1 //===-- IntrinsicCall.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Helper routines for constructing the FIR dialect of MLIR. As FIR is a 10 // dialect of MLIR, it makes extensive use of MLIR interfaces and MLIR's coding 11 // style (https://mlir.llvm.org/getting_started/DeveloperGuide/) is used in this 12 // module. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "flang/Lower/IntrinsicCall.h" 17 #include "RTBuilder.h" 18 #include "flang/Common/static-multimap-view.h" 19 #include "flang/Lower/CharacterExpr.h" 20 #include "flang/Lower/ComplexExpr.h" 21 #include "flang/Lower/ConvertType.h" 22 #include "flang/Lower/FIRBuilder.h" 23 #include "flang/Lower/Mangler.h" 24 #include "flang/Lower/Runtime.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <algorithm> 28 #include <string_view> 29 #include <utility> 30 31 #define PGMATH_DECLARE 32 #include "flang/Evaluate/pgmath.h.inc" 33 34 /// This file implements lowering of Fortran intrinsic procedures. 35 /// Intrinsics are lowered to a mix of FIR and MLIR operations as 36 /// well as call to runtime functions or LLVM intrinsics. 37 38 /// Lowering of intrinsic procedure calls is based on a map that associates 39 /// Fortran intrinsic generic names to FIR generator functions. 40 /// All generator functions are member functions of the IntrinsicLibrary class 41 /// and have the same interface. 42 /// If no generator is given for an intrinsic name, a math runtime library 43 /// is searched for an implementation and, if a runtime function is found, 44 /// a call is generated for it. LLVM intrinsics are handled as a math 45 /// runtime library here. 46 47 /// Enums used to templatize and share lowering of MIN and MAX. 48 enum class Extremum { Min, Max }; 49 50 // There are different ways to deal with NaNs in MIN and MAX. 51 // Known existing behaviors are listed below and can be selected for 52 // f18 MIN/MAX implementation. 53 enum class ExtremumBehavior { 54 // Note: the Signaling/quiet aspect of NaNs in the behaviors below are 55 // not described because there is no way to control/observe such aspect in 56 // MLIR/LLVM yet. The IEEE behaviors come with requirements regarding this 57 // aspect that are therefore currently not enforced. In the descriptions 58 // below, NaNs can be signaling or quite. Returned NaNs may be signaling 59 // if one of the input NaN was signaling but it cannot be guaranteed either. 60 // Existing compilers using an IEEE behavior (gfortran) also do not fulfill 61 // signaling/quiet requirements. 62 IeeeMinMaximumNumber, 63 // IEEE minimumNumber/maximumNumber behavior (754-2019, section 9.6): 64 // If one of the argument is and number and the other is NaN, return the 65 // number. If both arguements are NaN, return NaN. 66 // Compilers: gfortran. 67 IeeeMinMaximum, 68 // IEEE minimum/maximum behavior (754-2019, section 9.6): 69 // If one of the argument is NaN, return NaN. 70 MinMaxss, 71 // x86 minss/maxss behavior: 72 // If the second argument is a number and the other is NaN, return the number. 73 // In all other cases where at least one operand is NaN, return NaN. 74 // Compilers: xlf (only for MAX), ifort, pgfortran -nollvm, and nagfor. 75 PgfortranLlvm, 76 // "Opposite of" x86 minss/maxss behavior: 77 // If the first argument is a number and the other is NaN, return the 78 // number. 79 // In all other cases where at least one operand is NaN, return NaN. 80 // Compilers: xlf (only for MIN), and pgfortran (with llvm). 81 IeeeMinMaxNum 82 // IEEE minNum/maxNum behavior (754-2008, section 5.3.1): 83 // TODO: Not implemented. 84 // It is the only behavior where the signaling/quiet aspect of a NaN argument 85 // impacts if the result should be NaN or the argument that is a number. 86 // LLVM/MLIR do not provide ways to observe this aspect, so it is not 87 // possible to implement it without some target dependent runtime. 88 }; 89 90 // TODO error handling -> return a code or directly emit messages ? 91 struct IntrinsicLibrary { 92 93 // Constructors. 94 explicit IntrinsicLibrary(Fortran::lower::FirOpBuilder &builder, 95 mlir::Location loc) 96 : builder{builder}, loc{loc} {} 97 IntrinsicLibrary() = delete; 98 IntrinsicLibrary(const IntrinsicLibrary &) = delete; 99 100 /// Generate FIR for call to Fortran intrinsic \p name with arguments \p arg 101 /// and expected result type \p resultType. 102 fir::ExtendedValue genIntrinsicCall(llvm::StringRef name, 103 mlir::Type resultType, 104 llvm::ArrayRef<fir::ExtendedValue> arg); 105 106 /// Search a runtime function that is associated to the generic intrinsic name 107 /// and whose signature matches the intrinsic arguments and result types. 108 /// If no such runtime function is found but a runtime function associated 109 /// with the Fortran generic exists and has the same number of arguments, 110 /// conversions will be inserted before and/or after the call. This is to 111 /// mainly to allow 16 bits float support even-though little or no math 112 /// runtime is currently available for it. 113 mlir::Value genRuntimeCall(llvm::StringRef name, mlir::Type, 114 llvm::ArrayRef<mlir::Value>); 115 116 using RuntimeCallGenerator = 117 std::function<mlir::Value(Fortran::lower::FirOpBuilder &, mlir::Location, 118 llvm::ArrayRef<mlir::Value>)>; 119 RuntimeCallGenerator 120 getRuntimeCallGenerator(llvm::StringRef name, 121 mlir::FunctionType soughtFuncType); 122 123 mlir::Value genAbs(mlir::Type, llvm::ArrayRef<mlir::Value>); 124 mlir::Value genAimag(mlir::Type, llvm::ArrayRef<mlir::Value>); 125 mlir::Value genAint(mlir::Type, llvm::ArrayRef<mlir::Value>); 126 mlir::Value genAnint(mlir::Type, llvm::ArrayRef<mlir::Value>); 127 mlir::Value genCeiling(mlir::Type, llvm::ArrayRef<mlir::Value>); 128 mlir::Value genConjg(mlir::Type, llvm::ArrayRef<mlir::Value>); 129 mlir::Value genDim(mlir::Type, llvm::ArrayRef<mlir::Value>); 130 mlir::Value genDprod(mlir::Type, llvm::ArrayRef<mlir::Value>); 131 template <Extremum, ExtremumBehavior> 132 mlir::Value genExtremum(mlir::Type, llvm::ArrayRef<mlir::Value>); 133 mlir::Value genFloor(mlir::Type, llvm::ArrayRef<mlir::Value>); 134 mlir::Value genIAnd(mlir::Type, llvm::ArrayRef<mlir::Value>); 135 mlir::Value genIchar(mlir::Type, llvm::ArrayRef<mlir::Value>); 136 mlir::Value genIEOr(mlir::Type, llvm::ArrayRef<mlir::Value>); 137 mlir::Value genIOr(mlir::Type, llvm::ArrayRef<mlir::Value>); 138 fir::ExtendedValue genLen(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>); 139 fir::ExtendedValue genLenTrim(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>); 140 mlir::Value genMerge(mlir::Type, llvm::ArrayRef<mlir::Value>); 141 mlir::Value genMod(mlir::Type, llvm::ArrayRef<mlir::Value>); 142 mlir::Value genNint(mlir::Type, llvm::ArrayRef<mlir::Value>); 143 mlir::Value genSign(mlir::Type, llvm::ArrayRef<mlir::Value>); 144 /// Implement all conversion functions like DBLE, the first argument is 145 /// the value to convert. There may be an additional KIND arguments that 146 /// is ignored because this is already reflected in the result type. 147 mlir::Value genConversion(mlir::Type, llvm::ArrayRef<mlir::Value>); 148 149 /// Define the different FIR generators that can be mapped to intrinsic to 150 /// generate the related code. 151 using ElementalGenerator = decltype(&IntrinsicLibrary::genAbs); 152 using ExtendedGenerator = decltype(&IntrinsicLibrary::genLenTrim); 153 using Generator = std::variant<ElementalGenerator, ExtendedGenerator>; 154 155 /// All generators can be outlined. This will build a function named 156 /// "fir."