerAttr constant; 1304 if (parser.parseComma() || 1305 parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(), 1306 result.attributes)) 1307 return mlir::failure(); 1308 return mlir::success(); 1309 } 1310 1311 static void print(mlir::OpAsmPrinter &p, fir::GlobalLenOp &op) { 1312 p << ' ' << op.getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName()) 1313 << ", " << op.getOperation()->getAttr(fir::GlobalLenOp::intAttrName()); 1314 } 1315 1316 //===----------------------------------------------------------------------===// 1317 // FieldIndexOp 1318 //===----------------------------------------------------------------------===// 1319 1320 static mlir::ParseResult parseFieldIndexOp(mlir::OpAsmParser &parser, 1321 mlir::OperationState &result) { 1322 llvm::StringRef fieldName; 1323 auto &builder = parser.getBuilder(); 1324 mlir::Type recty; 1325 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1326 parser.parseType(recty)) 1327 return mlir::failure(); 1328 result.addAttribute(fir::FieldIndexOp::fieldAttrName(), 1329 builder.getStringAttr(fieldName)); 1330 if (!recty.dyn_cast<RecordType>()) 1331 return mlir::failure(); 1332 result.addAttribute(fir::FieldIndexOp::typeAttrName(), 1333 mlir::TypeAttr::get(recty)); 1334 if (!parser.parseOptionalLParen()) { 1335 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1336 llvm::SmallVector<mlir::Type> types; 1337 auto loc = parser.getNameLoc(); 1338 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 1339 parser.parseColonTypeList(types) || parser.parseRParen() || 1340 parser.resolveOperands(operands, types, loc, result.operands)) 1341 return mlir::failure(); 1342 } 1343 mlir::Type fieldType = fir::FieldType::get(builder.getContext()); 1344 if (parser.addTypeToList(fieldType, result.types)) 1345 return mlir::failure(); 1346 return mlir::success(); 1347 } 1348 1349 static void print(mlir::OpAsmPrinter &p, fir::FieldIndexOp &op) { 1350 p << ' ' 1351 << op.getOperation() 1352 ->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName()) 1353 .getValue() 1354 << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::typeAttrName()); 1355 if (op.getNumOperands()) { 1356 p << '('; 1357 p.printOperands(op.typeparams()); 1358 const auto *sep = ") : "; 1359 for (auto op : op.typeparams()) { 1360 p << sep; 1361 if (op) 1362 p.printType(op.getType()); 1363 else 1364 p << "()"; 1365 sep = ", "; 1366 } 1367 } 1368 } 1369 1370 void fir::FieldIndexOp::build(mlir::OpBuilder &builder, 1371 mlir::OperationState &result, 1372 llvm::StringRef fieldName, mlir::Type recTy, 1373 mlir::ValueRange operands) { 1374 result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName)); 1375 result.addAttribute(typeAttrName(), TypeAttr::get(recTy)); 1376 result.addOperands(operands); 1377 } 1378 1379 //===----------------------------------------------------------------------===// 1380 // InsertOnRangeOp 1381 //===----------------------------------------------------------------------===// 1382 1383 static ParseResult 1384 parseCustomRangeSubscript(mlir::OpAsmParser &parser, 1385 mlir::DenseIntElementsAttr &coord) { 1386 llvm::SmallVector<int64_t> lbounds; 1387 llvm::SmallVector<int64_t> ubounds; 1388 if (parser.parseKeyword("from") || 1389 parser.parseCommaSeparatedList( 1390 AsmParser::Delimiter::Paren, 1391 [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) || 1392 parser.parseKeyword("to") || 1393 parser.parseCommaSeparatedList(AsmParser::Delimiter::Paren, [&] { 1394 return parser.parseInteger(ubounds.emplace_back(0)); 1395 })) 1396 return failure(); 1397 llvm::SmallVector<int64_t> zippedBounds; 1398 for (auto zip : llvm::zip(lbounds, ubounds)) { 1399 zippedBounds.push_back(std::get<0>(zip)); 1400 zippedBounds.push_back(std::get<1>(zip)); 1401 } 1402 coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds); 1403 return success(); 1404 } 1405 1406 void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, InsertOnRangeOp op, 1407 mlir::DenseIntElementsAttr coord) { 1408 printer << "from ("; 1409 auto enumerate = llvm::enumerate(coord.getValues<int64_t>()); 1410 // Even entries are the lower bounds. 1411 llvm::interleaveComma( 1412 make_filter_range( 1413 enumerate, 1414 [](auto indexed_value) { return indexed_value.index() % 2 == 0; }), 1415 printer, [&](auto indexed_value) { printer << indexed_value.value(); }); 1416 printer << ") to ("; 1417 // Odd entries are the upper bounds. 1418 llvm::interleaveComma( 1419 make_filter_range( 1420 enumerate, 1421 [](auto indexed_value) { return indexed_value.index() % 2 != 0; }), 1422 printer, [&](auto indexed_value) { printer << indexed_value.value(); }); 1423 printer << ")"; 1424 } 1425 1426 /// Range bounds must be nonnegative, and the range must not be empty. 1427 static mlir::LogicalResult verify(fir::InsertOnRangeOp op) { 1428 if (fir::hasDynamicSize(op.seq().getType())) 1429 return op.emitOpError("must have constant shape and size"); 1430 mlir::DenseIntElementsAttr coor = op.coor(); 1431 if (coor.size() < 2 || coor.size() % 2 != 0) 1432 return op.emitOpError("has uneven number of values in ranges"); 1433 bool rangeIsKnownToBeNonempty = false; 1434 for (auto i = coor.getValues<int64_t>().end(), 1435 b = coor.getValues<int64_t>().begin(); 1436 i != b;) { 1437 int64_t ub = (*--i); 1438 int64_t lb = (*--i); 1439 if (lb < 0 || ub < 0) 1440 return op.emitOpError("negative range bound"); 1441 if (rangeIsKnownToBeNonempty) 1442 continue; 1443 if (lb > ub) 1444 return op.emitOpError("empty range"); 1445 rangeIsKnownToBeNonempty = lb < ub; 1446 } 1447 return mlir::success(); 1448 } 1449 1450 //===----------------------------------------------------------------------===// 1451 // InsertValueOp 1452 //===----------------------------------------------------------------------===// 1453 1454 static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) { 1455 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>()) 1456 return iattr.getInt() == conVal; 1457 return false; 1458 } 1459 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); } 1460 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); } 1461 1462 // Undo some complex patterns created in the front-end and turn them back into 1463 // complex ops. 1464 template <typename FltOp, typename CpxOp> 1465 struct UndoComplexPattern : public mlir::RewritePattern { 1466 UndoComplexPattern(mlir::MLIRContext *ctx) 1467 : mlir::RewritePattern("fir.insert_value", 2, ctx) {} 1468 1469 mlir::LogicalResult 1470 matchAndRewrite(mlir::Operation *op, 1471 mlir::PatternRewriter &rewriter) const override { 1472 auto insval = dyn_cast_or_null<fir::InsertValueOp>(op); 1473 if (!insval || !insval.getType().isa<fir::ComplexType>()) 1474 return mlir::failure(); 1475 auto insval2 = 1476 dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp()); 1477 if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp())) 1478 return mlir::failure(); 1479 auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp()); 1480 auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp()); 1481 if (!binf || !binf2 || insval.coor().size() != 1 || 1482 !isOne(insval.coor()[0]) || insval2.coor().size() != 1 || 1483 !isZero(insval2.coor()[0])) 1484 return mlir::failure(); 1485 auto eai = 1486 dyn_cast_or_null<fir::ExtractValueOp>(binf.lhs().getDefiningOp()); 1487 auto ebi = 1488 dyn_cast_or_null<fir::ExtractValueOp>(binf.rhs().getDefiningOp()); 1489 auto ear = 1490 dyn_cast_or_null<fir::ExtractValueOp>(binf2.lhs().getDefiningOp()); 1491 auto ebr = 1492 dyn_cast_or_null<fir::ExtractValueOp>(binf2.rhs().getDefiningOp()); 1493 if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() || 1494 ebr.adt() != ebi.adt() || eai.coor().size() != 1 || 1495 !isOne(eai.coor()[0]) || ebi.coor().size() != 1 || 1496 !isOne(ebi.coor()[0]) || ear.coor().size() != 1 || 1497 !isZero(ear.coor()[0]) || ebr.coor().size() != 1 || 1498 !isZero(ebr.coor()[0])) 1499 return mlir::failure(); 1500 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt()); 1501 return mlir::success(); 1502 } 1503 }; 1504 1505 void fir::InsertValueOp::getCanonicalizationPatterns( 1506 mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { 1507 results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>, 1508 UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context); 1509 } 1510 1511 //===----------------------------------------------------------------------===// 1512 // IterWhileOp 1513 //===----------------------------------------------------------------------===// 1514 1515 void fir::IterWhileOp::build(mlir::OpBuilder &builder, 1516 mlir::OperationState &result, mlir::Value lb, 1517 mlir::Value ub, mlir::Value step, 1518 mlir::Value iterate, bool finalCountValue, 1519 mlir::ValueRange iterArgs, 1520 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1521 result.addOperands({lb, ub, step, iterate}); 1522 if (finalCountValue) { 1523 result.addTypes(builder.getIndexType()); 1524 result.addAttribute(getFinalValueAttrName(), builder.getUnitAttr()); 1525 } 1526 result.addTypes(iterate.getType()); 1527 result.addOperands(iterArgs); 1528 for (auto v : iterArgs) 1529 result.addTypes(v.getType()); 1530 mlir::Region *bodyRegion = result.addRegion(); 1531 bodyRegion->push_back(new Block{}); 1532 bodyRegion->front().addArgument(builder.getIndexType()); 1533 bodyRegion->front().addArgument(iterate.getType()); 1534 bodyRegion->front().addArguments(iterArgs.getTypes()); 1535 result.addAttributes(attributes); 1536 } 1537 1538 static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser, 1539 mlir::OperationState &result) { 1540 auto &builder = parser.getBuilder(); 1541 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1542 if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || 1543 parser.parseEqual()) 1544 return mlir::failure(); 1545 1546 // Parse loop bounds. 