1 //===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Optimizer/CodeGen/CodeGen.h"
14 #include "CGOps.h"
15 #include "PassDetail.h"
16 #include "flang/ISO_Fortran_binding.h"
17 #include "flang/Optimizer/Dialect/FIRAttr.h"
18 #include "flang/Optimizer/Dialect/FIROps.h"
19 #include "flang/Optimizer/Support/InternalNames.h"
20 #include "flang/Optimizer/Support/TypeCode.h"
21 #include "flang/Semantics/runtime-type-info.h"
22 #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
23 #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
24 #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
25 #include "mlir/Conversion/LLVMCommon/Pattern.h"
26 #include "mlir/Conversion/OpenMPToLLVM/ConvertOpenMPToLLVM.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/Pass/Pass.h"
30 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
31 #include "llvm/ADT/ArrayRef.h"
32 
33 #define DEBUG_TYPE "flang-codegen"
34 
35 using namespace mlir;
36 
37 // fir::LLVMTypeConverter for converting to LLVM IR dialect types.
38 #include "TypeConverter.h"
39 
40 // TODO: This should really be recovered from the specified target.
41 static constexpr unsigned defaultAlign = 8;
42 
43 /// `fir.box` attribute values as defined for CFI_attribute_t in
44 /// flang/ISO_Fortran_binding.h.
45 static constexpr unsigned kAttrPointer = CFI_attribute_pointer;
46 static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable;
47 
48 static inline mlir::Type getVoidPtrType(mlir::MLIRContext *context) {
49   return mlir::LLVM::LLVMPointerType::get(mlir::IntegerType::get(context, 8));
50 }
51 
52 static mlir::LLVM::ConstantOp
53 genConstantIndex(mlir::Location loc, mlir::Type ity,
54                  mlir::ConversionPatternRewriter &rewriter,
55                  std::int64_t offset) {
56   auto cattr = rewriter.getI64IntegerAttr(offset);
57   return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
58 }
59 
60 static Block *createBlock(mlir::ConversionPatternRewriter &rewriter,
61                           mlir::Block *insertBefore) {
62   assert(insertBefore && "expected valid insertion block");
63   return rewriter.createBlock(insertBefore->getParent(),
64                               mlir::Region::iterator(insertBefore));
65 }
66 
67 namespace {
68 /// FIR conversion pattern template
69 template <typename FromOp>
70 class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> {
71 public:
72   explicit FIROpConversion(fir::LLVMTypeConverter &lowering,
73                            const fir::FIRToLLVMPassOptions &options)
74       : mlir::ConvertOpToLLVMPattern<FromOp>(lowering), options(options) {}
75 
76 protected:
77   mlir::Type convertType(mlir::Type ty) const {
78     return lowerTy().convertType(ty);
79   }
80   mlir::Type voidPtrTy() const { return getVoidPtrType(); }
81 
82   mlir::Type getVoidPtrType() const {
83     return mlir::LLVM::LLVMPointerType::get(
84         mlir::IntegerType::get(&lowerTy().getContext(), 8));
85   }
86 
87   mlir::LLVM::ConstantOp
88   genI32Constant(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
89                  int value) const {
90     mlir::Type i32Ty = rewriter.getI32Type();
91     mlir::IntegerAttr attr = rewriter.getI32IntegerAttr(value);
92     return rewriter.create<mlir::LLVM::ConstantOp>(loc, i32Ty, attr);
93   }
94 
95   mlir::LLVM::ConstantOp
96   genConstantOffset(mlir::Location loc,
97                     mlir::ConversionPatternRewriter &rewriter,
98                     int offset) const {
99     mlir::Type ity = lowerTy().offsetType();
100     mlir::IntegerAttr cattr = rewriter.getI32IntegerAttr(offset);
101     return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
102   }
103 
104   /// Perform an extension or truncation as needed on an integer value. Lowering
105   /// to the specific target may involve some sign-extending or truncation of
106   /// values, particularly to fit them from abstract box types to the
107   /// appropriate reified structures.
108   mlir::Value integerCast(mlir::Location loc,
109                           mlir::ConversionPatternRewriter &rewriter,
110                           mlir::Type ty, mlir::Value val) const {
111     auto valTy = val.getType();
112     // If the value was not yet lowered, lower its type so that it can
113     // be used in getPrimitiveTypeSizeInBits.
114     if (!valTy.isa<mlir::IntegerType>())
115       valTy = convertType(valTy);
116     auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
117     auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy);
118     if (toSize < fromSize)
119       return rewriter.create<mlir::LLVM::TruncOp>(loc, ty, val);
120     if (toSize > fromSize)
121       return rewriter.create<mlir::LLVM::SExtOp>(loc, ty, val);
122     return val;
123   }
124 
125   /// Construct code sequence to extract the specifc value from a `fir.box`.
126   mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box,
127                               mlir::Type resultTy,
128                               mlir::ConversionPatternRewriter &rewriter,
129                               unsigned boxValue) const {
130     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
131     mlir::LLVM::ConstantOp cValuePos =
132         genConstantOffset(loc, rewriter, boxValue);
133     auto pty = mlir::LLVM::LLVMPointerType::get(resultTy);
134     auto p = rewriter.create<mlir::LLVM::GEPOp>(
135         loc, pty, box, mlir::ValueRange{c0, cValuePos});
136     return rewriter.create<mlir::LLVM::LoadOp>(loc, resultTy, p);
137   }
138 
139   /// Method to construct code sequence to get the triple for dimension `dim`
140   /// from a box.
141   SmallVector<mlir::Value, 3>
142   getDimsFromBox(mlir::Location loc, ArrayRef<mlir::Type> retTys,
143                  mlir::Value box, mlir::Value dim,
144                  mlir::ConversionPatternRewriter &rewriter) const {
145     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
146     mlir::LLVM::ConstantOp cDims =
147         genConstantOffset(loc, rewriter, kDimsPosInBox);
148     mlir::LLVM::LoadOp l0 =
149         loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter);
150     mlir::LLVM::LoadOp l1 =
151         loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter);
152     mlir::LLVM::LoadOp l2 =
153         loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter);
154     return {l0.getResult(), l1.getResult(), l2.getResult()};
155   }
156 
157   mlir::LLVM::LoadOp
158   loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0,
159                  mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off,
160                  mlir::Type ty,
161                  mlir::ConversionPatternRewriter &rewriter) const {
162     auto pty = mlir::LLVM::LLVMPointerType::get(ty);
163     mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off);
164     mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c);
165     return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
166   }
167 
168   mlir::Value
169   loadStrideFromBox(mlir::Location loc, mlir::Value box, unsigned dim,
170                     mlir::ConversionPatternRewriter &rewriter) const {
171     auto idxTy = lowerTy().indexType();
172     auto c0 = genConstantOffset(loc, rewriter, 0);
173     auto cDims = genConstantOffset(loc, rewriter, kDimsPosInBox);
174     auto dimValue = genConstantIndex(loc, idxTy, rewriter, dim);
175     return loadFromOffset(loc, box, c0, cDims, dimValue, kDimStridePos, idxTy,
176                           rewriter);
177   }
178 
179   /// Read base address from a fir.box. Returned address has type ty.
180   mlir::Value
181   loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
182                       mlir::ConversionPatternRewriter &rewriter) const {
183     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
184     mlir::LLVM::ConstantOp cAddr =
185         genConstantOffset(loc, rewriter, kAddrPosInBox);
186     auto pty = mlir::LLVM::LLVMPointerType::get(ty);
187     mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr);
188     return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
189   }
190 
191   mlir::Value
192   loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
193                          mlir::ConversionPatternRewriter &rewriter) const {
194     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
195     mlir::LLVM::ConstantOp cElemLen =
196         genConstantOffset(loc, rewriter, kElemLenPosInBox);
197     auto pty = mlir::LLVM::LLVMPointerType::get(ty);
198     mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen);
199     return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
200   }
201 
202   // Get the element type given an LLVM type that is of the form
203   // [llvm.ptr](array|struct|vector)+ and the provided indexes.
204   static mlir::Type getBoxEleTy(mlir::Type type,
205                                 llvm::ArrayRef<unsigned> indexes) {
206     if (auto t = type.dyn_cast<mlir::LLVM::LLVMPointerType>())
207       type = t.getElementType();
208     for (auto i : indexes) {
209       if (auto t = type.dyn_cast<mlir::LLVM::LLVMStructType>()) {
210         assert(!t.isOpaque() && i < t.getBody().size());
211         type = t.getBody()[i];
212       } else if (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
213         type = t.getElementType();
214       } else if (auto t = type.dyn_cast<mlir::VectorType>()) {
215         type = t.getElementType();
216       } else {
217         fir::emitFatalError(mlir::UnknownLoc::get(type.getContext()),
218                             "request for invalid box element type");
219       }
220     }
221     return type;
222   }
223 
224   // Return LLVM type of the base address given the LLVM type
225   // of the related descriptor (lowered fir.box type).
226   static mlir::Type getBaseAddrTypeFromBox(mlir::Type type) {
227     return getBoxEleTy(type, {kAddrPosInBox});
228   }
229 
230   // Load the attribute from the \p box and perform a check against \p maskValue
231   // The final comparison is implemented as `(attribute & maskValue) != 0`.
232   mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box,
233                                    mlir::ConversionPatternRewriter &rewriter,
234                                    unsigned maskValue) const {
235     mlir::Type attrTy = rewriter.getI32Type();
236     mlir::Value attribute =
237         getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox);
238     mlir::LLVM::ConstantOp attrMask =
239         genConstantOffset(loc, rewriter, maskValue);
240     auto maskRes =
241         rewriter.create<mlir::LLVM::AndOp>(loc, attrTy, attribute, attrMask);
242     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
243     return rewriter.create<mlir::LLVM::ICmpOp>(
244         loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0);
245   }
246 
247   template <typename... ARGS>
248   mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty,
249                            mlir::ConversionPatternRewriter &rewriter,
250                            mlir::Value base, ARGS... args) const {
251     SmallVector<mlir::Value> cv{args...};
252     return rewriter.create<mlir::LLVM::GEPOp>(loc, ty, base, cv);
253   }
254 
255   fir::LLVMTypeConverter &lowerTy() const {
256     return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter());
257   }
258 
259   const fir::FIRToLLVMPassOptions &options;
260 };
261 
262 /// FIR conversion pattern template
263 template <typename FromOp>
264 class FIROpAndTypeConversion : public FIROpConversion<FromOp> {
265 public:
266   using FIROpConversion<FromOp>::FIROpConversion;
267   using OpAdaptor = typename FromOp::Adaptor;
268 
269   mlir::LogicalResult
270   matchAndRewrite(FromOp op, OpAdaptor adaptor,
271                   mlir::ConversionPatternRewriter &rewriter) const final {
272     mlir::Type ty = this->convertType(op.getType());
273     return doRewrite(op, ty, adaptor, rewriter);
274   }
275 
276   virtual mlir::LogicalResult
277   doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor,
278             mlir::ConversionPatternRewriter &rewriter) const = 0;
279 };
280 
281 // Lower `fir.address_of` operation to `llvm.address_of` operation.
282 struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> {
283   using FIROpConversion::FIROpConversion;
284 
285   mlir::LogicalResult
286   matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
287                   mlir::ConversionPatternRewriter &rewriter) const override {
288     auto ty = convertType(addr.getType());
289     rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
290         addr, ty, addr.getSymbol().getRootReference().getValue());
291     return success();
292   }
293 };
294 } // namespace
295 
296 /// Lookup the function to compute the memory size of this parametric derived
297 /// type. The size of the object may depend on the LEN type parameters of the
298 /// derived type.
299 static mlir::LLVM::LLVMFuncOp
300 getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op,
301                           mlir::ConversionPatternRewriter &rewriter) {
302   auto module = op->getParentOfType<mlir::ModuleOp>();
303   std::string name = recTy.getName().str() + "P.mem.size";
304   return module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name);
305 }
306 
307 namespace {
308 /// convert to LLVM IR dialect `alloca`
309 struct AllocaOpConversion : public FIROpConversion<fir::AllocaOp> {
310   using FIROpConversion::FIROpConversion;
311 
312   mlir::LogicalResult
313   matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor,
314                   mlir::ConversionPatternRewriter &rewriter) const override {
315     mlir::ValueRange operands = adaptor.getOperands();
316     auto loc = alloc.getLoc();
317     mlir::Type ity = lowerTy().indexType();
318     unsigned i = 0;
319     mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult();
320     mlir::Type ty = convertType(alloc.getType());
321     mlir::Type resultTy = ty;
322     if (alloc.hasLenParams()) {
323       unsigned end = alloc.numLenParams();
324       llvm::SmallVector<mlir::Value> lenParams;
325       for (; i < end; ++i)
326         lenParams.push_back(operands[i]);
327       mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType());
328       if (auto chrTy = scalarType.dyn_cast<fir::CharacterType>()) {
329         fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen(
330             chrTy.getContext(), chrTy.getFKind());
331         ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy));
332         assert(end == 1);
333         size = integerCast(loc, rewriter, ity, lenParams[0]);
334       } else if (auto recTy = scalarType.dyn_cast<fir::RecordType>()) {
335         mlir::LLVM::LLVMFuncOp memSizeFn =
336             getDependentTypeMemSizeFn(recTy, alloc, rewriter);
337         if (!memSizeFn)
338           emitError(loc, "did not find allocation function");
339         mlir::NamedAttribute attr = rewriter.getNamedAttr(
340             "callee", mlir::SymbolRefAttr::get(memSizeFn));
341         auto call = rewriter.create<mlir::LLVM::CallOp>(
342             loc, ity, lenParams, llvm::ArrayRef<mlir::NamedAttribute>{attr});
343         size = call.getResult(0);
344         ty = mlir::LLVM::LLVMPointerType::get(
345             mlir::IntegerType::get(alloc.getContext(), 8));
346       } else {
347         return emitError(loc, "unexpected type ")
348                << scalarType << " with type parameters";
349       }
350     }
351     if (alloc.hasShapeOperands()) {
352       mlir::Type allocEleTy = fir::unwrapRefType(alloc.getType());
353       // Scale the size by constant factors encoded in the array type.
354       // We only do this for arrays that don't have a constant interior, since
355       // those are the only ones that get decayed to a pointer to the element
356       // type.
357       if (auto seqTy = allocEleTy.dyn_cast<fir::SequenceType>()) {
358         if (!seqTy.hasConstantInterior()) {
359           fir::SequenceType::Extent constSize = 1;
360           for (auto extent : seqTy.getShape())
361             if (extent != fir::SequenceType::getUnknownExtent())
362               constSize *= extent;
363           mlir::Value constVal{
364               genConstantIndex(loc, ity, rewriter, constSize).getResult()};
365           size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, constVal);
366         }
367       }
368       unsigned end = operands.size();
369       for (; i < end; ++i)
370         size = rewriter.create<mlir::LLVM::MulOp>(
371             loc, ity, size, integerCast(loc, rewriter, ity, operands[i]));
372     }
373     if (ty == resultTy) {
374       // Do not emit the bitcast if ty and resultTy are the same.
375       rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>(alloc, ty, size,
376                                                         alloc->getAttrs());
377     } else {
378       auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, ty, size,
379                                                       alloc->getAttrs());
380       rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(alloc, resultTy, al);
381     }
382     return success();
383   }
384 };
385 } // namespace
386 
387 /// Construct an `llvm.extractvalue` instruction. It will return value at
388 /// element \p x from  \p tuple.
389 static mlir::LLVM::ExtractValueOp
390 genExtractValueWithIndex(mlir::Location loc, mlir::Value tuple, mlir::Type ty,
391                          mlir::ConversionPatternRewriter &rewriter,
392                          mlir::MLIRContext *ctx, int x) {
393   auto cx = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(x));
394   auto xty = ty.cast<mlir::LLVM::LLVMStructType>().getBody()[x];
395   return rewriter.create<mlir::LLVM::ExtractValueOp>(loc, xty, tuple, cx);
396 }
397 
398 namespace {
399 /// Lower `fir.box_addr` to the sequence of operations to extract the first
400 /// element of the box.
401 struct BoxAddrOpConversion : public FIROpConversion<fir::BoxAddrOp> {
402   using FIROpConversion::FIROpConversion;
403 
404   mlir::LogicalResult
405   matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor,
406                   mlir::ConversionPatternRewriter &rewriter) const override {
407     mlir::Value a = adaptor.getOperands()[0];
408     auto loc = boxaddr.getLoc();
409     mlir::Type ty = convertType(boxaddr.getType());
410     if (auto argty = boxaddr.getVal().getType().dyn_cast<fir::BoxType>()) {
411       rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter));
412     } else {
413       auto c0attr = rewriter.getI32IntegerAttr(0);
414       auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr);
415       rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, ty, a,
416                                                               c0);
417     }
418     return success();
419   }
420 };
421 
422 /// Convert `!fir.boxchar_len` to  `!llvm.extractvalue` for the 2nd part of the
423 /// boxchar.
424 struct BoxCharLenOpConversion : public FIROpConversion<fir::BoxCharLenOp> {
425   using FIROpConversion::FIROpConversion;
426 
427   mlir::LogicalResult
428   matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor,
429                   mlir::ConversionPatternRewriter &rewriter) const override {
430     mlir::Value boxChar = adaptor.getOperands()[0];
431     mlir::Location loc = boxChar.getLoc();
432     mlir::MLIRContext *ctx = boxChar.getContext();
433     mlir::Type returnValTy = boxCharLen.getResult().getType();
434 
435     constexpr int boxcharLenIdx = 1;
436     mlir::LLVM::ExtractValueOp len = genExtractValueWithIndex(
437         loc, boxChar, boxChar.getType(), rewriter, ctx, boxcharLenIdx);
438     mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len);
439     rewriter.replaceOp(boxCharLen, lenAfterCast);
440 
441     return success();
442   }
443 };
444 
445 /// Lower `fir.box_dims` to a sequence of operations to extract the requested
446 /// dimension infomartion from the boxed value.
447 /// Result in a triple set of GEPs and loads.