+ <generic name> + "." + <result type code> and generate the 157 /// intrinsic implementation inside instead of at the intrinsic call sites. 158 /// This can be used to keep the FIR more readable. Only one function will 159 /// be generated for all the similar calls in a program. 160 /// If the Generator is nullptr, the wrapper uses genRuntimeCall. 161 template <typename GeneratorType> 162 mlir::Value outlineInWrapper(GeneratorType, llvm::StringRef name, 163 mlir::Type resultType, 164 llvm::ArrayRef<mlir::Value> args); 165 fir::ExtendedValue outlineInWrapper(ExtendedGenerator, llvm::StringRef name, 166 mlir::Type resultType, 167 llvm::ArrayRef<fir::ExtendedValue> args); 168 169 template <typename GeneratorType> 170 mlir::FuncOp getWrapper(GeneratorType, llvm::StringRef name, 171 mlir::FunctionType, bool loadRefArguments = false); 172 173 /// Generate calls to ElementalGenerator, handling the elemental aspects 174 template <typename GeneratorType> 175 fir::ExtendedValue 176 genElementalCall(GeneratorType, llvm::StringRef name, mlir::Type resultType, 177 llvm::ArrayRef<fir::ExtendedValue> args, bool outline); 178 179 /// Helper to invoke code generator for the intrinsics given arguments. 180 mlir::Value invokeGenerator(ElementalGenerator generator, 181 mlir::Type resultType, 182 llvm::ArrayRef<mlir::Value> args); 183 mlir::Value invokeGenerator(RuntimeCallGenerator generator, 184 mlir::Type resultType, 185 llvm::ArrayRef<mlir::Value> args); 186 mlir::Value invokeGenerator(ExtendedGenerator generator, 187 mlir::Type resultType, 188 llvm::ArrayRef<mlir::Value> args); 189 190 /// Get pointer to unrestricted intrinsic. Generate the related unrestricted 191 /// intrinsic if it is not defined yet. 192 mlir::SymbolRefAttr 193 getUnrestrictedIntrinsicSymbolRefAttr(llvm::StringRef name, 194 mlir::FunctionType signature); 195 196 Fortran::lower::FirOpBuilder &builder; 197 mlir::Location loc; 198 }; 199 200 /// Table that drives the fir generation depending on the intrinsic. 201 /// one to one mapping with Fortran arguments. If no mapping is 202 /// defined here for a generic intrinsic, genRuntimeCall will be called 203 /// to look for a match in the runtime a emit a call. 204 struct IntrinsicHandler { 205 const char *name; 206 IntrinsicLibrary::Generator generator; 207 bool isElemental = true; 208 /// Code heavy intrinsic can be outlined to make FIR 209 /// more readable. 210 bool outline = false; 211 }; 212 using I = IntrinsicLibrary; 213 static constexpr IntrinsicHandler handlers[]{ 214 {"abs", &I::genAbs}, 215 {"achar", &I::genConversion}, 216 {"aimag", &I::genAimag}, 217 {"aint", &I::genAint}, 218 {"anint", &I::genAnint}, 219 {"ceiling", &I::genCeiling}, 220 {"char", &I::genConversion}, 221 {"conjg", &I::genConjg}, 222 {"dim", &I::genDim}, 223 {"dble", &I::genConversion}, 224 {"dprod", &I::genDprod}, 225 {"floor", &I::genFloor}, 226 {"iand", &I::genIAnd}, 227 {"ichar", &I::genIchar}, 228 {"ieor", &I::genIEOr}, 229 {"ior", &I::genIOr}, 230 {"len", &I::genLen}, 231 {"len_trim", &I::genLenTrim}, 232 {"max", &I::genExtremum<Extremum::Max, ExtremumBehavior::MinMaxss>}, 233 {"min", &I::genExtremum<Extremum::Min, ExtremumBehavior::MinMaxss>}, 234 {"merge", &I::genMerge}, 235 {"mod", &I::genMod}, 236 {"nint", &I::genNint}, 237 {"sign", &I::genSign}, 238 }; 239 240 /// To make fir output more readable for debug, one can outline all intrinsic 241 /// implementation in wrappers (overrides the IntrinsicHandler::outline flag). 242 static llvm::cl::opt<bool> outlineAllIntrinsics( 243 "outline-intrinsics", 244 llvm::cl::desc( 245 "Lower all intrinsic procedure implementation in their own functions"), 246 llvm::cl::init(false)); 247 248 //===----------------------------------------------------------------------===// 249 // Math runtime description and matching utility 250 //===----------------------------------------------------------------------===// 251 252 /// Command line option to modify math runtime version used to implement 253 /// intrinsics. 254 enum MathRuntimeVersion { 255 fastVersion, 256 relaxedVersion, 257 preciseVersion, 258 llvmOnly 259 }; 260 llvm::cl::opt<MathRuntimeVersion> mathRuntimeVersion( 261 "math-runtime", llvm::cl::desc("Select math runtime version:"), 262 llvm::cl::values( 263 clEnumValN(fastVersion, "fast", "use pgmath fast runtime"), 264 clEnumValN(relaxedVersion, "relaxed", "use pgmath relaxed runtime"), 265 clEnumValN(preciseVersion, "precise", "use pgmath precise runtime"), 266 clEnumValN(llvmOnly, "llvm", 267 "only use LLVM intrinsics (may be incomplete)")), 268 llvm::cl::init(fastVersion)); 269 270 struct RuntimeFunction { 271 // llvm::StringRef comparison operator are not constexpr, so use string_view. 272 using Key = std::string_view; 273 // Needed for implicit compare with keys. 274 constexpr operator Key() const { return key; } 275 Key key; // intrinsic name 276 llvm::StringRef symbol; 277 Fortran::lower::FuncTypeBuilderFunc typeGenerator; 278 }; 279 280 #define RUNTIME_STATIC_DESCRIPTION(name, func) \ 281 {#name, #func, \ 282 Fortran::lower::RuntimeTableKey<decltype(func)>::getTypeModel()}, 283 static constexpr RuntimeFunction pgmathFast[] = { 284 #define PGMATH_FAST 285 #define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func) 286 #include "flang/Evaluate/pgmath.h.inc" 287 }; 288 static constexpr RuntimeFunction pgmathRelaxed[] = { 289 #define PGMATH_RELAXED 290 #define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func) 291 #include "flang/Evaluate/pgmath.h.inc" 292 }; 293 static constexpr RuntimeFunction pgmathPrecise[] = { 294 #define PGMATH_PRECISE 295 #define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func) 296 #include "flang/Evaluate/pgmath.h.inc" 297 }; 298 299 static mlir::FunctionType genF32F32FuncType(mlir::MLIRContext *context) { 300 auto t = mlir::FloatType::getF32(context); 301 return mlir::FunctionType::get(context, {t}, {t}); 302 } 303 304 static mlir::FunctionType genF64F64FuncType(mlir::MLIRContext *context) { 305 auto t = mlir::FloatType::getF64(context); 306 return mlir::FunctionType::get(context, {t}, {t}); 307 } 308 309 template <int Bits> 310 static mlir::FunctionType genIntF64FuncType(mlir::MLIRContext *context) { 311 auto t = mlir::FloatType::getF64(context); 312 auto r = mlir::IntegerType::get(context, Bits); 313 return mlir::FunctionType::get(context, {t}, {r}); 314 } 315 316 template <int Bits> 317 static mlir::FunctionType genIntF32FuncType(mlir::MLIRContext *context) { 318 auto t = mlir::FloatType::getF32(context); 319 auto r = mlir::IntegerType::get(context, Bits); 320 return mlir::FunctionType::get(context, {t}, {r}); 321 } 322 323 // TODO : Fill-up this table with more intrinsic. 