1 //===-- FIROps.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Optimizer/Dialect/FIROps.h" 14 #include "flang/Optimizer/Dialect/FIRAttr.h" 15 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 16 #include "flang/Optimizer/Dialect/FIRType.h" 17 #include "flang/Optimizer/Support/Utils.h" 18 #include "mlir/Dialect/CommonFolders.h" 19 #include "mlir/Dialect/StandardOps/IR/Ops.h" 20 #include "mlir/IR/BuiltinAttributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/Diagnostics.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/OpDefinition.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/TypeSwitch.h" 30 31 namespace { 32 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc" 33 } // namespace 34 using namespace fir; 35 36 /// Return true if a sequence type is of some incomplete size or a record type 37 /// is malformed or contains an incomplete sequence type. An incomplete sequence 38 /// type is one with more unknown extents in the type than have been provided 39 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by 40 /// definition. 41 static bool verifyInType(mlir::Type inType, 42 llvm::SmallVectorImpl<llvm::StringRef> &visited, 43 unsigned dynamicExtents = 0) { 44 if (auto st = inType.dyn_cast<fir::SequenceType>()) { 45 auto shape = st.getShape(); 46 if (shape.size() == 0) 47 return true; 48 for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { 49 if (shape[i] != fir::SequenceType::getUnknownExtent()) 50 continue; 51 if (dynamicExtents-- == 0) 52 return true; 53 } 54 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) { 55 // don't recurse if we're already visiting this one 56 if (llvm::is_contained(visited, rt.getName())) 57 return false; 58 // keep track of record types currently being visited 59 visited.push_back(rt.getName()); 60 for (auto &field : rt.getTypeList()) 61 if (verifyInType(field.second, visited)) 62 return true; 63 visited.pop_back(); 64 } 65 return false; 66 } 67 68 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) { 69 auto ty = fir::unwrapSequenceType(inType); 70 if (numParams > 0) { 71 if (auto recTy = ty.dyn_cast<fir::RecordType>()) 72 return numParams != recTy.getNumLenParams(); 73 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 74 return !(numParams == 1 && chrTy.hasDynamicLen()); 75 return true; 76 } 77 if (auto chrTy = ty.dyn_cast<fir::CharacterType>()) 78 return !chrTy.hasConstantLen(); 79 return false; 80 } 81 82 /// Parser shared by Alloca and Allocmem 83 /// 84 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type 85 /// ( `(` $typeparams `)` )? ( `,` $shape )? 86 /// attr-dict-without-keyword 87 template <typename FN> 88 static mlir::ParseResult parseAllocatableOp(FN wrapResultType, 89 mlir::OpAsmParser &parser, 90 mlir::OperationState &result) { 91 mlir::Type intype; 92 if (parser.parseType(intype)) 93 return mlir::failure(); 94 auto &builder = parser.getBuilder(); 95 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 96 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 97 llvm::SmallVector<mlir::Type> typeVec; 98 bool hasOperands = false; 99 std::int32_t typeparamsSize = 0; 100 if (!parser.parseOptionalLParen()) { 101 // parse the LEN params of the derived type. (<params> : <types>) 102 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 103 parser.parseColonTypeList(typeVec) || parser.parseRParen()) 104 return mlir::failure(); 105 typeparamsSize = operands.size(); 106 hasOperands = true; 107 } 108 std::int32_t shapeSize = 0; 109 if (!parser.parseOptionalComma()) { 110 // parse size to scale by, vector of n dimensions of type index 111 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None)) 112 return mlir::failure(); 113 shapeSize = operands.size() - typeparamsSize; 114 auto idxTy = builder.getIndexType(); 115 for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i) 116 typeVec.push_back(idxTy); 117 hasOperands = true; 118 } 119 if (hasOperands && 120 parser.resolveOperands(operands, typeVec, parser.getNameLoc(), 121 result.operands)) 122 return mlir::failure(); 123 mlir::Type restype = wrapResultType(intype); 124 if (!restype) { 125 parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype; 126 return mlir::failure(); 127 } 128 result.addAttribute("operand_segment_sizes", 129 builder.getI32VectorAttr({typeparamsSize, shapeSize})); 130 if (parser.parseOptionalAttrDict(result.attributes) || 131 parser.addTypeToList(restype, result.types)) 132 return mlir::failure(); 133 return mlir::success(); 134 } 135 136 template <typename OP> 137 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) { 138 p << ' ' << op.in_type(); 139 if (!op.typeparams().empty()) { 140 p << '(' << op.typeparams() << " : " << op.typeparams().getTypes() << ')'; 141 } 142 // print the shape of the allocation (if any); all must be index type 143 for (auto sh : op.shape()) { 144 p << ", "; 145 p.printOperand(sh); 146 } 147 p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"}); 148 } 149 150 //===----------------------------------------------------------------------===// 151 // AllocaOp 152 //===----------------------------------------------------------------------===// 153 154 /// Create a legal memory reference as return type 155 static mlir::Type wrapAllocaResultType(mlir::Type intype) { 156 // FIR semantics: memory references to memory references are disallowed 157 if (intype.isa<ReferenceType>()) 158 return {}; 159 return ReferenceType::get(intype); 160 } 161 162 mlir::Type fir::AllocaOp::getAllocatedType() { 163 return getType().cast<ReferenceType>().getEleTy(); 164 } 165 166 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { 167 return ReferenceType::get(ty); 168 } 169 170 void fir::AllocaOp::build(mlir::OpBuilder &builder, 171 mlir::OperationState &result, mlir::Type inType, 172 llvm::StringRef uniqName, mlir::ValueRange typeparams, 173 mlir::ValueRange shape, 174 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 175 auto nameAttr = builder.getStringAttr(uniqName); 176 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 177 /*pinned=*/false, typeparams, shape); 178 result.addAttributes(attributes); 179 } 180 181 void fir::AllocaOp::build(mlir::OpBuilder &builder, 182 mlir::OperationState &result, mlir::Type inType, 183 llvm::StringRef uniqName, bool pinned, 184 mlir::ValueRange typeparams, mlir::ValueRange shape, 185 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 186 auto nameAttr = builder.getStringAttr(uniqName); 187 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, 188 pinned, typeparams, shape); 189 result.addAttributes(attributes); 190 } 191 192 void fir::AllocaOp::build(mlir::OpBuilder &builder, 193 mlir::OperationState &result, mlir::Type inType, 194 llvm::StringRef uniqName, llvm::StringRef bindcName, 195 mlir::ValueRange typeparams, mlir::ValueRange shape, 196 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 197 auto nameAttr = 198 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 199 auto bindcAttr = 200 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 201 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 202 bindcAttr, /*pinned=*/false, typeparams, shape); 203 result.addAttributes(attributes); 204 } 205 206 void fir::AllocaOp::build(mlir::OpBuilder &builder, 207 mlir::OperationState &result, mlir::Type inType, 208 llvm::StringRef uniqName, llvm::StringRef bindcName, 209 bool pinned, mlir::ValueRange typeparams, 210 mlir::ValueRange shape, 211 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 212 auto nameAttr = 213 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); 214 auto bindcAttr = 215 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); 216 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, 217 bindcAttr, pinned, typeparams, shape); 218 result.addAttributes(attributes); 219 } 220 221 void fir::AllocaOp::build(mlir::OpBuilder &builder, 222 mlir::OperationState &result, mlir::Type inType, 223 mlir::ValueRange typeparams, mlir::ValueRange shape, 224 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 225 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, 226 /*pinned=*/false, typeparams, shape); 227 result.addAttributes(attributes); 228 } 229 230 void fir::AllocaOp::build(mlir::OpBuilder &builder, 231 mlir::OperationState &result, mlir::Type inType, 232 bool pinned, mlir::ValueRange typeparams, 233 mlir::ValueRange shape, 234 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 235 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned, 236 typeparams, shape); 237 result.addAttributes(attributes); 238 } 239 240 static mlir::LogicalResult verify(fir::AllocaOp &op) { 241 llvm::SmallVector<llvm::StringRef> visited; 242 if (verifyInType(op.getInType(), visited, op.numShapeOperands())) 243 return op.emitOpError("invalid type for allocation"); 244 if (verifyTypeParamCount(op.getInType(), op.numLenParams())) 245 return op.emitOpError("LEN params do not correspond to type"); 246 mlir::Type outType = op.getType(); 247 if (!outType.isa<fir::ReferenceType>()) 248 return op.emitOpError("must be a !fir.ref type"); 249 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 250 return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); 251 return mlir::success(); 252 } 253 254 //===----------------------------------------------------------------------===// 255 // AllocMemOp 256 //===----------------------------------------------------------------------===// 257 258 /// Create a legal heap reference as return type 259 static mlir::Type wrapAllocMemResultType(mlir::Type intype) { 260 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER 261 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well 262 // FIR semantics: one may not allocate a memory reference value 263 if (intype.isa<ReferenceType>() || intype.isa<HeapType>() || 264 intype.isa<PointerType>() || intype.isa<FunctionType>()) 265 return {}; 266 return HeapType::get(intype); 267 } 268 269 mlir::Type fir::AllocMemOp::getAllocatedType() { 270 return getType().cast<HeapType>().getEleTy(); 271 } 272 273 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { 274 return HeapType::get(ty); 275 } 276 277 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 278 mlir::OperationState &result, mlir::Type inType, 279 llvm::StringRef uniqName, 280 mlir::ValueRange typeparams, mlir::ValueRange shape, 281 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 282 auto nameAttr = builder.getStringAttr(uniqName); 283 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {}, 284 typeparams, shape); 285 result.addAttributes(attributes); 286 } 287 288 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 289 mlir::OperationState &result, mlir::Type inType, 290 llvm::StringRef uniqName, llvm::StringRef bindcName, 291 mlir::ValueRange typeparams, mlir::ValueRange shape, 292 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 293 auto nameAttr = builder.getStringAttr(uniqName); 294 auto bindcAttr = builder.getStringAttr(bindcName); 295 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, 296 bindcAttr, typeparams, shape); 297 result.addAttributes(attributes); 298 } 299 300 void fir::AllocMemOp::build(mlir::OpBuilder &builder, 301 mlir::OperationState &result, mlir::Type inType, 302 mlir::ValueRange typeparams, mlir::ValueRange shape, 303 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 304 build(builder, result, wrapAllocMemResultType(inType), inType, {}, {}, 305 typeparams, shape); 306 result.addAttributes(attributes); 307 } 308 309 static mlir::LogicalResult verify(fir::AllocMemOp op) { 310 llvm::SmallVector<llvm::StringRef> visited; 311 if (verifyInType(op.getInType(), visited, op.numShapeOperands())) 312 return op.emitOpError("invalid type for allocation"); 313 if (verifyTypeParamCount(op.getInType(), op.numLenParams())) 314 return op.emitOpError("LEN params do not correspond to type"); 315 mlir::Type outType = op.getType(); 316 if (!outType.dyn_cast<fir::HeapType>()) 317 return op.emitOpError("must be a !fir.heap type"); 318 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) 319 return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); 320 return mlir::success(); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // ArrayCoorOp 325 //===----------------------------------------------------------------------===// 326 327 static mlir::LogicalResult verify(fir::ArrayCoorOp op) { 328 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 329 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 330 if (!arrTy) 331 return op.emitOpError("must be a reference to an array"); 332 auto arrDim = arrTy.getDimension(); 333 334 if (auto shapeOp = op.shape()) { 335 auto shapeTy = shapeOp.getType(); 336 unsigned shapeTyRank = 0; 337 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 338 shapeTyRank = s.getRank(); 339 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 340 shapeTyRank = ss.getRank(); 341 } else { 342 auto s = shapeTy.cast<fir::ShiftType>(); 343 shapeTyRank = s.getRank(); 344 if (!op.memref().getType().isa<fir::BoxType>()) 345 return op.emitOpError("shift can only be provided with fir.box memref"); 346 } 347 if (arrDim && arrDim != shapeTyRank) 348 return op.emitOpError("rank of dimension mismatched"); 349 if (shapeTyRank != op.indices().size()) 350 return op.emitOpError("number of indices do not match dim rank"); 351 } 352 353 if (auto sliceOp = op.slice()) { 354 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) 355 if (!sl.substr().empty()) 356 return op.emitOpError("array_coor cannot take a slice with substring"); 357 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 358 if (sliceTy.getRank() != arrDim) 359 return op.emitOpError("rank of dimension in slice mismatched"); 360 } 361 362 return mlir::success(); 363 } 364 365 //===----------------------------------------------------------------------===// 366 // ArrayLoadOp 367 //===----------------------------------------------------------------------===// 368 369 static mlir::Type adjustedElementType(mlir::Type t) { 370 if (auto ty = t.dyn_cast<fir::ReferenceType>()) { 371 auto eleTy = ty.getEleTy(); 372 if (fir::isa_char(eleTy)) 373 return eleTy; 374 if (fir::isa_derived(eleTy)) 375 return eleTy; 376 if (eleTy.isa<fir::SequenceType>()) 377 return eleTy; 378 } 379 return t; 380 } 381 382 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() { 383 if (auto sh = shape()) 384 if (auto *op = sh.getDefiningOp()) { 385 if (auto shOp = dyn_cast<fir::ShapeOp>(op)) { 386 auto extents = shOp.getExtents(); 387 return {extents.begin(), extents.end()}; 388 } 389 return cast<fir::ShapeShiftOp>(op).getExtents(); 390 } 391 return {}; 392 } 393 394 static mlir::LogicalResult verify(fir::ArrayLoadOp op) { 395 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 396 auto arrTy = eleTy.dyn_cast<fir::SequenceType>(); 397 if (!arrTy) 398 return op.emitOpError("must be a reference to an array"); 399 auto arrDim = arrTy.getDimension(); 400 401 if (auto shapeOp = op.shape()) { 402 auto shapeTy = shapeOp.getType(); 403 unsigned shapeTyRank = 0; 404 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) { 405 shapeTyRank = s.getRank(); 406 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) { 407 shapeTyRank = ss.getRank(); 408 } else { 409 auto s = shapeTy.cast<fir::ShiftType>(); 410 shapeTyRank = s.getRank(); 411 if (!op.memref().getType().isa<fir::BoxType>()) 412 return op.emitOpError("shift can only be provided with fir.box memref"); 413 } 414 if (arrDim && arrDim != shapeTyRank) 415 return op.emitOpError("rank of dimension mismatched"); 416 } 417 418 if (auto sliceOp = op.slice()) { 419 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp())) 420 if (!sl.substr().empty()) 421 return op.emitOpError("array_load cannot take a slice with substring"); 422 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>()) 423 if (sliceTy.getRank() != arrDim) 424 return op.emitOpError("rank of dimension in slice mismatched"); 425 } 426 427 return mlir::success(); 428 } 429 430 //===----------------------------------------------------------------------===// 431 // ArrayMergeStoreOp 432 //===----------------------------------------------------------------------===// 433 434 static mlir::LogicalResult verify(fir::ArrayMergeStoreOp op) { 435 if (!isa<ArrayLoadOp>(op.original().getDefiningOp())) 436 return op.emitOpError("operand #0 must be result of a fir.array_load op"); 437 if (auto sl = op.slice()) { 438 if (auto sliceOp = 439 mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) { 440 if (!sliceOp.substr().empty()) 441 return op.emitOpError( 442 "array_merge_store cannot take a slice with substring"); 443 if (!sliceOp.fields().empty()) { 444 // This is an intra-object merge, where the slice is projecting the 445 // subfields that are to be overwritten by the merge operation. 