1 //===-- FIROps.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Optimizer/Dialect/FIROps.h" 14 #include "flang/Optimizer/Dialect/FIRAttr.h" 15 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 16 #include "flang/Optimizer/Dialect/FIRType.h" 17 #include "flang/Optimizer/Support/Utils.h" 18 #include "mlir/Dialect/CommonFolders.h" 19 #include "mlir/Dialect/Func/IR/FuncOps.h" 20 #include "mlir/IR/BuiltinAttributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/Diagnostics.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/OpDefinition.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/TypeSwitch.h" 30 31 namespace { 32 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc" 33 } // namespace 34 using namespace fir; 35 using namespace mlir; 36 37 /// Return true if a sequence type is of some incomplete size or a record type 38 /// is malformed or contains an incomplete sequence type. An incomplete sequence 39 /// type is one with more unknown extents in the type than have been provided 40 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by 41 /// definition. 42 static bool verifyInType(mlir::Type inType, 43 llvm::SmallVectorImpl<llvm::StringRef> &visited, 44 unsigned dynamicExtents = 0) { 45 if (auto st = inType.dyn_cast<fir::SequenceType>()) { 46 auto shape = st.getShape(); 47 if (shape.size() == 0) 48 return true; 49 for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { 50 if (shape[i] != fir::SequenceType::getUnknownExtent()) 51 continue; 52 if (dynamicExtents-- == 0) 53 return true; 54 } 55 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) { 56 // don't recurse if we're already visiting this one 57 if (llvm::is_contained(visited, rt.getName())) 58 return false; 59 // keep track of record types currently being visited 60 visited.push_back(rt.getName()); 61 for (auto &field : rt.getTypeList()) 62 if (verifyInType(field.second, visited)) 63 return true; 64 visited.pop_back(); 65 } 66 return false; 67 } 68 69 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) { 70 auto ty = fir::unwrapSequenceType(inType); 71 if (numParams > 0) { 72 if (auto recTy = ty.dyn_cast<fir::RecordType>()) 73 return numParams != recTy.getNumLenParams(); 74 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 75 return !(numParams == 1 && chrTy.hasDynamicLen()); 76 return true; 77 } 78 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 79 return !chrTy.hasConstantLen(); 80 return false; 81 } 82 83 /// Parser shared by Alloca and Allocmem 84 /// 85 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type 86 /// ( `(` $typeparams `)` )? ( `,` $shape )? 87 /// attr-dict-without-keyword 88 template <typename FN> 89 static mlir::ParseResult parseAllocatableOp(FN wrapResultType, 90 mlir::OpAsmParser &parser, 91 mlir::OperationState &result) { 92 mlir::Type intype; 93 if (parser.parseType(intype)) 94 return mlir::failure(); 95 auto &builder = parser.getBuilder(); 96 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 97 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 98 llvm::SmallVector<mlir::Type> typeVec; 99 bool hasOperands = false; 100 std::int32_t typeparamsSize = 0; 101 if (!parser.parseOptionalLParen()) { 102 // parse the LEN params of the derived type. (<params> : <types>) 103 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 104 parser.parseColonTypeList(typeVec) || parser.parseRParen()) 105 return mlir::failure(); 106 typeparamsSize = operands.size(); 107 hasOperands = true; 108 } 109 std::int32_t shapeSize = 0; 110 if (!parser.parseOptionalComma()) { 111 // parse size to scale by, vector of n dimensions of type index 112 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None)) 113 return mlir::failure(); 114 shapeSize = operands.size() - typeparamsSize; 115 auto idxTy = builder.getIndexType(); 116 for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i) 117 typeVec.push_back(idxTy); 118 hasOperands = true; 119 } 120 if (hasOperands && 121 parser.resolveOperands(operands, typeVec, parser.getNameLoc(), 122 result.operands)) 123 return mlir::failure(); 124 mlir::Type restype = wrapResultType(intype); 125 if (!restype) { 126 parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype; 127 return mlir::failure(); 128 } 129 result.addAttribute("operand_segment_sizes", 130 builder.getI32VectorAttr({typeparamsSize, shapeSize})); 131 if (parser.parseOptionalAttrDict(result.attributes) || 132 parser.addTypeToList(restype, result.types)) 133 return mlir::failure(); 134 return mlir::success(); 135 } 136 137 template <typename OP> 138 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) { 139 p << ' ' << op.getInType(); 140 if (!op.getTypeparams().empty()) { 141 p << '(' << op.getTypeparams() << " : " << op.getTypeparams().getTypes() 142 << ')'; 143 } 144 // print the shape of the allocation (if any); all must be index type 145 for (auto sh : op.getShape()) { 146 p << ", "; 147 p.printOperand(sh); 148 } 149 p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"}); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // AllocaOp 154 //===----------------------------------------------------------------------===// 155 156 /// Create a legal memory reference as return type 157 static mlir::Type wrapAllocaResultType(mlir::Type intype) { 158 // FIR semantics: memory references to memory references are disallowed 159 if (intype.isa<ReferenceType>()) 160 return {}; 161 return ReferenceType::get(intype); 162 } 163 164 mlir::Type fir::AllocaOp::getAllocatedType() { 165 return getType().cast<ReferenceType>().getEleTy(); 166 } 167 168 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { 169 return ReferenceType::get(ty); 170 } 171 172 void fir::AllocaOp::build(mlir::OpBuilder &builder, 173 mlir::OperationState &result, mlir::Type inType, 174 llvm::StringRef uniqName, mlir::ValueRange typeparams, 175 mlir::ValueRange shape, 176 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 177 auto nameAttr = builder.getStringAttr(uniqName); 178 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 179 /*pinned=*/false, typeparams, shape); 180 result.addAttributes(attributes); 181 } 182 183 void fir::AllocaOp::build(mlir::OpBuilder &builder, 184 mlir::OperationState &result, mlir::Type inType, 185 llvm::StringRef uniqName, bool pinned, 186 mlir::ValueRange typeparams, mlir::ValueRange shape, 187 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 188 auto nameAttr = builder.getStringAttr(uniqName); 189 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 190 pinned, typeparams, shape); 191 result.addAttributes(attributes); 192 } 193 194 void fir::AllocaOp::build(mlir::OpBuilder &builder, 195 mlir::OperationState &result, mlir::Type inType, 196 llvm::StringRef uniqName, llvm::StringRef bindcName, 197 mlir::ValueRange typeparams, mlir::ValueRange shape, 198 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 199 auto nameAttr = 200 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 201 auto bindcAttr = 202 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 203 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 204 bindcAttr, /*pinned=*/false, typeparams, shape); 205 result.addAttributes(attributes); 206 } 207 208 void fir::AllocaOp::build(mlir::OpBuilder &builder, 209 mlir::OperationState &result, mlir::Type inType, 210 llvm::StringRef uniqName, llvm::StringRef bindcName, 211 bool pinned, mlir::ValueRange typeparams, 212 mlir::ValueRange shape, 213 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 214 auto nameAttr = 215 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 216 auto bindcAttr = 217 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 218 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 219 bindcAttr, pinned, typeparams, shape); 220 result.addAttributes(attributes); 221 } 222 223 void fir::AllocaOp::build(mlir::OpBuilder &builder, 224 mlir::OperationState &result, mlir::Type inType, 225 mlir::ValueRange typeparams, mlir::ValueRange shape, 226 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 227 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, 228 /*pinned=*/false, typeparams, shape); 229 result.addAttributes(attributes); 230 } 231 232 void fir::AllocaOp::build(mlir::OpBuilder &builder, 233 mlir::OperationState &result, mlir::Type inType, 234 bool pinned, mlir::ValueRange typeparams, 235 mlir::ValueRange shape, 236 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 237 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned, 238 typeparams, shape); 239 result.addAttributes(attributes); 240 } 241 242 mlir::ParseResult fir::AllocaOp::parse(OpAsmParser &parser, 243 OperationState &result) { 244 return parseAllocatableOp(wrapAllocaResultType, parser, result); 245 } 246 247 void fir::AllocaOp::print(OpAsmPrinter &p) { printAllocatableOp(p, *this); } 248 249 mlir::LogicalResult fir::AllocaOp::verify() { 250 llvm::SmallVector<llvm::StringRef> visited; 251 if (verifyInType(getInType(), visited, numShapeOperands())) 252 return emitOpError("invalid type for allocation"); 253 if (verifyTypeParamCount(getInType(), numLenParams())) 254 return emitOpError("LEN params do not correspond to type"); 255 mlir::Type outType = getType(); 256 if (!outType.isa<fir::ReferenceType>()) 257 return emitOpError("must be a !fir.ref type"); 258 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 259 return emitOpError("cannot allocate !fir.box of unknown rank or type"); 260 return mlir::success(); 261 } 262 263 //===----------------------------------------------------------------------===// 264 // AllocMemOp 265 //===----------------------------------------------------------------------===// 266 267 /// Create a legal heap reference as return type 268 static mlir::Type wrapAllocMemResultType(mlir::Type intype) { 269 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER 270 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well 271 // FIR semantics: one may not allocate a memory reference value 272 if (intype.isa<ReferenceType>() || intype.isa<HeapType>() || 273 intype.isa<PointerType>() || intype.isa<FunctionType>()) 274 return {}; 275 return HeapType::get(intype); 276 } 277 278 mlir::Type fir::AllocMemOp::getAllocatedType() { 279 return getType().cast<HeapType>().getEleTy(); 280 } 281 282 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { 283 return HeapType::get(ty); 284 } 285 286 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 287 mlir::OperationState &result, mlir::Type inType, 288 llvm::StringRef uniqName, 289 mlir::ValueRange typeparams, mlir::ValueRange shape, 290 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 291 auto nameAttr = builder.getStringAttr(uniqName); 292 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {}, 293 typeparams, shape); 294 result.addAttributes(attributes); 295 } 296 297 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 298 mlir::OperationState &result, mlir::Type inType, 299 llvm::StringRef uniqName, llvm::StringRef bindcName, 300 mlir::ValueRange typeparams, mlir::ValueRange shape, 301 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 302 auto nameAttr = builder.getStringAttr(uniqName); 303 auto bindcAttr = builder.getStringAttr(bindcName); 304 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, 305 bindcAttr, typeparams, shape); 306 result.addAttributes(attributes); 307 } 308 309 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 310 mlir::OperationState &result, mlir::Type inType, 311 mlir::ValueRange typeparams, mlir::ValueRange shape, 312 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 313 build(builder, result, wrapAllocMemResultType(inType), inType, {}, {}, 314 typeparams, shape); 315 result.addAttributes(attributes); 316 } 317 318 mlir::ParseResult AllocMemOp::parse(OpAsmParser &parser, 319 OperationState &result) { 320 return parseAllocatableOp(wrapAllocMemResultType, parser, result); 321 } 322 323 void AllocMemOp::print(OpAsmPrinter &p) { printAllocatableOp(p, *this); } 324 325 mlir::LogicalResult AllocMemOp::verify() { 326 llvm::SmallVector<llvm::StringRef> visited; 327 if (verifyInType(getInType(), visited, numShapeOperands())) 328 return emitOpError("invalid type for allocation"); 329 if (verifyTypeParamCount(getInType(), numLenParams())) 330 return emitOpError("LEN params do not correspond to type"); 331 mlir::Type outType = getType(); 332 if (!outType.dyn_cast<fir::HeapType>()) 333 return emitOpError("must be a !fir.heap type"); 334 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 335 return emitOpError("cannot allocate !fir.box of unknown rank or type"); 336 return mlir::success(); 337 } 338 339 //===----------------------------------------------------------------------===// 340 // ArrayCoorOp 341 //===----------------------------------------------------------------------===// 342 343 mlir::LogicalResult ArrayCoorOp::verify() { 344 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); 345 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 346 if (!arrTy) 347 return emitOpError("must be a reference to an array"); 348 auto arrDim = arrTy.getDimension(); 349 350 if (auto shapeOp = getShape()) { 351 auto shapeTy = shapeOp.getType(); 352 unsigned shapeTyRank = 0; 353 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 354 shapeTyRank = s.getRank(); 355 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 356 shapeTyRank = ss.getRank(); 357 } else { 358 auto s = shapeTy.cast<fir::ShiftType>(); 359 shapeTyRank = s.getRank(); 360 if (!getMemref().getType().isa<fir::BoxType>()) 361 return emitOpError("shift can only be provided with fir.box memref"); 362 } 363 if (arrDim && arrDim != shapeTyRank) 364 return emitOpError("rank of dimension mismatched"); 365 if (shapeTyRank != getIndices().size()) 366 return emitOpError("number of indices do not match dim rank"); 367 } 368 369 if (auto sliceOp = getSlice()) { 370 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) 371 if (!sl.getSubstr().empty()) 372 return emitOpError("array_coor cannot take a slice with substring"); 373 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 374 if (sliceTy.getRank() != arrDim) 375 return emitOpError("rank of dimension in slice mismatched"); 376 } 377 378 return mlir::success(); 379 } 380 381 //===----------------------------------------------------------------------===// 382 // ArrayLoadOp 383 //===----------------------------------------------------------------------===// 384 385 static mlir::Type adjustedElementType(mlir::Type t) { 386 if (auto ty = t.dyn_cast<fir::ReferenceType>()) { 387 auto eleTy = ty.getEleTy(); 388 if (fir::isa_char(eleTy)) 389 return eleTy; 390 if (fir::isa_derived(eleTy)) 391 return eleTy; 392 if (eleTy.isa<fir::SequenceType>()) 393 return eleTy; 394 } 395 return t; 396 } 397 398 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { 399 if (auto sh = getShape()) 400 if (auto *op = sh.getDefiningOp()) { 401 if (auto shOp = dyn_cast<fir::ShapeOp>(op)) { 402 auto extents = shOp.getExtents(); 403 return {extents.begin(), extents.end()}; 404 } 405 return cast<fir::ShapeShiftOp>(op).getExtents(); 406 } 407 return {}; 408 } 409 410 mlir::LogicalResult ArrayLoadOp::verify() { 411 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); 412 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 413 if (!arrTy) 414 return emitOpError("must be a reference to an array"); 415 auto arrDim = arrTy.getDimension(); 416 417 if (auto shapeOp = getShape()) { 418 auto shapeTy = shapeOp.getType(); 419 unsigned shapeTyRank = 0; 420 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 421 shapeTyRank = s.getRank(); 422 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 423 shapeTyRank = ss.getRank(); 424 } else { 425 auto s = shapeTy.cast<fir::ShiftType>(); 426 shapeTyRank = s.getRank(); 427 if (!getMemref().getType().isa<fir::BoxType>()) 428 return emitOpError("shift can only be provided with fir.box memref"); 429 } 430 if (arrDim && arrDim != shapeTyRank) 431 return emitOpError("rank of dimension mismatched"); 432 } 433 434 if (auto sliceOp = getSlice()) { 435 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) 436 if (!sl.getSubstr().empty()) 437 return emitOpError("array_load cannot take a slice with substring"); 438 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 439 if (sliceTy.getRank() != arrDim) 440 return emitOpError("rank of dimension in slice mismatched"); 441 } 442 443 return mlir::success(); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // ArrayMergeStoreOp 448 //===----------------------------------------------------------------------===// 449 450 mlir::LogicalResult ArrayMergeStoreOp::verify() { 451 if (!isa<ArrayLoadOp>(getOriginal().getDefiningOp())) 452 return emitOpError("operand #0 must be result of a fir.array_load op"); 453 if (auto sl = getSlice()) { 454 if (auto sliceOp = 455 mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) { 456 if (!sliceOp.getSubstr().empty()) 457 return emitOpError( 458 "array_merge_store cannot take a slice with substring"); 459 if (!sliceOp.getFields().empty()) { 460 // This is an intra-object merge, where the slice is projecting the 461 // subfields that are to be overwritten by the merge operation. 