324 // Note: These are also defined as operations in LLVM dialect. See if this 325 // can be use and has advantages. 326 static constexpr RuntimeFunction llvmIntrinsics[] = { 327 {"abs", "llvm.fabs.f32", genF32F32FuncType}, 328 {"abs", "llvm.fabs.f64", genF64F64FuncType}, 329 {"aint", "llvm.trunc.f32", genF32F32FuncType}, 330 {"aint", "llvm.trunc.f64", genF64F64FuncType}, 331 {"anint", "llvm.round.f32", genF32F32FuncType}, 332 {"anint", "llvm.round.f64", genF64F64FuncType}, 333 // ceil is used for CEILING but is different, it returns a real. 334 {"ceil", "llvm.ceil.f32", genF32F32FuncType}, 335 {"ceil", "llvm.ceil.f64", genF64F64FuncType}, 336 {"cos", "llvm.cos.f32", genF32F32FuncType}, 337 {"cos", "llvm.cos.f64", genF64F64FuncType}, 338 // llvm.floor is used for FLOOR, but returns real. 339 {"floor", "llvm.floor.f32", genF32F32FuncType}, 340 {"floor", "llvm.floor.f64", genF64F64FuncType}, 341 {"log", "llvm.log.f32", genF32F32FuncType}, 342 {"log", "llvm.log.f64", genF64F64FuncType}, 343 {"log10", "llvm.log10.f32", genF32F32FuncType}, 344 {"log10", "llvm.log10.f64", genF64F64FuncType}, 345 {"nint", "llvm.lround.i64.f64", genIntF64FuncType<64>}, 346 {"nint", "llvm.lround.i64.f32", genIntF32FuncType<64>}, 347 {"nint", "llvm.lround.i32.f64", genIntF64FuncType<32>}, 348 {"nint", "llvm.lround.i32.f32", genIntF32FuncType<32>}, 349 {"sin", "llvm.sin.f32", genF32F32FuncType}, 350 {"sin", "llvm.sin.f64", genF64F64FuncType}, 351 {"sqrt", "llvm.sqrt.f32", genF32F32FuncType}, 352 {"sqrt", "llvm.sqrt.f64", genF64F64FuncType}, 353 }; 354 355 // This helper class computes a "distance" between two function types. 356 // The distance measures how many narrowing conversions of actual arguments 357 // and result of "from" must be made in order to use "to" instead of "from". 358 // For instance, the distance between ACOS(REAL(10)) and ACOS(REAL(8)) is 359 // greater than the one between ACOS(REAL(10)) and ACOS(REAL(16)). This means 360 // if no implementation of ACOS(REAL(10)) is available, it is better to use 361 // ACOS(REAL(16)) with casts rather than ACOS(REAL(8)). 362 // Note that this is not a symmetric distance and the order of "from" and "to" 363 // arguments matters, d(foo, bar) may not be the same as d(bar, foo) because it 364 // may be safe to replace foo by bar, but not the opposite. 365 class FunctionDistance { 366 public: 367 FunctionDistance() : infinite{true} {} 368 369 FunctionDistance(mlir::FunctionType from, mlir::FunctionType to) { 370 auto nInputs = from.getNumInputs(); 371 auto nResults = from.getNumResults(); 372 if (nResults != to.getNumResults() || nInputs != to.getNumInputs()) { 373 infinite = true; 374 } else { 375 for (decltype(nInputs) i{0}; i < nInputs && !infinite; ++i) 376 addArgumentDistance(from.getInput(i), to.getInput(i)); 377 for (decltype(nResults) i{0}; i < nResults && !infinite; ++i) 378 addResultDistance(to.getResult(i), from.getResult(i)); 379 } 380 } 381 382 /// Beware both d1.isSmallerThan(d2) *and* d2.isSmallerThan(d1) may be 383 /// false if both d1 and d2 are infinite. This implies that 384 /// d1.isSmallerThan(d2) is not equivalent to !d2.isSmallerThan(d1) 385 bool isSmallerThan(const FunctionDistance &d) const { 386 return !infinite && 387 (d.infinite || std::lexicographical_compare( 388 conversions.begin(), conversions.end(), 389 d.conversions.begin(), d.conversions.end())); 390 } 391 392 bool isLosingPrecision() const { 393 return conversions[narrowingArg] != 0 || conversions[extendingResult] != 0; 394 } 395 396 bool isInfinite() const { return infinite; } 397 398 private: 399 enum class Conversion { Forbidden, None, Narrow, Extend }; 400 401 void addArgumentDistance(mlir::Type from, mlir::Type to) { 402 switch (conversionBetweenTypes(from, to)) { 403 case Conversion::Forbidden: 404 infinite = true; 405 break; 406 case Conversion::None: 407 break; 408 case Conversion::Narrow: 409 conversions[narrowingArg]++; 410 break; 411 case Conversion::Extend: 412 conversions[nonNarrowingArg]++; 413 break; 414 } 415 } 416 417 void addResultDistance(mlir::Type from, mlir::Type to) { 418 switch (conversionBetweenTypes(from, to)) { 419 case Conversion::Forbidden: 420 infinite = true; 421 break; 422 case Conversion::None: 423 break; 424 case Conversion::Narrow: 425 conversions[nonExtendingResult]++; 426 break; 427 case Conversion::Extend: 428 conversions[extendingResult]++; 429 break; 430 } 431 } 432 433 // Floating point can be mlir::FloatType or fir::real 434 static unsigned getFloatingPointWidth(mlir::Type t) { 435 if (auto f{t.dyn_cast<mlir::FloatType>()}) 436 return f.getWidth(); 437 // FIXME: Get width another way for fir.real/complex 438 // - use fir/KindMapping.h and llvm::Type 439 // - or use evaluate/type.h 440 if (auto r{t.dyn_cast<fir::RealType>()}) 441 return r.getFKind() * 4; 442 if (auto cplx{t.dyn_cast<fir::ComplexType>()}) 443 return cplx.getFKind() * 4; 444 llvm_unreachable("not a floating-point type"); 445 } 446 447 static Conversion conversionBetweenTypes(mlir::Type from, mlir::Type to) { 448 if (from == to) { 449 return Conversion::None; 450 } 451 if (auto fromIntTy{from.dyn_cast<mlir::IntegerType>()}) { 452 if (auto toIntTy{to.dyn_cast<mlir::IntegerType>()}) { 453 return fromIntTy.getWidth() > toIntTy.getWidth() ? Conversion::Narrow 454 : Conversion::Extend; 455 } 456 } 457 if (fir::isa_real(from) && fir::isa_real(to)) { 458 return getFloatingPointWidth(from) > getFloatingPointWidth(to) 459 ? Conversion::Narrow 460 : Conversion::Extend; 461 } 462 if (auto fromCplxTy{from.dyn_cast<fir::ComplexType>()}) { 463 if (auto toCplxTy{to.dyn_cast<fir::ComplexType>()}) { 464 return getFloatingPointWidth(fromCplxTy) > 465 getFloatingPointWidth(toCplxTy) 466 ? Conversion::Narrow 467 : Conversion::Extend; 468 } 469 } 470 // Notes: 471 // - No conversion between character types, specialization of runtime 472 // functions should be made instead. 473 // - It is not clear there is a use case for automatic conversions 474 // around Logical and it may damage hidden information in the physical 475 // storage so do not do it. 476 return Conversion::Forbidden; 477 } 478 479 // Below are indexes to access data in conversions. 