1 //===-- ConvertVariable.cpp -- bridge to lower to MLIR --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Lower/ConvertVariable.h" 14 #include "flang/Lower/AbstractConverter.h" 15 #include "flang/Lower/Allocatable.h" 16 #include "flang/Lower/BoxAnalyzer.h" 17 #include "flang/Lower/CallInterface.h" 18 #include "flang/Lower/ConvertExpr.h" 19 #include "flang/Lower/IntrinsicCall.h" 20 #include "flang/Lower/Mangler.h" 21 #include "flang/Lower/PFTBuilder.h" 22 #include "flang/Lower/StatementContext.h" 23 #include "flang/Lower/Support/Utils.h" 24 #include "flang/Lower/SymbolMap.h" 25 #include "flang/Lower/Todo.h" 26 #include "flang/Optimizer/Builder/Character.h" 27 #include "flang/Optimizer/Builder/FIRBuilder.h" 28 #include "flang/Optimizer/Builder/Runtime/Derived.h" 29 #include "flang/Optimizer/Dialect/FIRAttr.h" 30 #include "flang/Optimizer/Dialect/FIRDialect.h" 31 #include "flang/Optimizer/Dialect/FIROps.h" 32 #include "flang/Optimizer/Support/FIRContext.h" 33 #include "flang/Optimizer/Support/FatalError.h" 34 #include "flang/Semantics/runtime-type-info.h" 35 #include "flang/Semantics/tools.h" 36 #include "llvm/Support/Debug.h" 37 38 #define DEBUG_TYPE "flang-lower-variable" 39 40 /// Helper to lower a scalar expression using a specific symbol mapping. 41 static mlir::Value genScalarValue(Fortran::lower::AbstractConverter &converter, 42 mlir::Location loc, 43 const Fortran::lower::SomeExpr &expr, 44 Fortran::lower::SymMap &symMap, 45 Fortran::lower::StatementContext &context) { 46 // This does not use the AbstractConverter member function to override the 47 // symbol mapping to be used expression lowering. 48 return fir::getBase(Fortran::lower::createSomeExtendedExpression( 49 loc, converter, expr, symMap, context)); 50 } 51 52 /// Does this variable have a default initialization? 53 static bool hasDefaultInitialization(const Fortran::semantics::Symbol &sym) { 54 if (sym.has<Fortran::semantics::ObjectEntityDetails>() && sym.size()) 55 if (!Fortran::semantics::IsAllocatableOrPointer(sym)) 56 if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType()) 57 if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = 58 declTypeSpec->AsDerived()) 59 return derivedTypeSpec->HasDefaultInitialization(); 60 return false; 61 } 62 63 //===----------------------------------------------------------------===// 64 // Global variables instantiation (not for alias and common) 65 //===----------------------------------------------------------------===// 66 67 /// Helper to generate expression value inside global initializer. 68 static fir::ExtendedValue 69 genInitializerExprValue(Fortran::lower::AbstractConverter &converter, 70 mlir::Location loc, 71 const Fortran::lower::SomeExpr &expr, 72 Fortran::lower::StatementContext &stmtCtx) { 73 // Data initializer are constant value and should not depend on other symbols 74 // given the front-end fold parameter references. In any case, the "current" 75 // map of the converter should not be used since it holds mapping to 76 // mlir::Value from another mlir region. If these value are used by accident 77 // in the initializer, this will lead to segfaults in mlir code. 78 Fortran::lower::SymMap emptyMap; 79 return Fortran::lower::createSomeInitializerExpression(loc, converter, expr, 80 emptyMap, stmtCtx); 81 } 82 83 /// Can this symbol constant be placed in read-only memory? 84 static bool isConstant(const Fortran::semantics::Symbol &sym) { 85 return sym.attrs().test(Fortran::semantics::Attr::PARAMETER) || 86 sym.test(Fortran::semantics::Symbol::Flag::ReadOnly); 87 } 88 89 /// Is this a compiler generated symbol to describe derived types ? 90 static bool isRuntimeTypeInfoData(const Fortran::semantics::Symbol &sym) { 91 // So far, use flags to detect if this symbol were generated during 92 // semantics::BuildRuntimeDerivedTypeTables(). Scope cannot be used since the 93 // symbols are injected in the user scopes defining the described derived 94 // types. A robustness improvement for this test could be to get hands on the 95 // semantics::RuntimeDerivedTypeTables and to check if the symbol names 96 // belongs to this structure. 97 return sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated) && 98 sym.test(Fortran::semantics::Symbol::Flag::ReadOnly); 99 } 100 101 static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter, 102 const Fortran::lower::pft::Variable &var, 103 llvm::StringRef globalName, 104 mlir::StringAttr linkage); 105 106 /// Create the global op declaration without any initializer 107 static fir::GlobalOp declareGlobal(Fortran::lower::AbstractConverter &converter, 108 const Fortran::lower::pft::Variable &var, 109 llvm::StringRef globalName, 110 mlir::StringAttr linkage) { 111 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 112 if (fir::GlobalOp global = builder.getNamedGlobal(globalName)) 113 return global; 114 // Always define linkonce data since it may be optimized out from the module 115 // that actually owns the variable if it does not refers to it. 116 if (linkage == builder.createLinkOnceODRLinkage() || 117 linkage == builder.createLinkOnceLinkage()) 118 return defineGlobal(converter, var, globalName, linkage); 119 const Fortran::semantics::Symbol &sym = var.getSymbol(); 120 mlir::Location loc = converter.genLocation(sym.name()); 121 // Resolve potential host and module association before checking that this 122 // symbol is an object of a function pointer. 123 const Fortran::semantics::Symbol &ultimate = sym.GetUltimate(); 124 if (!ultimate.has<Fortran::semantics::ObjectEntityDetails>() && 125 !Fortran::semantics::IsProcedurePointer(ultimate)) 126 mlir::emitError(loc, "lowering global declaration: symbol '") 127 << toStringRef(sym.name()) << "' has unexpected details\n"; 128 return builder.createGlobal(loc, converter.genType(var), globalName, linkage, 129 mlir::Attribute{}, isConstant(ultimate)); 130 } 131 132 /// Temporary helper to catch todos in initial data target lowering. 133 static bool 134 hasDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) { 135 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) 136 if (const Fortran::semantics::DerivedTypeSpec *derived = 137 declTy->AsDerived()) 138 return Fortran::semantics::CountLenParameters(*derived) > 0; 139 return false; 140 } 141 142 static mlir::Type unwrapElementType(mlir::Type type) { 143 if (mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(type)) 144 type = ty; 145 if (auto seqType = type.dyn_cast<fir::SequenceType>()) 146 type = seqType.getEleTy(); 147 return type; 148 } 149 150 fir::ExtendedValue Fortran::lower::genExtAddrInInitializer( 151 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 152 const Fortran::lower::SomeExpr &addr) { 153 Fortran::lower::SymMap globalOpSymMap; 154 Fortran::lower::AggregateStoreMap storeMap; 155 Fortran::lower::StatementContext stmtCtx; 156 if (const Fortran::semantics::Symbol *sym = 157 Fortran::evaluate::GetFirstSymbol(addr)) { 158 // Length parameters processing will need care in global initializer 159 // context. 