1 //===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Optimizer/CodeGen/CodeGen.h"
14 #include "CGOps.h"
15 #include "PassDetail.h"
16 #include "flang/ISO_Fortran_binding.h"
17 #include "flang/Optimizer/Dialect/FIRAttr.h"
18 #include "flang/Optimizer/Dialect/FIROps.h"
19 #include "flang/Optimizer/Support/InternalNames.h"
20 #include "flang/Optimizer/Support/TypeCode.h"
21 #include "flang/Semantics/runtime-type-info.h"
22 #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
23 #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
24 #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
25 #include "mlir/Conversion/LLVMCommon/Pattern.h"
26 #include "mlir/Conversion/OpenMPToLLVM/ConvertOpenMPToLLVM.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/Pass/Pass.h"
30 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
31 #include "llvm/ADT/ArrayRef.h"
32 
33 #define DEBUG_TYPE "flang-codegen"
34 
35 using namespace mlir;
36 
37 // fir::LLVMTypeConverter for converting to LLVM IR dialect types.
38 #include "TypeConverter.h"
39 
40 // TODO: This should really be recovered from the specified target.
41 static constexpr unsigned defaultAlign = 8;
42 
43 /// `fir.box` attribute values as defined for CFI_attribute_t in
44 /// flang/ISO_Fortran_binding.h.
45 static constexpr unsigned kAttrPointer = CFI_attribute_pointer;
46 static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable;
47 
48 static inline mlir::Type getVoidPtrType(mlir::MLIRContext *context) {
49   return mlir::LLVM::LLVMPointerType::get(mlir::IntegerType::get(context, 8));
50 }
51 
52 static mlir::LLVM::ConstantOp
53 genConstantIndex(mlir::Location loc, mlir::Type ity,
54                  mlir::ConversionPatternRewriter &rewriter,
55                  std::int64_t offset) {
56   auto cattr = rewriter.getI64IntegerAttr(offset);
57   return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
58 }
59 
60 static Block *createBlock(mlir::ConversionPatternRewriter &rewriter,
61                           mlir::Block *insertBefore) {
62   assert(insertBefore && "expected valid insertion block");
63   return rewriter.createBlock(insertBefore->getParent(),
64                               mlir::Region::iterator(insertBefore));
65 }
66 
67 namespace {
68 /// FIR conversion pattern template
69 template <typename FromOp>
70 class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> {
71 public:
72   explicit FIROpConversion(fir::LLVMTypeConverter &lowering,
73                            const fir::FIRToLLVMPassOptions &options)
74       : mlir::ConvertOpToLLVMPattern<FromOp>(lowering), options(options) {}
75 
76 protected:
77   mlir::Type convertType(mlir::Type ty) const {
78     return lowerTy().convertType(ty);
79   }
80   mlir::Type voidPtrTy() const { return getVoidPtrType(); }
81 
82   mlir::Type getVoidPtrType() const {
83     return mlir::LLVM::LLVMPointerType::get(
84         mlir::IntegerType::get(&lowerTy().getContext(), 8));
85   }
86 
87   mlir::LLVM::ConstantOp
88   genI32Constant(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
89                  int value) const {
90     mlir::Type i32Ty = rewriter.getI32Type();
91     mlir::IntegerAttr attr = rewriter.getI32IntegerAttr(value);
92     return rewriter.create<mlir::LLVM::ConstantOp>(loc, i32Ty, attr);
93   }
94 
95   mlir::LLVM::ConstantOp
96   genConstantOffset(mlir::Location loc,
97                     mlir::ConversionPatternRewriter &rewriter,
98                     int offset) const {
99     mlir::Type ity = lowerTy().offsetType();
100     mlir::IntegerAttr cattr = rewriter.getI32IntegerAttr(offset);
101     return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
102   }
103 
104   /// Perform an extension or truncation as needed on an integer value. Lowering
105   /// to the specific target may involve some sign-extending or truncation of
106   /// values, particularly to fit them from abstract box types to the
107   /// appropriate reified structures.
108   mlir::Value integerCast(mlir::Location loc,
109                           mlir::ConversionPatternRewriter &rewriter,
110                           mlir::Type ty, mlir::Value val) const {
111     auto valTy = val.getType();
112     // If the value was not yet lowered, lower its type so that it can
113     // be used in getPrimitiveTypeSizeInBits.
114     if (!valTy.isa<mlir::IntegerType>())
115       valTy = convertType(valTy);
116     auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
117     auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy);
118     if (toSize < fromSize)
119       return rewriter.create<mlir::LLVM::TruncOp>(loc, ty, val);
120     if (toSize > fromSize)
121       return rewriter.create<mlir::LLVM::SExtOp>(loc, ty, val);
122     return val;
123   }
124 
125   /// Construct code sequence to extract the specifc value from a `fir.box`.
126   mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box,
127                               mlir::Type resultTy,
128                               mlir::ConversionPatternRewriter &rewriter,
129                               unsigned boxValue) const {
130     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
131     mlir::LLVM::ConstantOp cValuePos =
132         genConstantOffset(loc, rewriter, boxValue);
133     auto pty = mlir::LLVM::LLVMPointerType::get(resultTy);
134     auto p = rewriter.create<mlir::LLVM::GEPOp>(
135         loc, pty, box, mlir::ValueRange{c0, cValuePos});
136     return rewriter.create<mlir::LLVM::LoadOp>(loc, resultTy, p);
137   }
138 
139   /// Method to construct code sequence to get the triple for dimension `dim`
140   /// from a box.
141   SmallVector<mlir::Value, 3>
142   getDimsFromBox(mlir::Location loc, ArrayRef<mlir::Type> retTys,
143                  mlir::Value box, mlir::Value dim,
144                  mlir::ConversionPatternRewriter &rewriter) const {
145     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
146     mlir::LLVM::ConstantOp cDims =
147         genConstantOffset(loc, rewriter, kDimsPosInBox);
148     mlir::LLVM::LoadOp l0 =
149         loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter);
150     mlir::LLVM::LoadOp l1 =
151         loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter);
152     mlir::LLVM::LoadOp l2 =
153         loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter);
154     return {l0.getResult(), l1.getResult(), l2.getResult()};
155   }
156 
157   mlir::LLVM::LoadOp
158   loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0,
159                  mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off,
160                  mlir::Type ty,
161                  mlir::ConversionPatternRewriter &rewriter) const {
162     auto pty = mlir::LLVM::LLVMPointerType::get(ty);
163     mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off);
164     mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c);
165     return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
166   }
167 
168   mlir::Value
169   loadStrideFromBox(mlir::Location loc, mlir::Value box, unsigned dim,
170                     mlir::ConversionPatternRewriter &rewriter) const {
171     auto idxTy = lowerTy().indexType();
172     auto c0 = genConstantOffset(loc, rewriter, 0);
173     auto cDims = genConstantOffset(loc, rewriter, kDimsPosInBox);
174     auto dimValue = genConstantIndex(loc, idxTy, rewriter, dim);
175     return loadFromOffset(loc, box, c0, cDims, dimValue, kDimStridePos, idxTy,
176                           rewriter);
177   }
178 
179   /// Read base address from a fir.box. Returned address has type ty.
180   mlir::Value
181   loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
182                       mlir::ConversionPatternRewriter &rewriter) const {
183     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
184     mlir::LLVM::ConstantOp cAddr =
185         genConstantOffset(loc, rewriter, kAddrPosInBox);
186     auto pty = mlir::LLVM::LLVMPointerType::get(ty);
187     mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr);
188     return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
189   }
190 
191   mlir::Value
192   loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
193                          mlir::ConversionPatternRewriter &rewriter) const {
194     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
195     mlir::LLVM::ConstantOp cElemLen =
196         genConstantOffset(loc, rewriter, kElemLenPosInBox);
197     auto pty = mlir::LLVM::LLVMPointerType::get(ty);
198     mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen);
199     return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
200   }
201 
202   // Get the element type given an LLVM type that is of the form
203   // [llvm.ptr](array|struct|vector)+ and the provided indexes.
204   static mlir::Type getBoxEleTy(mlir::Type type,
205                                 llvm::ArrayRef<unsigned> indexes) {
206     if (auto t = type.dyn_cast<mlir::LLVM::LLVMPointerType>())
207       type = t.getElementType();
208     for (auto i : indexes) {
209       if (auto t = type.dyn_cast<mlir::LLVM::LLVMStructType>()) {
210         assert(!t.isOpaque() && i < t.getBody().size());
211         type = t.getBody()[i];
212       } else if (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
213         type = t.getElementType();
214       } else if (auto t = type.dyn_cast<mlir::VectorType>()) {
215         type = t.getElementType();
216       } else {
217         fir::emitFatalError(mlir::UnknownLoc::get(type.getContext()),
218                             "request for invalid box element type");
219       }
220     }
221     return type;
222   }
223 
224   // Return LLVM type of the base address given the LLVM type
225   // of the related descriptor (lowered fir.box type).
226   static mlir::Type getBaseAddrTypeFromBox(mlir::Type type) {
227     return getBoxEleTy(type, {kAddrPosInBox});
228   }
229 
230   // Load the attribute from the \p box and perform a check against \p maskValue
231   // The final comparison is implemented as `(attribute & maskValue) != 0`.
232   mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box,
233                                    mlir::ConversionPatternRewriter &rewriter,
234                                    unsigned maskValue) const {
235     mlir::Type attrTy = rewriter.getI32Type();
236     mlir::Value attribute =
237         getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox);
238     mlir::LLVM::ConstantOp attrMask =
239         genConstantOffset(loc, rewriter, maskValue);
240     auto maskRes =
241         rewriter.create<mlir::LLVM::AndOp>(loc, attrTy, attribute, attrMask);
242     mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
243     return rewriter.create<mlir::LLVM::ICmpOp>(
244         loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0);
245   }
246 
247   template <typename... ARGS>
248   mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty,
249                            mlir::ConversionPatternRewriter &rewriter,
250                            mlir::Value base, ARGS... args) const {
251     SmallVector<mlir::Value> cv{args...};
252     return rewriter.create<mlir::LLVM::GEPOp>(loc, ty, base, cv);
253   }
254 
255   fir::LLVMTypeConverter &lowerTy() const {
256     return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter());
257   }
258 
259   const fir::FIRToLLVMPassOptions &options;
260 };
261 
262 /// FIR conversion pattern template
263 template <typename FromOp>
264 class FIROpAndTypeConversion : public FIROpConversion<FromOp> {
265 public:
266   using FIROpConversion<FromOp>::FIROpConversion;
267   using OpAdaptor = typename FromOp::Adaptor;
268 
269   mlir::LogicalResult
270   matchAndRewrite(FromOp op, OpAdaptor adaptor,
271                   mlir::ConversionPatternRewriter &rewriter) const final {
272     mlir::Type ty = this->convertType(op.getType());
273     return doRewrite(op, ty, adaptor, rewriter);
274   }
275 
276   virtual mlir::LogicalResult
277   doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor,
278             mlir::ConversionPatternRewriter &rewriter) const = 0;
279 };
280 
281 // Lower `fir.address_of` operation to `llvm.address_of` operation.
282 struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> {
283   using FIROpConversion::FIROpConversion;
284 
285   mlir::LogicalResult
286   matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
287                   mlir::ConversionPatternRewriter &rewriter) const override {
288     auto ty = convertType(addr.getType());
289     rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
290         addr, ty, addr.getSymbol().getRootReference().getValue());
291     return success();
292   }
293 };
294 } // namespace
295 
296 /// Lookup the function to compute the memory size of this parametric derived
297 /// type. The size of the object may depend on the LEN type parameters of the
298 /// derived type.
299 static mlir::LLVM::LLVMFuncOp
300 getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op,
301                           mlir::ConversionPatternRewriter &rewriter) {
302   auto module = op->getParentOfType<mlir::ModuleOp>();
303   std::string name = recTy.getName().str() + "P.mem.size";
304   return module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name);
305 }
306 
307 namespace {
308 /// convert to LLVM IR dialect `alloca`
309 struct AllocaOpConversion : public FIROpConversion<fir::AllocaOp> {
310   using FIROpConversion::FIROpConversion;
311 
312   mlir::LogicalResult
313   matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor,
314                   mlir::ConversionPatternRewriter &rewriter) const override {
315     mlir::ValueRange operands = adaptor.getOperands();
316     auto loc = alloc.getLoc();
317     mlir::Type ity = lowerTy().indexType();
318     unsigned i = 0;
319     mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult();
320     mlir::Type ty = convertType(alloc.getType());
321     mlir::Type resultTy = ty;
322     if (alloc.hasLenParams()) {
323       unsigned end = alloc.numLenParams();
324       llvm::SmallVector<mlir::Value> lenParams;
325       for (; i < end; ++i)
326         lenParams.push_back(operands[i]);
327       mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType());
328       if (auto chrTy = scalarType.dyn_cast<fir::CharacterType>()) {
329         fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen(
330             chrTy.getContext(), chrTy.getFKind());
331         ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy));
332         assert(end == 1);
333         size = integerCast(loc, rewriter, ity, lenParams[0]);
334       } else if (auto recTy = scalarType.dyn_cast<fir::RecordType>()) {
335         mlir::LLVM::LLVMFuncOp memSizeFn =
336             getDependentTypeMemSizeFn(recTy, alloc, rewriter);
337         if (!memSizeFn)
338           emitError(loc, "did not find allocation function");
339         mlir::NamedAttribute attr = rewriter.getNamedAttr(
340             "callee", mlir::SymbolRefAttr::get(memSizeFn));
341         auto call = rewriter.create<mlir::LLVM::CallOp>(
342             loc, ity, lenParams, llvm::ArrayRef<mlir::NamedAttribute>{attr});
343         size = call.getResult(0);
344         ty = mlir::LLVM::LLVMPointerType::get(
345             mlir::IntegerType::get(alloc.getContext(), 8));
346       } else {
347         return emitError(loc, "unexpected type ")
348                << scalarType << " with type parameters";
349       }
350     }
351     if (alloc.hasShapeOperands()) {
352       mlir::Type allocEleTy = fir::unwrapRefType(alloc.getType());
353       // Scale the size by constant factors encoded in the array type.
354       // We only do this for arrays that don't have a constant interior, since
355       // those are the only ones that get decayed to a pointer to the element
356       // type.
357       if (auto seqTy = allocEleTy.dyn_cast<fir::SequenceType>()) {
358         if (!seqTy.hasConstantInterior()) {
359           fir::SequenceType::Extent constSize = 1;
360           for (auto extent : seqTy.getShape())
361             if (extent != fir::SequenceType::getUnknownExtent())
362               constSize *= extent;
363           mlir::Value constVal{
364               genConstantIndex(loc, ity, rewriter, constSize).getResult()};
365           size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, constVal);
366         }
367       }
368       unsigned end = operands.size();
369       for (; i < end; ++i)
370         size = rewriter.create<mlir::LLVM::MulOp>(
371             loc, ity, size, integerCast(loc, rewriter, ity, operands[i]));
372     }
373     if (ty == resultTy) {
374       // Do not emit the bitcast if ty and resultTy are the same.
375       rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>(alloc, ty, size,
376                                                         alloc->getAttrs());
377     } else {
378       auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, ty, size,
379                                                       alloc->getAttrs());
380       rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(alloc, resultTy, al);
381     }
382     return success();
383   }
384 };
385 } // namespace
386 
387 /// Construct an `llvm.extractvalue` instruction. It will return value at
388 /// element \p x from  \p tuple.
389 static mlir::LLVM::ExtractValueOp
390 genExtractValueWithIndex(mlir::Location loc, mlir::Value tuple, mlir::Type ty,
391                          mlir::ConversionPatternRewriter &rewriter,
392                          mlir::MLIRContext *ctx, int x) {
393   auto cx = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(x));
394   auto xty = ty.cast<mlir::LLVM::LLVMStructType>().getBody()[x];
395   return rewriter.create<mlir::LLVM::ExtractValueOp>(loc, xty, tuple, cx);
396 }
397 
398 namespace {
399 /// Lower `fir.box_addr` to the sequence of operations to extract the first
400 /// element of the box.
401 struct BoxAddrOpConversion : public FIROpConversion<fir::BoxAddrOp> {
402   using FIROpConversion::FIROpConversion;
403 
404   mlir::LogicalResult
405   matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor,
406                   mlir::ConversionPatternRewriter &rewriter) const override {
407     mlir::Value a = adaptor.getOperands()[0];
408     auto loc = boxaddr.getLoc();
409     mlir::Type ty = convertType(boxaddr.getType());
410     if (auto argty = boxaddr.getVal().getType().dyn_cast<fir::BoxType>()) {
411       rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter));
412     } else {
413       auto c0attr = rewriter.getI32IntegerAttr(0);
414       auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr);
415       rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, ty, a,
416                                                               c0);
417     }
418     return success();
419   }
420 };
421 
422 /// Convert `!fir.boxchar_len` to  `!llvm.extractvalue` for the 2nd part of the
423 /// boxchar.
424 struct BoxCharLenOpConversion : public FIROpConversion<fir::BoxCharLenOp> {
425   using FIROpConversion::FIROpConversion;
426 
427   mlir::LogicalResult
428   matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor,
429                   mlir::ConversionPatternRewriter &rewriter) const override {
430     mlir::Value boxChar = adaptor.getOperands()[0];
431     mlir::Location loc = boxChar.getLoc();
432     mlir::MLIRContext *ctx = boxChar.getContext();
433     mlir::Type returnValTy = boxCharLen.getResult().getType();
434 
435     constexpr int boxcharLenIdx = 1;
436     mlir::LLVM::ExtractValueOp len = genExtractValueWithIndex(
437         loc, boxChar, boxChar.getType(), rewriter, ctx, boxcharLenIdx);
438     mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len);
439     rewriter.replaceOp(boxCharLen, lenAfterCast);
440 
441     return success();
442   }
443 };
444 
445 /// Lower `fir.box_dims` to a sequence of operations to extract the requested
446 /// dimension infomartion from the boxed value.
447 /// Result in a triple set of GEPs and loads.