446 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 447 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 448 auto projTy = 449 fir::applyPathToType(seqTy.getEleTy(), sliceOp.fields()); 450 if (fir::unwrapSequenceType(op.original().getType()) != projTy) 451 return op.emitOpError( 452 "type of origin does not match sliced memref type"); 453 if (fir::unwrapSequenceType(op.sequence().getType()) != projTy) 454 return op.emitOpError( 455 "type of sequence does not match sliced memref type"); 456 return mlir::success(); 457 } 458 return op.emitOpError("referenced type is not an array"); 459 } 460 } 461 return mlir::success(); 462 } 463 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); 464 if (op.original().getType() != eleTy) 465 return op.emitOpError("type of origin does not match memref element type"); 466 if (op.sequence().getType() != eleTy) 467 return op.emitOpError( 468 "type of sequence does not match memref element type"); 469 return mlir::success(); 470 } 471 472 //===----------------------------------------------------------------------===// 473 // ArrayFetchOp 474 //===----------------------------------------------------------------------===// 475 476 // Template function used for both array_fetch and array_update verification. 477 template <typename A> 478 mlir::Type validArraySubobject(A op) { 479 auto ty = op.sequence().getType(); 480 return fir::applyPathToType(ty, op.indices()); 481 } 482 483 static mlir::LogicalResult verify(fir::ArrayFetchOp op) { 484 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 485 auto indSize = op.indices().size(); 486 if (indSize < arrTy.getDimension()) 487 return op.emitOpError("number of indices != dimension of array"); 488 if (indSize == arrTy.getDimension() && 489 ::adjustedElementType(op.element().getType()) != arrTy.getEleTy()) 490 return op.emitOpError("return type does not match array"); 491 auto ty = validArraySubobject(op); 492 if (!ty || ty != ::adjustedElementType(op.getType())) 493 return op.emitOpError("return type and/or indices do not type check"); 494 if (!isa<fir::ArrayLoadOp>(op.sequence().getDefiningOp())) 495 return op.emitOpError("argument #0 must be result of fir.array_load"); 496 return mlir::success(); 497 } 498 499 //===----------------------------------------------------------------------===// 500 // ArrayAccessOp 501 //===----------------------------------------------------------------------===// 502 503 static mlir::LogicalResult verify(fir::ArrayAccessOp op) { 504 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 505 std::size_t indSize = op.indices().size(); 506 if (indSize < arrTy.getDimension()) 507 return op.emitOpError("number of indices != dimension of array"); 508 if (indSize == arrTy.getDimension() && 509 op.element().getType() != fir::ReferenceType::get(arrTy.getEleTy())) 510 return op.emitOpError("return type does not match array"); 511 mlir::Type ty = validArraySubobject(op); 512 if (!ty || fir::ReferenceType::get(ty) != op.getType()) 513 return op.emitOpError("return type and/or indices do not type check"); 514 return mlir::success(); 515 } 516 517 //===----------------------------------------------------------------------===// 518 // ArrayUpdateOp 519 //===----------------------------------------------------------------------===// 520 521 static mlir::LogicalResult verify(fir::ArrayUpdateOp op) { 522 if (fir::isa_ref_type(op.merge().getType())) 523 return op.emitOpError("does not support reference type for merge"); 524 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 525 auto indSize = op.indices().size(); 526 if (indSize < arrTy.getDimension()) 527 return op.emitOpError("number of indices != dimension of array"); 528 if (indSize == arrTy.getDimension() && 529 ::adjustedElementType(op.merge().getType()) != arrTy.getEleTy()) 530 return op.emitOpError("merged value does not have element type"); 531 auto ty = validArraySubobject(op); 532 if (!ty || ty != ::adjustedElementType(op.merge().getType())) 533 return op.emitOpError("merged value and/or indices do not type check"); 534 return mlir::success(); 535 } 536 537 //===----------------------------------------------------------------------===// 538 // ArrayModifyOp 539 //===----------------------------------------------------------------------===// 540 541 static mlir::LogicalResult verify(fir::ArrayModifyOp op) { 542 auto arrTy = op.sequence().getType().cast<fir::SequenceType>(); 543 auto indSize = op.indices().size(); 544 if (indSize < arrTy.getDimension()) 545 return op.emitOpError("number of indices must match array dimension"); 546 return mlir::success(); 547 } 548 549 //===----------------------------------------------------------------------===// 550 // BoxAddrOp 551 //===----------------------------------------------------------------------===// 552 553 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 554 if (auto v = val().getDefiningOp()) { 555 if (auto box = dyn_cast<fir::EmboxOp>(v)) 556 return box.memref(); 557 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 558 return box.memref(); 559 } 560 return {}; 561 } 562 563 //===----------------------------------------------------------------------===// 564 // BoxCharLenOp 565 //===----------------------------------------------------------------------===// 566 567 mlir::OpFoldResult 568 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 569 if (auto v = val().getDefiningOp()) { 570 if (auto box = dyn_cast<fir::EmboxCharOp>(v)) 571 return box.len(); 572 } 573 return {}; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // BoxDimsOp 578 //===----------------------------------------------------------------------===// 579 580 /// Get the result types packed in a tuple tuple 581 mlir::Type fir::BoxDimsOp::getTupleType() { 582 // note: triple, but 4 is nearest power of 2 583 llvm::SmallVector<mlir::Type> triple{ 584 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; 585 return mlir::TupleType::get(getContext(), triple); 586 } 587 588 //===----------------------------------------------------------------------===// 589 // CallOp 590 //===----------------------------------------------------------------------===// 591 592 mlir::FunctionType fir::CallOp::getFunctionType() { 593 return mlir::FunctionType::get(getContext(), getOperandTypes(), 594 getResultTypes()); 595 } 596 597 static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) { 598 auto callee = op.callee(); 599 bool isDirect = callee.hasValue(); 600 p << ' '; 601 if (isDirect) 602 p << callee.getValue(); 603 else 604 p << op.getOperand(0); 605 p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')'; 606 p.printOptionalAttrDict(op->getAttrs(), 607 {fir::CallOp::getCalleeAttrNameStr()}); 608 auto resultTypes{op.getResultTypes()}; 609 llvm::SmallVector<Type> argTypes( 610 llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1)); 611 p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes); 612 } 613 614 static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser, 615 mlir::OperationState &result) { 616 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 617 if (parser.parseOperandList(operands)) 618 return mlir::failure(); 619 620 mlir::NamedAttrList attrs; 621 mlir::SymbolRefAttr funcAttr; 622 bool isDirect = operands.empty(); 623 if (isDirect) 624 if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(), 625 attrs)) 626 return mlir::failure(); 627 628 Type type; 629 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 630 parser.parseOptionalAttrDict(attrs) || parser.parseColon() || 631 parser.parseType(type)) 632 return mlir::failure(); 633 634 auto funcType = type.dyn_cast<mlir::FunctionType>(); 635 if (!funcType) 636 return parser.emitError(parser.getNameLoc(), "expected function type"); 637 if (isDirect) { 638 if (parser.resolveOperands(operands, funcType.getInputs(), 639 parser.getNameLoc(), result.operands)) 640 return mlir::failure(); 641 } else { 642 auto funcArgs = 643 llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front(); 644 if (parser.resolveOperand(operands[0], funcType, result.operands) || 645 parser.resolveOperands(funcArgs, funcType.getInputs(), 646 parser.getNameLoc(), result.operands)) 647 return mlir::failure(); 648 } 649 result.addTypes(funcType.getResults()); 650 result.attributes = attrs; 651 return mlir::success(); 652 } 653 654 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 655 mlir::FuncOp callee, mlir::ValueRange operands) { 656 result.addOperands(operands); 657 result.addAttribute(getCalleeAttrNameStr(), SymbolRefAttr::get(callee)); 658 result.addTypes(callee.getType().getResults()); 659 } 660 661 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 662 mlir::SymbolRefAttr callee, 663 llvm::ArrayRef<mlir::Type> results, 664 mlir::ValueRange operands) { 665 result.addOperands(operands); 666 if (callee) 667 result.addAttribute(getCalleeAttrNameStr(), callee); 668 result.addTypes(results); 669 } 670 671 //===----------------------------------------------------------------------===// 672 // CmpOp 673 //===----------------------------------------------------------------------===// 674 675 template <typename OPTY> 676 static void printCmpOp(OpAsmPrinter &p, OPTY op) { 677 p << ' '; 678 auto predSym = mlir::arith::symbolizeCmpFPredicate( 679 op->template getAttrOfType<mlir::IntegerAttr>( 680 OPTY::getPredicateAttrName()) 681 .getInt()); 682 assert(predSym.hasValue() && "invalid symbol value for predicate"); 683 p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"' 684 << ", "; 685 p.printOperand(op.lhs()); 686 p << ", "; 687 p.printOperand(op.rhs()); 688 p.printOptionalAttrDict(op->getAttrs(), 689 /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); 690 p << " : " << op.lhs().getType(); 691 } 692 693 template <typename OPTY> 694 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, 695 mlir::OperationState &result) { 696 llvm::SmallVector<mlir::OpAsmParser::OperandType> ops; 697 mlir::NamedAttrList attrs; 698 mlir::Attribute predicateNameAttr; 699 mlir::Type type; 700 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), 701 attrs) || 702 parser.parseComma() || parser.parseOperandList(ops, 2) || 703 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || 704 parser.resolveOperands(ops, type, result.operands)) 705 return failure(); 706 707 if (!predicateNameAttr.isa<mlir::StringAttr>()) 708 return parser.emitError(parser.getNameLoc(), 709 "expected string comparison predicate attribute"); 710 711 // Rewrite string attribute to an enum value. 712 llvm::StringRef predicateName = 713 predicateNameAttr.cast<mlir::StringAttr>().getValue(); 714 auto predicate = fir::CmpcOp::getPredicateByName(predicateName); 715 auto builder = parser.getBuilder(); 716 mlir::Type i1Type = builder.getI1Type(); 717 attrs.set(OPTY::getPredicateAttrName(), 718 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 719 result.attributes = attrs; 720 result.addTypes({i1Type}); 721 return success(); 722 } 723 724 //===----------------------------------------------------------------------===// 725 // CharConvertOp 726 //===----------------------------------------------------------------------===// 727 728 static mlir::LogicalResult verify(fir::CharConvertOp op) { 729 auto unwrap = [&](mlir::Type t) { 730 t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t)); 731 return t.dyn_cast<fir::CharacterType>(); 732 }; 733 auto inTy = unwrap(op.from().getType()); 734 auto outTy = unwrap(op.to().getType()); 735 if (!(inTy && outTy)) 736 return op.emitOpError("not a reference to a character"); 737 if (inTy.getFKind() == outTy.getFKind()) 738 return op.emitOpError("buffers must have different KIND values"); 739 return mlir::success(); 740 } 741 742 //===----------------------------------------------------------------------===// 743 // CmpcOp 744 //===----------------------------------------------------------------------===// 745 746 void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, 747 arith::CmpFPredicate predicate, Value lhs, Value rhs) { 748 result.addOperands({lhs, rhs}); 749 result.types.push_back(builder.getI1Type()); 750 result.addAttribute( 751 fir::CmpcOp::getPredicateAttrName(), 752 builder.getI64IntegerAttr(static_cast<int64_t>(predicate))); 753 } 754 755 mlir::arith::CmpFPredicate 756 fir::CmpcOp::getPredicateByName(llvm::StringRef name) { 757 auto pred = mlir::arith::symbolizeCmpFPredicate(name); 758 assert(pred.hasValue() && "invalid predicate name"); 759 return pred.getValue(); 760 } 761 762 static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); } 763 764 mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser, 765 mlir::OperationState &result) { 766 return parseCmpOp<fir::CmpcOp>(parser, result); 767 } 768 769 //===----------------------------------------------------------------------===// 770 // ConstcOp 771 //===----------------------------------------------------------------------===// 772 773 static mlir::ParseResult parseConstcOp(mlir::OpAsmParser &parser, 774 mlir::OperationState &result) { 775 fir::RealAttr realp; 776 fir::RealAttr imagp; 777 mlir::Type type; 778 if (parser.parseLParen() || 779 parser.parseAttribute(realp, fir::ConstcOp::realAttrName(), 780 result.attributes) || 781 parser.parseComma() || 782 parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(), 783 result.attributes) || 784 parser.parseRParen() || parser.parseColonType(type) || 785 parser.addTypesToList(type, result.types)) 786 return mlir::failure(); 787 return mlir::success(); 788 } 789 790 static void print(mlir::OpAsmPrinter &p, fir::ConstcOp &op) { 791 p << '('; 792 p << op.getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", "; 793 p << op.getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : "; 794 p.printType(op.getType()); 795 } 796 797 static mlir::LogicalResult verify(fir::ConstcOp &op) { 798 if (!op.getType().isa<fir::ComplexType>()) 799 return op.emitOpError("must be a !fir.complex type"); 800 return mlir::success(); 801 } 802 803 //===----------------------------------------------------------------------===// 804 // ConvertOp 805 //===----------------------------------------------------------------------===// 806 807 void fir::ConvertOp::getCanonicalizationPatterns(RewritePatternSet &results, 808 MLIRContext *context) { 809 results.insert<ConvertConvertOptPattern, RedundantConvertOptPattern, 810 CombineConvertOptPattern, ForwardConstantConvertPattern>( 811 context); 812 } 813 814 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) { 815 if (value().getType() == getType()) 816 return value(); 817 if (matchPattern(value(), m_Op<fir::ConvertOp>())) { 818 auto inner = cast<fir::ConvertOp>(value().getDefiningOp()); 819 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a 820 if (auto toTy = getType().dyn_cast<fir::LogicalType>()) 821 if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>()) 822 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy)) 823 return inner.value(); 824 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a 825 if (auto toTy = getType().dyn_cast<mlir::IntegerType>()) 826 if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>()) 827 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) && 