160 if (hasDerivedTypeWithLengthParameters(*sym)) 161 TODO(loc, "initial-data-target with derived type length parameters"); 162 163 auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true); 164 Fortran::lower::instantiateVariable(converter, var, globalOpSymMap, 165 storeMap); 166 } 167 return Fortran::lower::createInitializerAddress(loc, converter, addr, 168 globalOpSymMap, stmtCtx); 169 } 170 171 /// create initial-data-target fir.box in a global initializer region. 172 mlir::Value Fortran::lower::genInitialDataTarget( 173 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 174 mlir::Type boxType, const Fortran::lower::SomeExpr &initialTarget) { 175 Fortran::lower::SymMap globalOpSymMap; 176 Fortran::lower::AggregateStoreMap storeMap; 177 Fortran::lower::StatementContext stmtCtx; 178 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 179 if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( 180 initialTarget)) 181 return fir::factory::createUnallocatedBox(builder, loc, boxType, 182 /*nonDeferredParams=*/llvm::None); 183 // Pointer initial data target, and NULL(mold). 184 if (const Fortran::semantics::Symbol *sym = 185 Fortran::evaluate::GetFirstSymbol(initialTarget)) { 186 // Length parameters processing will need care in global initializer 187 // context. 188 if (hasDerivedTypeWithLengthParameters(*sym)) 189 TODO(loc, "initial-data-target with derived type length parameters"); 190 191 auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true); 192 Fortran::lower::instantiateVariable(converter, var, globalOpSymMap, 193 storeMap); 194 } 195 mlir::Value box; 196 if (initialTarget.Rank() > 0) { 197 box = fir::getBase(Fortran::lower::createSomeArrayBox( 198 converter, initialTarget, globalOpSymMap, stmtCtx)); 199 } else { 200 fir::ExtendedValue addr = Fortran::lower::createInitializerAddress( 201 loc, converter, initialTarget, globalOpSymMap, stmtCtx); 202 box = builder.createBox(loc, addr); 203 } 204 // box is a fir.box<T>, not a fir.box<fir.ptr<T>> as it should to be used 205 // for pointers. A fir.convert should not be used here, because it would 206 // not actually set the pointer attribute in the descriptor. 207 // In a normal context, fir.rebox would be used to set the pointer attribute 208 // while copying the projection from another fir.box. But fir.rebox cannot be 209 // used in initializer because its current codegen expects that the input 210 // fir.box is in memory, which is not the case in initializers. 211 // So, just replace the fir.embox that created addr with one with 212 // fir.box<fir.ptr<T>> result type. 213 // Note that the descriptor cannot have been created with fir.rebox because 214 // the initial-data-target cannot be a fir.box itself (it cannot be 215 // assumed-shape, deferred-shape, or polymorphic as per C765). However the 216 // case where the initial data target is a derived type with length parameters 217 // will most likely be a bit trickier, hence the TODO above. 218 219 mlir::Operation *op = box.getDefiningOp(); 220 if (!op || !mlir::isa<fir::EmboxOp>(*op)) 221 fir::emitFatalError( 222 loc, "fir.box must be created with embox in global initializers"); 223 mlir::Type targetEleTy = unwrapElementType(box.getType()); 224 if (!fir::isa_char(targetEleTy)) 225 return builder.create<fir::EmboxOp>(loc, boxType, op->getOperands(), 226 op->getAttrs()); 227 228 // Handle the character case length particularities: embox takes a length 229 // value argument when the result type has unknown length, but not when the 230 // result type has constant length. The type of the initial target must be 231 // constant length, but the one of the pointer may not be. In this case, a 232 // length operand must be added. 233 auto targetLen = targetEleTy.cast<fir::CharacterType>().getLen(); 234 auto ptrLen = unwrapElementType(boxType).cast<fir::CharacterType>().getLen(); 235 if (ptrLen == targetLen) 236 // Nothing to do 237 return builder.create<fir::EmboxOp>(loc, boxType, op->getOperands(), 238 op->getAttrs()); 239 auto embox = mlir::cast<fir::EmboxOp>(*op); 240 auto ptrType = boxType.cast<fir::BoxType>().getEleTy(); 241 mlir::Value memref = builder.createConvert(loc, ptrType, embox.getMemref()); 242 if (targetLen == fir::CharacterType::unknownLen()) 243 // Drop the length argument. 244 return builder.create<fir::EmboxOp>(loc, boxType, memref, embox.getShape(), 245 embox.getSlice()); 246 // targetLen is constant and ptrLen is unknown. Add a length argument. 247 mlir::Value targetLenValue = 248 builder.createIntegerConstant(loc, builder.getIndexType(), targetLen); 249 return builder.create<fir::EmboxOp>(loc, boxType, memref, embox.getShape(), 250 embox.getSlice(), 251 mlir::ValueRange{targetLenValue}); 252 } 253 254 static mlir::Value genDefaultInitializerValue( 255 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 256 const Fortran::semantics::Symbol &sym, mlir::Type symTy, 257 Fortran::lower::StatementContext &stmtCtx) { 258 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 259 mlir::Type scalarType = symTy; 260 fir::SequenceType sequenceType; 261 if (auto ty = symTy.dyn_cast<fir::SequenceType>()) { 262 sequenceType = ty; 263 scalarType = ty.getEleTy(); 264 } 265 // Build a scalar default value of the symbol type, looping through the 266 // components to build each component initial value. 267 auto recTy = scalarType.cast<fir::RecordType>(); 268 auto fieldTy = fir::FieldType::get(scalarType.getContext()); 269 mlir::Value initialValue = builder.create<fir::UndefOp>(loc, scalarType); 270 const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType(); 271 assert(declTy && "var with default initialization must have a type"); 272 Fortran::semantics::OrderedComponentIterator components( 273 declTy->derivedTypeSpec()); 274 for (const auto &component : components) { 275 // Skip parent components, the sub-components of parent types are part of 276 // components and will be looped through right after. 