448 struct BoxDimsOpConversion : public FIROpConversion<fir::BoxDimsOp> {
449   using FIROpConversion::FIROpConversion;
450 
451   mlir::LogicalResult
452   matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor,
453                   mlir::ConversionPatternRewriter &rewriter) const override {
454     SmallVector<mlir::Type, 3> resultTypes = {
455         convertType(boxdims.getResult(0).getType()),
456         convertType(boxdims.getResult(1).getType()),
457         convertType(boxdims.getResult(2).getType()),
458     };
459     auto results =
460         getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0],
461                        adaptor.getOperands()[1], rewriter);
462     rewriter.replaceOp(boxdims, results);
463     return success();
464   }
465 };
466 
467 /// Lower `fir.box_elesize` to a sequence of operations ro extract the size of
468 /// an element in the boxed value.
469 struct BoxEleSizeOpConversion : public FIROpConversion<fir::BoxEleSizeOp> {
470   using FIROpConversion::FIROpConversion;
471 
472   mlir::LogicalResult
473   matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor,
474                   mlir::ConversionPatternRewriter &rewriter) const override {
475     mlir::Value a = adaptor.getOperands()[0];
476     auto loc = boxelesz.getLoc();
477     auto ty = convertType(boxelesz.getType());
478     auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox);
479     rewriter.replaceOp(boxelesz, elemSize);
480     return success();
481   }
482 };
483 
484 /// Lower `fir.box_isalloc` to a sequence of operations to determine if the
485 /// boxed value was from an ALLOCATABLE entity.
486 struct BoxIsAllocOpConversion : public FIROpConversion<fir::BoxIsAllocOp> {
487   using FIROpConversion::FIROpConversion;
488 
489   mlir::LogicalResult
490   matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor,
491                   mlir::ConversionPatternRewriter &rewriter) const override {
492     mlir::Value box = adaptor.getOperands()[0];
493     auto loc = boxisalloc.getLoc();
494     mlir::Value check =
495         genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable);
496     rewriter.replaceOp(boxisalloc, check);
497     return success();
498   }
499 };
500 
501 /// Lower `fir.box_isarray` to a sequence of operations to determine if the
502 /// boxed is an array.
503 struct BoxIsArrayOpConversion : public FIROpConversion<fir::BoxIsArrayOp> {
504   using FIROpConversion::FIROpConversion;
505 
506   mlir::LogicalResult
507   matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor,
508                   mlir::ConversionPatternRewriter &rewriter) const override {
509     mlir::Value a = adaptor.getOperands()[0];
510     auto loc = boxisarray.getLoc();
511     auto rank =
512         getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox);
513     auto c0 = genConstantOffset(loc, rewriter, 0);
514     rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
515         boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0);
516     return success();
517   }
518 };
519 
520 /// Lower `fir.box_isptr` to a sequence of operations to determined if the
521 /// boxed value was from a POINTER entity.
522 struct BoxIsPtrOpConversion : public FIROpConversion<fir::BoxIsPtrOp> {
523   using FIROpConversion::FIROpConversion;
524 
525   mlir::LogicalResult
526   matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor,
527                   mlir::ConversionPatternRewriter &rewriter) const override {
528     mlir::Value box = adaptor.getOperands()[0];
529     auto loc = boxisptr.getLoc();
530     mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer);
531     rewriter.replaceOp(boxisptr, check);
532     return success();
533   }
534 };
535 
536 /// Lower `fir.box_rank` to the sequence of operation to extract the rank from
537 /// the box.
538 struct BoxRankOpConversion : public FIROpConversion<fir::BoxRankOp> {
539   using FIROpConversion::FIROpConversion;
540 
541   mlir::LogicalResult
542   matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor,
543                   mlir::ConversionPatternRewriter &rewriter) const override {
544     mlir::Value a = adaptor.getOperands()[0];
545     auto loc = boxrank.getLoc();
546     mlir::Type ty = convertType(boxrank.getType());
547     auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox);
548     rewriter.replaceOp(boxrank, result);
549     return success();
550   }
551 };
552 
553 /// Lower `fir.boxproc_host` operation. Extracts the host pointer from the
554 /// boxproc.
555 /// TODO: Part of supporting Fortran 2003 procedure pointers.
556 struct BoxProcHostOpConversion : public FIROpConversion<fir::BoxProcHostOp> {
557   using FIROpConversion::FIROpConversion;
558 
559   mlir::LogicalResult
560   matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor,
561                   mlir::ConversionPatternRewriter &rewriter) const override {
562     TODO(boxprochost.getLoc(), "fir.boxproc_host codegen");
563     return failure();
564   }
565 };
566 
567 /// Lower `fir.box_tdesc` to the sequence of operations to extract the type
568 /// descriptor from the box.
569 struct BoxTypeDescOpConversion : public FIROpConversion<fir::BoxTypeDescOp> {
570   using FIROpConversion::FIROpConversion;
571 
572   mlir::LogicalResult
573   matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor,
574                   mlir::ConversionPatternRewriter &rewriter) const override {
575     mlir::Value box = adaptor.getOperands()[0];
576     auto loc = boxtypedesc.getLoc();
577     mlir::Type typeTy =
578         fir::getDescFieldTypeModel<kTypePosInBox>()(boxtypedesc.getContext());
579     auto result = getValueFromBox(loc, box, typeTy, rewriter, kTypePosInBox);
580     auto typePtrTy = mlir::LLVM::LLVMPointerType::get(typeTy);
581     rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(boxtypedesc, typePtrTy,
582                                                         result);
583     return success();
584   }
585 };
586 
587 /// Lower `fir.string_lit` to LLVM IR dialect operation.
588 struct StringLitOpConversion : public FIROpConversion<fir::StringLitOp> {
589   using FIROpConversion::FIROpConversion;
590 
591   mlir::LogicalResult
592   matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor,
593                   mlir::ConversionPatternRewriter &rewriter) const override {
594     auto ty = convertType(constop.getType());
595     auto attr = constop.getValue();
596     if (attr.isa<mlir::StringAttr>()) {
597       rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr);
598       return success();
599     }
600 
601     auto charTy = constop.getType().cast<fir::CharacterType>();
602     unsigned bits = lowerTy().characterBitsize(charTy);
603     mlir::Type intTy = rewriter.getIntegerType(bits);
604     mlir::Location loc = constop.getLoc();
605     mlir::Value cst = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
606     if (auto arr = attr.dyn_cast<mlir::DenseElementsAttr>()) {
607       cst = rewriter.create<mlir::LLVM::ConstantOp>(loc, ty, arr);
608     } else if (auto arr = attr.dyn_cast<mlir::ArrayAttr>()) {
609       for (auto a : llvm::enumerate(arr.getValue())) {
610         // convert each character to a precise bitsize
611         auto elemAttr = mlir::IntegerAttr::get(
612             intTy,
613             a.value().cast<mlir::IntegerAttr>().getValue().zextOrTrunc(bits));
614         auto elemCst =
615             rewriter.create<mlir::LLVM::ConstantOp>(loc, intTy, elemAttr);
616         auto index = mlir::ArrayAttr::get(
617             constop.getContext(), rewriter.getI32IntegerAttr(a.index()));
618         cst = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, cst, elemCst,
619                                                          index);
620       }
621     } else {
622       return failure();
623     }
624     rewriter.replaceOp(constop, cst);
625     return success();
626   }
627 };
628 
629 // `fir.call` -> `llvm.call`
630 struct CallOpConversion : public FIROpConversion<fir::CallOp> {
631   using FIROpConversion::FIROpConversion;
632 
633   mlir::LogicalResult
634   matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
635                   mlir::ConversionPatternRewriter &rewriter) const override {
636     SmallVector<mlir::Type> resultTys;
637     for (auto r : call.getResults())
638       resultTys.push_back(convertType(r.getType()));
639     rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
640         call, resultTys, adaptor.getOperands(), call->getAttrs());
641     return success();
642   }
643 };
644 } // namespace
645 
646 static mlir::Type getComplexEleTy(mlir::Type complex) {
647   if (auto cc = complex.dyn_cast<mlir::ComplexType>())
648     return cc.getElementType();
649   return complex.cast<fir::ComplexType>().getElementType();
650 }
651 
652 namespace {
653 /// Compare complex values
654 ///
655 /// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une).
656 ///
657 /// For completeness, all other comparison are done on the real component only.
658 struct CmpcOpConversion : public FIROpConversion<fir::CmpcOp> {
659   using FIROpConversion::FIROpConversion;
660 
661   mlir::LogicalResult
662   matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor,
663                   mlir::ConversionPatternRewriter &rewriter) const override {
664     mlir::ValueRange operands = adaptor.getOperands();
665     mlir::MLIRContext *ctxt = cmp.getContext();
666     mlir::Type eleTy = convertType(getComplexEleTy(cmp.getLhs().getType()));
667     mlir::Type resTy = convertType(cmp.getType());
668     mlir::Location loc = cmp.getLoc();
669     auto pos0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
670     SmallVector<mlir::Value, 2> rp{rewriter.create<mlir::LLVM::ExtractValueOp>(
671                                        loc, eleTy, operands[0], pos0),
672                                    rewriter.create<mlir::LLVM::ExtractValueOp>(
673                                        loc, eleTy, operands[1], pos0)};
674     auto rcp =
675         rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, rp, cmp->getAttrs());
676     auto pos1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
677     SmallVector<mlir::Value, 2> ip{rewriter.create<mlir::LLVM::ExtractValueOp>(
678                                        loc, eleTy, operands[0], pos1),
679                                    rewriter.create<mlir::LLVM::ExtractValueOp>(
680                                        loc, eleTy, operands[1], pos1)};
681     auto icp =
682         rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, ip, cmp->getAttrs());
683     SmallVector<mlir::Value, 2> cp{rcp, icp};
684     switch (cmp.getPredicate()) {
685     case mlir::arith::CmpFPredicate::OEQ: // .EQ.
686       rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp);
687       break;
688     case mlir::arith::CmpFPredicate::UNE: // .NE.
689       rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp);
690       break;
691     default:
692       rewriter.replaceOp(cmp, rcp.getResult());
693       break;
694     }
695     return success();
696   }
697 };
698 
699 /// Lower complex constants
700 struct ConstcOpConversion : public FIROpConversion<fir::ConstcOp> {
701   using FIROpConversion::FIROpConversion;
702 
703   mlir::LogicalResult
704   matchAndRewrite(fir::ConstcOp conc, OpAdaptor,
705                   mlir::ConversionPatternRewriter &rewriter) const override {
706     mlir::Location loc = conc.getLoc();
707     mlir::MLIRContext *ctx = conc.getContext();
708     mlir::Type ty = convertType(conc.getType());
709     mlir::Type ety = convertType(getComplexEleTy(conc.getType()));
710     auto realFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getReal()));
711     auto realPart =
712         rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, realFloatAttr);
713     auto imFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getImaginary()));
714     auto imPart =
715         rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, imFloatAttr);
716     auto realIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
717     auto imIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
718     auto undef = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
719     auto setReal = rewriter.create<mlir::LLVM::InsertValueOp>(
720         loc, ty, undef, realPart, realIndex);
721     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(conc, ty, setReal,
722                                                            imPart, imIndex);
723     return success();
724   }
725 
726   inline APFloat getValue(mlir::Attribute attr) const {
727     return attr.cast<fir::RealAttr>().getValue();
728   }
729 };
730 
731 /// convert value of from-type to value of to-type
732 struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> {
733   using FIROpConversion::FIROpConversion;
734 
735   static bool isFloatingPointTy(mlir::Type ty) {
736     return ty.isa<mlir::FloatType>();
737   }
738 
739   mlir::LogicalResult
740   matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
741                   mlir::ConversionPatternRewriter &rewriter) const override {
742     auto fromFirTy = convert.getValue().getType();
743     auto toFirTy = convert.getRes().getType();
744     auto fromTy = convertType(fromFirTy);
745     auto toTy = convertType(toFirTy);
746     mlir::Value op0 = adaptor.getOperands()[0];
747     if (fromTy == toTy) {
748       rewriter.replaceOp(convert, op0);
749       return success();
750     }
751     auto loc = convert.getLoc();
752     auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
753                              unsigned toBits, mlir::Type toTy) -> mlir::Value {
754       if (fromBits == toBits) {
755         // TODO: Converting between two floating-point representations with the
756         // same bitwidth is not allowed for now.
757         mlir::emitError(loc,
758                         "cannot implicitly convert between two floating-point "
759                         "representations of the same bitwidth");
760         return {};
761       }
762       if (fromBits > toBits)
763         return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
764       return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
765     };
766     // Complex to complex conversion.
767     if (fir::isa_complex(fromFirTy) && fir::isa_complex(toFirTy)) {
768       // Special case: handle the conversion of a complex such that both the
769       // real and imaginary parts are converted together.
770       auto zero = mlir::ArrayAttr::get(convert.getContext(),
771                                        rewriter.getI32IntegerAttr(0));
772       auto one = mlir::ArrayAttr::get(convert.getContext(),
773                                       rewriter.getI32IntegerAttr(1));
774       auto ty = convertType(getComplexEleTy(convert.getValue().getType()));
775       auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero);
776       auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one);
777       auto nt = convertType(getComplexEleTy(convert.getRes().getType()));
778       auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
779       auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
780       auto rc = convertFpToFp(rp, fromBits, toBits, nt);
781       auto ic = convertFpToFp(ip, fromBits, toBits, nt);
782       auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
783       auto i1 =
784           rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero);
785       rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1,
786                                                              ic, one);
787       return mlir::success();
788     }
789 
790     // Follow UNIX F77 convention for logicals:
791     // 1. underlying integer is not zero => logical is .TRUE.
792     // 2. logical is .TRUE. => set underlying integer to 1.
793     auto i1Type = mlir::IntegerType::get(convert.getContext(), 1);
794     if (fromFirTy.isa<fir::LogicalType>() && toFirTy == i1Type) {
795       mlir::Value zero = genConstantIndex(loc, fromTy, rewriter, 0);
796       rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
797           convert, mlir::LLVM::ICmpPredicate::ne, op0, zero);
798       return mlir::success();
799     }
800     if (fromFirTy == i1Type && toFirTy.isa<fir::LogicalType>()) {
801       rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, op0);
802       return mlir::success();
803     }
804 
805     // Floating point to floating point conversion.
806     if (isFloatingPointTy(fromTy)) {
807       if (isFloatingPointTy(toTy)) {
808         auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
809         auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
810         auto v = convertFpToFp(op0, fromBits, toBits, toTy);
811         rewriter.replaceOp(convert, v);
812         return mlir::success();
813       }
814       if (toTy.isa<mlir::IntegerType>()) {
815         rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
816         return mlir::success();
817       }
818     } else if (fromTy.isa<mlir::IntegerType>()) {
819       // Integer to integer conversion.
820       if (toTy.isa<mlir::IntegerType>()) {
821         auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
822         auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
823         assert(fromBits != toBits);
824         if (fromBits > toBits) {
825           rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
826           return mlir::success();
827         }
828         rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
829         return mlir::success();
830       }
831       // Integer to floating point conversion.
832       if (isFloatingPointTy(toTy)) {
833         rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
834         return mlir::success();
835       }
836       // Integer to pointer conversion.
837       if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
838         rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
839         return mlir::success();
840       }
841     } else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) {
842       // Pointer to integer conversion.
843       if (toTy.isa<mlir::IntegerType>()) {
844         rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
845         return mlir::success();
846       }
847       // Pointer to pointer conversion.
848       if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
849         rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
850         return mlir::success();
851       }
852     }
853     return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
854   }
855 };
856 
857 /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
858 /// table.
859 struct DispatchOpConversion : public FIROpConversion<fir::DispatchOp> {
860   using FIROpConversion::FIROpConversion;
861 
862   mlir::LogicalResult
863   matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
864                   mlir::ConversionPatternRewriter &rewriter) const override {
865     TODO(dispatch.getLoc(), "fir.dispatch codegen");
866     return failure();
867   }
868 };
869 
870 /// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran
871 /// derived type.
872 struct DispatchTableOpConversion
873     : public FIROpConversion<fir::DispatchTableOp> {
874   using FIROpConversion::FIROpConversion;
875 
876   mlir::LogicalResult
877   matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor,
878                   mlir::ConversionPatternRewriter &rewriter) const override {
879     TODO(dispTab.getLoc(), "fir.dispatch_table codegen");
880     return failure();
881   }
882 };
883 
884 /// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a
885 /// method-name to a function.
886 struct DTEntryOpConversion : public FIROpConversion<fir::DTEntryOp> {
887   using FIROpConversion::FIROpConversion;
888 
889   mlir::LogicalResult
890   matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor,
891                   mlir::ConversionPatternRewriter &rewriter) const override {
892     TODO(dtEnt.getLoc(), "fir.dt_entry codegen");
893     return failure();
894   }
895 };
896 
897 /// Lower `fir.global_len` operation.
898 struct GlobalLenOpConversion : public FIROpConversion<fir::GlobalLenOp> {
899   using FIROpConversion::FIROpConversion;
900 
901   mlir::LogicalResult
902   matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor,
903                   mlir::ConversionPatternRewriter &rewriter) const override {
904     TODO(globalLen.getLoc(), "fir.global_len codegen");
905     return failure();
906   }
907 };
908 
909 /// Lower fir.len_param_index
910 struct LenParamIndexOpConversion
911     : public FIROpConversion<fir::LenParamIndexOp> {
912   using FIROpConversion::FIROpConversion;
913 
914   // FIXME: this should be specialized by the runtime target
915   mlir::LogicalResult
916   matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor,
917                   mlir::ConversionPatternRewriter &rewriter) const override {
918     TODO(lenp.getLoc(), "fir.len_param_index codegen");
919   }
920 };
921 
922 /// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of
923 /// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element
924 /// in this struct is a pointer. Its type is determined from `KIND`. The 2nd
925 /// element is the length of the character buffer (`#n`).
926 struct EmboxCharOpConversion : public FIROpConversion<fir::EmboxCharOp> {
927   using FIROpConversion::FIROpConversion;
928 
929   mlir::LogicalResult
930   matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor,
931                   mlir::ConversionPatternRewriter &rewriter) const override {
932     mlir::ValueRange operands = adaptor.getOperands();
933     MLIRContext *ctx = emboxChar.getContext();
934 
935     mlir::Value charBuffer = operands[0];
936     mlir::Value charBufferLen = operands[1];
937 
938     mlir::Location loc = emboxChar.getLoc();
939     mlir::Type llvmStructTy = convertType(emboxChar.getType());
940     auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy);
941 
942     mlir::Type lenTy =
943         llvmStructTy.cast<mlir::LLVM::LLVMStructType>().getBody()[1];
944     mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen);
945 
946     auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
947     auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
948     auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>(
949         loc, llvmStructTy, llvmStruct, charBuffer, c0);
950     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
951         emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1);
952 
953     return success();
954   }
955 };
956 } // namespace
957 
958 /// Return the LLVMFuncOp corresponding to the standard malloc call.