448 struct BoxDimsOpConversion : public FIROpConversion<fir::BoxDimsOp> {
449   using FIROpConversion::FIROpConversion;
450 
451   mlir::LogicalResult
452   matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor,
453                   mlir::ConversionPatternRewriter &rewriter) const override {
454     SmallVector<mlir::Type, 3> resultTypes = {
455         convertType(boxdims.getResult(0).getType()),
456         convertType(boxdims.getResult(1).getType()),
457         convertType(boxdims.getResult(2).getType()),
458     };
459     auto results =
460         getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0],
461                        adaptor.getOperands()[1], rewriter);
462     rewriter.replaceOp(boxdims, results);
463     return success();
464   }
465 };
466 
467 /// Lower `fir.box_elesize` to a sequence of operations ro extract the size of
468 /// an element in the boxed value.
469 struct BoxEleSizeOpConversion : public FIROpConversion<fir::BoxEleSizeOp> {
470   using FIROpConversion::FIROpConversion;
471 
472   mlir::LogicalResult
473   matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor,
474                   mlir::ConversionPatternRewriter &rewriter) const override {
475     mlir::Value a = adaptor.getOperands()[0];
476     auto loc = boxelesz.getLoc();
477     auto ty = convertType(boxelesz.getType());
478     auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox);
479     rewriter.replaceOp(boxelesz, elemSize);
480     return success();
481   }
482 };
483 
484 /// Lower `fir.box_isalloc` to a sequence of operations to determine if the
485 /// boxed value was from an ALLOCATABLE entity.
486 struct BoxIsAllocOpConversion : public FIROpConversion<fir::BoxIsAllocOp> {
487   using FIROpConversion::FIROpConversion;
488 
489   mlir::LogicalResult
490   matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor,
491                   mlir::ConversionPatternRewriter &rewriter) const override {
492     mlir::Value box = adaptor.getOperands()[0];
493     auto loc = boxisalloc.getLoc();
494     mlir::Value check =
495         genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable);
496     rewriter.replaceOp(boxisalloc, check);
497     return success();
498   }
499 };
500 
501 /// Lower `fir.box_isarray` to a sequence of operations to determine if the
502 /// boxed is an array.
503 struct BoxIsArrayOpConversion : public FIROpConversion<fir::BoxIsArrayOp> {
504   using FIROpConversion::FIROpConversion;
505 
506   mlir::LogicalResult
507   matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor,
508                   mlir::ConversionPatternRewriter &rewriter) const override {
509     mlir::Value a = adaptor.getOperands()[0];
510     auto loc = boxisarray.getLoc();
511     auto rank =
512         getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox);
513     auto c0 = genConstantOffset(loc, rewriter, 0);
514     rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
515         boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0);
516     return success();
517   }
518 };
519 
520 /// Lower `fir.box_isptr` to a sequence of operations to determined if the
521 /// boxed value was from a POINTER entity.
522 struct BoxIsPtrOpConversion : public FIROpConversion<fir::BoxIsPtrOp> {
523   using FIROpConversion::FIROpConversion;
524 
525   mlir::LogicalResult
526   matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor,
527                   mlir::ConversionPatternRewriter &rewriter) const override {
528     mlir::Value box = adaptor.getOperands()[0];
529     auto loc = boxisptr.getLoc();
530     mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer);
531     rewriter.replaceOp(boxisptr, check);
532     return success();
533   }
534 };
535 
536 /// Lower `fir.box_rank` to the sequence of operation to extract the rank from
537 /// the box.
538 struct BoxRankOpConversion : public FIROpConversion<fir::BoxRankOp> {
539   using FIROpConversion::FIROpConversion;
540 
541   mlir::LogicalResult
542   matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor,
543                   mlir::ConversionPatternRewriter &rewriter) const override {
544     mlir::Value a = adaptor.getOperands()[0];
545     auto loc = boxrank.getLoc();
546     mlir::Type ty = convertType(boxrank.getType());
547     auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox);
548     rewriter.replaceOp(boxrank, result);
549     return success();
550   }
551 };
552 
553 /// Lower `fir.boxproc_host` operation. Extracts the host pointer from the
554 /// boxproc.
555 /// TODO: Part of supporting Fortran 2003 procedure pointers.
556 struct BoxProcHostOpConversion : public FIROpConversion<fir::BoxProcHostOp> {
557   using FIROpConversion::FIROpConversion;
558 
559   mlir::LogicalResult
560   matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor,
561                   mlir::ConversionPatternRewriter &rewriter) const override {
562     TODO(boxprochost.getLoc(), "fir.boxproc_host codegen");
563     return failure();
564   }
565 };
566 
567 /// Lower `fir.box_tdesc` to the sequence of operations to extract the type
568 /// descriptor from the box.
569 struct BoxTypeDescOpConversion : public FIROpConversion<fir::BoxTypeDescOp> {
570   using FIROpConversion::FIROpConversion;
571 
572   mlir::LogicalResult
573   matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor,
574                   mlir::ConversionPatternRewriter &rewriter) const override {
575     mlir::Value box = adaptor.getOperands()[0];
576     auto loc = boxtypedesc.getLoc();
577     mlir::Type typeTy =
578         fir::getDescFieldTypeModel<kTypePosInBox>()(boxtypedesc.getContext());
579     auto result = getValueFromBox(loc, box, typeTy, rewriter, kTypePosInBox);
580     auto typePtrTy = mlir::LLVM::LLVMPointerType::get(typeTy);
581     rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(boxtypedesc, typePtrTy,
582                                                         result);
583     return success();
584   }
585 };
586 
587 /// Lower `fir.string_lit` to LLVM IR dialect operation.
588 struct StringLitOpConversion : public FIROpConversion<fir::StringLitOp> {
589   using FIROpConversion::FIROpConversion;
590 
591   mlir::LogicalResult
592   matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor,
593                   mlir::ConversionPatternRewriter &rewriter) const override {
594     auto ty = convertType(constop.getType());
595     auto attr = constop.getValue();
596     if (attr.isa<mlir::StringAttr>()) {
597       rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr);
598       return success();
599     }
600 
601     auto charTy = constop.getType().cast<fir::CharacterType>();
602     unsigned bits = lowerTy().characterBitsize(charTy);
603     mlir::Type intTy = rewriter.getIntegerType(bits);
604     mlir::Location loc = constop.getLoc();
605     mlir::Value cst = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
606     if (auto arr = attr.dyn_cast<mlir::DenseElementsAttr>()) {
607       cst = rewriter.create<mlir::LLVM::ConstantOp>(loc, ty, arr);
608     } else if (auto arr = attr.dyn_cast<mlir::ArrayAttr>()) {
609       for (auto a : llvm::enumerate(arr.getValue())) {
610         // convert each character to a precise bitsize
611         auto elemAttr = mlir::IntegerAttr::get(
612             intTy,
613             a.value().cast<mlir::IntegerAttr>().getValue().zextOrTrunc(bits));
614         auto elemCst =
615             rewriter.create<mlir::LLVM::ConstantOp>(loc, intTy, elemAttr);
616         auto index = mlir::ArrayAttr::get(
617             constop.getContext(), rewriter.getI32IntegerAttr(a.index()));
618         cst = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, cst, elemCst,
619                                                          index);
620       }
621     } else {
622       return failure();
623     }
624     rewriter.replaceOp(constop, cst);
625     return success();
626   }
627 };
628 
629 // `fir.call` -> `llvm.call`
630 struct CallOpConversion : public FIROpConversion<fir::CallOp> {
631   using FIROpConversion::FIROpConversion;
632 
633   mlir::LogicalResult
634   matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
635                   mlir::ConversionPatternRewriter &rewriter) const override {
636     SmallVector<mlir::Type> resultTys;
637     for (auto r : call.getResults())
638       resultTys.push_back(convertType(r.getType()));
639     rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
640         call, resultTys, adaptor.getOperands(), call->getAttrs());
641     return success();
642   }
643 };
644 } // namespace
645 
646 static mlir::Type getComplexEleTy(mlir::Type complex) {
647   if (auto cc = complex.dyn_cast<mlir::ComplexType>())
648     return cc.getElementType();
649   return complex.cast<fir::ComplexType>().getElementType();
650 }
651 
652 namespace {
653 /// Compare complex values
654 ///
655 /// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une).
656 ///
657 /// For completeness, all other comparison are done on the real component only.
658 struct CmpcOpConversion : public FIROpConversion<fir::CmpcOp> {
659   using FIROpConversion::FIROpConversion;
660 
661   mlir::LogicalResult
662   matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor,
663                   mlir::ConversionPatternRewriter &rewriter) const override {
664     mlir::ValueRange operands = adaptor.getOperands();
665     mlir::MLIRContext *ctxt = cmp.getContext();
666     mlir::Type eleTy = convertType(getComplexEleTy(cmp.getLhs().getType()));
667     mlir::Type resTy = convertType(cmp.getType());
668     mlir::Location loc = cmp.getLoc();
669     auto pos0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
670     SmallVector<mlir::Value, 2> rp{rewriter.create<mlir::LLVM::ExtractValueOp>(
671                                        loc, eleTy, operands[0], pos0),
672                                    rewriter.create<mlir::LLVM::ExtractValueOp>(
673                                        loc, eleTy, operands[1], pos0)};
674     auto rcp =
675         rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, rp, cmp->getAttrs());
676     auto pos1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
677     SmallVector<mlir::Value, 2> ip{rewriter.create<mlir::LLVM::ExtractValueOp>(
678                                        loc, eleTy, operands[0], pos1),
679                                    rewriter.create<mlir::LLVM::ExtractValueOp>(
680                                        loc, eleTy, operands[1], pos1)};
681     auto icp =
682         rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, ip, cmp->getAttrs());
683     SmallVector<mlir::Value, 2> cp{rcp, icp};
684     switch (cmp.getPredicate()) {
685     case mlir::arith::CmpFPredicate::OEQ: // .EQ.
686       rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp);
687       break;
688     case mlir::arith::CmpFPredicate::UNE: // .NE.
689       rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp);
690       break;
691     default:
692       rewriter.replaceOp(cmp, rcp.getResult());
693       break;
694     }
695     return success();
696   }
697 };
698 
699 /// Lower complex constants
700 struct ConstcOpConversion : public FIROpConversion<fir::ConstcOp> {
701   using FIROpConversion::FIROpConversion;
702 
703   mlir::LogicalResult
704   matchAndRewrite(fir::ConstcOp conc, OpAdaptor,
705                   mlir::ConversionPatternRewriter &rewriter) const override {
706     mlir::Location loc = conc.getLoc();
707     mlir::MLIRContext *ctx = conc.getContext();
708     mlir::Type ty = convertType(conc.getType());
709     mlir::Type ety = convertType(getComplexEleTy(conc.getType()));
710     auto realFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getReal()));
711     auto realPart =
712         rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, realFloatAttr);
713     auto imFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getImaginary()));
714     auto imPart =
715         rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, imFloatAttr);
716     auto realIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
717     auto imIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
718     auto undef = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
719     auto setReal = rewriter.create<mlir::LLVM::InsertValueOp>(
720         loc, ty, undef, realPart, realIndex);
721     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(conc, ty, setReal,
722                                                            imPart, imIndex);
723     return success();
724   }
725 
726   inline APFloat getValue(mlir::Attribute attr) const {
727     return attr.cast<fir::RealAttr>().getValue();
728   }
729 };
730 
731 /// convert value of from-type to value of to-type
732 struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> {
733   using FIROpConversion::FIROpConversion;
734 
735   static bool isFloatingPointTy(mlir::Type ty) {
736     return ty.isa<mlir::FloatType>();
737   }
738 
739   mlir::LogicalResult
740   matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
741                   mlir::ConversionPatternRewriter &rewriter) const override {
742     auto fromFirTy = convert.getValue().getType();
743     auto toFirTy = convert.getRes().getType();
744     auto fromTy = convertType(fromFirTy);
745     auto toTy = convertType(toFirTy);
746     mlir::Value op0 = adaptor.getOperands()[0];
747     if (fromTy == toTy) {
748       rewriter.replaceOp(convert, op0);
749       return success();
750     }
751     auto loc = convert.getLoc();
752     auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
753                              unsigned toBits, mlir::Type toTy) -> mlir::Value {
754       if (fromBits == toBits) {
755         // TODO: Converting between two floating-point representations with the
756         // same bitwidth is not allowed for now.
757         mlir::emitError(loc,
758                         "cannot implicitly convert between two floating-point "
759                         "representations of the same bitwidth");
760         return {};
761       }
762       if (fromBits > toBits)
763         return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
764       return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
765     };
766     // Complex to complex conversion.
767     if (fir::isa_complex(fromFirTy) && fir::isa_complex(toFirTy)) {
768       // Special case: handle the conversion of a complex such that both the
769       // real and imaginary parts are converted together.
770       auto zero = mlir::ArrayAttr::get(convert.getContext(),
771                                        rewriter.getI32IntegerAttr(0));
772       auto one = mlir::ArrayAttr::get(convert.getContext(),
773                                       rewriter.getI32IntegerAttr(1));
774       auto ty = convertType(getComplexEleTy(convert.getValue().getType()));
775       auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero);
776       auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one);
777       auto nt = convertType(getComplexEleTy(convert.getRes().getType()));
778       auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
779       auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
780       auto rc = convertFpToFp(rp, fromBits, toBits, nt);
781       auto ic = convertFpToFp(ip, fromBits, toBits, nt);
782       auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
783       auto i1 =
784           rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero);
785       rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1,
786                                                              ic, one);
787       return mlir::success();
788     }
789 
790     // Follow UNIX F77 convention for logicals:
791     // 1. underlying integer is not zero => logical is .TRUE.
792     // 2. logical is .TRUE. => set underlying integer to 1.
793     auto i1Type = mlir::IntegerType::get(convert.getContext(), 1);
794     if (fromFirTy.isa<fir::LogicalType>() && toFirTy == i1Type) {
795       mlir::Value zero = genConstantIndex(loc, fromTy, rewriter, 0);
796       rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
797           convert, mlir::LLVM::ICmpPredicate::ne, op0, zero);
798       return mlir::success();
799     }
800     if (fromFirTy == i1Type && toFirTy.isa<fir::LogicalType>()) {
801       rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, op0);
802       return mlir::success();
803     }
804 
805     // Floating point to floating point conversion.
806     if (isFloatingPointTy(fromTy)) {
807       if (isFloatingPointTy(toTy)) {
808         auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
809         auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
810         auto v = convertFpToFp(op0, fromBits, toBits, toTy);
811         rewriter.replaceOp(convert, v);
812         return mlir::success();
813       }
814       if (toTy.isa<mlir::IntegerType>()) {
815         rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
816         return mlir::success();
817       }
818     } else if (fromTy.isa<mlir::IntegerType>()) {
819       // Integer to integer conversion.
820       if (toTy.isa<mlir::IntegerType>()) {
821         auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
822         auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
823         assert(fromBits != toBits);
824         if (fromBits > toBits) {
825           rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
826           return mlir::success();
827         }
828         rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
829         return mlir::success();
830       }
831       // Integer to floating point conversion.
832       if (isFloatingPointTy(toTy)) {
833         rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
834         return mlir::success();
835       }
836       // Integer to pointer conversion.
837       if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
838         rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
839         return mlir::success();
840       }
841     } else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) {
842       // Pointer to integer conversion.
843       if (toTy.isa<mlir::IntegerType>()) {
844         rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
845         return mlir::success();
846       }
847       // Pointer to pointer conversion.
848       if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
849         rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
850         return mlir::success();
851       }
852     }
853     return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
854   }
855 };
856 
857 /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
858 /// table.
859 struct DispatchOpConversion : public FIROpConversion<fir::DispatchOp> {
860   using FIROpConversion::FIROpConversion;
861 
862   mlir::LogicalResult
863   matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
864                   mlir::ConversionPatternRewriter &rewriter) const override {
865     TODO(dispatch.getLoc(), "fir.dispatch codegen");
866     return failure();
867   }
868 };
869 
870 /// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran
871 /// derived type.
872 struct DispatchTableOpConversion
873     : public FIROpConversion<fir::DispatchTableOp> {
874   using FIROpConversion::FIROpConversion;
875 
876   mlir::LogicalResult
877   matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor,
878                   mlir::ConversionPatternRewriter &rewriter) const override {
879     TODO(dispTab.getLoc(), "fir.dispatch_table codegen");
880     return failure();
881   }
882 };
883 
884 /// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a
885 /// method-name to a function.
886 struct DTEntryOpConversion : public FIROpConversion<fir::DTEntryOp> {
887   using FIROpConversion::FIROpConversion;
888 
889   mlir::LogicalResult
890   matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor,
891                   mlir::ConversionPatternRewriter &rewriter) const override {
892     TODO(dtEnt.getLoc(), "fir.dt_entry codegen");
893     return failure();
894   }
895 };
896 
897 /// Lower `fir.global_len` operation.
898 struct GlobalLenOpConversion : public FIROpConversion<fir::GlobalLenOp> {
899   using FIROpConversion::FIROpConversion;
900 
901   mlir::LogicalResult
902   matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor,
903                   mlir::ConversionPatternRewriter &rewriter) const override {
904     TODO(globalLen.getLoc(), "fir.global_len codegen");
905     return failure();
906   }
907 };
908 
909 /// Lower fir.len_param_index
910 struct LenParamIndexOpConversion
911     : public FIROpConversion<fir::LenParamIndexOp> {
912   using FIROpConversion::FIROpConversion;
913 
914   // FIXME: this should be specialized by the runtime target
915   mlir::LogicalResult
916   matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor,
917                   mlir::ConversionPatternRewriter &rewriter) const override {
918     TODO(lenp.getLoc(), "fir.len_param_index codegen");
919   }
920 };
921 
922 /// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of
923 /// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element
924 /// in this struct is a pointer. Its type is determined from `KIND`. The 2nd
925 /// element is the length of the character buffer (`#n`).