462 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); 463 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 464 auto projTy = 465 fir::applyPathToType(seqTy.getEleTy(), sliceOp.getFields()); 466 if (fir::unwrapSequenceType(getOriginal().getType()) != projTy) 467 return emitOpError( 468 "type of origin does not match sliced memref type"); 469 if (fir::unwrapSequenceType(getSequence().getType()) != projTy) 470 return emitOpError( 471 "type of sequence does not match sliced memref type"); 472 return mlir::success(); 473 } 474 return emitOpError("referenced type is not an array"); 475 } 476 } 477 return mlir::success(); 478 } 479 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType()); 480 if (getOriginal().getType() != eleTy) 481 return emitOpError("type of origin does not match memref element type"); 482 if (getSequence().getType() != eleTy) 483 return emitOpError("type of sequence does not match memref element type"); 484 return mlir::success(); 485 } 486 487 //===----------------------------------------------------------------------===// 488 // ArrayFetchOp 489 //===----------------------------------------------------------------------===// 490 491 // Template function used for both array_fetch and array_update verification. 492 template <typename A> 493 mlir::Type validArraySubobject(A op) { 494 auto ty = op.getSequence().getType(); 495 return fir::applyPathToType(ty, op.getIndices()); 496 } 497 498 mlir::LogicalResult ArrayFetchOp::verify() { 499 auto arrTy = getSequence().getType().cast<fir::SequenceType>(); 500 auto indSize = getIndices().size(); 501 if (indSize < arrTy.getDimension()) 502 return emitOpError("number of indices != dimension of array"); 503 if (indSize == arrTy.getDimension() && 504 ::adjustedElementType(getElement().getType()) != arrTy.getEleTy()) 505 return emitOpError("return type does not match array"); 506 auto ty = validArraySubobject(*this); 507 if (!ty || ty != ::adjustedElementType(getType())) 508 return emitOpError("return type and/or indices do not type check"); 509 if (!isa<fir::ArrayLoadOp>(getSequence().getDefiningOp())) 510 return emitOpError("argument #0 must be result of fir.array_load"); 511 return mlir::success(); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // ArrayAccessOp 516 //===----------------------------------------------------------------------===// 517 518 mlir::LogicalResult ArrayAccessOp::verify() { 519 auto arrTy = getSequence().getType().cast<fir::SequenceType>(); 520 std::size_t indSize = getIndices().size(); 521 if (indSize < arrTy.getDimension()) 522 return emitOpError("number of indices != dimension of array"); 523 if (indSize == arrTy.getDimension() && 524 getElement().getType() != fir::ReferenceType::get(arrTy.getEleTy())) 525 return emitOpError("return type does not match array"); 526 mlir::Type ty = validArraySubobject(*this); 527 if (!ty || fir::ReferenceType::get(ty) != getType()) 528 return emitOpError("return type and/or indices do not type check"); 529 return mlir::success(); 530 } 531 532 //===----------------------------------------------------------------------===// 533 // ArrayUpdateOp 534 //===----------------------------------------------------------------------===// 535 536 mlir::LogicalResult ArrayUpdateOp::verify() { 537 if (fir::isa_ref_type(getMerge().getType())) 538 return emitOpError("does not support reference type for merge"); 539 auto arrTy = getSequence().getType().cast<fir::SequenceType>(); 540 auto indSize = getIndices().size(); 541 if (indSize < arrTy.getDimension()) 542 return emitOpError("number of indices != dimension of array"); 543 if (indSize == arrTy.getDimension() && 544 ::adjustedElementType(getMerge().getType()) != arrTy.getEleTy()) 545 return emitOpError("merged value does not have element type"); 546 auto ty = validArraySubobject(*this); 547 if (!ty || ty != ::adjustedElementType(getMerge().getType())) 548 return emitOpError("merged value and/or indices do not type check"); 549 return mlir::success(); 550 } 551 552 //===----------------------------------------------------------------------===// 553 // ArrayModifyOp 554 //===----------------------------------------------------------------------===// 555 556 mlir::LogicalResult ArrayModifyOp::verify() { 557 auto arrTy = getSequence().getType().cast<fir::SequenceType>(); 558 auto indSize = getIndices().size(); 559 if (indSize < arrTy.getDimension()) 560 return emitOpError("number of indices must match array dimension"); 561 return mlir::success(); 562 } 563 564 //===----------------------------------------------------------------------===// 565 // BoxAddrOp 566 //===----------------------------------------------------------------------===// 567 568 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 569 if (auto v = getVal().getDefiningOp()) { 570 if (auto box = dyn_cast<fir::EmboxOp>(v)) 571 return box.getMemref(); 572 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 573 return box.getMemref(); 574 } 575 return {}; 576 } 577 578 //===----------------------------------------------------------------------===// 579 // BoxCharLenOp 580 //===----------------------------------------------------------------------===// 581 582 mlir::OpFoldResult 583 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 584 if (auto v = getVal().getDefiningOp()) { 585 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 586 return box.getLen(); 587 } 588 return {}; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // BoxDimsOp 593 //===----------------------------------------------------------------------===// 594 595 /// Get the result types packed in a tuple tuple 596 mlir::Type fir::BoxDimsOp::getTupleType() { 597 // note: triple, but 4 is nearest power of 2 598 llvm::SmallVector<mlir::Type> triple{ 599 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; 600 return mlir::TupleType::get(getContext(), triple); 601 } 602 603 //===----------------------------------------------------------------------===// 604 // CallOp 605 //===----------------------------------------------------------------------===// 606 607 mlir::FunctionType fir::CallOp::getFunctionType() { 608 return mlir::FunctionType::get(getContext(), getOperandTypes(), 609 getResultTypes()); 610 } 611 612 void fir::CallOp::print(mlir::OpAsmPrinter &p) { 613 bool isDirect = getCallee().hasValue(); 614 p << ' '; 615 if (isDirect) 616 p << getCallee().getValue(); 617 else 618 p << getOperand(0); 619 p << '(' << (*this)->getOperands().drop_front(isDirect ? 0 : 1) << ')'; 620 p.printOptionalAttrDict((*this)->getAttrs(), 621 {fir::CallOp::getCalleeAttrNameStr()}); 622 auto resultTypes{getResultTypes()}; 623 llvm::SmallVector<Type> argTypes( 624 llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1)); 625 p << " : " << FunctionType::get(getContext(), argTypes, resultTypes); 626 } 627 628 mlir::ParseResult fir::CallOp::parse(mlir::OpAsmParser &parser, 629 mlir::OperationState &result) { 630 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 631 if (parser.parseOperandList(operands)) 632 return mlir::failure(); 633 634 mlir::NamedAttrList attrs; 635 mlir::SymbolRefAttr funcAttr; 636 bool isDirect = operands.empty(); 637 if (isDirect) 638 if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(), 639 attrs)) 640 return mlir::failure(); 641 642 Type type; 643 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 644 parser.parseOptionalAttrDict(attrs) || parser.parseColon() || 645 parser.parseType(type)) 646 return mlir::failure(); 647 648 auto funcType = type.dyn_cast<mlir::FunctionType>(); 649 if (!funcType) 650 return parser.emitError(parser.getNameLoc(), "expected function type"); 651 if (isDirect) { 652 if (parser.resolveOperands(operands, funcType.getInputs(), 653 parser.getNameLoc(), result.operands)) 654 return mlir::failure(); 655 } else { 656 auto funcArgs = 657 llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front(); 658 if (parser.resolveOperand(operands[0], funcType, result.operands) || 659 parser.resolveOperands(funcArgs, funcType.getInputs(), 660 parser.getNameLoc(), result.operands)) 661 return mlir::failure(); 662 } 663 result.addTypes(funcType.getResults()); 664 result.attributes = attrs; 665 return mlir::success(); 666 } 667 668 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 669 mlir::FuncOp callee, mlir::ValueRange operands) { 670 result.addOperands(operands); 671 result.addAttribute(getCalleeAttrNameStr(), SymbolRefAttr::get(callee)); 672 result.addTypes(callee.getType().getResults()); 673 } 674 675 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 676 mlir::SymbolRefAttr callee, 677 llvm::ArrayRef<mlir::Type> results, 678 mlir::ValueRange operands) { 679 result.addOperands(operands); 680 if (callee) 681 result.addAttribute(getCalleeAttrNameStr(), callee); 682 result.addTypes(results); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // CmpOp 687 //===----------------------------------------------------------------------===// 688 689 template <typename OPTY> 690 static void printCmpOp(OpAsmPrinter &p, OPTY op) { 691 p << ' '; 692 auto predSym = mlir::arith::symbolizeCmpFPredicate( 693 op->template getAttrOfType<mlir::IntegerAttr>( 694 OPTY::getPredicateAttrName()) 695 .getInt()); 696 assert(predSym.hasValue() && "invalid symbol value for predicate"); 697 p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"' 698 << ", "; 699 p.printOperand(op.getLhs()); 700 p << ", "; 701 p.printOperand(op.getRhs()); 702 p.printOptionalAttrDict(op->getAttrs(), 703 /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); 704 p << " : " << op.getLhs().getType(); 705 } 706 707 template <typename OPTY> 708 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, 709 mlir::OperationState &result) { 710 llvm::SmallVector<mlir::OpAsmParser::OperandType> ops; 711 mlir::NamedAttrList attrs; 712 mlir::Attribute predicateNameAttr; 713 mlir::Type type; 714 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), 715 attrs) || 716 parser.parseComma() || parser.parseOperandList(ops, 2) || 717 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || 718 parser.resolveOperands(ops, type, result.operands)) 719 return failure(); 720 721 if (!predicateNameAttr.isa<mlir::StringAttr>()) 722 return parser.emitError(parser.getNameLoc(), 723 "expected string comparison predicate attribute"); 724 725 // Rewrite string attribute to an enum value. 726 llvm::StringRef predicateName = 727 predicateNameAttr.cast<mlir::StringAttr>().getValue(); 728 auto predicate = fir::CmpcOp::getPredicateByName(predicateName); 729 auto builder = parser.getBuilder(); 730 mlir::Type i1Type = builder.getI1Type(); 731 attrs.set(OPTY::getPredicateAttrName(), 732 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 733 result.attributes = attrs; 734 result.addTypes({i1Type}); 735 return success(); 736 } 737 738 //===----------------------------------------------------------------------===// 739 // CharConvertOp 740 //===----------------------------------------------------------------------===// 741 742 mlir::LogicalResult CharConvertOp::verify() { 743 auto unwrap = [&](mlir::Type t) { 744 t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t)); 745 return t.dyn_cast<fir::CharacterType>(); 746 }; 747 auto inTy = unwrap(getFrom().getType()); 748 auto outTy = unwrap(getTo().getType()); 749 if (!(inTy && outTy)) 750 return emitOpError("not a reference to a character"); 751 if (inTy.getFKind() == outTy.getFKind()) 752 return emitOpError("buffers must have different KIND values"); 753 return mlir::success(); 754 } 755 756 //===----------------------------------------------------------------------===// 757 // CmpcOp 758 //===----------------------------------------------------------------------===// 759 760 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, 761 arith::CmpFPredicate predicate, Value lhs, Value rhs) { 762 result.addOperands({lhs, rhs}); 763 result.types.push_back(builder.getI1Type()); 764 result.addAttribute( 765 fir::CmpcOp::getPredicateAttrName(), 766 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 767 } 768 769 mlir::arith::CmpFPredicate 770 fir::CmpcOp::getPredicateByName(llvm::StringRef name) { 771 auto pred = mlir::arith::symbolizeCmpFPredicate(name); 772 assert(pred.hasValue() && "invalid predicate name"); 773 return pred.getValue(); 774 } 775 776 void CmpcOp::print(OpAsmPrinter &p) { printCmpOp(p, *this); } 777 778 mlir::ParseResult CmpcOp::parse(mlir::OpAsmParser &parser, 779 mlir::OperationState &result) { 780 return parseCmpOp<fir::CmpcOp>(parser, result); 781 } 782 783 //===----------------------------------------------------------------------===// 784 // ConstcOp 785 //===----------------------------------------------------------------------===// 786 787 mlir::ParseResult ConstcOp::parse(mlir::OpAsmParser &parser, 788 mlir::OperationState &result) { 789 fir::RealAttr realp; 790 fir::RealAttr imagp; 791 mlir::Type type; 792 if (parser.parseLParen() || 793 parser.parseAttribute(realp, fir::ConstcOp::realAttrName(), 794 result.attributes) || 795 parser.parseComma() || 796 parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(), 797 result.attributes) || 798 parser.parseRParen() || parser.parseColonType(type) || 799 parser.addTypesToList(type, result.types)) 800 return mlir::failure(); 801 return mlir::success(); 802 } 803 804 void ConstcOp::print(mlir::OpAsmPrinter &p) { 805 p << '('; 806 p << getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", "; 807 p << getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : "; 808 p.printType(getType()); 809 } 810 811 mlir::LogicalResult ConstcOp::verify() { 812 if (!getType().isa<fir::ComplexType>()) 813 return emitOpError("must be a !fir.complex type"); 814 return mlir::success(); 815 } 816 817 //===----------------------------------------------------------------------===// 818 // ConvertOp 819 //===----------------------------------------------------------------------===// 820 821 void fir::ConvertOp::getCanonicalizationPatterns(RewritePatternSet &results, 822 MLIRContext *context) { 823 results.insert<ConvertConvertOptPattern, RedundantConvertOptPattern, 824 CombineConvertOptPattern, ForwardConstantConvertPattern>( 825 context); 826 } 827 828 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 829 if (getValue().getType() == getType()) 830 return getValue(); 831 if (matchPattern(getValue(), m_Op<fir::ConvertOp>())) { 832 auto inner = cast<fir::ConvertOp>(getValue().getDefiningOp()); 833 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a 834 if (auto toTy = getType().dyn_cast<fir::LogicalType>()) 835 if (auto fromTy = inner.getValue().getType().dyn_cast<fir::LogicalType>()) 836 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy)) 837 return inner.getValue(); 838 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a 839 if (auto toTy = getType().dyn_cast<mlir::IntegerType>()) 840 if (auto fromTy = 841 inner.getValue().getType().dyn_cast<mlir::IntegerType>()) 842 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) && 843 (fromTy.getWidth() == 1)) 844 return inner.getValue(); 845 } 846 return {}; 847 } 848 849 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { 850 return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() || 851 ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>(); 852 } 853 854 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { 855 return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>(); 856 } 857 858 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { 859 return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() || 860 ty.isa<fir::HeapType>() || ty.isa<fir::LLVMPointerType>() || 861 ty.isa<mlir::MemRefType>() || ty.isa<mlir::FunctionType>() || 862 ty.isa<fir::TypeDescType>(); 863 } 864 865 mlir::LogicalResult ConvertOp::verify() { 866 auto inType = getValue().getType(); 867 auto outType = getType(); 868 if (inType == outType) 869 return mlir::success(); 870 if ((isPointerCompatible(inType) && isPointerCompatible(outType)) || 871 (isIntegerCompatible(inType) && isIntegerCompatible(outType)) || 872 (isIntegerCompatible(inType) && isFloatCompatible(outType)) || 873 (isFloatCompatible(inType) && isIntegerCompatible(outType)) || 