828 (fromTy.getWidth() == 1)) 829 return inner.value(); 830 } 831 return {}; 832 } 833 834 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { 835 return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() || 836 ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>(); 837 } 838 839 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { 840 return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>(); 841 } 842 843 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { 844 return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() || 845 ty.isa<fir::HeapType>() || ty.isa<fir::LLVMPointerType>() || 846 ty.isa<mlir::MemRefType>() || ty.isa<mlir::FunctionType>() || 847 ty.isa<fir::TypeDescType>(); 848 } 849 850 static mlir::LogicalResult verify(fir::ConvertOp &op) { 851 auto inType = op.value().getType(); 852 auto outType = op.getType(); 853 if (inType == outType) 854 return mlir::success(); 855 if ((op.isPointerCompatible(inType) && op.isPointerCompatible(outType)) || 856 (op.isIntegerCompatible(inType) && op.isIntegerCompatible(outType)) || 857 (op.isIntegerCompatible(inType) && op.isFloatCompatible(outType)) || 858 (op.isFloatCompatible(inType) && op.isIntegerCompatible(outType)) || 859 (op.isFloatCompatible(inType) && op.isFloatCompatible(outType)) || 860 (op.isIntegerCompatible(inType) && op.isPointerCompatible(outType)) || 861 (op.isPointerCompatible(inType) && op.isIntegerCompatible(outType)) || 862 (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) || 863 (fir::isa_complex(inType) && fir::isa_complex(outType))) 864 return mlir::success(); 865 return op.emitOpError("invalid type conversion"); 866 } 867 868 //===----------------------------------------------------------------------===// 869 // CoordinateOp 870 //===----------------------------------------------------------------------===// 871 872 static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) { 873 p << ' ' << op.ref() << ", " << op.coor(); 874 p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"}); 875 p << " : "; 876 p.printFunctionalType(op.getOperandTypes(), op->getResultTypes()); 877 } 878 879 static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser, 880 mlir::OperationState &result) { 881 mlir::OpAsmParser::OperandType memref; 882 if (parser.parseOperand(memref) || parser.parseComma()) 883 return mlir::failure(); 884 llvm::SmallVector<mlir::OpAsmParser::OperandType> coorOperands; 885 if (parser.parseOperandList(coorOperands)) 886 return mlir::failure(); 887 llvm::SmallVector<mlir::OpAsmParser::OperandType> allOperands; 888 allOperands.push_back(memref); 889 allOperands.append(coorOperands.begin(), coorOperands.end()); 890 mlir::FunctionType funcTy; 891 auto loc = parser.getCurrentLocation(); 892 if (parser.parseOptionalAttrDict(result.attributes) || 893 parser.parseColonType(funcTy) || 894 parser.resolveOperands(allOperands, funcTy.getInputs(), loc, 895 result.operands)) 896 return failure(); 897 parser.addTypesToList(funcTy.getResults(), result.types); 898 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); 899 return mlir::success(); 900 } 901 902 static mlir::LogicalResult verify(fir::CoordinateOp op) { 903 auto refTy = op.ref().getType(); 904 if (fir::isa_ref_type(refTy)) { 905 auto eleTy = fir::dyn_cast_ptrEleTy(refTy); 906 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) { 907 if (arrTy.hasUnknownShape()) 908 return op.emitOpError("cannot find coordinate in unknown shape"); 909 if (arrTy.getConstantRows() < arrTy.getDimension() - 1) 910 return op.emitOpError("cannot find coordinate with unknown extents"); 911 } 912 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || 913 fir::isa_char_string(eleTy))) 914 return op.emitOpError("cannot apply coordinate_of to this type"); 915 } 916 // Recovering a LEN type parameter only makes sense from a boxed value. For a 917 // bare reference, the LEN type parameters must be passed as additional 918 // arguments to `op`. 919 for (auto co : op.coor()) 920 if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) { 921 if (op.getNumOperands() != 2) 922 return op.emitOpError("len_param_index must be last argument"); 923 if (!op.ref().getType().isa<BoxType>()) 924 return op.emitOpError("len_param_index must be used on box type"); 925 } 926 return mlir::success(); 927 } 928 929 //===----------------------------------------------------------------------===// 930 // DispatchOp 931 //===----------------------------------------------------------------------===// 932 933 mlir::FunctionType fir::DispatchOp::getFunctionType() { 934 return mlir::FunctionType::get(getContext(), getOperandTypes(), 935 getResultTypes()); 936 } 937 938 static mlir::ParseResult parseDispatchOp(mlir::OpAsmParser &parser, 939 mlir::OperationState &result) { 940 mlir::FunctionType calleeType; 941 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 942 auto calleeLoc = parser.getNameLoc(); 943 llvm::StringRef calleeName; 944 if (failed(parser.parseOptionalKeyword(&calleeName))) { 945 mlir::StringAttr calleeAttr; 946 if (parser.parseAttribute(calleeAttr, 947 fir::DispatchOp::getMethodAttrNameStr(), 948 result.attributes)) 949 return mlir::failure(); 950 } else { 951 result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(), 952 parser.getBuilder().getStringAttr(calleeName)); 953 } 954 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || 955 parser.parseOptionalAttrDict(result.attributes) || 956 parser.parseColonType(calleeType) || 957 parser.addTypesToList(calleeType.getResults(), result.types) || 958 parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc, 959 result.operands)) 960 return mlir::failure(); 961 return mlir::success(); 962 } 963 964 static void print(mlir::OpAsmPrinter &p, fir::DispatchOp &op) { 965 p << ' ' << op.getMethodAttr() << '('; 966 p.printOperand(op.object()); 967 if (!op.args().empty()) { 968 p << ", "; 969 p.printOperands(op.args()); 970 } 971 p << ") : "; 972 p.printFunctionalType(op.getOperation()->getOperandTypes(), 973 op.getOperation()->getResultTypes()); 974 } 975 976 //===----------------------------------------------------------------------===// 977 // DispatchTableOp 978 //===----------------------------------------------------------------------===// 979 980 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { 981 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp"); 982 auto &block = getBlock(); 983 block.getOperations().insert(block.end(), op); 984 } 985 986 static mlir::ParseResult parseDispatchTableOp(mlir::OpAsmParser &parser, 987 mlir::OperationState &result) { 988 // Parse the name as a symbol reference attribute. 989 SymbolRefAttr nameAttr; 990 if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 991 result.attributes)) 992 return failure(); 993 994 // Convert the parsed name attr into a string attr. 995 result.attributes.set(mlir::SymbolTable::getSymbolAttrName(), 996 nameAttr.getRootReference()); 997 998 // Parse the optional table body. 999 mlir::Region *body = result.addRegion(); 1000 OptionalParseResult parseResult = parser.parseOptionalRegion(*body); 1001 if (parseResult.hasValue() && failed(*parseResult)) 1002 return mlir::failure(); 1003 1004 fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(), 1005 result.location); 1006 return mlir::success(); 1007 } 1008 1009 static void print(mlir::OpAsmPrinter &p, fir::DispatchTableOp &op) { 1010 auto tableName = 1011 op.getOperation() 1012 ->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()) 1013 .getValue(); 1014 p << " @" << tableName; 1015 1016 Region &body = op.getOperation()->getRegion(0); 1017 if (!body.empty()) { 1018 p << ' '; 1019 p.printRegion(body, /*printEntryBlockArgs=*/false, 1020 /*printBlockTerminators=*/false); 1021 } 1022 } 1023 1024 static mlir::LogicalResult verify(fir::DispatchTableOp &op) { 1025 for (auto &op : op.getBlock()) 1026 if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op))) 1027 return op.emitOpError("dispatch table must contain dt_entry"); 1028 return mlir::success(); 1029 } 1030 1031 //===----------------------------------------------------------------------===// 1032 // EmboxOp 1033 //===----------------------------------------------------------------------===// 1034 1035 static mlir::LogicalResult verify(fir::EmboxOp op) { 1036 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 1037 bool isArray = false; 1038 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) { 1039 eleTy = seqTy.getEleTy(); 1040 isArray = true; 1041 } 1042 if (op.hasLenParams()) { 1043 auto lenPs = op.numLenParams(); 1044 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) { 1045 if (lenPs != rt.getNumLenParams()) 1046 return op.emitOpError("number of LEN params does not correspond" 1047 " to the !fir.type type"); 1048 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) { 1049 if (strTy.getLen() != fir::CharacterType::unknownLen()) 1050 return op.emitOpError("CHARACTER already has static LEN"); 1051 } else { 1052 return op.emitOpError("LEN parameters require CHARACTER or derived type"); 1053 } 1054 for (auto lp : op.typeparams()) 1055 if (!fir::isa_integer(lp.getType())) 1056 return op.emitOpError("LEN parameters must be integral type"); 1057 } 1058 if (op.getShape() && !isArray) 1059 return op.emitOpError("shape must not be provided for a scalar"); 1060 if (op.getSlice() && !isArray) 1061 return op.emitOpError("slice must not be provided for a scalar"); 1062 return mlir::success(); 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // EmboxCharOp 1067 //===----------------------------------------------------------------------===// 1068 1069 static mlir::LogicalResult verify(fir::EmboxCharOp &op) { 1070 auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); 1071 if (!eleTy.dyn_cast_or_null<CharacterType>()) 1072 return mlir::failure(); 1073 return mlir::success(); 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // EmboxProcOp 1078 //===----------------------------------------------------------------------===// 1079 1080 static mlir::ParseResult parseEmboxProcOp(mlir::OpAsmParser &parser, 1081 mlir::OperationState &result) { 1082 mlir::SymbolRefAttr procRef; 1083 if (parser.parseAttribute(procRef, "funcname", result.attributes)) 1084 return mlir::failure(); 1085 bool hasTuple = false; 1086 mlir::OpAsmParser::OperandType tupleRef; 1087 if (!parser.parseOptionalComma()) { 1088 if (parser.parseOperand(tupleRef)) 1089 return mlir::failure(); 1090 hasTuple = true; 1091 } 1092 mlir::FunctionType type; 1093 if (parser.parseColon() || parser.parseLParen() || parser.parseType(type)) 1094 return mlir::failure(); 1095 result.addAttribute("functype", mlir::TypeAttr::get(type)); 1096 if (hasTuple) { 1097 mlir::Type tupleType; 1098 if (parser.parseComma() || parser.parseType(tupleType) || 1099 parser.resolveOperand(tupleRef, tupleType, result.operands)) 1100 return mlir::failure(); 1101 } 1102 mlir::Type boxType; 1103 if (parser.parseRParen() || parser.parseArrow() || 1104 parser.parseType(boxType) || parser.addTypesToList(boxType, result.types)) 1105 return mlir::failure(); 1106 return mlir::success(); 1107 } 1108 1109 static void print(mlir::OpAsmPrinter &p, fir::EmboxProcOp &op) { 1110 p << ' ' << op.getOperation()->getAttr("funcname"); 1111 auto h = op.host(); 1112 if (h) { 1113 p << ", "; 1114 p.printOperand(h); 1115 } 1116 p << " : (" << op.getOperation()->getAttr("functype"); 1117 if (h) 1118 p << ", " << h.getType(); 1119 p << ") -> " << op.getType(); 1120 } 1121 1122 static mlir::LogicalResult verify(fir::EmboxProcOp &op) { 1123 // host bindings (optional) must be a reference to a tuple 1124 if (auto h = op.host()) { 1125 if (auto r = h.getType().dyn_cast<ReferenceType>()) { 1126 if (!r.getEleTy().dyn_cast<mlir::TupleType>()) 1127 return mlir::failure(); 1128 } else { 1129 return mlir::failure(); 1130 } 1131 } 1132 return mlir::success(); 1133 } 1134 1135 //===----------------------------------------------------------------------===// 1136 // GenTypeDescOp 1137 //===----------------------------------------------------------------------===// 1138 1139 void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, 1140 mlir::TypeAttr inty) { 1141 result.addAttribute("in_type", inty); 1142 result.addTypes(TypeDescType::get(inty.getValue())); 1143 } 1144 1145 static mlir::ParseResult parseGenTypeDescOp(mlir::OpAsmParser &parser, 1146 mlir::OperationState &result) { 1147 mlir::Type intype; 1148 if (parser.parseType(intype)) 1149 return mlir::failure(); 1150 result.addAttribute("in_type", mlir::TypeAttr::get(intype)); 1151 mlir::Type restype = TypeDescType::get(intype); 1152 if (parser.addTypeToList(restype, result.types)) 1153 return mlir::failure(); 1154 return mlir::success(); 1155 } 1156 1157 static void print(mlir::OpAsmPrinter &p, fir::GenTypeDescOp &op) { 1158 p << ' ' << op.getOperation()->getAttr("in_type"); 1159 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {"in_type"}); 1160 } 1161 1162 static mlir::LogicalResult verify(fir::GenTypeDescOp &op) { 1163 mlir::Type resultTy = op.getType(); 1164 if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) { 1165 if (tdesc.getOfTy() != op.getInType()) 1166 return op.emitOpError("wrapped type mismatched"); 1167 } else { 1168 return op.emitOpError("must be !fir.tdesc type"); 1169 } 1170 return mlir::success(); 1171 } 1172 1173 //===----------------------------------------------------------------------===// 1174 // GlobalOp 1175 //===----------------------------------------------------------------------===// 1176 1177 mlir::Type fir::GlobalOp::resultType() { 1178 return wrapAllocaResultType(getType()); 1179 } 1180 1181 static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { 1182 // Parse the optional linkage 1183 llvm::StringRef linkage; 1184 auto &builder = parser.getBuilder(); 1185 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { 1186 if (fir::GlobalOp::verifyValidLinkage(linkage)) 1187 return mlir::failure(); 1188 mlir::StringAttr linkAttr = builder.getStringAttr(linkage); 1189 result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); 1190 } 1191 1192 // Parse the name as a symbol reference attribute. 