926 struct EmboxCharOpConversion : public FIROpConversion<fir::EmboxCharOp> {
927   using FIROpConversion::FIROpConversion;
928 
929   mlir::LogicalResult
930   matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor,
931                   mlir::ConversionPatternRewriter &rewriter) const override {
932     mlir::ValueRange operands = adaptor.getOperands();
933     MLIRContext *ctx = emboxChar.getContext();
934 
935     mlir::Value charBuffer = operands[0];
936     mlir::Value charBufferLen = operands[1];
937 
938     mlir::Location loc = emboxChar.getLoc();
939     mlir::Type llvmStructTy = convertType(emboxChar.getType());
940     auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy);
941 
942     mlir::Type lenTy =
943         llvmStructTy.cast<mlir::LLVM::LLVMStructType>().getBody()[1];
944     mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen);
945 
946     auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
947     auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
948     auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>(
949         loc, llvmStructTy, llvmStruct, charBuffer, c0);
950     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
951         emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1);
952 
953     return success();
954   }
955 };
956 } // namespace
957 
958 /// Return the LLVMFuncOp corresponding to the standard malloc call.
959 static mlir::LLVM::LLVMFuncOp
960 getMalloc(fir::AllocMemOp op, mlir::ConversionPatternRewriter &rewriter) {
961   auto module = op->getParentOfType<mlir::ModuleOp>();
962   if (mlir::LLVM::LLVMFuncOp mallocFunc =
963           module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("malloc"))
964     return mallocFunc;
965   mlir::OpBuilder moduleBuilder(
966       op->getParentOfType<mlir::ModuleOp>().getBodyRegion());
967   auto indexType = mlir::IntegerType::get(op.getContext(), 64);
968   return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
969       rewriter.getUnknownLoc(), "malloc",
970       mlir::LLVM::LLVMFunctionType::get(getVoidPtrType(op.getContext()),
971                                         indexType,
972                                         /*isVarArg=*/false));
973 }
974 
975 /// Helper function for generating the LLVM IR that computes the size
976 /// in bytes for a derived type.
977 static mlir::Value
978 computeDerivedTypeSize(mlir::Location loc, mlir::Type ptrTy, mlir::Type idxTy,
979                        mlir::ConversionPatternRewriter &rewriter) {
980   auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
981   mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
982   llvm::SmallVector<mlir::Value> args{one};
983   auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr, args);
984   return rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, gep);
985 }
986 
987 namespace {
988 /// Lower a `fir.allocmem` instruction into `llvm.call @malloc`
989 struct AllocMemOpConversion : public FIROpConversion<fir::AllocMemOp> {
990   using FIROpConversion::FIROpConversion;
991 
992   mlir::LogicalResult
993   matchAndRewrite(fir::AllocMemOp heap, OpAdaptor adaptor,
994                   mlir::ConversionPatternRewriter &rewriter) const override {
995     auto heapTy = heap.getType();
996     auto ty = convertType(heapTy);
997     mlir::LLVM::LLVMFuncOp mallocFunc = getMalloc(heap, rewriter);
998     mlir::Location loc = heap.getLoc();
999     auto ity = lowerTy().indexType();
1000     auto dataTy = fir::unwrapRefType(heapTy);
1001     if (fir::isRecordWithTypeParameters(fir::unwrapSequenceType(dataTy)))
1002       TODO(loc, "fir.allocmem codegen of derived type with length parameters");
1003     mlir::Value size = genTypeSizeInBytes(loc, ity, rewriter, ty);
1004     // !fir.array<NxMx!fir.char<K,?>> sets `size` to the width of !fir.char<K>.
1005     // So multiply the constant dimensions here.
1006     if (fir::hasDynamicSize(dataTy))
1007       if (auto seqTy = dataTy.dyn_cast<fir::SequenceType>())
1008         if (fir::characterWithDynamicLen(seqTy.getEleTy())) {
1009           fir::SequenceType::Extent arrSize = 1;
1010           for (auto d : seqTy.getShape())
1011             if (d != fir::SequenceType::getUnknownExtent())
1012               arrSize *= d;
1013           size = rewriter.create<mlir::LLVM::MulOp>(
1014               loc, ity, size, genConstantIndex(loc, ity, rewriter, arrSize));
1015         }
1016     for (mlir::Value opnd : adaptor.getOperands())
1017       size = rewriter.create<mlir::LLVM::MulOp>(
1018           loc, ity, size, integerCast(loc, rewriter, ity, opnd));
1019     heap->setAttr("callee", mlir::SymbolRefAttr::get(mallocFunc));
1020     auto malloc = rewriter.create<mlir::LLVM::CallOp>(
1021         loc, ::getVoidPtrType(heap.getContext()), size, heap->getAttrs());
1022     rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(heap, ty,
1023                                                        malloc.getResult(0));
1024     return success();
1025   }
1026 
1027   // Compute the (allocation) size of the allocmem type in bytes.
1028   mlir::Value genTypeSizeInBytes(mlir::Location loc, mlir::Type idxTy,
1029                                  mlir::ConversionPatternRewriter &rewriter,
1030                                  mlir::Type llTy) const {
1031     // Use the primitive size, if available.
1032     auto ptrTy = llTy.dyn_cast<mlir::LLVM::LLVMPointerType>();
1033     if (auto size =
1034             mlir::LLVM::getPrimitiveTypeSizeInBits(ptrTy.getElementType()))
1035       return genConstantIndex(loc, idxTy, rewriter, size / 8);
1036 
1037     // Otherwise, generate the GEP trick in LLVM IR to compute the size.
1038     return computeDerivedTypeSize(loc, ptrTy, idxTy, rewriter);
1039   }
1040 };
1041 } // namespace
1042 
1043 /// Return the LLVMFuncOp corresponding to the standard free call.
1044 static mlir::LLVM::LLVMFuncOp
1045 getFree(fir::FreeMemOp op, mlir::ConversionPatternRewriter &rewriter) {
1046   auto module = op->getParentOfType<mlir::ModuleOp>();
1047   if (mlir::LLVM::LLVMFuncOp freeFunc =
1048           module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("free"))
1049     return freeFunc;
1050   mlir::OpBuilder moduleBuilder(module.getBodyRegion());
1051   auto voidType = mlir::LLVM::LLVMVoidType::get(op.getContext());
1052   return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
1053       rewriter.getUnknownLoc(), "free",
1054       mlir::LLVM::LLVMFunctionType::get(voidType,
1055                                         getVoidPtrType(op.getContext()),
1056                                         /*isVarArg=*/false));
1057 }
1058 
1059 namespace {
1060 /// Lower a `fir.freemem` instruction into `llvm.call @free`
1061 struct FreeMemOpConversion : public FIROpConversion<fir::FreeMemOp> {
1062   using FIROpConversion::FIROpConversion;
1063 
1064   mlir::LogicalResult
1065   matchAndRewrite(fir::FreeMemOp freemem, OpAdaptor adaptor,
1066                   mlir::ConversionPatternRewriter &rewriter) const override {
1067     mlir::LLVM::LLVMFuncOp freeFunc = getFree(freemem, rewriter);
1068     mlir::Location loc = freemem.getLoc();
1069     auto bitcast = rewriter.create<mlir::LLVM::BitcastOp>(
1070         freemem.getLoc(), voidPtrTy(), adaptor.getOperands()[0]);
1071     freemem->setAttr("callee", mlir::SymbolRefAttr::get(freeFunc));
1072     rewriter.create<mlir::LLVM::CallOp>(
1073         loc, mlir::TypeRange{}, mlir::ValueRange{bitcast}, freemem->getAttrs());
1074     rewriter.eraseOp(freemem);
1075     return success();
1076   }
1077 };
1078 } // namespace
1079 
1080 namespace {} // namespace
1081 
1082 /// Common base class for embox to descriptor conversion.
1083 template <typename OP>
1084 struct EmboxCommonConversion : public FIROpConversion<OP> {
1085   using FIROpConversion<OP>::FIROpConversion;
1086 
1087   // Find the LLVMFuncOp in whose entry block the alloca should be inserted.
1088   // The order to find the LLVMFuncOp is as follows:
1089   // 1. The parent operation of the current block if it is a LLVMFuncOp.
1090   // 2. The first ancestor that is a LLVMFuncOp.
1091   mlir::LLVM::LLVMFuncOp
1092   getFuncForAllocaInsert(mlir::ConversionPatternRewriter &rewriter) const {
1093     mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp();
1094     return mlir::isa<mlir::LLVM::LLVMFuncOp>(parentOp)
1095                ? mlir::cast<mlir::LLVM::LLVMFuncOp>(parentOp)
1096                : parentOp->getParentOfType<mlir::LLVM::LLVMFuncOp>();
1097   }
1098 
1099   // Generate an alloca of size 1 and type \p toTy.
1100   mlir::LLVM::AllocaOp
1101   genAllocaWithType(mlir::Location loc, mlir::Type toTy, unsigned alignment,
1102                     mlir::ConversionPatternRewriter &rewriter) const {
1103     auto thisPt = rewriter.saveInsertionPoint();
1104     mlir::LLVM::LLVMFuncOp func = getFuncForAllocaInsert(rewriter);
1105     rewriter.setInsertionPointToStart(&func.front());
1106     auto size = this->genI32Constant(loc, rewriter, 1);
1107     auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, toTy, size, alignment);
1108     rewriter.restoreInsertionPoint(thisPt);
1109     return al;
1110   }
1111 
1112   static int getCFIAttr(fir::BoxType boxTy) {
1113     auto eleTy = boxTy.getEleTy();
1114     if (eleTy.isa<fir::PointerType>())
1115       return CFI_attribute_pointer;
1116     if (eleTy.isa<fir::HeapType>())
1117       return CFI_attribute_allocatable;
1118     return CFI_attribute_other;
1119   }
1120 
1121   static fir::RecordType unwrapIfDerived(fir::BoxType boxTy) {
1122     return fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(boxTy))
1123         .template dyn_cast<fir::RecordType>();
1124   }
1125   static bool isDerivedTypeWithLenParams(fir::BoxType boxTy) {
1126     auto recTy = unwrapIfDerived(boxTy);
1127     return recTy && recTy.getNumLenParams() > 0;
1128   }
1129   static bool isDerivedType(fir::BoxType boxTy) {
1130     return unwrapIfDerived(boxTy) != nullptr;
1131   }
1132 
1133   // Get the element size and CFI type code of the boxed value.
1134   std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode(
1135       mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
1136       mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const {
1137     auto doInteger =
1138         [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1139       int typeCode = fir::integerBitsToTypeCode(width);
1140       return {this->genConstantOffset(loc, rewriter, width / 8),
1141               this->genConstantOffset(loc, rewriter, typeCode)};
1142     };
1143     auto doLogical =
1144         [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1145       int typeCode = fir::logicalBitsToTypeCode(width);
1146       return {this->genConstantOffset(loc, rewriter, width / 8),
1147               this->genConstantOffset(loc, rewriter, typeCode)};
1148     };
1149     auto doFloat = [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1150       int typeCode = fir::realBitsToTypeCode(width);
1151       return {this->genConstantOffset(loc, rewriter, width / 8),
1152               this->genConstantOffset(loc, rewriter, typeCode)};
1153     };
1154     auto doComplex =
1155         [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1156       auto typeCode = fir::complexBitsToTypeCode(width);
1157       return {this->genConstantOffset(loc, rewriter, width / 8 * 2),
1158               this->genConstantOffset(loc, rewriter, typeCode)};
1159     };
1160     auto doCharacter =
1161         [&](unsigned width,
1162             mlir::Value len) -> std::tuple<mlir::Value, mlir::Value> {
1163       auto typeCode = fir::characterBitsToTypeCode(width);
1164       auto typeCodeVal = this->genConstantOffset(loc, rewriter, typeCode);
1165       if (width == 8)
1166         return {len, typeCodeVal};
1167       auto byteWidth = this->genConstantOffset(loc, rewriter, width / 8);
1168       auto i64Ty = mlir::IntegerType::get(&this->lowerTy().getContext(), 64);
1169       auto size =
1170           rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, byteWidth, len);
1171       return {size, typeCodeVal};
1172     };
1173     auto getKindMap = [&]() -> fir::KindMapping & {
1174       return this->lowerTy().getKindMap();
1175     };
1176     // Pointer-like types.
1177     if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy))
1178       boxEleTy = eleTy;
1179     // Integer types.
1180     if (fir::isa_integer(boxEleTy)) {
1181       if (auto ty = boxEleTy.dyn_cast<mlir::IntegerType>())
1182         return doInteger(ty.getWidth());
1183       auto ty = boxEleTy.cast<fir::IntegerType>();
1184       return doInteger(getKindMap().getIntegerBitsize(ty.getFKind()));
1185     }
1186     // Floating point types.
1187     if (fir::isa_real(boxEleTy)) {
1188       if (auto ty = boxEleTy.dyn_cast<mlir::FloatType>())
1189         return doFloat(ty.getWidth());
1190       auto ty = boxEleTy.cast<fir::RealType>();
1191       return doFloat(getKindMap().getRealBitsize(ty.getFKind()));
1192     }
1193     // Complex types.
1194     if (fir::isa_complex(boxEleTy)) {
1195       if (auto ty = boxEleTy.dyn_cast<mlir::ComplexType>())
1196         return doComplex(
1197             ty.getElementType().cast<mlir::FloatType>().getWidth());
1198       auto ty = boxEleTy.cast<fir::ComplexType>();
1199       return doComplex(getKindMap().getRealBitsize(ty.getFKind()));
1200     }
1201     // Character types.
1202     if (auto ty = boxEleTy.dyn_cast<fir::CharacterType>()) {
1203       auto charWidth = getKindMap().getCharacterBitsize(ty.getFKind());
1204       if (ty.getLen() != fir::CharacterType::unknownLen()) {
1205         auto len = this->genConstantOffset(loc, rewriter, ty.getLen());
1206         return doCharacter(charWidth, len);
1207       }
1208       assert(!lenParams.empty());
1209       return doCharacter(charWidth, lenParams.back());
1210     }
1211     // Logical type.
1212     if (auto ty = boxEleTy.dyn_cast<fir::LogicalType>())
1213       return doLogical(getKindMap().getLogicalBitsize(ty.getFKind()));
1214     // Array types.
1215     if (auto seqTy = boxEleTy.dyn_cast<fir::SequenceType>())
1216       return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams);
1217     // Derived-type types.
1218     if (boxEleTy.isa<fir::RecordType>()) {
1219       auto ptrTy = mlir::LLVM::LLVMPointerType::get(
1220           this->lowerTy().convertType(boxEleTy));
1221       auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
1222       auto one =
1223           genConstantIndex(loc, this->lowerTy().offsetType(), rewriter, 1);
1224       auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr,
1225                                                     mlir::ValueRange{one});
1226       auto eleSize = rewriter.create<mlir::LLVM::PtrToIntOp>(
1227           loc, this->lowerTy().indexType(), gep);
1228       return {eleSize,
1229               this->genConstantOffset(loc, rewriter, fir::derivedToTypeCode())};
1230     }
1231     // Reference type.
1232     if (fir::isa_ref_type(boxEleTy)) {
1233       // FIXME: use the target pointer size rather than sizeof(void*)
1234       return {this->genConstantOffset(loc, rewriter, sizeof(void *)),
1235               this->genConstantOffset(loc, rewriter, CFI_type_cptr)};
1236     }
1237     fir::emitFatalError(loc, "unhandled type in fir.box code generation");
1238   }
1239 
1240   /// Basic pattern to write a field in the descriptor
1241   mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter,
1242                           mlir::Location loc, mlir::Value dest,
1243                           ArrayRef<unsigned> fldIndexes, mlir::Value value,
1244                           bool bitcast = false) const {
1245     auto boxTy = dest.getType();
1246     auto fldTy = this->getBoxEleTy(boxTy, fldIndexes);
1247     if (bitcast)
1248       value = rewriter.create<mlir::LLVM::BitcastOp>(loc, fldTy, value);
1249     else
1250       value = this->integerCast(loc, rewriter, fldTy, value);
1251     SmallVector<mlir::Attribute, 2> attrs;
1252     for (auto i : fldIndexes)
1253       attrs.push_back(rewriter.getI32IntegerAttr(i));
1254     auto indexesAttr = mlir::ArrayAttr::get(rewriter.getContext(), attrs);
1255     return rewriter.create<mlir::LLVM::InsertValueOp>(loc, boxTy, dest, value,
1256                                                       indexesAttr);
1257   }
1258 
1259   inline mlir::Value
1260   insertBaseAddress(mlir::ConversionPatternRewriter &rewriter,
1261                     mlir::Location loc, mlir::Value dest,
1262                     mlir::Value base) const {
1263     return insertField(rewriter, loc, dest, {kAddrPosInBox}, base,
1264                        /*bitCast=*/true);
1265   }
1266 
1267   inline mlir::Value insertLowerBound(mlir::ConversionPatternRewriter &rewriter,
1268                                       mlir::Location loc, mlir::Value dest,
1269                                       unsigned dim, mlir::Value lb) const {
1270     return insertField(rewriter, loc, dest,
1271                        {kDimsPosInBox, dim, kDimLowerBoundPos}, lb);
1272   }
1273 
1274   inline mlir::Value insertExtent(mlir::ConversionPatternRewriter &rewriter,
1275                                   mlir::Location loc, mlir::Value dest,
1276                                   unsigned dim, mlir::Value extent) const {
1277     return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimExtentPos},
1278                        extent);
1279   }
1280 
1281   inline mlir::Value insertStride(mlir::ConversionPatternRewriter &rewriter,
1282                                   mlir::Location loc, mlir::Value dest,
1283                                   unsigned dim, mlir::Value stride) const {
1284     return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimStridePos},
1285                        stride);
1286   }
1287 
1288   /// Get the address of the type descriptor global variable that was created by
1289   /// lowering for derived type \p recType.
1290   template <typename BOX>
1291   mlir::Value
1292   getTypeDescriptor(BOX box, mlir::ConversionPatternRewriter &rewriter,
1293                     mlir::Location loc, fir::RecordType recType) const {
1294     std::string name =
1295         fir::NameUniquer::getTypeDescriptorName(recType.getName());
1296     auto module = box->template getParentOfType<mlir::ModuleOp>();
1297     if (auto global = module.template lookupSymbol<fir::GlobalOp>(name)) {
1298       auto ty = mlir::LLVM::LLVMPointerType::get(
1299           this->lowerTy().convertType(global.getType()));
1300       return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
1301                                                       global.getSymName());
1302     }
1303     if (auto global =
1304             module.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) {
1305       // The global may have already been translated to LLVM.
1306       auto ty = mlir::LLVM::LLVMPointerType::get(global.getType());
1307       return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
1308                                                       global.getSymName());
1309     }
1310     // Type info derived types do not have type descriptors since they are the
1311     // types defining type descriptors.