874 (isFloatCompatible(inType) && isFloatCompatible(outType)) || 875 (isIntegerCompatible(inType) && isPointerCompatible(outType)) || 876 (isPointerCompatible(inType) && isIntegerCompatible(outType)) || 877 (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) || 878 (fir::isa_complex(inType) && fir::isa_complex(outType))) 879 return mlir::success(); 880 return emitOpError("invalid type conversion"); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // CoordinateOp 885 //===----------------------------------------------------------------------===// 886 887 void CoordinateOp::print(mlir::OpAsmPrinter &p) { 888 p << ' ' << getRef() << ", " << getCoor(); 889 p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{"baseType"}); 890 p << " : "; 891 p.printFunctionalType(getOperandTypes(), (*this)->getResultTypes()); 892 } 893 894 mlir::ParseResult CoordinateOp::parse(mlir::OpAsmParser &parser, 895 mlir::OperationState &result) { 896 mlir::OpAsmParser::OperandType memref; 897 if (parser.parseOperand(memref) || parser.parseComma()) 898 return mlir::failure(); 899 llvm::SmallVector<mlir::OpAsmParser::OperandType> coorOperands; 900 if (parser.parseOperandList(coorOperands)) 901 return mlir::failure(); 902 llvm::SmallVector<mlir::OpAsmParser::OperandType> allOperands; 903 allOperands.push_back(memref); 904 allOperands.append(coorOperands.begin(), coorOperands.end()); 905 mlir::FunctionType funcTy; 906 auto loc = parser.getCurrentLocation(); 907 if (parser.parseOptionalAttrDict(result.attributes) || 908 parser.parseColonType(funcTy) || 909 parser.resolveOperands(allOperands, funcTy.getInputs(), loc, 910 result.operands)) 911 return failure(); 912 parser.addTypesToList(funcTy.getResults(), result.types); 913 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); 914 return mlir::success(); 915 } 916 917 mlir::LogicalResult CoordinateOp::verify() { 918 auto refTy = getRef().getType(); 919 if (fir::isa_ref_type(refTy)) { 920 auto eleTy = fir::dyn_cast_ptrEleTy(refTy); 921 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) { 922 if (arrTy.hasUnknownShape()) 923 return emitOpError("cannot find coordinate in unknown shape"); 924 if (arrTy.getConstantRows() < arrTy.getDimension() - 1) 925 return emitOpError("cannot find coordinate with unknown extents"); 926 } 927 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || 928 fir::isa_char_string(eleTy))) 929 return emitOpError("cannot apply coordinate_of to this type"); 930 } 931 // Recovering a LEN type parameter only makes sense from a boxed value. For a 932 // bare reference, the LEN type parameters must be passed as additional 933 // arguments to `op`. 934 for (auto co : getCoor()) 935 if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) { 936 if (getNumOperands() != 2) 937 return emitOpError("len_param_index must be last argument"); 938 if (!getRef().getType().isa<BoxType>()) 939 return emitOpError("len_param_index must be used on box type"); 940 } 941 return mlir::success(); 942 } 943 944 //===----------------------------------------------------------------------===// 945 // DispatchOp 946 //===----------------------------------------------------------------------===// 947 948 mlir::FunctionType fir::DispatchOp::getFunctionType() { 949 return mlir::FunctionType::get(getContext(), getOperandTypes(), 950 getResultTypes()); 951 } 952 953 mlir::ParseResult DispatchOp::parse(mlir::OpAsmParser &parser, 954 mlir::OperationState &result) { 955 mlir::FunctionType calleeType; 956 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 957 auto calleeLoc = parser.getNameLoc(); 958 llvm::StringRef calleeName; 959 if (failed(parser.parseOptionalKeyword(&calleeName))) { 960 mlir::StringAttr calleeAttr; 961 if (parser.parseAttribute(calleeAttr, 962 fir::DispatchOp::getMethodAttrNameStr(), 963 result.attributes)) 964 return mlir::failure(); 965 } else { 966 result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(), 967 parser.getBuilder().getStringAttr(calleeName)); 968 } 969 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 970 parser.parseOptionalAttrDict(result.attributes) || 971 parser.parseColonType(calleeType) || 972 parser.addTypesToList(calleeType.getResults(), result.types) || 973 parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc, 974 result.operands)) 975 return mlir::failure(); 976 return mlir::success(); 977 } 978 979 void DispatchOp::print(mlir::OpAsmPrinter &p) { 980 p << ' ' << getMethodAttr() << '('; 981 p.printOperand(getObject()); 982 if (!getArgs().empty()) { 983 p << ", "; 984 p.printOperands(getArgs()); 985 } 986 p << ") : "; 987 p.printFunctionalType(getOperation()->getOperandTypes(), 988 getOperation()->getResultTypes()); 989 } 990 991 //===----------------------------------------------------------------------===// 992 // DispatchTableOp 993 //===----------------------------------------------------------------------===// 994 995 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { 996 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp"); 997 auto &block = getBlock(); 998 block.getOperations().insert(block.end(), op); 999 } 1000 1001 mlir::ParseResult DispatchTableOp::parse(mlir::OpAsmParser &parser, 1002 mlir::OperationState &result) { 1003 // Parse the name as a symbol reference attribute. 1004 SymbolRefAttr nameAttr; 1005 if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 1006 result.attributes)) 1007 return failure(); 1008 1009 // Convert the parsed name attr into a string attr. 1010 result.attributes.set(mlir::SymbolTable::getSymbolAttrName(), 1011 nameAttr.getRootReference()); 1012 1013 // Parse the optional table body. 1014 mlir::Region *body = result.addRegion(); 1015 OptionalParseResult parseResult = parser.parseOptionalRegion(*body); 1016 if (parseResult.hasValue() && failed(*parseResult)) 1017 return mlir::failure(); 1018 1019 fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(), 1020 result.location); 1021 return mlir::success(); 1022 } 1023 1024 void DispatchTableOp::print(mlir::OpAsmPrinter &p) { 1025 auto tableName = 1026 getOperation() 1027 ->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()) 1028 .getValue(); 1029 p << " @" << tableName; 1030 1031 Region &body = getOperation()->getRegion(0); 1032 if (!body.empty()) { 1033 p << ' '; 1034 p.printRegion(body, /*printEntryBlockArgs=*/false, 1035 /*printBlockTerminators=*/false); 1036 } 1037 } 1038 1039 mlir::LogicalResult DispatchTableOp::verify() { 1040 for (auto &op : getBlock()) 1041 if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op))) 1042 return op.emitOpError("dispatch table must contain dt_entry"); 1043 return mlir::success(); 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // EmboxOp 1048 //===----------------------------------------------------------------------===// 1049 1050 mlir::LogicalResult EmboxOp::verify() { 1051 auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType()); 1052 bool isArray = false; 1053 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 1054 eleTy = seqTy.getEleTy(); 1055 isArray = true; 1056 } 1057 if (hasLenParams()) { 1058 auto lenPs = numLenParams(); 1059 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) { 1060 if (lenPs != rt.getNumLenParams()) 1061 return emitOpError("number of LEN params does not correspond" 1062 " to the !fir.type type"); 1063 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) { 1064 if (strTy.getLen() != fir::CharacterType::unknownLen()) 1065 return emitOpError("CHARACTER already has static LEN"); 1066 } else { 1067 return emitOpError("LEN parameters require CHARACTER or derived type"); 1068 } 1069 for (auto lp : getTypeparams()) 1070 if (!fir::isa_integer(lp.getType())) 1071 return emitOpError("LEN parameters must be integral type"); 1072 } 1073 if (getShape() && !isArray) 1074 return emitOpError("shape must not be provided for a scalar"); 1075 if (getSlice() && !isArray) 1076 return emitOpError("slice must not be provided for a scalar"); 1077 return mlir::success(); 1078 } 1079 1080 //===----------------------------------------------------------------------===// 1081 // EmboxCharOp 1082 //===----------------------------------------------------------------------===// 1083 1084 mlir::LogicalResult EmboxCharOp::verify() { 1085 auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType()); 1086 if (!eleTy.dyn_cast_or_null<CharacterType>()) 1087 return mlir::failure(); 1088 return mlir::success(); 1089 } 1090 1091 //===----------------------------------------------------------------------===// 1092 // EmboxProcOp 1093 //===----------------------------------------------------------------------===// 1094 1095 mlir::ParseResult EmboxProcOp::parse(mlir::OpAsmParser &parser, 1096 mlir::OperationState &result) { 1097 mlir::SymbolRefAttr procRef; 1098 if (parser.parseAttribute(procRef, "funcname", result.attributes)) 1099 return mlir::failure(); 1100 bool hasTuple = false; 1101 mlir::OpAsmParser::OperandType tupleRef; 1102 if (!parser.parseOptionalComma()) { 1103 if (parser.parseOperand(tupleRef)) 1104 return mlir::failure(); 1105 hasTuple = true; 1106 } 1107 mlir::FunctionType type; 1108 if (parser.parseColon() || parser.parseLParen() || parser.parseType(type)) 1109 return mlir::failure(); 1110 result.addAttribute("functype", mlir::TypeAttr::get(type)); 1111 if (hasTuple) { 1112 mlir::Type tupleType; 1113 if (parser.parseComma() || parser.parseType(tupleType) || 1114 parser.resolveOperand(tupleRef, tupleType, result.operands)) 1115 return mlir::failure(); 1116 } 1117 mlir::Type boxType; 1118 if (parser.parseRParen() || parser.parseArrow() || 1119 parser.parseType(boxType) || parser.addTypesToList(boxType, result.types)) 1120 return mlir::failure(); 1121 return mlir::success(); 1122 } 1123 1124 void EmboxProcOp::print(mlir::OpAsmPrinter &p) { 1125 p << ' ' << getOperation()->getAttr("funcname"); 1126 auto h = getHost(); 1127 if (h) { 1128 p << ", "; 1129 p.printOperand(h); 1130 } 1131 p << " : (" << getOperation()->getAttr("functype"); 1132 if (h) 1133 p << ", " << h.getType(); 1134 p << ") -> " << getType(); 1135 } 1136 1137 mlir::LogicalResult EmboxProcOp::verify() { 1138 // host bindings (optional) must be a reference to a tuple 1139 if (auto h = getHost()) { 1140 if (auto r = h.getType().dyn_cast<ReferenceType>()) { 1141 if (!r.getEleTy().dyn_cast<mlir::TupleType>()) 1142 return mlir::failure(); 1143 } else { 1144 return mlir::failure(); 1145 } 1146 } 1147 return mlir::success(); 1148 } 1149 1150 //===----------------------------------------------------------------------===// 1151 // GenTypeDescOp 1152 //===----------------------------------------------------------------------===// 1153 1154 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, 1155 mlir::TypeAttr inty) { 1156 result.addAttribute("in_type", inty); 1157 result.addTypes(TypeDescType::get(inty.getValue())); 1158 } 1159 1160 mlir::ParseResult GenTypeDescOp::parse(mlir::OpAsmParser &parser, 1161 mlir::OperationState &result) { 1162 mlir::Type intype; 1163 if (parser.parseType(intype)) 1164 return mlir::failure(); 1165 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 1166 mlir::Type restype = TypeDescType::get(intype); 1167 if (parser.addTypeToList(restype, result.types)) 1168 return mlir::failure(); 1169 return mlir::success(); 1170 } 1171 1172 void GenTypeDescOp::print(mlir::OpAsmPrinter &p) { 1173 p << ' ' << getOperation()->getAttr("in_type"); 1174 p.printOptionalAttrDict(getOperation()->getAttrs(), {"in_type"}); 1175 } 1176 1177 mlir::LogicalResult GenTypeDescOp::verify() { 1178 mlir::Type resultTy = getType(); 1179 if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) { 1180 if (tdesc.getOfTy() != getInType()) 1181 return emitOpError("wrapped type mismatched"); 1182 } else { 1183 return emitOpError("must be !fir.tdesc type"); 1184 } 1185 return mlir::success(); 1186 } 1187 1188 //===----------------------------------------------------------------------===// 1189 // GlobalOp 1190 //===----------------------------------------------------------------------===// 1191 1192 mlir::Type fir::GlobalOp::resultType() { 1193 return wrapAllocaResultType(getType()); 1194 } 1195 1196 ParseResult GlobalOp::parse(OpAsmParser &parser, OperationState &result) { 1197 // Parse the optional linkage 1198 llvm::StringRef linkage; 1199 auto &builder = parser.getBuilder(); 1200 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { 1201 if (fir::GlobalOp::verifyValidLinkage(linkage)) 1202 return mlir::failure(); 1203 mlir::StringAttr linkAttr = builder.getStringAttr(linkage); 1204 result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); 1205 } 1206 1207 // Parse the name as a symbol reference attribute. 1208 mlir::SymbolRefAttr nameAttr; 1209 if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrNameStr(), 1210 result.attributes)) 1211 return mlir::failure(); 1212 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1213 nameAttr.getRootReference()); 1214 1215 bool simpleInitializer = false; 1216 if (mlir::succeeded(parser.parseOptionalLParen())) { 1217 Attribute attr; 1218 if (parser.parseAttribute(attr, "initVal", result.attributes) || 1219 parser.parseRParen()) 1220 return mlir::failure(); 1221 simpleInitializer = true; 1222 } 1223 1224 if (succeeded(parser.parseOptionalKeyword("constant"))) { 1225 // if "constant" keyword then mark this as a constant, not a variable 1226 result.addAttribute("constant", builder.getUnitAttr()); 1227 } 1228 1229 mlir::Type globalType; 1230 if (parser.parseColonType(globalType)) 1231 return mlir::failure(); 1232 1233 result.addAttribute(fir::GlobalOp::getTypeAttrName(result.name), 1234 mlir::TypeAttr::get(globalType)); 1235 1236 if (simpleInitializer) { 1237 result.addRegion(); 1238 } else { 1239 // Parse the optional initializer body. 1240 auto parseResult = parser.parseOptionalRegion( 1241 *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); 1242 if (parseResult.hasValue() && mlir::failed(*parseResult)) 1243 return mlir::failure(); 1244 } 1245 1246 return mlir::success(); 1247 } 1248 1249 void GlobalOp::print(mlir::OpAsmPrinter &p) { 1250 if (getLinkName().hasValue()) 1251 p << ' ' << getLinkName().getValue(); 1252 p << ' '; 1253 p.printAttributeWithoutType(getSymrefAttr()); 1254 if (auto val = getValueOrNull()) 1255 p << '(' << val << ')'; 1256 if (getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr())) 1257 p << " constant"; 1258 p << " : "; 1259 p.printType(getType()); 1260 if (hasInitializationBody()) { 1261 p << ' '; 1262 p.printRegion(getOperation()->getRegion(0), 1263 /*printEntryBlockArgs=*/false, 1264 /*printBlockTerminators=*/true); 1265 } 1266 } 1267 1268 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { 1269 getBlock().getOperations().push_back(op); 1270 } 1271 1272 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1273 StringRef name, bool isConstant, Type type, 1274 Attribute initialVal, StringAttr linkage, 1275 ArrayRef<NamedAttribute> attrs) { 1276 result.addRegion(); 1277 result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type)); 1278 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1279 builder.getStringAttr(name)); 1280 result.addAttribute(symbolAttrNameStr(), 1281 SymbolRefAttr::get(builder.getContext(), name)); 1282 if (isConstant) 1283 result.addAttribute(getConstantAttrName(result.name), 1284 builder.getUnitAttr()); 1285 if (initialVal) 1286 result.addAttribute(getInitValAttrName(result.name), initialVal); 1287 if (linkage) 1288 result.addAttribute(linkageAttrName(), linkage); 1289 result.attributes.append(attrs.begin(), attrs.end()); 1290 } 1291 1292 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1293 StringRef name, Type type, Attribute initialVal, 1294 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1295 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1296 } 1297 1298 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1299 StringRef name, bool isConstant, Type type, 1300 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1301 build(builder, result, name, isConstant, type, {}, linkage, attrs); 1302 } 1303 1304 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1305 StringRef name, Type type, StringAttr linkage, 1306 ArrayRef<NamedAttribute> attrs) { 1307 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1308 } 1309 1310 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1311 StringRef name, bool isConstant, Type type, 1312 ArrayRef<NamedAttribute> attrs) { 1313 build(builder, result, name, isConstant, type, StringAttr{}, attrs); 1314 } 1315 1316 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1317 StringRef name, Type type, 1318 ArrayRef<NamedAttribute> attrs) { 1319 