959 static mlir::LLVM::LLVMFuncOp
960 getMalloc(fir::AllocMemOp op, mlir::ConversionPatternRewriter &rewriter) {
961   auto module = op->getParentOfType<mlir::ModuleOp>();
962   if (mlir::LLVM::LLVMFuncOp mallocFunc =
963           module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("malloc"))
964     return mallocFunc;
965   mlir::OpBuilder moduleBuilder(
966       op->getParentOfType<mlir::ModuleOp>().getBodyRegion());
967   auto indexType = mlir::IntegerType::get(op.getContext(), 64);
968   return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
969       rewriter.getUnknownLoc(), "malloc",
970       mlir::LLVM::LLVMFunctionType::get(getVoidPtrType(op.getContext()),
971                                         indexType,
972                                         /*isVarArg=*/false));
973 }
974 
975 /// Helper function for generating the LLVM IR that computes the size
976 /// in bytes for a derived type.
977 static mlir::Value
978 computeDerivedTypeSize(mlir::Location loc, mlir::Type ptrTy, mlir::Type idxTy,
979                        mlir::ConversionPatternRewriter &rewriter) {
980   auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
981   mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
982   llvm::SmallVector<mlir::Value> args{one};
983   auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr, args);
984   return rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, gep);
985 }
986 
987 namespace {
988 /// Lower a `fir.allocmem` instruction into `llvm.call @malloc`
989 struct AllocMemOpConversion : public FIROpConversion<fir::AllocMemOp> {
990   using FIROpConversion::FIROpConversion;
991 
992   mlir::LogicalResult
993   matchAndRewrite(fir::AllocMemOp heap, OpAdaptor adaptor,
994                   mlir::ConversionPatternRewriter &rewriter) const override {
995     auto heapTy = heap.getType();
996     auto ty = convertType(heapTy);
997     mlir::LLVM::LLVMFuncOp mallocFunc = getMalloc(heap, rewriter);
998     mlir::Location loc = heap.getLoc();
999     auto ity = lowerTy().indexType();
1000     auto dataTy = fir::unwrapRefType(heapTy);
1001     if (fir::isRecordWithTypeParameters(fir::unwrapSequenceType(dataTy)))
1002       TODO(loc, "fir.allocmem codegen of derived type with length parameters");
1003     mlir::Value size = genTypeSizeInBytes(loc, ity, rewriter, ty);
1004     // !fir.array<NxMx!fir.char<K,?>> sets `size` to the width of !fir.char<K>.
1005     // So multiply the constant dimensions here.
1006     if (fir::hasDynamicSize(dataTy))
1007       if (auto seqTy = dataTy.dyn_cast<fir::SequenceType>())
1008         if (fir::characterWithDynamicLen(seqTy.getEleTy())) {
1009           fir::SequenceType::Extent arrSize = 1;
1010           for (auto d : seqTy.getShape())
1011             if (d != fir::SequenceType::getUnknownExtent())
1012               arrSize *= d;
1013           size = rewriter.create<mlir::LLVM::MulOp>(
1014               loc, ity, size, genConstantIndex(loc, ity, rewriter, arrSize));
1015         }
1016     for (mlir::Value opnd : adaptor.getOperands())
1017       size = rewriter.create<mlir::LLVM::MulOp>(
1018           loc, ity, size, integerCast(loc, rewriter, ity, opnd));
1019     heap->setAttr("callee", mlir::SymbolRefAttr::get(mallocFunc));
1020     auto malloc = rewriter.create<mlir::LLVM::CallOp>(
1021         loc, ::getVoidPtrType(heap.getContext()), size, heap->getAttrs());
1022     rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(heap, ty,
1023                                                        malloc.getResult(0));
1024     return success();
1025   }
1026 
1027   // Compute the (allocation) size of the allocmem type in bytes.
1028   mlir::Value genTypeSizeInBytes(mlir::Location loc, mlir::Type idxTy,
1029                                  mlir::ConversionPatternRewriter &rewriter,
1030                                  mlir::Type llTy) const {
1031     // Use the primitive size, if available.
1032     auto ptrTy = llTy.dyn_cast<mlir::LLVM::LLVMPointerType>();
1033     if (auto size =
1034             mlir::LLVM::getPrimitiveTypeSizeInBits(ptrTy.getElementType()))
1035       return genConstantIndex(loc, idxTy, rewriter, size / 8);
1036 
1037     // Otherwise, generate the GEP trick in LLVM IR to compute the size.
1038     return computeDerivedTypeSize(loc, ptrTy, idxTy, rewriter);
1039   }
1040 };
1041 } // namespace
1042 
1043 /// Return the LLVMFuncOp corresponding to the standard free call.
1044 static mlir::LLVM::LLVMFuncOp
1045 getFree(fir::FreeMemOp op, mlir::ConversionPatternRewriter &rewriter) {
1046   auto module = op->getParentOfType<mlir::ModuleOp>();
1047   if (mlir::LLVM::LLVMFuncOp freeFunc =
1048           module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("free"))
1049     return freeFunc;
1050   mlir::OpBuilder moduleBuilder(module.getBodyRegion());
1051   auto voidType = mlir::LLVM::LLVMVoidType::get(op.getContext());
1052   return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
1053       rewriter.getUnknownLoc(), "free",
1054       mlir::LLVM::LLVMFunctionType::get(voidType,
1055                                         getVoidPtrType(op.getContext()),
1056                                         /*isVarArg=*/false));
1057 }
1058 
1059 namespace {
1060 /// Lower a `fir.freemem` instruction into `llvm.call @free`
1061 struct FreeMemOpConversion : public FIROpConversion<fir::FreeMemOp> {
1062   using FIROpConversion::FIROpConversion;
1063 
1064   mlir::LogicalResult
1065   matchAndRewrite(fir::FreeMemOp freemem, OpAdaptor adaptor,
1066                   mlir::ConversionPatternRewriter &rewriter) const override {
1067     mlir::LLVM::LLVMFuncOp freeFunc = getFree(freemem, rewriter);
1068     mlir::Location loc = freemem.getLoc();
1069     auto bitcast = rewriter.create<mlir::LLVM::BitcastOp>(
1070         freemem.getLoc(), voidPtrTy(), adaptor.getOperands()[0]);
1071     freemem->setAttr("callee", mlir::SymbolRefAttr::get(freeFunc));
1072     rewriter.create<mlir::LLVM::CallOp>(
1073         loc, mlir::TypeRange{}, mlir::ValueRange{bitcast}, freemem->getAttrs());
1074     rewriter.eraseOp(freemem);
1075     return success();
1076   }
1077 };
1078 } // namespace
1079 
1080 namespace {} // namespace
1081 
1082 /// Common base class for embox to descriptor conversion.
1083 template <typename OP>
1084 struct EmboxCommonConversion : public FIROpConversion<OP> {
1085   using FIROpConversion<OP>::FIROpConversion;
1086 
1087   // Find the LLVMFuncOp in whose entry block the alloca should be inserted.
1088   // The order to find the LLVMFuncOp is as follows:
1089   // 1. The parent operation of the current block if it is a LLVMFuncOp.
1090   // 2. The first ancestor that is a LLVMFuncOp.
1091   mlir::LLVM::LLVMFuncOp
1092   getFuncForAllocaInsert(mlir::ConversionPatternRewriter &rewriter) const {
1093     mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp();
1094     return mlir::isa<mlir::LLVM::LLVMFuncOp>(parentOp)
1095                ? mlir::cast<mlir::LLVM::LLVMFuncOp>(parentOp)
1096                : parentOp->getParentOfType<mlir::LLVM::LLVMFuncOp>();
1097   }
1098 
1099   // Generate an alloca of size 1 and type \p toTy.
1100   mlir::LLVM::AllocaOp
1101   genAllocaWithType(mlir::Location loc, mlir::Type toTy, unsigned alignment,
1102                     mlir::ConversionPatternRewriter &rewriter) const {
1103     auto thisPt = rewriter.saveInsertionPoint();
1104     mlir::LLVM::LLVMFuncOp func = getFuncForAllocaInsert(rewriter);
1105     rewriter.setInsertionPointToStart(&func.front());
1106     auto size = this->genI32Constant(loc, rewriter, 1);
1107     auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, toTy, size, alignment);
1108     rewriter.restoreInsertionPoint(thisPt);
1109     return al;
1110   }
1111 
1112   static int getCFIAttr(fir::BoxType boxTy) {
1113     auto eleTy = boxTy.getEleTy();
1114     if (eleTy.isa<fir::PointerType>())
1115       return CFI_attribute_pointer;
1116     if (eleTy.isa<fir::HeapType>())
1117       return CFI_attribute_allocatable;
1118     return CFI_attribute_other;
1119   }
1120 
1121   static fir::RecordType unwrapIfDerived(fir::BoxType boxTy) {
1122     return fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(boxTy))
1123         .template dyn_cast<fir::RecordType>();
1124   }
1125   static bool isDerivedTypeWithLenParams(fir::BoxType boxTy) {
1126     auto recTy = unwrapIfDerived(boxTy);
1127     return recTy && recTy.getNumLenParams() > 0;
1128   }
1129   static bool isDerivedType(fir::BoxType boxTy) {
1130     return unwrapIfDerived(boxTy) != nullptr;
1131   }
1132 
1133   // Get the element size and CFI type code of the boxed value.
1134   std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode(
1135       mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
1136       mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const {
1137     auto doInteger =
1138         [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1139       int typeCode = fir::integerBitsToTypeCode(width);
1140       return {this->genConstantOffset(loc, rewriter, width / 8),
1141               this->genConstantOffset(loc, rewriter, typeCode)};
1142     };
1143     auto doLogical =
1144         [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1145       int typeCode = fir::logicalBitsToTypeCode(width);
1146       return {this->genConstantOffset(loc, rewriter, width / 8),
1147               this->genConstantOffset(loc, rewriter, typeCode)};
1148     };
1149     auto doFloat = [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1150       int typeCode = fir::realBitsToTypeCode(width);
1151       return {this->genConstantOffset(loc, rewriter, width / 8),
1152               this->genConstantOffset(loc, rewriter, typeCode)};
1153     };
1154     auto doComplex =
1155         [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
1156       auto typeCode = fir::complexBitsToTypeCode(width);
1157       return {this->genConstantOffset(loc, rewriter, width / 8 * 2),
1158               this->genConstantOffset(loc, rewriter, typeCode)};
1159     };
1160     auto doCharacter =
1161         [&](unsigned width,
1162             mlir::Value len) -> std::tuple<mlir::Value, mlir::Value> {
1163       auto typeCode = fir::characterBitsToTypeCode(width);
1164       auto typeCodeVal = this->genConstantOffset(loc, rewriter, typeCode);
1165       if (width == 8)
1166         return {len, typeCodeVal};
1167       auto byteWidth = this->genConstantOffset(loc, rewriter, width / 8);
1168       auto i64Ty = mlir::IntegerType::get(&this->lowerTy().getContext(), 64);
1169       auto size =
1170           rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, byteWidth, len);
1171       return {size, typeCodeVal};
1172     };
1173     auto getKindMap = [&]() -> fir::KindMapping & {
1174       return this->lowerTy().getKindMap();
1175     };
1176     // Pointer-like types.
1177     if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy))
1178       boxEleTy = eleTy;
1179     // Integer types.
1180     if (fir::isa_integer(boxEleTy)) {
1181       if (auto ty = boxEleTy.dyn_cast<mlir::IntegerType>())
1182         return doInteger(ty.getWidth());
1183       auto ty = boxEleTy.cast<fir::IntegerType>();
1184       return doInteger(getKindMap().getIntegerBitsize(ty.getFKind()));
1185     }
1186     // Floating point types.
1187     if (fir::isa_real(boxEleTy)) {
1188       if (auto ty = boxEleTy.dyn_cast<mlir::FloatType>())
1189         return doFloat(ty.getWidth());
1190       auto ty = boxEleTy.cast<fir::RealType>();
1191       return doFloat(getKindMap().getRealBitsize(ty.getFKind()));
1192     }
1193     // Complex types.
1194     if (fir::isa_complex(boxEleTy)) {
1195       if (auto ty = boxEleTy.dyn_cast<mlir::ComplexType>())
1196         return doComplex(
1197             ty.getElementType().cast<mlir::FloatType>().getWidth());
1198       auto ty = boxEleTy.cast<fir::ComplexType>();
1199       return doComplex(getKindMap().getRealBitsize(ty.getFKind()));
1200     }
1201     // Character types.
1202     if (auto ty = boxEleTy.dyn_cast<fir::CharacterType>()) {
1203       auto charWidth = getKindMap().getCharacterBitsize(ty.getFKind());
1204       if (ty.getLen() != fir::CharacterType::unknownLen()) {
1205         auto len = this->genConstantOffset(loc, rewriter, ty.getLen());
1206         return doCharacter(charWidth, len);
1207       }
1208       assert(!lenParams.empty());
1209       return doCharacter(charWidth, lenParams.back());
1210     }
1211     // Logical type.
1212     if (auto ty = boxEleTy.dyn_cast<fir::LogicalType>())
1213       return doLogical(getKindMap().getLogicalBitsize(ty.getFKind()));
1214     // Array types.
1215     if (auto seqTy = boxEleTy.dyn_cast<fir::SequenceType>())
1216       return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams);
1217     // Derived-type types.
1218     if (boxEleTy.isa<fir::RecordType>()) {
1219       auto ptrTy = mlir::LLVM::LLVMPointerType::get(
1220           this->lowerTy().convertType(boxEleTy));
1221       auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
1222       auto one =
1223           genConstantIndex(loc, this->lowerTy().offsetType(), rewriter, 1);
1224       auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr,
1225                                                     mlir::ValueRange{one});
1226       auto eleSize = rewriter.create<mlir::LLVM::PtrToIntOp>(
1227           loc, this->lowerTy().indexType(), gep);
1228       return {eleSize,
1229               this->genConstantOffset(loc, rewriter, fir::derivedToTypeCode())};
1230     }
1231     // Reference type.
1232     if (fir::isa_ref_type(boxEleTy)) {
1233       // FIXME: use the target pointer size rather than sizeof(void*)
1234       return {this->genConstantOffset(loc, rewriter, sizeof(void *)),
1235               this->genConstantOffset(loc, rewriter, CFI_type_cptr)};
1236     }
1237     fir::emitFatalError(loc, "unhandled type in fir.box code generation");
1238   }
1239 
1240   /// Basic pattern to write a field in the descriptor
1241   mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter,
1242                           mlir::Location loc, mlir::Value dest,
1243                           ArrayRef<unsigned> fldIndexes, mlir::Value value,
1244                           bool bitcast = false) const {
1245     auto boxTy = dest.getType();
1246     auto fldTy = this->getBoxEleTy(boxTy, fldIndexes);
1247     if (bitcast)
1248       value = rewriter.create<mlir::LLVM::BitcastOp>(loc, fldTy, value);
1249     else
1250       value = this->integerCast(loc, rewriter, fldTy, value);
1251     SmallVector<mlir::Attribute, 2> attrs;
1252     for (auto i : fldIndexes)
1253       attrs.push_back(rewriter.getI32IntegerAttr(i));
1254     auto indexesAttr = mlir::ArrayAttr::get(rewriter.getContext(), attrs);
1255     return rewriter.create<mlir::LLVM::InsertValueOp>(loc, boxTy, dest, value,
1256                                                       indexesAttr);
1257   }
1258 
1259   inline mlir::Value
1260   insertBaseAddress(mlir::ConversionPatternRewriter &rewriter,
1261                     mlir::Location loc, mlir::Value dest,
1262                     mlir::Value base) const {
1263     return insertField(rewriter, loc, dest, {kAddrPosInBox}, base,
1264                        /*bitCast=*/true);
1265   }
1266 
1267   inline mlir::Value insertLowerBound(mlir::ConversionPatternRewriter &rewriter,
1268                                       mlir::Location loc, mlir::Value dest,
1269                                       unsigned dim, mlir::Value lb) const {
1270     return insertField(rewriter, loc, dest,
1271                        {kDimsPosInBox, dim, kDimLowerBoundPos}, lb);
1272   }
1273 
1274   inline mlir::Value insertExtent(mlir::ConversionPatternRewriter &rewriter,
1275                                   mlir::Location loc, mlir::Value dest,
1276                                   unsigned dim, mlir::Value extent) const {
1277     return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimExtentPos},
1278                        extent);
1279   }
1280 
1281   inline mlir::Value insertStride(mlir::ConversionPatternRewriter &rewriter,
1282                                   mlir::Location loc, mlir::Value dest,
1283                                   unsigned dim, mlir::Value stride) const {
1284     return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimStridePos},
1285                        stride);
1286   }
1287 
1288   /// Get the address of the type descriptor global variable that was created by
1289   /// lowering for derived type \p recType.
1290   template <typename BOX>
1291   mlir::Value
1292   getTypeDescriptor(BOX box, mlir::ConversionPatternRewriter &rewriter,
1293                     mlir::Location loc, fir::RecordType recType) const {
1294     std::string name =
1295         fir::NameUniquer::getTypeDescriptorName(recType.getName());
1296     auto module = box->template getParentOfType<mlir::ModuleOp>();
1297     if (auto global = module.template lookupSymbol<fir::GlobalOp>(name)) {
1298       auto ty = mlir::LLVM::LLVMPointerType::get(
1299           this->lowerTy().convertType(global.getType()));
1300       return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
1301                                                       global.getSymName());
1302     }
1303     if (auto global =
1304             module.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) {
1305       // The global may have already been translated to LLVM.
1306       auto ty = mlir::LLVM::LLVMPointerType::get(global.getType());
1307       return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
1308                                                       global.getSymName());
1309     }
1310     // Type info derived types do not have type descriptors since they are the
1311     // types defining type descriptors.