1547 auto indexType = builder.getIndexType(); 1548 auto i1Type = builder.getIntegerType(1); 1549 if (parser.parseOperand(lb) || 1550 parser.resolveOperand(lb, indexType, result.operands) || 1551 parser.parseKeyword("to") || parser.parseOperand(ub) || 1552 parser.resolveOperand(ub, indexType, result.operands) || 1553 parser.parseKeyword("step") || parser.parseOperand(step) || 1554 parser.parseRParen() || 1555 parser.resolveOperand(step, indexType, result.operands)) 1556 return mlir::failure(); 1557 1558 mlir::OpAsmParser::OperandType iterateVar, iterateInput; 1559 if (parser.parseKeyword("and") || parser.parseLParen() || 1560 parser.parseRegionArgument(iterateVar) || parser.parseEqual() || 1561 parser.parseOperand(iterateInput) || parser.parseRParen() || 1562 parser.resolveOperand(iterateInput, i1Type, result.operands)) 1563 return mlir::failure(); 1564 1565 // Parse the initial iteration arguments. 1566 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs; 1567 auto prependCount = false; 1568 1569 // Induction variable. 1570 regionArgs.push_back(inductionVariable); 1571 regionArgs.push_back(iterateVar); 1572 1573 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1574 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1575 llvm::SmallVector<mlir::Type> regionTypes; 1576 // Parse assignment list and results type list. 1577 if (parser.parseAssignmentList(regionArgs, operands) || 1578 parser.parseArrowTypeList(regionTypes)) 1579 return failure(); 1580 if (regionTypes.size() == operands.size() + 2) 1581 prependCount = true; 1582 llvm::ArrayRef<mlir::Type> resTypes = regionTypes; 1583 resTypes = prependCount ? resTypes.drop_front(2) : resTypes; 1584 // Resolve input operands. 1585 for (auto operandType : llvm::zip(operands, resTypes)) 1586 if (parser.resolveOperand(std::get<0>(operandType), 1587 std::get<1>(operandType), result.operands)) 1588 return failure(); 1589 if (prependCount) { 1590 result.addTypes(regionTypes); 1591 } else { 1592 result.addTypes(i1Type); 1593 result.addTypes(resTypes); 1594 } 1595 } else if (succeeded(parser.parseOptionalArrow())) { 1596 llvm::SmallVector<mlir::Type> typeList; 1597 if (parser.parseLParen() || parser.parseTypeList(typeList) || 1598 parser.parseRParen()) 1599 return failure(); 1600 // Type list must be "(index, i1)". 1601 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() || 1602 !typeList[1].isSignlessInteger(1)) 1603 return failure(); 1604 result.addTypes(typeList); 1605 prependCount = true; 1606 } else { 1607 result.addTypes(i1Type); 1608 } 1609 1610 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1611 return mlir::failure(); 1612 1613 llvm::SmallVector<mlir::Type> argTypes; 1614 // Induction variable (hidden) 1615 if (prependCount) 1616 result.addAttribute(IterWhileOp::getFinalValueAttrName(), 1617 builder.getUnitAttr()); 1618 else 1619 argTypes.push_back(indexType); 1620 // Loop carried variables (including iterate) 1621 argTypes.append(result.types.begin(), result.types.end()); 1622 // Parse the body region. 1623 auto *body = result.addRegion(); 1624 if (regionArgs.size() != argTypes.size()) 1625 return parser.emitError( 1626 parser.getNameLoc(), 1627 "mismatch in number of loop-carried values and defined values"); 1628 1629 if (parser.parseRegion(*body, regionArgs, argTypes)) 1630 return failure(); 1631 1632 fir::IterWhileOp::ensureTerminator(*body, builder, result.location); 1633 1634 return mlir::success(); 1635 } 1636 1637 static mlir::LogicalResult verify(fir::IterWhileOp op) { 1638 // Check that the body defines as single block argument for the induction 1639 // variable. 1640 auto *body = op.getBody(); 1641 if (!body->getArgument(1).getType().isInteger(1)) 1642 return op.emitOpError( 1643 "expected body second argument to be an index argument for " 1644 "the induction variable"); 1645 if (!body->getArgument(0).getType().isIndex()) 1646 return op.emitOpError( 1647 "expected body first argument to be an index argument for " 1648 "the induction variable"); 1649 1650 auto opNumResults = op.getNumResults(); 1651 if (op.finalValue()) { 1652 // Result type must be "(index, i1, ...)". 1653 if (!op.getResult(0).getType().isa<mlir::IndexType>()) 1654 return op.emitOpError("result #0 expected to be index"); 1655 if (!op.getResult(1).getType().isSignlessInteger(1)) 1656 return op.emitOpError("result #1 expected to be i1"); 1657 opNumResults--; 1658 } else { 1659 // iterate_while always returns the early exit induction value. 1660 // Result type must be "(i1, ...)" 1661 if (!op.getResult(0).getType().isSignlessInteger(1)) 1662 return op.emitOpError("result #0 expected to be i1"); 1663 } 1664 if (opNumResults == 0) 1665 return mlir::failure(); 1666 if (op.getNumIterOperands() != opNumResults) 1667 return op.emitOpError( 1668 "mismatch in number of loop-carried values and defined values"); 1669 if (op.getNumRegionIterArgs() != opNumResults) 1670 return op.emitOpError( 1671 "mismatch in number of basic block args and defined values"); 1672 auto iterOperands = op.getIterOperands(); 1673 auto iterArgs = op.getRegionIterArgs(); 1674 auto opResults = 1675 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1676 unsigned i = 0; 1677 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1678 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1679 return op.emitOpError() << "types mismatch between " << i 1680 << "th iter operand and defined value"; 1681 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1682 return op.emitOpError() << "types mismatch between " << i 1683 << "th iter region arg and defined value"; 1684 1685 i++; 1686 } 1687 return mlir::success(); 1688 } 1689 1690 static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) { 1691 p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to " 1692 << op.upperBound() << " step " << op.step() << ") and ("; 1693 assert(op.hasIterOperands()); 1694 auto regionArgs = op.getRegionIterArgs(); 1695 auto operands = op.getIterOperands(); 1696 p << regionArgs.front() << " = " << *operands.begin() << ")"; 1697 if (regionArgs.size() > 1) { 1698 p << " iter_args("; 1699 llvm::interleaveComma( 1700 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, 1701 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); 1702 p << ") -> ("; 1703 llvm::interleaveComma( 1704 llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p); 1705 p << ")"; 1706 } else if (op.finalValue()) { 1707 p << " -> (" << op.getResultTypes() << ')'; 1708 } 1709 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 1710 {IterWhileOp::getFinalValueAttrName()}); 1711 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 1712 /*printBlockTerminators=*/true); 1713 } 1714 1715 mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); } 1716 1717 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { 1718 return !region().isAncestor(value.getParentRegion()); 1719 } 1720 1721 mlir::LogicalResult 1722 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1723 for (auto *op : ops) 1724 op->moveBefore(*this); 1725 return success(); 1726 } 1727 1728 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { 1729 for (auto i : llvm::enumerate(initArgs())) 1730 if (iterArg == i.value()) 1731 return region().front().getArgument(i.index() + 1); 1732 return {}; 1733 } 1734 1735 void fir::IterWhileOp::resultToSourceOps( 1736 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1737 auto oper = finalValue() ? resultNum + 1 : resultNum; 1738 auto *term = region().front().getTerminator(); 1739 if (oper < term->getNumOperands()) 1740 results.push_back(term->getOperand(oper)); 1741 } 1742 1743 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { 1744 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 1745 return initArgs()[blockArgNum - 1]; 1746 return {}; 1747 } 1748 1749 //===----------------------------------------------------------------------===// 1750 // LenParamIndexOp 1751 //===----------------------------------------------------------------------===// 1752 1753 static mlir::ParseResult parseLenParamIndexOp(mlir::OpAsmParser &parser, 1754 mlir::OperationState &result) { 1755 llvm::StringRef fieldName; 1756 auto &builder = parser.getBuilder(); 1757 mlir::Type recty; 1758 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1759 parser.parseType(recty)) 1760 return mlir::failure(); 1761 result.addAttribute(fir::LenParamIndexOp::fieldAttrName(), 1762 builder.getStringAttr(fieldName)); 1763 if (!recty.dyn_cast<RecordType>()) 1764 return mlir::failure(); 1765 result.addAttribute(fir::LenParamIndexOp::typeAttrName(), 1766 mlir::TypeAttr::get(recty)); 1767 mlir::Type lenType = fir::LenType::get(builder.getContext()); 1768 if (parser.addTypeToList(lenType, result.types)) 1769 return mlir::failure(); 1770 return mlir::success(); 1771 } 1772 1773 static void print(mlir::OpAsmPrinter &p, fir::LenParamIndexOp &op) { 1774 p << ' ' 1775 << op.getOperation() 1776 ->getAttrOfType<mlir::StringAttr>( 1777 fir::LenParamIndexOp::fieldAttrName()) 1778 .getValue() 1779 << ", " << op.getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName()); 1780 } 1781 1782 //===----------------------------------------------------------------------===// 1783 // LoadOp 1784 //===----------------------------------------------------------------------===// 1785 1786 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 1787 mlir::Value refVal) { 1788 if (!refVal) { 1789 mlir::emitError(result.location, "LoadOp has null argument"); 1790 return; 1791 } 1792 auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType()); 1793 if (!eleTy) { 1794 mlir::emitError(result.location, "not a memory reference type"); 1795 return; 1796 } 1797 result.addOperands(refVal); 1798 result.addTypes(eleTy); 1799 } 1800 1801 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { 1802 if ((ele = fir::dyn_cast_ptrEleTy(ref))) 1803 return mlir::success(); 1804 return mlir::failure(); 1805 } 1806 1807 static mlir::ParseResult parseLoadOp(mlir::OpAsmParser &parser, 1808 mlir::OperationState &result) { 1809 mlir::Type type; 1810 mlir::OpAsmParser::OperandType oper; 1811 if (parser.parseOperand(oper) || 1812 parser.parseOptionalAttrDict(result.attributes) || 1813 parser.parseColonType(type) || 1814 parser.resolveOperand(oper, type, result.operands)) 1815 return mlir::failure(); 1816 mlir::Type eleTy; 1817 if (fir::LoadOp::getElementOf(eleTy, type) || 1818 parser.addTypeToList(eleTy, result.types)) 1819 return mlir::failure(); 1820 return mlir::success(); 1821 } 1822 1823 static void print(mlir::OpAsmPrinter &p, fir::LoadOp &op) { 1824 p << ' '; 1825 p.printOperand(op.memref()); 1826 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); 1827 p << " : " << op.memref().getType(); 1828 } 1829 1830 //===----------------------------------------------------------------------===// 1831 // DoLoopOp 1832 //===----------------------------------------------------------------------===// 1833 1834 void fir::DoLoopOp::build(mlir::OpBuilder &builder, 1835 mlir::OperationState &result, mlir::Value lb, 1836 mlir::Value ub, mlir::Value step, bool unordered, 1837 bool finalCountValue, mlir::ValueRange iterArgs, 1838 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1839 result.addOperands({lb, ub, step}); 1840 result.addOperands(iterArgs); 1841 if (finalCountValue) { 1842 result.addTypes(builder.getIndexType()); 1843 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 1844 } 1845 for (auto v : iterArgs) 1846 result.addTypes(v.getType()); 1847 mlir::Region *bodyRegion = result.addRegion(); 1848 bodyRegion->push_back(new Block{}); 1849 if (iterArgs.empty() && !finalCountValue) 1850 DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); 1851 bodyRegion->front().addArgument(builder.getIndexType()); 1852 bodyRegion->front().addArguments(iterArgs.getTypes()); 1853 if (unordered) 1854 result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr()); 1855 result.addAttributes(attributes); 1856 } 1857 1858 static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser, 1859 mlir::OperationState &result) { 1860 auto &builder = parser.getBuilder(); 1861 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1862 // Parse the induction variable followed by '='. 1863 if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) 1864 return mlir::failure(); 1865 1866 // Parse loop bounds. 1867 auto indexType = builder.getIndexType(); 1868 if (parser.parseOperand(lb) || 1869 parser.resolveOperand(lb, indexType, result.operands) || 1870 parser.parseKeyword("to") || parser.parseOperand(ub) || 1871 parser.resolveOperand(ub, indexType, result.operands) || 1872 parser.parseKeyword("step") || parser.parseOperand(step) || 1873 parser.resolveOperand(step, indexType, result.operands)) 1874 return failure(); 1875 1876 if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) 1877 result.addAttribute("unordered", builder.getUnitAttr()); 1878 1879 // Parse the optional initial iteration arguments. 1880 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs, operands; 1881 llvm::SmallVector<mlir::Type> argTypes; 1882 auto prependCount = false; 1883 regionArgs.push_back(inductionVariable); 1884 1885 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1886 // Parse assignment list and results type list. 1887 if (parser.parseAssignmentList(regionArgs, operands) || 1888 parser.parseArrowTypeList(result.types)) 1889 return failure(); 1890 if (result.types.size() == operands.size() + 1) 1891 prependCount = true; 1892 // Resolve input operands. 1893 llvm::ArrayRef<mlir::Type> resTypes = result.types; 1894 for (auto operand_type : 1895 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) 1896 if (parser.resolveOperand(std::get<0>(operand_type), 1897 std::get<1>(operand_type), result.operands)) 1898 return failure(); 1899 } else if (succeeded(parser.parseOptionalArrow())) { 1900 if (parser.parseKeyword("index")) 1901 return failure(); 1902 result.types.push_back(indexType); 1903 prependCount = true; 1904 } 1905 1906 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1907 return mlir::failure(); 1908 1909 // Induction variable. 1910 if (prependCount) 1911 result.addAttribute(DoLoopOp::finalValueAttrName(result.name), 1912 builder.getUnitAttr()); 1913 else 1914 argTypes.push_back(indexType); 1915 // Loop carried variables 1916 argTypes.append(result.types.begin(), result.types.end()); 1917 // Parse the body region. 1918 auto *body = result.addRegion(); 1919 if (regionArgs.size() != argTypes.size()) 1920 return parser.emitError( 1921 parser.getNameLoc(), 1922 "mismatch in number of loop-carried values and defined values"); 1923 1924 if (parser.parseRegion(*body, regionArgs, argTypes)) 1925 return failure(); 1926 1927 DoLoopOp::ensureTerminator(*body, builder, result.location); 1928 1929 return mlir::success(); 1930 } 1931 1932 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { 1933 auto ivArg = val.dyn_cast<mlir::BlockArgument>(); 1934 if (!ivArg) 1935 return {}; 1936 assert(ivArg.getOwner() && "unlinked block argument"); 1937 auto *containingInst = ivArg.getOwner()->getParentOp(); 1938 return dyn_cast_or_null<fir::DoLoopOp>(containingInst); 1939 } 1940 1941 // Lifted from loop.loop 1942 static mlir::LogicalResult verify(fir::DoLoopOp op) { 1943 // Check that the body defines as single block argument for the induction 1944 // variable. 1945 auto *body = op.getBody(); 1946 if (!body->getArgument(0).getType().isIndex()) 1947 return op.emitOpError( 1948 "expected body first argument to be an index argument for " 1949 "the induction variable"); 1950 1951 auto opNumResults = op.getNumResults(); 1952 if (opNumResults == 0) 1953 return success(); 1954 1955 if (op.finalValue()) { 1956 if (op.unordered()) 1957 return op.emitOpError("unordered loop has no final value"); 1958 opNumResults--; 1959 } 1960 if (op.getNumIterOperands() != opNumResults) 1961 return op.emitOpError( 1962 "mismatch in number of loop-carried values and defined values"); 1963 if (op.getNumRegionIterArgs() != opNumResults) 1964 return op.emitOpError( 1965 "mismatch in number of basic block args and defined values"); 1966 auto iterOperands = op.getIterOperands(); 1967 auto iterArgs = op.getRegionIterArgs(); 1968 auto opResults = 1969 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1970 unsigned i = 0; 1971 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1972 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1973 return op.emitOpError() << "types mismatch between " << i 1974 << "th iter operand and defined value"; 1975 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1976 return op.emitOpError() << "types mismatch between " << i 1977 << "th iter region arg and defined value"; 1978 1979 i++; 1980 } 1981 return success(); 1982 } 1983 1984 static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) { 1985 bool printBlockTerminators = false; 1986 p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to " 1987 << op.upperBound() << " step " << op.step(); 1988 if (op.unordered()) 1989 p << " unordered"; 1990 if (op.hasIterOperands()) { 1991 p << " iter_args("; 1992 auto regionArgs = op.getRegionIterArgs(); 1993 auto operands = op.getIterOperands(); 1994 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { 1995 p << std::get<0>(it) << " = " << std::get<1>(it); 1996 }); 1997 p << ") -> (" << op.getResultTypes() << ')'; 1998 printBlockTerminators = true; 1999 } else if (op.finalValue()) { 2000 p << " -> " << op.getResultTypes(); 2001 printBlockTerminators = true; 2002 } 2003 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 2004 {"unordered", "finalValue"}); 2005 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 2006 printBlockTerminators); 2007 } 2008 2009 mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); } 2010 2011 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { 2012 return !region().isAncestor(value.getParentRegion()); 2013 } 2014 2015 mlir::LogicalResult 2016 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 2017 for (auto op : ops) 2018 op->moveBefore(*this); 2019 return success(); 2020 } 2021 2022 /// Translate a value passed as an iter_arg to the corresponding block 2023 /// argument in the body of the loop. 2024 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { 2025 for (auto i : llvm::enumerate(initArgs())) 2026 if (iterArg == i.value()) 2027 return region().front().getArgument(i.index() + 1); 2028 return {}; 2029 } 2030 2031 /// Translate the result vector (by index number) to the corresponding value 2032 /// to the `fir.result` Op. 2033 void fir::DoLoopOp::resultToSourceOps( 2034 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 2035 auto oper = finalValue() ? resultNum + 1 : resultNum; 2036 auto *term = region().front().getTerminator(); 2037 if (oper < term->getNumOperands()) 2038 results.push_back(term->getOperand(oper)); 2039 } 2040 2041 /// Translate the block argument (by index number) to the corresponding value 2042 /// passed as an iter_arg to the parent DoLoopOp. 