1312     if (!this->options.ignoreMissingTypeDescriptors &&
1313         !fir::NameUniquer::belongsToModule(
1314             name, Fortran::semantics::typeInfoBuiltinModule))
1315       fir::emitFatalError(
1316           loc, "runtime derived type info descriptor was not generated");
1317     return rewriter.create<mlir::LLVM::NullOp>(
1318         loc, ::getVoidPtrType(box.getContext()));
1319   }
1320 
1321   template <typename BOX>
1322   std::tuple<fir::BoxType, mlir::Value, mlir::Value>
1323   consDescriptorPrefix(BOX box, mlir::ConversionPatternRewriter &rewriter,
1324                        unsigned rank, mlir::ValueRange lenParams) const {
1325     auto loc = box.getLoc();
1326     auto boxTy = box.getType().template dyn_cast<fir::BoxType>();
1327     auto convTy = this->lowerTy().convertBoxType(boxTy, rank);
1328     auto llvmBoxPtrTy = convTy.template cast<mlir::LLVM::LLVMPointerType>();
1329     auto llvmBoxTy = llvmBoxPtrTy.getElementType();
1330     mlir::Value descriptor =
1331         rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy);
1332 
1333     llvm::SmallVector<mlir::Value> typeparams = lenParams;
1334     if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) {
1335       if (!box.substr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
1336         typeparams.push_back(box.substr()[1]);
1337     }
1338 
1339     // Write each of the fields with the appropriate values
1340     auto [eleSize, cfiTy] =
1341         getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams);
1342     descriptor =
1343         insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize);
1344     descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox},
1345                              this->genI32Constant(loc, rewriter, CFI_VERSION));
1346     descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox},
1347                              this->genI32Constant(loc, rewriter, rank));
1348     descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy);
1349     descriptor =
1350         insertField(rewriter, loc, descriptor, {kAttributePosInBox},
1351                     this->genI32Constant(loc, rewriter, getCFIAttr(boxTy)));
1352     const bool hasAddendum = isDerivedType(boxTy);
1353     descriptor =
1354         insertField(rewriter, loc, descriptor, {kF18AddendumPosInBox},
1355                     this->genI32Constant(loc, rewriter, hasAddendum ? 1 : 0));
1356 
1357     if (hasAddendum) {
1358       auto isArray =
1359           fir::dyn_cast_ptrOrBoxEleTy(boxTy).template isa<fir::SequenceType>();
1360       unsigned typeDescFieldId = isArray ? kOptTypePtrPosInBox : kDimsPosInBox;
1361       auto typeDesc =
1362           getTypeDescriptor(box, rewriter, loc, unwrapIfDerived(boxTy));
1363       descriptor =
1364           insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc,
1365                       /*bitCast=*/true);
1366     }
1367 
1368     return {boxTy, descriptor, eleSize};
1369   }
1370 
1371   /// Compute the base address of a substring given the base address of a scalar
1372   /// string and the zero based string lower bound.
1373   mlir::Value shiftSubstringBase(mlir::ConversionPatternRewriter &rewriter,
1374                                  mlir::Location loc, mlir::Value base,
1375                                  mlir::Value lowerBound) const {
1376     llvm::SmallVector<mlir::Value> gepOperands;
1377     auto baseType =
1378         base.getType().cast<mlir::LLVM::LLVMPointerType>().getElementType();
1379     if (baseType.isa<mlir::LLVM::LLVMArrayType>()) {
1380       auto idxTy = this->lowerTy().indexType();
1381       mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
1382       gepOperands.push_back(zero);
1383     }
1384     gepOperands.push_back(lowerBound);
1385     return this->genGEP(loc, base.getType(), rewriter, base, gepOperands);
1386   }
1387 
1388   /// If the embox is not in a globalOp body, allocate storage for the box;
1389   /// store the value inside and return the generated alloca. Return the input
1390   /// value otherwise.
1391   mlir::Value
1392   placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter,
1393                                mlir::Location loc, mlir::Value boxValue) const {
1394     auto *thisBlock = rewriter.getInsertionBlock();
1395     if (thisBlock && mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp()))
1396       return boxValue;
1397     auto boxPtrTy = mlir::LLVM::LLVMPointerType::get(boxValue.getType());
1398     auto alloca = genAllocaWithType(loc, boxPtrTy, defaultAlign, rewriter);
1399     rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca);
1400     return alloca;
1401   }
1402 };
1403 
1404 /// Compute the extent of a triplet slice (lb:ub:step).
1405 static mlir::Value
1406 computeTripletExtent(mlir::ConversionPatternRewriter &rewriter,
1407                      mlir::Location loc, mlir::Value lb, mlir::Value ub,
1408                      mlir::Value step, mlir::Value zero, mlir::Type type) {
1409   mlir::Value extent = rewriter.create<mlir::LLVM::SubOp>(loc, type, ub, lb);
1410   extent = rewriter.create<mlir::LLVM::AddOp>(loc, type, extent, step);
1411   extent = rewriter.create<mlir::LLVM::SDivOp>(loc, type, extent, step);
1412   // If the resulting extent is negative (`ub-lb` and `step` have different
1413   // signs), zero must be returned instead.
1414   auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
1415       loc, mlir::LLVM::ICmpPredicate::sgt, extent, zero);
1416   return rewriter.create<mlir::LLVM::SelectOp>(loc, cmp, extent, zero);
1417 }
1418 
1419 /// Create a generic box on a memory reference. This conversions lowers the
1420 /// abstract box to the appropriate, initialized descriptor.
1421 struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> {
1422   using EmboxCommonConversion::EmboxCommonConversion;
1423 
1424   mlir::LogicalResult
1425   matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor,
1426                   mlir::ConversionPatternRewriter &rewriter) const override {
1427     assert(!embox.getShape() && "There should be no dims on this embox op");
1428     auto [boxTy, dest, eleSize] =
1429         consDescriptorPrefix(embox, rewriter, /*rank=*/0,
1430                              /*lenParams=*/adaptor.getOperands().drop_front(1));
1431     dest = insertBaseAddress(rewriter, embox.getLoc(), dest,
1432                              adaptor.getOperands()[0]);
1433     if (isDerivedTypeWithLenParams(boxTy)) {
1434       TODO(embox.getLoc(),
1435            "fir.embox codegen of derived with length parameters");
1436       return failure();
1437     }
1438     auto result = placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), dest);
1439     rewriter.replaceOp(embox, result);
1440     return success();
1441   }
1442 };
1443 
1444 /// Create a generic box on a memory reference.
1445 struct XEmboxOpConversion : public EmboxCommonConversion<fir::cg::XEmboxOp> {
1446   using EmboxCommonConversion::EmboxCommonConversion;
1447 
1448   mlir::LogicalResult
1449   matchAndRewrite(fir::cg::XEmboxOp xbox, OpAdaptor adaptor,
1450                   mlir::ConversionPatternRewriter &rewriter) const override {
1451     auto [boxTy, dest, eleSize] = consDescriptorPrefix(
1452         xbox, rewriter, xbox.getOutRank(),
1453         adaptor.getOperands().drop_front(xbox.lenParamOffset()));
1454     // Generate the triples in the dims field of the descriptor
1455     mlir::ValueRange operands = adaptor.getOperands();
1456     auto i64Ty = mlir::IntegerType::get(xbox.getContext(), 64);
1457     mlir::Value base = operands[0];
1458     assert(!xbox.shape().empty() && "must have a shape");
1459     unsigned shapeOffset = xbox.shapeOffset();
1460     bool hasShift = !xbox.shift().empty();
1461     unsigned shiftOffset = xbox.shiftOffset();
1462     bool hasSlice = !xbox.slice().empty();
1463     unsigned sliceOffset = xbox.sliceOffset();
1464     mlir::Location loc = xbox.getLoc();
1465     mlir::Value zero = genConstantIndex(loc, i64Ty, rewriter, 0);
1466     mlir::Value one = genConstantIndex(loc, i64Ty, rewriter, 1);
1467     mlir::Value prevDim = integerCast(loc, rewriter, i64Ty, eleSize);
1468     mlir::Value prevPtrOff = one;
1469     mlir::Type eleTy = boxTy.getEleTy();
1470     const unsigned rank = xbox.getRank();
1471     llvm::SmallVector<mlir::Value> gepArgs;
1472     unsigned constRows = 0;
1473     mlir::Value ptrOffset = zero;
1474     if (auto memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType()))
1475       if (auto seqTy = memEleTy.dyn_cast<fir::SequenceType>()) {
1476         mlir::Type seqEleTy = seqTy.getEleTy();
1477         // Adjust the element scaling factor if the element is a dependent type.
1478         if (fir::hasDynamicSize(seqEleTy)) {
1479           if (fir::isa_char(seqEleTy)) {
1480             assert(xbox.lenParams().size() == 1);
1481             prevPtrOff = integerCast(loc, rewriter, i64Ty,
1482                                      operands[xbox.lenParamOffset()]);
1483           } else if (seqEleTy.isa<fir::RecordType>()) {
1484             TODO(loc, "generate call to calculate size of PDT");
1485           } else {
1486             return rewriter.notifyMatchFailure(xbox, "unexpected dynamic type");
1487           }
1488         } else {
1489           constRows = seqTy.getConstantRows();
1490         }
1491       }
1492 
1493     bool hasSubcomp = !xbox.subcomponent().empty();
1494     if (!xbox.substr().empty())
1495       TODO(loc, "codegen of fir.embox with substring");
1496 
1497     mlir::Value stepExpr;
1498     if (hasSubcomp) {
1499       // We have a subcomponent. The step value needs to be the number of
1500       // bytes per element (which is a derived type).
1501       mlir::Type ty0 = base.getType();
1502       [[maybe_unused]] auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
1503       assert(ptrTy && "expected pointer type");
1504       mlir::Type memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType());
1505       assert(memEleTy && "expected fir pointer type");
1506       auto seqTy = memEleTy.dyn_cast<fir::SequenceType>();
1507       assert(seqTy && "expected sequence type");
1508       mlir::Type seqEleTy = seqTy.getEleTy();
1509       auto eleTy = mlir::LLVM::LLVMPointerType::get(convertType(seqEleTy));
1510       stepExpr = computeDerivedTypeSize(loc, eleTy, i64Ty, rewriter);
1511     }
1512 
1513     // Process the array subspace arguments (shape, shift, etc.), if any,
1514     // translating everything to values in the descriptor wherever the entity
1515     // has a dynamic array dimension.
1516     for (unsigned di = 0, descIdx = 0; di < rank; ++di) {
1517       mlir::Value extent = operands[shapeOffset];
1518       mlir::Value outerExtent = extent;
1519       bool skipNext = false;
1520       if (hasSlice) {
1521         mlir::Value off = operands[sliceOffset];
1522         mlir::Value adj = one;
1523         if (hasShift)
1524           adj = operands[shiftOffset];
1525         auto ao = rewriter.create<mlir::LLVM::SubOp>(loc, i64Ty, off, adj);
1526         if (constRows > 0) {
1527           gepArgs.push_back(ao);
1528           --constRows;
1529         } else {
1530           auto dimOff =
1531               rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, ao, prevPtrOff);
1532           ptrOffset =
1533               rewriter.create<mlir::LLVM::AddOp>(loc, i64Ty, dimOff, ptrOffset);
1534         }
1535         if (mlir::isa_and_nonnull<fir::UndefOp>(
1536                 xbox.slice()[3 * di + 1].getDefiningOp())) {
1537           // This dimension contains a scalar expression in the array slice op.
1538           // The dimension is loop invariant, will be dropped, and will not
1539           // appear in the descriptor.
1540           skipNext = true;
1541         }
1542       }
1543       if (!skipNext) {
1544         if (hasSlice)
1545           extent = computeTripletExtent(rewriter, loc, operands[sliceOffset],
1546                                         operands[sliceOffset + 1],
1547                                         operands[sliceOffset + 2], zero, i64Ty);
1548         // store lower bound (normally 0) for BIND(C) interoperability.
1549         mlir::Value lb = zero;
1550         const bool isaPointerOrAllocatable =
1551             eleTy.isa<fir::PointerType>() || eleTy.isa<fir::HeapType>();
1552         // Lower bound is defaults to 1 for POINTER, ALLOCATABLE, and
1553         // denormalized descriptors.
1554         if (isaPointerOrAllocatable || !normalizedLowerBound(xbox)) {
1555           lb = one;
1556           // If there is a shifted origin, and no fir.slice, and this is not
1557           // a normalized descriptor then use the value from the shift op as
1558           // the lower bound.
1559           if (hasShift && !(hasSlice || hasSubcomp)) {
1560             lb = operands[shiftOffset];
1561             auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
1562                 loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
1563             lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one,
1564                                                        lb);
1565           }
1566         }
1567         dest = insertLowerBound(rewriter, loc, dest, descIdx, lb);
1568 
1569         dest = insertExtent(rewriter, loc, dest, descIdx, extent);
1570 
1571         // store step (scaled by shaped extent)
1572 
1573         mlir::Value step = hasSubcomp ? stepExpr : prevDim;
1574         if (hasSlice)
1575           step = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, step,
1576                                                     operands[sliceOffset + 2]);
1577         dest = insertStride(rewriter, loc, dest, descIdx, step);
1578         ++descIdx;
1579       }
1580 
1581       // compute the stride and offset for the next natural dimension
1582       prevDim =
1583           rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevDim, outerExtent);
1584       if (constRows == 0)
1585         prevPtrOff = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevPtrOff,
1586                                                         outerExtent);
1587 
1588       // increment iterators
1589       ++shapeOffset;
1590       if (hasShift)
1591         ++shiftOffset;
1592       if (hasSlice)
1593         sliceOffset += 3;
1594     }
1595     if (hasSlice || hasSubcomp || !xbox.substr().empty()) {
1596       llvm::SmallVector<mlir::Value> args = {ptrOffset};
1597       args.append(gepArgs.rbegin(), gepArgs.rend());
1598       if (hasSubcomp) {
1599         // For each field in the path add the offset to base via the args list.
1600         // In the most general case, some offsets must be computed since
1601         // they are not be known until runtime.
1602         if (fir::hasDynamicSize(fir::unwrapSequenceType(
1603                 fir::unwrapPassByRefType(xbox.memref().getType()))))
1604           TODO(loc, "fir.embox codegen dynamic size component in derived type");
1605         args.append(operands.begin() + xbox.subcomponentOffset(),
1606                     operands.begin() + xbox.subcomponentOffset() +
1607                         xbox.subcomponent().size());
1608       }
1609       base =
1610           rewriter.create<mlir::LLVM::GEPOp>(loc, base.getType(), base, args);
1611       if (!xbox.substr().empty())
1612         base = shiftSubstringBase(rewriter, loc, base,
1613                                   operands[xbox.substrOffset()]);
1614     }
1615     dest = insertBaseAddress(rewriter, loc, dest, base);
1616     if (isDerivedTypeWithLenParams(boxTy))
1617       TODO(loc, "fir.embox codegen of derived with length parameters");
1618 
1619     mlir::Value result = placeInMemoryIfNotGlobalInit(rewriter, loc, dest);
1620     rewriter.replaceOp(xbox, result);
1621     return success();
1622   }
1623 
1624   /// Return true if `xbox` has a normalized lower bounds attribute. A box value
1625   /// that is neither a POINTER nor an ALLOCATABLE should be normalized to a
1626   /// zero origin lower bound for interoperability with BIND(C).
1627   inline static bool normalizedLowerBound(fir::cg::XEmboxOp xbox) {
1628     return xbox->hasAttr(fir::getNormalizedLowerBoundAttrName());
1629   }
1630 };
1631 
1632 /// Create a new box given a box reference.
1633 struct XReboxOpConversion : public EmboxCommonConversion<fir::cg::XReboxOp> {
1634   using EmboxCommonConversion::EmboxCommonConversion;
1635 
1636   mlir::LogicalResult
1637   matchAndRewrite(fir::cg::XReboxOp rebox, OpAdaptor adaptor,
1638                   mlir::ConversionPatternRewriter &rewriter) const override {
1639     mlir::Location loc = rebox.getLoc();
1640     mlir::Type idxTy = lowerTy().indexType();
1641     mlir::Value loweredBox = adaptor.getOperands()[0];
1642     mlir::ValueRange operands = adaptor.getOperands();
1643 
1644     // Create new descriptor and fill its non-shape related data.
1645     llvm::SmallVector<mlir::Value, 2> lenParams;
1646     mlir::Type inputEleTy = getInputEleTy(rebox);
1647     if (auto charTy = inputEleTy.dyn_cast<fir::CharacterType>()) {
1648       mlir::Value len =
1649           loadElementSizeFromBox(loc, idxTy, loweredBox, rewriter);
1650       if (charTy.getFKind() != 1) {
1651         mlir::Value width =
1652             genConstantIndex(loc, idxTy, rewriter, charTy.getFKind());
1653         len = rewriter.create<mlir::LLVM::SDivOp>(loc, idxTy, len, width);
1654       }
1655       lenParams.emplace_back(len);
1656     } else if (auto recTy = inputEleTy.dyn_cast<fir::RecordType>()) {
1657       if (recTy.getNumLenParams() != 0)
1658         TODO(loc, "reboxing descriptor of derived type with length parameters");
1659     }
1660     auto [boxTy, dest, eleSize] =
1661         consDescriptorPrefix(rebox, rewriter, rebox.getOutRank(), lenParams);
1662 
1663     // Read input extents, strides, and base address
1664     llvm::SmallVector<mlir::Value> inputExtents;
1665     llvm::SmallVector<mlir::Value> inputStrides;
1666     const unsigned inputRank = rebox.getRank();
1667     for (unsigned i = 0; i < inputRank; ++i) {
1668       mlir::Value dim = genConstantIndex(loc, idxTy, rewriter, i);
1669       SmallVector<mlir::Value, 3> dimInfo =
1670           getDimsFromBox(loc, {idxTy, idxTy, idxTy}, loweredBox, dim, rewriter);
1671       inputExtents.emplace_back(dimInfo[1]);
1672       inputStrides.emplace_back(dimInfo[2]);
1673     }
1674 
1675     mlir::Type baseTy = getBaseAddrTypeFromBox(loweredBox.getType());
1676     mlir::Value baseAddr =
1677         loadBaseAddrFromBox(loc, baseTy, loweredBox, rewriter);
1678 
1679     if (!rebox.slice().empty() || !rebox.subcomponent().empty())
1680       return sliceBox(rebox, dest, baseAddr, inputExtents, inputStrides,
1681                       operands, rewriter);
1682     return reshapeBox(rebox, dest, baseAddr, inputExtents, inputStrides,
1683                       operands, rewriter);
1684   }
1685 
1686 private:
1687   /// Write resulting shape and base address in descriptor, and replace rebox
1688   /// op.