build(builder, result, name, /*isConstant=*/false, type, attrs); 1320 } 1321 1322 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { 1323 // Supporting only a subset of the LLVM linkage types for now 1324 static const char *validNames[] = {"common", "internal", "linkonce", 1325 "linkonce_odr", "weak"}; 1326 return mlir::success(llvm::is_contained(validNames, linkage)); 1327 } 1328 1329 //===----------------------------------------------------------------------===// 1330 // GlobalLenOp 1331 //===----------------------------------------------------------------------===// 1332 1333 mlir::ParseResult GlobalLenOp::parse(mlir::OpAsmParser &parser, 1334 mlir::OperationState &result) { 1335 llvm::StringRef fieldName; 1336 if (failed(parser.parseOptionalKeyword(&fieldName))) { 1337 mlir::StringAttr fieldAttr; 1338 if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(), 1339 result.attributes)) 1340 return mlir::failure(); 1341 } else { 1342 result.addAttribute(fir::GlobalLenOp::lenParamAttrName(), 1343 parser.getBuilder().getStringAttr(fieldName)); 1344 } 1345 mlir::IntegerAttr constant; 1346 if (parser.parseComma() || 1347 parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(), 1348 result.attributes)) 1349 return mlir::failure(); 1350 return mlir::success(); 1351 } 1352 1353 void GlobalLenOp::print(mlir::OpAsmPrinter &p) { 1354 p << ' ' << getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName()) 1355 << ", " << getOperation()->getAttr(fir::GlobalLenOp::intAttrName()); 1356 } 1357 1358 //===----------------------------------------------------------------------===// 1359 // FieldIndexOp 1360 //===----------------------------------------------------------------------===// 1361 1362 mlir::ParseResult FieldIndexOp::parse(mlir::OpAsmParser &parser, 1363 mlir::OperationState &result) { 1364 llvm::StringRef fieldName; 1365 auto &builder = parser.getBuilder(); 1366 mlir::Type recty; 1367 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1368 parser.parseType(recty)) 1369 return mlir::failure(); 1370 result.addAttribute(fir::FieldIndexOp::fieldAttrName(), 1371 builder.getStringAttr(fieldName)); 1372 if (!recty.dyn_cast<RecordType>()) 1373 return mlir::failure(); 1374 result.addAttribute(fir::FieldIndexOp::typeAttrName(), 1375 mlir::TypeAttr::get(recty)); 1376 if (!parser.parseOptionalLParen()) { 1377 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1378 llvm::SmallVector<mlir::Type> types; 1379 auto loc = parser.getNameLoc(); 1380 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 1381 parser.parseColonTypeList(types) || parser.parseRParen() || 1382 parser.resolveOperands(operands, types, loc, result.operands)) 1383 return mlir::failure(); 1384 } 1385 mlir::Type fieldType = fir::FieldType::get(builder.getContext()); 1386 if (parser.addTypeToList(fieldType, result.types)) 1387 return mlir::failure(); 1388 return mlir::success(); 1389 } 1390 1391 void FieldIndexOp::print(mlir::OpAsmPrinter &p) { 1392 p << ' ' 1393 << getOperation() 1394 ->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName()) 1395 .getValue() 1396 << ", " << getOperation()->getAttr(fir::FieldIndexOp::typeAttrName()); 1397 if (getNumOperands()) { 1398 p << '('; 1399 p.printOperands(getTypeparams()); 1400 const auto *sep = ") : "; 1401 for (auto op : getTypeparams()) { 1402 p << sep; 1403 if (op) 1404 p.printType(op.getType()); 1405 else 1406 p << "()"; 1407 sep = ", "; 1408 } 1409 } 1410 } 1411 1412 void fir::FieldIndexOp::build(mlir::OpBuilder &builder, 1413 mlir::OperationState &result, 1414 llvm::StringRef fieldName, mlir::Type recTy, 1415 mlir::ValueRange operands) { 1416 result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName)); 1417 result.addAttribute(typeAttrName(), TypeAttr::get(recTy)); 1418 result.addOperands(operands); 1419 } 1420 1421 llvm::SmallVector<mlir::Attribute> fir::FieldIndexOp::getAttributes() { 1422 llvm::SmallVector<mlir::Attribute> attrs; 1423 attrs.push_back(getFieldIdAttr()); 1424 attrs.push_back(getOnTypeAttr()); 1425 return attrs; 1426 } 1427 1428 //===----------------------------------------------------------------------===// 1429 // InsertOnRangeOp 1430 //===----------------------------------------------------------------------===// 1431 1432 static ParseResult 1433 parseCustomRangeSubscript(mlir::OpAsmParser &parser, 1434 mlir::DenseIntElementsAttr &coord) { 1435 llvm::SmallVector<int64_t> lbounds; 1436 llvm::SmallVector<int64_t> ubounds; 1437 if (parser.parseKeyword("from") || 1438 parser.parseCommaSeparatedList( 1439 AsmParser::Delimiter::Paren, 1440 [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) || 1441 parser.parseKeyword("to") || 1442 parser.parseCommaSeparatedList(AsmParser::Delimiter::Paren, [&] { 1443 return parser.parseInteger(ubounds.emplace_back(0)); 1444 })) 1445 return failure(); 1446 llvm::SmallVector<int64_t> zippedBounds; 1447 for (auto zip : llvm::zip(lbounds, ubounds)) { 1448 zippedBounds.push_back(std::get<0>(zip)); 1449 zippedBounds.push_back(std::get<1>(zip)); 1450 } 1451 coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds); 1452 return success(); 1453 } 1454 1455 void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, InsertOnRangeOp op, 1456 mlir::DenseIntElementsAttr coord) { 1457 printer << "from ("; 1458 auto enumerate = llvm::enumerate(coord.getValues<int64_t>()); 1459 // Even entries are the lower bounds. 1460 llvm::interleaveComma( 1461 make_filter_range( 1462 enumerate, 1463 [](auto indexed_value) { return indexed_value.index() % 2 == 0; }), 1464 printer, [&](auto indexed_value) { printer << indexed_value.value(); }); 1465 printer << ") to ("; 1466 // Odd entries are the upper bounds. 1467 llvm::interleaveComma( 1468 make_filter_range( 1469 enumerate, 1470 [](auto indexed_value) { return indexed_value.index() % 2 != 0; }), 1471 printer, [&](auto indexed_value) { printer << indexed_value.value(); }); 1472 printer << ")"; 1473 } 1474 1475 /// Range bounds must be nonnegative, and the range must not be empty. 1476 mlir::LogicalResult InsertOnRangeOp::verify() { 1477 if (fir::hasDynamicSize(getSeq().getType())) 1478 return emitOpError("must have constant shape and size"); 1479 mlir::DenseIntElementsAttr coorAttr = getCoor(); 1480 if (coorAttr.size() < 2 || coorAttr.size() % 2 != 0) 1481 return emitOpError("has uneven number of values in ranges"); 1482 bool rangeIsKnownToBeNonempty = false; 1483 for (auto i = coorAttr.getValues<int64_t>().end(), 1484 b = coorAttr.getValues<int64_t>().begin(); 1485 i != b;) { 1486 int64_t ub = (*--i); 1487 int64_t lb = (*--i); 1488 if (lb < 0 || ub < 0) 1489 return emitOpError("negative range bound"); 1490 if (rangeIsKnownToBeNonempty) 1491 continue; 1492 if (lb > ub) 1493 return emitOpError("empty range"); 1494 rangeIsKnownToBeNonempty = lb < ub; 1495 } 1496 return mlir::success(); 1497 } 1498 1499 //===----------------------------------------------------------------------===// 1500 // InsertValueOp 1501 //===----------------------------------------------------------------------===// 1502 1503 static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) { 1504 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>()) 1505 return iattr.getInt() == conVal; 1506 return false; 1507 } 1508 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); } 1509 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); } 1510 1511 // Undo some complex patterns created in the front-end and turn them back into 1512 // complex ops. 1513 template <typename FltOp, typename CpxOp> 1514 struct UndoComplexPattern : public mlir::RewritePattern { 1515 UndoComplexPattern(mlir::MLIRContext *ctx) 1516 : mlir::RewritePattern("fir.insert_value", 2, ctx) {} 1517 1518 mlir::LogicalResult 1519 matchAndRewrite(mlir::Operation *op, 1520 mlir::PatternRewriter &rewriter) const override { 1521 auto insval = dyn_cast_or_null<fir::InsertValueOp>(op); 1522 if (!insval || !insval.getType().isa<fir::ComplexType>()) 1523 return mlir::failure(); 1524 auto insval2 = 1525 dyn_cast_or_null<fir::InsertValueOp>(insval.getAdt().getDefiningOp()); 1526 if (!insval2 || !isa<fir::UndefOp>(insval2.getAdt().getDefiningOp())) 1527 return mlir::failure(); 1528 auto binf = dyn_cast_or_null<FltOp>(insval.getVal().getDefiningOp()); 1529 auto binf2 = dyn_cast_or_null<FltOp>(insval2.getVal().getDefiningOp()); 1530 if (!binf || !binf2 || insval.getCoor().size() != 1 || 1531 !isOne(insval.getCoor()[0]) || insval2.getCoor().size() != 1 || 1532 !isZero(insval2.getCoor()[0])) 1533 return mlir::failure(); 1534 auto eai = 1535 dyn_cast_or_null<fir::ExtractValueOp>(binf.getLhs().getDefiningOp()); 1536 auto ebi = 1537 dyn_cast_or_null<fir::ExtractValueOp>(binf.getRhs().getDefiningOp()); 1538 auto ear = 1539 dyn_cast_or_null<fir::ExtractValueOp>(binf2.getLhs().getDefiningOp()); 1540 auto ebr = 1541 dyn_cast_or_null<fir::ExtractValueOp>(binf2.getRhs().getDefiningOp()); 1542 if (!eai || !ebi || !ear || !ebr || ear.getAdt() != eai.getAdt() || 1543 ebr.getAdt() != ebi.getAdt() || eai.getCoor().size() != 1 || 1544 !isOne(eai.getCoor()[0]) || ebi.getCoor().size() != 1 || 1545 !isOne(ebi.getCoor()[0]) || ear.getCoor().size() != 1 || 1546 !isZero(ear.getCoor()[0]) || ebr.getCoor().size() != 1 || 1547 !isZero(ebr.getCoor()[0])) 1548 return mlir::failure(); 1549 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.getAdt(), ebr.getAdt()); 1550 return mlir::success(); 1551 } 1552 }; 1553 1554 void fir::InsertValueOp::getCanonicalizationPatterns( 1555 mlir::RewritePatternSet &results, mlir::MLIRContext *context) { 1556 results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>, 1557 UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context); 1558 } 1559 1560 //===----------------------------------------------------------------------===// 1561 // IterWhileOp 1562 //===----------------------------------------------------------------------===// 1563 1564 void fir::IterWhileOp::build(mlir::OpBuilder &builder, 1565 mlir::OperationState &result, mlir::Value lb, 1566 mlir::Value ub, mlir::Value step, 1567 mlir::Value iterate, bool finalCountValue, 1568 mlir::ValueRange iterArgs, 1569 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1570 result.addOperands({lb, ub, step, iterate}); 1571 if (finalCountValue) { 1572 result.addTypes(builder.getIndexType()); 1573 result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr()); 1574 } 1575 result.addTypes(iterate.getType()); 1576 result.addOperands(iterArgs); 1577 for (auto v : iterArgs) 1578 result.addTypes(v.getType()); 1579 mlir::Region *bodyRegion = result.addRegion(); 1580 bodyRegion->push_back(new Block{}); 1581 bodyRegion->front().addArgument(builder.getIndexType(), result.location); 1582 bodyRegion->front().addArgument(iterate.getType(), result.location); 1583 bodyRegion->front().addArguments( 1584 iterArgs.getTypes(), 1585 SmallVector<Location>(iterArgs.size(), result.location)); 1586 result.addAttributes(attributes); 1587 } 1588 1589 mlir::ParseResult IterWhileOp::parse(mlir::OpAsmParser &parser, 1590 mlir::OperationState &result) { 1591 auto &builder = parser.getBuilder(); 1592 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1593 if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || 1594 parser.parseEqual()) 1595 return mlir::failure(); 1596 1597 // Parse loop bounds. 1598 auto indexType = builder.getIndexType(); 1599 auto i1Type = builder.getIntegerType(1); 1600 if (parser.parseOperand(lb) || 1601 parser.resolveOperand(lb, indexType, result.operands) || 1602 parser.parseKeyword("to") || parser.parseOperand(ub) || 1603 parser.resolveOperand(ub, indexType, result.operands) || 1604 parser.parseKeyword("step") || parser.parseOperand(step) || 1605 parser.parseRParen() || 1606 parser.resolveOperand(step, indexType, result.operands)) 1607 return mlir::failure(); 1608 1609 mlir::OpAsmParser::OperandType iterateVar, iterateInput; 1610 if (parser.parseKeyword("and") || parser.parseLParen() || 1611 parser.parseRegionArgument(iterateVar) || parser.parseEqual() || 1612 parser.parseOperand(iterateInput) || parser.parseRParen() || 1613 parser.resolveOperand(iterateInput, i1Type, result.operands)) 1614 return mlir::failure(); 1615 1616 // Parse the initial iteration arguments. 1617 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs; 1618 auto prependCount = false; 1619 1620 // Induction variable. 1621 regionArgs.push_back(inductionVariable); 1622 regionArgs.push_back(iterateVar); 1623 1624 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1625 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1626 llvm::SmallVector<mlir::Type> regionTypes; 1627 // Parse assignment list and results type list. 1628 if (parser.parseAssignmentList(regionArgs, operands) || 1629 parser.parseArrowTypeList(regionTypes)) 1630 return failure(); 1631 if (regionTypes.size() == operands.size() + 2) 1632 prependCount = true; 1633 llvm::ArrayRef<mlir::Type> resTypes = regionTypes; 1634 resTypes = prependCount ? resTypes.drop_front(2) : resTypes; 1635 // Resolve input operands. 1636 for (auto operandType : llvm::zip(operands, resTypes)) 1637 if (parser.resolveOperand(std::get<0>(operandType), 1638 std::get<1>(operandType), result.operands)) 1639 return failure(); 1640 if (prependCount) { 1641 result.addTypes(regionTypes); 1642 } else { 1643 result.addTypes(i1Type); 1644 result.addTypes(resTypes); 1645 } 1646 } else if (succeeded(parser.parseOptionalArrow())) { 1647 llvm::SmallVector<mlir::Type> typeList; 1648 if (parser.parseLParen() || parser.parseTypeList(typeList) || 1649 parser.parseRParen()) 1650 return failure(); 1651 // Type list must be "(index, i1)". 1652 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() || 1653 !typeList[1].isSignlessInteger(1)) 1654 return failure(); 1655 result.addTypes(typeList); 1656 prependCount = true; 1657 } else { 1658 result.addTypes(i1Type); 1659 } 1660 1661 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1662 return mlir::failure(); 1663 1664 llvm::SmallVector<mlir::Type> argTypes; 1665 // Induction variable (hidden) 1666 if (prependCount) 1667 result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(), 1668 builder.getUnitAttr()); 1669 else 1670 argTypes.push_back(indexType); 1671 // Loop carried variables (including iterate) 1672 argTypes.append(result.types.begin(), result.types.end()); 1673 // Parse the body region. 1674 auto *body = result.addRegion(); 1675 if (regionArgs.size() != argTypes.size()) 1676 return parser.emitError( 1677 parser.getNameLoc(), 1678 "mismatch in number of loop-carried values and defined values"); 1679 1680 if (parser.parseRegion(*body, regionArgs, argTypes)) 1681 return failure(); 1682 1683 fir::IterWhileOp::ensureTerminator(*body, builder, result.location); 1684 1685 return mlir::success(); 1686 } 1687 1688 mlir::LogicalResult IterWhileOp::verify() { 1689 // Check that the body defines as single block argument for the induction 1690 // variable. 1691 auto *body = getBody(); 1692 if (!body->getArgument(1).getType().isInteger(1)) 1693 return emitOpError( 1694 "expected body second argument to be an index argument for " 1695 "the induction variable"); 1696 if (!body->getArgument(0).getType().isIndex()) 1697 return emitOpError( 1698 "expected body first argument to be an index argument for " 1699 "the induction variable"); 1700 1701 auto opNumResults = getNumResults(); 1702 if (getFinalValue()) { 1703 // Result type must be "(index, i1, ...)". 1704 if (!getResult(0).getType().isa<mlir::IndexType>()) 1705 return emitOpError("result #0 expected to be index"); 1706 if (!getResult(1).getType().isSignlessInteger(1)) 1707 return emitOpError("result #1 expected to be i1"); 1708 opNumResults--; 1709 } else { 1710 // iterate_while always returns the early exit induction value. 1711 // Result type must be "(i1, ...)" 1712 if (!getResult(0).getType().isSignlessInteger(1)) 1713 return emitOpError("result #0 expected to be i1"); 1714 } 1715 if (opNumResults == 0) 1716 return mlir::failure(); 1717 if (getNumIterOperands() != opNumResults) 1718 return emitOpError( 1719 "mismatch in number of loop-carried values and defined values"); 1720 if (getNumRegionIterArgs() != opNumResults) 1721 return emitOpError( 1722 "mismatch in number of basic block args and defined values"); 1723 auto iterOperands = getIterOperands(); 1724 auto iterArgs = getRegionIterArgs(); 1725 auto opResults = getFinalValue() ? getResults().drop_front() : getResults(); 1726 unsigned i = 0; 1727 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1728 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1729 return emitOpError() << "types mismatch between " << i 1730 << "th iter operand and defined value"; 1731 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1732 return emitOpError() << "types mismatch between " << i 1733 << "th iter region arg and defined value"; 1734 1735 i++; 1736 } 1737 return mlir::success(); 1738 } 1739 1740 void IterWhileOp::print(mlir::OpAsmPrinter &p) { 1741 p << " (" << getInductionVar() << " = " << getLowerBound() << " to " 1742 << getUpperBound() << " step " << getStep() << ") and ("; 1743 assert(hasIterOperands()); 1744 auto regionArgs = getRegionIterArgs(); 1745 auto operands = getIterOperands(); 1746 p << regionArgs.front() << " = " << *operands.begin() << ")"; 1747 if (regionArgs.size() > 1) { 1748 p << " iter_args("; 1749 llvm::interleaveComma( 1750 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, 1751 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); 1752 p << ") -> ("; 1753 llvm::interleaveComma( 1754 llvm::drop_begin(getResultTypes(), getFinalValue() ? 