480 // The order in data does matter for lexicographical_compare 481 enum { 482 narrowingArg = 0, // usually bad 483 extendingResult, // usually bad 484 nonExtendingResult, // usually ok 485 nonNarrowingArg, // usually ok 486 dataSize 487 }; 488 489 std::array<int, dataSize> conversions{/* zero init*/}; 490 bool infinite{false}; // When forbidden conversion or wrong argument number 491 }; 492 493 /// Build mlir::FuncOp from runtime symbol description and add 494 /// fir.runtime attribute. 495 static mlir::FuncOp getFuncOp(mlir::Location loc, 496 Fortran::lower::FirOpBuilder &builder, 497 const RuntimeFunction &runtime) { 498 auto function = builder.addNamedFunction( 499 loc, runtime.symbol, runtime.typeGenerator(builder.getContext())); 500 function->setAttr("fir.runtime", builder.getUnitAttr()); 501 return function; 502 } 503 504 /// Select runtime function that has the smallest distance to the intrinsic 505 /// function type and that will not imply narrowing arguments or extending the 506 /// result. 507 /// If nothing is found, the mlir::FuncOp will contain a nullptr. 508 mlir::FuncOp searchFunctionInLibrary( 509 mlir::Location loc, Fortran::lower::FirOpBuilder &builder, 510 const Fortran::common::StaticMultimapView<RuntimeFunction> &lib, 511 llvm::StringRef name, mlir::FunctionType funcType, 512 const RuntimeFunction **bestNearMatch, 513 FunctionDistance &bestMatchDistance) { 514 auto range = lib.equal_range(name); 515 for (auto iter{range.first}; iter != range.second && iter; ++iter) { 516 const auto &impl = *iter; 517 auto implType = impl.typeGenerator(builder.getContext()); 518 if (funcType == implType) { 519 return getFuncOp(loc, builder, impl); // exact match 520 } else { 521 FunctionDistance distance(funcType, implType); 522 if (distance.isSmallerThan(bestMatchDistance)) { 523 *bestNearMatch = &impl; 524 bestMatchDistance = std::move(distance); 525 } 526 } 527 } 528 return {}; 529 } 530 531 /// Search runtime for the best runtime function given an intrinsic name 532 /// and interface. The interface may not be a perfect match in which case 533 /// the caller is responsible to insert argument and return value conversions. 534 /// If nothing is found, the mlir::FuncOp will contain a nullptr. 535 static mlir::FuncOp getRuntimeFunction(mlir::Location loc, 536 Fortran::lower::FirOpBuilder &builder, 537 llvm::StringRef name, 538 mlir::FunctionType funcType) { 539 const RuntimeFunction *bestNearMatch = nullptr; 540 FunctionDistance bestMatchDistance{}; 541 mlir::FuncOp match; 542 using RtMap = Fortran::common::StaticMultimapView<RuntimeFunction>; 543 static constexpr RtMap pgmathF(pgmathFast); 544 static_assert(pgmathF.Verify() && "map must be sorted"); 545 static constexpr RtMap pgmathR(pgmathRelaxed); 546 static_assert(pgmathR.Verify() && "map must be sorted"); 547 static constexpr RtMap pgmathP(pgmathPrecise); 548 static_assert(pgmathP.Verify() && "map must be sorted"); 549 if (mathRuntimeVersion == fastVersion) { 550 match = searchFunctionInLibrary(loc, builder, pgmathF, name, funcType, 551 &bestNearMatch, bestMatchDistance); 552 } else if (mathRuntimeVersion == relaxedVersion) { 553 match = searchFunctionInLibrary(loc, builder, pgmathR, name, funcType, 554 &bestNearMatch, bestMatchDistance); 555 } else if (mathRuntimeVersion == preciseVersion) { 556 match = searchFunctionInLibrary(loc, builder, pgmathP, name, funcType, 557 &bestNearMatch, bestMatchDistance); 558 } else { 559 assert(mathRuntimeVersion == llvmOnly && "unknown math runtime"); 560 } 561 if (match) 562 return match; 563 564 // Go through llvm intrinsics if not exact match in libpgmath or if 565 // mathRuntimeVersion == llvmOnly 566 static constexpr RtMap llvmIntr(llvmIntrinsics); 567 static_assert(llvmIntr.Verify() && "map must be sorted"); 568 if (auto exactMatch = 569 searchFunctionInLibrary(loc, builder, llvmIntr, name, funcType, 570 &bestNearMatch, bestMatchDistance)) 571 return exactMatch; 572 573 if (bestNearMatch != nullptr) { 574 assert(!bestMatchDistance.isLosingPrecision() && 575 "runtime selection loses precision"); 576 return getFuncOp(loc, builder, *bestNearMatch); 577 } 578 return {}; 579 } 580 581 /// Helpers to get function type from arguments and result type. 582 static mlir::FunctionType 583 getFunctionType(mlir::Type resultType, llvm::ArrayRef<mlir::Value> arguments, 584 Fortran::lower::FirOpBuilder &builder) { 585 llvm::SmallVector<mlir::Type, 2> argumentTypes; 586 for (auto &arg : arguments) 587 argumentTypes.push_back(arg.getType()); 588 return mlir::FunctionType::get(builder.getModule().getContext(), 589 argumentTypes, resultType); 590 } 591 592 /// fir::ExtendedValue to mlir::Value translation layer 593 594 fir::ExtendedValue toExtendedValue(mlir::Value val, 595 Fortran::lower::FirOpBuilder &builder, 596 mlir::Location loc) { 597 assert(val && "optional unhandled here"); 598 auto type = val.getType(); 599 auto base = val; 600 auto indexType = builder.getIndexType(); 601 llvm::SmallVector<mlir::Value, 2> extents; 602 603 Fortran::lower::CharacterExprHelper charHelper{builder, loc}; 604 if (charHelper.isCharacter(type)) 605 return charHelper.toExtendedValue(val); 606 607 if (auto refType = type.dyn_cast<fir::ReferenceType>()) 608 type = refType.getEleTy(); 609 610 if (auto arrayType = type.dyn_cast<fir::SequenceType>()) { 611 type = arrayType.getEleTy(); 612 for (auto extent : arrayType.getShape()) { 613 if (extent == fir::SequenceType::getUnknownExtent()) 614 break; 615 extents.emplace_back( 616 builder.createIntegerConstant(loc, indexType, extent)); 617 } 618 // Last extent might be missing in case of assumed-size. If more extents 619 // could not be deduced from type, that's an error (a fir.box should 620 // have been used in the interface). 621 if (extents.size() + 1 < arrayType.getShape().size()) 622 mlir::emitError(loc, "cannot retrieve array extents from type"); 623 } else if (type.isa<fir::BoxType>() || type.isa<fir::RecordType>()) { 624 mlir::emitError(loc, "descriptor or derived type not yet handled"); 625 } 626 627 if (!extents.empty()) 628 return fir::ArrayBoxValue{base, extents}; 629 return base; 630 } 631 632 mlir::Value toValue(const fir::ExtendedValue &val, 633 Fortran::lower::FirOpBuilder &builder, mlir::Location loc) { 634 if (auto charBox = val.getCharBox()) { 635 auto buffer = charBox->getBuffer(); 636 if (buffer.getType().isa<fir::BoxCharType>()) 637 return buffer; 638 return Fortran::lower::CharacterExprHelper{builder, loc}.createEmboxChar( 639 buffer, charBox->getLen()); 640 } 641 642 // FIXME: need to access other ExtendedValue variants and handle them 643 // properly. 