1689   mlir::LogicalResult
1690   finalizeRebox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
1691                 mlir::ValueRange lbounds, mlir::ValueRange extents,
1692                 mlir::ValueRange strides,
1693                 mlir::ConversionPatternRewriter &rewriter) const {
1694     mlir::Location loc = rebox.getLoc();
1695     mlir::Value zero =
1696         genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
1697     mlir::Value one = genConstantIndex(loc, lowerTy().indexType(), rewriter, 1);
1698     for (auto iter : llvm::enumerate(llvm::zip(extents, strides))) {
1699       mlir::Value extent = std::get<0>(iter.value());
1700       unsigned dim = iter.index();
1701       mlir::Value lb = one;
1702       if (!lbounds.empty()) {
1703         lb = lbounds[dim];
1704         auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
1705             loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
1706         lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one, lb);
1707       };
1708       dest = insertLowerBound(rewriter, loc, dest, dim, lb);
1709       dest = insertExtent(rewriter, loc, dest, dim, extent);
1710       dest = insertStride(rewriter, loc, dest, dim, std::get<1>(iter.value()));
1711     }
1712     dest = insertBaseAddress(rewriter, loc, dest, base);
1713     mlir::Value result =
1714         placeInMemoryIfNotGlobalInit(rewriter, rebox.getLoc(), dest);
1715     rewriter.replaceOp(rebox, result);
1716     return success();
1717   }
1718 
1719   // Apply slice given the base address, extents and strides of the input box.
1720   mlir::LogicalResult
1721   sliceBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
1722            mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
1723            mlir::ValueRange operands,
1724            mlir::ConversionPatternRewriter &rewriter) const {
1725     mlir::Location loc = rebox.getLoc();
1726     mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
1727     mlir::Type idxTy = lowerTy().indexType();
1728     mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
1729     // Apply subcomponent and substring shift on base address.
1730     if (!rebox.subcomponent().empty() || !rebox.substr().empty()) {
1731       // Cast to inputEleTy* so that a GEP can be used.
1732       mlir::Type inputEleTy = getInputEleTy(rebox);
1733       auto llvmElePtrTy =
1734           mlir::LLVM::LLVMPointerType::get(convertType(inputEleTy));
1735       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, llvmElePtrTy, base);
1736 
1737       if (!rebox.subcomponent().empty()) {
1738         llvm::SmallVector<mlir::Value> gepOperands = {zero};
1739         for (unsigned i = 0; i < rebox.subcomponent().size(); ++i)
1740           gepOperands.push_back(operands[rebox.subcomponentOffset() + i]);
1741         base = genGEP(loc, llvmElePtrTy, rewriter, base, gepOperands);
1742       }
1743       if (!rebox.substr().empty())
1744         base = shiftSubstringBase(rewriter, loc, base,
1745                                   operands[rebox.substrOffset()]);
1746     }
1747 
1748     if (rebox.slice().empty())
1749       // The array section is of the form array[%component][substring], keep
1750       // the input array extents and strides.
1751       return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
1752                            inputExtents, inputStrides, rewriter);
1753 
1754     // Strides from the fir.box are in bytes.
1755     base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
1756 
1757     // The slice is of the form array(i:j:k)[%component]. Compute new extents
1758     // and strides.
1759     llvm::SmallVector<mlir::Value> slicedExtents;
1760     llvm::SmallVector<mlir::Value> slicedStrides;
1761     mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
1762     const bool sliceHasOrigins = !rebox.shift().empty();
1763     unsigned sliceOps = rebox.sliceOffset();
1764     unsigned shiftOps = rebox.shiftOffset();
1765     auto strideOps = inputStrides.begin();
1766     const unsigned inputRank = inputStrides.size();
1767     for (unsigned i = 0; i < inputRank;
1768          ++i, ++strideOps, ++shiftOps, sliceOps += 3) {
1769       mlir::Value sliceLb =
1770           integerCast(loc, rewriter, idxTy, operands[sliceOps]);
1771       mlir::Value inputStride = *strideOps; // already idxTy
1772       // Apply origin shift: base += (lb-shift)*input_stride
1773       mlir::Value sliceOrigin =
1774           sliceHasOrigins
1775               ? integerCast(loc, rewriter, idxTy, operands[shiftOps])
1776               : one;
1777       mlir::Value diff =
1778           rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, sliceOrigin);
1779       mlir::Value offset =
1780           rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, inputStride);
1781       base = genGEP(loc, voidPtrTy, rewriter, base, offset);
1782       // Apply upper bound and step if this is a triplet. Otherwise, the
1783       // dimension is dropped and no extents/strides are computed.
1784       mlir::Value upper = operands[sliceOps + 1];
1785       const bool isTripletSlice =
1786           !mlir::isa_and_nonnull<mlir::LLVM::UndefOp>(upper.getDefiningOp());
1787       if (isTripletSlice) {
1788         mlir::Value step =
1789             integerCast(loc, rewriter, idxTy, operands[sliceOps + 2]);
1790         // extent = ub-lb+step/step
1791         mlir::Value sliceUb = integerCast(loc, rewriter, idxTy, upper);
1792         mlir::Value extent = computeTripletExtent(rewriter, loc, sliceLb,
1793                                                   sliceUb, step, zero, idxTy);
1794         slicedExtents.emplace_back(extent);
1795         // stride = step*input_stride
1796         mlir::Value stride =
1797             rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, step, inputStride);
1798         slicedStrides.emplace_back(stride);
1799       }
1800     }
1801     return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
1802                          slicedExtents, slicedStrides, rewriter);
1803   }
1804 
1805   /// Apply a new shape to the data described by a box given the base address,
1806   /// extents and strides of the box.
1807   mlir::LogicalResult
1808   reshapeBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
1809              mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
1810              mlir::ValueRange operands,
1811              mlir::ConversionPatternRewriter &rewriter) const {
1812     mlir::ValueRange reboxShifts{operands.begin() + rebox.shiftOffset(),
1813                                  operands.begin() + rebox.shiftOffset() +
1814                                      rebox.shift().size()};
1815     if (rebox.shape().empty()) {
1816       // Only setting new lower bounds.
1817       return finalizeRebox(rebox, dest, base, reboxShifts, inputExtents,
1818                            inputStrides, rewriter);
1819     }
1820 
1821     mlir::Location loc = rebox.getLoc();
1822     // Strides from the fir.box are in bytes.
1823     mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
1824     base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
1825 
1826     llvm::SmallVector<mlir::Value> newStrides;
1827     llvm::SmallVector<mlir::Value> newExtents;
1828     mlir::Type idxTy = lowerTy().indexType();
1829     // First stride from input box is kept. The rest is assumed contiguous
1830     // (it is not possible to reshape otherwise). If the input is scalar,
1831     // which may be OK if all new extents are ones, the stride does not
1832     // matter, use one.
1833     mlir::Value stride = inputStrides.empty()
1834                              ? genConstantIndex(loc, idxTy, rewriter, 1)
1835                              : inputStrides[0];
1836     for (unsigned i = 0; i < rebox.shape().size(); ++i) {
1837       mlir::Value rawExtent = operands[rebox.shapeOffset() + i];
1838       mlir::Value extent = integerCast(loc, rewriter, idxTy, rawExtent);
1839       newExtents.emplace_back(extent);
1840       newStrides.emplace_back(stride);
1841       // nextStride = extent * stride;
1842       stride = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, extent, stride);
1843     }
1844     return finalizeRebox(rebox, dest, base, reboxShifts, newExtents, newStrides,
1845                          rewriter);
1846   }
1847 
1848   /// Return scalar element type of the input box.
1849   static mlir::Type getInputEleTy(fir::cg::XReboxOp rebox) {
1850     auto ty = fir::dyn_cast_ptrOrBoxEleTy(rebox.box().getType());
1851     if (auto seqTy = ty.dyn_cast<fir::SequenceType>())
1852       return seqTy.getEleTy();
1853     return ty;
1854   }
1855 };
1856 
1857 /// Lower `fir.emboxproc` operation. Creates a procedure box.
1858 /// TODO: Part of supporting Fortran 2003 procedure pointers.
1859 struct EmboxProcOpConversion : public FIROpConversion<fir::EmboxProcOp> {
1860   using FIROpConversion::FIROpConversion;
1861 
1862   mlir::LogicalResult
1863   matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor,
1864                   mlir::ConversionPatternRewriter &rewriter) const override {
1865     TODO(emboxproc.getLoc(), "fir.emboxproc codegen");
1866     return failure();
1867   }
1868 };
1869 
1870 // Code shared between insert_value and extract_value Ops.
1871 struct ValueOpCommon {
1872   // Translate the arguments pertaining to any multidimensional array to
1873   // row-major order for LLVM-IR.
1874   static void toRowMajor(SmallVectorImpl<mlir::Attribute> &attrs,
1875                          mlir::Type ty) {
1876     assert(ty && "type is null");
1877     const auto end = attrs.size();
1878     for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
1879       if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
1880         const auto dim = getDimension(seq);
1881         if (dim > 1) {
1882           auto ub = std::min(i + dim, end);
1883           std::reverse(attrs.begin() + i, attrs.begin() + ub);
1884           i += dim - 1;
1885         }
1886         ty = getArrayElementType(seq);
1887       } else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) {
1888         ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()];
1889       } else {
1890         llvm_unreachable("index into invalid type");
1891       }
1892     }
1893   }
1894 
1895   static llvm::SmallVector<mlir::Attribute>
1896   collectIndices(mlir::ConversionPatternRewriter &rewriter,
1897                  mlir::ArrayAttr arrAttr) {
1898     llvm::SmallVector<mlir::Attribute> attrs;
1899     for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
1900       if (i->isa<mlir::IntegerAttr>()) {
1901         attrs.push_back(*i);
1902       } else {
1903         auto fieldName = i->cast<mlir::StringAttr>().getValue();
1904         ++i;
1905         auto ty = i->cast<mlir::TypeAttr>().getValue();
1906         auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName);
1907         attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index));
1908       }
1909     }
1910     return attrs;
1911   }
1912 
1913 private:
1914   static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
1915     unsigned result = 1;
1916     for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>();
1917          eleTy;
1918          eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>())
1919       ++result;
1920     return result;
1921   }
1922 
1923   static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
1924     auto eleTy = ty.getElementType();
1925     while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
1926       eleTy = arrTy.getElementType();
1927     return eleTy;
1928   }
1929 };
1930 
1931 namespace {
1932 /// Extract a subobject value from an ssa-value of aggregate type
1933 struct ExtractValueOpConversion
1934     : public FIROpAndTypeConversion<fir::ExtractValueOp>,
1935       public ValueOpCommon {
1936   using FIROpAndTypeConversion::FIROpAndTypeConversion;
1937 
1938   mlir::LogicalResult
1939   doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
1940             mlir::ConversionPatternRewriter &rewriter) const override {
1941     auto attrs = collectIndices(rewriter, extractVal.getCoor());
1942     toRowMajor(attrs, adaptor.getOperands()[0].getType());
1943     auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs);
1944     rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
1945         extractVal, ty, adaptor.getOperands()[0], position);
1946     return success();
1947   }
1948 };
1949 
1950 /// InsertValue is the generalized instruction for the composition of new
1951 /// aggregate type values.
1952 struct InsertValueOpConversion
1953     : public FIROpAndTypeConversion<fir::InsertValueOp>,
1954       public ValueOpCommon {
1955   using FIROpAndTypeConversion::FIROpAndTypeConversion;
1956 
1957   mlir::LogicalResult
1958   doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor,
1959             mlir::ConversionPatternRewriter &rewriter) const override {
1960     auto attrs = collectIndices(rewriter, insertVal.getCoor());
1961     toRowMajor(attrs, adaptor.getOperands()[0].getType());
1962     auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs);
1963     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
1964         insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1],
1965         position);
1966     return success();
1967   }
1968 };
1969 
1970 /// InsertOnRange inserts a value into a sequence over a range of offsets.
1971 struct InsertOnRangeOpConversion
1972     : public FIROpAndTypeConversion<fir::InsertOnRangeOp> {
1973   using FIROpAndTypeConversion::FIROpAndTypeConversion;
1974 
1975   // Increments an array of subscripts in a row major fasion.
1976   void incrementSubscripts(const SmallVector<uint64_t> &dims,
1977                            SmallVector<uint64_t> &subscripts) const {
1978     for (size_t i = dims.size(); i > 0; --i) {
1979       if (++subscripts[i - 1] < dims[i - 1]) {
1980         return;
1981       }
1982       subscripts[i - 1] = 0;
1983     }
1984   }
1985 
1986   mlir::LogicalResult
1987   doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
1988             mlir::ConversionPatternRewriter &rewriter) const override {
1989 
1990     llvm::SmallVector<uint64_t> dims;
1991     auto type = adaptor.getOperands()[0].getType();
1992 
1993     // Iteratively extract the array dimensions from the type.
1994     while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
1995       dims.push_back(t.getNumElements());
1996       type = t.getElementType();
1997     }
1998 
1999     SmallVector<uint64_t> lBounds;
2000     SmallVector<uint64_t> uBounds;
2001 
2002     // Unzip the upper and lower bound and convert to a row major format.
2003     mlir::DenseIntElementsAttr coor = range.getCoor();
2004     auto reversedCoor = llvm::reverse(coor.getValues<int64_t>());
2005     for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) {
2006       uBounds.push_back(*i++);
2007       lBounds.push_back(*i);
2008     }
2009 
2010     auto &subscripts = lBounds;
2011     auto loc = range.getLoc();
2012     mlir::Value lastOp = adaptor.getOperands()[0];
2013     mlir::Value insertVal = adaptor.getOperands()[1];
2014 
2015     auto i64Ty = rewriter.getI64Type();
2016     while (subscripts != uBounds) {
2017       // Convert uint64_t's to Attribute's.
2018       SmallVector<mlir::Attribute> subscriptAttrs;
2019       for (const auto &subscript : subscripts)
2020         subscriptAttrs.push_back(IntegerAttr::get(i64Ty, subscript));
2021       lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
2022           loc, ty, lastOp, insertVal,
2023           ArrayAttr::get(range.getContext(), subscriptAttrs));
2024 
2025       incrementSubscripts(dims, subscripts);
2026     }
2027 
2028     // Convert uint64_t's to Attribute's.
2029     SmallVector<mlir::Attribute> subscriptAttrs;
2030     for (const auto &subscript : subscripts)
2031       subscriptAttrs.push_back(
2032           IntegerAttr::get(rewriter.getI64Type(), subscript));
2033     mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs);
2034 
2035     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
2036         range, ty, lastOp, insertVal,
2037         ArrayAttr::get(range.getContext(), arrayRef));
2038 
2039     return success();
2040   }
2041 };
2042 } // namespace
2043 
2044 namespace {
2045 /// XArrayCoor is the address arithmetic on a dynamically shaped, sliced,
2046 /// shifted etc. array.
2047 /// (See the static restriction on coordinate_of.) array_coor determines the
2048 /// coordinate (location) of a specific element.
2049 struct XArrayCoorOpConversion
2050     : public FIROpAndTypeConversion<fir::cg::XArrayCoorOp> {
2051   using FIROpAndTypeConversion::FIROpAndTypeConversion;
2052 
2053   mlir::LogicalResult
2054   doRewrite(fir::cg::XArrayCoorOp coor, mlir::Type ty, OpAdaptor adaptor,
2055             mlir::ConversionPatternRewriter &rewriter) const override {
2056     auto loc = coor.getLoc();
2057     mlir::ValueRange operands = adaptor.getOperands();
2058     unsigned rank = coor.getRank();
2059     assert(coor.indices().size() == rank);
2060     assert(coor.shape().empty() || coor.shape().size() == rank);
2061     assert(coor.shift().empty() || coor.shift().size() == rank);
2062     assert(coor.slice().empty() || coor.slice().size() == 3 * rank);
2063     mlir::Type idxTy = lowerTy().indexType();
2064     mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
2065     mlir::Value prevExt = one;
2066     mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
2067     mlir::Value offset = zero;
2068     const bool isShifted = !coor.shift().empty();
2069     const bool isSliced = !coor.slice().empty();
2070     const bool baseIsBoxed = coor.memref().getType().isa<fir::BoxType>();
2071 
2072     auto indexOps = coor.indices().begin();
2073     auto shapeOps = coor.shape().begin();
2074     auto shiftOps = coor.shift().begin();
2075     auto sliceOps = coor.slice().begin();
2076     // For each dimension of the array, generate the offset calculation.
2077     for (unsigned i = 0; i < rank;
2078          ++i, ++indexOps, ++shapeOps, ++shiftOps, sliceOps += 3) {
2079       mlir::Value index =
2080           integerCast(loc, rewriter, idxTy, operands[coor.indicesOffset() + i]);
2081       mlir::Value lb = isShifted ? integerCast(loc, rewriter, idxTy,
2082                                                operands[coor.shiftOffset() + i])
2083                                  : one;
2084       mlir::Value step = one;
2085       bool normalSlice = isSliced;
2086       // Compute zero based index in dimension i of the element, applying
2087       // potential triplets and lower bounds.
2088       if (isSliced) {
2089         mlir::Value ub = *(sliceOps + 1);
2090         normalSlice = !mlir::isa_and_nonnull<fir::UndefOp>(ub.getDefiningOp());
2091         if (normalSlice)
2092           step = integerCast(loc, rewriter, idxTy, *(sliceOps + 2));
2093       }
2094       auto idx = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, index, lb);
2095       mlir::Value diff =
2096           rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, idx, step);
2097       if (normalSlice) {
2098         mlir::Value sliceLb =
2099             integerCast(loc, rewriter, idxTy, operands[coor.sliceOffset() + i]);
2100         auto adj = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, lb);
2101         diff = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, diff, adj);
2102       }
2103       // Update the offset given the stride and the zero based index `diff`
2104       // that was just computed.