1193 mlir::SymbolRefAttr nameAttr; 1194 if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrNameStr(), 1195 result.attributes)) 1196 return mlir::failure(); 1197 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1198 nameAttr.getRootReference()); 1199 1200 bool simpleInitializer = false; 1201 if (mlir::succeeded(parser.parseOptionalLParen())) { 1202 Attribute attr; 1203 if (parser.parseAttribute(attr, "initVal", result.attributes) || 1204 parser.parseRParen()) 1205 return mlir::failure(); 1206 simpleInitializer = true; 1207 } 1208 1209 if (succeeded(parser.parseOptionalKeyword("constant"))) { 1210 // if "constant" keyword then mark this as a constant, not a variable 1211 result.addAttribute("constant", builder.getUnitAttr()); 1212 } 1213 1214 mlir::Type globalType; 1215 if (parser.parseColonType(globalType)) 1216 return mlir::failure(); 1217 1218 result.addAttribute(fir::GlobalOp::typeAttrName(result.name), 1219 mlir::TypeAttr::get(globalType)); 1220 1221 if (simpleInitializer) { 1222 result.addRegion(); 1223 } else { 1224 // Parse the optional initializer body. 1225 auto parseResult = parser.parseOptionalRegion( 1226 *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); 1227 if (parseResult.hasValue() && mlir::failed(*parseResult)) 1228 return mlir::failure(); 1229 } 1230 1231 return mlir::success(); 1232 } 1233 1234 static void print(mlir::OpAsmPrinter &p, fir::GlobalOp &op) { 1235 if (op.linkName().hasValue()) 1236 p << ' ' << op.linkName().getValue(); 1237 p << ' '; 1238 p.printAttributeWithoutType(op.getSymrefAttr()); 1239 if (auto val = op.getValueOrNull()) 1240 p << '(' << val << ')'; 1241 if (op.getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr())) 1242 p << " constant"; 1243 p << " : "; 1244 p.printType(op.getType()); 1245 if (op.hasInitializationBody()) { 1246 p << ' '; 1247 p.printRegion(op.getOperation()->getRegion(0), 1248 /*printEntryBlockArgs=*/false, 1249 /*printBlockTerminators=*/true); 1250 } 1251 } 1252 1253 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { 1254 getBlock().getOperations().push_back(op); 1255 } 1256 1257 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1258 StringRef name, bool isConstant, Type type, 1259 Attribute initialVal, StringAttr linkage, 1260 ArrayRef<NamedAttribute> attrs) { 1261 result.addRegion(); 1262 result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type)); 1263 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), 1264 builder.getStringAttr(name)); 1265 result.addAttribute(symbolAttrNameStr(), 1266 SymbolRefAttr::get(builder.getContext(), name)); 1267 if (isConstant) 1268 result.addAttribute(constantAttrName(result.name), builder.getUnitAttr()); 1269 if (initialVal) 1270 result.addAttribute(initValAttrName(result.name), initialVal); 1271 if (linkage) 1272 result.addAttribute(linkageAttrName(), linkage); 1273 result.attributes.append(attrs.begin(), attrs.end()); 1274 } 1275 1276 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1277 StringRef name, Type type, Attribute initialVal, 1278 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1279 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1280 } 1281 1282 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1283 StringRef name, bool isConstant, Type type, 1284 StringAttr linkage, ArrayRef<NamedAttribute> attrs) { 1285 build(builder, result, name, isConstant, type, {}, linkage, attrs); 1286 } 1287 1288 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1289 StringRef name, Type type, StringAttr linkage, 1290 ArrayRef<NamedAttribute> attrs) { 1291 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); 1292 } 1293 1294 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1295 StringRef name, bool isConstant, Type type, 1296 ArrayRef<NamedAttribute> attrs) { 1297 build(builder, result, name, isConstant, type, StringAttr{}, attrs); 1298 } 1299 1300 void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, 1301 StringRef name, Type type, 1302 ArrayRef<NamedAttribute> attrs) { 1303 build(builder, result, name, /*isConstant=*/false, type, attrs); 1304 } 1305 1306 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { 1307 // Supporting only a subset of the LLVM linkage types for now 1308 static const char *validNames[] = {"common", "internal", "linkonce", "weak"}; 1309 return mlir::success(llvm::is_contained(validNames, linkage)); 1310 } 1311 1312 //===----------------------------------------------------------------------===// 1313 // GlobalLenOp 1314 //===----------------------------------------------------------------------===// 1315 1316 static mlir::ParseResult parseGlobalLenOp(mlir::OpAsmParser &parser, 1317 mlir::OperationState &result) { 1318 llvm::StringRef fieldName; 1319 if (failed(parser.parseOptionalKeyword(&fieldName))) { 1320 mlir::StringAttr fieldAttr; 1321 if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(), 1322 result.attributes)) 1323 return mlir::failure(); 1324 } else { 1325 result.addAttribute(fir::GlobalLenOp::lenParamAttrName(), 1326 parser.getBuilder().getStringAttr(fieldName)); 1327 } 1328 mlir::IntegerAttr constant; 1329 if (parser.parseComma() || 1330 parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(), 1331 result.attributes)) 1332 return mlir::failure(); 1333 return mlir::success(); 1334 } 1335 1336 static void print(mlir::OpAsmPrinter &p, fir::GlobalLenOp &op) { 1337 p << ' ' << op.getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName()) 1338 << ", " << op.getOperation()->getAttr(fir::GlobalLenOp::intAttrName()); 1339 } 1340 1341 //===----------------------------------------------------------------------===// 1342 // FieldIndexOp 1343 //===----------------------------------------------------------------------===// 1344 1345 static mlir::ParseResult parseFieldIndexOp(mlir::OpAsmParser &parser, 1346 mlir::OperationState &result) { 1347 llvm::StringRef fieldName; 1348 auto &builder = parser.getBuilder(); 1349 mlir::Type recty; 1350 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1351 parser.parseType(recty)) 1352 return mlir::failure(); 1353 result.addAttribute(fir::FieldIndexOp::fieldAttrName(), 1354 builder.getStringAttr(fieldName)); 1355 if (!recty.dyn_cast<RecordType>()) 1356 return mlir::failure(); 1357 result.addAttribute(fir::FieldIndexOp::typeAttrName(), 1358 mlir::TypeAttr::get(recty)); 1359 if (!parser.parseOptionalLParen()) { 1360 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1361 llvm::SmallVector<mlir::Type> types; 1362 auto loc = parser.getNameLoc(); 1363 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || 1364 parser.parseColonTypeList(types) || parser.parseRParen() || 1365 parser.resolveOperands(operands, types, loc, result.operands)) 1366 return mlir::failure(); 1367 } 1368 mlir::Type fieldType = fir::FieldType::get(builder.getContext()); 1369 if (parser.addTypeToList(fieldType, result.types)) 1370 return mlir::failure(); 1371 return mlir::success(); 1372 } 1373 1374 static void print(mlir::OpAsmPrinter &p, fir::FieldIndexOp &op) { 1375 p << ' ' 1376 << op.getOperation() 1377 ->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName()) 1378 .getValue() 1379 << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::typeAttrName()); 1380 if (op.getNumOperands()) { 1381 p << '('; 1382 p.printOperands(op.typeparams()); 1383 const auto *sep = ") : "; 1384 for (auto op : op.typeparams()) { 1385 p << sep; 1386 if (op) 1387 p.printType(op.getType()); 1388 else 1389 p << "()"; 1390 sep = ", "; 1391 } 1392 } 1393 } 1394 1395 void fir::FieldIndexOp::build(mlir::OpBuilder &builder, 1396 mlir::OperationState &result, 1397 llvm::StringRef fieldName, mlir::Type recTy, 1398 mlir::ValueRange operands) { 1399 result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName)); 1400 result.addAttribute(typeAttrName(), TypeAttr::get(recTy)); 1401 result.addOperands(operands); 1402 } 1403 1404 //===----------------------------------------------------------------------===// 1405 // InsertOnRangeOp 1406 //===----------------------------------------------------------------------===// 1407 1408 static ParseResult 1409 parseCustomRangeSubscript(mlir::OpAsmParser &parser, 1410 mlir::DenseIntElementsAttr &coord) { 1411 llvm::SmallVector<int64_t> lbounds; 1412 llvm::SmallVector<int64_t> ubounds; 1413 if (parser.parseKeyword("from") || 1414 parser.parseCommaSeparatedList( 1415 AsmParser::Delimiter::Paren, 1416 [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) || 1417 parser.parseKeyword("to") || 1418 parser.parseCommaSeparatedList(AsmParser::Delimiter::Paren, [&] { 1419 return parser.parseInteger(ubounds.emplace_back(0)); 1420 })) 1421 return failure(); 1422 llvm::SmallVector<int64_t> zippedBounds; 1423 for (auto zip : llvm::zip(lbounds, ubounds)) { 1424 zippedBounds.push_back(std::get<0>(zip)); 1425 zippedBounds.push_back(std::get<1>(zip)); 1426 } 1427 coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds); 1428 return success(); 1429 } 1430 1431 void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, InsertOnRangeOp op, 1432 mlir::DenseIntElementsAttr coord) { 1433 printer << "from ("; 1434 auto enumerate = llvm::enumerate(coord.getValues<int64_t>()); 1435 // Even entries are the lower bounds. 1436 llvm::interleaveComma( 1437 make_filter_range( 1438 enumerate, 1439 [](auto indexed_value) { return indexed_value.index() % 2 == 0; }), 1440 printer, [&](auto indexed_value) { printer << indexed_value.value(); }); 1441 printer << ") to ("; 1442 // Odd entries are the upper bounds. 1443 llvm::interleaveComma( 1444 make_filter_range( 1445 enumerate, 1446 [](auto indexed_value) { return indexed_value.index() % 2 != 0; }), 1447 printer, [&](auto indexed_value) { printer << indexed_value.value(); }); 1448 printer << ")"; 1449 } 1450 1451 /// Range bounds must be nonnegative, and the range must not be empty. 1452 static mlir::LogicalResult verify(fir::InsertOnRangeOp op) { 1453 if (fir::hasDynamicSize(op.seq().getType())) 1454 return op.emitOpError("must have constant shape and size"); 1455 mlir::DenseIntElementsAttr coor = op.coor(); 1456 if (coor.size() < 2 || coor.size() % 2 != 0) 1457 return op.emitOpError("has uneven number of values in ranges"); 1458 bool rangeIsKnownToBeNonempty = false; 1459 for (auto i = coor.getValues<int64_t>().end(), 1460 b = coor.getValues<int64_t>().begin(); 1461 i != b;) { 1462 int64_t ub = (*--i); 1463 int64_t lb = (*--i); 1464 if (lb < 0 || ub < 0) 1465 return op.emitOpError("negative range bound"); 1466 if (rangeIsKnownToBeNonempty) 1467 continue; 1468 if (lb > ub) 1469 return op.emitOpError("empty range"); 1470 rangeIsKnownToBeNonempty = lb < ub; 1471 } 1472 return mlir::success(); 1473 } 1474 1475 //===----------------------------------------------------------------------===// 1476 // InsertValueOp 1477 //===----------------------------------------------------------------------===// 1478 1479 static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) { 1480 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>()) 1481 return iattr.getInt() == conVal; 1482 return false; 1483 } 1484 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); } 1485 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); } 1486 1487 // Undo some complex patterns created in the front-end and turn them back into 1488 // complex ops. 1489 template <typename FltOp, typename CpxOp> 1490 struct UndoComplexPattern : public mlir::RewritePattern { 1491 UndoComplexPattern(mlir::MLIRContext *ctx) 1492 : mlir::RewritePattern("fir.insert_value", 2, ctx) {} 1493 1494 mlir::LogicalResult 1495 matchAndRewrite(mlir::Operation *op, 1496 mlir::PatternRewriter &rewriter) const override { 1497 auto insval = dyn_cast_or_null<fir::InsertValueOp>(op); 1498 if (!insval || !insval.getType().isa<fir::ComplexType>()) 1499 return mlir::failure(); 1500 auto insval2 = 1501 dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp()); 1502 if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp())) 1503 return mlir::failure(); 1504 auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp()); 1505 auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp()); 1506 if (!binf || !binf2 || insval.coor().size() != 1 || 1507 !isOne(insval.coor()[0]) || insval2.coor().size() != 1 || 1508 !isZero(insval2.coor()[0])) 1509 return mlir::failure(); 1510 auto eai = 1511 dyn_cast_or_null<fir::ExtractValueOp>(binf.getLhs().getDefiningOp()); 1512 auto ebi = 1513 dyn_cast_or_null<fir::ExtractValueOp>(binf.getRhs().getDefiningOp()); 1514 auto ear = 1515 dyn_cast_or_null<fir::ExtractValueOp>(binf2.getLhs().getDefiningOp()); 1516 auto ebr = 1517 dyn_cast_or_null<fir::ExtractValueOp>(binf2.getRhs().getDefiningOp()); 1518 if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() || 1519 ebr.adt() != ebi.adt() || eai.coor().size() != 1 || 1520 !isOne(eai.coor()[0]) || ebi.coor().size() != 1 || 1521 !isOne(ebi.coor()[0]) || ear.coor().size() != 1 || 1522 !isZero(ear.coor()[0]) || ebr.coor().size() != 1 || 1523 !isZero(ebr.coor()[0])) 1524 return mlir::failure(); 1525 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt()); 1526 return mlir::success(); 1527 } 1528 }; 1529 1530 void fir::InsertValueOp::getCanonicalizationPatterns( 1531 mlir::RewritePatternSet &results, mlir::MLIRContext *context) { 1532 results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>, 1533 UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context); 1534 } 1535 1536 //===----------------------------------------------------------------------===// 1537 // IterWhileOp 1538 //===----------------------------------------------------------------------===// 1539 1540 void fir::IterWhileOp::build(mlir::OpBuilder &builder, 1541 mlir::OperationState &result, mlir::Value lb, 1542 mlir::Value ub, mlir::Value step, 1543 mlir::Value iterate, bool finalCountValue, 1544 mlir::ValueRange iterArgs, 1545 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1546 result.addOperands({lb, ub, step, iterate}); 1547 if (finalCountValue) { 1548 result.addTypes(builder.getIndexType()); 1549 result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr()); 1550 } 1551 result.addTypes(iterate.getType()); 1552 result.addOperands(iterArgs); 1553 for (auto v : iterArgs) 1554 result.addTypes(v.getType()); 1555 mlir::Region *bodyRegion = result.addRegion(); 1556 bodyRegion->push_back(new Block{}); 1557 bodyRegion->front().addArgument(builder.getIndexType(), result.location); 1558 bodyRegion->front().addArgument(iterate.getType(), result.location); 1559 bodyRegion->front().addArguments( 1560 iterArgs.getTypes(), 1561 SmallVector<Location>(iterArgs.size(), result.location)); 1562 result.addAttributes(attributes); 1563 } 1564 1565 static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser, 1566 mlir::OperationState &result) { 1567 auto &builder = parser.getBuilder(); 1568 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1569 if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || 1570 parser.parseEqual()) 1571 return mlir::failure(); 1572 1573 // Parse loop bounds. 1574 auto indexType = builder.getIndexType(); 1575 auto i1Type = builder.getIntegerType(1); 1576 if (parser.parseOperand(lb) || 1577 parser.resolveOperand(lb, indexType, result.operands) || 1578 parser.parseKeyword("to") || parser.parseOperand(ub) || 1579 parser.resolveOperand(ub, indexType, result.operands) || 1580 parser.parseKeyword("step") || parser.parseOperand(step) || 1581 parser.parseRParen() || 1582 parser.resolveOperand(step, indexType, result.operands)) 1583 return mlir::failure(); 1584 1585 mlir::OpAsmParser::OperandType iterateVar, iterateInput; 1586 if (parser.parseKeyword("and") || parser.parseLParen() || 1587 parser.parseRegionArgument(iterateVar) || parser.parseEqual() || 1588 parser.parseOperand(iterateInput) || parser.parseRParen() || 1589 parser.resolveOperand(iterateInput, i1Type, result.operands)) 1590 return mlir::failure(); 1591 1592 // Parse the initial iteration arguments. 1593 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs; 1594 auto prependCount = false; 1595 1596 // Induction variable. 1597 regionArgs.push_back(inductionVariable); 1598 regionArgs.push_back(iterateVar); 1599 1600 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1601 llvm::SmallVector<mlir::OpAsmParser::OperandType> operands; 1602 llvm::SmallVector<mlir::Type> regionTypes; 1603 // Parse assignment list and results type list. 1604 if (parser.parseAssignmentList(regionArgs, operands) || 1605 parser.parseArrowTypeList(regionTypes)) 1606 return failure(); 1607 if (regionTypes.size() == operands.size() + 2) 1608 prependCount = true; 1609 llvm::ArrayRef<mlir::Type> resTypes = regionTypes; 1610 resTypes = prependCount ? resTypes.drop_front(2) : resTypes; 1611 // Resolve input operands. 1612 for (auto operandType : llvm::zip(operands, resTypes)) 1613 if (parser.resolveOperand(std::get<0>(operandType), 1614 std::get<1>(operandType), result.operands)) 1615 return failure(); 1616 if (prependCount) { 1617 result.addTypes(regionTypes); 1618 } else { 1619 result.addTypes(i1Type); 1620 result.addTypes(resTypes); 1621 } 1622 } else if (succeeded(parser.parseOptionalArrow())) { 1623 llvm::SmallVector<mlir::Type> typeList; 1624 if (parser.parseLParen() || parser.parseTypeList(typeList) || 1625 parser.parseRParen()) 1626 return failure(); 1627 // Type list must be "(index, i1)". 1628 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() || 1629 !typeList[1].isSignlessInteger(1)) 1630 return failure(); 1631 result.addTypes(typeList); 1632 prependCount = true; 1633 } else { 1634 result.addTypes(i1Type); 1635 } 1636 1637 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1638 return mlir::failure(); 1639 1640 llvm::SmallVector<mlir::Type> argTypes; 1641 // Induction variable (hidden) 1642 if (prependCount) 1643 result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(), 1644 builder.getUnitAttr()); 1645 else 1646 argTypes.push_back(indexType); 1647 // Loop carried variables (including iterate) 1648 argTypes.append(result.types.begin(), result.types.end()); 1649 // Parse the body region. 