2043 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { 2044 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 2045 return initArgs()[blockArgNum - 1]; 2046 return {}; 2047 } 2048 2049 //===----------------------------------------------------------------------===// 2050 // DTEntryOp 2051 //===----------------------------------------------------------------------===// 2052 2053 static mlir::ParseResult parseDTEntryOp(mlir::OpAsmParser &parser, 2054 mlir::OperationState &result) { 2055 llvm::StringRef methodName; 2056 // allow `methodName` or `"methodName"` 2057 if (failed(parser.parseOptionalKeyword(&methodName))) { 2058 mlir::StringAttr methodAttr; 2059 if (parser.parseAttribute(methodAttr, fir::DTEntryOp::getMethodAttrName(), 2060 result.attributes)) 2061 return mlir::failure(); 2062 } else { 2063 result.addAttribute(fir::DTEntryOp::getMethodAttrName(), 2064 parser.getBuilder().getStringAttr(methodName)); 2065 } 2066 mlir::SymbolRefAttr calleeAttr; 2067 if (parser.parseComma() || 2068 parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrName(), 2069 result.attributes)) 2070 return mlir::failure(); 2071 return mlir::success(); 2072 } 2073 2074 static void print(mlir::OpAsmPrinter &p, fir::DTEntryOp &op) { 2075 p << ' ' << op.getOperation()->getAttr(fir::DTEntryOp::getMethodAttrName()) 2076 << ", " << op.getOperation()->getAttr(fir::DTEntryOp::getProcAttrName()); 2077 } 2078 2079 //===----------------------------------------------------------------------===// 2080 // ReboxOp 2081 //===----------------------------------------------------------------------===// 2082 2083 /// Get the scalar type related to a fir.box type. 2084 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>. 2085 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { 2086 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2087 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2088 return seqTy.getEleTy(); 2089 return eleTy; 2090 } 2091 2092 /// Get the rank from a !fir.box type 2093 static unsigned getBoxRank(mlir::Type boxTy) { 2094 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2095 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2096 return seqTy.getDimension(); 2097 return 0; 2098 } 2099 2100 static mlir::LogicalResult verify(fir::ReboxOp op) { 2101 auto inputBoxTy = op.box().getType(); 2102 if (fir::isa_unknown_size_box(inputBoxTy)) 2103 return op.emitOpError("box operand must not have unknown rank or type"); 2104 auto outBoxTy = op.getType(); 2105 if (fir::isa_unknown_size_box(outBoxTy)) 2106 return op.emitOpError("result type must not have unknown rank or type"); 2107 auto inputRank = getBoxRank(inputBoxTy); 2108 auto inputEleTy = getBoxScalarEleTy(inputBoxTy); 2109 auto outRank = getBoxRank(outBoxTy); 2110 auto outEleTy = getBoxScalarEleTy(outBoxTy); 2111 2112 if (auto slice = op.slice()) { 2113 // Slicing case 2114 if (slice.getType().cast<fir::SliceType>().getRank() != inputRank) 2115 return op.emitOpError("slice operand rank must match box operand rank"); 2116 if (auto shape = op.shape()) { 2117 if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) { 2118 if (shiftTy.getRank() != inputRank) 2119 return op.emitOpError("shape operand and input box ranks must match " 2120 "when there is a slice"); 2121 } else { 2122 return op.emitOpError("shape operand must absent or be a fir.shift " 2123 "when there is a slice"); 2124 } 2125 } 2126 if (auto sliceOp = slice.getDefiningOp()) { 2127 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank(); 2128 if (slicedRank != outRank) 2129 return op.emitOpError("result type rank and rank after applying slice " 2130 "operand must match"); 2131 } 2132 } else { 2133 // Reshaping case 2134 unsigned shapeRank = inputRank; 2135 if (auto shape = op.shape()) { 2136 auto ty = shape.getType(); 2137 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) { 2138 shapeRank = shapeTy.getRank(); 2139 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) { 2140 shapeRank = shapeShiftTy.getRank(); 2141 } else { 2142 auto shiftTy = ty.cast<fir::ShiftType>(); 2143 shapeRank = shiftTy.getRank(); 2144 if (shapeRank != inputRank) 2145 return op.emitOpError("shape operand and input box ranks must match " 2146 "when the shape is a fir.shift"); 2147 } 2148 } 2149 if (shapeRank != outRank) 2150 return op.emitOpError("result type and shape operand ranks must match"); 2151 } 2152 2153 if (inputEleTy != outEleTy) 2154 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived 2155 // types. 2156 if (!inputEleTy.isa<fir::RecordType>()) 2157 return op.emitOpError( 2158 "op input and output element types must match for intrinsic types"); 2159 return mlir::success(); 2160 } 2161 2162 //===----------------------------------------------------------------------===// 2163 // ResultOp 2164 //===----------------------------------------------------------------------===// 2165 2166 static mlir::LogicalResult verify(fir::ResultOp op) { 2167 auto *parentOp = op->getParentOp(); 2168 auto results = parentOp->getResults(); 2169 auto operands = op->getOperands(); 2170 2171 if (parentOp->getNumResults() != op.getNumOperands()) 2172 return op.emitOpError() << "parent of result must have same arity"; 2173 for (auto e : llvm::zip(results, operands)) 2174 if (std::get<0>(e).getType() != std::get<1>(e).getType()) 2175 return op.emitOpError() 2176 << "types mismatch between result op and its parent"; 2177 return success(); 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // SaveResultOp 2182 //===----------------------------------------------------------------------===// 2183 2184 static mlir::LogicalResult verify(fir::SaveResultOp op) { 2185 auto resultType = op.value().getType(); 2186 if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType())) 2187 return op.emitOpError("value type must match memory reference type"); 2188 if (fir::isa_unknown_size_box(resultType)) 2189 return op.emitOpError("cannot save !fir.box of unknown rank or type"); 2190 2191 if (resultType.isa<fir::BoxType>()) { 2192 if (op.shape() || !op.typeparams().empty()) 2193 return op.emitOpError( 2194 "must not have shape or length operands if the value is a fir.box"); 2195 return mlir::success(); 2196 } 2197 2198 // fir.record or fir.array case. 2199 unsigned shapeTyRank = 0; 2200 if (auto shapeOp = op.shape()) { 2201 auto shapeTy = shapeOp.getType(); 2202 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) 2203 shapeTyRank = s.getRank(); 2204 else 2205 shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank(); 2206 } 2207 2208 auto eleTy = resultType; 2209 if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) { 2210 if (seqTy.getDimension() != shapeTyRank) 2211 op.emitOpError("shape operand must be provided and have the value rank " 2212 "when the value is a fir.array"); 2213 eleTy = seqTy.getEleTy(); 2214 } else { 2215 if (shapeTyRank != 0) 2216 op.emitOpError( 2217 "shape operand should only be provided if the value is a fir.array"); 2218 } 2219 2220 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) { 2221 if (recTy.getNumLenParams() != op.typeparams().size()) 2222 op.emitOpError("length parameters number must match with the value type " 2223 "length parameters"); 2224 } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 2225 if (op.typeparams().size() > 1) 2226 op.emitOpError("no more than one length parameter must be provided for " 2227 "character value"); 2228 } else { 2229 if (!op.typeparams().empty()) 2230 op.emitOpError( 2231 "length parameters must not be provided for this value type"); 2232 } 2233 2234 return mlir::success(); 2235 } 2236 2237 //===----------------------------------------------------------------------===// 2238 // SelectOp 2239 //===----------------------------------------------------------------------===// 2240 2241 static constexpr llvm::StringRef getCompareOffsetAttr() { 2242 return "compare_operand_offsets"; 2243 } 2244 2245 static constexpr llvm::StringRef getTargetOffsetAttr() { 2246 return "target_operand_offsets"; 2247 } 2248 2249 template <typename A, typename... AdditionalArgs> 2250 static A getSubOperands(unsigned pos, A allArgs, 2251 mlir::DenseIntElementsAttr ranges, 2252 AdditionalArgs &&...additionalArgs) { 2253 unsigned start = 0; 2254 for (unsigned i = 0; i < pos; ++i) 2255 start += (*(ranges.begin() + i)).getZExtValue(); 2256 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), 2257 std::forward<AdditionalArgs>(additionalArgs)...); 2258 } 2259 2260 static mlir::MutableOperandRange 2261 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, 2262 StringRef offsetAttr) { 2263 Operation *owner = operands.getOwner(); 2264 NamedAttribute targetOffsetAttr = 2265 *owner->getAttrDictionary().getNamed(offsetAttr); 2266 return getSubOperands( 2267 pos, operands, targetOffsetAttr.getValue().cast<DenseIntElementsAttr>(), 2268 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); 2269 } 2270 2271 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { 2272 return attr.getNumElements(); 2273 } 2274 2275 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) { 2276 return {}; 2277 } 2278 2279 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2280 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2281 return {}; 2282 } 2283 2284 llvm::Optional<mlir::MutableOperandRange> 2285 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { 2286 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2287 getTargetOffsetAttr()); 2288 } 2289 2290 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2291 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2292 unsigned oper) { 2293 auto a = 2294 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2295 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2296 getOperandSegmentSizeAttr()); 2297 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2298 } 2299 2300 llvm::Optional<mlir::ValueRange> 