1312     if (!this->options.ignoreMissingTypeDescriptors &&
1313         !fir::NameUniquer::belongsToModule(
1314             name, Fortran::semantics::typeInfoBuiltinModule))
1315       fir::emitFatalError(
1316           loc, "runtime derived type info descriptor was not generated");
1317     return rewriter.create<mlir::LLVM::NullOp>(
1318         loc, ::getVoidPtrType(box.getContext()));
1319   }
1320 
1321   template <typename BOX>
1322   std::tuple<fir::BoxType, mlir::Value, mlir::Value>
1323   consDescriptorPrefix(BOX box, mlir::ConversionPatternRewriter &rewriter,
1324                        unsigned rank, mlir::ValueRange lenParams) const {
1325     auto loc = box.getLoc();
1326     auto boxTy = box.getType().template dyn_cast<fir::BoxType>();
1327     auto convTy = this->lowerTy().convertBoxType(boxTy, rank);
1328     auto llvmBoxPtrTy = convTy.template cast<mlir::LLVM::LLVMPointerType>();
1329     auto llvmBoxTy = llvmBoxPtrTy.getElementType();
1330     mlir::Value descriptor =
1331         rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy);
1332 
1333     llvm::SmallVector<mlir::Value> typeparams = lenParams;
1334     if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) {
1335       if (!box.substr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
1336         typeparams.push_back(box.substr()[1]);
1337     }
1338 
1339     // Write each of the fields with the appropriate values
1340     auto [eleSize, cfiTy] =
1341         getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams);
1342     descriptor =
1343         insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize);
1344     descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox},
1345                              this->genI32Constant(loc, rewriter, CFI_VERSION));
1346     descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox},
1347                              this->genI32Constant(loc, rewriter, rank));
1348     descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy);
1349     descriptor =
1350         insertField(rewriter, loc, descriptor, {kAttributePosInBox},
1351                     this->genI32Constant(loc, rewriter, getCFIAttr(boxTy)));
1352     const bool hasAddendum = isDerivedType(boxTy);
1353     descriptor =
1354         insertField(rewriter, loc, descriptor, {kF18AddendumPosInBox},
1355                     this->genI32Constant(loc, rewriter, hasAddendum ? 1 : 0));
1356 
1357     if (hasAddendum) {
1358       auto isArray =
1359           fir::dyn_cast_ptrOrBoxEleTy(boxTy).template isa<fir::SequenceType>();
1360       unsigned typeDescFieldId = isArray ? kOptTypePtrPosInBox : kDimsPosInBox;
1361       auto typeDesc =
1362           getTypeDescriptor(box, rewriter, loc, unwrapIfDerived(boxTy));
1363       descriptor =
1364           insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc,
1365                       /*bitCast=*/true);
1366     }
1367 
1368     return {boxTy, descriptor, eleSize};
1369   }
1370 
1371   /// Compute the base address of a substring given the base address of a scalar
1372   /// string and the zero based string lower bound.
1373   mlir::Value shiftSubstringBase(mlir::ConversionPatternRewriter &rewriter,
1374                                  mlir::Location loc, mlir::Value base,
1375                                  mlir::Value lowerBound) const {
1376     llvm::SmallVector<mlir::Value> gepOperands;
1377     auto baseType =
1378         base.getType().cast<mlir::LLVM::LLVMPointerType>().getElementType();
1379     if (baseType.isa<mlir::LLVM::LLVMArrayType>()) {
1380       auto idxTy = this->lowerTy().indexType();
1381       mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
1382       gepOperands.push_back(zero);
1383     }
1384     gepOperands.push_back(lowerBound);
1385     return this->genGEP(loc, base.getType(), rewriter, base, gepOperands);
1386   }
1387 
1388   /// If the embox is not in a globalOp body, allocate storage for the box;
1389   /// store the value inside and return the generated alloca. Return the input
1390   /// value otherwise.
1391   mlir::Value
1392   placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter,
1393                                mlir::Location loc, mlir::Value boxValue) const {
1394     auto *thisBlock = rewriter.getInsertionBlock();
1395     if (thisBlock && mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp()))
1396       return boxValue;
1397     auto boxPtrTy = mlir::LLVM::LLVMPointerType::get(boxValue.getType());
1398     auto alloca = genAllocaWithType(loc, boxPtrTy, defaultAlign, rewriter);
1399     rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca);
1400     return alloca;
1401   }
1402 };
1403 
1404 /// Compute the extent of a triplet slice (lb:ub:step).
1405 static mlir::Value
1406 computeTripletExtent(mlir::ConversionPatternRewriter &rewriter,
1407                      mlir::Location loc, mlir::Value lb, mlir::Value ub,
1408                      mlir::Value step, mlir::Value zero, mlir::Type type) {
1409   mlir::Value extent = rewriter.create<mlir::LLVM::SubOp>(loc, type, ub, lb);
1410   extent = rewriter.create<mlir::LLVM::AddOp>(loc, type, extent, step);
1411   extent = rewriter.create<mlir::LLVM::SDivOp>(loc, type, extent, step);
1412   // If the resulting extent is negative (`ub-lb` and `step` have different
1413   // signs), zero must be returned instead.
1414   auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
1415       loc, mlir::LLVM::ICmpPredicate::sgt, extent, zero);
1416   return rewriter.create<mlir::LLVM::SelectOp>(loc, cmp, extent, zero);
1417 }
1418 
1419 /// Create a generic box on a memory reference. This conversions lowers the
1420 /// abstract box to the appropriate, initialized descriptor.
1421 struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> {
1422   using EmboxCommonConversion::EmboxCommonConversion;
1423 
1424   mlir::LogicalResult
1425   matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor,
1426                   mlir::ConversionPatternRewriter &rewriter) const override {
1427     assert(!embox.getShape() && "There should be no dims on this embox op");
1428     auto [boxTy, dest, eleSize] =
1429         consDescriptorPrefix(embox, rewriter, /*rank=*/0,
1430                              /*lenParams=*/adaptor.getOperands().drop_front(1));
1431     dest = insertBaseAddress(rewriter, embox.getLoc(), dest,
1432                              adaptor.getOperands()[0]);
1433     if (isDerivedTypeWithLenParams(boxTy)) {
1434       TODO(embox.getLoc(),
1435            "fir.embox codegen of derived with length parameters");
1436       return failure();
1437     }
1438     auto result = placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), dest);
1439     rewriter.replaceOp(embox, result);
1440     return success();
1441   }
1442 };
1443 
1444 /// Create a generic box on a memory reference.
1445 struct XEmboxOpConversion : public EmboxCommonConversion<fir::cg::XEmboxOp> {
1446   using EmboxCommonConversion::EmboxCommonConversion;
1447 
1448   mlir::LogicalResult
1449   matchAndRewrite(fir::cg::XEmboxOp xbox, OpAdaptor adaptor,
1450                   mlir::ConversionPatternRewriter &rewriter) const override {
1451     auto [boxTy, dest, eleSize] = consDescriptorPrefix(
1452         xbox, rewriter, xbox.getOutRank(),
1453         adaptor.getOperands().drop_front(xbox.lenParamOffset()));
1454     // Generate the triples in the dims field of the descriptor
1455     mlir::ValueRange operands = adaptor.getOperands();
1456     auto i64Ty = mlir::IntegerType::get(xbox.getContext(), 64);
1457     mlir::Value base = operands[0];
1458     assert(!xbox.shape().empty() && "must have a shape");
1459     unsigned shapeOffset = xbox.shapeOffset();
1460     bool hasShift = !xbox.shift().empty();
1461     unsigned shiftOffset = xbox.shiftOffset();
1462     bool hasSlice = !xbox.slice().empty();
1463     unsigned sliceOffset = xbox.sliceOffset();
1464     mlir::Location loc = xbox.getLoc();
1465     mlir::Value zero = genConstantIndex(loc, i64Ty, rewriter, 0);
1466     mlir::Value one = genConstantIndex(loc, i64Ty, rewriter, 1);
1467     mlir::Value prevDim = integerCast(loc, rewriter, i64Ty, eleSize);
1468     mlir::Value prevPtrOff = one;
1469     mlir::Type eleTy = boxTy.getEleTy();
1470     const unsigned rank = xbox.getRank();
1471     llvm::SmallVector<mlir::Value> gepArgs;
1472     unsigned constRows = 0;
1473     mlir::Value ptrOffset = zero;
1474     if (auto memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType()))
1475       if (auto seqTy = memEleTy.dyn_cast<fir::SequenceType>()) {
1476         mlir::Type seqEleTy = seqTy.getEleTy();
1477         // Adjust the element scaling factor if the element is a dependent type.
1478         if (fir::hasDynamicSize(seqEleTy)) {
1479           if (fir::isa_char(seqEleTy)) {
1480             assert(xbox.lenParams().size() == 1);
1481             prevPtrOff = integerCast(loc, rewriter, i64Ty,
1482                                      operands[xbox.lenParamOffset()]);
1483           } else if (seqEleTy.isa<fir::RecordType>()) {
1484             TODO(loc, "generate call to calculate size of PDT");
1485           } else {
1486             return rewriter.notifyMatchFailure(xbox, "unexpected dynamic type");
1487           }
1488         } else {
1489           constRows = seqTy.getConstantRows();
1490         }
1491       }
1492 
1493     bool hasSubcomp = !xbox.subcomponent().empty();
1494     if (!xbox.substr().empty())
1495       TODO(loc, "codegen of fir.embox with substring");
1496 
1497     mlir::Value stepExpr;
1498     if (hasSubcomp) {
1499       // We have a subcomponent. The step value needs to be the number of
1500       // bytes per element (which is a derived type).
1501       mlir::Type ty0 = base.getType();
1502       [[maybe_unused]] auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
1503       assert(ptrTy && "expected pointer type");
1504       mlir::Type memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType());
1505       assert(memEleTy && "expected fir pointer type");
1506       auto seqTy = memEleTy.dyn_cast<fir::SequenceType>();
1507       assert(seqTy && "expected sequence type");
1508       mlir::Type seqEleTy = seqTy.getEleTy();
1509       auto eleTy = mlir::LLVM::LLVMPointerType::get(convertType(seqEleTy));
1510       stepExpr = computeDerivedTypeSize(loc, eleTy, i64Ty, rewriter);
1511     }
1512 
1513     // Process the array subspace arguments (shape, shift, etc.), if any,
1514     // translating everything to values in the descriptor wherever the entity
1515     // has a dynamic array dimension.
1516     for (unsigned di = 0, descIdx = 0; di < rank; ++di) {
1517       mlir::Value extent = operands[shapeOffset];
1518       mlir::Value outerExtent = extent;
1519       bool skipNext = false;
1520       if (hasSlice) {
1521         mlir::Value off = operands[sliceOffset];
1522         mlir::Value adj = one;
1523         if (hasShift)
1524           adj = operands[shiftOffset];
1525         auto ao = rewriter.create<mlir::LLVM::SubOp>(loc, i64Ty, off, adj);
1526         if (constRows > 0) {
1527           gepArgs.push_back(ao);
1528         } else {
1529           auto dimOff =
1530               rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, ao, prevPtrOff);
1531           ptrOffset =
1532               rewriter.create<mlir::LLVM::AddOp>(loc, i64Ty, dimOff, ptrOffset);
1533         }
1534         if (mlir::isa_and_nonnull<fir::UndefOp>(
1535                 xbox.slice()[3 * di + 1].getDefiningOp())) {
1536           // This dimension contains a scalar expression in the array slice op.
1537           // The dimension is loop invariant, will be dropped, and will not
1538           // appear in the descriptor.
1539           skipNext = true;
1540         }
1541       }
1542       if (!skipNext) {
1543         if (hasSlice)
1544           extent = computeTripletExtent(rewriter, loc, operands[sliceOffset],
1545                                         operands[sliceOffset + 1],
1546                                         operands[sliceOffset + 2], zero, i64Ty);
1547         // store lower bound (normally 0) for BIND(C) interoperability.
1548         mlir::Value lb = zero;
1549         const bool isaPointerOrAllocatable =
1550             eleTy.isa<fir::PointerType>() || eleTy.isa<fir::HeapType>();
1551         // Lower bound is defaults to 1 for POINTER, ALLOCATABLE, and
1552         // denormalized descriptors.
1553         if (isaPointerOrAllocatable || !normalizedLowerBound(xbox)) {
1554           lb = one;
1555           // If there is a shifted origin, and no fir.slice, and this is not
1556           // a normalized descriptor then use the value from the shift op as
1557           // the lower bound.
1558           if (hasShift && !(hasSlice || hasSubcomp)) {
1559             lb = operands[shiftOffset];
1560             auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
1561                 loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
1562             lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one,
1563                                                        lb);
1564           }
1565         }
1566         dest = insertLowerBound(rewriter, loc, dest, descIdx, lb);
1567 
1568         dest = insertExtent(rewriter, loc, dest, descIdx, extent);
1569 
1570         // store step (scaled by shaped extent)
1571 
1572         mlir::Value step = hasSubcomp ? stepExpr : prevDim;
1573         if (hasSlice)
1574           step = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, step,
1575                                                     operands[sliceOffset + 2]);
1576         dest = insertStride(rewriter, loc, dest, descIdx, step);
1577         ++descIdx;
1578       }
1579 
1580       // compute the stride and offset for the next natural dimension
1581       prevDim =
1582           rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevDim, outerExtent);
1583       if (constRows == 0)
1584         prevPtrOff = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevPtrOff,
1585                                                         outerExtent);
1586       else
1587         --constRows;
1588 
1589       // increment iterators
1590       ++shapeOffset;
1591       if (hasShift)
1592         ++shiftOffset;
1593       if (hasSlice)
1594         sliceOffset += 3;
1595     }
1596     if (hasSlice || hasSubcomp || !xbox.substr().empty()) {
1597       llvm::SmallVector<mlir::Value> args = {ptrOffset};
1598       args.append(gepArgs.rbegin(), gepArgs.rend());
1599       if (hasSubcomp) {
1600         // For each field in the path add the offset to base via the args list.
1601         // In the most general case, some offsets must be computed since
1602         // they are not be known until runtime.
1603         if (fir::hasDynamicSize(fir::unwrapSequenceType(
1604                 fir::unwrapPassByRefType(xbox.memref().getType()))))
1605           TODO(loc, "fir.embox codegen dynamic size component in derived type");
1606         args.append(operands.begin() + xbox.subcomponentOffset(),
1607                     operands.begin() + xbox.subcomponentOffset() +
1608                         xbox.subcomponent().size());
1609       }
1610       base =
1611           rewriter.create<mlir::LLVM::GEPOp>(loc, base.getType(), base, args);
1612       if (!xbox.substr().empty())
1613         base = shiftSubstringBase(rewriter, loc, base,
1614                                   operands[xbox.substrOffset()]);
1615     }
1616     dest = insertBaseAddress(rewriter, loc, dest, base);
1617     if (isDerivedTypeWithLenParams(boxTy))
1618       TODO(loc, "fir.embox codegen of derived with length parameters");
1619 
1620     mlir::Value result = placeInMemoryIfNotGlobalInit(rewriter, loc, dest);
1621     rewriter.replaceOp(xbox, result);
1622     return success();
1623   }
1624 
1625   /// Return true if `xbox` has a normalized lower bounds attribute. A box value
1626   /// that is neither a POINTER nor an ALLOCATABLE should be normalized to a
1627   /// zero origin lower bound for interoperability with BIND(C).
1628   inline static bool normalizedLowerBound(fir::cg::XEmboxOp xbox) {
1629     return xbox->hasAttr(fir::getNormalizedLowerBoundAttrName());
1630   }
1631 };
1632 
1633 /// Create a new box given a box reference.
1634 struct XReboxOpConversion : public EmboxCommonConversion<fir::cg::XReboxOp> {
1635   using EmboxCommonConversion::EmboxCommonConversion;
1636 
1637   mlir::LogicalResult
1638   matchAndRewrite(fir::cg::XReboxOp rebox, OpAdaptor adaptor,
1639                   mlir::ConversionPatternRewriter &rewriter) const override {
1640     mlir::Location loc = rebox.getLoc();
1641     mlir::Type idxTy = lowerTy().indexType();
1642     mlir::Value loweredBox = adaptor.getOperands()[0];
1643     mlir::ValueRange operands = adaptor.getOperands();
1644 
1645     // Create new descriptor and fill its non-shape related data.
1646     llvm::SmallVector<mlir::Value, 2> lenParams;
1647     mlir::Type inputEleTy = getInputEleTy(rebox);
1648     if (auto charTy = inputEleTy.dyn_cast<fir::CharacterType>()) {
1649       mlir::Value len =
1650           loadElementSizeFromBox(loc, idxTy, loweredBox, rewriter);
1651       if (charTy.getFKind() != 1) {
1652         mlir::Value width =
1653             genConstantIndex(loc, idxTy, rewriter, charTy.getFKind());
1654         len = rewriter.create<mlir::LLVM::SDivOp>(loc, idxTy, len, width);
1655       }
1656       lenParams.emplace_back(len);
1657     } else if (auto recTy = inputEleTy.dyn_cast<fir::RecordType>()) {
1658       if (recTy.getNumLenParams() != 0)
1659         TODO(loc, "reboxing descriptor of derived type with length parameters");
1660     }
1661     auto [boxTy, dest, eleSize] =
1662         consDescriptorPrefix(rebox, rewriter, rebox.getOutRank(), lenParams);
1663 
1664     // Read input extents, strides, and base address
1665     llvm::SmallVector<mlir::Value> inputExtents;
1666     llvm::SmallVector<mlir::Value> inputStrides;
1667     const unsigned inputRank = rebox.getRank();
1668     for (unsigned i = 0; i < inputRank; ++i) {
1669       mlir::Value dim = genConstantIndex(loc, idxTy, rewriter, i);
1670       SmallVector<mlir::Value, 3> dimInfo =
1671           getDimsFromBox(loc, {idxTy, idxTy, idxTy}, loweredBox, dim, rewriter);
1672       inputExtents.emplace_back(dimInfo[1]);
1673       inputStrides.emplace_back(dimInfo[2]);
1674     }
1675 
1676     mlir::Type baseTy = getBaseAddrTypeFromBox(loweredBox.getType());
1677     mlir::Value baseAddr =
1678         loadBaseAddrFromBox(loc, baseTy, loweredBox, rewriter);
1679 
1680     if (!rebox.slice().empty() || !rebox.subcomponent().empty())
1681       return sliceBox(rebox, dest, baseAddr, inputExtents, inputStrides,
1682                       operands, rewriter);
1683     return reshapeBox(rebox, dest, baseAddr, inputExtents, inputStrides,
1684                       operands, rewriter);
1685   }
1686 
1687 private:
1688   /// Write resulting shape and base address in descriptor, and replace rebox
1689   /// op.