1650 auto *body = result.addRegion(); 1651 if (regionArgs.size() != argTypes.size()) 1652 return parser.emitError( 1653 parser.getNameLoc(), 1654 "mismatch in number of loop-carried values and defined values"); 1655 1656 if (parser.parseRegion(*body, regionArgs, argTypes)) 1657 return failure(); 1658 1659 fir::IterWhileOp::ensureTerminator(*body, builder, result.location); 1660 1661 return mlir::success(); 1662 } 1663 1664 static mlir::LogicalResult verify(fir::IterWhileOp op) { 1665 // Check that the body defines as single block argument for the induction 1666 // variable. 1667 auto *body = op.getBody(); 1668 if (!body->getArgument(1).getType().isInteger(1)) 1669 return op.emitOpError( 1670 "expected body second argument to be an index argument for " 1671 "the induction variable"); 1672 if (!body->getArgument(0).getType().isIndex()) 1673 return op.emitOpError( 1674 "expected body first argument to be an index argument for " 1675 "the induction variable"); 1676 1677 auto opNumResults = op.getNumResults(); 1678 if (op.finalValue()) { 1679 // Result type must be "(index, i1, ...)". 1680 if (!op.getResult(0).getType().isa<mlir::IndexType>()) 1681 return op.emitOpError("result #0 expected to be index"); 1682 if (!op.getResult(1).getType().isSignlessInteger(1)) 1683 return op.emitOpError("result #1 expected to be i1"); 1684 opNumResults--; 1685 } else { 1686 // iterate_while always returns the early exit induction value. 1687 // Result type must be "(i1, ...)" 1688 if (!op.getResult(0).getType().isSignlessInteger(1)) 1689 return op.emitOpError("result #0 expected to be i1"); 1690 } 1691 if (opNumResults == 0) 1692 return mlir::failure(); 1693 if (op.getNumIterOperands() != opNumResults) 1694 return op.emitOpError( 1695 "mismatch in number of loop-carried values and defined values"); 1696 if (op.getNumRegionIterArgs() != opNumResults) 1697 return op.emitOpError( 1698 "mismatch in number of basic block args and defined values"); 1699 auto iterOperands = op.getIterOperands(); 1700 auto iterArgs = op.getRegionIterArgs(); 1701 auto opResults = 1702 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 1703 unsigned i = 0; 1704 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 1705 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 1706 return op.emitOpError() << "types mismatch between " << i 1707 << "th iter operand and defined value"; 1708 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 1709 return op.emitOpError() << "types mismatch between " << i 1710 << "th iter region arg and defined value"; 1711 1712 i++; 1713 } 1714 return mlir::success(); 1715 } 1716 1717 static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) { 1718 p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to " 1719 << op.upperBound() << " step " << op.step() << ") and ("; 1720 assert(op.hasIterOperands()); 1721 auto regionArgs = op.getRegionIterArgs(); 1722 auto operands = op.getIterOperands(); 1723 p << regionArgs.front() << " = " << *operands.begin() << ")"; 1724 if (regionArgs.size() > 1) { 1725 p << " iter_args("; 1726 llvm::interleaveComma( 1727 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, 1728 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); 1729 p << ") -> ("; 1730 llvm::interleaveComma( 1731 llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p); 1732 p << ")"; 1733 } else if (op.finalValue()) { 1734 p << " -> (" << op.getResultTypes() << ')'; 1735 } 1736 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 1737 {op.getFinalValueAttrNameStr()}); 1738 p << ' '; 1739 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 1740 /*printBlockTerminators=*/true); 1741 } 1742 1743 mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); } 1744 1745 bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { 1746 return !region().isAncestor(value.getParentRegion()); 1747 } 1748 1749 mlir::LogicalResult 1750 fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 1751 for (auto *op : ops) 1752 op->moveBefore(*this); 1753 return success(); 1754 } 1755 1756 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { 1757 for (auto i : llvm::enumerate(initArgs())) 1758 if (iterArg == i.value()) 1759 return region().front().getArgument(i.index() + 1); 1760 return {}; 1761 } 1762 1763 void fir::IterWhileOp::resultToSourceOps( 1764 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 1765 auto oper = finalValue() ? resultNum + 1 : resultNum; 1766 auto *term = region().front().getTerminator(); 1767 if (oper < term->getNumOperands()) 1768 results.push_back(term->getOperand(oper)); 1769 } 1770 1771 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { 1772 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 1773 return initArgs()[blockArgNum - 1]; 1774 return {}; 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // LenParamIndexOp 1779 //===----------------------------------------------------------------------===// 1780 1781 static mlir::ParseResult parseLenParamIndexOp(mlir::OpAsmParser &parser, 1782 mlir::OperationState &result) { 1783 llvm::StringRef fieldName; 1784 auto &builder = parser.getBuilder(); 1785 mlir::Type recty; 1786 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || 1787 parser.parseType(recty)) 1788 return mlir::failure(); 1789 result.addAttribute(fir::LenParamIndexOp::fieldAttrName(), 1790 builder.getStringAttr(fieldName)); 1791 if (!recty.dyn_cast<RecordType>()) 1792 return mlir::failure(); 1793 result.addAttribute(fir::LenParamIndexOp::typeAttrName(), 1794 mlir::TypeAttr::get(recty)); 1795 mlir::Type lenType = fir::LenType::get(builder.getContext()); 1796 if (parser.addTypeToList(lenType, result.types)) 1797 return mlir::failure(); 1798 return mlir::success(); 1799 } 1800 1801 static void print(mlir::OpAsmPrinter &p, fir::LenParamIndexOp &op) { 1802 p << ' ' 1803 << op.getOperation() 1804 ->getAttrOfType<mlir::StringAttr>( 1805 fir::LenParamIndexOp::fieldAttrName()) 1806 .getValue() 1807 << ", " << op.getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName()); 1808 } 1809 1810 //===----------------------------------------------------------------------===// 1811 // LoadOp 1812 //===----------------------------------------------------------------------===// 1813 1814 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 1815 mlir::Value refVal) { 1816 if (!refVal) { 1817 mlir::emitError(result.location, "LoadOp has null argument"); 1818 return; 1819 } 1820 auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType()); 1821 if (!eleTy) { 1822 mlir::emitError(result.location, "not a memory reference type"); 1823 return; 1824 } 1825 result.addOperands(refVal); 1826 result.addTypes(eleTy); 1827 } 1828 1829 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { 1830 if ((ele = fir::dyn_cast_ptrEleTy(ref))) 1831 return mlir::success(); 1832 return mlir::failure(); 1833 } 1834 1835 static mlir::ParseResult parseLoadOp(mlir::OpAsmParser &parser, 1836 mlir::OperationState &result) { 1837 mlir::Type type; 1838 mlir::OpAsmParser::OperandType oper; 1839 if (parser.parseOperand(oper) || 1840 parser.parseOptionalAttrDict(result.attributes) || 1841 parser.parseColonType(type) || 1842 parser.resolveOperand(oper, type, result.operands)) 1843 return mlir::failure(); 1844 mlir::Type eleTy; 1845 if (fir::LoadOp::getElementOf(eleTy, type) || 1846 parser.addTypeToList(eleTy, result.types)) 1847 return mlir::failure(); 1848 return mlir::success(); 1849 } 1850 1851 static void print(mlir::OpAsmPrinter &p, fir::LoadOp &op) { 1852 p << ' '; 1853 p.printOperand(op.memref()); 1854 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); 1855 p << " : " << op.memref().getType(); 1856 } 1857 1858 //===----------------------------------------------------------------------===// 1859 // DoLoopOp 1860 //===----------------------------------------------------------------------===// 1861 1862 void fir::DoLoopOp::build(mlir::OpBuilder &builder, 1863 mlir::OperationState &result, mlir::Value lb, 1864 mlir::Value ub, mlir::Value step, bool unordered, 1865 bool finalCountValue, mlir::ValueRange iterArgs, 1866 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 1867 result.addOperands({lb, ub, step}); 1868 result.addOperands(iterArgs); 1869 if (finalCountValue) { 1870 result.addTypes(builder.getIndexType()); 1871 result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); 1872 } 1873 for (auto v : iterArgs) 1874 result.addTypes(v.getType()); 1875 mlir::Region *bodyRegion = result.addRegion(); 1876 bodyRegion->push_back(new Block{}); 1877 if (iterArgs.empty() && !finalCountValue) 1878 DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); 1879 bodyRegion->front().addArgument(builder.getIndexType(), result.location); 1880 bodyRegion->front().addArguments( 1881 iterArgs.getTypes(), 1882 SmallVector<Location>(iterArgs.size(), result.location)); 1883 if (unordered) 1884 result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr()); 1885 result.addAttributes(attributes); 1886 } 1887 1888 static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser, 1889 mlir::OperationState &result) { 1890 auto &builder = parser.getBuilder(); 1891 mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; 1892 // Parse the induction variable followed by '='. 1893 if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) 1894 return mlir::failure(); 1895 1896 // Parse loop bounds. 1897 auto indexType = builder.getIndexType(); 1898 if (parser.parseOperand(lb) || 1899 parser.resolveOperand(lb, indexType, result.operands) || 1900 parser.parseKeyword("to") || parser.parseOperand(ub) || 1901 parser.resolveOperand(ub, indexType, result.operands) || 1902 parser.parseKeyword("step") || parser.parseOperand(step) || 1903 parser.resolveOperand(step, indexType, result.operands)) 1904 return failure(); 1905 1906 if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) 1907 result.addAttribute("unordered", builder.getUnitAttr()); 1908 1909 // Parse the optional initial iteration arguments. 1910 llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs, operands; 1911 llvm::SmallVector<mlir::Type> argTypes; 1912 auto prependCount = false; 1913 regionArgs.push_back(inductionVariable); 1914 1915 if (succeeded(parser.parseOptionalKeyword("iter_args"))) { 1916 // Parse assignment list and results type list. 1917 if (parser.parseAssignmentList(regionArgs, operands) || 1918 parser.parseArrowTypeList(result.types)) 1919 return failure(); 1920 if (result.types.size() == operands.size() + 1) 1921 prependCount = true; 1922 // Resolve input operands. 1923 llvm::ArrayRef<mlir::Type> resTypes = result.types; 1924 for (auto operand_type : 1925 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) 1926 if (parser.resolveOperand(std::get<0>(operand_type), 1927 std::get<1>(operand_type), result.operands)) 1928 return failure(); 1929 } else if (succeeded(parser.parseOptionalArrow())) { 1930 if (parser.parseKeyword("index")) 1931 return failure(); 1932 result.types.push_back(indexType); 1933 prependCount = true; 1934 } 1935 1936 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1937 return mlir::failure(); 1938 1939 // Induction variable. 1940 if (prependCount) 1941 result.addAttribute(DoLoopOp::finalValueAttrName(result.name), 1942 builder.getUnitAttr()); 1943 else 1944 argTypes.push_back(indexType); 1945 // Loop carried variables 1946 argTypes.append(result.types.begin(), result.types.end()); 1947 // Parse the body region. 1948 auto *body = result.addRegion(); 1949 if (regionArgs.size() != argTypes.size()) 1950 return parser.emitError( 1951 parser.getNameLoc(), 1952 "mismatch in number of loop-carried values and defined values"); 1953 1954 if (parser.parseRegion(*body, regionArgs, argTypes)) 1955 return failure(); 1956 1957 DoLoopOp::ensureTerminator(*body, builder, result.location); 1958 1959 return mlir::success(); 1960 } 1961 1962 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { 1963 auto ivArg = val.dyn_cast<mlir::BlockArgument>(); 1964 if (!ivArg) 1965 return {}; 1966 assert(ivArg.getOwner() && "unlinked block argument"); 1967 auto *containingInst = ivArg.getOwner()->getParentOp(); 1968 return dyn_cast_or_null<fir::DoLoopOp>(containingInst); 1969 } 1970 1971 // Lifted from loop.loop 1972 static mlir::LogicalResult verify(fir::DoLoopOp op) { 1973 // Check that the body defines as single block argument for the induction 1974 // variable. 1975 auto *body = op.getBody(); 1976 if (!body->getArgument(0).getType().isIndex()) 1977 return op.emitOpError( 1978 "expected body first argument to be an index argument for " 1979 "the induction variable"); 1980 1981 auto opNumResults = op.getNumResults(); 1982 if (opNumResults == 0) 1983 return success(); 1984 1985 if (op.finalValue()) { 1986 if (op.unordered()) 1987 return op.emitOpError("unordered loop has no final value"); 1988 opNumResults--; 1989 } 1990 if (op.getNumIterOperands() != opNumResults) 1991 return op.emitOpError( 1992 "mismatch in number of loop-carried values and defined values"); 1993 if (op.getNumRegionIterArgs() != opNumResults) 1994 return op.emitOpError( 1995 "mismatch in number of basic block args and defined values"); 1996 auto iterOperands = op.getIterOperands(); 1997 auto iterArgs = op.getRegionIterArgs(); 1998 auto opResults = 1999 op.finalValue() ? op.getResults().drop_front() : op.getResults(); 2000 unsigned i = 0; 2001 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { 2002 if (std::get<0>(e).getType() != std::get<2>(e).getType()) 2003 return op.emitOpError() << "types mismatch between " << i 2004 << "th iter operand and defined value"; 2005 if (std::get<1>(e).getType() != std::get<2>(e).getType()) 2006 return op.emitOpError() << "types mismatch between " << i 2007 << "th iter region arg and defined value"; 2008 2009 i++; 2010 } 2011 return success(); 2012 } 2013 2014 static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) { 2015 bool printBlockTerminators = false; 2016 p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to " 2017 << op.upperBound() << " step " << op.step(); 2018 if (op.unordered()) 2019 p << " unordered"; 2020 if (op.hasIterOperands()) { 2021 p << " iter_args("; 2022 auto regionArgs = op.getRegionIterArgs(); 2023 auto operands = op.getIterOperands(); 2024 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { 2025 p << std::get<0>(it) << " = " << std::get<1>(it); 2026 }); 2027 p << ") -> (" << op.getResultTypes() << ')'; 2028 printBlockTerminators = true; 2029 } else if (op.finalValue()) { 2030 p << " -> " << op.getResultTypes(); 2031 printBlockTerminators = true; 2032 } 2033 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 2034 {"unordered", "finalValue"}); 2035 p << ' '; 2036 p.printRegion(op.region(), /*printEntryBlockArgs=*/false, 2037 printBlockTerminators); 2038 } 2039 2040 mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); } 2041 2042 bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { 2043 return !region().isAncestor(value.getParentRegion()); 2044 } 2045 2046 mlir::LogicalResult 2047 fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) { 2048 for (auto op : ops) 2049 op->moveBefore(*this); 2050 return success(); 2051 } 2052 2053 /// Translate a value passed as an iter_arg to the corresponding block 2054 /// argument in the body of the loop. 2055 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { 2056 for (auto i : llvm::enumerate(initArgs())) 2057 if (iterArg == i.value()) 2058 return region().front().getArgument(i.index() + 1); 2059 return {}; 2060 } 2061 2062 /// Translate the result vector (by index number) to the corresponding value 2063 /// to the `fir.result` Op. 2064 void fir::DoLoopOp::resultToSourceOps( 2065 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) { 2066 auto oper = finalValue() ? resultNum + 1 : resultNum; 2067 auto *term = region().front().getTerminator(); 2068 if (oper < term->getNumOperands()) 2069 results.push_back(term->getOperand(oper)); 2070 } 2071 2072 /// Translate the block argument (by index number) to the corresponding value 2073 /// passed as an iter_arg to the parent DoLoopOp. 