2105       if (baseIsBoxed) {
2106         // Use stride in bytes from the descriptor.
2107         mlir::Value stride =
2108             loadStrideFromBox(loc, adaptor.getOperands()[0], i, rewriter);
2109         auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, stride);
2110         offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
2111       } else {
2112         // Use stride computed at last iteration.
2113         auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, prevExt);
2114         offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
2115         // Compute next stride assuming contiguity of the base array
2116         // (in element number).
2117         auto nextExt =
2118             integerCast(loc, rewriter, idxTy, operands[coor.shapeOffset() + i]);
2119         prevExt =
2120             rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, prevExt, nextExt);
2121       }
2122     }
2123 
2124     // Add computed offset to the base address.
2125     if (baseIsBoxed) {
2126       // Working with byte offsets. The base address is read from the fir.box.
2127       // and need to be casted to i8* to do the pointer arithmetic.
2128       mlir::Type baseTy =
2129           getBaseAddrTypeFromBox(adaptor.getOperands()[0].getType());
2130       mlir::Value base =
2131           loadBaseAddrFromBox(loc, baseTy, adaptor.getOperands()[0], rewriter);
2132       mlir::Type voidPtrTy = getVoidPtrType();
2133       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
2134       llvm::SmallVector<mlir::Value> args{offset};
2135       auto addr =
2136           rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy, base, args);
2137       if (coor.subcomponent().empty()) {
2138         rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, baseTy, addr);
2139         return success();
2140       }
2141       auto casted = rewriter.create<mlir::LLVM::BitcastOp>(loc, baseTy, addr);
2142       args.clear();
2143       args.push_back(zero);
2144       if (!coor.lenParams().empty()) {
2145         // If type parameters are present, then we don't want to use a GEPOp
2146         // as below, as the LLVM struct type cannot be statically defined.
2147         TODO(loc, "derived type with type parameters");
2148       }
2149       // TODO: array offset subcomponents must be converted to LLVM's
2150       // row-major layout here.
2151       for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
2152         args.push_back(operands[i]);
2153       rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, baseTy, casted,
2154                                                      args);
2155       return success();
2156     }
2157 
2158     // The array was not boxed, so it must be contiguous. offset is therefore an
2159     // element offset and the base type is kept in the GEP unless the element
2160     // type size is itself dynamic.
2161     mlir::Value base;
2162     if (coor.subcomponent().empty()) {
2163       // No subcomponent.
2164       if (!coor.lenParams().empty()) {
2165         // Type parameters. Adjust element size explicitly.
2166         auto eleTy = fir::dyn_cast_ptrEleTy(coor.getType());
2167         assert(eleTy && "result must be a reference-like type");
2168         if (fir::characterWithDynamicLen(eleTy)) {
2169           assert(coor.lenParams().size() == 1);
2170           auto bitsInChar = lowerTy().getKindMap().getCharacterBitsize(
2171               eleTy.cast<fir::CharacterType>().getFKind());
2172           auto scaling = genConstantIndex(loc, idxTy, rewriter, bitsInChar / 8);
2173           auto scaledBySize =
2174               rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, offset, scaling);
2175           auto length =
2176               integerCast(loc, rewriter, idxTy,
2177                           adaptor.getOperands()[coor.lenParamsOffset()]);
2178           offset = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, scaledBySize,
2179                                                       length);
2180         } else {
2181           TODO(loc, "compute size of derived type with type parameters");
2182         }
2183       }
2184       // Cast the base address to a pointer to T.
2185       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, ty,
2186                                                     adaptor.getOperands()[0]);
2187     } else {
2188       // Operand #0 must have a pointer type. For subcomponent slicing, we
2189       // want to cast away the array type and have a plain struct type.
2190       mlir::Type ty0 = adaptor.getOperands()[0].getType();
2191       auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
2192       assert(ptrTy && "expected pointer type");
2193       mlir::Type eleTy = ptrTy.getElementType();
2194       while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
2195         eleTy = arrTy.getElementType();
2196       auto newTy = mlir::LLVM::LLVMPointerType::get(eleTy);
2197       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, newTy,
2198                                                     adaptor.getOperands()[0]);
2199     }
2200     SmallVector<mlir::Value> args = {offset};
2201     for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
2202       args.push_back(operands[i]);
2203     rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, ty, base, args);
2204     return success();
2205   }
2206 };
2207 } // namespace
2208 
2209 /// Convert to (memory) reference to a reference to a subobject.
2210 /// The coordinate_of op is a Swiss army knife operation that can be used on
2211 /// (memory) references to records, arrays, complex, etc. as well as boxes.
2212 /// With unboxed arrays, there is the restriction that the array have a static
2213 /// shape in all but the last column.
2214 struct CoordinateOpConversion
2215     : public FIROpAndTypeConversion<fir::CoordinateOp> {
2216   using FIROpAndTypeConversion::FIROpAndTypeConversion;
2217 
2218   mlir::LogicalResult
2219   doRewrite(fir::CoordinateOp coor, mlir::Type ty, OpAdaptor adaptor,
2220             mlir::ConversionPatternRewriter &rewriter) const override {
2221     mlir::ValueRange operands = adaptor.getOperands();
2222 
2223     mlir::Location loc = coor.getLoc();
2224     mlir::Value base = operands[0];
2225     mlir::Type baseObjectTy = coor.getBaseType();
2226     mlir::Type objectTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
2227     assert(objectTy && "fir.coordinate_of expects a reference type");
2228 
2229     // Complex type - basically, extract the real or imaginary part
2230     if (fir::isa_complex(objectTy)) {
2231       mlir::LLVM::ConstantOp c0 =
2232           genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
2233       llvm::SmallVector<mlir::Value> offs = {c0, operands[1]};
2234       mlir::Value gep = genGEP(loc, ty, rewriter, base, offs);
2235       rewriter.replaceOp(coor, gep);
2236       return success();
2237     }
2238 
2239     // Boxed type - get the base pointer from the box
2240     if (baseObjectTy.dyn_cast<fir::BoxType>())
2241       return doRewriteBox(coor, ty, operands, loc, rewriter);
2242 
2243     // Reference, pointer or a heap type
2244     if (baseObjectTy.isa<fir::ReferenceType, fir::PointerType, fir::HeapType>())
2245       return doRewriteRefOrPtr(coor, ty, operands, loc, rewriter);
2246 
2247     return rewriter.notifyMatchFailure(
2248         coor, "fir.coordinate_of base operand has unsupported type");
2249   }
2250 
2251   static unsigned getFieldNumber(fir::RecordType ty, mlir::Value op) {
2252     return fir::hasDynamicSize(ty)
2253                ? op.getDefiningOp()
2254                      ->getAttrOfType<mlir::IntegerAttr>("field")
2255                      .getInt()
2256                : getIntValue(op);
2257   }
2258 
2259   static int64_t getIntValue(mlir::Value val) {
2260     assert(val && val.dyn_cast<mlir::OpResult>() && "must not be null value");
2261     mlir::Operation *defop = val.getDefiningOp();
2262 
2263     if (auto constOp = dyn_cast<mlir::arith::ConstantIntOp>(defop))
2264       return constOp.value();
2265     if (auto llConstOp = dyn_cast<mlir::LLVM::ConstantOp>(defop))
2266       if (auto attr = llConstOp.getValue().dyn_cast<mlir::IntegerAttr>())
2267         return attr.getValue().getSExtValue();
2268     fir::emitFatalError(val.getLoc(), "must be a constant");
2269   }
2270 
2271   static bool hasSubDimensions(mlir::Type type) {
2272     return type.isa<fir::SequenceType, fir::RecordType, mlir::TupleType>();
2273   }
2274 
2275   /// Check whether this form of `!fir.coordinate_of` is supported. These
2276   /// additional checks are required, because we are not yet able to convert
2277   /// all valid forms of `!fir.coordinate_of`.
2278   /// TODO: Either implement the unsupported cases or extend the verifier
2279   /// in FIROps.cpp instead.
2280   static bool supportedCoordinate(mlir::Type type, mlir::ValueRange coors) {
2281     const std::size_t numOfCoors = coors.size();
2282     std::size_t i = 0;
2283     bool subEle = false;
2284     bool ptrEle = false;
2285     for (; i < numOfCoors; ++i) {
2286       mlir::Value nxtOpnd = coors[i];
2287       if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
2288         subEle = true;
2289         i += arrTy.getDimension() - 1;
2290         type = arrTy.getEleTy();
2291       } else if (auto recTy = type.dyn_cast<fir::RecordType>()) {
2292         subEle = true;
2293         type = recTy.getType(getFieldNumber(recTy, nxtOpnd));
2294       } else if (auto tupTy = type.dyn_cast<mlir::TupleType>()) {
2295         subEle = true;
2296         type = tupTy.getType(getIntValue(nxtOpnd));
2297       } else {
2298         ptrEle = true;
2299       }
2300     }
2301     if (ptrEle)
2302       return (!subEle) && (numOfCoors == 1);
2303     return subEle && (i >= numOfCoors);
2304   }
2305 
2306   /// Walk the abstract memory layout and determine if the path traverses any
2307   /// array types with unknown shape. Return true iff all the array types have a
2308   /// constant shape along the path.
2309   static bool arraysHaveKnownShape(mlir::Type type, mlir::ValueRange coors) {
2310     for (std::size_t i = 0, sz = coors.size(); i < sz; ++i) {
2311       mlir::Value nxtOpnd = coors[i];
2312       if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
2313         if (fir::sequenceWithNonConstantShape(arrTy))
2314           return false;
2315         i += arrTy.getDimension() - 1;
2316         type = arrTy.getEleTy();
2317       } else if (auto strTy = type.dyn_cast<fir::RecordType>()) {
2318         type = strTy.getType(getFieldNumber(strTy, nxtOpnd));
2319       } else if (auto strTy = type.dyn_cast<mlir::TupleType>()) {
2320         type = strTy.getType(getIntValue(nxtOpnd));
2321       } else {
2322         return true;
2323       }
2324     }
2325     return true;
2326   }
2327 
2328 private:
2329   mlir::LogicalResult
2330   doRewriteBox(fir::CoordinateOp coor, mlir::Type ty, mlir::ValueRange operands,
2331                mlir::Location loc,
2332                mlir::ConversionPatternRewriter &rewriter) const {
2333     mlir::Type boxObjTy = coor.getBaseType();
2334     assert(boxObjTy.dyn_cast<fir::BoxType>() && "This is not a `fir.box`");
2335 
2336     mlir::Value boxBaseAddr = operands[0];
2337 
2338     // 1. SPECIAL CASE (uses `fir.len_param_index`):
2339     //   %box = ... : !fir.box<!fir.type<derived{len1:i32}>>
2340     //   %lenp = fir.len_param_index len1, !fir.type<derived{len1:i32}>
2341     //   %addr = coordinate_of %box, %lenp
2342     if (coor.getNumOperands() == 2) {
2343       mlir::Operation *coordinateDef =
2344           (*coor.getCoor().begin()).getDefiningOp();
2345       if (isa_and_nonnull<fir::LenParamIndexOp>(coordinateDef))
2346         TODO(loc,
2347              "fir.coordinate_of - fir.len_param_index is not supported yet");
2348     }
2349 
2350     // 2. GENERAL CASE:
2351     // 2.1. (`fir.array`)
2352     //   %box = ... : !fix.box<!fir.array<?xU>>
2353     //   %idx = ... : index
2354     //   %resultAddr = coordinate_of %box, %idx : !fir.ref<U>
2355     // 2.2 (`fir.derived`)
2356     //   %box = ... : !fix.box<!fir.type<derived_type{field_1:i32}>>
2357     //   %idx = ... : i32
2358     //   %resultAddr = coordinate_of %box, %idx : !fir.ref<i32>
2359     // 2.3 (`fir.derived` inside `fir.array`)
2360     //   %box = ... : !fir.box<!fir.array<10 x !fir.type<derived_1{field_1:f32,
2361     //   field_2:f32}>>> %idx1 = ... : index %idx2 = ... : i32 %resultAddr =
2362     //   coordinate_of %box, %idx1, %idx2 : !fir.ref<f32>
2363     // 2.4. TODO: Either document or disable any other case that the following
2364     //  implementation might convert.
2365     mlir::LLVM::ConstantOp c0 =
2366         genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
2367     mlir::Value resultAddr =
2368         loadBaseAddrFromBox(loc, getBaseAddrTypeFromBox(boxBaseAddr.getType()),
2369                             boxBaseAddr, rewriter);
2370     // Component Type
2371     auto cpnTy = fir::dyn_cast_ptrOrBoxEleTy(boxObjTy);
2372     mlir::Type voidPtrTy = ::getVoidPtrType(coor.getContext());
2373 
2374     for (unsigned i = 1, last = operands.size(); i < last; ++i) {
2375       if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
2376         if (i != 1)
2377           TODO(loc, "fir.array nested inside other array and/or derived type");
2378         // Applies byte strides from the box. Ignore lower bound from box
2379         // since fir.coordinate_of indexes are zero based. Lowering takes care
2380         // of lower bound aspects. This both accounts for dynamically sized
2381         // types and non contiguous arrays.
2382         auto idxTy = lowerTy().indexType();
2383         mlir::Value off = genConstantIndex(loc, idxTy, rewriter, 0);
2384         for (unsigned index = i, lastIndex = i + arrTy.getDimension();
2385              index < lastIndex; ++index) {
2386           mlir::Value stride =
2387               loadStrideFromBox(loc, operands[0], index - i, rewriter);
2388           auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy,
2389                                                        operands[index], stride);
2390           off = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, off);
2391         }
2392         auto voidPtrBase =
2393             rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, resultAddr);
2394         SmallVector<mlir::Value> args{off};
2395         resultAddr = rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy,
2396                                                         voidPtrBase, args);
2397         i += arrTy.getDimension() - 1;
2398         cpnTy = arrTy.getEleTy();
2399       } else if (auto recTy = cpnTy.dyn_cast<fir::RecordType>()) {
2400         auto recRefTy =
2401             mlir::LLVM::LLVMPointerType::get(lowerTy().convertType(recTy));
2402         mlir::Value nxtOpnd = operands[i];
2403         auto memObj =
2404             rewriter.create<mlir::LLVM::BitcastOp>(loc, recRefTy, resultAddr);
2405         llvm::SmallVector<mlir::Value> args = {c0, nxtOpnd};
2406         cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
2407         auto llvmCurrentObjTy = lowerTy().convertType(cpnTy);
2408         auto gep = rewriter.create<mlir::LLVM::GEPOp>(
2409             loc, mlir::LLVM::LLVMPointerType::get(llvmCurrentObjTy), memObj,
2410             args);
2411         resultAddr =
2412             rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, gep);
2413       } else {
2414         fir::emitFatalError(loc, "unexpected type in coordinate_of");
2415       }
2416     }
2417 
2418     rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, ty, resultAddr);
2419     return success();
2420   }
2421 
2422   mlir::LogicalResult
2423   doRewriteRefOrPtr(fir::CoordinateOp coor, mlir::Type ty,
2424                     mlir::ValueRange operands, mlir::Location loc,
2425                     mlir::ConversionPatternRewriter &rewriter) const {
2426     mlir::Type baseObjectTy = coor.getBaseType();
2427 
2428     // Component Type
2429     mlir::Type cpnTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
2430     bool hasSubdimension = hasSubDimensions(cpnTy);
2431     bool columnIsDeferred = !hasSubdimension;
2432 
2433     if (!supportedCoordinate(cpnTy, operands.drop_front(1)))
2434       TODO(loc, "unsupported combination of coordinate operands");
2435 
2436     const bool hasKnownShape =
2437         arraysHaveKnownShape(cpnTy, operands.drop_front(1));
2438 
2439     // If only the column is `?`, then we can simply place the column value in
2440     // the 0-th GEP position.
2441     if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
2442       if (!hasKnownShape) {
2443         const unsigned sz = arrTy.getDimension();
2444         if (arraysHaveKnownShape(arrTy.getEleTy(),
2445                                  operands.drop_front(1 + sz))) {
2446           fir::SequenceType::ShapeRef shape = arrTy.getShape();
2447           bool allConst = true;
2448           for (unsigned i = 0; i < sz - 1; ++i) {
2449             if (shape[i] < 0) {
2450               allConst = false;
2451               break;
2452             }
2453           }
2454           if (allConst)
2455             columnIsDeferred = true;
2456         }
2457       }
2458     }
2459 
2460     if (fir::hasDynamicSize(fir::unwrapSequenceType(cpnTy)))
2461       return mlir::emitError(
2462           loc, "fir.coordinate_of with a dynamic element size is unsupported");
2463 
2464     if (hasKnownShape || columnIsDeferred) {
2465       SmallVector<mlir::Value> offs;
2466       if (hasKnownShape && hasSubdimension) {
2467         mlir::LLVM::ConstantOp c0 =
2468             genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
2469         offs.push_back(c0);
2470       }
2471       Optional<int> dims;
2472       SmallVector<mlir::Value> arrIdx;
2473       for (std::size_t i = 1, sz = operands.size(); i < sz; ++i) {
2474         mlir::Value nxtOpnd = operands[i];
2475 
2476         if (!cpnTy)
2477           return mlir::emitError(loc, "invalid coordinate/check failed");
2478 
2479         // check if the i-th coordinate relates to an array
2480         if (dims.hasValue()) {
2481           arrIdx.push_back(nxtOpnd);
2482           int dimsLeft = *dims;
2483           if (dimsLeft > 1) {
2484             dims = dimsLeft - 1;
2485             continue;
2486           }
2487           cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
2488           // append array range in reverse (FIR arrays are column-major)
2489           offs.append(arrIdx.rbegin(), arrIdx.rend());
2490           arrIdx.clear();
2491           dims.reset();
2492           continue;
2493         }
2494         if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
2495           int d = arrTy.getDimension() - 1;
2496           if (d > 0) {
2497             dims = d;
2498             arrIdx.push_back(nxtOpnd);
2499             continue;
2500           }
2501           cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
2502           offs.push_back(nxtOpnd);
2503           continue;
2504         }
2505 
2506         // check if the i-th coordinate relates to a field
2507         if (auto recTy = cpnTy.dyn_cast<fir::RecordType>())
2508           cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
2509         else if (auto tupTy = cpnTy.dyn_cast<mlir::TupleType>())
2510           cpnTy = tupTy.getType(getIntValue(nxtOpnd));
2511         else
2512           cpnTy = nullptr;
2513 
2514         offs.push_back(nxtOpnd);
2515       }
2516       if (dims.hasValue())
2517         offs.append(arrIdx.rbegin(), arrIdx.rend());
2518       mlir::Value base = operands[0];
2519       mlir::Value retval = genGEP(loc, ty, rewriter, base, offs);
2520       rewriter.replaceOp(coor, retval);
2521       return success();
2522     }
2523 
2524     return mlir::emitError(
2525         loc, "fir.coordinate_of base operand has unsupported type");
2526   }
2527 };
2528 
2529 /// Convert `fir.field_index`. The conversion depends on whether the size of
2530 /// the record is static or dynamic.