644 return fir::getBase(val); 645 } 646 647 //===----------------------------------------------------------------------===// 648 // IntrinsicLibrary 649 //===----------------------------------------------------------------------===// 650 651 template <typename GeneratorType> 652 fir::ExtendedValue IntrinsicLibrary::genElementalCall( 653 GeneratorType generator, llvm::StringRef name, mlir::Type resultType, 654 llvm::ArrayRef<fir::ExtendedValue> args, bool outline) { 655 llvm::SmallVector<mlir::Value, 2> scalarArgs; 656 for (const auto &arg : args) { 657 if (arg.getUnboxed() || arg.getCharBox()) { 658 scalarArgs.emplace_back(fir::getBase(arg)); 659 } else { 660 // TODO: get the result shape and create the loop... 661 mlir::emitError(loc, "array or descriptor not yet handled in elemental " 662 "intrinsic lowering"); 663 exit(1); 664 } 665 } 666 if (outline) 667 return outlineInWrapper(generator, name, resultType, scalarArgs); 668 return invokeGenerator(generator, resultType, scalarArgs); 669 } 670 671 /// Some ExtendedGenerator operating on characters are also elemental 672 /// (e.g LEN_TRIM). 673 template <> 674 fir::ExtendedValue 675 IntrinsicLibrary::genElementalCall<IntrinsicLibrary::ExtendedGenerator>( 676 ExtendedGenerator generator, llvm::StringRef name, mlir::Type resultType, 677 llvm::ArrayRef<fir::ExtendedValue> args, bool outline) { 678 for (const auto &arg : args) 679 if (!arg.getUnboxed() && !arg.getCharBox()) { 680 // TODO: get the result shape and create the loop... 681 mlir::emitError(loc, "array or descriptor not yet handled in elemental " 682 "intrinsic lowering"); 683 exit(1); 684 } 685 if (outline) 686 return outlineInWrapper(generator, name, resultType, args); 687 return std::invoke(generator, *this, resultType, args); 688 } 689 690 fir::ExtendedValue 691 IntrinsicLibrary::genIntrinsicCall(llvm::StringRef name, mlir::Type resultType, 692 llvm::ArrayRef<fir::ExtendedValue> args) { 693 for (auto &handler : handlers) 694 if (name == handler.name) { 695 bool outline = handler.outline || outlineAllIntrinsics; 696 if (const auto *elementalGenerator = 697 std::get_if<ElementalGenerator>(&handler.generator)) 698 return genElementalCall(*elementalGenerator, name, resultType, args, 699 outline); 700 const auto &generator = std::get<ExtendedGenerator>(handler.generator); 701 if (handler.isElemental) 702 return genElementalCall(generator, name, resultType, args, outline); 703 if (outline) 704 return outlineInWrapper(generator, name, resultType, args); 705 return std::invoke(generator, *this, resultType, args); 706 } 707 708 // Try the runtime if no special handler was defined for the 709 // intrinsic being called. Maths runtime only has numerical elemental. 710 // No optional arguments are expected at this point, the code will 711 // crash if it gets absent optional. 712 713 // FIXME: using toValue to get the type won't work with array arguments. 714 llvm::SmallVector<mlir::Value, 2> mlirArgs; 715 for (const auto &extendedVal : args) { 716 auto val = toValue(extendedVal, builder, loc); 717 if (!val) { 718 // If an absent optional gets there, most likely its handler has just 719 // not yet been defined. 720 mlir::emitError(loc, 721 "TODO: missing intrinsic lowering: " + llvm::Twine(name)); 722 exit(1); 723 } 724 mlirArgs.emplace_back(val); 725 } 726 mlir::FunctionType soughtFuncType = 727 getFunctionType(resultType, mlirArgs, builder); 728 729 auto runtimeCallGenerator = getRuntimeCallGenerator(name, soughtFuncType); 730 return genElementalCall(runtimeCallGenerator, name, resultType, args, 731 /* outline */ true); 732 } 733 734 mlir::Value 735 IntrinsicLibrary::invokeGenerator(ElementalGenerator generator, 736 mlir::Type resultType, 737 llvm::ArrayRef<mlir::Value> args) { 738 return std::invoke(generator, *this, resultType, args); 739 } 740 741 mlir::Value 742 IntrinsicLibrary::invokeGenerator(RuntimeCallGenerator generator, 743 mlir::Type resultType, 744 llvm::ArrayRef<mlir::Value> args) { 745 return generator(builder, loc, args); 746 } 747 748 mlir::Value 749 IntrinsicLibrary::invokeGenerator(ExtendedGenerator generator, 750 mlir::Type resultType, 751 llvm::ArrayRef<mlir::Value> args) { 752 llvm::SmallVector<fir::ExtendedValue, 2> extendedArgs; 753 for (auto arg : args) 754 extendedArgs.emplace_back(toExtendedValue(arg, builder, loc)); 755 auto extendedResult = std::invoke(generator, *this, resultType, extendedArgs); 756 return toValue(extendedResult, builder, loc); 757 } 758 759 template <typename GeneratorType> 760 mlir::FuncOp IntrinsicLibrary::getWrapper(GeneratorType generator, 761 llvm::StringRef name, 762 mlir::FunctionType funcType, 763 bool loadRefArguments) { 764 assert(funcType.getNumResults() == 1 && 765 "expect one result for intrinsic functions"); 766 auto resultType = funcType.getResult(0); 767 std::string wrapperName = fir::mangleIntrinsicProcedure(name, funcType); 768 auto function = builder.getNamedFunction(wrapperName); 769 if (!function) { 770 // First time this wrapper is needed, build it. 771 function = builder.createFunction(loc, wrapperName, funcType); 772 function->setAttr("fir.intrinsic", builder.getUnitAttr()); 773 function.addEntryBlock(); 774 775 // Create local context to emit code into the newly created function 776 // This new function is not linked to a source file location, only 777 // its calls will be. 778 auto localBuilder = std::make_unique<Fortran::lower::FirOpBuilder>( 779 function, builder.getKindMap()); 780 localBuilder->setInsertionPointToStart(&function.front()); 781 // Location of code inside wrapper of the wrapper is independent from 782 // the location of the intrinsic call. 783 auto localLoc = localBuilder->getUnknownLoc(); 784 llvm::SmallVector<mlir::Value, 2> localArguments; 785 for (mlir::BlockArgument bArg : function.front().getArguments()) { 786 auto refType = bArg.getType().dyn_cast<fir::ReferenceType>(); 787 if (loadRefArguments && refType) { 788 auto loaded = localBuilder->create<fir::LoadOp>(localLoc, bArg); 789 localArguments.push_back(loaded); 790 } else { 791 localArguments.push_back(bArg); 792 } 793 } 794 795 IntrinsicLibrary localLib{*localBuilder, localLoc}; 796 auto result = 797 localLib.invokeGenerator(generator, resultType, localArguments); 798 localBuilder->create<mlir::ReturnOp>(localLoc, result); 799 } else { 800 // Wrapper was already built, ensure it has the sought type 801 assert(function.getType() == funcType && 802 "conflict between intrinsic wrapper types"); 803 } 804 return function; 805 } 806 807 /// Helpers to detect absent optional (not yet supported in outlining). 