2074 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { 2075 if (blockArgNum > 0 && blockArgNum <= initArgs().size()) 2076 return initArgs()[blockArgNum - 1]; 2077 return {}; 2078 } 2079 2080 //===----------------------------------------------------------------------===// 2081 // DTEntryOp 2082 //===----------------------------------------------------------------------===// 2083 2084 static mlir::ParseResult parseDTEntryOp(mlir::OpAsmParser &parser, 2085 mlir::OperationState &result) { 2086 llvm::StringRef methodName; 2087 // allow `methodName` or `"methodName"` 2088 if (failed(parser.parseOptionalKeyword(&methodName))) { 2089 mlir::StringAttr methodAttr; 2090 if (parser.parseAttribute(methodAttr, 2091 fir::DTEntryOp::getMethodAttrNameStr(), 2092 result.attributes)) 2093 return mlir::failure(); 2094 } else { 2095 result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(), 2096 parser.getBuilder().getStringAttr(methodName)); 2097 } 2098 mlir::SymbolRefAttr calleeAttr; 2099 if (parser.parseComma() || 2100 parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(), 2101 result.attributes)) 2102 return mlir::failure(); 2103 return mlir::success(); 2104 } 2105 2106 static void print(mlir::OpAsmPrinter &p, fir::DTEntryOp &op) { 2107 p << ' ' << op.getMethodAttr() << ", " << op.getProcAttr(); 2108 } 2109 2110 //===----------------------------------------------------------------------===// 2111 // ReboxOp 2112 //===----------------------------------------------------------------------===// 2113 2114 /// Get the scalar type related to a fir.box type. 2115 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>. 2116 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { 2117 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2118 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2119 return seqTy.getEleTy(); 2120 return eleTy; 2121 } 2122 2123 /// Get the rank from a !fir.box type 2124 static unsigned getBoxRank(mlir::Type boxTy) { 2125 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); 2126 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) 2127 return seqTy.getDimension(); 2128 return 0; 2129 } 2130 2131 static mlir::LogicalResult verify(fir::ReboxOp op) { 2132 auto inputBoxTy = op.box().getType(); 2133 if (fir::isa_unknown_size_box(inputBoxTy)) 2134 return op.emitOpError("box operand must not have unknown rank or type"); 2135 auto outBoxTy = op.getType(); 2136 if (fir::isa_unknown_size_box(outBoxTy)) 2137 return op.emitOpError("result type must not have unknown rank or type"); 2138 auto inputRank = getBoxRank(inputBoxTy); 2139 auto inputEleTy = getBoxScalarEleTy(inputBoxTy); 2140 auto outRank = getBoxRank(outBoxTy); 2141 auto outEleTy = getBoxScalarEleTy(outBoxTy); 2142 2143 if (auto slice = op.slice()) { 2144 // Slicing case 2145 if (slice.getType().cast<fir::SliceType>().getRank() != inputRank) 2146 return op.emitOpError("slice operand rank must match box operand rank"); 2147 if (auto shape = op.shape()) { 2148 if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) { 2149 if (shiftTy.getRank() != inputRank) 2150 return op.emitOpError("shape operand and input box ranks must match " 2151 "when there is a slice"); 2152 } else { 2153 return op.emitOpError("shape operand must absent or be a fir.shift " 2154 "when there is a slice"); 2155 } 2156 } 2157 if (auto sliceOp = slice.getDefiningOp()) { 2158 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank(); 2159 if (slicedRank != outRank) 2160 return op.emitOpError("result type rank and rank after applying slice " 2161 "operand must match"); 2162 } 2163 } else { 2164 // Reshaping case 2165 unsigned shapeRank = inputRank; 2166 if (auto shape = op.shape()) { 2167 auto ty = shape.getType(); 2168 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) { 2169 shapeRank = shapeTy.getRank(); 2170 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) { 2171 shapeRank = shapeShiftTy.getRank(); 2172 } else { 2173 auto shiftTy = ty.cast<fir::ShiftType>(); 2174 shapeRank = shiftTy.getRank(); 2175 if (shapeRank != inputRank) 2176 return op.emitOpError("shape operand and input box ranks must match " 2177 "when the shape is a fir.shift"); 2178 } 2179 } 2180 if (shapeRank != outRank) 2181 return op.emitOpError("result type and shape operand ranks must match"); 2182 } 2183 2184 if (inputEleTy != outEleTy) 2185 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived 2186 // types. 2187 if (!inputEleTy.isa<fir::RecordType>()) 2188 return op.emitOpError( 2189 "op input and output element types must match for intrinsic types"); 2190 return mlir::success(); 2191 } 2192 2193 //===----------------------------------------------------------------------===// 2194 // ResultOp 2195 //===----------------------------------------------------------------------===// 2196 2197 static mlir::LogicalResult verify(fir::ResultOp op) { 2198 auto *parentOp = op->getParentOp(); 2199 auto results = parentOp->getResults(); 2200 auto operands = op->getOperands(); 2201 2202 if (parentOp->getNumResults() != op.getNumOperands()) 2203 return op.emitOpError() << "parent of result must have same arity"; 2204 for (auto e : llvm::zip(results, operands)) 2205 if (std::get<0>(e).getType() != std::get<1>(e).getType()) 2206 return op.emitOpError() 2207 << "types mismatch between result op and its parent"; 2208 return success(); 2209 } 2210 2211 //===----------------------------------------------------------------------===// 2212 // SaveResultOp 2213 //===----------------------------------------------------------------------===// 2214 2215 static mlir::LogicalResult verify(fir::SaveResultOp op) { 2216 auto resultType = op.value().getType(); 2217 if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType())) 2218 return op.emitOpError("value type must match memory reference type"); 2219 if (fir::isa_unknown_size_box(resultType)) 2220 return op.emitOpError("cannot save !fir.box of unknown rank or type"); 2221 2222 if (resultType.isa<fir::BoxType>()) { 2223 if (op.shape() || !op.typeparams().empty()) 2224 return op.emitOpError( 2225 "must not have shape or length operands if the value is a fir.box"); 2226 return mlir::success(); 2227 } 2228 2229 // fir.record or fir.array case. 2230 unsigned shapeTyRank = 0; 2231 if (auto shapeOp = op.shape()) { 2232 auto shapeTy = shapeOp.getType(); 2233 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) 2234 shapeTyRank = s.getRank(); 2235 else 2236 shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank(); 2237 } 2238 2239 auto eleTy = resultType; 2240 if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) { 2241 if (seqTy.getDimension() != shapeTyRank) 2242 op.emitOpError("shape operand must be provided and have the value rank " 2243 "when the value is a fir.array"); 2244 eleTy = seqTy.getEleTy(); 2245 } else { 2246 if (shapeTyRank != 0) 2247 op.emitOpError( 2248 "shape operand should only be provided if the value is a fir.array"); 2249 } 2250 2251 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) { 2252 if (recTy.getNumLenParams() != op.typeparams().size()) 2253 op.emitOpError("length parameters number must match with the value type " 2254 "length parameters"); 2255 } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 2256 if (op.typeparams().size() > 1) 2257 op.emitOpError("no more than one length parameter must be provided for " 2258 "character value"); 2259 } else { 2260 if (!op.typeparams().empty()) 2261 op.emitOpError( 2262 "length parameters must not be provided for this value type"); 2263 } 2264 2265 return mlir::success(); 2266 } 2267 2268 //===----------------------------------------------------------------------===// 2269 // SelectOp 2270 //===----------------------------------------------------------------------===// 2271 2272 static constexpr llvm::StringRef getCompareOffsetAttr() { 2273 return "compare_operand_offsets"; 2274 } 2275 2276 static constexpr llvm::StringRef getTargetOffsetAttr() { 2277 return "target_operand_offsets"; 2278 } 2279 2280 template <typename A, typename... AdditionalArgs> 2281 static A getSubOperands(unsigned pos, A allArgs, 2282 mlir::DenseIntElementsAttr ranges, 2283 AdditionalArgs &&...additionalArgs) { 2284 unsigned start = 0; 2285 for (unsigned i = 0; i < pos; ++i) 2286 start += (*(ranges.begin() + i)).getZExtValue(); 2287 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), 2288 std::forward<AdditionalArgs>(additionalArgs)...); 2289 } 2290 2291 static mlir::MutableOperandRange 2292 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, 2293 StringRef offsetAttr) { 2294 Operation *owner = operands.getOwner(); 2295 NamedAttribute targetOffsetAttr = 2296 *owner->getAttrDictionary().getNamed(offsetAttr); 2297 return getSubOperands( 2298 pos, operands, targetOffsetAttr.getValue().cast<DenseIntElementsAttr>(), 2299 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); 2300 } 2301 2302 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { 2303 return attr.getNumElements(); 2304 } 2305 2306 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) { 2307 return {}; 2308 } 2309 2310 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2311 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2312 return {}; 2313 } 2314 2315 llvm::Optional<mlir::MutableOperandRange> 2316 fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { 2317 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2318 getTargetOffsetAttr()); 2319 } 2320 2321 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2322 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2323 unsigned oper) { 2324 auto a = 2325 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2326 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2327 getOperandSegmentSizeAttr()); 2328 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2329 } 2330 2331 llvm::Optional<mlir::ValueRange> 2332 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) { 2333 auto a = 2334 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2335 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2336 getOperandSegmentSizeAttr()); 2337 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2338 } 2339 2340 unsigned fir::SelectOp::targetOffsetSize() { 2341 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2342 getTargetOffsetAttr())); 2343 } 2344 2345 //===----------------------------------------------------------------------===// 2346 // SelectCaseOp 2347 //===----------------------------------------------------------------------===// 2348 2349 llvm::Optional<mlir::OperandRange> 2350 fir::SelectCaseOp::getCompareOperands(unsigned cond) { 2351 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2352 getCompareOffsetAttr()); 2353 return {getSubOperands(cond, compareArgs(), a)}; 2354 } 2355 2356 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2357 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands, 2358 unsigned cond) { 2359 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2360 getCompareOffsetAttr()); 2361 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2362 getOperandSegmentSizeAttr()); 2363 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2364 } 2365 2366 llvm::Optional<mlir::ValueRange> 2367 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands, 2368 unsigned cond) { 2369 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2370 getCompareOffsetAttr()); 2371 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2372 getOperandSegmentSizeAttr()); 2373 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; 2374 } 2375 2376 llvm::Optional<mlir::MutableOperandRange> 2377 fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { 2378 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2379 getTargetOffsetAttr()); 2380 } 2381 2382 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2383 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2384 unsigned oper) { 2385 auto a = 2386 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2387 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2388 getOperandSegmentSizeAttr()); 2389 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2390 } 2391 2392 llvm::Optional<mlir::ValueRange> 2393 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands, 2394 unsigned oper) { 2395 auto a = 2396 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2397 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2398 getOperandSegmentSizeAttr()); 2399 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2400 } 2401 2402 // parser for fir.select_case Op 2403 static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser, 2404 mlir::OperationState &result) { 2405 mlir::OpAsmParser::OperandType selector; 2406 mlir::Type type; 2407 if (parseSelector(parser, result, selector, type)) 2408 return mlir::failure(); 2409 2410 llvm::SmallVector<mlir::Attribute> attrs; 2411 llvm::SmallVector<mlir::OpAsmParser::OperandType> opers; 2412 llvm::SmallVector<mlir::Block *> dests; 2413 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2414 llvm::SmallVector<int32_t> argOffs; 2415 int32_t offSize = 0; 2416 while (true) { 2417 mlir::Attribute attr; 2418 mlir::Block *dest; 2419 llvm::SmallVector<mlir::Value> destArg; 2420 mlir::NamedAttrList temp; 2421 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || 2422 parser.parseComma()) 2423 return mlir::failure(); 2424 attrs.push_back(attr); 2425 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) { 2426 argOffs.push_back(0); 2427 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) { 2428 mlir::OpAsmParser::OperandType oper1; 2429 mlir::OpAsmParser::OperandType oper2; 2430 if (parser.parseOperand(oper1) || parser.parseComma() || 2431 parser.parseOperand(oper2) || parser.parseComma()) 2432 return mlir::failure(); 2433 opers.push_back(oper1); 2434 opers.push_back(oper2); 2435 argOffs.push_back(2); 2436 offSize += 2; 2437 } else { 2438 mlir::OpAsmParser::OperandType oper; 2439 if (parser.parseOperand(oper) || parser.parseComma()) 2440 return mlir::failure(); 2441 opers.push_back(oper); 2442 argOffs.push_back(1); 2443 ++offSize; 2444 } 2445 if (parser.parseSuccessorAndUseList(dest, destArg)) 2446 return mlir::failure(); 2447 dests.push_back(dest); 2448 destArgs.push_back(destArg); 2449 if (mlir::succeeded(parser.parseOptionalRSquare())) 2450 break; 2451 if (parser.parseComma()) 2452 return mlir::failure(); 2453 } 2454 result.addAttribute(fir::SelectCaseOp::getCasesAttr(), 2455 parser.getBuilder().getArrayAttr(attrs)); 2456 if (parser.resolveOperands(opers, type, result.operands)) 2457 return mlir::failure(); 2458 llvm::SmallVector<int32_t> targOffs; 2459 int32_t toffSize = 0; 2460 const auto count = dests.size(); 2461 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2462 result.addSuccessors(dests[i]); 2463 result.addOperands(destArgs[i]); 2464 auto argSize = destArgs[i].size(); 2465 targOffs.push_back(argSize); 2466 toffSize += argSize; 2467 } 2468 auto &bld = parser.getBuilder(); 2469 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), 2470 bld.getI32VectorAttr({1, offSize, toffSize})); 2471 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2472 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); 2473 return mlir::success(); 2474 } 2475 2476 static void print(mlir::OpAsmPrinter &p, fir::SelectCaseOp &op) { 2477 p << ' '; 2478 p.printOperand(op.getSelector()); 2479 p << " : " << op.getSelector().getType() << " ["; 2480 auto cases = op.getOperation() 2481 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2482 .getValue(); 2483 auto count = op.getNumConditions(); 2484 for (decltype(count) i = 0; i != count; ++i) { 2485 if (i) 2486 p << ", "; 2487 p << cases[i] << ", "; 2488 if (!cases[i].isa<mlir::UnitAttr>()) { 2489 auto caseArgs = *op.getCompareOperands(i); 