2301 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) { 2302 auto a = 2303 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2304 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2305 getOperandSegmentSizeAttr()); 2306 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2307 } 2308 2309 unsigned fir::SelectOp::targetOffsetSize() { 2310 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2311 getTargetOffsetAttr())); 2312 } 2313 2314 //===----------------------------------------------------------------------===// 2315 // SelectCaseOp 2316 //===----------------------------------------------------------------------===// 2317 2318 llvm::Optional<mlir::OperandRange> 2319 fir::SelectCaseOp::getCompareOperands(unsigned cond) { 2320 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2321 getCompareOffsetAttr()); 2322 return {getSubOperands(cond, compareArgs(), a)}; 2323 } 2324 2325 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2326 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands, 2327 unsigned cond) { 2328 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2329 getCompareOffsetAttr()); 2330 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2331 getOperandSegmentSizeAttr()); 2332 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2333 } 2334 2335 llvm::Optional<mlir::ValueRange> 2336 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands, 2337 unsigned cond) { 2338 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2339 getCompareOffsetAttr()); 2340 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2341 getOperandSegmentSizeAttr()); 2342 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2343 } 2344 2345 llvm::Optional<mlir::MutableOperandRange> 2346 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { 2347 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2348 getTargetOffsetAttr()); 2349 } 2350 2351 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2352 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2353 unsigned oper) { 2354 auto a = 2355 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2356 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2357 getOperandSegmentSizeAttr()); 2358 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2359 } 2360 2361 llvm::Optional<mlir::ValueRange> 2362 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands, 2363 unsigned oper) { 2364 auto a = 2365 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2366 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2367 getOperandSegmentSizeAttr()); 2368 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2369 } 2370 2371 // parser for fir.select_case Op 2372 static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser, 2373 mlir::OperationState &result) { 2374 mlir::OpAsmParser::OperandType selector; 2375 mlir::Type type; 2376 if (parseSelector(parser, result, selector, type)) 2377 return mlir::failure(); 2378 2379 llvm::SmallVector<mlir::Attribute> attrs; 2380 llvm::SmallVector<mlir::OpAsmParser::OperandType> opers; 2381 llvm::SmallVector<mlir::Block *> dests; 2382 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2383 llvm::SmallVector<int32_t> argOffs; 2384 int32_t offSize = 0; 2385 while (true) { 2386 mlir::Attribute attr; 2387 mlir::Block *dest; 2388 llvm::SmallVector<mlir::Value> destArg; 2389 mlir::NamedAttrList temp; 2390 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || 2391 parser.parseComma()) 2392 return mlir::failure(); 2393 attrs.push_back(attr); 2394 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) { 2395 argOffs.push_back(0); 2396 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) { 2397 mlir::OpAsmParser::OperandType oper1; 2398 mlir::OpAsmParser::OperandType oper2; 2399 if (parser.parseOperand(oper1) || parser.parseComma() || 2400 parser.parseOperand(oper2) || parser.parseComma()) 2401 return mlir::failure(); 2402 opers.push_back(oper1); 2403 opers.push_back(oper2); 2404 argOffs.push_back(2); 2405 offSize += 2; 2406 } else { 2407 mlir::OpAsmParser::OperandType oper; 2408 if (parser.parseOperand(oper) || parser.parseComma()) 2409 return mlir::failure(); 2410 opers.push_back(oper); 2411 argOffs.push_back(1); 2412 ++offSize; 2413 } 2414 if (parser.parseSuccessorAndUseList(dest, destArg)) 2415 return mlir::failure(); 2416 dests.push_back(dest); 2417 destArgs.push_back(destArg); 2418 if (mlir::succeeded(parser.parseOptionalRSquare())) 2419 break; 2420 if (parser.parseComma()) 2421 return mlir::failure(); 2422 } 2423 result.addAttribute(fir::SelectCaseOp::getCasesAttr(), 2424 parser.getBuilder().getArrayAttr(attrs)); 2425 if (parser.resolveOperands(opers, type, result.operands)) 2426 return mlir::failure(); 2427 llvm::SmallVector<int32_t> targOffs; 2428 int32_t toffSize = 0; 2429 const auto count = dests.size(); 2430 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2431 result.addSuccessors(dests[i]); 2432 result.addOperands(destArgs[i]); 2433 auto argSize = destArgs[i].size(); 2434 targOffs.push_back(argSize); 2435 toffSize += argSize; 2436 } 2437 auto &bld = parser.getBuilder(); 2438 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), 2439 bld.getI32VectorAttr({1, offSize, toffSize})); 2440 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2441 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); 2442 return mlir::success(); 2443 } 2444 2445 static void print(mlir::OpAsmPrinter &p, fir::SelectCaseOp &op) { 2446 p << ' '; 2447 p.printOperand(op.getSelector()); 2448 p << " : " << op.getSelector().getType() << " ["; 2449 auto cases = op.getOperation() 2450 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2451 .getValue(); 2452 auto count = op.getNumConditions(); 2453 for (decltype(count) i = 0; i != count; ++i) { 2454 if (i) 2455 p << ", "; 2456 p << cases[i] << ", "; 2457 if (!cases[i].isa<mlir::UnitAttr>()) { 2458 auto caseArgs = *op.getCompareOperands(i); 2459 p.printOperand(*caseArgs.begin()); 2460 p << ", "; 2461 if (cases[i].isa<fir::ClosedIntervalAttr>()) { 2462 p.printOperand(*(++caseArgs.begin())); 2463 p << ", "; 2464 } 2465 } 2466 op.printSuccessorAtIndex(p, i); 2467 } 2468 p << ']'; 2469 p.printOptionalAttrDict(op.getOperation()->getAttrs(), 2470 {op.getCasesAttr(), getCompareOffsetAttr(), 2471 getTargetOffsetAttr(), 2472 op.getOperandSegmentSizeAttr()}); 2473 } 2474 2475 unsigned fir::SelectCaseOp::compareOffsetSize() { 2476 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2477 getCompareOffsetAttr())); 2478 } 2479 2480 unsigned fir::SelectCaseOp::targetOffsetSize() { 2481 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2482 getTargetOffsetAttr())); 2483 } 2484 2485 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2486 mlir::OperationState &result, 2487 mlir::Value selector, 2488 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2489 llvm::ArrayRef<mlir::ValueRange> cmpOperands, 2490 llvm::ArrayRef<mlir::Block *> destinations, 2491 llvm::ArrayRef<mlir::ValueRange> destOperands, 2492 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2493 result.addOperands(selector); 2494 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); 2495 llvm::SmallVector<int32_t> operOffs; 2496 int32_t operSize = 0; 2497 for (auto attr : compareAttrs) { 2498 if (attr.isa<fir::ClosedIntervalAttr>()) { 2499 operOffs.push_back(2); 2500 operSize += 2; 2501 } else if (attr.isa<mlir::UnitAttr>()) { 2502 operOffs.push_back(0); 2503 } else { 2504 operOffs.push_back(1); 2505 ++operSize; 2506 } 2507 } 2508 for (auto ops : cmpOperands) 2509 result.addOperands(ops); 2510 result.addAttribute(getCompareOffsetAttr(), 2511 builder.getI32VectorAttr(operOffs)); 2512 const auto count = destinations.size(); 2513 for (auto d : destinations) 2514 result.addSuccessors(d); 2515 const auto opCount = destOperands.size(); 2516 llvm::SmallVector<int32_t> argOffs; 2517 int32_t sumArgs = 0; 2518 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2519 if (i < opCount) { 2520 result.addOperands(destOperands[i]); 2521 const auto argSz = destOperands[i].size(); 2522 argOffs.push_back(argSz); 2523 sumArgs += argSz; 2524 } else { 2525 argOffs.push_back(0); 2526 } 2527 } 2528 result.addAttribute(getOperandSegmentSizeAttr(), 2529 builder.getI32VectorAttr({1, operSize, sumArgs})); 2530 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2531 result.addAttributes(attributes); 2532 } 2533 2534 /// This builder has a slightly simplified interface in that the list of 2535 /// operands need not be partitioned by the builder. Instead the operands are 2536 /// partitioned here, before being passed to the default builder. This 2537 /// partitioning is unchecked, so can go awry on bad input. 2538 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2539 mlir::OperationState &result, 2540 mlir::Value selector, 2541 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2542 llvm::ArrayRef<mlir::Value> cmpOpList, 2543 llvm::ArrayRef<mlir::Block *> destinations, 2544 llvm::ArrayRef<mlir::ValueRange> destOperands, 2545 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2546 llvm::SmallVector<mlir::ValueRange> cmpOpers; 2547 auto iter = cmpOpList.begin(); 2548 for (auto &attr : compareAttrs) { 2549 if (attr.isa<fir::ClosedIntervalAttr>()) { 2550 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); 2551 iter += 2; 2552 } else if (attr.isa<UnitAttr>()) { 2553 cmpOpers.push_back(mlir::ValueRange{}); 2554 } else { 2555 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); 2556 ++iter; 2557 } 2558 } 2559 build(builder, result, selector, compareAttrs, cmpOpers, destinations, 2560 destOperands, attributes); 2561 } 2562 2563 static mlir::LogicalResult verify(fir::SelectCaseOp &op) { 2564 if (!