808 bool static hasAbsentOptional(llvm::ArrayRef<mlir::Value> args) { 809 for (const auto &arg : args) 810 if (!arg) 811 return true; 812 return false; 813 } 814 bool static hasAbsentOptional(llvm::ArrayRef<fir::ExtendedValue> args) { 815 for (const auto &arg : args) 816 if (!fir::getBase(arg)) 817 return true; 818 return false; 819 } 820 821 template <typename GeneratorType> 822 mlir::Value 823 IntrinsicLibrary::outlineInWrapper(GeneratorType generator, 824 llvm::StringRef name, mlir::Type resultType, 825 llvm::ArrayRef<mlir::Value> args) { 826 if (hasAbsentOptional(args)) { 827 // TODO: absent optional in outlining is an issue: we cannot just ignore 828 // them. Needs a better interface here. The issue is that we cannot easily 829 // tell that a value is optional or not here if it is presents. And if it is 830 // absent, we cannot tell what it type should be. 831 mlir::emitError(loc, "todo: cannot outline call to intrinsic " + 832 llvm::Twine(name) + 833 " with absent optional argument"); 834 exit(1); 835 } 836 837 auto funcType = getFunctionType(resultType, args, builder); 838 auto wrapper = getWrapper(generator, name, funcType); 839 return builder.create<mlir::CallOp>(loc, wrapper, args).getResult(0); 840 } 841 842 fir::ExtendedValue 843 IntrinsicLibrary::outlineInWrapper(ExtendedGenerator generator, 844 llvm::StringRef name, mlir::Type resultType, 845 llvm::ArrayRef<fir::ExtendedValue> args) { 846 if (hasAbsentOptional(args)) { 847 // TODO 848 mlir::emitError(loc, "todo: cannot outline call to intrinsic " + 849 llvm::Twine(name) + 850 " with absent optional argument"); 851 exit(1); 852 } 853 llvm::SmallVector<mlir::Value, 2> mlirArgs; 854 for (const auto &extendedVal : args) 855 mlirArgs.emplace_back(toValue(extendedVal, builder, loc)); 856 auto funcType = getFunctionType(resultType, mlirArgs, builder); 857 auto wrapper = getWrapper(generator, name, funcType); 858 auto mlirResult = 859 builder.create<mlir::CallOp>(loc, wrapper, mlirArgs).getResult(0); 860 return toExtendedValue(mlirResult, builder, loc); 861 } 862 863 IntrinsicLibrary::RuntimeCallGenerator 864 IntrinsicLibrary::getRuntimeCallGenerator(llvm::StringRef name, 865 mlir::FunctionType soughtFuncType) { 866 auto funcOp = getRuntimeFunction(loc, builder, name, soughtFuncType); 867 if (!funcOp) { 868 mlir::emitError(loc, 869 "TODO: missing intrinsic lowering: " + llvm::Twine(name)); 870 llvm::errs() << "requested type was: " << soughtFuncType << "\n"; 871 exit(1); 872 } 873 874 mlir::FunctionType actualFuncType = funcOp.getType(); 875 assert(actualFuncType.getNumResults() == soughtFuncType.getNumResults() && 876 actualFuncType.getNumInputs() == soughtFuncType.getNumInputs() && 877 actualFuncType.getNumResults() == 1 && "Bad intrinsic match"); 878 879 return [funcOp, actualFuncType, soughtFuncType]( 880 Fortran::lower::FirOpBuilder &builder, mlir::Location loc, 881 llvm::ArrayRef<mlir::Value> args) { 882 llvm::SmallVector<mlir::Value, 2> convertedArguments; 883 for (const auto &pair : llvm::zip(actualFuncType.getInputs(), args)) 884 convertedArguments.push_back( 885 builder.createConvert(loc, std::get<0>(pair), std::get<1>(pair))); 886 auto call = builder.create<mlir::CallOp>(loc, funcOp, convertedArguments); 887 mlir::Type soughtType = soughtFuncType.getResult(0); 888 return builder.createConvert(loc, soughtType, call.getResult(0)); 889 }; 890 } 891 892 mlir::SymbolRefAttr IntrinsicLibrary::getUnrestrictedIntrinsicSymbolRefAttr( 893 llvm::StringRef name, mlir::FunctionType signature) { 894 // Unrestricted intrinsics signature follows implicit rules: argument 895 // are passed by references. But the runtime versions expect values. 896 // So instead of duplicating the runtime, just have the wrappers loading 897 // this before calling the code generators. 898 bool loadRefArguments = true; 899 mlir::FuncOp funcOp; 900 for (auto &handler : handlers) 901 if (name == handler.name) 902 funcOp = std::visit( 903 [&](auto generator) { 904 return getWrapper(generator, name, signature, loadRefArguments); 905 }, 906 handler.generator); 907 908 if (!funcOp) { 909 llvm::SmallVector<mlir::Type, 2> argTypes; 910 for (auto type : signature.getInputs()) { 911 if (auto refType = type.dyn_cast<fir::ReferenceType>()) 912 argTypes.push_back(refType.getEleTy()); 913 else 914 argTypes.push_back(type); 915 } 916 auto soughtFuncType = 917 builder.getFunctionType(signature.getResults(), argTypes); 918 auto rtCallGenerator = getRuntimeCallGenerator(name, soughtFuncType); 919 funcOp = getWrapper(rtCallGenerator, name, signature, loadRefArguments); 920 } 921 922 return SymbolRefAttr::get(funcOp); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // Code generators for the intrinsic 927 //===----------------------------------------------------------------------===// 928 929 mlir::Value IntrinsicLibrary::genRuntimeCall(llvm::StringRef name, 930 mlir::Type resultType, 931 llvm::ArrayRef<mlir::Value> args) { 932 mlir::FunctionType soughtFuncType = 933 getFunctionType(resultType, args, builder); 934 return getRuntimeCallGenerator(name, soughtFuncType)(builder, loc, args); 935 } 936 937 mlir::Value IntrinsicLibrary::genConversion(mlir::Type resultType, 938 llvm::ArrayRef<mlir::Value> args) { 939 // There can be an optional kind in second argument. 940 assert(args.size() >= 1); 941 return builder.convertWithSemantics(loc, resultType, args[0]); 942 } 943 944 // ABS 945 mlir::Value IntrinsicLibrary::genAbs(mlir::Type resultType, 946 llvm::ArrayRef<mlir::Value> args) { 947 assert(args.size() == 1); 948 auto arg = args[0]; 949 auto type = arg.getType(); 950 if (fir::isa_real(type)) { 951 // Runtime call to fp abs. An alternative would be to use mlir math::AbsOp 952 // but it does not support all fir floating point types. 953 return genRuntimeCall("abs", resultType, args); 954 } 955 if (auto intType = type.dyn_cast<mlir::IntegerType>()) { 956 // At the time of this implementation there is no abs op in mlir. 957 // So, implement abs here without branching. 958 auto shift = 959 builder.createIntegerConstant(loc, intType, intType.getWidth() - 1); 960 auto mask = builder.create<mlir::arith::ShRSIOp>(loc, arg, shift); 961 auto xored = builder.create<mlir::arith::XOrIOp>(loc, arg, mask); 962 return builder.create<mlir::arith::SubIOp>(loc, xored, mask); 963 } 964 if (fir::isa_complex(type)) { 965 // Use HYPOT to fulfill the no underflow/overflow requirement. 966 auto parts = 967 Fortran::lower::ComplexExprHelper{builder, loc}.extractParts(arg); 968 llvm::SmallVector<mlir::Value, 2> args = {parts.first, parts.second}; 969 return genRuntimeCall("hypot", resultType, args); 970 } 971 llvm_unreachable("unexpected type in ABS argument"); 972 } 973 974 // AIMAG 975 mlir::Value IntrinsicLibrary::genAimag(mlir::Type resultType, 976 llvm::ArrayRef<mlir::Value> args) { 977 assert(args.size() == 1); 978 return Fortran::lower::ComplexExprHelper{builder, loc}.extractComplexPart( 979 args[0], true /* isImagPart */); 980 } 981 982 // ANINT 983 mlir::Value IntrinsicLibrary::genAnint(mlir::Type resultType, 984 llvm::ArrayRef<mlir::Value> args) { 985 assert(args.size() >= 1); 986 // Skip optional kind argument to search the runtime; it is already reflected 987 // in result type. 988 return genRuntimeCall("anint", resultType, {args[0]}); 989 } 990 991 // AINT 992 mlir::Value IntrinsicLibrary::genAint(mlir::Type resultType, 993 llvm::ArrayRef<mlir::Value> args) { 994 assert(args.size() >= 1); 995 // Skip optional kind argument to search the runtime; it is already reflected 996 // in result type. 997 return genRuntimeCall("aint", resultType, {args[0]}); 998 } 999 1000 // CEILING 1001 mlir::Value IntrinsicLibrary::genCeiling(mlir::Type resultType, 1002 llvm::ArrayRef<mlir::Value> args) { 1003 // Optional KIND argument. 