277 if (component.test(Fortran::semantics::Symbol::Flag::ParentComp)) 278 continue; 279 mlir::Value componentValue; 280 llvm::StringRef name = toStringRef(component.name()); 281 mlir::Type componentTy = recTy.getType(name); 282 assert(componentTy && "component not found in type"); 283 if (const auto *object{ 284 component.detailsIf<Fortran::semantics::ObjectEntityDetails>()}) { 285 if (const auto &init = object->init()) { 286 // Component has explicit initialization. 287 if (Fortran::semantics::IsPointer(component)) 288 // Initial data target. 289 componentValue = 290 genInitialDataTarget(converter, loc, componentTy, *init); 291 else 292 // Initial value. 293 componentValue = fir::getBase( 294 genInitializerExprValue(converter, loc, *init, stmtCtx)); 295 } else if (Fortran::semantics::IsAllocatableOrPointer(component)) { 296 // Pointer or allocatable without initialization. 297 // Create deallocated/disassociated value. 298 // From a standard point of view, pointer without initialization do not 299 // need to be disassociated, but for sanity and simplicity, do it in 300 // global constructor since this has no runtime cost. 301 componentValue = fir::factory::createUnallocatedBox( 302 builder, loc, componentTy, llvm::None); 303 } else if (hasDefaultInitialization(component)) { 304 // Component type has default initialization. 305 componentValue = genDefaultInitializerValue(converter, loc, component, 306 componentTy, stmtCtx); 307 } else { 308 // Component has no initial value. 309 componentValue = builder.create<fir::UndefOp>(loc, componentTy); 310 } 311 } else if (const auto *proc{ 312 component 313 .detailsIf<Fortran::semantics::ProcEntityDetails>()}) { 314 if (proc->init().has_value()) 315 TODO(loc, "procedure pointer component default initialization"); 316 else 317 componentValue = builder.create<fir::UndefOp>(loc, componentTy); 318 } 319 assert(componentValue && "must have been computed"); 320 componentValue = builder.createConvert(loc, componentTy, componentValue); 321 // FIXME: type parameters must come from the derived-type-spec 322 auto field = builder.create<fir::FieldIndexOp>( 323 loc, fieldTy, name, scalarType, 324 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 325 initialValue = builder.create<fir::InsertValueOp>( 326 loc, recTy, initialValue, componentValue, 327 builder.getArrayAttr(field.getAttributes())); 328 } 329 330 if (sequenceType) { 331 // For arrays, duplicate the scalar value to all elements with an 332 // fir.insert_range covering the whole array. 333 auto arrayInitialValue = builder.create<fir::UndefOp>(loc, sequenceType); 334 llvm::SmallVector<int64_t> rangeBounds; 335 for (int64_t extent : sequenceType.getShape()) { 336 if (extent == fir::SequenceType::getUnknownExtent()) 337 TODO(loc, 338 "default initial value of array component with length parameters"); 339 rangeBounds.push_back(0); 340 rangeBounds.push_back(extent - 1); 341 } 342 return builder.create<fir::InsertOnRangeOp>( 343 loc, sequenceType, arrayInitialValue, initialValue, 344 builder.getIndexVectorAttr(rangeBounds)); 345 } 346 return initialValue; 347 } 348 349 /// Does this global already have an initializer ? 350 static bool globalIsInitialized(fir::GlobalOp global) { 351 return !global.getRegion().empty() || global.getInitVal(); 352 } 353 354 /// Call \p genInit to generate code inside \p global initializer region. 355 static void 356 createGlobalInitialization(fir::FirOpBuilder &builder, fir::GlobalOp global, 357 std::function<void(fir::FirOpBuilder &)> genInit) { 358 mlir::Region ®ion = global.getRegion(); 359 region.push_back(new mlir::Block); 360 mlir::Block &block = region.back(); 361 auto insertPt = builder.saveInsertionPoint(); 362 builder.setInsertionPointToStart(&block); 363 genInit(builder); 364 builder.restoreInsertionPoint(insertPt); 365 } 366 367 /// Create the global op and its init if it has one 368 static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter, 369 const Fortran::lower::pft::Variable &var, 370 llvm::StringRef globalName, 371 mlir::StringAttr linkage) { 372 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 373 const Fortran::semantics::Symbol &sym = var.getSymbol(); 374 mlir::Location loc = converter.genLocation(sym.name()); 375 bool isConst = isConstant(sym); 376 fir::GlobalOp global = builder.getNamedGlobal(globalName); 377 mlir::Type symTy = converter.genType(var); 378 379 if (global && globalIsInitialized(global)) 380 return global; 381 382 if (Fortran::semantics::IsProcedurePointer(sym)) 383 TODO(loc, "procedure pointer globals"); 384 385 // If this is an array, check to see if we can use a dense attribute 386 // with a tensor mlir type. This optimization currently only supports 387 // rank-1 Fortran arrays of integer, real, or logical. The tensor 388 // type does not support nested structures which are needed for 389 // complex numbers. 390 // To get multidimensional arrays to work, we will have to use column major 391 // array ordering with the tensor type (so it matches column major ordering 392 // with the Fortran fir.array). By default, tensor types assume row major 393 // ordering. How to create this tensor type is to be determined. 394 if (symTy.isa<fir::SequenceType>() && sym.Rank() == 1 && 395 !Fortran::semantics::IsAllocatableOrPointer(sym)) { 396 mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy(); 397 if (eleTy.isa<mlir::IntegerType, mlir::FloatType, fir::LogicalType>()) { 398 const auto *details = 399 sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); 400 if (details->init()) { 401 global = Fortran::lower::createDenseGlobal( 402 loc, symTy, globalName, linkage, isConst, details->init().value(), 403 converter); 404 if (global) { 405 global.setVisibility(mlir::SymbolTable::Visibility::Public); 406 return global; 407 } 408 } 409 } 410 } 411 if (!global) 412 global = builder.createGlobal(loc, symTy, globalName, linkage, 413 mlir::Attribute{}, isConst); 414 if (Fortran::semantics::IsAllocatableOrPointer(sym)) { 415 const auto *details = 416 sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); 417 if (details && details->init()) { 418 auto expr = *details->init(); 419 createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { 420 mlir::Value box = 421 Fortran::lower::genInitialDataTarget(converter, loc, symTy, expr); 422 b.create<fir::HasValueOp>(loc, box); 423 }); 424 } else { 425 // Create unallocated/disassociated descriptor if no explicit init 426 createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { 427 mlir::Value box = 428 fir::factory::createUnallocatedBox(b, loc, symTy, llvm::None); 429 b.create<fir::HasValueOp>(loc, box); 430 }); 431 } 432 433 } else if (const auto *details = 434 