0 : 1), p); 1755 p << ")"; 1756 } else if (getFinalValue()) { 1757 p << " -> (" << getResultTypes() << ')'; 1758 } 1759 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), 1760 {getFinalValueAttrNameStr()}); 1761 p << ' '; 1762 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, 1763 /*printBlockTerminators=*/true); 1764 } 1765 1766 mlir::Region &fir::IterWhileOp::getLoopBody() { return getRegion(); } 1767 1768 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { 1769 return !getRegion().isAncestor(value.getParentRegion()); 1770 } 1771 1772 mlir::LogicalResult 1773 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1774 for (auto *op : ops) 1775 op->moveBefore(*this); 1776 return success(); 1777 } 1778 1779 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { 1780 for (auto i : llvm::enumerate(getInitArgs())) 1781 if (iterArg == i.value()) 1782 return getRegion().front().getArgument(i.index() + 1); 1783 return {}; 1784 } 1785 1786 void fir::IterWhileOp::resultToSourceOps( 1787 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1788 auto oper = getFinalValue() ? resultNum + 1 : resultNum; 1789 auto *term = getRegion().front().getTerminator(); 1790 if (oper < term->getNumOperands()) 1791 results.push_back(term->getOperand(oper)); 1792 } 1793 1794 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { 1795 if (blockArgNum > 0 && blockArgNum <= getInitArgs().size()) 1796 return getInitArgs()[blockArgNum - 1]; 1797 return {}; 1798 } 1799 1800 //===----------------------------------------------------------------------===// 1801 // LenParamIndexOp 1802 //===----------------------------------------------------------------------===// 1803 1804 mlir::ParseResult LenParamIndexOp::parse(mlir::OpAsmParser &parser, 1805 mlir::OperationState &result) { 1806 llvm::StringRef fieldName; 1807 auto &builder = parser.getBuilder(); 1808 mlir::Type recty; 1809 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1810 parser.parseType(recty)) 1811 return mlir::failure(); 1812 result.addAttribute(fir::LenParamIndexOp::fieldAttrName(), 1813 builder.getStringAttr(fieldName)); 1814 if (!recty.dyn_cast<RecordType>()) 1815 return mlir::failure(); 1816 result.addAttribute(fir::LenParamIndexOp::typeAttrName(), 1817 mlir::TypeAttr::get(recty)); 1818 mlir::Type lenType = fir::LenType::get(builder.getContext()); 1819 if (parser.addTypeToList(lenType, result.types)) 1820 return mlir::failure(); 1821 return mlir::success(); 1822 } 1823 1824 void LenParamIndexOp::print(mlir::OpAsmPrinter &p) { 1825 p << ' ' 1826 << getOperation() 1827 ->getAttrOfType<mlir::StringAttr>( 1828 fir::LenParamIndexOp::fieldAttrName()) 1829 .getValue() 1830 << ", " << getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName()); 1831 } 1832 1833 //===----------------------------------------------------------------------===// 1834 // LoadOp 1835 //===----------------------------------------------------------------------===// 1836 1837 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 1838 mlir::Value refVal) { 1839 if (!refVal) { 1840 mlir::emitError(result.location, "LoadOp has null argument"); 1841 return; 1842 } 1843 auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType()); 1844 if (!eleTy) { 1845 mlir::emitError(result.location, "not a memory reference type"); 1846 return; 1847 } 1848 result.addOperands(refVal); 1849 result.addTypes(eleTy); 1850 } 1851 1852 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { 1853 if ((ele = fir::dyn_cast_ptrEleTy(ref))) 1854 return mlir::success(); 1855 return mlir::failure(); 1856 } 1857 1858 mlir::ParseResult LoadOp::parse(mlir::OpAsmParser &parser, 1859 mlir::OperationState &result) { 1860 mlir::Type type; 1861 mlir::OpAsmParser::OperandType oper; 1862 if (parser.parseOperand(oper) || 1863 parser.parseOptionalAttrDict(result.attributes) || 1864 parser.parseColonType(type) || 1865 parser.resolveOperand(oper, type, result.operands)) 1866 return mlir::failure(); 1867 mlir::Type eleTy; 1868 if (fir::LoadOp::getElementOf(eleTy, type) || 1869 parser.addTypeToList(eleTy, result.types)) 1870 return mlir::failure(); 1871 return mlir::success(); 1872 } 1873 1874 void LoadOp::print(mlir::OpAsmPrinter &p) { 1875 p << ' '; 1876 p.printOperand(getMemref()); 1877 p.printOptionalAttrDict(getOperation()->getAttrs(), {}); 1878 p << " : " << getMemref().getType(); 1879 } 1880 1881 //===----------------------------------------------------------------------===// 1882 // DoLoopOp 1883 //===----------------------------------------------------------------------===// 1884 1885 void fir::DoLoopOp::build(mlir::OpBuilder &builder, 1886 mlir::OperationState &result, mlir::Value lb, 1887 mlir::Value ub, mlir::Value step, bool unordered, 1888 bool finalCountValue, mlir::ValueRange iterArgs, 1889 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1890 result.addOperands({lb, ub, step}); 1891 result.addOperands(iterArgs); 1892 if (finalCountValue) { 1893 result.addTypes(builder.getIndexType()); 1894 result.addAttribute(getFinalValueAttrName(result.name), 1895 builder.getUnitAttr()); 1896 } 1897 for (auto v : iterArgs) 1898 result.addTypes(v.getType()); 1899 mlir::Region *bodyRegion = result.addRegion(); 1900 bodyRegion->push_back(new Block{}); 1901 if (iterArgs.empty() && !finalCountValue) 1902 DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); 1903 bodyRegion->front().addArgument(builder.getIndexType(), result.location); 1904 bodyRegion->front().addArguments( 1905 iterArgs.getTypes(), 1906 SmallVector<Location>(iterArgs.size(), result.location)); 1907 if (unordered) 1908 result.addAttribute(getUnorderedAttrName(result.name), 1909 builder.getUnitAttr()); 1910 result.addAttributes(attributes); 1911 } 1912 1913 mlir::ParseResult DoLoopOp::parse(mlir::OpAsmParser &parser, 1914 mlir::OperationState &result) { 1915 auto &builder = parser.getBuilder(); 1916 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1917 // Parse the induction variable followed by '='. 1918 if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) 1919 return mlir::failure(); 1920 1921 // Parse loop bounds. 1922 auto indexType = builder.getIndexType(); 1923 if (parser.parseOperand(lb) || 1924 parser.resolveOperand(lb, indexType, result.operands) || 1925 parser.parseKeyword("to") || parser.parseOperand(ub) || 1926 parser.resolveOperand(ub, indexType, result.operands) || 1927 parser.parseKeyword("step") || parser.parseOperand(step) || 1928 parser.resolveOperand(step, indexType, result.operands)) 1929 return failure(); 1930 1931 if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) 1932 result.addAttribute("unordered", builder.getUnitAttr()); 1933 1934 // Parse the optional initial iteration arguments. 1935 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs, operands; 1936 llvm::SmallVector<mlir::Type> argTypes; 1937 auto prependCount = false; 1938 regionArgs.push_back(inductionVariable); 1939 1940 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1941 // Parse assignment list and results type list. 1942 if (parser.parseAssignmentList(regionArgs, operands) || 1943 parser.parseArrowTypeList(result.types)) 1944 return failure(); 1945 if (result.types.size() == operands.size() + 1) 1946 prependCount = true; 1947 // Resolve input operands. 1948 llvm::ArrayRef<mlir::Type> resTypes = result.types; 1949 for (auto operand_type : 1950 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) 1951 if (parser.resolveOperand(std::get<0>(operand_type), 1952 std::get<1>(operand_type), result.operands)) 1953 return failure(); 1954 } else if (succeeded(parser.parseOptionalArrow())) { 1955 if (parser.parseKeyword("index")) 1956 return failure(); 1957 result.types.push_back(indexType); 1958 prependCount = true; 1959 } 1960 1961 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1962 return mlir::failure(); 1963 1964 // Induction variable. 1965 if (prependCount) 1966 result.addAttribute(DoLoopOp::getFinalValueAttrName(result.name), 1967 builder.getUnitAttr()); 1968 else 1969 argTypes.push_back(indexType); 1970 // Loop carried variables 1971 argTypes.append(result.types.begin(), result.types.end()); 1972 // Parse the body region. 1973 auto *body = result.addRegion(); 1974 if (regionArgs.size() != argTypes.size()) 1975 return parser.emitError( 1976 parser.getNameLoc(), 1977 "mismatch in number of loop-carried values and defined values"); 1978 1979 if (parser.parseRegion(*body, regionArgs, argTypes)) 1980 return failure(); 1981 1982 DoLoopOp::ensureTerminator(*body, builder, result.location); 1983 1984 return mlir::success(); 1985 } 1986 1987 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { 1988 auto ivArg = val.dyn_cast<mlir::BlockArgument>(); 1989 if (!ivArg) 1990 return {}; 1991 assert(ivArg.getOwner() && "unlinked block argument"); 1992 auto *containingInst = ivArg.getOwner()->getParentOp(); 1993 return dyn_cast_or_null<fir::DoLoopOp>(containingInst); 1994 } 1995 1996 // Lifted from loop.loop 1997 mlir::LogicalResult DoLoopOp::verify() { 1998 // Check that the body defines as single block argument for the induction 1999 // variable. 2000 auto *body = getBody(); 2001 if (!body->getArgument(0).getType().isIndex()) 2002 return emitOpError( 2003 "expected body first argument to be an index argument for " 2004 "the induction variable"); 2005 2006 auto opNumResults = getNumResults(); 2007 if (opNumResults == 0) 2008 return success(); 2009 2010 if (getFinalValue()) { 2011 if (getUnordered()) 2012 return emitOpError("unordered loop has no final value"); 2013 opNumResults--; 2014 } 2015 if (getNumIterOperands() != opNumResults) 2016 return emitOpError( 2017 "mismatch in number of loop-carried values and defined values"); 2018 if (getNumRegionIterArgs() != opNumResults) 2019 return emitOpError( 2020 "mismatch in number of basic block args and defined values"); 2021 auto iterOperands = getIterOperands(); 2022 auto iterArgs = getRegionIterArgs(); 2023 auto opResults = getFinalValue() ? getResults().drop_front() : getResults(); 2024 unsigned i = 0; 2025 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 2026 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 2027 return emitOpError() << "types mismatch between " << i 2028 << "th iter operand and defined value"; 2029 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 2030 return emitOpError() << "types mismatch between " << i 2031 << "th iter region arg and defined value"; 2032 2033 i++; 2034 } 2035 return success(); 2036 } 2037 2038 void DoLoopOp::print(mlir::OpAsmPrinter &p) { 2039 bool printBlockTerminators = false; 2040 p << ' ' << getInductionVar() << " = " << getLowerBound() << " to " 2041 << getUpperBound() << " step " << getStep(); 2042 if (getUnordered()) 2043 p << " unordered"; 2044 if (hasIterOperands()) { 2045 p << " iter_args("; 2046 auto regionArgs = getRegionIterArgs(); 2047 auto operands = getIterOperands(); 2048 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { 2049 p << std::get<0>(it) << " = " << std::get<1>(it); 2050 }); 2051 p << ") -> (" << getResultTypes() << ')'; 2052 printBlockTerminators = true; 2053 } else if (getFinalValue()) { 2054 p << " -> " << getResultTypes(); 2055 printBlockTerminators = true; 2056 } 2057 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), 2058 {"unordered", "finalValue"}); 2059 p << ' '; 2060 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, 2061 printBlockTerminators); 2062 } 2063 2064 mlir::Region &fir::DoLoopOp::getLoopBody() { return getRegion(); } 2065 2066 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { 2067 return !getRegion().isAncestor(value.getParentRegion()); 2068 } 2069 2070 mlir::LogicalResult 2071 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 2072 for (auto op : ops) 2073 op->moveBefore(*this); 2074 return success(); 2075 } 2076 2077 /// Translate a value passed as an iter_arg to the corresponding block 2078 /// argument in the body of the loop. 2079 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { 2080 for (auto i : llvm::enumerate(getInitArgs())) 2081 if (iterArg == i.value()) 2082 return getRegion().front().getArgument(i.index() + 1); 2083 return {}; 2084 } 2085 2086 /// Translate the result vector (by index number) to the corresponding value 2087 /// to the `fir.result` Op. 2088 void fir::DoLoopOp::resultToSourceOps( 2089 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 2090 auto oper = getFinalValue() ? resultNum + 1 : resultNum; 2091 auto *term = getRegion().front().getTerminator(); 2092 if (oper < term->getNumOperands()) 2093 results.push_back(term->getOperand(oper)); 2094 } 2095 2096 /// Translate the block argument (by index number) to the corresponding value 2097 /// passed as an iter_arg to the parent DoLoopOp. 2098 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { 2099 if (blockArgNum > 0 && blockArgNum <= getInitArgs().size()) 2100 return getInitArgs()[blockArgNum - 1]; 2101 return {}; 2102 } 2103 2104 //===----------------------------------------------------------------------===// 2105 // DTEntryOp 2106 //===----------------------------------------------------------------------===// 2107 2108 mlir::ParseResult DTEntryOp::parse(mlir::OpAsmParser &parser, 2109 mlir::OperationState &result) { 2110 llvm::StringRef methodName; 2111 // allow `methodName` or `"methodName"` 2112 if (failed(parser.parseOptionalKeyword(&methodName))) { 2113 mlir::StringAttr methodAttr; 2114 if (parser.parseAttribute(methodAttr, 2115 fir::DTEntryOp::getMethodAttrNameStr(), 2116 result.attributes)) 2117 return mlir::failure(); 2118 } else { 2119 result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(), 2120 parser.getBuilder().getStringAttr(methodName)); 2121 } 2122 mlir::SymbolRefAttr calleeAttr; 2123 if (parser.parseComma() || 2124 parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(), 2125 result.attributes)) 2126 return mlir::failure(); 2127 return mlir::success(); 2128 } 2129 2130 void DTEntryOp::print(mlir::OpAsmPrinter &p) { 2131 p << ' ' << getMethodAttr() << ", " << getProcAttr(); 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // ReboxOp 2136 //===----------------------------------------------------------------------===// 2137 2138 /// Get the scalar type related to a fir.box type. 2139 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>. 2140 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { 2141 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2142 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2143 return seqTy.getEleTy(); 2144 return eleTy; 2145 } 2146 2147 /// Get the rank from a !fir.box type 2148 static unsigned getBoxRank(mlir::Type boxTy) { 2149 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2150 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2151 return seqTy.getDimension(); 2152 return 0; 2153 } 2154 2155 /// Test if \p t1 and \p t2 are compatible character types (if they can 2156 /// represent the same type at runtime). 