2531 struct FieldIndexOpConversion : public FIROpConversion<fir::FieldIndexOp> {
2532   using FIROpConversion::FIROpConversion;
2533 
2534   // NB: most field references should be resolved by this point
2535   mlir::LogicalResult
2536   matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor,
2537                   mlir::ConversionPatternRewriter &rewriter) const override {
2538     auto recTy = field.getOnType().cast<fir::RecordType>();
2539     unsigned index = recTy.getFieldIndex(field.getFieldId());
2540 
2541     if (!fir::hasDynamicSize(recTy)) {
2542       // Derived type has compile-time constant layout. Return index of the
2543       // component type in the parent type (to be used in GEP).
2544       rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset(
2545                                     field.getLoc(), rewriter, index)});
2546       return success();
2547     }
2548 
2549     // Derived type has compile-time constant layout. Call the compiler
2550     // generated function to determine the byte offset of the field at runtime.
2551     // This returns a non-constant.
2552     FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get(
2553         field.getContext(), getOffsetMethodName(recTy, field.getFieldId()));
2554     NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr);
2555     NamedAttribute fieldAttr = rewriter.getNamedAttr(
2556         "field", mlir::IntegerAttr::get(lowerTy().indexType(), index));
2557     rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
2558         field, lowerTy().offsetType(), adaptor.getOperands(),
2559         llvm::ArrayRef<mlir::NamedAttribute>{callAttr, fieldAttr});
2560     return success();
2561   }
2562 
2563   // Re-Construct the name of the compiler generated method that calculates the
2564   // offset
2565   inline static std::string getOffsetMethodName(fir::RecordType recTy,
2566                                                 llvm::StringRef field) {
2567     return recTy.getName().str() + "P." + field.str() + ".offset";
2568   }
2569 };
2570 
2571 /// Convert `fir.end`
2572 struct FirEndOpConversion : public FIROpConversion<fir::FirEndOp> {
2573   using FIROpConversion::FIROpConversion;
2574 
2575   mlir::LogicalResult
2576   matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor,
2577                   mlir::ConversionPatternRewriter &rewriter) const override {
2578     TODO(firEnd.getLoc(), "fir.end codegen");
2579     return failure();
2580   }
2581 };
2582 
2583 /// Lower `fir.gentypedesc` to a global constant.
2584 struct GenTypeDescOpConversion : public FIROpConversion<fir::GenTypeDescOp> {
2585   using FIROpConversion::FIROpConversion;
2586 
2587   mlir::LogicalResult
2588   matchAndRewrite(fir::GenTypeDescOp gentypedesc, OpAdaptor adaptor,
2589                   mlir::ConversionPatternRewriter &rewriter) const override {
2590     TODO(gentypedesc.getLoc(), "fir.gentypedesc codegen");
2591     return failure();
2592   }
2593 };
2594 
2595 /// Lower `fir.has_value` operation to `llvm.return` operation.
2596 struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> {
2597   using FIROpConversion::FIROpConversion;
2598 
2599   mlir::LogicalResult
2600   matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
2601                   mlir::ConversionPatternRewriter &rewriter) const override {
2602     rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, adaptor.getOperands());
2603     return success();
2604   }
2605 };
2606 
2607 /// Lower `fir.global` operation to `llvm.global` operation.
2608 /// `fir.insert_on_range` operations are replaced with constant dense attribute
2609 /// if they are applied on the full range.
2610 struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> {
2611   using FIROpConversion::FIROpConversion;
2612 
2613   mlir::LogicalResult
2614   matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
2615                   mlir::ConversionPatternRewriter &rewriter) const override {
2616     auto tyAttr = convertType(global.getType());
2617     if (global.getType().isa<fir::BoxType>())
2618       tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType();
2619     auto loc = global.getLoc();
2620     mlir::Attribute initAttr{};
2621     if (global.getInitVal())
2622       initAttr = global.getInitVal().getValue();
2623     auto linkage = convertLinkage(global.getLinkName());
2624     auto isConst = global.getConstant().hasValue();
2625     auto g = rewriter.create<mlir::LLVM::GlobalOp>(
2626         loc, tyAttr, isConst, linkage, global.getSymName(), initAttr);
2627     auto &gr = g.getInitializerRegion();
2628     rewriter.inlineRegionBefore(global.getRegion(), gr, gr.end());
2629     if (!gr.empty()) {
2630       // Replace insert_on_range with a constant dense attribute if the
2631       // initialization is on the full range.
2632       auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
2633       for (auto insertOp : insertOnRangeOps) {
2634         if (isFullRange(insertOp.getCoor(), insertOp.getType())) {
2635           auto seqTyAttr = convertType(insertOp.getType());
2636           auto *op = insertOp.getVal().getDefiningOp();
2637           auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
2638           if (!constant) {
2639             auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
2640             if (!convertOp)
2641               continue;
2642             constant = cast<mlir::arith::ConstantOp>(
2643                 convertOp.getValue().getDefiningOp());
2644           }
2645           mlir::Type vecType = mlir::VectorType::get(
2646               insertOp.getType().getShape(), constant.getType());
2647           auto denseAttr = mlir::DenseElementsAttr::get(
2648               vecType.cast<ShapedType>(), constant.getValue());
2649           rewriter.setInsertionPointAfter(insertOp);
2650           rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
2651               insertOp, seqTyAttr, denseAttr);
2652         }
2653       }
2654     }
2655     rewriter.eraseOp(global);
2656     return success();
2657   }
2658 
2659   bool isFullRange(mlir::DenseIntElementsAttr indexes,
2660                    fir::SequenceType seqTy) const {
2661     auto extents = seqTy.getShape();
2662     if (indexes.size() / 2 != static_cast<int64_t>(extents.size()))
2663       return false;
2664     auto cur_index = indexes.value_begin<int64_t>();
2665     for (unsigned i = 0; i < indexes.size(); i += 2) {
2666       if (*(cur_index++) != 0)
2667         return false;
2668       if (*(cur_index++) != extents[i / 2] - 1)
2669         return false;
2670     }
2671     return true;
2672   }
2673 
2674   // TODO: String comparaison should be avoided. Replace linkName with an
2675   // enumeration.
2676   mlir::LLVM::Linkage convertLinkage(Optional<StringRef> optLinkage) const {
2677     if (optLinkage.hasValue()) {
2678       auto name = optLinkage.getValue();
2679       if (name == "internal")
2680         return mlir::LLVM::Linkage::Internal;
2681       if (name == "linkonce")
2682         return mlir::LLVM::Linkage::Linkonce;
2683       if (name == "linkonce_odr")
2684         return mlir::LLVM::Linkage::LinkonceODR;
2685       if (name == "common")
2686         return mlir::LLVM::Linkage::Common;
2687       if (name == "weak")
2688         return mlir::LLVM::Linkage::Weak;
2689     }
2690     return mlir::LLVM::Linkage::External;
2691   }
2692 };
2693 
2694 /// `fir.load` --> `llvm.load`
2695 struct LoadOpConversion : public FIROpConversion<fir::LoadOp> {
2696   using FIROpConversion::FIROpConversion;
2697 
2698   mlir::LogicalResult
2699   matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor,
2700                   mlir::ConversionPatternRewriter &rewriter) const override {
2701     // fir.box is a special case because it is considered as an ssa values in
2702     // fir, but it is lowered as a pointer to a descriptor. So fir.ref<fir.box>
2703     // and fir.box end up being the same llvm types and loading a
2704     // fir.ref<fir.box> is actually a no op in LLVM.
2705     if (load.getType().isa<fir::BoxType>()) {
2706       rewriter.replaceOp(load, adaptor.getOperands()[0]);
2707     } else {
2708       mlir::Type ty = convertType(load.getType());
2709       ArrayRef<NamedAttribute> at = load->getAttrs();
2710       rewriter.replaceOpWithNewOp<mlir::LLVM::LoadOp>(
2711           load, ty, adaptor.getOperands(), at);
2712     }
2713     return success();
2714   }
2715 };
2716 
2717 /// Lower `fir.no_reassoc` to LLVM IR dialect.
2718 /// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast
2719 /// math flags?
2720 struct NoReassocOpConversion : public FIROpConversion<fir::NoReassocOp> {
2721   using FIROpConversion::FIROpConversion;
2722 
2723   mlir::LogicalResult
2724   matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor,
2725                   mlir::ConversionPatternRewriter &rewriter) const override {
2726     rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]);
2727     return success();
2728   }
2729 };
2730 
2731 static void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
2732                         Optional<mlir::ValueRange> destOps,
2733                         mlir::ConversionPatternRewriter &rewriter,
2734                         mlir::Block *newBlock) {
2735   if (destOps.hasValue())
2736     rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, destOps.getValue(),
2737                                           newBlock, mlir::ValueRange());
2738   else
2739     rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock);
2740 }
2741 
2742 template <typename A, typename B>
2743 static void genBrOp(A caseOp, mlir::Block *dest, Optional<B> destOps,
2744                     mlir::ConversionPatternRewriter &rewriter) {
2745   if (destOps.hasValue())
2746     rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, destOps.getValue(),
2747                                                   dest);
2748   else
2749     rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, llvm::None, dest);
2750 }
2751 
2752 static void genCaseLadderStep(mlir::Location loc, mlir::Value cmp,
2753                               mlir::Block *dest,
2754                               Optional<mlir::ValueRange> destOps,
2755                               mlir::ConversionPatternRewriter &rewriter) {
2756   auto *thisBlock = rewriter.getInsertionBlock();
2757   auto *newBlock = createBlock(rewriter, dest);
2758   rewriter.setInsertionPointToEnd(thisBlock);
2759   genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock);
2760   rewriter.setInsertionPointToEnd(newBlock);
2761 }
2762 
2763 /// Conversion of `fir.select_case`
2764 ///
2765 /// The `fir.select_case` operation is converted to a if-then-else ladder.
2766 /// Depending on the case condition type, one or several comparison and
2767 /// conditional branching can be generated.
2768 ///
2769 /// A a point value case such as `case(4)`, a lower bound case such as
2770 /// `case(5:)` or an upper bound case such as `case(:3)` are converted to a
2771 /// simple comparison between the selector value and the constant value in the
2772 /// case. The block associated with the case condition is then executed if
2773 /// the comparison succeed otherwise it branch to the next block with the
2774 /// comparison for the the next case conditon.
2775 ///
2776 /// A closed interval case condition such as `case(7:10)` is converted with a
2777 /// first comparison and conditional branching for the lower bound. If
2778 /// successful, it branch to a second block with the comparison for the
2779 /// upper bound in the same case condition.
2780 ///
2781 /// TODO: lowering of CHARACTER type cases is not handled yet.
2782 struct SelectCaseOpConversion : public FIROpConversion<fir::SelectCaseOp> {
2783   using FIROpConversion::FIROpConversion;
2784 
2785   mlir::LogicalResult
2786   matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor,
2787                   mlir::ConversionPatternRewriter &rewriter) const override {
2788     unsigned conds = caseOp.getNumConditions();
2789     llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue();
2790     // Type can be CHARACTER, INTEGER, or LOGICAL (C1145)
2791     auto ty = caseOp.getSelector().getType();
2792     if (ty.isa<fir::CharacterType>()) {
2793       TODO(caseOp.getLoc(), "fir.select_case codegen with character type");
2794       return failure();
2795     }
2796     mlir::Value selector = caseOp.getSelector(adaptor.getOperands());
2797     auto loc = caseOp.getLoc();
2798     for (unsigned t = 0; t != conds; ++t) {
2799       mlir::Block *dest = caseOp.getSuccessor(t);
2800       llvm::Optional<mlir::ValueRange> destOps =
2801           caseOp.getSuccessorOperands(adaptor.getOperands(), t);
2802       llvm::Optional<mlir::ValueRange> cmpOps =
2803           *caseOp.getCompareOperands(adaptor.getOperands(), t);
2804       mlir::Value caseArg = *(cmpOps.getValue().begin());
2805       mlir::Attribute attr = cases[t];
2806       if (attr.isa<fir::PointIntervalAttr>()) {
2807         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2808             loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg);
2809         genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
2810         continue;
2811       }
2812       if (attr.isa<fir::LowerBoundAttr>()) {
2813         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2814             loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
2815         genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
2816         continue;
2817       }
2818       if (attr.isa<fir::UpperBoundAttr>()) {
2819         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2820             loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg);
2821         genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
2822         continue;
2823       }
2824       if (attr.isa<fir::ClosedIntervalAttr>()) {
2825         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2826             loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
2827         auto *thisBlock = rewriter.getInsertionBlock();
2828         auto *newBlock1 = createBlock(rewriter, dest);
2829         auto *newBlock2 = createBlock(rewriter, dest);
2830         rewriter.setInsertionPointToEnd(thisBlock);
2831         rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, newBlock1, newBlock2);
2832         rewriter.setInsertionPointToEnd(newBlock1);
2833         mlir::Value caseArg0 = *(cmpOps.getValue().begin() + 1);
2834         auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>(
2835             loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0);
2836         genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2);
2837         rewriter.setInsertionPointToEnd(newBlock2);
2838         continue;
2839       }
2840       assert(attr.isa<mlir::UnitAttr>());
2841       assert((t + 1 == conds) && "unit must be last");
2842       genBrOp(caseOp, dest, destOps, rewriter);
2843     }
2844     return success();
2845   }
2846 };
2847 
2848 template <typename OP>
2849 static void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select,
2850                                   typename OP::Adaptor adaptor,
2851                                   mlir::ConversionPatternRewriter &rewriter) {
2852   unsigned conds = select.getNumConditions();
2853   auto cases = select.getCases().getValue();
2854   mlir::Value selector = adaptor.getSelector();
2855   auto loc = select.getLoc();
2856   assert(conds > 0 && "select must have cases");
2857 
2858   llvm::SmallVector<mlir::Block *> destinations;
2859   llvm::SmallVector<mlir::ValueRange> destinationsOperands;
2860   mlir::Block *defaultDestination;
2861   mlir::ValueRange defaultOperands;
2862   llvm::SmallVector<int32_t> caseValues;
2863 
2864   for (unsigned t = 0; t != conds; ++t) {
2865     mlir::Block *dest = select.getSuccessor(t);
2866     auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
2867     const mlir::Attribute &attr = cases[t];
2868     if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) {
2869       destinations.push_back(dest);
2870       destinationsOperands.push_back(destOps.hasValue() ? *destOps
2871                                                         : ValueRange());
2872       caseValues.push_back(intAttr.getInt());
2873       continue;
2874     }
2875     assert(attr.template dyn_cast_or_null<mlir::UnitAttr>());
2876     assert((t + 1 == conds) && "unit must be last");
2877     defaultDestination = dest;
2878     defaultOperands = destOps.hasValue() ? *destOps : ValueRange();
2879   }
2880 
2881   // LLVM::SwitchOp takes a i32 type for the selector.
2882   if (select.getSelector().getType() != rewriter.getI32Type())
2883     selector =
2884         rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), selector);
2885 
2886   rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
2887       select, selector,
2888       /*defaultDestination=*/defaultDestination,
2889       /*defaultOperands=*/defaultOperands,
2890       /*caseValues=*/caseValues,
2891       /*caseDestinations=*/destinations,
2892       /*caseOperands=*/destinationsOperands,
2893       /*branchWeights=*/ArrayRef<int32_t>());
2894 }
2895 
2896 /// conversion of fir::SelectOp to an if-then-else ladder
2897 struct SelectOpConversion : public FIROpConversion<fir::SelectOp> {
2898   using FIROpConversion::FIROpConversion;
2899 
2900   mlir::LogicalResult
2901   matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
2902                   mlir::ConversionPatternRewriter &rewriter) const override {
2903     selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
2904     return success();
2905   }
2906 };
2907 
2908 /// conversion of fir::SelectRankOp to an if-then-else ladder
2909 struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> {
2910   using FIROpConversion::FIROpConversion;
2911 
2912   mlir::LogicalResult
2913   matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
2914                   mlir::ConversionPatternRewriter &rewriter) const override {
2915     selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
2916     return success();
2917   }
2918 };
2919 
2920 /// Lower `fir.select_type` to LLVM IR dialect.
2921 struct SelectTypeOpConversion : public FIROpConversion<fir::SelectTypeOp> {
2922   using FIROpConversion::FIROpConversion;
2923 
2924   mlir::LogicalResult
2925   matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor,
2926                   mlir::ConversionPatternRewriter &rewriter) const override {
2927     mlir::emitError(select.getLoc(),
2928                     "fir.select_type should have already been converted");
2929     return failure();
2930   }
2931 };
2932 
2933 /// `fir.store` --> `llvm.store`
2934 struct StoreOpConversion : public FIROpConversion<fir::StoreOp> {
2935   using FIROpConversion::FIROpConversion;
2936 
2937   mlir::LogicalResult
2938   matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor,
2939                   mlir::ConversionPatternRewriter &rewriter) const override {
2940     if (store.getValue().getType().isa<fir::BoxType>()) {
2941       // fir.box value is actually in memory, load it first before storing it.
2942       mlir::Location loc = store.getLoc();
2943       mlir::Type boxPtrTy = adaptor.getOperands()[0].getType();
2944       auto val = rewriter.create<mlir::LLVM::LoadOp>(
2945           loc, boxPtrTy.cast<mlir::LLVM::LLVMPointerType>().getElementType(),
2946           adaptor.getOperands()[0]);
2947       rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
2948           store, val, adaptor.getOperands()[1]);
2949     } else {
2950       rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
2951           store, adaptor.getOperands()[0], adaptor.getOperands()[1]);
2952     }
2953     return success();
2954   }
2955 };
2956 
2957 namespace {
2958 
2959 /// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for
2960 /// the character buffer and one for the buffer length.