sym.detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 435 if (details->init()) { 436 createGlobalInitialization( 437 builder, global, [&](fir::FirOpBuilder &builder) { 438 Fortran::lower::StatementContext stmtCtx( 439 /*cleanupProhibited=*/true); 440 fir::ExtendedValue initVal = genInitializerExprValue( 441 converter, loc, details->init().value(), stmtCtx); 442 mlir::Value castTo = 443 builder.createConvert(loc, symTy, fir::getBase(initVal)); 444 builder.create<fir::HasValueOp>(loc, castTo); 445 }); 446 } else if (hasDefaultInitialization(sym)) { 447 createGlobalInitialization( 448 builder, global, [&](fir::FirOpBuilder &builder) { 449 Fortran::lower::StatementContext stmtCtx( 450 /*cleanupProhibited=*/true); 451 mlir::Value initVal = 452 genDefaultInitializerValue(converter, loc, sym, symTy, stmtCtx); 453 mlir::Value castTo = builder.createConvert(loc, symTy, initVal); 454 builder.create<fir::HasValueOp>(loc, castTo); 455 }); 456 } 457 } else if (sym.has<Fortran::semantics::CommonBlockDetails>()) { 458 mlir::emitError(loc, "COMMON symbol processed elsewhere"); 459 } else { 460 TODO(loc, "global"); // Procedure pointer or something else 461 } 462 // Creates undefined initializer for globals without initializers 463 if (!globalIsInitialized(global)) 464 createGlobalInitialization( 465 builder, global, [&](fir::FirOpBuilder &builder) { 466 builder.create<fir::HasValueOp>( 467 loc, builder.create<fir::UndefOp>(loc, symTy)); 468 }); 469 // Set public visibility to prevent global definition to be optimized out 470 // even if they have no initializer and are unused in this compilation unit. 471 global.setVisibility(mlir::SymbolTable::Visibility::Public); 472 return global; 473 } 474 475 /// Return linkage attribute for \p var. 476 static mlir::StringAttr 477 getLinkageAttribute(fir::FirOpBuilder &builder, 478 const Fortran::lower::pft::Variable &var) { 479 // Runtime type info for a same derived type is identical in each compilation 480 // unit. It desired to avoid having to link against module that only define a 481 // type. Therefore the runtime type info is generated everywhere it is needed 482 // with `linkonce_odr` LLVM linkage. 483 if (var.hasSymbol() && isRuntimeTypeInfoData(var.getSymbol())) 484 return builder.createLinkOnceODRLinkage(); 485 if (var.isModuleVariable()) 486 return {}; // external linkage 487 // Otherwise, the variable is owned by a procedure and must not be visible in 488 // other compilation units. 489 return builder.createInternalLinkage(); 490 } 491 492 /// Instantiate a global variable. If it hasn't already been processed, add 493 /// the global to the ModuleOp as a new uniqued symbol and initialize it with 494 /// the correct value. It will be referenced on demand using `fir.addr_of`. 495 static void instantiateGlobal(Fortran::lower::AbstractConverter &converter, 496 const Fortran::lower::pft::Variable &var, 497 Fortran::lower::SymMap &symMap) { 498 const Fortran::semantics::Symbol &sym = var.getSymbol(); 499 assert(!var.isAlias() && "must be handled in instantiateAlias"); 500 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 501 std::string globalName = Fortran::lower::mangle::mangleName(sym); 502 mlir::Location loc = converter.genLocation(sym.name()); 503 fir::GlobalOp global = builder.getNamedGlobal(globalName); 504 mlir::StringAttr linkage = getLinkageAttribute(builder, var); 505 if (var.isModuleVariable()) { 506 // A module global was or will be defined when lowering the module. Emit 507 // only a declaration if the global does not exist at that point. 508 global = declareGlobal(converter, var, globalName, linkage); 509 } else { 510 global = defineGlobal(converter, var, globalName, linkage); 511 } 512 auto addrOf = builder.create<fir::AddrOfOp>(loc, global.resultType(), 513 global.getSymbol()); 514 Fortran::lower::StatementContext stmtCtx; 515 mapSymbolAttributes(converter, var, symMap, stmtCtx, addrOf); 516 } 517 518 //===----------------------------------------------------------------===// 519 // Local variables instantiation (not for alias) 520 //===----------------------------------------------------------------===// 521 522 /// Create a stack slot for a local variable. Precondition: the insertion 523 /// point of the builder must be in the entry block, which is currently being 524 /// constructed. 525 static mlir::Value createNewLocal(Fortran::lower::AbstractConverter &converter, 526 mlir::Location loc, 527 const Fortran::lower::pft::Variable &var, 528 mlir::Value preAlloc, 529 llvm::ArrayRef<mlir::Value> shape = {}, 530 llvm::ArrayRef<mlir::Value> lenParams = {}) { 531 if (preAlloc) 532 return preAlloc; 533 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 534 std::string nm = Fortran::lower::mangle::mangleName(var.getSymbol()); 535 mlir::Type ty = converter.genType(var); 536 const Fortran::semantics::Symbol &ultimateSymbol = 537 var.getSymbol().GetUltimate(); 538 llvm::StringRef symNm = toStringRef(ultimateSymbol.name()); 539 bool isTarg = var.isTarget(); 540 // Let the builder do all the heavy lifting. 541 return builder.allocateLocal(loc, ty, nm, symNm, shape, lenParams, isTarg); 542 } 543 544 /// Must \p var be default initialized at runtime when entering its scope. 545 static bool 546 mustBeDefaultInitializedAtRuntime(const Fortran::lower::pft::Variable &var) { 547 if (!var.hasSymbol()) 548 return false; 549 const Fortran::semantics::Symbol &sym = var.getSymbol(); 550 if (var.isGlobal()) 551 // Global variables are statically initialized. 552 return false; 553 if (Fortran::semantics::IsDummy(sym) && !Fortran::semantics::IsIntentOut(sym)) 554 return false; 555 // Local variables (including function results), and intent(out) dummies must 556 // be default initialized at runtime if their type has default initialization. 557 return hasDefaultInitialization(sym); 558 } 559 560 /// Call default initialization runtime routine to initialize \p var. 561 static void 562 defaultInitializeAtRuntime(Fortran::lower::AbstractConverter &converter, 563 const Fortran::lower::pft::Variable &var, 564 Fortran::lower::SymMap &symMap) { 565 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 566 mlir::Location loc = converter.getCurrentLocation(); 567 const Fortran::semantics::Symbol &sym = var.getSymbol(); 568 fir::ExtendedValue exv = symMap.lookupSymbol(sym).toExtendedValue(); 569 if (Fortran::semantics::IsOptional(sym)) { 570 // 15.5.2.12 point 3, absent optional dummies are not initialized. 571 // Creating descriptor/passing null descriptor to the runtime would 572 // create runtime crashes. 