2157 static bool areCompatibleCharacterTypes(mlir::Type t1, mlir::Type t2) { 2158 auto c1 = t1.dyn_cast<fir::CharacterType>(); 2159 auto c2 = t2.dyn_cast<fir::CharacterType>(); 2160 if (!c1 || !c2) 2161 return false; 2162 if (c1.hasDynamicLen() || c2.hasDynamicLen()) 2163 return true; 2164 return c1.getLen() == c2.getLen(); 2165 } 2166 2167 mlir::LogicalResult ReboxOp::verify() { 2168 auto inputBoxTy = getBox().getType(); 2169 if (fir::isa_unknown_size_box(inputBoxTy)) 2170 return emitOpError("box operand must not have unknown rank or type"); 2171 auto outBoxTy = getType(); 2172 if (fir::isa_unknown_size_box(outBoxTy)) 2173 return emitOpError("result type must not have unknown rank or type"); 2174 auto inputRank = getBoxRank(inputBoxTy); 2175 auto inputEleTy = getBoxScalarEleTy(inputBoxTy); 2176 auto outRank = getBoxRank(outBoxTy); 2177 auto outEleTy = getBoxScalarEleTy(outBoxTy); 2178 2179 if (auto sliceVal = getSlice()) { 2180 // Slicing case 2181 if (sliceVal.getType().cast<fir::SliceType>().getRank() != inputRank) 2182 return emitOpError("slice operand rank must match box operand rank"); 2183 if (auto shapeVal = getShape()) { 2184 if (auto shiftTy = shapeVal.getType().dyn_cast<fir::ShiftType>()) { 2185 if (shiftTy.getRank() != inputRank) 2186 return emitOpError("shape operand and input box ranks must match " 2187 "when there is a slice"); 2188 } else { 2189 return emitOpError("shape operand must absent or be a fir.shift " 2190 "when there is a slice"); 2191 } 2192 } 2193 if (auto sliceOp = sliceVal.getDefiningOp()) { 2194 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank(); 2195 if (slicedRank != outRank) 2196 return emitOpError("result type rank and rank after applying slice " 2197 "operand must match"); 2198 } 2199 } else { 2200 // Reshaping case 2201 unsigned shapeRank = inputRank; 2202 if (auto shapeVal = getShape()) { 2203 auto ty = shapeVal.getType(); 2204 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) { 2205 shapeRank = shapeTy.getRank(); 2206 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) { 2207 shapeRank = shapeShiftTy.getRank(); 2208 } else { 2209 auto shiftTy = ty.cast<fir::ShiftType>(); 2210 shapeRank = shiftTy.getRank(); 2211 if (shapeRank != inputRank) 2212 return emitOpError("shape operand and input box ranks must match " 2213 "when the shape is a fir.shift"); 2214 } 2215 } 2216 if (shapeRank != outRank) 2217 return emitOpError("result type and shape operand ranks must match"); 2218 } 2219 2220 if (inputEleTy != outEleTy) { 2221 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived 2222 // types. 2223 // Character input and output types with constant length may be different if 2224 // there is a substring in the slice, otherwise, they must match. If any of 2225 // the types is a character with dynamic length, the other type can be any 2226 // character type. 2227 const bool typeCanMismatch = 2228 inputEleTy.isa<fir::RecordType>() || 2229 (getSlice() && inputEleTy.isa<fir::CharacterType>()) || 2230 areCompatibleCharacterTypes(inputEleTy, outEleTy); 2231 if (!typeCanMismatch) 2232 return emitOpError( 2233 "op input and output element types must match for intrinsic types"); 2234 } 2235 return mlir::success(); 2236 } 2237 2238 //===----------------------------------------------------------------------===// 2239 // ResultOp 2240 //===----------------------------------------------------------------------===// 2241 2242 mlir::LogicalResult ResultOp::verify() { 2243 auto *parentOp = (*this)->getParentOp(); 2244 auto results = parentOp->getResults(); 2245 auto operands = (*this)->getOperands(); 2246 2247 if (parentOp->getNumResults() != getNumOperands()) 2248 return emitOpError() << "parent of result must have same arity"; 2249 for (auto e : llvm::zip(results, operands)) 2250 if (std::get<0>(e).getType() != std::get<1>(e).getType()) 2251 return emitOpError() << "types mismatch between result op and its parent"; 2252 return success(); 2253 } 2254 2255 //===----------------------------------------------------------------------===// 2256 // SaveResultOp 2257 //===----------------------------------------------------------------------===// 2258 2259 mlir::LogicalResult SaveResultOp::verify() { 2260 auto resultType = getValue().getType(); 2261 if (resultType != fir::dyn_cast_ptrEleTy(getMemref().getType())) 2262 return emitOpError("value type must match memory reference type"); 2263 if (fir::isa_unknown_size_box(resultType)) 2264 return emitOpError("cannot save !fir.box of unknown rank or type"); 2265 2266 if (resultType.isa<fir::BoxType>()) { 2267 if (getShape() || !getTypeparams().empty()) 2268 return emitOpError( 2269 "must not have shape or length operands if the value is a fir.box"); 2270 return mlir::success(); 2271 } 2272 2273 // fir.record or fir.array case. 2274 unsigned shapeTyRank = 0; 2275 if (auto shapeVal = getShape()) { 2276 auto shapeTy = shapeVal.getType(); 2277 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) 2278 shapeTyRank = s.getRank(); 2279 else 2280 shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank(); 2281 } 2282 2283 auto eleTy = resultType; 2284 if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) { 2285 if (seqTy.getDimension() != shapeTyRank) 2286 emitOpError("shape operand must be provided and have the value rank " 2287 "when the value is a fir.array"); 2288 eleTy = seqTy.getEleTy(); 2289 } else { 2290 if (shapeTyRank != 0) 2291 emitOpError( 2292 "shape operand should only be provided if the value is a fir.array"); 2293 } 2294 2295 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) { 2296 if (recTy.getNumLenParams() != getTypeparams().size()) 2297 emitOpError("length parameters number must match with the value type " 2298 "length parameters"); 2299 } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 2300 if (getTypeparams().size() > 1) 2301 emitOpError("no more than one length parameter must be provided for " 2302 "character value"); 2303 } else { 2304 if (!getTypeparams().empty()) 2305 emitOpError("length parameters must not be provided for this value type"); 2306 } 2307 2308 return mlir::success(); 2309 } 2310 2311 //===----------------------------------------------------------------------===// 2312 // IntegralSwitchTerminator 2313 //===----------------------------------------------------------------------===// 2314 static constexpr llvm::StringRef getCompareOffsetAttr() { 2315 return "compare_operand_offsets"; 2316 } 2317 2318 static constexpr llvm::StringRef getTargetOffsetAttr() { 2319 return "target_operand_offsets"; 2320 } 2321 2322 template <typename OpT> 2323 static LogicalResult verifyIntegralSwitchTerminator(OpT op) { 2324 if (!(op.getSelector().getType().template isa<mlir::IntegerType>() || 2325 op.getSelector().getType().template isa<mlir::IndexType>() || 2326 op.getSelector().getType().template isa<fir::IntegerType>())) 2327 return op.emitOpError("must be an integer"); 2328 auto cases = 2329 op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue(); 2330 auto count = op.getNumDest(); 2331 if (count == 0) 2332 return op.emitOpError("must have at least one successor"); 2333 if (op.getNumConditions() != count) 2334 return op.emitOpError("number of cases and targets don't match"); 2335 if (op.targetOffsetSize() != count) 2336 return op.emitOpError("incorrect number of successor operand groups"); 2337 for (decltype(count) i = 0; i != count; ++i) { 2338 if (!(cases[i].template isa<mlir::IntegerAttr, mlir::UnitAttr>())) 2339 return op.emitOpError("invalid case alternative"); 2340 } 2341 return mlir::success(); 2342 } 2343 2344 static mlir::ParseResult parseIntegralSwitchTerminator( 2345 mlir::OpAsmParser &parser, mlir::OperationState &result, 2346 llvm::StringRef casesAttr, llvm::StringRef operandSegmentAttr) { 2347 mlir::OpAsmParser::OperandType selector; 2348 mlir::Type type; 2349 if (parseSelector(parser, result, selector, type)) 2350 return mlir::failure(); 2351 2352 llvm::SmallVector<mlir::Attribute> ivalues; 2353 llvm::SmallVector<mlir::Block *> dests; 2354 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2355 while (true) { 2356 mlir::Attribute ivalue; // Integer or Unit 2357 mlir::Block *dest; 2358 llvm::SmallVector<mlir::Value> destArg; 2359 mlir::NamedAttrList temp; 2360 if (parser.parseAttribute(ivalue, "i", temp) || parser.parseComma() || 2361 parser.parseSuccessorAndUseList(dest, destArg)) 2362 return mlir::failure(); 2363 ivalues.push_back(ivalue); 2364 dests.push_back(dest); 2365 destArgs.push_back(destArg); 2366 if (!parser.parseOptionalRSquare()) 2367 break; 2368 if (parser.parseComma()) 2369 return mlir::failure(); 2370 } 2371 auto &bld = parser.getBuilder(); 2372 result.addAttribute(casesAttr, bld.getArrayAttr(ivalues)); 2373 llvm::SmallVector<int32_t> argOffs; 2374 int32_t sumArgs = 0; 2375 const auto count = dests.size(); 2376 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2377 result.addSuccessors(dests[i]); 2378 result.addOperands(destArgs[i]); 2379 auto argSize = destArgs[i].size(); 2380 argOffs.push_back(argSize); 2381 sumArgs += argSize; 2382 } 2383 result.addAttribute(operandSegmentAttr, 2384 bld.getI32VectorAttr({1, 0, sumArgs})); 2385 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2386 return mlir::success(); 2387 } 2388 2389 template <typename OpT> 2390 static void printIntegralSwitchTerminator(OpT op, mlir::OpAsmPrinter &p) { 2391 p << ' '; 2392 p.printOperand(op.getSelector()); 2393 p << " : " << op.getSelector().getType() << " ["; 2394 auto cases = 2395 op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue(); 2396 auto count = op.getNumConditions(); 2397 for (decltype(count) i = 0; i != count; ++i) { 2398 if (i) 2399 p << ", "; 2400 auto &attr = cases[i]; 2401 if (auto intAttr = attr.template dyn_cast_or_null<mlir::IntegerAttr>()) 2402 p << intAttr.getValue(); 2403 else 2404 p.printAttribute(attr); 2405 p << ", "; 2406 op.printSuccessorAtIndex(p, i); 2407 } 2408 p << ']'; 2409 p.printOptionalAttrDict( 2410 op->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(), 2411 getTargetOffsetAttr(), op.getOperandSegmentSizeAttr()}); 2412 } 2413 2414 //===----------------------------------------------------------------------===// 2415 // SelectOp 2416 //===----------------------------------------------------------------------===// 2417 2418 mlir::LogicalResult fir::SelectOp::verify() { 2419 return verifyIntegralSwitchTerminator(*this); 2420 } 2421 2422 mlir::ParseResult fir::SelectOp::parse(mlir::OpAsmParser &parser, 2423 mlir::OperationState &result) { 2424 return parseIntegralSwitchTerminator(parser, result, getCasesAttr(), 2425 getOperandSegmentSizeAttr()); 2426 } 2427 2428 void fir::SelectOp::print(mlir::OpAsmPrinter &p) { 2429 printIntegralSwitchTerminator(*this, p); 2430 } 2431 2432 template <typename A, typename... AdditionalArgs> 2433 static A getSubOperands(unsigned pos, A allArgs, 2434 mlir::DenseIntElementsAttr ranges, 2435 AdditionalArgs &&...additionalArgs) { 2436 unsigned start = 0; 2437 for (unsigned i = 0; i < pos; ++i) 2438 start += (*(ranges.begin() + i)).getZExtValue(); 2439 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), 2440 std::forward<AdditionalArgs>(additionalArgs)...); 2441 } 2442 2443 static mlir::MutableOperandRange 2444 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, 2445 StringRef offsetAttr) { 2446 Operation *owner = operands.getOwner(); 2447 NamedAttribute targetOffsetAttr = 2448 *owner->getAttrDictionary().getNamed(offsetAttr); 2449 return getSubOperands( 2450 pos, operands, targetOffsetAttr.getValue().cast<DenseIntElementsAttr>(), 2451 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); 2452 } 2453 2454 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { 2455 return attr.getNumElements(); 2456 } 2457 2458 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) { 2459 return {}; 2460 } 2461 2462 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2463 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2464 return {}; 2465 } 2466 2467 llvm::Optional<mlir::MutableOperandRange> 2468 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { 2469 return ::getMutableSuccessorOperands(oper, getTargetArgsMutable(), 2470 getTargetOffsetAttr()); 2471 } 2472 2473 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2474 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2475 unsigned oper) { 2476 auto a = 2477 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2478 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2479 getOperandSegmentSizeAttr()); 2480 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2481 } 2482 2483 llvm::Optional<mlir::ValueRange> 2484 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) { 2485 auto a = 2486 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2487 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2488 getOperandSegmentSizeAttr()); 2489 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2490 } 2491 2492 unsigned fir::SelectOp::targetOffsetSize() { 2493 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2494 getTargetOffsetAttr())); 2495 } 2496 2497 //===----------------------------------------------------------------------===// 2498 // SelectCaseOp 2499 //===----------------------------------------------------------------------===// 2500 2501 llvm::Optional<mlir::OperandRange> 2502 fir::SelectCaseOp::getCompareOperands(unsigned cond) { 2503 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2504 getCompareOffsetAttr()); 2505 return {getSubOperands(cond, getCompareArgs(), a)}; 2506 } 2507 2508 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2509 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands, 2510 unsigned cond) { 2511 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2512 getCompareOffsetAttr()); 2513 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2514 getOperandSegmentSizeAttr()); 2515 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2516 } 2517 2518 llvm::Optional<mlir::ValueRange> 2519 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands, 2520 unsigned cond) { 2521 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2522 getCompareOffsetAttr()); 2523 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2524 getOperandSegmentSizeAttr()); 2525 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2526 } 2527 2528 llvm::Optional<mlir::MutableOperandRange> 2529 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { 2530 return ::getMutableSuccessorOperands(oper, getTargetArgsMutable(), 2531 getTargetOffsetAttr()); 2532 } 2533 2534 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2535 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2536 unsigned oper) { 2537 auto a = 2538 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2539 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2540 getOperandSegmentSizeAttr()); 2541 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2542 } 2543 2544 llvm::Optional<mlir::ValueRange> 2545 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands, 2546 unsigned oper) { 2547 auto a = 2548 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2549 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2550 getOperandSegmentSizeAttr()); 2551 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2552 } 2553 2554 // parser for fir.select_case Op 2555 mlir::ParseResult SelectCaseOp::parse(mlir::OpAsmParser &parser, 2556 mlir::OperationState &result) { 2557 mlir::OpAsmParser::OperandType selector; 2558 mlir::Type type; 2559 if (parseSelector(parser, result, selector, type)) 2560 return mlir::failure(); 2561 2562 llvm::SmallVector<mlir::Attribute> attrs; 2563 llvm::SmallVector<mlir::OpAsmParser::OperandType> opers; 2564 llvm::SmallVector<mlir::Block *> dests; 2565 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2566 llvm::SmallVector<int32_t> argOffs; 2567 int32_t offSize = 0; 2568 while (true) { 2569 mlir::Attribute attr; 2570 mlir::Block *dest; 2571 llvm::SmallVector<mlir::Value> destArg; 2572 mlir::NamedAttrList temp; 2573 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || 2574 parser.parseComma()) 2575 return mlir::failure(); 2576 attrs.push_back(attr); 2577 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) { 2578 argOffs.push_back(0); 2579 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) { 2580 mlir::OpAsmParser::OperandType oper1; 2581 mlir::OpAsmParser::OperandType oper2; 2582 if (parser.parseOperand(oper1) || parser.parseComma() || 2583 parser.parseOperand(oper2) || parser.parseComma()) 2584 return mlir::failure(); 2585 opers.push_back(oper1); 2586 opers.push_back(oper2); 2587 argOffs.push_back(2); 2588 offSize += 2; 2589 } else { 2590 mlir::OpAsmParser::OperandType oper; 2591 if (parser.parseOperand(oper) || parser.parseComma()) 2592 return mlir::failure(); 2593 opers.push_back(oper); 2594 argOffs.push_back(1); 2595 ++offSize; 2596 } 2597 if (parser.parseSuccessorAndUseList(dest, destArg)) 2598 return mlir::failure(); 2599 dests.push_back(dest); 2600 destArgs.push_back(destArg); 2601 if (mlir::succeeded(parser.parseOptionalRSquare())) 2602 break; 2603 if (parser.parseComma()) 2604 return mlir::failure(); 2605 } 2606 result.addAttribute(fir::SelectCaseOp::getCasesAttr(), 2607 parser.getBuilder().getArrayAttr(attrs)); 2608 if (parser.resolveOperands(opers, type, result.operands)) 2609 return mlir::failure(); 2610 llvm::SmallVector<int32_t> targOffs; 2611 int32_t toffSize = 0; 2612 const auto count = dests.size(); 2613 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2614 result.addSuccessors(dests[i]); 2615 result.addOperands(destArgs[i]); 