1690   mlir::LogicalResult
1691   finalizeRebox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
1692                 mlir::ValueRange lbounds, mlir::ValueRange extents,
1693                 mlir::ValueRange strides,
1694                 mlir::ConversionPatternRewriter &rewriter) const {
1695     mlir::Location loc = rebox.getLoc();
1696     mlir::Value zero =
1697         genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
1698     mlir::Value one = genConstantIndex(loc, lowerTy().indexType(), rewriter, 1);
1699     for (auto iter : llvm::enumerate(llvm::zip(extents, strides))) {
1700       mlir::Value extent = std::get<0>(iter.value());
1701       unsigned dim = iter.index();
1702       mlir::Value lb = one;
1703       if (!lbounds.empty()) {
1704         lb = lbounds[dim];
1705         auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
1706             loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
1707         lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one, lb);
1708       };
1709       dest = insertLowerBound(rewriter, loc, dest, dim, lb);
1710       dest = insertExtent(rewriter, loc, dest, dim, extent);
1711       dest = insertStride(rewriter, loc, dest, dim, std::get<1>(iter.value()));
1712     }
1713     dest = insertBaseAddress(rewriter, loc, dest, base);
1714     mlir::Value result =
1715         placeInMemoryIfNotGlobalInit(rewriter, rebox.getLoc(), dest);
1716     rewriter.replaceOp(rebox, result);
1717     return success();
1718   }
1719 
1720   // Apply slice given the base address, extents and strides of the input box.
1721   mlir::LogicalResult
1722   sliceBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
1723            mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
1724            mlir::ValueRange operands,
1725            mlir::ConversionPatternRewriter &rewriter) const {
1726     mlir::Location loc = rebox.getLoc();
1727     mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
1728     mlir::Type idxTy = lowerTy().indexType();
1729     mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
1730     // Apply subcomponent and substring shift on base address.
1731     if (!rebox.subcomponent().empty() || !rebox.substr().empty()) {
1732       // Cast to inputEleTy* so that a GEP can be used.
1733       mlir::Type inputEleTy = getInputEleTy(rebox);
1734       auto llvmElePtrTy =
1735           mlir::LLVM::LLVMPointerType::get(convertType(inputEleTy));
1736       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, llvmElePtrTy, base);
1737 
1738       if (!rebox.subcomponent().empty()) {
1739         llvm::SmallVector<mlir::Value> gepOperands = {zero};
1740         for (unsigned i = 0; i < rebox.subcomponent().size(); ++i)
1741           gepOperands.push_back(operands[rebox.subcomponentOffset() + i]);
1742         base = genGEP(loc, llvmElePtrTy, rewriter, base, gepOperands);
1743       }
1744       if (!rebox.substr().empty())
1745         base = shiftSubstringBase(rewriter, loc, base,
1746                                   operands[rebox.substrOffset()]);
1747     }
1748 
1749     if (rebox.slice().empty())
1750       // The array section is of the form array[%component][substring], keep
1751       // the input array extents and strides.
1752       return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
1753                            inputExtents, inputStrides, rewriter);
1754 
1755     // Strides from the fir.box are in bytes.
1756     base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
1757 
1758     // The slice is of the form array(i:j:k)[%component]. Compute new extents
1759     // and strides.
1760     llvm::SmallVector<mlir::Value> slicedExtents;
1761     llvm::SmallVector<mlir::Value> slicedStrides;
1762     mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
1763     const bool sliceHasOrigins = !rebox.shift().empty();
1764     unsigned sliceOps = rebox.sliceOffset();
1765     unsigned shiftOps = rebox.shiftOffset();
1766     auto strideOps = inputStrides.begin();
1767     const unsigned inputRank = inputStrides.size();
1768     for (unsigned i = 0; i < inputRank;
1769          ++i, ++strideOps, ++shiftOps, sliceOps += 3) {
1770       mlir::Value sliceLb =
1771           integerCast(loc, rewriter, idxTy, operands[sliceOps]);
1772       mlir::Value inputStride = *strideOps; // already idxTy
1773       // Apply origin shift: base += (lb-shift)*input_stride
1774       mlir::Value sliceOrigin =
1775           sliceHasOrigins
1776               ? integerCast(loc, rewriter, idxTy, operands[shiftOps])
1777               : one;
1778       mlir::Value diff =
1779           rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, sliceOrigin);
1780       mlir::Value offset =
1781           rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, inputStride);
1782       base = genGEP(loc, voidPtrTy, rewriter, base, offset);
1783       // Apply upper bound and step if this is a triplet. Otherwise, the
1784       // dimension is dropped and no extents/strides are computed.
1785       mlir::Value upper = operands[sliceOps + 1];
1786       const bool isTripletSlice =
1787           !mlir::isa_and_nonnull<mlir::LLVM::UndefOp>(upper.getDefiningOp());
1788       if (isTripletSlice) {
1789         mlir::Value step =
1790             integerCast(loc, rewriter, idxTy, operands[sliceOps + 2]);
1791         // extent = ub-lb+step/step
1792         mlir::Value sliceUb = integerCast(loc, rewriter, idxTy, upper);
1793         mlir::Value extent = computeTripletExtent(rewriter, loc, sliceLb,
1794                                                   sliceUb, step, zero, idxTy);
1795         slicedExtents.emplace_back(extent);
1796         // stride = step*input_stride
1797         mlir::Value stride =
1798             rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, step, inputStride);
1799         slicedStrides.emplace_back(stride);
1800       }
1801     }
1802     return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
1803                          slicedExtents, slicedStrides, rewriter);
1804   }
1805 
1806   /// Apply a new shape to the data described by a box given the base address,
1807   /// extents and strides of the box.
1808   mlir::LogicalResult
1809   reshapeBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
1810              mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
1811              mlir::ValueRange operands,
1812              mlir::ConversionPatternRewriter &rewriter) const {
1813     mlir::ValueRange reboxShifts{operands.begin() + rebox.shiftOffset(),
1814                                  operands.begin() + rebox.shiftOffset() +
1815                                      rebox.shift().size()};
1816     if (rebox.shape().empty()) {
1817       // Only setting new lower bounds.
1818       return finalizeRebox(rebox, dest, base, reboxShifts, inputExtents,
1819                            inputStrides, rewriter);
1820     }
1821 
1822     mlir::Location loc = rebox.getLoc();
1823     // Strides from the fir.box are in bytes.
1824     mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
1825     base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
1826 
1827     llvm::SmallVector<mlir::Value> newStrides;
1828     llvm::SmallVector<mlir::Value> newExtents;
1829     mlir::Type idxTy = lowerTy().indexType();
1830     // First stride from input box is kept. The rest is assumed contiguous
1831     // (it is not possible to reshape otherwise). If the input is scalar,
1832     // which may be OK if all new extents are ones, the stride does not
1833     // matter, use one.
1834     mlir::Value stride = inputStrides.empty()
1835                              ? genConstantIndex(loc, idxTy, rewriter, 1)
1836                              : inputStrides[0];
1837     for (unsigned i = 0; i < rebox.shape().size(); ++i) {
1838       mlir::Value rawExtent = operands[rebox.shapeOffset() + i];
1839       mlir::Value extent = integerCast(loc, rewriter, idxTy, rawExtent);
1840       newExtents.emplace_back(extent);
1841       newStrides.emplace_back(stride);
1842       // nextStride = extent * stride;
1843       stride = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, extent, stride);
1844     }
1845     return finalizeRebox(rebox, dest, base, reboxShifts, newExtents, newStrides,
1846                          rewriter);
1847   }
1848 
1849   /// Return scalar element type of the input box.
1850   static mlir::Type getInputEleTy(fir::cg::XReboxOp rebox) {
1851     auto ty = fir::dyn_cast_ptrOrBoxEleTy(rebox.box().getType());
1852     if (auto seqTy = ty.dyn_cast<fir::SequenceType>())
1853       return seqTy.getEleTy();
1854     return ty;
1855   }
1856 };
1857 
1858 /// Lower `fir.emboxproc` operation. Creates a procedure box.
1859 /// TODO: Part of supporting Fortran 2003 procedure pointers.
1860 struct EmboxProcOpConversion : public FIROpConversion<fir::EmboxProcOp> {
1861   using FIROpConversion::FIROpConversion;
1862 
1863   mlir::LogicalResult
1864   matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor,
1865                   mlir::ConversionPatternRewriter &rewriter) const override {
1866     TODO(emboxproc.getLoc(), "fir.emboxproc codegen");
1867     return failure();
1868   }
1869 };
1870 
1871 // Code shared between insert_value and extract_value Ops.
1872 struct ValueOpCommon {
1873   // Translate the arguments pertaining to any multidimensional array to
1874   // row-major order for LLVM-IR.
1875   static void toRowMajor(SmallVectorImpl<mlir::Attribute> &attrs,
1876                          mlir::Type ty) {
1877     assert(ty && "type is null");
1878     const auto end = attrs.size();
1879     for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
1880       if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
1881         const auto dim = getDimension(seq);
1882         if (dim > 1) {
1883           auto ub = std::min(i + dim, end);
1884           std::reverse(attrs.begin() + i, attrs.begin() + ub);
1885           i += dim - 1;
1886         }
1887         ty = getArrayElementType(seq);
1888       } else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) {
1889         ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()];
1890       } else {
1891         llvm_unreachable("index into invalid type");
1892       }
1893     }
1894   }
1895 
1896   static llvm::SmallVector<mlir::Attribute>
1897   collectIndices(mlir::ConversionPatternRewriter &rewriter,
1898                  mlir::ArrayAttr arrAttr) {
1899     llvm::SmallVector<mlir::Attribute> attrs;
1900     for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
1901       if (i->isa<mlir::IntegerAttr>()) {
1902         attrs.push_back(*i);
1903       } else {
1904         auto fieldName = i->cast<mlir::StringAttr>().getValue();
1905         ++i;
1906         auto ty = i->cast<mlir::TypeAttr>().getValue();
1907         auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName);
1908         attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index));
1909       }
1910     }
1911     return attrs;
1912   }
1913 
1914 private:
1915   static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
1916     unsigned result = 1;
1917     for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>();
1918          eleTy;
1919          eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>())
1920       ++result;
1921     return result;
1922   }
1923 
1924   static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
1925     auto eleTy = ty.getElementType();
1926     while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
1927       eleTy = arrTy.getElementType();
1928     return eleTy;
1929   }
1930 };
1931 
1932 namespace {
1933 /// Extract a subobject value from an ssa-value of aggregate type
1934 struct ExtractValueOpConversion
1935     : public FIROpAndTypeConversion<fir::ExtractValueOp>,
1936       public ValueOpCommon {
1937   using FIROpAndTypeConversion::FIROpAndTypeConversion;
1938 
1939   mlir::LogicalResult
1940   doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
1941             mlir::ConversionPatternRewriter &rewriter) const override {
1942     auto attrs = collectIndices(rewriter, extractVal.getCoor());
1943     toRowMajor(attrs, adaptor.getOperands()[0].getType());
1944     auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs);
1945     rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
1946         extractVal, ty, adaptor.getOperands()[0], position);
1947     return success();
1948   }
1949 };
1950 
1951 /// InsertValue is the generalized instruction for the composition of new
1952 /// aggregate type values.
1953 struct InsertValueOpConversion
1954     : public FIROpAndTypeConversion<fir::InsertValueOp>,
1955       public ValueOpCommon {
1956   using FIROpAndTypeConversion::FIROpAndTypeConversion;
1957 
1958   mlir::LogicalResult
1959   doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor,
1960             mlir::ConversionPatternRewriter &rewriter) const override {
1961     auto attrs = collectIndices(rewriter, insertVal.getCoor());
1962     toRowMajor(attrs, adaptor.getOperands()[0].getType());
1963     auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs);
1964     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
1965         insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1],
1966         position);
1967     return success();
1968   }
1969 };
1970 
1971 /// InsertOnRange inserts a value into a sequence over a range of offsets.
1972 struct InsertOnRangeOpConversion
1973     : public FIROpAndTypeConversion<fir::InsertOnRangeOp> {
1974   using FIROpAndTypeConversion::FIROpAndTypeConversion;
1975 
1976   // Increments an array of subscripts in a row major fasion.
1977   void incrementSubscripts(const SmallVector<uint64_t> &dims,
1978                            SmallVector<uint64_t> &subscripts) const {
1979     for (size_t i = dims.size(); i > 0; --i) {
1980       if (++subscripts[i - 1] < dims[i - 1]) {
1981         return;
1982       }
1983       subscripts[i - 1] = 0;
1984     }
1985   }
1986 
1987   mlir::LogicalResult
1988   doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
1989             mlir::ConversionPatternRewriter &rewriter) const override {
1990 
1991     llvm::SmallVector<uint64_t> dims;
1992     auto type = adaptor.getOperands()[0].getType();
1993 
1994     // Iteratively extract the array dimensions from the type.
1995     while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
1996       dims.push_back(t.getNumElements());
1997       type = t.getElementType();
1998     }
1999 
2000     SmallVector<uint64_t> lBounds;
2001     SmallVector<uint64_t> uBounds;
2002 
2003     // Unzip the upper and lower bound and convert to a row major format.
2004     mlir::DenseIntElementsAttr coor = range.getCoor();
2005     auto reversedCoor = llvm::reverse(coor.getValues<int64_t>());
2006     for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) {
2007       uBounds.push_back(*i++);
2008       lBounds.push_back(*i);
2009     }
2010 
2011     auto &subscripts = lBounds;
2012     auto loc = range.getLoc();
2013     mlir::Value lastOp = adaptor.getOperands()[0];
2014     mlir::Value insertVal = adaptor.getOperands()[1];
2015 
2016     auto i64Ty = rewriter.getI64Type();
2017     while (subscripts != uBounds) {
2018       // Convert uint64_t's to Attribute's.
2019       SmallVector<mlir::Attribute> subscriptAttrs;
2020       for (const auto &subscript : subscripts)
2021         subscriptAttrs.push_back(IntegerAttr::get(i64Ty, subscript));
2022       lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
2023           loc, ty, lastOp, insertVal,
2024           ArrayAttr::get(range.getContext(), subscriptAttrs));
2025 
2026       incrementSubscripts(dims, subscripts);
2027     }
2028 
2029     // Convert uint64_t's to Attribute's.
2030     SmallVector<mlir::Attribute> subscriptAttrs;
2031     for (const auto &subscript : subscripts)
2032       subscriptAttrs.push_back(
2033           IntegerAttr::get(rewriter.getI64Type(), subscript));
2034     mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs);
2035 
2036     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
2037         range, ty, lastOp, insertVal,
2038         ArrayAttr::get(range.getContext(), arrayRef));
2039 
2040     return success();
2041   }
2042 };
2043 } // namespace
2044 
2045 namespace {
2046 /// XArrayCoor is the address arithmetic on a dynamically shaped, sliced,
2047 /// shifted etc. array.
2048 /// (See the static restriction on coordinate_of.) array_coor determines the
2049 /// coordinate (location) of a specific element.
2050 struct XArrayCoorOpConversion
2051     : public FIROpAndTypeConversion<fir::cg::XArrayCoorOp> {
2052   using FIROpAndTypeConversion::FIROpAndTypeConversion;
2053 
2054   mlir::LogicalResult
2055   doRewrite(fir::cg::XArrayCoorOp coor, mlir::Type ty, OpAdaptor adaptor,
2056             mlir::ConversionPatternRewriter &rewriter) const override {
2057     auto loc = coor.getLoc();
2058     mlir::ValueRange operands = adaptor.getOperands();
2059     unsigned rank = coor.getRank();
2060     assert(coor.indices().size() == rank);
2061     assert(coor.shape().empty() || coor.shape().size() == rank);
2062     assert(coor.shift().empty() || coor.shift().size() == rank);
2063     assert(coor.slice().empty() || coor.slice().size() == 3 * rank);
2064     mlir::Type idxTy = lowerTy().indexType();
2065     mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
2066     mlir::Value prevExt = one;
2067     mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
2068     mlir::Value offset = zero;
2069     const bool isShifted = !coor.shift().empty();
2070     const bool isSliced = !coor.slice().empty();
2071     const bool baseIsBoxed = coor.memref().getType().isa<fir::BoxType>();
2072 
2073     auto indexOps = coor.indices().begin();
2074     auto shapeOps = coor.shape().begin();
2075     auto shiftOps = coor.shift().begin();
2076     auto sliceOps = coor.slice().begin();
2077     // For each dimension of the array, generate the offset calculation.
2078     for (unsigned i = 0; i < rank;
2079          ++i, ++indexOps, ++shapeOps, ++shiftOps, sliceOps += 3) {
2080       mlir::Value index =
2081           integerCast(loc, rewriter, idxTy, operands[coor.indicesOffset() + i]);
2082       mlir::Value lb = isShifted ? integerCast(loc, rewriter, idxTy,
2083                                                operands[coor.shiftOffset() + i])
2084                                  : one;
2085       mlir::Value step = one;
2086       bool normalSlice = isSliced;
2087       // Compute zero based index in dimension i of the element, applying
2088       // potential triplets and lower bounds.
2089       if (isSliced) {
2090         mlir::Value ub = *(sliceOps + 1);
2091         normalSlice = !mlir::isa_and_nonnull<fir::UndefOp>(ub.getDefiningOp());
2092         if (normalSlice)
2093           step = integerCast(loc, rewriter, idxTy, *(sliceOps + 2));
2094       }
2095       auto idx = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, index, lb);
2096       mlir::Value diff =
2097           rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, idx, step);
2098       if (normalSlice) {
2099         mlir::Value sliceLb =
2100             integerCast(loc, rewriter, idxTy, operands[coor.sliceOffset() + i]);
2101         auto adj = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, lb);
2102         diff = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, diff, adj);
2103       }
2104       // Update the offset given the stride and the zero based index `diff`
2105       // that was just computed.