1004 assert(args.size() >= 1); 1005 auto arg = args[0]; 1006 // Use ceil that is not an actual Fortran intrinsic but that is 1007 // an llvm intrinsic that does the same, but return a floating 1008 // point. 1009 auto ceil = genRuntimeCall("ceil", arg.getType(), {arg}); 1010 return builder.createConvert(loc, resultType, ceil); 1011 } 1012 1013 // CONJG 1014 mlir::Value IntrinsicLibrary::genConjg(mlir::Type resultType, 1015 llvm::ArrayRef<mlir::Value> args) { 1016 assert(args.size() == 1); 1017 if (resultType != args[0].getType()) 1018 llvm_unreachable("argument type mismatch"); 1019 1020 mlir::Value cplx = args[0]; 1021 auto imag = 1022 Fortran::lower::ComplexExprHelper{builder, loc}.extractComplexPart( 1023 cplx, /*isImagPart=*/true); 1024 auto negImag = builder.create<mlir::arith::NegFOp>(loc, imag); 1025 return Fortran::lower::ComplexExprHelper{builder, loc}.insertComplexPart( 1026 cplx, negImag, /*isImagPart=*/true); 1027 } 1028 1029 // DIM 1030 mlir::Value IntrinsicLibrary::genDim(mlir::Type resultType, 1031 llvm::ArrayRef<mlir::Value> args) { 1032 assert(args.size() == 2); 1033 if (resultType.isa<mlir::IntegerType>()) { 1034 auto zero = builder.createIntegerConstant(loc, resultType, 0); 1035 auto diff = builder.create<mlir::arith::SubIOp>(loc, args[0], args[1]); 1036 auto cmp = builder.create<mlir::arith::CmpIOp>( 1037 loc, mlir::arith::CmpIPredicate::sgt, diff, zero); 1038 return builder.create<mlir::SelectOp>(loc, cmp, diff, zero); 1039 } 1040 assert(fir::isa_real(resultType) && "Only expects real and integer in DIM"); 1041 auto zero = builder.createRealZeroConstant(loc, resultType); 1042 auto diff = builder.create<mlir::arith::SubFOp>(loc, args[0], args[1]); 1043 auto cmp = builder.create<mlir::arith::CmpFOp>( 1044 loc, mlir::arith::CmpFPredicate::OGT, diff, zero); 1045 return builder.create<mlir::SelectOp>(loc, cmp, diff, zero); 1046 } 1047 1048 // DPROD 1049 mlir::Value IntrinsicLibrary::genDprod(mlir::Type resultType, 1050 llvm::ArrayRef<mlir::Value> args) { 1051 assert(args.size() == 2); 1052 assert(fir::isa_real(resultType) && 1053 "Result must be double precision in DPROD"); 1054 auto a = builder.createConvert(loc, resultType, args[0]); 1055 auto b = builder.createConvert(loc, resultType, args[1]); 1056 return builder.create<mlir::arith::MulFOp>(loc, a, b); 1057 } 1058 1059 // FLOOR 1060 mlir::Value IntrinsicLibrary::genFloor(mlir::Type resultType, 1061 llvm::ArrayRef<mlir::Value> args) { 1062 // Optional KIND argument. 1063 assert(args.size() >= 1); 1064 auto arg = args[0]; 1065 // Use LLVM floor that returns real. 1066 auto floor = genRuntimeCall("floor", arg.getType(), {arg}); 1067 return builder.createConvert(loc, resultType, floor); 1068 } 1069 1070 // IAND 1071 mlir::Value IntrinsicLibrary::genIAnd(mlir::Type resultType, 1072 llvm::ArrayRef<mlir::Value> args) { 1073 assert(args.size() == 2); 1074 1075 return builder.create<mlir::arith::AndIOp>(loc, args[0], args[1]); 1076 } 1077 1078 // ICHAR 1079 mlir::Value IntrinsicLibrary::genIchar(mlir::Type resultType, 1080 llvm::ArrayRef<mlir::Value> args) { 1081 // There can be an optional kind in second argument. 1082 assert(args.size() >= 1); 1083 1084 auto arg = args[0]; 1085 Fortran::lower::CharacterExprHelper helper{builder, loc}; 1086 auto dataAndLen = helper.createUnboxChar(arg); 1087 auto charType = fir::CharacterType::get( 1088 builder.getContext(), helper.getCharacterKind(arg.getType()), 1); 1089 auto refType = builder.getRefType(charType); 1090 auto charAddr = builder.createConvert(loc, refType, dataAndLen.first); 1091 auto charVal = builder.create<fir::LoadOp>(loc, charType, charAddr); 1092 return builder.createConvert(loc, resultType, charVal); 1093 } 1094 1095 // IEOR 1096 mlir::Value IntrinsicLibrary::genIEOr(mlir::Type resultType, 1097 llvm::ArrayRef<mlir::Value> args) { 1098 assert(args.size() == 2); 1099 return builder.create<mlir::arith::XOrIOp>(loc, args[0], args[1]); 1100 } 1101 1102 // IOR 1103 mlir::Value IntrinsicLibrary::genIOr(mlir::Type resultType, 1104 llvm::ArrayRef<mlir::Value> args) { 1105 assert(args.size() == 2); 1106 return builder.create<mlir::arith::OrIOp>(loc, args[0], args[1]); 1107 } 1108 1109 // LEN 1110 // Note that this is only used for unrestricted intrinsic. 1111 // Usage of LEN are otherwise rewritten as descriptor inquiries by the 1112 // front-end. 1113 fir::ExtendedValue 1114 IntrinsicLibrary::genLen(mlir::Type resultType, 1115 llvm::ArrayRef<fir::ExtendedValue> args) { 1116 // Optional KIND argument reflected in result type. 1117 assert(args.size() >= 1); 1118 mlir::Value len; 1119 if (const auto *charBox = args[0].getCharBox()) { 1120 len = charBox->getLen(); 1121 } else if (const auto *charBoxArray = args[0].getCharBox()) { 1122 len = charBoxArray->getLen(); 1123 } else { 1124 Fortran::lower::CharacterExprHelper helper{builder, loc}; 1125 len = helper.createUnboxChar(fir::getBase(args[0])).second; 1126 } 1127 1128 return builder.createConvert(loc, resultType, len); 1129 } 1130 1131 // LEN_TRIM 1132 fir::ExtendedValue 1133 IntrinsicLibrary::genLenTrim(mlir::Type resultType, 1134 llvm::ArrayRef<fir::ExtendedValue> args) { 1135 // Optional KIND argument reflected in result type. 1136 assert(args.size() >= 1); 1137 Fortran::lower::CharacterExprHelper helper{builder, loc}; 1138 auto len = helper.createLenTrim(fir::getBase(args[0])); 1139 return builder.createConvert(loc, resultType, len); 1140 } 1141 1142 // MERGE 1143 mlir::Value IntrinsicLibrary::genMerge(mlir::Type, 1144 llvm::ArrayRef<mlir::Value> args) { 1145 assert(args.size() == 3); 1146 1147 auto i1Type = mlir::IntegerType::get(builder.getContext(), 1); 1148 auto mask = builder.createConvert(loc, i1Type, args[2]); 1149 return builder.create<mlir::SelectOp>(loc, mask, args[0], args[1]); 1150 } 1151 1152 // MOD 1153 mlir::Value IntrinsicLibrary::genMod(mlir::Type resultType, 1154 llvm::ArrayRef<mlir::Value> args) { 1155 assert(args.size() == 2); 1156 if (resultType.isa<mlir::IntegerType>()) 1157 return builder.create<mlir::arith::RemSIOp>(loc, args[0], args[1]); 1158 1159 // Use runtime. Note that mlir::arith::RemFOp implements floating point 1160 // remainder, but it does not work with fir::Real type. 1161 // TODO: consider using mlir::arith::RemFOp when possible, that may help 1162 // folding and optimizations. 