2616 auto argSize = destArgs[i].size(); 2617 targOffs.push_back(argSize); 2618 toffSize += argSize; 2619 } 2620 auto &bld = parser.getBuilder(); 2621 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), 2622 bld.getI32VectorAttr({1, offSize, toffSize})); 2623 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2624 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); 2625 return mlir::success(); 2626 } 2627 2628 void SelectCaseOp::print(mlir::OpAsmPrinter &p) { 2629 p << ' '; 2630 p.printOperand(getSelector()); 2631 p << " : " << getSelector().getType() << " ["; 2632 auto cases = 2633 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue(); 2634 auto count = getNumConditions(); 2635 for (decltype(count) i = 0; i != count; ++i) { 2636 if (i) 2637 p << ", "; 2638 p << cases[i] << ", "; 2639 if (!cases[i].isa<mlir::UnitAttr>()) { 2640 auto caseArgs = *getCompareOperands(i); 2641 p.printOperand(*caseArgs.begin()); 2642 p << ", "; 2643 if (cases[i].isa<fir::ClosedIntervalAttr>()) { 2644 p.printOperand(*(++caseArgs.begin())); 2645 p << ", "; 2646 } 2647 } 2648 printSuccessorAtIndex(p, i); 2649 } 2650 p << ']'; 2651 p.printOptionalAttrDict(getOperation()->getAttrs(), 2652 {getCasesAttr(), getCompareOffsetAttr(), 2653 getTargetOffsetAttr(), getOperandSegmentSizeAttr()}); 2654 } 2655 2656 unsigned fir::SelectCaseOp::compareOffsetSize() { 2657 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2658 getCompareOffsetAttr())); 2659 } 2660 2661 unsigned fir::SelectCaseOp::targetOffsetSize() { 2662 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2663 getTargetOffsetAttr())); 2664 } 2665 2666 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2667 mlir::OperationState &result, 2668 mlir::Value selector, 2669 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2670 llvm::ArrayRef<mlir::ValueRange> cmpOperands, 2671 llvm::ArrayRef<mlir::Block *> destinations, 2672 llvm::ArrayRef<mlir::ValueRange> destOperands, 2673 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2674 result.addOperands(selector); 2675 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); 2676 llvm::SmallVector<int32_t> operOffs; 2677 int32_t operSize = 0; 2678 for (auto attr : compareAttrs) { 2679 if (attr.isa<fir::ClosedIntervalAttr>()) { 2680 operOffs.push_back(2); 2681 operSize += 2; 2682 } else if (attr.isa<mlir::UnitAttr>()) { 2683 operOffs.push_back(0); 2684 } else { 2685 operOffs.push_back(1); 2686 ++operSize; 2687 } 2688 } 2689 for (auto ops : cmpOperands) 2690 result.addOperands(ops); 2691 result.addAttribute(getCompareOffsetAttr(), 2692 builder.getI32VectorAttr(operOffs)); 2693 const auto count = destinations.size(); 2694 for (auto d : destinations) 2695 result.addSuccessors(d); 2696 const auto opCount = destOperands.size(); 2697 llvm::SmallVector<int32_t> argOffs; 2698 int32_t sumArgs = 0; 2699 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2700 if (i < opCount) { 2701 result.addOperands(destOperands[i]); 2702 const auto argSz = destOperands[i].size(); 2703 argOffs.push_back(argSz); 2704 sumArgs += argSz; 2705 } else { 2706 argOffs.push_back(0); 2707 } 2708 } 2709 result.addAttribute(getOperandSegmentSizeAttr(), 2710 builder.getI32VectorAttr({1, operSize, sumArgs})); 2711 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2712 result.addAttributes(attributes); 2713 } 2714 2715 /// This builder has a slightly simplified interface in that the list of 2716 /// operands need not be partitioned by the builder. Instead the operands are 2717 /// partitioned here, before being passed to the default builder. This 2718 /// partitioning is unchecked, so can go awry on bad input. 2719 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2720 mlir::OperationState &result, 2721 mlir::Value selector, 2722 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2723 llvm::ArrayRef<mlir::Value> cmpOpList, 2724 llvm::ArrayRef<mlir::Block *> destinations, 2725 llvm::ArrayRef<mlir::ValueRange> destOperands, 2726 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2727 llvm::SmallVector<mlir::ValueRange> cmpOpers; 2728 auto iter = cmpOpList.begin(); 2729 for (auto &attr : compareAttrs) { 2730 if (attr.isa<fir::ClosedIntervalAttr>()) { 2731 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); 2732 iter += 2; 2733 } else if (attr.isa<UnitAttr>()) { 2734 cmpOpers.push_back(mlir::ValueRange{}); 2735 } else { 2736 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); 2737 ++iter; 2738 } 2739 } 2740 build(builder, result, selector, compareAttrs, cmpOpers, destinations, 2741 destOperands, attributes); 2742 } 2743 2744 mlir::LogicalResult SelectCaseOp::verify() { 2745 if (!(getSelector().getType().isa<mlir::IntegerType>() || 2746 getSelector().getType().isa<mlir::IndexType>() || 2747 getSelector().getType().isa<fir::IntegerType>() || 2748 getSelector().getType().isa<fir::LogicalType>() || 2749 getSelector().getType().isa<fir::CharacterType>())) 2750 return emitOpError("must be an integer, character, or logical"); 2751 auto cases = 2752 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue(); 2753 auto count = getNumDest(); 2754 if (count == 0) 2755 return emitOpError("must have at least one successor"); 2756 if (getNumConditions() != count) 2757 return emitOpError("number of conditions and successors don't match"); 2758 if (compareOffsetSize() != count) 2759 return emitOpError("incorrect number of compare operand groups"); 2760 if (targetOffsetSize() != count) 2761 return emitOpError("incorrect number of successor operand groups"); 2762 for (decltype(count) i = 0; i != count; ++i) { 2763 auto &attr = cases[i]; 2764 if (!(attr.isa<fir::PointIntervalAttr>() || 2765 attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() || 2766 attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>())) 2767 return emitOpError("incorrect select case attribute type"); 2768 } 2769 return mlir::success(); 2770 } 2771 2772 //===----------------------------------------------------------------------===// 2773 // SelectRankOp 2774 //===----------------------------------------------------------------------===// 2775 2776 LogicalResult fir::SelectRankOp::verify() { 2777 return verifyIntegralSwitchTerminator(*this); 2778 } 2779 2780 mlir::ParseResult fir::SelectRankOp::parse(mlir::OpAsmParser &parser, 2781 mlir::OperationState &result) { 2782 return parseIntegralSwitchTerminator(parser, result, getCasesAttr(), 2783 getOperandSegmentSizeAttr()); 2784 } 2785 2786 void fir::SelectRankOp::print(mlir::OpAsmPrinter &p) { 2787 printIntegralSwitchTerminator(*this, p); 2788 } 2789 2790 llvm::Optional<mlir::OperandRange> 2791 fir::SelectRankOp::getCompareOperands(unsigned) { 2792 return {}; 2793 } 2794 2795 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2796 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2797 return {}; 2798 } 2799 2800 llvm::Optional<mlir::MutableOperandRange> 2801 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { 2802 return ::getMutableSuccessorOperands(oper, getTargetArgsMutable(), 2803 getTargetOffsetAttr()); 2804 } 2805 2806 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2807 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2808 unsigned oper) { 2809 auto a = 2810 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2811 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2812 getOperandSegmentSizeAttr()); 2813 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2814 } 2815 2816 llvm::Optional<mlir::ValueRange> 2817 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands, 2818 unsigned oper) { 2819 auto a = 2820 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2821 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2822 getOperandSegmentSizeAttr()); 2823 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2824 } 2825 2826 unsigned fir::SelectRankOp::targetOffsetSize() { 2827 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2828 getTargetOffsetAttr())); 2829 } 2830 2831 //===----------------------------------------------------------------------===// 2832 // SelectTypeOp 2833 //===----------------------------------------------------------------------===// 2834 2835 llvm::Optional<mlir::OperandRange> 2836 fir::SelectTypeOp::getCompareOperands(unsigned) { 2837 return {}; 2838 } 2839 2840 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2841 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2842 return {}; 2843 } 2844 2845 llvm::Optional<mlir::MutableOperandRange> 2846 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { 2847 return ::getMutableSuccessorOperands(oper, getTargetArgsMutable(), 2848 getTargetOffsetAttr()); 2849 } 2850 2851 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2852 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2853 unsigned oper) { 2854 auto a = 2855 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2856 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2857 getOperandSegmentSizeAttr()); 2858 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2859 } 2860 2861 ParseResult SelectTypeOp::parse(OpAsmParser &parser, OperationState &result) { 2862 mlir::OpAsmParser::OperandType selector; 2863 mlir::Type type; 2864 if (parseSelector(parser, result, selector, type)) 2865 return mlir::failure(); 2866 2867 llvm::SmallVector<mlir::Attribute> attrs; 2868 llvm::SmallVector<mlir::Block *> dests; 2869 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2870 while (true) { 2871 mlir::Attribute attr; 2872 mlir::Block *dest; 2873 llvm::SmallVector<mlir::Value> destArg; 2874 mlir::NamedAttrList temp; 2875 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || 2876 parser.parseSuccessorAndUseList(dest, destArg)) 2877 return mlir::failure(); 2878 attrs.push_back(attr); 2879 dests.push_back(dest); 2880 destArgs.push_back(destArg); 2881 if (mlir::succeeded(parser.parseOptionalRSquare())) 2882 break; 2883 if (parser.parseComma()) 2884 return mlir::failure(); 2885 } 2886 auto &bld = parser.getBuilder(); 2887 result.addAttribute(fir::SelectTypeOp::getCasesAttr(), 2888 bld.getArrayAttr(attrs)); 2889 llvm::SmallVector<int32_t> argOffs; 2890 int32_t offSize = 0; 2891 const auto count = dests.size(); 2892 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2893 result.addSuccessors(dests[i]); 2894 result.addOperands(destArgs[i]); 2895 auto argSize = destArgs[i].size(); 2896 argOffs.push_back(argSize); 2897 offSize += argSize; 2898 } 2899 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), 2900 bld.getI32VectorAttr({1, 0, offSize})); 2901 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2902 return mlir::success(); 2903 } 2904 2905 unsigned fir::SelectTypeOp::targetOffsetSize() { 2906 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2907 getTargetOffsetAttr())); 2908 } 2909 2910 void SelectTypeOp::print(mlir::OpAsmPrinter &p) { 2911 p << ' '; 2912 p.printOperand(getSelector()); 2913 p << " : " << getSelector().getType() << " ["; 2914 auto cases = 2915 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue(); 2916 auto count = getNumConditions(); 2917 for (decltype(count) i = 0; i != count; ++i) { 2918 if (i) 2919 p << ", "; 2920 p << cases[i] << ", "; 2921 printSuccessorAtIndex(p, i); 2922 } 2923 p << ']'; 2924 p.printOptionalAttrDict(getOperation()->getAttrs(), 2925 {getCasesAttr(), getCompareOffsetAttr(), 2926 getTargetOffsetAttr(), 2927 fir::SelectTypeOp::getOperandSegmentSizeAttr()}); 2928 } 2929 2930 mlir::LogicalResult SelectTypeOp::verify() { 2931 if (!(getSelector().getType().isa<fir::BoxType>())) 2932 return emitOpError("must be a boxed type"); 2933 auto cases = 2934 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue(); 2935 auto count = getNumDest(); 2936 if (count == 0) 2937 return emitOpError("must have at least one successor"); 2938 if (getNumConditions() != count) 2939 return emitOpError("number of conditions and successors don't match"); 2940 if (targetOffsetSize() != count) 2941 return emitOpError("incorrect number of successor operand groups"); 2942 for (decltype(count) i = 0; i != count; ++i) { 2943 auto &attr = cases[i]; 2944 if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() || 2945 attr.isa<mlir::UnitAttr>())) 2946 return emitOpError("invalid type-case alternative"); 2947 } 2948 return mlir::success(); 2949 } 2950 2951 void fir::SelectTypeOp::build(mlir::OpBuilder &builder, 2952 mlir::OperationState &result, 2953 mlir::Value selector, 2954 llvm::ArrayRef<mlir::Attribute> typeOperands, 2955 llvm::ArrayRef<mlir::Block *> destinations, 2956 llvm::ArrayRef<mlir::ValueRange> destOperands, 2957 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2958 result.addOperands(selector); 2959 result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands)); 2960 const auto count = destinations.size(); 2961 for (mlir::Block *dest : destinations) 2962 result.addSuccessors(dest); 2963 const auto opCount = destOperands.size(); 2964 llvm::SmallVector<int32_t> argOffs; 2965 int32_t sumArgs = 0; 2966 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2967 if (i < opCount) { 2968 result.addOperands(destOperands[i]); 2969 const auto argSz = destOperands[i].size(); 2970 argOffs.push_back(argSz); 2971 sumArgs += argSz; 2972 } else { 2973 argOffs.push_back(0); 2974 } 2975 } 2976 result.addAttribute(getOperandSegmentSizeAttr(), 2977 builder.getI32VectorAttr({1, 0, sumArgs})); 2978 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2979 result.addAttributes(attributes); 2980 } 2981 2982 //===----------------------------------------------------------------------===// 2983 // ShapeOp 2984 //===----------------------------------------------------------------------===// 2985 2986 mlir::LogicalResult ShapeOp::verify() { 2987 auto size = getExtents().size(); 2988 auto shapeTy = getType().dyn_cast<fir::ShapeType>(); 2989 assert(shapeTy && "must be a shape type"); 2990 if (shapeTy.getRank() != size) 2991 return emitOpError("shape type rank mismatch"); 2992 return mlir::success(); 2993 } 2994 2995 //===----------------------------------------------------------------------===// 2996 // ShapeShiftOp 2997 //===----------------------------------------------------------------------===// 2998 2999 mlir::LogicalResult ShapeShiftOp::verify() { 3000 auto size = getPairs().size(); 3001 if (size < 2 || size > 16 * 2) 3002 return emitOpError("incorrect number of args"); 3003 if (size % 2 != 0) 3004 return emitOpError("requires a multiple of 2 args"); 3005 auto shapeTy = getType().dyn_cast<fir::ShapeShiftType>(); 3006 assert(shapeTy && "must be a shape shift type"); 3007 if (shapeTy.getRank() * 2 != size) 3008 return emitOpError("shape type rank mismatch"); 3009 return mlir::success(); 3010 } 3011 3012 //===----------------------------------------------------------------------===// 3013 // ShiftOp 3014 //===----------------------------------------------------------------------===// 3015 3016 mlir::LogicalResult ShiftOp::verify() { 3017 auto size = getOrigins().size(); 3018 auto shiftTy = getType().dyn_cast<fir::ShiftType>(); 3019 assert(shiftTy && "must be a shift type"); 3020 if (shiftTy.getRank() != size) 3021 return emitOpError("shift type rank mismatch"); 3022 return mlir::success(); 3023 } 3024 3025 //===----------------------------------------------------------------------===// 3026 // SliceOp 3027 //===----------------------------------------------------------------------===// 3028 3029 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 3030 mlir::ValueRange trips, mlir::ValueRange path, 3031 mlir::ValueRange substr) { 3032 const auto rank = trips.size() / 3; 3033 auto sliceTy = fir::SliceType::get(builder.getContext(), rank); 3034 build(builder, result, sliceTy, trips, path, substr); 3035 } 3036 3037 /// Return the output rank of a slice op. The output rank must be between 1 and 3038 /// the rank of the array being sliced (inclusive). 