2490 p.printOperand(*caseArgs.begin()); 2491 p << ", "; 2492 if (cases[i].isa<fir::ClosedIntervalAttr>()) { 2493 p.printOperand(*(++caseArgs.begin())); 2494 p << ", "; 2495 } 2496 } 2497 op.printSuccessorAtIndex(p, i); 2498 } 2499 p << ']'; 2500 p.printOptionalAttrDict(op.getOperation()->getAttrs(), 2501 {op.getCasesAttr(), getCompareOffsetAttr(), 2502 getTargetOffsetAttr(), 2503 op.getOperandSegmentSizeAttr()}); 2504 } 2505 2506 unsigned fir::SelectCaseOp::compareOffsetSize() { 2507 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2508 getCompareOffsetAttr())); 2509 } 2510 2511 unsigned fir::SelectCaseOp::targetOffsetSize() { 2512 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2513 getTargetOffsetAttr())); 2514 } 2515 2516 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2517 mlir::OperationState &result, 2518 mlir::Value selector, 2519 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2520 llvm::ArrayRef<mlir::ValueRange> cmpOperands, 2521 llvm::ArrayRef<mlir::Block *> destinations, 2522 llvm::ArrayRef<mlir::ValueRange> destOperands, 2523 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2524 result.addOperands(selector); 2525 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); 2526 llvm::SmallVector<int32_t> operOffs; 2527 int32_t operSize = 0; 2528 for (auto attr : compareAttrs) { 2529 if (attr.isa<fir::ClosedIntervalAttr>()) { 2530 operOffs.push_back(2); 2531 operSize += 2; 2532 } else if (attr.isa<mlir::UnitAttr>()) { 2533 operOffs.push_back(0); 2534 } else { 2535 operOffs.push_back(1); 2536 ++operSize; 2537 } 2538 } 2539 for (auto ops : cmpOperands) 2540 result.addOperands(ops); 2541 result.addAttribute(getCompareOffsetAttr(), 2542 builder.getI32VectorAttr(operOffs)); 2543 const auto count = destinations.size(); 2544 for (auto d : destinations) 2545 result.addSuccessors(d); 2546 const auto opCount = destOperands.size(); 2547 llvm::SmallVector<int32_t> argOffs; 2548 int32_t sumArgs = 0; 2549 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2550 if (i < opCount) { 2551 result.addOperands(destOperands[i]); 2552 const auto argSz = destOperands[i].size(); 2553 argOffs.push_back(argSz); 2554 sumArgs += argSz; 2555 } else { 2556 argOffs.push_back(0); 2557 } 2558 } 2559 result.addAttribute(getOperandSegmentSizeAttr(), 2560 builder.getI32VectorAttr({1, operSize, sumArgs})); 2561 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2562 result.addAttributes(attributes); 2563 } 2564 2565 /// This builder has a slightly simplified interface in that the list of 2566 /// operands need not be partitioned by the builder. Instead the operands are 2567 /// partitioned here, before being passed to the default builder. This 2568 /// partitioning is unchecked, so can go awry on bad input. 2569 void fir::SelectCaseOp::build(mlir::OpBuilder &builder, 2570 mlir::OperationState &result, 2571 mlir::Value selector, 2572 llvm::ArrayRef<mlir::Attribute> compareAttrs, 2573 llvm::ArrayRef<mlir::Value> cmpOpList, 2574 llvm::ArrayRef<mlir::Block *> destinations, 2575 llvm::ArrayRef<mlir::ValueRange> destOperands, 2576 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2577 llvm::SmallVector<mlir::ValueRange> cmpOpers; 2578 auto iter = cmpOpList.begin(); 2579 for (auto &attr : compareAttrs) { 2580 if (attr.isa<fir::ClosedIntervalAttr>()) { 2581 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); 2582 iter += 2; 2583 } else if (attr.isa<UnitAttr>()) { 2584 cmpOpers.push_back(mlir::ValueRange{}); 2585 } else { 2586 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); 2587 ++iter; 2588 } 2589 } 2590 build(builder, result, selector, compareAttrs, cmpOpers, destinations, 2591 destOperands, attributes); 2592 } 2593 2594 static mlir::LogicalResult verify(fir::SelectCaseOp &op) { 2595 if (!(op.getSelector().getType().isa<mlir::IntegerType>() || 2596 op.getSelector().getType().isa<mlir::IndexType>() || 2597 op.getSelector().getType().isa<fir::IntegerType>() || 2598 op.getSelector().getType().isa<fir::LogicalType>() || 2599 op.getSelector().getType().isa<fir::CharacterType>())) 2600 return op.emitOpError("must be an integer, character, or logical"); 2601 auto cases = op.getOperation() 2602 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2603 .getValue(); 2604 auto count = op.getNumDest(); 2605 if (count == 0) 2606 return op.emitOpError("must have at least one successor"); 2607 if (op.getNumConditions() != count) 2608 return op.emitOpError("number of conditions and successors don't match"); 2609 if (op.compareOffsetSize() != count) 2610 return op.emitOpError("incorrect number of compare operand groups"); 2611 if (op.targetOffsetSize() != count) 2612 return op.emitOpError("incorrect number of successor operand groups"); 2613 for (decltype(count) i = 0; i != count; ++i) { 2614 auto &attr = cases[i]; 2615 if (!(attr.isa<fir::PointIntervalAttr>() || 2616 attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() || 2617 attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>())) 2618 return op.emitOpError("incorrect select case attribute type"); 2619 } 2620 return mlir::success(); 2621 } 2622 2623 //===----------------------------------------------------------------------===// 2624 // SelectRankOp 2625 //===----------------------------------------------------------------------===// 2626 2627 llvm::Optional<mlir::OperandRange> 2628 fir::SelectRankOp::getCompareOperands(unsigned) { 2629 return {}; 2630 } 2631 2632 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2633 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2634 return {}; 2635 } 2636 2637 llvm::Optional<mlir::MutableOperandRange> 2638 fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { 2639 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2640 getTargetOffsetAttr()); 2641 } 2642 2643 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2644 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2645 unsigned oper) { 2646 auto a = 2647 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2648 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2649 getOperandSegmentSizeAttr()); 2650 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2651 } 2652 2653 llvm::Optional<mlir::ValueRange> 2654 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands, 2655 unsigned oper) { 2656 auto a = 2657 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2658 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2659 getOperandSegmentSizeAttr()); 2660 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2661 } 2662 2663 unsigned fir::SelectRankOp::targetOffsetSize() { 2664 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2665 getTargetOffsetAttr())); 2666 } 2667 2668 //===----------------------------------------------------------------------===// 2669 // SelectTypeOp 2670 //===----------------------------------------------------------------------===// 2671 2672 llvm::Optional<mlir::OperandRange> 2673 fir::SelectTypeOp::getCompareOperands(unsigned) { 2674 return {}; 2675 } 2676 2677 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2678 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) { 2679 return {}; 2680 } 2681 2682 llvm::Optional<mlir::MutableOperandRange> 2683 fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { 2684 return ::getMutableSuccessorOperands(oper, targetArgsMutable(), 2685 getTargetOffsetAttr()); 2686 } 2687 2688 llvm::Optional<llvm::ArrayRef<mlir::Value>> 2689 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands, 2690 unsigned oper) { 2691 auto a = 2692 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr()); 2693 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2694 getOperandSegmentSizeAttr()); 2695 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; 2696 } 2697 2698 static ParseResult parseSelectType(OpAsmParser &parser, 2699 OperationState &result) { 2700 mlir::OpAsmParser::OperandType selector; 2701 mlir::Type type; 2702 if (parseSelector(parser, result, selector, type)) 2703 return mlir::failure(); 2704 2705 llvm::SmallVector<mlir::Attribute> attrs; 2706 llvm::SmallVector<mlir::Block *> dests; 2707 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs; 2708 while (true) { 2709 mlir::Attribute attr; 2710 mlir::Block *dest; 2711 llvm::SmallVector<mlir::Value> destArg; 2712 mlir::NamedAttrList temp; 2713 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || 2714 parser.parseSuccessorAndUseList(dest, destArg)) 2715 return mlir::failure(); 2716 attrs.push_back(attr); 2717 dests.push_back(dest); 2718 destArgs.push_back(destArg); 2719 if (mlir::succeeded(parser.parseOptionalRSquare())) 2720 break; 2721 if (parser.parseComma()) 2722 return mlir::failure(); 2723 } 2724 auto &bld = parser.getBuilder(); 2725 result.addAttribute(fir::SelectTypeOp::getCasesAttr(), 2726 bld.getArrayAttr(attrs)); 2727 llvm::SmallVector<int32_t> argOffs; 2728 int32_t offSize = 0; 2729 const auto count = dests.size(); 2730 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2731 result.addSuccessors(dests[i]); 2732 result.addOperands(destArgs[i]); 2733 auto argSize = destArgs[i].size(); 2734 argOffs.push_back(argSize); 2735 offSize += argSize; 2736 } 2737 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), 2738 bld.getI32VectorAttr({1, 0, offSize})); 2739 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); 2740 return mlir::success(); 2741 } 2742 2743 unsigned fir::SelectTypeOp::targetOffsetSize() { 2744 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>( 2745 getTargetOffsetAttr())); 2746 } 2747 2748 static void print(mlir::OpAsmPrinter &p, fir::SelectTypeOp &op) { 2749 p << ' '; 2750 p.printOperand(op.getSelector()); 2751 p << " : " << op.getSelector().getType() << " ["; 2752 auto cases = op.getOperation() 2753 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2754 .getValue(); 2755 auto count = op.getNumConditions(); 2756 for (decltype(count) i = 0; i != count; ++i) { 2757 if (i) 2758 p << ", "; 2759 p << cases[i] << ", "; 2760 op.printSuccessorAtIndex(p, i); 2761 } 2762 p << ']'; 2763 p.printOptionalAttrDict(op.getOperation()->getAttrs(), 2764 {op.getCasesAttr(), getCompareOffsetAttr(), 2765 getTargetOffsetAttr(), 2766 fir::SelectTypeOp::getOperandSegmentSizeAttr()}); 2767 } 2768 2769 static mlir::LogicalResult verify(fir::SelectTypeOp &op) { 2770 if (!(op.getSelector().getType().isa<fir::BoxType>())) 2771 return op.emitOpError("must be a boxed type"); 2772 auto cases = op.getOperation() 2773 ->getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()) 2774 .getValue(); 2775 auto count = op.getNumDest(); 2776 if (count == 0) 2777 return op.emitOpError("must have at least one successor"); 2778 if (op.getNumConditions() != count) 2779 return op.emitOpError("number of conditions and successors don't match"); 2780 if (op.targetOffsetSize() != count) 2781 return op.emitOpError("incorrect number of successor operand groups"); 2782 for (decltype(count) i = 0; i != count; ++i) { 2783 auto &attr = cases[i]; 2784 if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() || 2785 attr.isa<mlir::UnitAttr>())) 2786 return op.emitOpError("invalid type-case alternative"); 2787 } 2788 return mlir::success(); 2789 } 2790 2791 void fir::SelectTypeOp::build(mlir::OpBuilder &builder, 2792 mlir::OperationState &result, 2793 mlir::Value selector, 2794 llvm::ArrayRef<mlir::Attribute> typeOperands, 2795 llvm::ArrayRef<mlir::Block *> destinations, 2796 llvm::ArrayRef<mlir::ValueRange> destOperands, 2797 llvm::ArrayRef<mlir::NamedAttribute> attributes) { 2798 result.addOperands(selector); 2799 result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands)); 2800 const auto count = destinations.size(); 2801 for (mlir::Block *dest : destinations) 2802 result.addSuccessors(dest); 2803 const auto opCount = destOperands.size(); 2804 llvm::SmallVector<int32_t> argOffs; 2805 int32_t sumArgs = 0; 2806 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) { 2807 if (i < opCount) { 2808 result.addOperands(destOperands[i]); 2809 const auto argSz = destOperands[i].size(); 2810 argOffs.push_back(argSz); 2811 sumArgs += argSz; 2812 } else { 2813 argOffs.push_back(0); 2814 } 2815 } 2816 result.addAttribute(getOperandSegmentSizeAttr(), 2817 builder.getI32VectorAttr({1, 0, sumArgs})); 2818 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); 2819 result.addAttributes(attributes); 2820 } 2821 2822 //===----------------------------------------------------------------------===// 2823 // ShapeOp 2824 //===----------------------------------------------------------------------===// 2825 2826 static mlir::LogicalResult verify(fir::ShapeOp &op) { 2827 auto size = op.extents().size(); 2828 auto shapeTy = op.getType().dyn_cast<fir::ShapeType>(); 2829 assert(shapeTy && "must be a shape type"); 2830 if (shapeTy.getRank() != size) 2831 return op.emitOpError("shape type rank mismatch"); 2832 return mlir::success(); 2833 } 2834 2835 //===----------------------------------------------------------------------===// 2836 // ShapeShiftOp 2837 //===----------------------------------------------------------------------===// 2838 2839 static mlir::LogicalResult verify(fir::ShapeShiftOp &op) { 2840 auto size = op.pairs().size(); 2841 if (size < 2 || size > 16 * 2) 2842 return op.emitOpError("incorrect number of args"); 2843 if (size % 2 != 0) 2844 return op.emitOpError("requires a multiple of 2 args"); 2845 auto shapeTy = op.getType().dyn_cast<fir::ShapeShiftType>(); 2846 assert(shapeTy && "must be a shape shift type"); 2847 if (shapeTy.getRank() * 2 != size) 2848 return op.emitOpError("shape type rank mismatch"); 2849 return mlir::success(); 2850 } 2851 2852 //===----------------------------------------------------------------------===// 2853 // ShiftOp 2854 //===----------------------------------------------------------------------===// 2855 2856 static mlir::LogicalResult verify(fir::ShiftOp &op) { 2857 auto size = op.origins().size(); 2858 auto shiftTy = op.getType().dyn_cast<fir::ShiftType>(); 2859 assert(shiftTy && "must be a shift type"); 2860 if (shiftTy.getRank() != size) 2861 return op.emitOpError("shift type rank mismatch"); 2862 return mlir::success(); 2863 } 2864 2865 //===----------------------------------------------------------------------===// 2866 // SliceOp 2867 //===----------------------------------------------------------------------===// 2868 2869 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, 2870 mlir::ValueRange trips, mlir::ValueRange path, 2871 mlir::ValueRange substr) { 2872 const auto rank = trips.size() / 3; 2873 auto sliceTy = fir::SliceType::get(builder.getContext(), rank); 2874 build(builder, result, sliceTy, trips, path, substr); 2875 } 2876 2877 /// Return the output rank of a slice op. The output rank must be between 1 and 2878 /// the rank of the array being sliced (inclusive). 