2106       if (baseIsBoxed) {
2107         // Use stride in bytes from the descriptor.
2108         mlir::Value stride =
2109             loadStrideFromBox(loc, adaptor.getOperands()[0], i, rewriter);
2110         auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, stride);
2111         offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
2112       } else {
2113         // Use stride computed at last iteration.
2114         auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, prevExt);
2115         offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
2116         // Compute next stride assuming contiguity of the base array
2117         // (in element number).
2118         auto nextExt =
2119             integerCast(loc, rewriter, idxTy, operands[coor.shapeOffset() + i]);
2120         prevExt =
2121             rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, prevExt, nextExt);
2122       }
2123     }
2124 
2125     // Add computed offset to the base address.
2126     if (baseIsBoxed) {
2127       // Working with byte offsets. The base address is read from the fir.box.
2128       // and need to be casted to i8* to do the pointer arithmetic.
2129       mlir::Type baseTy =
2130           getBaseAddrTypeFromBox(adaptor.getOperands()[0].getType());
2131       mlir::Value base =
2132           loadBaseAddrFromBox(loc, baseTy, adaptor.getOperands()[0], rewriter);
2133       mlir::Type voidPtrTy = getVoidPtrType();
2134       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
2135       llvm::SmallVector<mlir::Value> args{offset};
2136       auto addr =
2137           rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy, base, args);
2138       if (coor.subcomponent().empty()) {
2139         rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, baseTy, addr);
2140         return success();
2141       }
2142       auto casted = rewriter.create<mlir::LLVM::BitcastOp>(loc, baseTy, addr);
2143       args.clear();
2144       args.push_back(zero);
2145       if (!coor.lenParams().empty()) {
2146         // If type parameters are present, then we don't want to use a GEPOp
2147         // as below, as the LLVM struct type cannot be statically defined.
2148         TODO(loc, "derived type with type parameters");
2149       }
2150       // TODO: array offset subcomponents must be converted to LLVM's
2151       // row-major layout here.
2152       for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
2153         args.push_back(operands[i]);
2154       rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, baseTy, casted,
2155                                                      args);
2156       return success();
2157     }
2158 
2159     // The array was not boxed, so it must be contiguous. offset is therefore an
2160     // element offset and the base type is kept in the GEP unless the element
2161     // type size is itself dynamic.
2162     mlir::Value base;
2163     if (coor.subcomponent().empty()) {
2164       // No subcomponent.
2165       if (!coor.lenParams().empty()) {
2166         // Type parameters. Adjust element size explicitly.
2167         auto eleTy = fir::dyn_cast_ptrEleTy(coor.getType());
2168         assert(eleTy && "result must be a reference-like type");
2169         if (fir::characterWithDynamicLen(eleTy)) {
2170           assert(coor.lenParams().size() == 1);
2171           auto bitsInChar = lowerTy().getKindMap().getCharacterBitsize(
2172               eleTy.cast<fir::CharacterType>().getFKind());
2173           auto scaling = genConstantIndex(loc, idxTy, rewriter, bitsInChar / 8);
2174           auto scaledBySize =
2175               rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, offset, scaling);
2176           auto length =
2177               integerCast(loc, rewriter, idxTy,
2178                           adaptor.getOperands()[coor.lenParamsOffset()]);
2179           offset = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, scaledBySize,
2180                                                       length);
2181         } else {
2182           TODO(loc, "compute size of derived type with type parameters");
2183         }
2184       }
2185       // Cast the base address to a pointer to T.
2186       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, ty,
2187                                                     adaptor.getOperands()[0]);
2188     } else {
2189       // Operand #0 must have a pointer type. For subcomponent slicing, we
2190       // want to cast away the array type and have a plain struct type.
2191       mlir::Type ty0 = adaptor.getOperands()[0].getType();
2192       auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
2193       assert(ptrTy && "expected pointer type");
2194       mlir::Type eleTy = ptrTy.getElementType();
2195       while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
2196         eleTy = arrTy.getElementType();
2197       auto newTy = mlir::LLVM::LLVMPointerType::get(eleTy);
2198       base = rewriter.create<mlir::LLVM::BitcastOp>(loc, newTy,
2199                                                     adaptor.getOperands()[0]);
2200     }
2201     SmallVector<mlir::Value> args = {offset};
2202     for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
2203       args.push_back(operands[i]);
2204     rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, ty, base, args);
2205     return success();
2206   }
2207 };
2208 } // namespace
2209 
2210 /// Convert to (memory) reference to a reference to a subobject.
2211 /// The coordinate_of op is a Swiss army knife operation that can be used on
2212 /// (memory) references to records, arrays, complex, etc. as well as boxes.
2213 /// With unboxed arrays, there is the restriction that the array have a static
2214 /// shape in all but the last column.
2215 struct CoordinateOpConversion
2216     : public FIROpAndTypeConversion<fir::CoordinateOp> {
2217   using FIROpAndTypeConversion::FIROpAndTypeConversion;
2218 
2219   mlir::LogicalResult
2220   doRewrite(fir::CoordinateOp coor, mlir::Type ty, OpAdaptor adaptor,
2221             mlir::ConversionPatternRewriter &rewriter) const override {
2222     mlir::ValueRange operands = adaptor.getOperands();
2223 
2224     mlir::Location loc = coor.getLoc();
2225     mlir::Value base = operands[0];
2226     mlir::Type baseObjectTy = coor.getBaseType();
2227     mlir::Type objectTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
2228     assert(objectTy && "fir.coordinate_of expects a reference type");
2229 
2230     // Complex type - basically, extract the real or imaginary part
2231     if (fir::isa_complex(objectTy)) {
2232       mlir::LLVM::ConstantOp c0 =
2233           genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
2234       llvm::SmallVector<mlir::Value> offs = {c0, operands[1]};
2235       mlir::Value gep = genGEP(loc, ty, rewriter, base, offs);
2236       rewriter.replaceOp(coor, gep);
2237       return success();
2238     }
2239 
2240     // Boxed type - get the base pointer from the box
2241     if (baseObjectTy.dyn_cast<fir::BoxType>())
2242       return doRewriteBox(coor, ty, operands, loc, rewriter);
2243 
2244     // Reference, pointer or a heap type
2245     if (baseObjectTy.isa<fir::ReferenceType, fir::PointerType, fir::HeapType>())
2246       return doRewriteRefOrPtr(coor, ty, operands, loc, rewriter);
2247 
2248     return rewriter.notifyMatchFailure(
2249         coor, "fir.coordinate_of base operand has unsupported type");
2250   }
2251 
2252   static unsigned getFieldNumber(fir::RecordType ty, mlir::Value op) {
2253     return fir::hasDynamicSize(ty)
2254                ? op.getDefiningOp()
2255                      ->getAttrOfType<mlir::IntegerAttr>("field")
2256                      .getInt()
2257                : getIntValue(op);
2258   }
2259 
2260   static int64_t getIntValue(mlir::Value val) {
2261     assert(val && val.dyn_cast<mlir::OpResult>() && "must not be null value");
2262     mlir::Operation *defop = val.getDefiningOp();
2263 
2264     if (auto constOp = dyn_cast<mlir::arith::ConstantIntOp>(defop))
2265       return constOp.value();
2266     if (auto llConstOp = dyn_cast<mlir::LLVM::ConstantOp>(defop))
2267       if (auto attr = llConstOp.getValue().dyn_cast<mlir::IntegerAttr>())
2268         return attr.getValue().getSExtValue();
2269     fir::emitFatalError(val.getLoc(), "must be a constant");
2270   }
2271 
2272   static bool hasSubDimensions(mlir::Type type) {
2273     return type.isa<fir::SequenceType, fir::RecordType, mlir::TupleType>();
2274   }
2275 
2276   /// Check whether this form of `!fir.coordinate_of` is supported. These
2277   /// additional checks are required, because we are not yet able to convert
2278   /// all valid forms of `!fir.coordinate_of`.
2279   /// TODO: Either implement the unsupported cases or extend the verifier
2280   /// in FIROps.cpp instead.
2281   static bool supportedCoordinate(mlir::Type type, mlir::ValueRange coors) {
2282     const std::size_t numOfCoors = coors.size();
2283     std::size_t i = 0;
2284     bool subEle = false;
2285     bool ptrEle = false;
2286     for (; i < numOfCoors; ++i) {
2287       mlir::Value nxtOpnd = coors[i];
2288       if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
2289         subEle = true;
2290         i += arrTy.getDimension() - 1;
2291         type = arrTy.getEleTy();
2292       } else if (auto recTy = type.dyn_cast<fir::RecordType>()) {
2293         subEle = true;
2294         type = recTy.getType(getFieldNumber(recTy, nxtOpnd));
2295       } else if (auto tupTy = type.dyn_cast<mlir::TupleType>()) {
2296         subEle = true;
2297         type = tupTy.getType(getIntValue(nxtOpnd));
2298       } else {
2299         ptrEle = true;
2300       }
2301     }
2302     if (ptrEle)
2303       return (!subEle) && (numOfCoors == 1);
2304     return subEle && (i >= numOfCoors);
2305   }
2306 
2307   /// Walk the abstract memory layout and determine if the path traverses any
2308   /// array types with unknown shape. Return true iff all the array types have a
2309   /// constant shape along the path.
2310   static bool arraysHaveKnownShape(mlir::Type type, mlir::ValueRange coors) {
2311     for (std::size_t i = 0, sz = coors.size(); i < sz; ++i) {
2312       mlir::Value nxtOpnd = coors[i];
2313       if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
2314         if (fir::sequenceWithNonConstantShape(arrTy))
2315           return false;
2316         i += arrTy.getDimension() - 1;
2317         type = arrTy.getEleTy();
2318       } else if (auto strTy = type.dyn_cast<fir::RecordType>()) {
2319         type = strTy.getType(getFieldNumber(strTy, nxtOpnd));
2320       } else if (auto strTy = type.dyn_cast<mlir::TupleType>()) {
2321         type = strTy.getType(getIntValue(nxtOpnd));
2322       } else {
2323         return true;
2324       }
2325     }
2326     return true;
2327   }
2328 
2329 private:
2330   mlir::LogicalResult
2331   doRewriteBox(fir::CoordinateOp coor, mlir::Type ty, mlir::ValueRange operands,
2332                mlir::Location loc,
2333                mlir::ConversionPatternRewriter &rewriter) const {
2334     mlir::Type boxObjTy = coor.getBaseType();
2335     assert(boxObjTy.dyn_cast<fir::BoxType>() && "This is not a `fir.box`");
2336 
2337     mlir::Value boxBaseAddr = operands[0];
2338 
2339     // 1. SPECIAL CASE (uses `fir.len_param_index`):
2340     //   %box = ... : !fir.box<!fir.type<derived{len1:i32}>>
2341     //   %lenp = fir.len_param_index len1, !fir.type<derived{len1:i32}>
2342     //   %addr = coordinate_of %box, %lenp
2343     if (coor.getNumOperands() == 2) {
2344       mlir::Operation *coordinateDef =
2345           (*coor.getCoor().begin()).getDefiningOp();
2346       if (isa_and_nonnull<fir::LenParamIndexOp>(coordinateDef))
2347         TODO(loc,
2348              "fir.coordinate_of - fir.len_param_index is not supported yet");
2349     }
2350 
2351     // 2. GENERAL CASE:
2352     // 2.1. (`fir.array`)
2353     //   %box = ... : !fix.box<!fir.array<?xU>>
2354     //   %idx = ... : index
2355     //   %resultAddr = coordinate_of %box, %idx : !fir.ref<U>
2356     // 2.2 (`fir.derived`)
2357     //   %box = ... : !fix.box<!fir.type<derived_type{field_1:i32}>>
2358     //   %idx = ... : i32
2359     //   %resultAddr = coordinate_of %box, %idx : !fir.ref<i32>
2360     // 2.3 (`fir.derived` inside `fir.array`)
2361     //   %box = ... : !fir.box<!fir.array<10 x !fir.type<derived_1{field_1:f32,
2362     //   field_2:f32}>>> %idx1 = ... : index %idx2 = ... : i32 %resultAddr =
2363     //   coordinate_of %box, %idx1, %idx2 : !fir.ref<f32>
2364     // 2.4. TODO: Either document or disable any other case that the following
2365     //  implementation might convert.
2366     mlir::LLVM::ConstantOp c0 =
2367         genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
2368     mlir::Value resultAddr =
2369         loadBaseAddrFromBox(loc, getBaseAddrTypeFromBox(boxBaseAddr.getType()),
2370                             boxBaseAddr, rewriter);
2371     // Component Type
2372     auto cpnTy = fir::dyn_cast_ptrOrBoxEleTy(boxObjTy);
2373     mlir::Type voidPtrTy = ::getVoidPtrType(coor.getContext());
2374 
2375     for (unsigned i = 1, last = operands.size(); i < last; ++i) {
2376       if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
2377         if (i != 1)
2378           TODO(loc, "fir.array nested inside other array and/or derived type");
2379         // Applies byte strides from the box. Ignore lower bound from box
2380         // since fir.coordinate_of indexes are zero based. Lowering takes care
2381         // of lower bound aspects. This both accounts for dynamically sized
2382         // types and non contiguous arrays.
2383         auto idxTy = lowerTy().indexType();
2384         mlir::Value off = genConstantIndex(loc, idxTy, rewriter, 0);
2385         for (unsigned index = i, lastIndex = i + arrTy.getDimension();
2386              index < lastIndex; ++index) {
2387           mlir::Value stride =
2388               loadStrideFromBox(loc, operands[0], index - i, rewriter);
2389           auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy,
2390                                                        operands[index], stride);
2391           off = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, off);
2392         }
2393         auto voidPtrBase =
2394             rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, resultAddr);
2395         SmallVector<mlir::Value> args{off};
2396         resultAddr = rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy,
2397                                                         voidPtrBase, args);
2398         i += arrTy.getDimension() - 1;
2399         cpnTy = arrTy.getEleTy();
2400       } else if (auto recTy = cpnTy.dyn_cast<fir::RecordType>()) {
2401         auto recRefTy =
2402             mlir::LLVM::LLVMPointerType::get(lowerTy().convertType(recTy));
2403         mlir::Value nxtOpnd = operands[i];
2404         auto memObj =
2405             rewriter.create<mlir::LLVM::BitcastOp>(loc, recRefTy, resultAddr);
2406         llvm::SmallVector<mlir::Value> args = {c0, nxtOpnd};
2407         cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
2408         auto llvmCurrentObjTy = lowerTy().convertType(cpnTy);
2409         auto gep = rewriter.create<mlir::LLVM::GEPOp>(
2410             loc, mlir::LLVM::LLVMPointerType::get(llvmCurrentObjTy), memObj,
2411             args);
2412         resultAddr =
2413             rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, gep);
2414       } else {
2415         fir::emitFatalError(loc, "unexpected type in coordinate_of");
2416       }
2417     }
2418 
2419     rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, ty, resultAddr);
2420     return success();
2421   }
2422 
2423   mlir::LogicalResult
2424   doRewriteRefOrPtr(fir::CoordinateOp coor, mlir::Type ty,
2425                     mlir::ValueRange operands, mlir::Location loc,
2426                     mlir::ConversionPatternRewriter &rewriter) const {
2427     mlir::Type baseObjectTy = coor.getBaseType();
2428 
2429     // Component Type
2430     mlir::Type cpnTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
2431     bool hasSubdimension = hasSubDimensions(cpnTy);
2432     bool columnIsDeferred = !hasSubdimension;
2433 
2434     if (!supportedCoordinate(cpnTy, operands.drop_front(1)))
2435       TODO(loc, "unsupported combination of coordinate operands");
2436 
2437     const bool hasKnownShape =
2438         arraysHaveKnownShape(cpnTy, operands.drop_front(1));
2439 
2440     // If only the column is `?`, then we can simply place the column value in
2441     // the 0-th GEP position.
2442     if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
2443       if (!hasKnownShape) {
2444         const unsigned sz = arrTy.getDimension();
2445         if (arraysHaveKnownShape(arrTy.getEleTy(),
2446                                  operands.drop_front(1 + sz))) {
2447           fir::SequenceType::ShapeRef shape = arrTy.getShape();
2448           bool allConst = true;
2449           for (unsigned i = 0; i < sz - 1; ++i) {
2450             if (shape[i] < 0) {
2451               allConst = false;
2452               break;
2453             }
2454           }
2455           if (allConst)
2456             columnIsDeferred = true;
2457         }
2458       }
2459     }
2460 
2461     if (fir::hasDynamicSize(fir::unwrapSequenceType(cpnTy)))
2462       return mlir::emitError(
2463           loc, "fir.coordinate_of with a dynamic element size is unsupported");
2464 
2465     if (hasKnownShape || columnIsDeferred) {
2466       SmallVector<mlir::Value> offs;
2467       if (hasKnownShape && hasSubdimension) {
2468         mlir::LLVM::ConstantOp c0 =
2469             genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
2470         offs.push_back(c0);
2471       }
2472       Optional<int> dims;
2473       SmallVector<mlir::Value> arrIdx;
2474       for (std::size_t i = 1, sz = operands.size(); i < sz; ++i) {
2475         mlir::Value nxtOpnd = operands[i];
2476 
2477         if (!cpnTy)
2478           return mlir::emitError(loc, "invalid coordinate/check failed");
2479 
2480         // check if the i-th coordinate relates to an array
2481         if (dims.hasValue()) {
2482           arrIdx.push_back(nxtOpnd);
2483           int dimsLeft = *dims;
2484           if (dimsLeft > 1) {
2485             dims = dimsLeft - 1;
2486             continue;
2487           }
2488           cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
2489           // append array range in reverse (FIR arrays are column-major)
2490           offs.append(arrIdx.rbegin(), arrIdx.rend());
2491           arrIdx.clear();
2492           dims.reset();
2493           continue;
2494         }
2495         if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
2496           int d = arrTy.getDimension() - 1;
2497           if (d > 0) {
2498             dims = d;
2499             arrIdx.push_back(nxtOpnd);
2500             continue;
2501           }
2502           cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
2503           offs.push_back(nxtOpnd);
2504           continue;
2505         }
2506 
2507         // check if the i-th coordinate relates to a field
2508         if (auto recTy = cpnTy.dyn_cast<fir::RecordType>())
2509           cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
2510         else if (auto tupTy = cpnTy.dyn_cast<mlir::TupleType>())
2511           cpnTy = tupTy.getType(getIntValue(nxtOpnd));
2512         else
2513           cpnTy = nullptr;
2514 
2515         offs.push_back(nxtOpnd);
2516       }
2517       if (dims.hasValue())
2518         offs.append(arrIdx.rbegin(), arrIdx.rend());
2519       mlir::Value base = operands[0];
2520       mlir::Value retval = genGEP(loc, ty, rewriter, base, offs);
2521       rewriter.replaceOp(coor, retval);
2522       return success();
2523     }
2524 
2525     return mlir::emitError(
2526         loc, "fir.coordinate_of base operand has unsupported type");
2527   }
2528 };
2529 
2530 /// Convert `fir.field_index`. The conversion depends on whether the size of
2531 /// the record is static or dynamic.