3039 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { 3040 unsigned rank = 0; 3041 if (!triples.empty()) { 3042 for (unsigned i = 1, end = triples.size(); i < end; i += 3) { 3043 auto *op = triples[i].getDefiningOp(); 3044 if (!mlir::isa_and_nonnull<fir::UndefOp>(op)) 3045 ++rank; 3046 } 3047 assert(rank > 0); 3048 } 3049 return rank; 3050 } 3051 3052 mlir::LogicalResult SliceOp::verify() { 3053 auto size = getTriples().size(); 3054 if (size < 3 || size > 16 * 3) 3055 return emitOpError("incorrect number of args for triple"); 3056 if (size % 3 != 0) 3057 return emitOpError("requires a multiple of 3 args"); 3058 auto sliceTy = getType().dyn_cast<fir::SliceType>(); 3059 assert(sliceTy && "must be a slice type"); 3060 if (sliceTy.getRank() * 3 != size) 3061 return emitOpError("slice type rank mismatch"); 3062 return mlir::success(); 3063 } 3064 3065 //===----------------------------------------------------------------------===// 3066 // StoreOp 3067 //===----------------------------------------------------------------------===// 3068 3069 mlir::Type fir::StoreOp::elementType(mlir::Type refType) { 3070 return fir::dyn_cast_ptrEleTy(refType); 3071 } 3072 3073 mlir::ParseResult StoreOp::parse(mlir::OpAsmParser &parser, 3074 mlir::OperationState &result) { 3075 mlir::Type type; 3076 mlir::OpAsmParser::OperandType oper; 3077 mlir::OpAsmParser::OperandType store; 3078 if (parser.parseOperand(oper) || parser.parseKeyword("to") || 3079 parser.parseOperand(store) || 3080 parser.parseOptionalAttrDict(result.attributes) || 3081 parser.parseColonType(type) || 3082 parser.resolveOperand(oper, fir::StoreOp::elementType(type), 3083 result.operands) || 3084 parser.resolveOperand(store, type, result.operands)) 3085 return mlir::failure(); 3086 return mlir::success(); 3087 } 3088 3089 void StoreOp::print(mlir::OpAsmPrinter &p) { 3090 p << ' '; 3091 p.printOperand(getValue()); 3092 p << " to "; 3093 p.printOperand(getMemref()); 3094 p.printOptionalAttrDict(getOperation()->getAttrs(), {}); 3095 p << " : " << getMemref().getType(); 3096 } 3097 3098 mlir::LogicalResult StoreOp::verify() { 3099 if (getValue().getType() != fir::dyn_cast_ptrEleTy(getMemref().getType())) 3100 return emitOpError("store value type must match memory reference type"); 3101 if (fir::isa_unknown_size_box(getValue().getType())) 3102 return emitOpError("cannot store !fir.box of unknown rank or type"); 3103 return mlir::success(); 3104 } 3105 3106 //===----------------------------------------------------------------------===// 3107 // StringLitOp 3108 //===----------------------------------------------------------------------===// 3109 3110 bool fir::StringLitOp::isWideValue() { 3111 auto eleTy = getType().cast<fir::SequenceType>().getEleTy(); 3112 return eleTy.cast<fir::CharacterType>().getFKind() != 1; 3113 } 3114 3115 static mlir::NamedAttribute 3116 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) { 3117 assert(v > 0); 3118 return builder.getNamedAttr( 3119 name, builder.getIntegerAttr(builder.getIntegerType(64), v)); 3120 } 3121 3122 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 3123 fir::CharacterType inType, llvm::StringRef val, 3124 llvm::Optional<int64_t> len) { 3125 auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val)); 3126 int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 3127 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 3128 result.addAttributes({valAttr, lenAttr}); 3129 result.addTypes(inType); 3130 } 3131 3132 template <typename C> 3133 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder, 3134 llvm::ArrayRef<C> xlist) { 3135 llvm::SmallVector<mlir::Attribute> attrs; 3136 auto ty = builder.getIntegerType(8 * sizeof(C)); 3137 for (auto ch : xlist) 3138 attrs.push_back(builder.getIntegerAttr(ty, ch)); 3139 return builder.getArrayAttr(attrs); 3140 } 3141 3142 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 3143 fir::CharacterType inType, 3144 llvm::ArrayRef<char> vlist, 3145 llvm::Optional<int64_t> len) { 3146 auto valAttr = 3147 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 3148 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 3149 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 3150 result.addAttributes({valAttr, lenAttr}); 3151 result.addTypes(inType); 3152 } 3153 3154 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 3155 fir::CharacterType inType, 3156 llvm::ArrayRef<char16_t> vlist, 3157 llvm::Optional<int64_t> len) { 3158 auto valAttr = 3159 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 3160 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 3161 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 3162 result.addAttributes({valAttr, lenAttr}); 3163 result.addTypes(inType); 3164 } 3165 3166 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 3167 fir::CharacterType inType, 3168 llvm::ArrayRef<char32_t> vlist, 3169 llvm::Optional<int64_t> len) { 3170 auto valAttr = 3171 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 3172 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 3173 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 3174 result.addAttributes({valAttr, lenAttr}); 3175 result.addTypes(inType); 3176 } 3177 3178 mlir::ParseResult StringLitOp::parse(mlir::OpAsmParser &parser, 3179 mlir::OperationState &result) { 3180 auto &builder = parser.getBuilder(); 3181 mlir::Attribute val; 3182 mlir::NamedAttrList attrs; 3183 llvm::SMLoc trailingTypeLoc; 3184 if (parser.parseAttribute(val, "fake", attrs)) 3185 return mlir::failure(); 3186 if (auto v = val.dyn_cast<mlir::StringAttr>()) 3187 result.attributes.push_back( 3188 builder.getNamedAttr(fir::StringLitOp::value(), v)); 3189 else if (auto v = val.dyn_cast<mlir::ArrayAttr>()) 3190 result.attributes.push_back( 3191 builder.getNamedAttr(fir::StringLitOp::xlist(), v)); 3192 else 3193 return parser.emitError(parser.getCurrentLocation(), 3194 "found an invalid constant"); 3195 mlir::IntegerAttr sz; 3196 mlir::Type type; 3197 if (parser.parseLParen() || 3198 parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) || 3199 parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) || 3200 parser.parseColonType(type)) 3201 return mlir::failure(); 3202 auto charTy = type.dyn_cast<fir::CharacterType>(); 3203 if (!charTy) 3204 return parser.emitError(trailingTypeLoc, "must have character type"); 3205 type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(), 3206 sz.getInt()); 3207 if (!type || parser.addTypesToList(type, result.types)) 3208 return mlir::failure(); 3209 return mlir::success(); 3210 } 3211 3212 void StringLitOp::print(mlir::OpAsmPrinter &p) { 3213 p << ' ' << getValue() << '('; 3214 p << getSize().cast<mlir::IntegerAttr>().getValue() << ") : "; 3215 p.printType(getType()); 3216 } 3217 3218 mlir::LogicalResult StringLitOp::verify() { 3219 if (getSize().cast<mlir::IntegerAttr>().getValue().isNegative()) 3220 return emitOpError("size must be non-negative"); 3221 if (auto xl = getOperation()->getAttr(fir::StringLitOp::xlist())) { 3222 auto xList = xl.cast<mlir::ArrayAttr>(); 3223 for (auto a : xList) 3224 if (!a.isa<mlir::IntegerAttr>()) 3225 return emitOpError("values in list must be integers"); 3226 } 3227 return mlir::success(); 3228 } 3229 3230 //===----------------------------------------------------------------------===// 3231 // UnboxProcOp 3232 //===----------------------------------------------------------------------===// 3233 3234 mlir::LogicalResult UnboxProcOp::verify() { 3235 if (auto eleTy = fir::dyn_cast_ptrEleTy(getRefTuple().getType())) 3236 if (eleTy.isa<mlir::TupleType>()) 3237 return mlir::success(); 3238 return emitOpError("second output argument has bad type"); 3239 } 3240 3241 //===----------------------------------------------------------------------===// 3242 // IfOp 3243 //===----------------------------------------------------------------------===// 3244 3245 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3246 mlir::Value cond, bool withElseRegion) { 3247 build(builder, result, llvm::None, cond, withElseRegion); 3248 } 3249 3250 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3251 mlir::TypeRange resultTypes, mlir::Value cond, 3252 bool withElseRegion) { 3253 result.addOperands(cond); 3254 result.addTypes(resultTypes); 3255 3256 mlir::Region *thenRegion = result.addRegion(); 3257 thenRegion->push_back(new mlir::Block()); 3258 if (resultTypes.empty()) 3259 IfOp::ensureTerminator(*thenRegion, builder, result.location); 3260 3261 mlir::Region *elseRegion = result.addRegion(); 3262 if (withElseRegion) { 3263 elseRegion->push_back(new mlir::Block()); 3264 if (resultTypes.empty()) 3265 IfOp::ensureTerminator(*elseRegion, builder, result.location); 3266 } 3267 } 3268 3269 mlir::ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) { 3270 result.regions.reserve(2); 3271 mlir::Region *thenRegion = result.addRegion(); 3272 mlir::Region *elseRegion = result.addRegion(); 3273 3274 auto &builder = parser.getBuilder(); 3275 OpAsmParser::OperandType cond; 3276 mlir::Type i1Type = builder.getIntegerType(1); 3277 if (parser.parseOperand(cond) || 3278 parser.resolveOperand(cond, i1Type, result.operands)) 3279 return mlir::failure(); 3280 3281 if (parser.parseOptionalArrowTypeList(result.types)) 3282 return mlir::failure(); 3283 3284 if (parser.parseRegion(*thenRegion, {}, {})) 3285 return mlir::failure(); 3286 IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); 3287 3288 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { 3289 if (parser.parseRegion(*elseRegion, {}, {})) 3290 return mlir::failure(); 3291 IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); 3292 } 3293 3294 // Parse the optional attribute list. 3295 if (parser.parseOptionalAttrDict(result.attributes)) 3296 return mlir::failure(); 3297 return mlir::success(); 3298 } 3299 3300 LogicalResult IfOp::verify() { 3301 if (getNumResults() != 0 && getElseRegion().empty()) 3302 return emitOpError("must have an else block if defining values"); 3303 3304 return mlir::success(); 3305 } 3306 3307 void IfOp::print(mlir::OpAsmPrinter &p) { 3308 bool printBlockTerminators = false; 3309 p << ' ' << getCondition(); 3310 if (!getResults().empty()) { 3311 p << " -> (" << getResultTypes() << ')'; 3312 printBlockTerminators = true; 3313 } 3314 p << ' '; 3315 p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false, 3316 printBlockTerminators); 3317 3318 // Print the 'else' regions if it exists and has a block. 3319 auto &otherReg = getElseRegion(); 3320 if (!otherReg.empty()) { 3321 p << " else "; 3322 p.printRegion(otherReg, /*printEntryBlockArgs=*/false, 3323 printBlockTerminators); 3324 } 3325 p.printOptionalAttrDict((*this)->getAttrs()); 3326 } 3327 3328 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results, 3329 unsigned resultNum) { 3330 auto *term = getThenRegion().front().getTerminator(); 3331 if (resultNum < term->getNumOperands()) 3332 results.push_back(term->getOperand(resultNum)); 3333 term = getElseRegion().front().getTerminator(); 3334 if (resultNum < term->getNumOperands()) 3335 results.push_back(term->getOperand(resultNum)); 3336 } 3337 3338 //===----------------------------------------------------------------------===// 3339 3340 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { 3341 if (attr.dyn_cast_or_null<mlir::UnitAttr>() || 3342 attr.dyn_cast_or_null<ClosedIntervalAttr>() || 3343 attr.dyn_cast_or_null<PointIntervalAttr>() || 3344 attr.dyn_cast_or_null<LowerBoundAttr>() || 3345 attr.dyn_cast_or_null<UpperBoundAttr>()) 3346 return mlir::success(); 3347 return mlir::failure(); 3348 } 3349 3350 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases, 3351 unsigned dest) { 3352 unsigned o = 0; 3353 for (unsigned i = 0; i < dest; ++i) { 3354 auto &attr = cases[i]; 3355 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) { 3356 ++o; 3357 if (attr.dyn_cast_or_null<ClosedIntervalAttr>()) 3358 ++o; 3359 } 3360 } 3361 return o; 3362 } 3363 3364 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, 3365 mlir::OperationState &result, 3366 mlir::OpAsmParser::OperandType &selector, 3367 mlir::Type &type) { 3368 if (parser.parseOperand(selector) || parser.parseColonType(type) || 3369 parser.resolveOperand(selector, type, result.operands) || 3370 parser.parseLSquare()) 3371 return mlir::failure(); 3372 return mlir::success(); 3373 } 3374 3375 bool fir::isReferenceLike(mlir::Type type) { 3376 return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() || 3377 type.isa<fir::PointerType>(); 3378 } 3379 3380 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, 3381 StringRef name, mlir::FunctionType type, 3382 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3383 if (auto f = module.lookupSymbol<mlir::FuncOp>(name)) 3384 return f; 3385 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3386 modBuilder.setInsertionPointToEnd(module.getBody()); 3387 auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs); 3388 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3389 return result; 3390 } 3391 3392 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, 3393 StringRef name, mlir::Type type, 3394 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3395 if (auto g = module.lookupSymbol<fir::GlobalOp>(name)) 3396 return g; 3397 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3398 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs); 3399 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3400 return result; 3401 } 3402 3403 bool fir::hasHostAssociationArgument(mlir::FuncOp func) { 3404 if (auto allArgAttrs = func.getAllArgAttrs()) 3405 for (auto attr : allArgAttrs) 3406 if (auto dict = attr.template dyn_cast_or_null<mlir::DictionaryAttr>()) 3407 if (dict.get(fir::getHostAssocAttrName())) 3408 return true; 3409 return false; 3410 } 3411 3412 bool fir::valueHasFirAttribute(mlir::Value value, 3413 llvm::StringRef attributeName) { 3414 // If this is a fir.box that was loaded, the fir attributes will be on the 3415 // related fir.ref<fir.box> creation. 3416 if (value.getType().isa<fir::BoxType>()) 3417 if (auto definingOp = value.getDefiningOp()) 3418 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp)) 3419 value = loadOp.getMemref(); 3420 // If this is a function argument, look in the argument attributes. 3421 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 3422 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) 3423 if (auto funcOp = 3424 mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp())) 3425 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) 3426 return true; 3427 return false; 3428 } 3429 3430 if (auto definingOp = value.getDefiningOp()) { 3431 // If this is an allocated value, look at the allocation attributes. 3432 if (mlir::isa<fir::AllocMemOp>(definingOp) || 3433 mlir::isa<AllocaOp>(definingOp)) 3434 return definingOp->hasAttr(attributeName); 3435 // If this is an imported global, look at AddrOfOp and GlobalOp attributes. 3436 // Both operations are looked at because use/host associated variable (the 3437 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate 3438 // entity (the globalOp) does not have them. 3439 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) { 3440 if (addressOfOp->hasAttr(attributeName)) 3441 return true; 3442 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>()) 3443 if (auto globalOp = 3444 module.lookupSymbol<fir::GlobalOp>(addressOfOp.getSymbol())) 3445 return globalOp->hasAttr(attributeName); 3446 } 3447 } 3448 // TODO: Construct associated entities attributes. Decide where the fir 3449 // attributes must be placed/looked for in this case. 3450 return false; 3451 } 3452 3453 bool fir::anyFuncArgsHaveAttr(mlir::FuncOp func, llvm::StringRef attr) { 3454 for (unsigned i = 0, end = func.getNumArguments(); i < end; ++i) 3455 if (func.getArgAttr(i, attr)) 3456 return true; 3457 return false; 3458 } 3459 3460 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) { 3461 for (auto i = path.begin(), end = path.end(); eleTy && i < end;) { 3462 eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy) 3463 .Case<fir::RecordType>([&](fir::RecordType ty) { 3464 if (auto *op = (*i++).getDefiningOp()) { 3465 if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op)) 3466 return ty.getType(off.getFieldName()); 3467 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3468 return ty.getType(fir::toInt(off)); 3469 } 3470 return mlir::Type{}; 3471 }) 3472 .Case<fir::SequenceType>([&](fir::SequenceType ty) { 3473 bool valid = true; 3474 const auto rank = ty.getDimension(); 3475 for (std::remove_const_t<decltype(rank)> ii = 0; 3476 valid && ii < rank; ++ii) 3477 valid = i < end && fir::isa_integer((*i++).getType()); 3478 return valid ? ty.getEleTy() : mlir::Type{}; 3479 }) 3480 .Case<mlir::TupleType>([&](mlir::TupleType ty) { 3481 if (auto *op = (*i++).getDefiningOp()) 3482 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3483 return ty.getType(fir::toInt(off)); 3484 return mlir::Type{}; 3485 }) 3486 .Case<fir::ComplexType>([&](fir::ComplexType ty) { 3487 if (fir::isa_integer((*i++).getType())) 3488 return ty.getElementType(); 3489 return mlir::Type{}; 3490 }) 3491 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { 3492 if (fir::isa_integer((*i++).getType())) 3493 return ty.getElementType(); 3494 return mlir::Type{}; 3495 }) 3496 .Default([&](const auto &) { return mlir::Type{}; }); 3497 } 3498 return eleTy; 3499 } 3500 3501 // Tablegen operators 3502 3503 #define GET_OP_CLASSES 3504 #include "flang/Optimizer/Dialect/FIROps.cpp.inc" 3505