573 auto isPresent = builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), 574 fir::getBase(exv)); 575 builder.genIfThen(loc, isPresent) 576 .genThen([&]() { 577 auto box = builder.createBox(loc, exv); 578 fir::runtime::genDerivedTypeInitialize(builder, loc, box); 579 }) 580 .end(); 581 } else { 582 mlir::Value box = builder.createBox(loc, exv); 583 fir::runtime::genDerivedTypeInitialize(builder, loc, box); 584 } 585 } 586 587 /// Instantiate a local variable. Precondition: Each variable will be visited 588 /// such that if its properties depend on other variables, the variables upon 589 /// which its properties depend will already have been visited. 590 static void instantiateLocal(Fortran::lower::AbstractConverter &converter, 591 const Fortran::lower::pft::Variable &var, 592 Fortran::lower::SymMap &symMap) { 593 assert(!var.isAlias()); 594 Fortran::lower::StatementContext stmtCtx; 595 mapSymbolAttributes(converter, var, symMap, stmtCtx); 596 if (mustBeDefaultInitializedAtRuntime(var)) 597 defaultInitializeAtRuntime(converter, var, symMap); 598 } 599 600 //===----------------------------------------------------------------===// 601 // Aliased (EQUIVALENCE) variables instantiation 602 //===----------------------------------------------------------------===// 603 604 /// Insert \p aggregateStore instance into an AggregateStoreMap. 605 static void insertAggregateStore(Fortran::lower::AggregateStoreMap &storeMap, 606 const Fortran::lower::pft::Variable &var, 607 mlir::Value aggregateStore) { 608 std::size_t off = var.getAggregateStore().getOffset(); 609 Fortran::lower::AggregateStoreKey key = {var.getOwningScope(), off}; 610 storeMap[key] = aggregateStore; 611 } 612 613 /// Retrieve the aggregate store instance of \p alias from an 614 /// AggregateStoreMap. 615 static mlir::Value 616 getAggregateStore(Fortran::lower::AggregateStoreMap &storeMap, 617 const Fortran::lower::pft::Variable &alias) { 618 Fortran::lower::AggregateStoreKey key = {alias.getOwningScope(), 619 alias.getAlias()}; 620 auto iter = storeMap.find(key); 621 assert(iter != storeMap.end()); 622 return iter->second; 623 } 624 625 /// Build the name for the storage of a global equivalence. 626 static std::string mangleGlobalAggregateStore( 627 const Fortran::lower::pft::Variable::AggregateStore &st) { 628 return Fortran::lower::mangle::mangleName(st.getNamingSymbol()); 629 } 630 631 /// Build the type for the storage of an equivalence. 632 static mlir::Type 633 getAggregateType(Fortran::lower::AbstractConverter &converter, 634 const Fortran::lower::pft::Variable::AggregateStore &st) { 635 if (const Fortran::semantics::Symbol *initSym = st.getInitialValueSymbol()) 636 return converter.genType(*initSym); 637 mlir::IntegerType byteTy = converter.getFirOpBuilder().getIntegerType(8); 638 return fir::SequenceType::get(std::get<1>(st.interval), byteTy); 639 } 640 641 /// Define a GlobalOp for the storage of a global equivalence described 642 /// by \p aggregate. The global is named \p aggName and is created with 643 /// the provided \p linkage. 644 /// If any of the equivalence members are initialized, an initializer is 645 /// created for the equivalence. 646 /// This is to be used when lowering the scope that owns the equivalence 647 /// (as opposed to simply using it through host or use association). 648 /// This is not to be used for equivalence of common block members (they 649 /// already have the common block GlobalOp for them, see defineCommonBlock). 650 static fir::GlobalOp defineGlobalAggregateStore( 651 Fortran::lower::AbstractConverter &converter, 652 const Fortran::lower::pft::Variable::AggregateStore &aggregate, 653 llvm::StringRef aggName, mlir::StringAttr linkage) { 654 assert(aggregate.isGlobal() && "not a global interval"); 655 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 656 fir::GlobalOp global = builder.getNamedGlobal(aggName); 657 if (global && globalIsInitialized(global)) 658 return global; 659 mlir::Location loc = converter.getCurrentLocation(); 660 mlir::Type aggTy = getAggregateType(converter, aggregate); 661 if (!global) 662 global = builder.createGlobal(loc, aggTy, aggName, linkage); 663 664 if (const Fortran::semantics::Symbol *initSym = 665 aggregate.getInitialValueSymbol()) 666 if (const auto *objectDetails = 667 initSym->detailsIf<Fortran::semantics::ObjectEntityDetails>()) 668 if (objectDetails->init()) { 669 createGlobalInitialization( 670 builder, global, [&](fir::FirOpBuilder &builder) { 671 Fortran::lower::StatementContext stmtCtx; 672 mlir::Value initVal = fir::getBase(genInitializerExprValue( 673 converter, loc, objectDetails->init().value(), stmtCtx)); 674 builder.create<fir::HasValueOp>(loc, initVal); 675 }); 676 return global; 677 } 678 // Equivalence has no Fortran initial value. Create an undefined FIR initial 679 // value to ensure this is consider an object definition in the IR regardless 680 // of the linkage. 681 createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &builder) { 682 Fortran::lower::StatementContext stmtCtx; 683 mlir::Value initVal = builder.create<fir::UndefOp>(loc, aggTy); 684 builder.create<fir::HasValueOp>(loc, initVal); 685 }); 686 return global; 687 } 688 689 /// Declare a GlobalOp for the storage of a global equivalence described 690 /// by \p aggregate. The global is named \p aggName and is created with 691 /// the provided \p linkage. 692 /// No initializer is built for the created GlobalOp. 693 /// This is to be used when lowering the scope that uses members of an 694 /// equivalence it through host or use association. 695 /// This is not to be used for equivalence of common block members (they 696 /// already have the common block GlobalOp for them, see defineCommonBlock). 697 static fir::GlobalOp declareGlobalAggregateStore( 698 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 699 const Fortran::lower::pft::Variable::AggregateStore &aggregate, 700 llvm::StringRef aggName, mlir::StringAttr linkage) { 701 assert(aggregate.isGlobal() && "not a global interval"); 702 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 703 if (fir::GlobalOp global = builder.getNamedGlobal(aggName)) 704 return global; 705 mlir::Type aggTy = getAggregateType(converter, aggregate); 706 return builder.createGlobal(loc, aggTy, aggName, linkage); 707 } 708 709 /// This is an aggregate store for a set of EQUIVALENCED variables. Create the 710 /// storage on the stack or global memory and add it to the map. 711 static void 712 instantiateAggregateStore(Fortran::lower::AbstractConverter &converter, 713 const Fortran::lower::pft::Variable &var, 714 Fortran::lower::AggregateStoreMap &storeMap) { 715 assert(var.isAggregateStore() && "not an interval"); 716 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 717 mlir::IntegerType i8Ty = builder.getIntegerType(8); 718 mlir::Location loc = converter.getCurrentLocation(); 719 std::string aggName = mangleGlobalAggregateStore(var.getAggregateStore()); 720 if (var.isGlobal()) { 721 fir::GlobalOp global; 722 auto &aggregate = var.getAggregateStore(); 723 mlir::StringAttr linkage = getLinkageAttribute(builder, var); 724 if (var.isModuleVariable()) { 725 // A module global was or will be defined when lowering the module. Emit 726 // only a declaration if the global does not exist at that point. 