1163 return genRuntimeCall("mod", resultType, args); 1164 } 1165 1166 // NINT 1167 mlir::Value IntrinsicLibrary::genNint(mlir::Type resultType, 1168 llvm::ArrayRef<mlir::Value> args) { 1169 assert(args.size() >= 1); 1170 // Skip optional kind argument to search the runtime; it is already reflected 1171 // in result type. 1172 return genRuntimeCall("nint", resultType, {args[0]}); 1173 } 1174 1175 // SIGN 1176 mlir::Value IntrinsicLibrary::genSign(mlir::Type resultType, 1177 llvm::ArrayRef<mlir::Value> args) { 1178 assert(args.size() == 2); 1179 auto abs = genAbs(resultType, {args[0]}); 1180 if (resultType.isa<mlir::IntegerType>()) { 1181 auto zero = builder.createIntegerConstant(loc, resultType, 0); 1182 auto neg = builder.create<mlir::arith::SubIOp>(loc, zero, abs); 1183 auto cmp = builder.create<mlir::arith::CmpIOp>( 1184 loc, mlir::arith::CmpIPredicate::slt, args[1], zero); 1185 return builder.create<mlir::SelectOp>(loc, cmp, neg, abs); 1186 } 1187 // TODO: Requirements when second argument is +0./0. 1188 auto zeroAttr = builder.getZeroAttr(resultType); 1189 auto zero = 1190 builder.create<mlir::arith::ConstantOp>(loc, resultType, zeroAttr); 1191 auto neg = builder.create<mlir::arith::NegFOp>(loc, abs); 1192 auto cmp = builder.create<mlir::arith::CmpFOp>( 1193 loc, mlir::arith::CmpFPredicate::OLT, args[1], zero); 1194 return builder.create<mlir::SelectOp>(loc, cmp, neg, abs); 1195 } 1196 1197 // Compare two FIR values and return boolean result as i1. 1198 template <Extremum extremum, ExtremumBehavior behavior> 1199 static mlir::Value createExtremumCompare(mlir::Location loc, 1200 Fortran::lower::FirOpBuilder &builder, 1201 mlir::Value left, mlir::Value right) { 1202 static constexpr auto integerPredicate = 1203 extremum == Extremum::Max ? mlir::arith::CmpIPredicate::sgt 1204 : mlir::arith::CmpIPredicate::slt; 1205 static constexpr auto orderedCmp = extremum == Extremum::Max 1206 ? mlir::arith::CmpFPredicate::OGT 1207 : mlir::arith::CmpFPredicate::OLT; 1208 auto type = left.getType(); 1209 mlir::Value result; 1210 if (fir::isa_real(type)) { 1211 // Note: the signaling/quit aspect of the result required by IEEE 1212 // cannot currently be obtained with LLVM without ad-hoc runtime. 1213 if constexpr (behavior == ExtremumBehavior::IeeeMinMaximumNumber) { 1214 // Return the number if one of the inputs is NaN and the other is 1215 // a number. 1216 auto leftIsResult = 1217 builder.create<mlir::arith::CmpFOp>(loc, orderedCmp, left, right); 1218 auto rightIsNan = builder.create<mlir::arith::CmpFOp>( 1219 loc, mlir::arith::CmpFPredicate::UNE, right, right); 1220 result = 1221 builder.create<mlir::arith::OrIOp>(loc, leftIsResult, rightIsNan); 1222 } else if constexpr (behavior == ExtremumBehavior::IeeeMinMaximum) { 1223 // Always return NaNs if one the input is NaNs 1224 auto leftIsResult = 1225 builder.create<mlir::arith::CmpFOp>(loc, orderedCmp, left, right); 1226 auto leftIsNan = builder.create<mlir::arith::CmpFOp>( 1227 loc, mlir::arith::CmpFPredicate::UNE, left, left); 1228 result = builder.create<mlir::arith::OrIOp>(loc, leftIsResult, leftIsNan); 1229 } else if constexpr (behavior == ExtremumBehavior::MinMaxss) { 1230 // If the left is a NaN, return the right whatever it is. 1231 result = 1232 builder.create<mlir::arith::CmpFOp>(loc, orderedCmp, left, right); 1233 } else if constexpr (behavior == ExtremumBehavior::PgfortranLlvm) { 1234 // If one of the operand is a NaN, return left whatever it is. 1235 static constexpr auto unorderedCmp = 1236 extremum == Extremum::Max ? mlir::arith::CmpFPredicate::UGT 1237 : mlir::arith::CmpFPredicate::ULT; 1238 result = 1239 builder.create<mlir::arith::CmpFOp>(loc, unorderedCmp, left, right); 1240 } else { 1241 // TODO: ieeeMinNum/ieeeMaxNum 1242 static_assert(behavior == ExtremumBehavior::IeeeMinMaxNum, 1243 "ieeeMinNum/ieeeMaxNum behavior not implemented"); 1244 } 1245 } else if (fir::isa_integer(type)) { 1246 result = 1247 builder.create<mlir::arith::CmpIOp>(loc, integerPredicate, left, right); 1248 } else if (type.isa<fir::CharacterType>()) { 1249 // TODO: ! character min and max is tricky because the result 1250 // length is the length of the longest argument! 1251 // So we may need a temp. 1252 } 1253 assert(result); 1254 return result; 1255 } 1256 1257 // MIN and MAX 1258 template <Extremum extremum, ExtremumBehavior behavior> 1259 mlir::Value IntrinsicLibrary::genExtremum(mlir::Type, 1260 llvm::ArrayRef<mlir::Value> args) { 1261 assert(args.size() >= 1); 1262 mlir::Value result = args[0]; 1263 for (auto arg : args.drop_front()) { 1264 auto mask = 1265 createExtremumCompare<extremum, behavior>(loc, builder, result, arg); 1266 result = builder.create<mlir::SelectOp>(loc, mask, result, arg); 1267 } 1268 return result; 1269 } 1270 1271 //===----------------------------------------------------------------------===// 1272 // Public intrinsic call helpers 1273 //===----------------------------------------------------------------------===// 1274 1275 fir::ExtendedValue 1276 Fortran::lower::genIntrinsicCall(Fortran::lower::FirOpBuilder &builder, 1277 mlir::Location loc, llvm::StringRef name, 1278 mlir::Type resultType, 1279 llvm::ArrayRef<fir::ExtendedValue> args) { 1280 return IntrinsicLibrary{builder, loc}.genIntrinsicCall(name, resultType, 1281 args); 1282 } 1283 1284 mlir::Value Fortran::lower::genMax(Fortran::lower::FirOpBuilder &builder, 1285 mlir::Location loc, 1286 llvm::ArrayRef<mlir::Value> args) { 1287 assert(args.size() > 0 && "max requires at least one argument"); 1288 return IntrinsicLibrary{builder, loc} 1289 .genExtremum<Extremum::Max, ExtremumBehavior::MinMaxss>(args[0].getType(), 1290 args); 1291 } 1292 1293 mlir::Value Fortran::lower::genMin(Fortran::lower::FirOpBuilder &builder, 1294 mlir::Location loc, 1295 llvm::ArrayRef<mlir::Value> args) { 1296 assert(args.size() > 0 && "min requires at least one argument"); 1297 return IntrinsicLibrary{builder, loc} 1298 .genExtremum<Extremum::Min, ExtremumBehavior::MinMaxss>(args[0].getType(), 1299 args); 1300 } 1301 1302 mlir::Value Fortran::lower::genPow(Fortran::lower::FirOpBuilder &builder, 1303 mlir::Location loc, mlir::Type type, 1304 mlir::Value x, mlir::Value y) { 1305 return IntrinsicLibrary{builder, loc}.genRuntimeCall("pow", type, {x, y}); 1306 } 1307 1308 mlir::SymbolRefAttr Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr( 1309 Fortran::lower::FirOpBuilder &builder, mlir::Location loc, 1310 llvm::StringRef name, mlir::FunctionType signature) { 1311 return IntrinsicLibrary{builder, loc}.getUnrestrictedIntrinsicSymbolRefAttr( 1312 name, signature); 1313 } 1314