(op.getSelector().getType().isa<mlir::IntegerType>() || 2565 op.getSelector().getType().isa<mlir::IndexType>() || 2566 op.getSelector().getType().isa<fir::IntegerType>() || 2567 op.getSelector().getType().isa<fir::LogicalType>() || 2568 op.getSelector().getType().isa<fir::CharacterType>())) 2569 return op.emitOpError("must be an integer, character, or logical"); 2570 auto cases = op.getOperation() 2571 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2572 .getValue(); 2573 auto count = op.getNumDest(); 2574 if (count == 0) 2575 return op.emitOpError("must have at least one successor"); 2576 if (op.getNumConditions() != count) 2577 return op.emitOpError("number of conditions and successors don't match"); 2578 if (op.compareOffsetSize() != count) 2579 return op.emitOpError("incorrect number of compare operand groups"); 2580 if (op.targetOffsetSize() != count) 2581 return op.emitOpError("incorrect number of successor operand groups"); 2582 for (decltype(count) i = 0; i != count; ++i) { 2583 auto &attr = cases[i]; 2584 if (!(attr.isa<fir::PointIntervalAttr>() || 2585 attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() || 2586 attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>())) 2587 return op.emitOpError("incorrect select case attribute type"); 2588 } 2589 return mlir::success(); 2590 } 2591 2592 //===----------------------------------------------------------------------===// 2593 // SelectRankOp 2594 //===----------------------------------------------------------------------===// 2595 2596 llvm::Optional<mlir::OperandRange> 2597 fir::SelectRankOp::getCompareOperands(unsigned) { 2598 return {}; 2599 } 2600 2601 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2602 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2603 return {}; 2604 } 2605 2606 llvm::Optional<mlir::MutableOperandRange> 2607 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { 2608 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2609 getTargetOffsetAttr()); 2610 } 2611 2612 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2613 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2614 unsigned oper) { 2615 auto a = 2616 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2617 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2618 getOperandSegmentSizeAttr()); 2619 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2620 } 2621 2622 llvm::Optional<mlir::ValueRange> 2623 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands, 2624 unsigned oper) { 2625 auto a = 2626 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2627 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2628 getOperandSegmentSizeAttr()); 2629 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2630 } 2631 2632 unsigned fir::SelectRankOp::targetOffsetSize() { 2633 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2634 getTargetOffsetAttr())); 2635 } 2636 2637 //===----------------------------------------------------------------------===// 2638 // SelectTypeOp 2639 //===----------------------------------------------------------------------===// 2640 2641 llvm::Optional<mlir::OperandRange> 2642 fir::SelectTypeOp::getCompareOperands(unsigned) { 2643 return {}; 2644 } 2645 2646 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2647 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2648 return {}; 2649 } 2650 2651 llvm::Optional<mlir::MutableOperandRange> 2652 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { 2653 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2654 getTargetOffsetAttr()); 2655 } 2656 2657 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2658 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2659 unsigned oper) { 2660 auto a = 2661 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2662 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2663 getOperandSegmentSizeAttr()); 2664 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2665 } 2666 2667 static ParseResult parseSelectType(OpAsmParser &parser, 2668 OperationState &result) { 2669 mlir::OpAsmParser::OperandType selector; 2670 mlir::Type type; 2671 if (parseSelector(parser, result, selector, type)) 2672 return mlir::failure(); 2673 2674 llvm::SmallVector<mlir::Attribute> attrs; 2675 llvm::SmallVector<mlir::Block *> dests; 2676 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2677 while (true) { 2678 mlir::Attribute attr; 2679 mlir::Block *dest; 2680 llvm::SmallVector<mlir::Value> destArg; 2681 mlir::NamedAttrList temp; 2682 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || 2683 parser.parseSuccessorAndUseList(dest, destArg)) 2684 return mlir::failure(); 2685 attrs.push_back(attr); 2686 dests.push_back(dest); 2687 destArgs.push_back(destArg); 2688 if (mlir::succeeded(parser.parseOptionalRSquare())) 2689 break; 2690 if (parser.parseComma()) 2691 return mlir::failure(); 2692 } 2693 auto &bld = parser.getBuilder(); 2694 result.addAttribute(fir::SelectTypeOp::getCasesAttr(), 2695 bld.getArrayAttr(attrs)); 2696 llvm::SmallVector<int32_t> argOffs; 2697 int32_t offSize = 0; 2698 const auto count = dests.size(); 2699 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2700 result.addSuccessors(dests[i]); 2701 result.addOperands(destArgs[i]); 2702 auto argSize = destArgs[i].size(); 2703 argOffs.push_back(argSize); 2704 offSize += argSize; 2705 } 2706 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), 2707 bld.getI32VectorAttr({1, 0, offSize})); 2708 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2709 return mlir::success(); 2710 } 2711 2712 unsigned fir::SelectTypeOp::targetOffsetSize() { 2713 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2714 getTargetOffsetAttr())); 2715 } 2716 2717 static void print(mlir::OpAsmPrinter &p, fir::SelectTypeOp &op) { 2718 p << ' '; 2719 p.printOperand(op.getSelector()); 2720 p << " : " << op.getSelector().getType() << " ["; 2721 auto cases = op.getOperation() 2722 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2723 .getValue(); 2724 auto count = op.getNumConditions(); 2725 for (decltype(count) i = 0; i != count; ++i) { 2726 if (i) 2727 p << ", "; 2728 p << cases[i] << ", "; 2729 op.printSuccessorAtIndex(p, i); 2730 } 2731 p << ']'; 2732 p.printOptionalAttrDict(op.getOperation()->getAttrs(), 2733 {op.getCasesAttr(), getCompareOffsetAttr(), 2734 getTargetOffsetAttr(), 2735 fir::SelectTypeOp::getOperandSegmentSizeAttr()}); 2736 } 2737 2738 static mlir::LogicalResult verify(fir::SelectTypeOp &op) { 2739 if (!(op.getSelector().getType().isa<fir::BoxType>())) 2740 return op.emitOpError("must be a boxed type"); 2741 auto cases = op.getOperation() 2742 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2743 .getValue(); 2744 auto count = op.getNumDest(); 2745 if (count == 0) 2746 return op.emitOpError("must have at least one successor"); 2747 if (op.getNumConditions() != count) 2748 return op.emitOpError("number of conditions and successors don't match"); 2749 if (op.targetOffsetSize() != count) 2750 return op.emitOpError("incorrect number of successor operand groups"); 2751 for (decltype(count) i = 0; i != count; ++i) { 2752 auto &attr = cases[i]; 2753 if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() || 2754 attr.isa<mlir::UnitAttr>())) 2755 return op.emitOpError("invalid type-case alternative"); 2756 } 2757 return mlir::success(); 2758 } 2759 2760 void fir::SelectTypeOp::build(mlir::OpBuilder &builder, 2761 mlir::OperationState &result, 2762 mlir::Value selector, 2763 llvm::ArrayRef<mlir::Attribute> typeOperands, 2764 llvm::ArrayRef<mlir::Block *> destinations, 2765 llvm::ArrayRef<mlir::ValueRange> destOperands, 2766 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2767 result.addOperands(selector); 2768 result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands)); 2769 const auto count = destinations.size(); 2770 for (mlir::Block *dest : destinations) 2771 result.addSuccessors(dest); 2772 const auto opCount = destOperands.size(); 2773 llvm::SmallVector<int32_t> argOffs; 2774 int32_t sumArgs = 0; 2775 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2776 if (i < opCount) { 2777 result.addOperands(destOperands[i]); 2778 const auto argSz = destOperands[i].size(); 2779 argOffs.push_back(argSz); 2780 sumArgs += argSz; 2781 } else { 2782 argOffs.push_back(0); 2783 } 2784 } 2785 result.addAttribute(getOperandSegmentSizeAttr(), 2786 builder.getI32VectorAttr({1, 0, sumArgs})); 2787 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2788 result.addAttributes(attributes); 2789 } 2790 2791 //===----------------------------------------------------------------------===// 2792 // ShapeOp 2793 //===----------------------------------------------------------------------===// 2794 2795 static mlir::LogicalResult verify(fir::ShapeOp &op) { 2796 auto size = op.extents().size(); 2797 auto shapeTy = op.getType().dyn_cast<fir::ShapeType>(); 2798 assert(shapeTy && "must be a shape type"); 2799 if (shapeTy.getRank() != size) 2800 return op.emitOpError("shape type rank mismatch"); 2801 return mlir::success(); 2802 } 2803 2804 //===----------------------------------------------------------------------===// 2805 // ShapeShiftOp 2806 //===----------------------------------------------------------------------===// 2807 2808 static mlir::LogicalResult verify(fir::ShapeShiftOp &op) { 2809 auto size = op.pairs().size(); 2810 if (size < 2 || size > 16 * 2) 2811 return op.emitOpError("incorrect number of args"); 2812 if (size % 2 != 0) 2813 return op.emitOpError("requires a multiple of 2 args"); 2814 auto shapeTy = op.getType().dyn_cast<fir::ShapeShiftType>(); 2815 assert(shapeTy && "must be a shape shift type"); 2816 if (shapeTy.getRank() * 2 != size) 2817 return op.emitOpError("shape type rank mismatch"); 2818 return mlir::success(); 2819 } 2820 2821 //===----------------------------------------------------------------------===// 2822 // ShiftOp 2823 //===----------------------------------------------------------------------===// 2824 2825 static mlir::LogicalResult verify(fir::ShiftOp &op) { 2826 auto size = op.origins().size(); 2827 auto shiftTy = op.getType().dyn_cast<fir::ShiftType>(); 2828 assert(shiftTy && "must be a shift type"); 2829 if (shiftTy.getRank() != size) 2830 return op.emitOpError("shift type rank mismatch"); 2831 return mlir::success(); 2832 } 2833 2834 //===----------------------------------------------------------------------===// 2835 // SliceOp 2836 //===----------------------------------------------------------------------===// 2837 2838 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 2839 mlir::ValueRange trips, mlir::ValueRange path, 2840 mlir::ValueRange substr) { 2841 const auto rank = trips.size() / 3; 2842 auto sliceTy = fir::SliceType::get(builder.getContext(), rank); 2843 build(builder, result, sliceTy, trips, path, substr); 2844 } 2845 2846 /// Return the output rank of a slice op. The output rank must be between 1 and 2847 /// the rank of the array being sliced (inclusive). 