2532 struct FieldIndexOpConversion : public FIROpConversion<fir::FieldIndexOp> {
2533   using FIROpConversion::FIROpConversion;
2534 
2535   // NB: most field references should be resolved by this point
2536   mlir::LogicalResult
2537   matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor,
2538                   mlir::ConversionPatternRewriter &rewriter) const override {
2539     auto recTy = field.getOnType().cast<fir::RecordType>();
2540     unsigned index = recTy.getFieldIndex(field.getFieldId());
2541 
2542     if (!fir::hasDynamicSize(recTy)) {
2543       // Derived type has compile-time constant layout. Return index of the
2544       // component type in the parent type (to be used in GEP).
2545       rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset(
2546                                     field.getLoc(), rewriter, index)});
2547       return success();
2548     }
2549 
2550     // Derived type has compile-time constant layout. Call the compiler
2551     // generated function to determine the byte offset of the field at runtime.
2552     // This returns a non-constant.
2553     FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get(
2554         field.getContext(), getOffsetMethodName(recTy, field.getFieldId()));
2555     NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr);
2556     NamedAttribute fieldAttr = rewriter.getNamedAttr(
2557         "field", mlir::IntegerAttr::get(lowerTy().indexType(), index));
2558     rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
2559         field, lowerTy().offsetType(), adaptor.getOperands(),
2560         llvm::ArrayRef<mlir::NamedAttribute>{callAttr, fieldAttr});
2561     return success();
2562   }
2563 
2564   // Re-Construct the name of the compiler generated method that calculates the
2565   // offset
2566   inline static std::string getOffsetMethodName(fir::RecordType recTy,
2567                                                 llvm::StringRef field) {
2568     return recTy.getName().str() + "P." + field.str() + ".offset";
2569   }
2570 };
2571 
2572 /// Convert `fir.end`
2573 struct FirEndOpConversion : public FIROpConversion<fir::FirEndOp> {
2574   using FIROpConversion::FIROpConversion;
2575 
2576   mlir::LogicalResult
2577   matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor,
2578                   mlir::ConversionPatternRewriter &rewriter) const override {
2579     TODO(firEnd.getLoc(), "fir.end codegen");
2580     return failure();
2581   }
2582 };
2583 
2584 /// Lower `fir.gentypedesc` to a global constant.
2585 struct GenTypeDescOpConversion : public FIROpConversion<fir::GenTypeDescOp> {
2586   using FIROpConversion::FIROpConversion;
2587 
2588   mlir::LogicalResult
2589   matchAndRewrite(fir::GenTypeDescOp gentypedesc, OpAdaptor adaptor,
2590                   mlir::ConversionPatternRewriter &rewriter) const override {
2591     TODO(gentypedesc.getLoc(), "fir.gentypedesc codegen");
2592     return failure();
2593   }
2594 };
2595 
2596 /// Lower `fir.has_value` operation to `llvm.return` operation.
2597 struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> {
2598   using FIROpConversion::FIROpConversion;
2599 
2600   mlir::LogicalResult
2601   matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
2602                   mlir::ConversionPatternRewriter &rewriter) const override {
2603     rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, adaptor.getOperands());
2604     return success();
2605   }
2606 };
2607 
2608 /// Lower `fir.global` operation to `llvm.global` operation.
2609 /// `fir.insert_on_range` operations are replaced with constant dense attribute
2610 /// if they are applied on the full range.
2611 struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> {
2612   using FIROpConversion::FIROpConversion;
2613 
2614   mlir::LogicalResult
2615   matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
2616                   mlir::ConversionPatternRewriter &rewriter) const override {
2617     auto tyAttr = convertType(global.getType());
2618     if (global.getType().isa<fir::BoxType>())
2619       tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType();
2620     auto loc = global.getLoc();
2621     mlir::Attribute initAttr{};
2622     if (global.getInitVal())
2623       initAttr = global.getInitVal().getValue();
2624     auto linkage = convertLinkage(global.getLinkName());
2625     auto isConst = global.getConstant().hasValue();
2626     auto g = rewriter.create<mlir::LLVM::GlobalOp>(
2627         loc, tyAttr, isConst, linkage, global.getSymName(), initAttr);
2628     auto &gr = g.getInitializerRegion();
2629     rewriter.inlineRegionBefore(global.getRegion(), gr, gr.end());
2630     if (!gr.empty()) {
2631       // Replace insert_on_range with a constant dense attribute if the
2632       // initialization is on the full range.
2633       auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
2634       for (auto insertOp : insertOnRangeOps) {
2635         if (isFullRange(insertOp.getCoor(), insertOp.getType())) {
2636           auto seqTyAttr = convertType(insertOp.getType());
2637           auto *op = insertOp.getVal().getDefiningOp();
2638           auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
2639           if (!constant) {
2640             auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
2641             if (!convertOp)
2642               continue;
2643             constant = cast<mlir::arith::ConstantOp>(
2644                 convertOp.getValue().getDefiningOp());
2645           }
2646           mlir::Type vecType = mlir::VectorType::get(
2647               insertOp.getType().getShape(), constant.getType());
2648           auto denseAttr = mlir::DenseElementsAttr::get(
2649               vecType.cast<ShapedType>(), constant.getValue());
2650           rewriter.setInsertionPointAfter(insertOp);
2651           rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
2652               insertOp, seqTyAttr, denseAttr);
2653         }
2654       }
2655     }
2656     rewriter.eraseOp(global);
2657     return success();
2658   }
2659 
2660   bool isFullRange(mlir::DenseIntElementsAttr indexes,
2661                    fir::SequenceType seqTy) const {
2662     auto extents = seqTy.getShape();
2663     if (indexes.size() / 2 != static_cast<int64_t>(extents.size()))
2664       return false;
2665     auto cur_index = indexes.value_begin<int64_t>();
2666     for (unsigned i = 0; i < indexes.size(); i += 2) {
2667       if (*(cur_index++) != 0)
2668         return false;
2669       if (*(cur_index++) != extents[i / 2] - 1)
2670         return false;
2671     }
2672     return true;
2673   }
2674 
2675   // TODO: String comparaison should be avoided. Replace linkName with an
2676   // enumeration.
2677   mlir::LLVM::Linkage convertLinkage(Optional<StringRef> optLinkage) const {
2678     if (optLinkage.hasValue()) {
2679       auto name = optLinkage.getValue();
2680       if (name == "internal")
2681         return mlir::LLVM::Linkage::Internal;
2682       if (name == "linkonce")
2683         return mlir::LLVM::Linkage::Linkonce;
2684       if (name == "linkonce_odr")
2685         return mlir::LLVM::Linkage::LinkonceODR;
2686       if (name == "common")
2687         return mlir::LLVM::Linkage::Common;
2688       if (name == "weak")
2689         return mlir::LLVM::Linkage::Weak;
2690     }
2691     return mlir::LLVM::Linkage::External;
2692   }
2693 };
2694 
2695 /// `fir.load` --> `llvm.load`
2696 struct LoadOpConversion : public FIROpConversion<fir::LoadOp> {
2697   using FIROpConversion::FIROpConversion;
2698 
2699   mlir::LogicalResult
2700   matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor,
2701                   mlir::ConversionPatternRewriter &rewriter) const override {
2702     // fir.box is a special case because it is considered as an ssa values in
2703     // fir, but it is lowered as a pointer to a descriptor. So fir.ref<fir.box>
2704     // and fir.box end up being the same llvm types and loading a
2705     // fir.ref<fir.box> is actually a no op in LLVM.
2706     if (load.getType().isa<fir::BoxType>()) {
2707       rewriter.replaceOp(load, adaptor.getOperands()[0]);
2708     } else {
2709       mlir::Type ty = convertType(load.getType());
2710       ArrayRef<NamedAttribute> at = load->getAttrs();
2711       rewriter.replaceOpWithNewOp<mlir::LLVM::LoadOp>(
2712           load, ty, adaptor.getOperands(), at);
2713     }
2714     return success();
2715   }
2716 };
2717 
2718 /// Lower `fir.no_reassoc` to LLVM IR dialect.
2719 /// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast
2720 /// math flags?
2721 struct NoReassocOpConversion : public FIROpConversion<fir::NoReassocOp> {
2722   using FIROpConversion::FIROpConversion;
2723 
2724   mlir::LogicalResult
2725   matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor,
2726                   mlir::ConversionPatternRewriter &rewriter) const override {
2727     rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]);
2728     return success();
2729   }
2730 };
2731 
2732 static void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
2733                         Optional<mlir::ValueRange> destOps,
2734                         mlir::ConversionPatternRewriter &rewriter,
2735                         mlir::Block *newBlock) {
2736   if (destOps.hasValue())
2737     rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, destOps.getValue(),
2738                                           newBlock, mlir::ValueRange());
2739   else
2740     rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock);
2741 }
2742 
2743 template <typename A, typename B>
2744 static void genBrOp(A caseOp, mlir::Block *dest, Optional<B> destOps,
2745                     mlir::ConversionPatternRewriter &rewriter) {
2746   if (destOps.hasValue())
2747     rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, destOps.getValue(),
2748                                                   dest);
2749   else
2750     rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, llvm::None, dest);
2751 }
2752 
2753 static void genCaseLadderStep(mlir::Location loc, mlir::Value cmp,
2754                               mlir::Block *dest,
2755                               Optional<mlir::ValueRange> destOps,
2756                               mlir::ConversionPatternRewriter &rewriter) {
2757   auto *thisBlock = rewriter.getInsertionBlock();
2758   auto *newBlock = createBlock(rewriter, dest);
2759   rewriter.setInsertionPointToEnd(thisBlock);
2760   genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock);
2761   rewriter.setInsertionPointToEnd(newBlock);
2762 }
2763 
2764 /// Conversion of `fir.select_case`
2765 ///
2766 /// The `fir.select_case` operation is converted to a if-then-else ladder.
2767 /// Depending on the case condition type, one or several comparison and
2768 /// conditional branching can be generated.
2769 ///
2770 /// A a point value case such as `case(4)`, a lower bound case such as
2771 /// `case(5:)` or an upper bound case such as `case(:3)` are converted to a
2772 /// simple comparison between the selector value and the constant value in the
2773 /// case. The block associated with the case condition is then executed if
2774 /// the comparison succeed otherwise it branch to the next block with the
2775 /// comparison for the the next case conditon.
2776 ///
2777 /// A closed interval case condition such as `case(7:10)` is converted with a
2778 /// first comparison and conditional branching for the lower bound. If
2779 /// successful, it branch to a second block with the comparison for the
2780 /// upper bound in the same case condition.
2781 ///
2782 /// TODO: lowering of CHARACTER type cases is not handled yet.
2783 struct SelectCaseOpConversion : public FIROpConversion<fir::SelectCaseOp> {
2784   using FIROpConversion::FIROpConversion;
2785 
2786   mlir::LogicalResult
2787   matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor,
2788                   mlir::ConversionPatternRewriter &rewriter) const override {
2789     unsigned conds = caseOp.getNumConditions();
2790     llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue();
2791     // Type can be CHARACTER, INTEGER, or LOGICAL (C1145)
2792     auto ty = caseOp.getSelector().getType();
2793     if (ty.isa<fir::CharacterType>()) {
2794       TODO(caseOp.getLoc(), "fir.select_case codegen with character type");
2795       return failure();
2796     }
2797     mlir::Value selector = caseOp.getSelector(adaptor.getOperands());
2798     auto loc = caseOp.getLoc();
2799     for (unsigned t = 0; t != conds; ++t) {
2800       mlir::Block *dest = caseOp.getSuccessor(t);
2801       llvm::Optional<mlir::ValueRange> destOps =
2802           caseOp.getSuccessorOperands(adaptor.getOperands(), t);
2803       llvm::Optional<mlir::ValueRange> cmpOps =
2804           *caseOp.getCompareOperands(adaptor.getOperands(), t);
2805       mlir::Value caseArg = *(cmpOps.getValue().begin());
2806       mlir::Attribute attr = cases[t];
2807       if (attr.isa<fir::PointIntervalAttr>()) {
2808         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2809             loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg);
2810         genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
2811         continue;
2812       }
2813       if (attr.isa<fir::LowerBoundAttr>()) {
2814         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2815             loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
2816         genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
2817         continue;
2818       }
2819       if (attr.isa<fir::UpperBoundAttr>()) {
2820         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2821             loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg);
2822         genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
2823         continue;
2824       }
2825       if (attr.isa<fir::ClosedIntervalAttr>()) {
2826         auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
2827             loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
2828         auto *thisBlock = rewriter.getInsertionBlock();
2829         auto *newBlock1 = createBlock(rewriter, dest);
2830         auto *newBlock2 = createBlock(rewriter, dest);
2831         rewriter.setInsertionPointToEnd(thisBlock);
2832         rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, newBlock1, newBlock2);
2833         rewriter.setInsertionPointToEnd(newBlock1);
2834         mlir::Value caseArg0 = *(cmpOps.getValue().begin() + 1);
2835         auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>(
2836             loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0);
2837         genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2);
2838         rewriter.setInsertionPointToEnd(newBlock2);
2839         continue;
2840       }
2841       assert(attr.isa<mlir::UnitAttr>());
2842       assert((t + 1 == conds) && "unit must be last");
2843       genBrOp(caseOp, dest, destOps, rewriter);
2844     }
2845     return success();
2846   }
2847 };
2848 
2849 template <typename OP>
2850 static void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select,
2851                                   typename OP::Adaptor adaptor,
2852                                   mlir::ConversionPatternRewriter &rewriter) {
2853   unsigned conds = select.getNumConditions();
2854   auto cases = select.getCases().getValue();
2855   mlir::Value selector = adaptor.getSelector();
2856   auto loc = select.getLoc();
2857   assert(conds > 0 && "select must have cases");
2858 
2859   llvm::SmallVector<mlir::Block *> destinations;
2860   llvm::SmallVector<mlir::ValueRange> destinationsOperands;
2861   mlir::Block *defaultDestination;
2862   mlir::ValueRange defaultOperands;
2863   llvm::SmallVector<int32_t> caseValues;
2864 
2865   for (unsigned t = 0; t != conds; ++t) {
2866     mlir::Block *dest = select.getSuccessor(t);
2867     auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
2868     const mlir::Attribute &attr = cases[t];
2869     if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) {
2870       destinations.push_back(dest);
2871       destinationsOperands.push_back(destOps.hasValue() ? *destOps
2872                                                         : ValueRange());
2873       caseValues.push_back(intAttr.getInt());
2874       continue;
2875     }
2876     assert(attr.template dyn_cast_or_null<mlir::UnitAttr>());
2877     assert((t + 1 == conds) && "unit must be last");
2878     defaultDestination = dest;
2879     defaultOperands = destOps.hasValue() ? *destOps : ValueRange();
2880   }
2881 
2882   // LLVM::SwitchOp takes a i32 type for the selector.
2883   if (select.getSelector().getType() != rewriter.getI32Type())
2884     selector =
2885         rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), selector);
2886 
2887   rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
2888       select, selector,
2889       /*defaultDestination=*/defaultDestination,
2890       /*defaultOperands=*/defaultOperands,
2891       /*caseValues=*/caseValues,
2892       /*caseDestinations=*/destinations,
2893       /*caseOperands=*/destinationsOperands,
2894       /*branchWeights=*/ArrayRef<int32_t>());
2895 }
2896 
2897 /// conversion of fir::SelectOp to an if-then-else ladder
2898 struct SelectOpConversion : public FIROpConversion<fir::SelectOp> {
2899   using FIROpConversion::FIROpConversion;
2900 
2901   mlir::LogicalResult
2902   matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
2903                   mlir::ConversionPatternRewriter &rewriter) const override {
2904     selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
2905     return success();
2906   }
2907 };
2908 
2909 /// conversion of fir::SelectRankOp to an if-then-else ladder
2910 struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> {
2911   using FIROpConversion::FIROpConversion;
2912 
2913   mlir::LogicalResult
2914   matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
2915                   mlir::ConversionPatternRewriter &rewriter) const override {
2916     selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
2917     return success();
2918   }
2919 };
2920 
2921 /// Lower `fir.select_type` to LLVM IR dialect.
2922 struct SelectTypeOpConversion : public FIROpConversion<fir::SelectTypeOp> {
2923   using FIROpConversion::FIROpConversion;
2924 
2925   mlir::LogicalResult
2926   matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor,
2927                   mlir::ConversionPatternRewriter &rewriter) const override {
2928     mlir::emitError(select.getLoc(),
2929                     "fir.select_type should have already been converted");
2930     return failure();
2931   }
2932 };
2933 
2934 /// `fir.store` --> `llvm.store`
2935 struct StoreOpConversion : public FIROpConversion<fir::StoreOp> {
2936   using FIROpConversion::FIROpConversion;
2937 
2938   mlir::LogicalResult
2939   matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor,
2940                   mlir::ConversionPatternRewriter &rewriter) const override {
2941     if (store.getValue().getType().isa<fir::BoxType>()) {
2942       // fir.box value is actually in memory, load it first before storing it.