727 global = declareGlobalAggregateStore(converter, loc, aggregate, aggName, 728 linkage); 729 } else { 730 global = 731 defineGlobalAggregateStore(converter, aggregate, aggName, linkage); 732 } 733 auto addr = builder.create<fir::AddrOfOp>(loc, global.resultType(), 734 global.getSymbol()); 735 auto size = std::get<1>(var.getInterval()); 736 fir::SequenceType::Shape shape(1, size); 737 auto seqTy = fir::SequenceType::get(shape, i8Ty); 738 mlir::Type refTy = builder.getRefType(seqTy); 739 mlir::Value aggregateStore = builder.createConvert(loc, refTy, addr); 740 insertAggregateStore(storeMap, var, aggregateStore); 741 return; 742 } 743 // This is a local aggregate, allocate an anonymous block of memory. 744 auto size = std::get<1>(var.getInterval()); 745 fir::SequenceType::Shape shape(1, size); 746 auto seqTy = fir::SequenceType::get(shape, i8Ty); 747 mlir::Value local = 748 builder.allocateLocal(loc, seqTy, aggName, "", llvm::None, llvm::None, 749 /*target=*/false); 750 insertAggregateStore(storeMap, var, local); 751 } 752 753 /// Cast an alias address (variable part of an equivalence) to fir.ptr so that 754 /// the optimizer is conservative and avoids doing copy elision in assignment 755 /// involving equivalenced variables. 756 /// TODO: Represent the equivalence aliasing constraint in another way to avoid 757 /// pessimizing array assignments involving equivalenced variables. 758 static mlir::Value castAliasToPointer(fir::FirOpBuilder &builder, 759 mlir::Location loc, mlir::Type aliasType, 760 mlir::Value aliasAddr) { 761 return builder.createConvert(loc, fir::PointerType::get(aliasType), 762 aliasAddr); 763 } 764 765 /// Instantiate a member of an equivalence. Compute its address in its 766 /// aggregate storage and lower its attributes. 767 static void instantiateAlias(Fortran::lower::AbstractConverter &converter, 768 const Fortran::lower::pft::Variable &var, 769 Fortran::lower::SymMap &symMap, 770 Fortran::lower::AggregateStoreMap &storeMap) { 771 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 772 assert(var.isAlias()); 773 const Fortran::semantics::Symbol &sym = var.getSymbol(); 774 const mlir::Location loc = converter.genLocation(sym.name()); 775 mlir::IndexType idxTy = builder.getIndexType(); 776 std::size_t aliasOffset = var.getAlias(); 777 mlir::Value store = getAggregateStore(storeMap, var); 778 mlir::IntegerType i8Ty = builder.getIntegerType(8); 779 mlir::Type i8Ptr = builder.getRefType(i8Ty); 780 mlir::Value offset = builder.createIntegerConstant( 781 loc, idxTy, sym.GetUltimate().offset() - aliasOffset); 782 auto ptr = builder.create<fir::CoordinateOp>(loc, i8Ptr, store, 783 mlir::ValueRange{offset}); 784 mlir::Value preAlloc = 785 castAliasToPointer(builder, loc, converter.genType(sym), ptr); 786 Fortran::lower::StatementContext stmtCtx; 787 mapSymbolAttributes(converter, var, symMap, stmtCtx, preAlloc); 788 // Default initialization is possible for equivalence members: see 789 // F2018 19.5.3.4. Note that if several equivalenced entities have 790 // default initialization, they must have the same type, and the standard 791 // allows the storage to be default initialized several times (this has 792 // no consequences other than wasting some execution time). For now, 793 // do not try optimizing this to single default initializations of 794 // the equivalenced storages. Keep lowering simple. 795 if (mustBeDefaultInitializedAtRuntime(var)) 796 defaultInitializeAtRuntime(converter, var, symMap); 797 } 798 799 //===--------------------------------------------------------------===// 800 // COMMON blocks instantiation 801 //===--------------------------------------------------------------===// 802 803 /// Does any member of the common block has an initializer ? 804 static bool 805 commonBlockHasInit(const Fortran::semantics::MutableSymbolVector &cmnBlkMems) { 806 for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { 807 if (const auto *memDet = 808 mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) 809 if (memDet->init()) 810 return true; 811 } 812 return false; 813 } 814 815 /// Build a tuple type for a common block based on the common block 816 /// members and the common block size. 817 /// This type is only needed to build common block initializers where 818 /// the initial value is the collection of the member initial values. 819 static mlir::TupleType getTypeOfCommonWithInit( 820 Fortran::lower::AbstractConverter &converter, 821 const Fortran::semantics::MutableSymbolVector &cmnBlkMems, 822 std::size_t commonSize) { 823 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 824 llvm::SmallVector<mlir::Type> members; 825 std::size_t counter = 0; 826 for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { 827 if (const auto *memDet = 828 mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 829 if (mem->offset() > counter) { 830 fir::SequenceType::Shape len = { 831 static_cast<fir::SequenceType::Extent>(mem->offset() - counter)}; 832 mlir::IntegerType byteTy = builder.getIntegerType(8); 833 auto memTy = fir::SequenceType::get(len, byteTy); 834 members.push_back(memTy); 835 counter = mem->offset(); 836 } 837 if (memDet->init()) { 838 mlir::Type memTy = converter.genType(*mem); 839 members.push_back(memTy); 840 counter = mem->offset() + mem->size(); 841 } 842 } 843 } 844 if (counter < commonSize) { 845 fir::SequenceType::Shape len = { 846 static_cast<fir::SequenceType::Extent>(commonSize - counter)}; 847 mlir::IntegerType byteTy = builder.getIntegerType(8); 848 auto memTy = fir::SequenceType::get(len, byteTy); 849 members.push_back(memTy); 850 } 851 return mlir::TupleType::get(builder.getContext(), members); 852 } 853 854 /// Common block members may have aliases. They are not in the common block 855 /// member list from the symbol. We need to know about these aliases if they 856 /// have initializer to generate the common initializer. 