2961 struct UnboxCharOpConversion : public FIROpConversion<fir::UnboxCharOp> {
2962   using FIROpConversion::FIROpConversion;
2963 
2964   mlir::LogicalResult
2965   matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor,
2966                   mlir::ConversionPatternRewriter &rewriter) const override {
2967     MLIRContext *ctx = unboxchar.getContext();
2968 
2969     mlir::Type lenTy = convertType(unboxchar.getType(1));
2970     mlir::Value tuple = adaptor.getOperands()[0];
2971     mlir::Type tupleTy = tuple.getType();
2972 
2973     mlir::Location loc = unboxchar.getLoc();
2974     mlir::Value ptrToBuffer =
2975         genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 0);
2976 
2977     mlir::LLVM::ExtractValueOp len =
2978         genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 1);
2979     mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len);
2980 
2981     rewriter.replaceOp(unboxchar,
2982                        ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast});
2983     return success();
2984   }
2985 };
2986 
2987 /// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its
2988 /// components.
2989 /// TODO: Part of supporting Fortran 2003 procedure pointers.
2990 struct UnboxProcOpConversion : public FIROpConversion<fir::UnboxProcOp> {
2991   using FIROpConversion::FIROpConversion;
2992 
2993   mlir::LogicalResult
2994   matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor,
2995                   mlir::ConversionPatternRewriter &rewriter) const override {
2996     TODO(unboxproc.getLoc(), "fir.unboxproc codegen");
2997     return failure();
2998   }
2999 };
3000 
3001 /// convert to LLVM IR dialect `undef`
3002 struct UndefOpConversion : public FIROpConversion<fir::UndefOp> {
3003   using FIROpConversion::FIROpConversion;
3004 
3005   mlir::LogicalResult
3006   matchAndRewrite(fir::UndefOp undef, OpAdaptor,
3007                   mlir::ConversionPatternRewriter &rewriter) const override {
3008     rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
3009         undef, convertType(undef.getType()));
3010     return success();
3011   }
3012 };
3013 
3014 struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> {
3015   using FIROpConversion::FIROpConversion;
3016 
3017   mlir::LogicalResult
3018   matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
3019                   mlir::ConversionPatternRewriter &rewriter) const override {
3020     mlir::Type ty = convertType(zero.getType());
3021     if (ty.isa<mlir::LLVM::LLVMPointerType>()) {
3022       rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty);
3023     } else if (ty.isa<mlir::IntegerType>()) {
3024       rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
3025           zero, ty, mlir::IntegerAttr::get(zero.getType(), 0));
3026     } else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) {
3027       rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
3028           zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0));
3029     } else {
3030       // TODO: create ConstantAggregateZero for FIR aggregate/array types.
3031       return rewriter.notifyMatchFailure(
3032           zero,
3033           "conversion of fir.zero with aggregate type not implemented yet");
3034     }
3035     return success();
3036   }
3037 };
3038 
3039 /// `fir.unreachable` --> `llvm.unreachable`
3040 struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> {
3041   using FIROpConversion::FIROpConversion;
3042 
3043   mlir::LogicalResult
3044   matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
3045                   mlir::ConversionPatternRewriter &rewriter) const override {
3046     rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
3047     return success();
3048   }
3049 };
3050 
3051 /// `fir.is_present` -->
3052 /// ```
3053 ///  %0 = llvm.mlir.constant(0 : i64)
3054 ///  %1 = llvm.ptrtoint %0
3055 ///  %2 = llvm.icmp "ne" %1, %0 : i64
3056 /// ```
3057 struct IsPresentOpConversion : public FIROpConversion<fir::IsPresentOp> {
3058   using FIROpConversion::FIROpConversion;
3059 
3060   mlir::LogicalResult
3061   matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor,
3062                   mlir::ConversionPatternRewriter &rewriter) const override {
3063     mlir::Type idxTy = lowerTy().indexType();
3064     mlir::Location loc = isPresent.getLoc();
3065     auto ptr = adaptor.getOperands()[0];
3066 
3067     if (isPresent.getVal().getType().isa<fir::BoxCharType>()) {
3068       auto structTy = ptr.getType().cast<mlir::LLVM::LLVMStructType>();
3069       assert(!structTy.isOpaque() && !structTy.getBody().empty());
3070 
3071       mlir::Type ty = structTy.getBody()[0];
3072       mlir::MLIRContext *ctx = isPresent.getContext();
3073       auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3074       ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, ptr, c0);
3075     }
3076     mlir::LLVM::ConstantOp c0 =
3077         genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0);
3078     auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr);
3079     rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
3080         isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0);
3081 
3082     return success();
3083   }
3084 };
3085 
3086 /// Create value signaling an absent optional argument in a call, e.g.
3087 /// `fir.absent !fir.ref<i64>` -->  `llvm.mlir.null : !llvm.ptr<i64>`
3088 struct AbsentOpConversion : public FIROpConversion<fir::AbsentOp> {
3089   using FIROpConversion::FIROpConversion;
3090 
3091   mlir::LogicalResult
3092   matchAndRewrite(fir::AbsentOp absent, OpAdaptor,
3093                   mlir::ConversionPatternRewriter &rewriter) const override {
3094     mlir::Type ty = convertType(absent.getType());
3095     mlir::Location loc = absent.getLoc();
3096 
3097     if (absent.getType().isa<fir::BoxCharType>()) {
3098       auto structTy = ty.cast<mlir::LLVM::LLVMStructType>();
3099       assert(!structTy.isOpaque() && !structTy.getBody().empty());
3100       auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3101       auto nullField =
3102           rewriter.create<mlir::LLVM::NullOp>(loc, structTy.getBody()[0]);
3103       mlir::MLIRContext *ctx = absent.getContext();
3104       auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3105       rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
3106           absent, ty, undefStruct, nullField, c0);
3107     } else {
3108       rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(absent, ty);
3109     }
3110     return success();
3111   }
3112 };
3113 
3114 //
3115 // Primitive operations on Complex types
3116 //
3117 
3118 /// Generate inline code for complex addition/subtraction
3119 template <typename LLVMOP, typename OPTY>
3120 static mlir::LLVM::InsertValueOp
3121 complexSum(OPTY sumop, mlir::ValueRange opnds,
3122            mlir::ConversionPatternRewriter &rewriter,
3123            fir::LLVMTypeConverter &lowering) {
3124   mlir::Value a = opnds[0];
3125   mlir::Value b = opnds[1];
3126   auto loc = sumop.getLoc();
3127   auto ctx = sumop.getContext();
3128   auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3129   auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
3130   mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
3131   mlir::Type ty = lowering.convertType(sumop.getType());
3132   auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
3133   auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
3134   auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
3135   auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
3136   auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
3137   auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
3138   auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3139   auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
3140   return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
3141 }
3142 } // namespace
3143 
3144 namespace {
3145 struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
3146   using FIROpConversion::FIROpConversion;
3147 
3148   mlir::LogicalResult
3149   matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
3150                   mlir::ConversionPatternRewriter &rewriter) const override {
3151     // given: (x + iy) + (x' + iy')
3152     // result: (x + x') + i(y + y')
3153     auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
3154                                             rewriter, lowerTy());
3155     rewriter.replaceOp(addc, r.getResult());
3156     return success();
3157   }
3158 };
3159 
3160 struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
3161   using FIROpConversion::FIROpConversion;
3162 
3163   mlir::LogicalResult
3164   matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
3165                   mlir::ConversionPatternRewriter &rewriter) const override {
3166     // given: (x + iy) - (x' + iy')
3167     // result: (x - x') + i(y - y')
3168     auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
3169                                             rewriter, lowerTy());
3170     rewriter.replaceOp(subc, r.getResult());
3171     return success();
3172   }
3173 };
3174 
3175 /// Inlined complex multiply
3176 struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
3177   using FIROpConversion::FIROpConversion;
3178 
3179   mlir::LogicalResult
3180   matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
3181                   mlir::ConversionPatternRewriter &rewriter) const override {
3182     // TODO: Can we use a call to __muldc3 ?
3183     // given: (x + iy) * (x' + iy')
3184     // result: (xx'-yy')+i(xy'+yx')
3185     mlir::Value a = adaptor.getOperands()[0];
3186     mlir::Value b = adaptor.getOperands()[1];
3187     auto loc = mulc.getLoc();
3188     auto *ctx = mulc.getContext();
3189     auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3190     auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
3191     mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
3192     mlir::Type ty = convertType(mulc.getType());
3193     auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
3194     auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
3195     auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
3196     auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
3197     auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
3198     auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
3199     auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
3200     auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
3201     auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
3202     auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
3203     auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3204     auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
3205     auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
3206     rewriter.replaceOp(mulc, r0.getResult());
3207     return success();
3208   }
3209 };
3210 
3211 /// Inlined complex division
3212 struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
3213   using FIROpConversion::FIROpConversion;
3214 
3215   mlir::LogicalResult
3216   matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
3217                   mlir::ConversionPatternRewriter &rewriter) const override {
3218     // TODO: Can we use a call to __divdc3 instead?
3219     // Just generate inline code for now.
3220     // given: (x + iy) / (x' + iy')
3221     // result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
3222     mlir::Value a = adaptor.getOperands()[0];
3223     mlir::Value b = adaptor.getOperands()[1];
3224     auto loc = divc.getLoc();
3225     auto *ctx = divc.getContext();
3226     auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3227     auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
3228     mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
3229     mlir::Type ty = convertType(divc.getType());
3230     auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
3231     auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
3232     auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
3233     auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
3234     auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
3235     auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
3236     auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
3237     auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
3238     auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
3239     auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
3240     auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
3241     auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
3242     auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
3243     auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
3244     auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
3245     auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3246     auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
3247     auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
3248     rewriter.replaceOp(divc, r0.getResult());
3249     return success();
3250   }
3251 };
3252 
3253 /// Inlined complex negation
3254 struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
3255   using FIROpConversion::FIROpConversion;
3256 
3257   mlir::LogicalResult
3258   matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
3259                   mlir::ConversionPatternRewriter &rewriter) const override {
3260     // given: -(x + iy)
3261     // result: -x - iy
3262     auto *ctxt = neg.getContext();
3263     auto eleTy = convertType(getComplexEleTy(neg.getType()));
3264     auto ty = convertType(neg.getType());
3265     auto loc = neg.getLoc();
3266     mlir::Value o0 = adaptor.getOperands()[0];
3267     auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
3268     auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
3269     auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
3270     auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
3271     auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
3272     auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
3273     auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
3274     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
3275     return success();
3276   }
3277 };
3278 
3279 /// Conversion pattern for operation that must be dead. The information in these
3280 /// operations is used by other operation. At this point they should not have
3281 /// anymore uses.
3282 /// These operations are normally dead after the pre-codegen pass.
3283 template <typename FromOp>
3284 struct MustBeDeadConversion : public FIROpConversion<FromOp> {
3285   explicit MustBeDeadConversion(fir::LLVMTypeConverter &lowering,
3286                                 const fir::FIRToLLVMPassOptions &options)
3287       : FIROpConversion<FromOp>(lowering, options) {}
3288   using OpAdaptor = typename FromOp::Adaptor;
3289 
3290   mlir::LogicalResult
3291   matchAndRewrite(FromOp op, OpAdaptor adaptor,
3292                   mlir::ConversionPatternRewriter &rewriter) const final {
3293     if (!op->getUses().empty())
3294       return rewriter.notifyMatchFailure(op, "op must be dead");
3295     rewriter.eraseOp(op);
3296     return success();
3297   }
3298 };
3299 
3300 struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> {
3301   using MustBeDeadConversion::MustBeDeadConversion;
3302 };
3303 
3304 struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> {
3305   using MustBeDeadConversion::MustBeDeadConversion;
3306 };
3307 
3308 struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> {
3309   using MustBeDeadConversion::MustBeDeadConversion;
3310 };
3311 
3312 struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> {
3313   using MustBeDeadConversion::MustBeDeadConversion;
3314 };
3315 
3316 } // namespace
3317 
3318 namespace {
3319 /// Convert FIR dialect to LLVM dialect
3320 ///
3321 /// This pass lowers all FIR dialect operations to LLVM IR dialect. An
3322 /// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
3323 ///
3324 /// This pass is not complete yet. We are upstreaming it in small patches.
3325 class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
3326 public:
3327   FIRToLLVMLowering() = default;
3328   FIRToLLVMLowering(fir::FIRToLLVMPassOptions options) : options{options} {}
3329   mlir::ModuleOp getModule() { return getOperation(); }
3330 
3331   void runOnOperation() override final {
3332     auto mod = getModule();
3333     if (!forcedTargetTriple.empty()) {
3334       fir::setTargetTriple(mod, forcedTargetTriple);
3335     }
3336 
3337     auto *context = getModule().getContext();
3338     fir::LLVMTypeConverter typeConverter{getModule()};
3339     mlir::RewritePatternSet pattern(context);
3340     pattern.insert<
3341         AbsentOpConversion, AddcOpConversion, AddrOfOpConversion,
3342         AllocaOpConversion, AllocMemOpConversion, BoxAddrOpConversion,
3343         BoxCharLenOpConversion, BoxDimsOpConversion, BoxEleSizeOpConversion,
3344         BoxIsAllocOpConversion, BoxIsArrayOpConversion, BoxIsPtrOpConversion,
3345         BoxProcHostOpConversion, BoxRankOpConversion, BoxTypeDescOpConversion,
3346         CallOpConversion, CmpcOpConversion, ConstcOpConversion,
3347         ConvertOpConversion, CoordinateOpConversion, DispatchOpConversion,
3348         DispatchTableOpConversion, DTEntryOpConversion, DivcOpConversion,
3349         EmboxOpConversion, EmboxCharOpConversion, EmboxProcOpConversion,
3350         ExtractValueOpConversion, FieldIndexOpConversion, FirEndOpConversion,
3351         FreeMemOpConversion, GenTypeDescOpConversion, GlobalLenOpConversion,
3352         GlobalOpConversion, HasValueOpConversion, InsertOnRangeOpConversion,
3353         InsertValueOpConversion, IsPresentOpConversion,
3354         LenParamIndexOpConversion, LoadOpConversion, MulcOpConversion,
3355         NegcOpConversion, NoReassocOpConversion, SelectCaseOpConversion,
3356         SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion,
3357         ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion,
3358         SliceOpConversion, StoreOpConversion, StringLitOpConversion,
3359         SubcOpConversion, UnboxCharOpConversion, UnboxProcOpConversion,
3360         UndefOpConversion, UnreachableOpConversion, XArrayCoorOpConversion,
3361         XEmboxOpConversion, XReboxOpConversion, ZeroOpConversion>(typeConverter,
3362                                                                   options);
3363     mlir::populateFuncToLLVMConversionPatterns(typeConverter, pattern);
3364     mlir::populateOpenMPToLLVMConversionPatterns(typeConverter, pattern);
3365     mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
3366                                                             pattern);
3367     mlir::cf::populateControlFlowToLLVMConversionPatterns(typeConverter,
3368                                                           pattern);
3369     mlir::ConversionTarget target{*context};
3370     target.addLegalDialect<mlir::LLVM::LLVMDialect>();
3371     // The OpenMP dialect is legal for Operations without regions, for those
3372     // which contains regions it is legal if the region contains only the
3373     // LLVM dialect.
3374     target.addDynamicallyLegalOp<mlir::omp::ParallelOp, mlir::omp::WsLoopOp,
3375                                  mlir::omp::MasterOp>([&](Operation *op) {
3376       return typeConverter.isLegal(&op->getRegion(0));
3377     });
3378     target.addLegalDialect<mlir::omp::OpenMPDialect>();
3379 
3380     // required NOPs for applying a full conversion
3381     target.addLegalOp<mlir::ModuleOp>();
3382 
3383     // apply the patterns
3384     if (mlir::failed(mlir::applyFullConversion(getModule(), target,
3385                                                std::move(pattern)))) {
3386       signalPassFailure();
3387     }
3388   }
3389 
3390 private:
3391   fir::FIRToLLVMPassOptions options;
3392 };
3393 
3394 /// Lower from LLVM IR dialect to proper LLVM-IR and dump the module
3395 struct LLVMIRLoweringPass
3396     : public mlir::PassWrapper<LLVMIRLoweringPass,
3397                                mlir::OperationPass<mlir::ModuleOp>> {
3398   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LLVMIRLoweringPass)
3399 
3400   using Printer = fir::LLVMIRLoweringPrinter;
3401   LLVMIRLoweringPass(raw_ostream &output, Printer p)
3402       : output{output}, printer{p} {}
3403 
3404   mlir::ModuleOp getModule() { return getOperation(); }
3405 
3406   void runOnOperation() override final {
3407     auto *ctx = getModule().getContext();
3408     auto optName = getModule().getName();
3409     llvm::LLVMContext llvmCtx;
3410     if (auto llvmModule = mlir::translateModuleToLLVMIR(
3411             getModule(), llvmCtx, optName ? *optName : "FIRModule")) {
3412       printer(*llvmModule, output);
3413       return;
3414     }
3415 
3416     mlir::emitError(mlir::UnknownLoc::get(ctx), "could not emit LLVM-IR\n");
3417     signalPassFailure();
3418   }
3419 
3420 private:
3421   raw_ostream &output;
3422   Printer printer;
3423 };
3424 
3425 } // namespace
3426 
3427 std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
3428   return std::make_unique<FIRToLLVMLowering>();
3429 }
3430 
3431 std::unique_ptr<mlir::Pass>
3432 fir::createFIRToLLVMPass(FIRToLLVMPassOptions options) {
3433   return std::make_unique<FIRToLLVMLowering>(options);
3434 }
3435 
3436 std::unique_ptr<mlir::Pass>
3437 fir::createLLVMDialectToLLVMPass(raw_ostream &output,
3438                                  fir::LLVMIRLoweringPrinter printer) {
3439   return std::make_unique<LLVMIRLoweringPass>(output, printer);
3440 }
3441