2943       mlir::Location loc = store.getLoc();
2944       mlir::Type boxPtrTy = adaptor.getOperands()[0].getType();
2945       auto val = rewriter.create<mlir::LLVM::LoadOp>(
2946           loc, boxPtrTy.cast<mlir::LLVM::LLVMPointerType>().getElementType(),
2947           adaptor.getOperands()[0]);
2948       rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
2949           store, val, adaptor.getOperands()[1]);
2950     } else {
2951       rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
2952           store, adaptor.getOperands()[0], adaptor.getOperands()[1]);
2953     }
2954     return success();
2955   }
2956 };
2957 
2958 namespace {
2959 
2960 /// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for
2961 /// the character buffer and one for the buffer length.
2962 struct UnboxCharOpConversion : public FIROpConversion<fir::UnboxCharOp> {
2963   using FIROpConversion::FIROpConversion;
2964 
2965   mlir::LogicalResult
2966   matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor,
2967                   mlir::ConversionPatternRewriter &rewriter) const override {
2968     MLIRContext *ctx = unboxchar.getContext();
2969 
2970     mlir::Type lenTy = convertType(unboxchar.getType(1));
2971     mlir::Value tuple = adaptor.getOperands()[0];
2972     mlir::Type tupleTy = tuple.getType();
2973 
2974     mlir::Location loc = unboxchar.getLoc();
2975     mlir::Value ptrToBuffer =
2976         genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 0);
2977 
2978     mlir::LLVM::ExtractValueOp len =
2979         genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 1);
2980     mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len);
2981 
2982     rewriter.replaceOp(unboxchar,
2983                        ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast});
2984     return success();
2985   }
2986 };
2987 
2988 /// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its
2989 /// components.
2990 /// TODO: Part of supporting Fortran 2003 procedure pointers.
2991 struct UnboxProcOpConversion : public FIROpConversion<fir::UnboxProcOp> {
2992   using FIROpConversion::FIROpConversion;
2993 
2994   mlir::LogicalResult
2995   matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor,
2996                   mlir::ConversionPatternRewriter &rewriter) const override {
2997     TODO(unboxproc.getLoc(), "fir.unboxproc codegen");
2998     return failure();
2999   }
3000 };
3001 
3002 /// convert to LLVM IR dialect `undef`
3003 struct UndefOpConversion : public FIROpConversion<fir::UndefOp> {
3004   using FIROpConversion::FIROpConversion;
3005 
3006   mlir::LogicalResult
3007   matchAndRewrite(fir::UndefOp undef, OpAdaptor,
3008                   mlir::ConversionPatternRewriter &rewriter) const override {
3009     rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
3010         undef, convertType(undef.getType()));
3011     return success();
3012   }
3013 };
3014 
3015 struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> {
3016   using FIROpConversion::FIROpConversion;
3017 
3018   mlir::LogicalResult
3019   matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
3020                   mlir::ConversionPatternRewriter &rewriter) const override {
3021     mlir::Type ty = convertType(zero.getType());
3022     if (ty.isa<mlir::LLVM::LLVMPointerType>()) {
3023       rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty);
3024     } else if (ty.isa<mlir::IntegerType>()) {
3025       rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
3026           zero, ty, mlir::IntegerAttr::get(zero.getType(), 0));
3027     } else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) {
3028       rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
3029           zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0));
3030     } else {
3031       // TODO: create ConstantAggregateZero for FIR aggregate/array types.
3032       return rewriter.notifyMatchFailure(
3033           zero,
3034           "conversion of fir.zero with aggregate type not implemented yet");
3035     }
3036     return success();
3037   }
3038 };
3039 
3040 /// `fir.unreachable` --> `llvm.unreachable`
3041 struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> {
3042   using FIROpConversion::FIROpConversion;
3043 
3044   mlir::LogicalResult
3045   matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
3046                   mlir::ConversionPatternRewriter &rewriter) const override {
3047     rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
3048     return success();
3049   }
3050 };
3051 
3052 /// `fir.is_present` -->
3053 /// ```
3054 ///  %0 = llvm.mlir.constant(0 : i64)
3055 ///  %1 = llvm.ptrtoint %0
3056 ///  %2 = llvm.icmp "ne" %1, %0 : i64
3057 /// ```
3058 struct IsPresentOpConversion : public FIROpConversion<fir::IsPresentOp> {
3059   using FIROpConversion::FIROpConversion;
3060 
3061   mlir::LogicalResult
3062   matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor,
3063                   mlir::ConversionPatternRewriter &rewriter) const override {
3064     mlir::Type idxTy = lowerTy().indexType();
3065     mlir::Location loc = isPresent.getLoc();
3066     auto ptr = adaptor.getOperands()[0];
3067 
3068     if (isPresent.getVal().getType().isa<fir::BoxCharType>()) {
3069       auto structTy = ptr.getType().cast<mlir::LLVM::LLVMStructType>();
3070       assert(!structTy.isOpaque() && !structTy.getBody().empty());
3071 
3072       mlir::Type ty = structTy.getBody()[0];
3073       mlir::MLIRContext *ctx = isPresent.getContext();
3074       auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3075       ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, ptr, c0);
3076     }
3077     mlir::LLVM::ConstantOp c0 =
3078         genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0);
3079     auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr);
3080     rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
3081         isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0);
3082 
3083     return success();
3084   }
3085 };
3086 
3087 /// Create value signaling an absent optional argument in a call, e.g.
3088 /// `fir.absent !fir.ref<i64>` -->  `llvm.mlir.null : !llvm.ptr<i64>`
3089 struct AbsentOpConversion : public FIROpConversion<fir::AbsentOp> {
3090   using FIROpConversion::FIROpConversion;
3091 
3092   mlir::LogicalResult
3093   matchAndRewrite(fir::AbsentOp absent, OpAdaptor,
3094                   mlir::ConversionPatternRewriter &rewriter) const override {
3095     mlir::Type ty = convertType(absent.getType());
3096     mlir::Location loc = absent.getLoc();
3097 
3098     if (absent.getType().isa<fir::BoxCharType>()) {
3099       auto structTy = ty.cast<mlir::LLVM::LLVMStructType>();
3100       assert(!structTy.isOpaque() && !structTy.getBody().empty());
3101       auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3102       auto nullField =
3103           rewriter.create<mlir::LLVM::NullOp>(loc, structTy.getBody()[0]);
3104       mlir::MLIRContext *ctx = absent.getContext();
3105       auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3106       rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
3107           absent, ty, undefStruct, nullField, c0);
3108     } else {
3109       rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(absent, ty);
3110     }
3111     return success();
3112   }
3113 };
3114 
3115 //
3116 // Primitive operations on Complex types
3117 //
3118 
3119 /// Generate inline code for complex addition/subtraction
3120 template <typename LLVMOP, typename OPTY>
3121 static mlir::LLVM::InsertValueOp
3122 complexSum(OPTY sumop, mlir::ValueRange opnds,
3123            mlir::ConversionPatternRewriter &rewriter,
3124            fir::LLVMTypeConverter &lowering) {
3125   mlir::Value a = opnds[0];
3126   mlir::Value b = opnds[1];
3127   auto loc = sumop.getLoc();
3128   auto ctx = sumop.getContext();
3129   auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3130   auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
3131   mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
3132   mlir::Type ty = lowering.convertType(sumop.getType());
3133   auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
3134   auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
3135   auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
3136   auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
3137   auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
3138   auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
3139   auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3140   auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
3141   return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
3142 }
3143 } // namespace
3144 
3145 namespace {
3146 struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
3147   using FIROpConversion::FIROpConversion;
3148 
3149   mlir::LogicalResult
3150   matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
3151                   mlir::ConversionPatternRewriter &rewriter) const override {
3152     // given: (x + iy) + (x' + iy')
3153     // result: (x + x') + i(y + y')
3154     auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
3155                                             rewriter, lowerTy());
3156     rewriter.replaceOp(addc, r.getResult());
3157     return success();
3158   }
3159 };
3160 
3161 struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
3162   using FIROpConversion::FIROpConversion;
3163 
3164   mlir::LogicalResult
3165   matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
3166                   mlir::ConversionPatternRewriter &rewriter) const override {
3167     // given: (x + iy) - (x' + iy')
3168     // result: (x - x') + i(y - y')
3169     auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
3170                                             rewriter, lowerTy());
3171     rewriter.replaceOp(subc, r.getResult());
3172     return success();
3173   }
3174 };
3175 
3176 /// Inlined complex multiply
3177 struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
3178   using FIROpConversion::FIROpConversion;
3179 
3180   mlir::LogicalResult
3181   matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
3182                   mlir::ConversionPatternRewriter &rewriter) const override {
3183     // TODO: Can we use a call to __muldc3 ?
3184     // given: (x + iy) * (x' + iy')
3185     // result: (xx'-yy')+i(xy'+yx')
3186     mlir::Value a = adaptor.getOperands()[0];
3187     mlir::Value b = adaptor.getOperands()[1];
3188     auto loc = mulc.getLoc();
3189     auto *ctx = mulc.getContext();
3190     auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3191     auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
3192     mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
3193     mlir::Type ty = convertType(mulc.getType());
3194     auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
3195     auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
3196     auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
3197     auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
3198     auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
3199     auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
3200     auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
3201     auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
3202     auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
3203     auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
3204     auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3205     auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
3206     auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
3207     rewriter.replaceOp(mulc, r0.getResult());
3208     return success();
3209   }
3210 };
3211 
3212 /// Inlined complex division
3213 struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
3214   using FIROpConversion::FIROpConversion;
3215 
3216   mlir::LogicalResult
3217   matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
3218                   mlir::ConversionPatternRewriter &rewriter) const override {
3219     // TODO: Can we use a call to __divdc3 instead?
3220     // Just generate inline code for now.
3221     // given: (x + iy) / (x' + iy')
3222     // result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
3223     mlir::Value a = adaptor.getOperands()[0];
3224     mlir::Value b = adaptor.getOperands()[1];
3225     auto loc = divc.getLoc();
3226     auto *ctx = divc.getContext();
3227     auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
3228     auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
3229     mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
3230     mlir::Type ty = convertType(divc.getType());
3231     auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
3232     auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
3233     auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
3234     auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
3235     auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
3236     auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
3237     auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
3238     auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
3239     auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
3240     auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
3241     auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
3242     auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
3243     auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
3244     auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
3245     auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
3246     auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
3247     auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
3248     auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
3249     rewriter.replaceOp(divc, r0.getResult());
3250     return success();
3251   }
3252 };
3253 
3254 /// Inlined complex negation
3255 struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
3256   using FIROpConversion::FIROpConversion;
3257 
3258   mlir::LogicalResult
3259   matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
3260                   mlir::ConversionPatternRewriter &rewriter) const override {
3261     // given: -(x + iy)
3262     // result: -x - iy
3263     auto *ctxt = neg.getContext();
3264     auto eleTy = convertType(getComplexEleTy(neg.getType()));
3265     auto ty = convertType(neg.getType());
3266     auto loc = neg.getLoc();
3267     mlir::Value o0 = adaptor.getOperands()[0];
3268     auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
3269     auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
3270     auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
3271     auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
3272     auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
3273     auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
3274     auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
3275     rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
3276     return success();
3277   }
3278 };
3279 
3280 /// Conversion pattern for operation that must be dead. The information in these
3281 /// operations is used by other operation. At this point they should not have
3282 /// anymore uses.
3283 /// These operations are normally dead after the pre-codegen pass.
3284 template <typename FromOp>
3285 struct MustBeDeadConversion : public FIROpConversion<FromOp> {
3286   explicit MustBeDeadConversion(fir::LLVMTypeConverter &lowering,
3287                                 const fir::FIRToLLVMPassOptions &options)
3288       : FIROpConversion<FromOp>(lowering, options) {}
3289   using OpAdaptor = typename FromOp::Adaptor;
3290 
3291   mlir::LogicalResult
3292   matchAndRewrite(FromOp op, OpAdaptor adaptor,
3293                   mlir::ConversionPatternRewriter &rewriter) const final {
3294     if (!op->getUses().empty())
3295       return rewriter.notifyMatchFailure(op, "op must be dead");
3296     rewriter.eraseOp(op);
3297     return success();
3298   }
3299 };
3300 
3301 struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> {
3302   using MustBeDeadConversion::MustBeDeadConversion;
3303 };
3304 
3305 struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> {
3306   using MustBeDeadConversion::MustBeDeadConversion;
3307 };
3308 
3309 struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> {
3310   using MustBeDeadConversion::MustBeDeadConversion;
3311 };
3312 
3313 struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> {
3314   using MustBeDeadConversion::MustBeDeadConversion;
3315 };
3316 
3317 } // namespace
3318 
3319 namespace {
3320 /// Convert FIR dialect to LLVM dialect
3321 ///
3322 /// This pass lowers all FIR dialect operations to LLVM IR dialect. An
3323 /// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
3324 ///
3325 /// This pass is not complete yet. We are upstreaming it in small patches.
3326 class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
3327 public:
3328   FIRToLLVMLowering() = default;
3329   FIRToLLVMLowering(fir::FIRToLLVMPassOptions options) : options{options} {}
3330   mlir::ModuleOp getModule() { return getOperation(); }
3331 
3332   void runOnOperation() override final {
3333     auto mod = getModule();
3334     if (!forcedTargetTriple.empty()) {
3335       fir::setTargetTriple(mod, forcedTargetTriple);
3336     }
3337 
3338     auto *context = getModule().getContext();
3339     fir::LLVMTypeConverter typeConverter{getModule()};
3340     mlir::RewritePatternSet pattern(context);
3341     pattern.insert<
3342         AbsentOpConversion, AddcOpConversion, AddrOfOpConversion,
3343         AllocaOpConversion, AllocMemOpConversion, BoxAddrOpConversion,
3344         BoxCharLenOpConversion, BoxDimsOpConversion, BoxEleSizeOpConversion,
3345         BoxIsAllocOpConversion, BoxIsArrayOpConversion, BoxIsPtrOpConversion,
3346         BoxProcHostOpConversion, BoxRankOpConversion, BoxTypeDescOpConversion,
3347         CallOpConversion, CmpcOpConversion, ConstcOpConversion,
3348         ConvertOpConversion, CoordinateOpConversion, DispatchOpConversion,
3349         DispatchTableOpConversion, DTEntryOpConversion, DivcOpConversion,
3350         EmboxOpConversion, EmboxCharOpConversion, EmboxProcOpConversion,
3351         ExtractValueOpConversion, FieldIndexOpConversion, FirEndOpConversion,
3352         FreeMemOpConversion, GenTypeDescOpConversion, GlobalLenOpConversion,
3353         GlobalOpConversion, HasValueOpConversion, InsertOnRangeOpConversion,
3354         InsertValueOpConversion, IsPresentOpConversion,
3355         LenParamIndexOpConversion, LoadOpConversion, MulcOpConversion,
3356         NegcOpConversion, NoReassocOpConversion, SelectCaseOpConversion,
3357         SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion,
3358         ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion,
3359         SliceOpConversion, StoreOpConversion, StringLitOpConversion,
3360         SubcOpConversion, UnboxCharOpConversion, UnboxProcOpConversion,
3361         UndefOpConversion, UnreachableOpConversion, XArrayCoorOpConversion,
3362         XEmboxOpConversion, XReboxOpConversion, ZeroOpConversion>(typeConverter,
3363                                                                   options);
3364     mlir::populateFuncToLLVMConversionPatterns(typeConverter, pattern);
3365     mlir::populateOpenMPToLLVMConversionPatterns(typeConverter, pattern);
3366     mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
3367                                                             pattern);
3368     mlir::cf::populateControlFlowToLLVMConversionPatterns(typeConverter,
3369                                                           pattern);
3370     mlir::ConversionTarget target{*context};
3371     target.addLegalDialect<mlir::LLVM::LLVMDialect>();
3372     // The OpenMP dialect is legal for Operations without regions, for those
3373     // which contains regions it is legal if the region contains only the
3374     // LLVM dialect. Add OpenMP dialect as a legal dialect for conversion and
3375     // legalize conversion of OpenMP operations without regions.
3376     mlir::configureOpenMPToLLVMConversionLegality(target, typeConverter);
3377     target.addLegalDialect<mlir::omp::OpenMPDialect>();
3378 
3379     // required NOPs for applying a full conversion
3380     target.addLegalOp<mlir::ModuleOp>();
3381 
3382     // apply the patterns
3383     if (mlir::failed(mlir::applyFullConversion(getModule(), target,
3384                                                std::move(pattern)))) {
3385       signalPassFailure();
3386     }
3387   }
3388 
3389 private:
3390   fir::FIRToLLVMPassOptions options;
3391 };
3392 
3393 /// Lower from LLVM IR dialect to proper LLVM-IR and dump the module
3394 struct LLVMIRLoweringPass
3395     : public mlir::PassWrapper<LLVMIRLoweringPass,
3396                                mlir::OperationPass<mlir::ModuleOp>> {
3397   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LLVMIRLoweringPass)
3398 
3399   using Printer = fir::LLVMIRLoweringPrinter;
3400   LLVMIRLoweringPass(raw_ostream &output, Printer p)
3401       : output{output}, printer{p} {}
3402 
3403   mlir::ModuleOp getModule() { return getOperation(); }
3404 
3405   void runOnOperation() override final {
3406     auto *ctx = getModule().getContext();
3407     auto optName = getModule().getName();
3408     llvm::LLVMContext llvmCtx;
3409     if (auto llvmModule = mlir::translateModuleToLLVMIR(
3410             getModule(), llvmCtx, optName ? *optName : "FIRModule")) {
3411       printer(*llvmModule, output);
3412       return;
3413     }
3414 
3415     mlir::emitError(mlir::UnknownLoc::get(ctx), "could not emit LLVM-IR\n");
3416     signalPassFailure();
3417   }
3418 
3419 private:
3420   raw_ostream &output;
3421   Printer printer;
3422 };
3423 
3424 } // namespace
3425 
3426 std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
3427   return std::make_unique<FIRToLLVMLowering>();
3428 }
3429 
3430 std::unique_ptr<mlir::Pass>
3431 fir::createFIRToLLVMPass(FIRToLLVMPassOptions options) {
3432   return std::make_unique<FIRToLLVMLowering>(options);
3433 }
3434 
3435 std::unique_ptr<mlir::Pass>
3436 fir::createLLVMDialectToLLVMPass(raw_ostream &output,
3437                                  fir::LLVMIRLoweringPrinter printer) {
3438   return std::make_unique<LLVMIRLoweringPass>(output, printer);
3439 }
3440