857 /// This function takes care of adding aliases with initializer to the member 858 /// list. 859 static Fortran::semantics::MutableSymbolVector 860 getCommonMembersWithInitAliases(const Fortran::semantics::Symbol &common) { 861 const auto &commonDetails = 862 common.get<Fortran::semantics::CommonBlockDetails>(); 863 auto members = commonDetails.objects(); 864 865 // The number and size of equivalence and common is expected to be small, so 866 // no effort is given to optimize this loop of complexity equivalenced 867 // common members * common members 868 for (const Fortran::semantics::EquivalenceSet &set : 869 common.owner().equivalenceSets()) 870 for (const Fortran::semantics::EquivalenceObject &obj : set) { 871 if (!obj.symbol.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) { 872 if (const auto &details = 873 obj.symbol 874 .detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 875 const Fortran::semantics::Symbol *com = 876 FindCommonBlockContaining(obj.symbol); 877 if (!details->init() || com != &common) 878 continue; 879 // This is an alias with an init that belongs to the list 880 if (std::find(members.begin(), members.end(), obj.symbol) == 881 members.end()) 882 members.emplace_back(obj.symbol); 883 } 884 } 885 } 886 return members; 887 } 888 889 /// Return the fir::GlobalOp that was created of COMMON block \p common. 890 /// It is an error if the fir::GlobalOp was not created before this is 891 /// called (it cannot be created on the flight because it is not known here 892 /// what mlir type the GlobalOp should have to satisfy all the 893 /// appearances in the program). 894 static fir::GlobalOp 895 getCommonBlockGlobal(Fortran::lower::AbstractConverter &converter, 896 const Fortran::semantics::Symbol &common) { 897 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 898 std::string commonName = Fortran::lower::mangle::mangleName(common); 899 fir::GlobalOp global = builder.getNamedGlobal(commonName); 900 // Common blocks are lowered before any subprograms to deal with common 901 // whose size may not be the same in every subprograms. 902 if (!global) 903 fir::emitFatalError(converter.genLocation(common.name()), 904 "COMMON block was not lowered before its usage"); 905 return global; 906 } 907 908 /// Create the fir::GlobalOp for COMMON block \p common. If \p common has an 909 /// initial value, it is not created yet. Instead, the common block list 910 /// members is returned to later create the initial value in 911 /// finalizeCommonBlockDefinition. 912 static std::optional<std::tuple< 913 fir::GlobalOp, Fortran::semantics::MutableSymbolVector, mlir::Location>> 914 declareCommonBlock(Fortran::lower::AbstractConverter &converter, 915 const Fortran::semantics::Symbol &common, 916 std::size_t commonSize) { 917 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 918 std::string commonName = Fortran::lower::mangle::mangleName(common); 919 fir::GlobalOp global = builder.getNamedGlobal(commonName); 920 if (global) 921 return std::nullopt; 922 Fortran::semantics::MutableSymbolVector cmnBlkMems = 923 getCommonMembersWithInitAliases(common); 924 mlir::Location loc = converter.genLocation(common.name()); 925 mlir::StringAttr linkage = builder.createCommonLinkage(); 926 if (!commonBlockHasInit(cmnBlkMems)) { 927 // A COMMON block sans initializers is initialized to zero. 928 // mlir::Vector types must have a strictly positive size, so at least 929 // temporarily, force a zero size COMMON block to have one byte. 930 const auto sz = 931 static_cast<fir::SequenceType::Extent>(commonSize > 0 ? commonSize : 1); 932 fir::SequenceType::Shape shape = {sz}; 933 mlir::IntegerType i8Ty = builder.getIntegerType(8); 934 auto commonTy = fir::SequenceType::get(shape, i8Ty); 935 auto vecTy = mlir::VectorType::get(sz, i8Ty); 936 mlir::Attribute zero = builder.getIntegerAttr(i8Ty, 0); 937 auto init = mlir::DenseElementsAttr::get(vecTy, llvm::makeArrayRef(zero)); 938 builder.createGlobal(loc, commonTy, commonName, linkage, init); 939 // No need to add any initial value later. 940 return std::nullopt; 941 } 942 // COMMON block with initializer (note that initialized blank common are 943 // accepted as an extension by semantics). Sort members by offset before 944 // generating the type and initializer. 945 std::sort(cmnBlkMems.begin(), cmnBlkMems.end(), 946 [](auto &s1, auto &s2) { return s1->offset() < s2->offset(); }); 947 mlir::TupleType commonTy = 948 getTypeOfCommonWithInit(converter, cmnBlkMems, commonSize); 949 // Create the global object, the initial value will be added later. 950 global = builder.createGlobal(loc, commonTy, commonName); 951 return std::make_tuple(global, std::move(cmnBlkMems), loc); 952 } 953 954 /// Add initial value to a COMMON block fir::GlobalOp \p global given the list 955 /// \p cmnBlkMems of the common block member symbols that contains symbols with 956 /// an initial value. 957 static void finalizeCommonBlockDefinition( 958 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 959 fir::GlobalOp global, 960 const Fortran::semantics::MutableSymbolVector &cmnBlkMems) { 961 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 962 mlir::TupleType commonTy = global.getType().cast<mlir::TupleType>(); 963 auto initFunc = [&](fir::FirOpBuilder &builder) { 964 mlir::IndexType idxTy = builder.getIndexType(); 965 mlir::Value cb = builder.create<fir::UndefOp>(loc, commonTy); 966 unsigned tupIdx = 0; 967 std::size_t offset = 0; 968 LLVM_DEBUG(llvm::dbgs() << "block {\n"); 969 for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { 970 if (const auto *memDet = 971 mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 972 if (mem->offset() > offset) { 973 ++tupIdx; 974 offset = mem->offset(); 975 } 976 if (memDet->init()) { 977 LLVM_DEBUG(llvm::dbgs() 978 << "offset: " << mem->offset() << " is " << *mem << '\n'); 979 Fortran::lower::StatementContext stmtCtx; 980 auto initExpr = memDet->init().value(); 981 fir::ExtendedValue initVal = 982 Fortran::semantics::IsPointer(*mem) 983 ? Fortran::lower::genInitialDataTarget( 984 converter, loc, converter.genType(*mem), initExpr) 985 : genInitializerExprValue(converter, loc, initExpr, stmtCtx); 986 mlir::IntegerAttr offVal = builder.getIntegerAttr(idxTy, tupIdx); 987 mlir::Value castVal = builder.createConvert( 988 loc, commonTy.getType(tupIdx), fir::getBase(initVal)); 989 cb = builder.create<fir::InsertValueOp>(loc, commonTy, cb, castVal, 990 builder.getArrayAttr(offVal)); 991 ++tupIdx; 992 offset = mem->offset() + mem->size(); 993 } 994 } 995 } 996 LLVM_DEBUG(llvm::dbgs() << "}\n"); 997 builder.create<fir::HasValueOp>(loc, cb); 998 }; 999 createGlobalInitialization(builder, global, initFunc); 1000 } 1001 1002 void Fortran::lower::defineCommonBlocks( 1003 Fortran::lower::AbstractConverter &converter, 1004 const Fortran::semantics::CommonBlockList &commonBlocks) { 1005 // Common blocks may depend on another common block address (if they contain 1006 // pointers with initial targets). To cover this case, create all common block 1007 // fir::Global before creating the initial values (if any). 