2848 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { 2849 unsigned rank = 0; 2850 if (!triples.empty()) { 2851 for (unsigned i = 1, end = triples.size(); i < end; i += 3) { 2852 auto *op = triples[i].getDefiningOp(); 2853 if (!mlir::isa_and_nonnull<fir::UndefOp>(op)) 2854 ++rank; 2855 } 2856 assert(rank > 0); 2857 } 2858 return rank; 2859 } 2860 2861 static mlir::LogicalResult verify(fir::SliceOp &op) { 2862 auto size = op.triples().size(); 2863 if (size < 3 || size > 16 * 3) 2864 return op.emitOpError("incorrect number of args for triple"); 2865 if (size % 3 != 0) 2866 return op.emitOpError("requires a multiple of 3 args"); 2867 auto sliceTy = op.getType().dyn_cast<fir::SliceType>(); 2868 assert(sliceTy && "must be a slice type"); 2869 if (sliceTy.getRank() * 3 != size) 2870 return op.emitOpError("slice type rank mismatch"); 2871 return mlir::success(); 2872 } 2873 2874 //===----------------------------------------------------------------------===// 2875 // StoreOp 2876 //===----------------------------------------------------------------------===// 2877 2878 mlir::Type fir::StoreOp::elementType(mlir::Type refType) { 2879 return fir::dyn_cast_ptrEleTy(refType); 2880 } 2881 2882 static mlir::ParseResult parseStoreOp(mlir::OpAsmParser &parser, 2883 mlir::OperationState &result) { 2884 mlir::Type type; 2885 mlir::OpAsmParser::OperandType oper; 2886 mlir::OpAsmParser::OperandType store; 2887 if (parser.parseOperand(oper) || parser.parseKeyword("to") || 2888 parser.parseOperand(store) || 2889 parser.parseOptionalAttrDict(result.attributes) || 2890 parser.parseColonType(type) || 2891 parser.resolveOperand(oper, fir::StoreOp::elementType(type), 2892 result.operands) || 2893 parser.resolveOperand(store, type, result.operands)) 2894 return mlir::failure(); 2895 return mlir::success(); 2896 } 2897 2898 static void print(mlir::OpAsmPrinter &p, fir::StoreOp &op) { 2899 p << ' '; 2900 p.printOperand(op.value()); 2901 p << " to "; 2902 p.printOperand(op.memref()); 2903 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); 2904 p << " : " << op.memref().getType(); 2905 } 2906 2907 static mlir::LogicalResult verify(fir::StoreOp &op) { 2908 if (op.value().getType() != fir::dyn_cast_ptrEleTy(op.memref().getType())) 2909 return op.emitOpError("store value type must match memory reference type"); 2910 if (fir::isa_unknown_size_box(op.value().getType())) 2911 return op.emitOpError("cannot store !fir.box of unknown rank or type"); 2912 return mlir::success(); 2913 } 2914 2915 //===----------------------------------------------------------------------===// 2916 // StringLitOp 2917 //===----------------------------------------------------------------------===// 2918 2919 bool fir::StringLitOp::isWideValue() { 2920 auto eleTy = getType().cast<fir::SequenceType>().getEleTy(); 2921 return eleTy.cast<fir::CharacterType>().getFKind() != 1; 2922 } 2923 2924 static mlir::NamedAttribute 2925 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) { 2926 assert(v > 0); 2927 return builder.getNamedAttr( 2928 name, builder.getIntegerAttr(builder.getIntegerType(64), v)); 2929 } 2930 2931 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2932 fir::CharacterType inType, llvm::StringRef val, 2933 llvm::Optional<int64_t> len) { 2934 auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val)); 2935 int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2936 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2937 result.addAttributes({valAttr, lenAttr}); 2938 result.addTypes(inType); 2939 } 2940 2941 template <typename C> 2942 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder, 2943 llvm::ArrayRef<C> xlist) { 2944 llvm::SmallVector<mlir::Attribute> attrs; 2945 auto ty = builder.getIntegerType(8 * sizeof(C)); 2946 for (auto ch : xlist) 2947 attrs.push_back(builder.getIntegerAttr(ty, ch)); 2948 return builder.getArrayAttr(attrs); 2949 } 2950 2951 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2952 fir::CharacterType inType, 2953 llvm::ArrayRef<char> vlist, 2954 llvm::Optional<int64_t> len) { 2955 auto valAttr = 2956 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2957 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2958 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2959 result.addAttributes({valAttr, lenAttr}); 2960 result.addTypes(inType); 2961 } 2962 2963 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2964 fir::CharacterType inType, 2965 llvm::ArrayRef<char16_t> vlist, 2966 llvm::Optional<int64_t> len) { 2967 auto valAttr = 2968 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2969 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2970 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2971 result.addAttributes({valAttr, lenAttr}); 2972 result.addTypes(inType); 2973 } 2974 2975 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2976 fir::CharacterType inType, 2977 llvm::ArrayRef<char32_t> vlist, 2978 llvm::Optional<int64_t> len) { 2979 auto valAttr = 2980 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2981 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2982 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2983 result.addAttributes({valAttr, lenAttr}); 2984 result.addTypes(inType); 2985 } 2986 2987 static mlir::ParseResult parseStringLitOp(mlir::OpAsmParser &parser, 2988 mlir::OperationState &result) { 2989 auto &builder = parser.getBuilder(); 2990 mlir::Attribute val; 2991 mlir::NamedAttrList attrs; 2992 llvm::SMLoc trailingTypeLoc; 2993 if (parser.parseAttribute(val, "fake", attrs)) 2994 return mlir::failure(); 2995 if (auto v = val.dyn_cast<mlir::StringAttr>()) 2996 result.attributes.push_back( 2997 builder.getNamedAttr(fir::StringLitOp::value(), v)); 2998 else if (auto v = val.dyn_cast<mlir::ArrayAttr>()) 2999 result.attributes.push_back( 3000 builder.getNamedAttr(fir::StringLitOp::xlist(), v)); 3001 else 3002 return parser.emitError(parser.getCurrentLocation(), 3003 "found an invalid constant"); 3004 mlir::IntegerAttr sz; 3005 mlir::Type type; 3006 if (parser.parseLParen() || 3007 parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) || 3008 parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) || 3009 parser.parseColonType(type)) 3010 return mlir::failure(); 3011 auto charTy = type.dyn_cast<fir::CharacterType>(); 3012 if (!charTy) 3013 return parser.emitError(trailingTypeLoc, "must have character type"); 3014 type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(), 3015 sz.getInt()); 3016 if (!type || parser.addTypesToList(type, result.types)) 3017 return mlir::failure(); 3018 return mlir::success(); 3019 } 3020 3021 static void print(mlir::OpAsmPrinter &p, fir::StringLitOp &op) { 3022 p << ' ' << op.getValue() << '('; 3023 p << op.getSize().cast<mlir::IntegerAttr>().getValue() << ") : "; 3024 p.printType(op.getType()); 3025 } 3026 3027 static mlir::LogicalResult verify(fir::StringLitOp &op) { 3028 if (op.getSize().cast<mlir::IntegerAttr>().getValue().isNegative()) 3029 return op.emitOpError("size must be non-negative"); 3030 if (auto xl = op.getOperation()->getAttr(fir::StringLitOp::xlist())) { 3031 auto xList = xl.cast<mlir::ArrayAttr>(); 3032 for (auto a : xList) 3033 if (!a.isa<mlir::IntegerAttr>()) 3034 return op.emitOpError("values in list must be integers"); 3035 } 3036 return mlir::success(); 3037 } 3038 3039 //===----------------------------------------------------------------------===// 3040 // UnboxProcOp 3041 //===----------------------------------------------------------------------===// 3042 3043 static mlir::LogicalResult verify(fir::UnboxProcOp &op) { 3044 if (auto eleTy = fir::dyn_cast_ptrEleTy(op.refTuple().getType())) 3045 if (eleTy.isa<mlir::TupleType>()) 3046 return mlir::success(); 3047 return op.emitOpError("second output argument has bad type"); 3048 } 3049 3050 //===----------------------------------------------------------------------===// 3051 // IfOp 3052 //===----------------------------------------------------------------------===// 3053 3054 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3055 mlir::Value cond, bool withElseRegion) { 3056 build(builder, result, llvm::None, cond, withElseRegion); 3057 } 3058 3059 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3060 mlir::TypeRange resultTypes, mlir::Value cond, 3061 bool withElseRegion) { 3062 