2879 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { 2880 unsigned rank = 0; 2881 if (!triples.empty()) { 2882 for (unsigned i = 1, end = triples.size(); i < end; i += 3) { 2883 auto *op = triples[i].getDefiningOp(); 2884 if (!mlir::isa_and_nonnull<fir::UndefOp>(op)) 2885 ++rank; 2886 } 2887 assert(rank > 0); 2888 } 2889 return rank; 2890 } 2891 2892 static mlir::LogicalResult verify(fir::SliceOp &op) { 2893 auto size = op.triples().size(); 2894 if (size < 3 || size > 16 * 3) 2895 return op.emitOpError("incorrect number of args for triple"); 2896 if (size % 3 != 0) 2897 return op.emitOpError("requires a multiple of 3 args"); 2898 auto sliceTy = op.getType().dyn_cast<fir::SliceType>(); 2899 assert(sliceTy && "must be a slice type"); 2900 if (sliceTy.getRank() * 3 != size) 2901 return op.emitOpError("slice type rank mismatch"); 2902 return mlir::success(); 2903 } 2904 2905 //===----------------------------------------------------------------------===// 2906 // StoreOp 2907 //===----------------------------------------------------------------------===// 2908 2909 mlir::Type fir::StoreOp::elementType(mlir::Type refType) { 2910 return fir::dyn_cast_ptrEleTy(refType); 2911 } 2912 2913 static mlir::ParseResult parseStoreOp(mlir::OpAsmParser &parser, 2914 mlir::OperationState &result) { 2915 mlir::Type type; 2916 mlir::OpAsmParser::OperandType oper; 2917 mlir::OpAsmParser::OperandType store; 2918 if (parser.parseOperand(oper) || parser.parseKeyword("to") || 2919 parser.parseOperand(store) || 2920 parser.parseOptionalAttrDict(result.attributes) || 2921 parser.parseColonType(type) || 2922 parser.resolveOperand(oper, fir::StoreOp::elementType(type), 2923 result.operands) || 2924 parser.resolveOperand(store, type, result.operands)) 2925 return mlir::failure(); 2926 return mlir::success(); 2927 } 2928 2929 static void print(mlir::OpAsmPrinter &p, fir::StoreOp &op) { 2930 p << ' '; 2931 p.printOperand(op.value()); 2932 p << " to "; 2933 p.printOperand(op.memref()); 2934 p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); 2935 p << " : " << op.memref().getType(); 2936 } 2937 2938 static mlir::LogicalResult verify(fir::StoreOp &op) { 2939 if (op.value().getType() != fir::dyn_cast_ptrEleTy(op.memref().getType())) 2940 return op.emitOpError("store value type must match memory reference type"); 2941 if (fir::isa_unknown_size_box(op.value().getType())) 2942 return op.emitOpError("cannot store !fir.box of unknown rank or type"); 2943 return mlir::success(); 2944 } 2945 2946 //===----------------------------------------------------------------------===// 2947 // StringLitOp 2948 //===----------------------------------------------------------------------===// 2949 2950 bool fir::StringLitOp::isWideValue() { 2951 auto eleTy = getType().cast<fir::SequenceType>().getEleTy(); 2952 return eleTy.cast<fir::CharacterType>().getFKind() != 1; 2953 } 2954 2955 static mlir::NamedAttribute 2956 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) { 2957 assert(v > 0); 2958 return builder.getNamedAttr( 2959 name, builder.getIntegerAttr(builder.getIntegerType(64), v)); 2960 } 2961 2962 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2963 fir::CharacterType inType, llvm::StringRef val, 2964 llvm::Optional<int64_t> len) { 2965 auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val)); 2966 int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2967 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2968 result.addAttributes({valAttr, lenAttr}); 2969 result.addTypes(inType); 2970 } 2971 2972 template <typename C> 2973 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder, 2974 llvm::ArrayRef<C> xlist) { 2975 llvm::SmallVector<mlir::Attribute> attrs; 2976 auto ty = builder.getIntegerType(8 * sizeof(C)); 2977 for (auto ch : xlist) 2978 attrs.push_back(builder.getIntegerAttr(ty, ch)); 2979 return builder.getArrayAttr(attrs); 2980 } 2981 2982 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2983 fir::CharacterType inType, 2984 llvm::ArrayRef<char> vlist, 2985 llvm::Optional<int64_t> len) { 2986 auto valAttr = 2987 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 2988 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 2989 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 2990 result.addAttributes({valAttr, lenAttr}); 2991 result.addTypes(inType); 2992 } 2993 2994 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 2995 fir::CharacterType inType, 2996 llvm::ArrayRef<char16_t> vlist, 2997 llvm::Optional<int64_t> len) { 2998 auto valAttr = 2999 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 3000 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 3001 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 3002 result.addAttributes({valAttr, lenAttr}); 3003 result.addTypes(inType); 3004 } 3005 3006 void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, 3007 fir::CharacterType inType, 3008 llvm::ArrayRef<char32_t> vlist, 3009 llvm::Optional<int64_t> len) { 3010 auto valAttr = 3011 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); 3012 std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); 3013 auto lenAttr = mkNamedIntegerAttr(builder, size(), length); 3014 result.addAttributes({valAttr, lenAttr}); 3015 result.addTypes(inType); 3016 } 3017 3018 static mlir::ParseResult parseStringLitOp(mlir::OpAsmParser &parser, 3019 mlir::OperationState &result) { 3020 auto &builder = parser.getBuilder(); 3021 mlir::Attribute val; 3022 mlir::NamedAttrList attrs; 3023 llvm::SMLoc trailingTypeLoc; 3024 if (parser.parseAttribute(val, "fake", attrs)) 3025 return mlir::failure(); 3026 if (auto v = val.dyn_cast<mlir::StringAttr>()) 3027 result.attributes.push_back( 3028 builder.getNamedAttr(fir::StringLitOp::value(), v)); 3029 else if (auto v = val.dyn_cast<mlir::ArrayAttr>()) 3030 result.attributes.push_back( 3031 builder.getNamedAttr(fir::StringLitOp::xlist(), v)); 3032 else 3033 return parser.emitError(parser.getCurrentLocation(), 3034 "found an invalid constant"); 3035 mlir::IntegerAttr sz; 3036 mlir::Type type; 3037 if (parser.parseLParen() || 3038 parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) || 3039 parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) || 3040 parser.parseColonType(type)) 3041 return mlir::failure(); 3042 auto charTy = type.dyn_cast<fir::CharacterType>(); 3043 if (!charTy) 3044 return parser.emitError(trailingTypeLoc, "must have character type"); 3045 type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(), 3046 sz.getInt()); 3047 if (!type || parser.addTypesToList(type, result.types)) 3048 return mlir::failure(); 3049 return mlir::success(); 3050 } 3051 3052 static void print(mlir::OpAsmPrinter &p, fir::StringLitOp &op) { 3053 p << ' ' << op.getValue() << '('; 3054 p << op.getSize().cast<mlir::IntegerAttr>().getValue() << ") : "; 3055 p.printType(op.getType()); 3056 } 3057 3058 static mlir::LogicalResult verify(fir::StringLitOp &op) { 3059 if (op.getSize().cast<mlir::IntegerAttr>().getValue().isNegative()) 3060 return op.emitOpError("size must be non-negative"); 3061 if (auto xl = op.getOperation()->getAttr(fir::StringLitOp::xlist())) { 3062 auto xList = xl.cast<mlir::ArrayAttr>(); 3063 for (auto a : xList) 3064 if (!a.isa<mlir::IntegerAttr>()) 3065 return op.emitOpError("values in list must be integers"); 3066 } 3067 return mlir::success(); 3068 } 3069 3070 //===----------------------------------------------------------------------===// 3071 // UnboxProcOp 3072 //===----------------------------------------------------------------------===// 3073 3074 static mlir::LogicalResult verify(fir::UnboxProcOp &op) { 3075 if (auto eleTy = fir::dyn_cast_ptrEleTy(op.refTuple().getType())) 3076 if (eleTy.isa<mlir::TupleType>()) 3077 return mlir::success(); 3078 return op.emitOpError("second output argument has bad type"); 3079 } 3080 3081 //===----------------------------------------------------------------------===// 3082 // IfOp 3083 //===----------------------------------------------------------------------===// 3084 3085 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3086 mlir::Value cond, bool withElseRegion) { 3087 build(builder, result, llvm::None, cond, withElseRegion); 3088 } 3089 3090 void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, 3091 mlir::TypeRange resultTypes, mlir::Value cond, 3092 bool withElseRegion) { 3093 result.addOperands(cond); 3094 result.addTypes(resultTypes); 3095 3096 mlir::Region *thenRegion = result.addRegion(); 3097 thenRegion->push_back(new mlir::Block()); 3098 if (resultTypes.empty()) 3099 IfOp::ensureTerminator(*thenRegion, builder, result.location); 3100 3101 mlir::Region *elseRegion = result.addRegion(); 3102 if (withElseRegion) { 3103 elseRegion->push_back(new mlir::Block()); 3104 if (resultTypes.empty()) 3105 IfOp::ensureTerminator(*elseRegion, builder, result.location); 3106 } 3107 } 3108 3109 static mlir::ParseResult parseIfOp(OpAsmParser &parser, 3110 OperationState &result) { 3111 result.regions.reserve(2); 3112 mlir::Region *thenRegion = result.addRegion(); 3113 mlir::Region *elseRegion = result.addRegion(); 3114 3115 auto &builder = parser.getBuilder(); 3116 OpAsmParser::OperandType cond; 3117 mlir::Type i1Type = builder.getIntegerType(1); 3118 if (parser.parseOperand(cond) || 3119 parser.resolveOperand(cond, i1Type, result.operands)) 3120 return mlir::failure(); 3121 3122 if (parser.parseOptionalArrowTypeList(result.types)) 3123 return mlir::failure(); 3124 3125 if (parser.parseRegion(*thenRegion, {}, {})) 3126 return mlir::failure(); 3127 IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); 3128 3129 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { 3130 if (parser.parseRegion(*elseRegion, {}, {})) 3131 return mlir::failure(); 3132 IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); 3133 } 3134 3135 // Parse the optional attribute list. 3136 if (parser.parseOptionalAttrDict(result.attributes)) 3137 return mlir::failure(); 3138 return mlir::success(); 3139 } 3140 3141 static LogicalResult verify(fir::IfOp op) { 3142 if (op.getNumResults() != 0 && op.elseRegion().empty()) 3143 return op.emitOpError("must have an else block if defining values"); 3144 3145 return mlir::success(); 3146 } 3147 3148 static void print(mlir::OpAsmPrinter &p, fir::IfOp op) { 3149 bool printBlockTerminators = false; 3150 p << ' ' << op.condition(); 3151 if (!op.results().empty()) { 3152 p << " -> (" << op.getResultTypes() << ')'; 3153 printBlockTerminators = true; 3154 } 3155 p << ' '; 3156 p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false, 3157 printBlockTerminators); 3158 3159 // Print the 'else' regions if it exists and has a block. 3160 auto &otherReg = op.elseRegion(); 3161 if (!otherReg.empty()) { 3162 p << " else "; 3163 p.printRegion(otherReg, /*printEntryBlockArgs=*/false, 3164 printBlockTerminators); 3165 } 3166 p.printOptionalAttrDict(op->getAttrs()); 3167 } 3168 3169 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results, 3170 unsigned resultNum) { 3171 auto *term = thenRegion().front().getTerminator(); 3172 if (resultNum < term->getNumOperands()) 3173 results.push_back(term->getOperand(resultNum)); 3174 term = elseRegion().front().getTerminator(); 3175 if (resultNum < term->getNumOperands()) 3176 results.push_back(term->getOperand(resultNum)); 3177 } 3178 3179 //===----------------------------------------------------------------------===// 3180 3181 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { 3182 if (attr.dyn_cast_or_null<mlir::UnitAttr>() || 3183 attr.dyn_cast_or_null<ClosedIntervalAttr>() || 3184 attr.dyn_cast_or_null<PointIntervalAttr>() || 3185 attr.dyn_cast_or_null<LowerBoundAttr>() || 3186 attr.dyn_cast_or_null<UpperBoundAttr>()) 3187 return mlir::success(); 3188 return mlir::failure(); 3189 } 3190 3191 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases, 3192 unsigned dest) { 3193 unsigned o = 0; 3194 for (unsigned i = 0; i < dest; ++i) { 3195 auto &attr = cases[i]; 3196 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) { 3197 ++o; 3198 if (attr.dyn_cast_or_null<ClosedIntervalAttr>()) 3199 ++o; 3200 } 3201 } 3202 return o; 3203 } 3204 3205 mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, 3206 mlir::OperationState &result, 3207 mlir::OpAsmParser::OperandType &selector, 3208 mlir::Type &type) { 3209 if (parser.parseOperand(selector) || parser.parseColonType(type) || 3210 parser.resolveOperand(selector, type, result.operands) || 3211 parser.parseLSquare()) 3212 return mlir::failure(); 3213 return mlir::success(); 3214 } 3215 3216 bool fir::isReferenceLike(mlir::Type type) { 3217 return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() || 3218 type.isa<fir::PointerType>(); 3219 } 3220 3221 mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, 3222 StringRef name, mlir::FunctionType type, 3223 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3224 if (auto f = module.lookupSymbol<mlir::FuncOp>(name)) 3225 return f; 3226 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3227 modBuilder.setInsertionPointToEnd(module.getBody()); 3228 auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs); 3229 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3230 return result; 3231 } 3232 3233 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, 3234 StringRef name, mlir::Type type, 3235 llvm::ArrayRef<mlir::NamedAttribute> attrs) { 3236 if (auto g = module.lookupSymbol<fir::GlobalOp>(name)) 3237 return g; 3238 mlir::OpBuilder modBuilder(module.getBodyRegion()); 3239 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs); 3240 result.setVisibility(mlir::SymbolTable::Visibility::Private); 3241 return result; 3242 } 3243 3244 bool fir::valueHasFirAttribute(mlir::Value value, 3245 llvm::StringRef attributeName) { 3246 // If this is a fir.box that was loaded, the fir attributes will be on the 3247 // related fir.ref<fir.box> creation. 3248 if (value.getType().isa<fir::BoxType>()) 3249 if (auto definingOp = value.getDefiningOp()) 3250 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp)) 3251 value = loadOp.memref(); 3252 // If this is a function argument, look in the argument attributes. 3253 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 3254 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) 3255 if (auto funcOp = 3256 mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp())) 3257 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) 3258 return true; 3259 return false; 3260 } 3261 3262 if (auto definingOp = value.getDefiningOp()) { 3263 // If this is an allocated value, look at the allocation attributes. 3264 if (mlir::isa<fir::AllocMemOp>(definingOp) || 3265 mlir::isa<AllocaOp>(definingOp)) 3266 return definingOp->hasAttr(attributeName); 3267 // If this is an imported global, look at AddrOfOp and GlobalOp attributes. 3268 // Both operations are looked at because use/host associated variable (the 3269 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate 3270 // entity (the globalOp) does not have them. 3271 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) { 3272 if (addressOfOp->hasAttr(attributeName)) 3273 return true; 3274 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>()) 3275 if (auto globalOp = 3276 module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol())) 3277 return globalOp->hasAttr(attributeName); 3278 } 3279 } 3280 // TODO: Construct associated entities attributes. Decide where the fir 3281 // attributes must be placed/looked for in this case. 3282 return false; 3283 } 3284 3285 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) { 3286 for (auto i = path.begin(), end = path.end(); eleTy && i < end;) { 3287 eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy) 3288 .Case<fir::RecordType>([&](fir::RecordType ty) { 3289 if (auto *op = (*i++).getDefiningOp()) { 3290 if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op)) 3291 return ty.getType(off.getFieldName()); 3292 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3293 return ty.getType(fir::toInt(off)); 3294 } 3295 return mlir::Type{}; 3296 }) 3297 .Case<fir::SequenceType>([&](fir::SequenceType ty) { 3298 bool valid = true; 3299 const auto rank = ty.getDimension(); 3300 for (std::remove_const_t<decltype(rank)> ii = 0; 3301 valid && ii < rank; ++ii) 3302 valid = i < end && fir::isa_integer((*i++).getType()); 3303 return valid ? ty.getEleTy() : mlir::Type{}; 3304 }) 3305 .Case<mlir::TupleType>([&](mlir::TupleType ty) { 3306 if (auto *op = (*i++).getDefiningOp()) 3307 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op)) 3308 return ty.getType(fir::toInt(off)); 3309 return mlir::Type{}; 3310 }) 3311 .Case<fir::ComplexType>([&](fir::ComplexType ty) { 3312 if (fir::isa_integer((*i++).getType())) 3313 return ty.getElementType(); 3314 return mlir::Type{}; 3315 }) 3316 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) { 3317 if (fir::isa_integer((*i++).getType())) 3318 return ty.getElementType(); 3319 return mlir::Type{}; 3320 }) 3321 .Default([&](const auto &) { return mlir::Type{}; }); 3322 } 3323 return eleTy; 3324 } 3325 3326 // Tablegen operators 3327 3328 #define GET_OP_CLASSES 3329 #include "flang/Optimizer/Dialect/FIROps.cpp.inc" 3330