result.addOperands(cond); 3063 result.addTypes(resultTypes); 3064 3065 mlir::Region *thenRegion = result.addRegion(); 3066 thenRegion->push_back(new mlir::Block()); 3067 if (resultTypes.empty()) 3068 IfOp::ensureTerminator(*thenRegion, builder, result.location); 3069 3070 mlir::Region *elseRegion = result.addRegion(); 3071 if (withElseRegion) { 3072 elseRegion->push_back(new mlir::Block()); 3073 if (resultTypes.empty()) 3074 IfOp::ensureTerminator(*elseRegion, builder, result.location); 3075 } 3076 } 3077 3078 static mlir::ParseResult parseIfOp(OpAsmParser &parser, 3079 OperationState &result) { 3080 result.regions.reserve(2); 3081 mlir::Region *thenRegion = result.addRegion(); 3082 mlir::Region *elseRegion = result.addRegion(); 3083 3084 auto &builder = parser.getBuilder(); 3085 OpAsmParser::OperandType cond; 3086 mlir::Type i1Type = builder.getIntegerType(1); 3087 if (parser.parseOperand(cond) || 3088 parser.resolveOperand(cond, i1Type, result.operands)) 3089 return mlir::failure(); 3090 3091 if (parser.parseOptionalArrowTypeList(result.types)) 3092 return mlir::failure(); 3093 3094 if (parser.parseRegion(*thenRegion, {}, {})) 3095 return mlir::failure(); 3096 IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); 3097 3098 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { 3099 if (parser.parseRegion(*elseRegion, {}, {})) 3100 return mlir::failure(); 3101 IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); 3102 } 3103 3104 // Parse the optional attribute list. 3105 if (parser.parseOptionalAttrDict(result.attributes)) 3106 return mlir::failure(); 3107 return mlir::success(); 3108 } 3109 3110 static LogicalResult verify(fir::IfOp op) { 3111 if (op.getNumResults() != 0 && op.elseRegion().empty()) 3112 return op.emitOpError("must have an else block if defining values"); 3113 3114 return mlir::success(); 3115 } 3116 3117 static void print(mlir::OpAsmPrinter &p, fir::IfOp op) { 3118 bool printBlockTerminators = false; 3119 p << ' ' << op.condition(); 3120 if (!op.results().empty()) { 3121 p << " -> (" << op.getResultTypes() << ')'; 3122 printBlockTerminators = true; 3123 } 3124 p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false, 3125 printBlockTerminators); 3126 3127 // Print the 'else' regions if it exists and has a block. 3128 auto &otherReg = op.elseRegion(); 3129 if (!otherReg.empty()) { 3130 p << " else"; 3131 p.printRegion(otherReg, /*printEntryBlockArgs=*/false, 3132 printBlockTerminators); 3133 } 3134 p.printOptionalAttrDict(op->getAttrs()); 3135 } 3136 3137 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results, 3138 unsigned resultNum) { 3139 auto *term = thenRegion().front().getTerminator(); 3140 if (resultNum < term->getNumOperands()) 3141 results.push_back(term->getOperand(resultNum)); 3142 term = elseRegion().front().getTerminator(); 3143 if (resultNum < term->getNumOperands()) 3144 results.push_back(term->getOperand(resultNum)); 3145 } 3146 3147 //===----------------------------------------------------------------------===// 3148 3149 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { 3150 if (attr.dyn_cast_or_null<mlir::UnitAttr>() || 3151 attr.dyn_cast_or_null<ClosedIntervalAttr>() || 3152 attr.dyn_cast_or_null<PointIntervalAttr>() || 3153 attr.dyn_cast_or_null<LowerBoundAttr>() || 3154 attr.dyn_cast_or_null<UpperBoundAttr>()) 3155 return mlir::success(); 3156 return mlir::failure(); 3157 } 3158 3159 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases, 3160 unsigned dest) { 3161 unsigned o = 0; 3162 for (unsigned i = 0; i < dest; ++i) { 3163 auto &attr = cases[i]; 3164 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) { 3165 ++o; 3166 if (attr.dyn_cast_or_null<ClosedIntervalAttr>()) 3167 ++o; 3168 } 3169 } 3170 return o; 3171 } 3172 3173 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, 3174 mlir::OperationState &result, 3175 mlir::OpAsmParser::OperandType &selector, 3176 mlir::Type &type) { 3177 if (parser.parseOperand(selector) || parser.parseColonType(type) || 3178 parser.resolveOperand(selector, type, result.operands) || 3179 parser.parseLSquare()) 3180 return mlir::failure(); 3181 return mlir::success(); 3182 } 3183 3184 /// Generic pretty-printer of a binary operation 3185 static void printBinaryOp(Operation *op, OpAsmPrinter &p) { 3186 assert(op->getNumOperands() == 2 && "binary op must have two operands"); 3187 assert(op->getNumResults() == 1 && "binary op must have one result"); 3188 3189 p << ' ' << op->getOperand(0) << ", " << op->getOperand(1); 3190 p.printOptionalAttrDict(op->getAttrs()); 3191 p << " : " << op->getResult(0).getType(); 3192 } 3193 3194 /// Generic pretty-printer of an unary operation 3195 static void printUnaryOp(Operation *op, OpAsmPrinter &p) { 3196 assert(op->getNumOperands() == 1 && "unary op must have one operand"); 3197 assert(op->getNumResults() == 1 && "unary op must have one result"); 3198 3199 p << ' ' << op->getOperand(0); 3200 p.printOptionalAttrDict(op->getAttrs()); 3201 p << " : " << op->getResult(0).getType(); 3202 } 3203 3204 bool fir::isReferenceLike(mlir::Type type) { 3205 return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() || 3206 type.isa<fir::PointerType>(); 3207 } 3208 3209 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, 3210 StringRef name, mlir::FunctionType type, 3211 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3212 if (auto f = module.lookupSymbol<mlir::FuncOp>(name)) 3213 return f; 3214 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3215 modBuilder.setInsertionPointToEnd(module.getBody()); 3216 auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs); 3217 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3218 return result; 3219 } 3220 3221 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, 3222 StringRef name, mlir::Type type, 3223 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3224 if (auto g = module.lookupSymbol<fir::GlobalOp>(name)) 3225 return g; 3226 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3227 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs); 3228 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3229 return result; 3230 } 3231 3232 bool fir::valueHasFirAttribute(mlir::Value value, 3233 llvm::StringRef attributeName) { 3234 // If this is a fir.box that was loaded, the fir attributes will be on the 3235 // related fir.ref<fir.box> creation. 3236 if (value.getType().isa<fir::BoxType>()) 3237 if (auto definingOp = value.getDefiningOp()) 3238 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp)) 3239 value = loadOp.memref(); 3240 // If this is a function argument, look in the argument attributes. 3241 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 3242 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) 3243 if (auto funcOp = 3244 mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp())) 3245 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) 3246 return true; 3247 return false; 3248 } 3249 3250 if (auto definingOp = value.getDefiningOp()) { 3251 // If this is an allocated value, look at the allocation attributes. 3252 if (mlir::isa<fir::AllocMemOp>(definingOp) || 3253 mlir::isa<AllocaOp>(definingOp)) 3254 return definingOp->hasAttr(attributeName); 3255 // If this is an imported global, look at AddrOfOp and GlobalOp attributes. 3256 // Both operations are looked at because use/host associated variable (the 3257 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate 3258 // entity (the globalOp) does not have them. 3259 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) { 3260 if (addressOfOp->hasAttr(attributeName)) 3261 return true; 3262 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>()) 3263 if (auto globalOp = 3264 module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol())) 3265 return globalOp->hasAttr(attributeName); 3266 } 3267 } 3268 // TODO: Construct associated entities attributes. Decide where the fir 3269 // attributes must be placed/looked for in this case. 3270 return false; 3271 } 3272 3273 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) { 3274 for (auto i = path.begin(), end = path.end(); eleTy && i < end;) { 3275 eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy) 3276 .Case<fir::RecordType>([&](fir::RecordType ty) { 3277 if (auto *op = (*i++).getDefiningOp()) { 3278 if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op)) 3279 return ty.getType(off.getFieldName()); 3280 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3281 return ty.getType(fir::toInt(off)); 3282 } 3283 return mlir::Type{}; 3284 }) 3285 .Case<fir::SequenceType>([&](fir::SequenceType ty) { 3286 bool valid = true; 3287 const auto rank = ty.getDimension(); 3288 for (std::remove_const_t<decltype(rank)> ii = 0; 3289 valid && ii < rank; ++ii) 3290 valid = i < end && fir::isa_integer((*i++).getType()); 3291 return valid ? ty.getEleTy() : mlir::Type{}; 3292 }) 3293 .Case<mlir::TupleType>([&](mlir::TupleType ty) { 3294 if (auto *op = (*i++).getDefiningOp()) 3295 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3296 return ty.getType(fir::toInt(off)); 3297 return mlir::Type{}; 3298 }) 3299 .Case<fir::ComplexType>([&](fir::ComplexType ty) { 3300 if (fir::isa_integer((*i++).getType())) 3301 return ty.getElementType(); 3302 return mlir::Type{}; 3303 }) 3304 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { 3305 if (fir::isa_integer((*i++).getType())) 3306 return ty.getElementType(); 3307 return mlir::Type{}; 3308 }) 3309 .Default([&](const auto &) { return mlir::Type{}; }); 3310 } 3311 return eleTy; 3312 } 3313 3314 // Tablegen operators 3315 3316 #define GET_OP_CLASSES 3317 #include "flang/Optimizer/Dialect/FIROps.cpp.inc" 3318