1008 std::vector<std::tuple<fir::GlobalOp, Fortran::semantics::MutableSymbolVector, 1009 mlir::Location>> 1010 delayedInitializations; 1011 for (const auto &[common, size] : commonBlocks) 1012 if (auto delayedInit = declareCommonBlock(converter, common, size)) 1013 delayedInitializations.emplace_back(std::move(*delayedInit)); 1014 for (auto &[global, cmnBlkMems, loc] : delayedInitializations) 1015 finalizeCommonBlockDefinition(loc, converter, global, cmnBlkMems); 1016 } 1017 1018 /// The COMMON block is a global structure. `var` will be at some offset 1019 /// within the COMMON block. Adds the address of `var` (COMMON + offset) to 1020 /// the symbol map. 1021 static void instantiateCommon(Fortran::lower::AbstractConverter &converter, 1022 const Fortran::semantics::Symbol &common, 1023 const Fortran::lower::pft::Variable &var, 1024 Fortran::lower::SymMap &symMap) { 1025 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1026 const Fortran::semantics::Symbol &varSym = var.getSymbol(); 1027 mlir::Location loc = converter.genLocation(varSym.name()); 1028 1029 mlir::Value commonAddr; 1030 if (Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(common)) 1031 commonAddr = symBox.getAddr(); 1032 if (!commonAddr) { 1033 // introduce a local AddrOf and add it to the map 1034 fir::GlobalOp global = getCommonBlockGlobal(converter, common); 1035 commonAddr = builder.create<fir::AddrOfOp>(loc, global.resultType(), 1036 global.getSymbol()); 1037 1038 symMap.addSymbol(common, commonAddr); 1039 } 1040 std::size_t byteOffset = varSym.GetUltimate().offset(); 1041 mlir::IntegerType i8Ty = builder.getIntegerType(8); 1042 mlir::Type i8Ptr = builder.getRefType(i8Ty); 1043 mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty)); 1044 mlir::Value base = builder.createConvert(loc, seqTy, commonAddr); 1045 mlir::Value offs = 1046 builder.createIntegerConstant(loc, builder.getIndexType(), byteOffset); 1047 auto varAddr = builder.create<fir::CoordinateOp>(loc, i8Ptr, base, 1048 mlir::ValueRange{offs}); 1049 mlir::Type symType = converter.genType(var.getSymbol()); 1050 mlir::Value local; 1051 if (Fortran::semantics::FindEquivalenceSet(var.getSymbol()) != nullptr) 1052 local = castAliasToPointer(builder, loc, symType, varAddr); 1053 else 1054 local = builder.createConvert(loc, builder.getRefType(symType), varAddr); 1055 Fortran::lower::StatementContext stmtCtx; 1056 mapSymbolAttributes(converter, var, symMap, stmtCtx, local); 1057 } 1058 1059 //===--------------------------------------------------------------===// 1060 // Lower Variables specification expressions and attributes 1061 //===--------------------------------------------------------------===// 1062 1063 /// Helper to decide if a dummy argument must be tracked in an BoxValue. 1064 static bool lowerToBoxValue(const Fortran::semantics::Symbol &sym, 1065 mlir::Value dummyArg) { 1066 // Only dummy arguments coming as fir.box can be tracked in an BoxValue. 1067 if (!dummyArg || !dummyArg.getType().isa<fir::BoxType>()) 1068 return false; 1069 // Non contiguous arrays must be tracked in an BoxValue. 1070 if (sym.Rank() > 0 && !sym.attrs().test(Fortran::semantics::Attr::CONTIGUOUS)) 1071 return true; 1072 // Assumed rank and optional fir.box cannot yet be read while lowering the 1073 // specifications. 1074 if (Fortran::evaluate::IsAssumedRank(sym) || 1075 Fortran::semantics::IsOptional(sym)) 1076 return true; 1077 // Polymorphic entity should be tracked through a fir.box that has the 1078 // dynamic type info. 1079 if (const Fortran::semantics::DeclTypeSpec *type = sym.GetType()) 1080 if (type->IsPolymorphic()) 1081 return true; 1082 return false; 1083 } 1084 1085 /// Compute extent from lower and upper bound. 1086 static mlir::Value computeExtent(fir::FirOpBuilder &builder, mlir::Location loc, 1087 mlir::Value lb, mlir::Value ub) { 1088 mlir::IndexType idxTy = builder.getIndexType(); 1089 // Let the folder deal with the common `ub - <const> + 1` case. 1090 auto diff = builder.create<mlir::arith::SubIOp>(loc, idxTy, ub, lb); 1091 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 1092 auto rawExtent = builder.create<mlir::arith::AddIOp>(loc, idxTy, diff, one); 1093 return Fortran::lower::genMaxWithZero(builder, loc, rawExtent); 1094 } 1095 1096 /// Lower explicit lower bounds into \p result. Does nothing if this is not an 1097 /// array, or if the lower bounds are deferred, or all implicit or one. 1098 static void lowerExplicitLowerBounds( 1099 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 1100 const Fortran::lower::BoxAnalyzer &box, 1101 llvm::SmallVectorImpl<mlir::Value> &result, Fortran::lower::SymMap &symMap, 1102 Fortran::lower::StatementContext &stmtCtx) { 1103 if (!box.isArray() || box.lboundIsAllOnes()) 1104 return; 1105 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1106 mlir::IndexType idxTy = builder.getIndexType(); 1107 if (box.isStaticArray()) { 1108 for (int64_t lb : box.staticLBound()) 1109 result.emplace_back(builder.createIntegerConstant(loc, idxTy, lb)); 1110 return; 1111 } 1112 for (const Fortran::semantics::ShapeSpec *spec : box.dynamicBound()) { 1113 if (auto low = spec->lbound().GetExplicit()) { 1114 auto expr = Fortran::lower::SomeExpr{*low}; 1115 mlir::Value lb = builder.createConvert( 1116 loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx)); 1117 result.emplace_back(lb); 1118 } 1119 } 1120 assert(result.empty() || result.size() == box.dynamicBound().size()); 1121 } 1122 1123 /// Lower explicit extents into \p result if this is an explicit-shape or 1124 /// assumed-size array. Does nothing if this is not an explicit-shape or 1125 /// assumed-size array. 1126 static void 1127 lowerExplicitExtents(Fortran::lower::AbstractConverter &converter, 1128 mlir::Location loc, const Fortran::lower::BoxAnalyzer &box, 1129 llvm::SmallVectorImpl<mlir::Value> &lowerBounds, 1130 llvm::SmallVectorImpl<mlir::Value> &result, 1131 Fortran::lower::SymMap &symMap, 1132 Fortran::lower::StatementContext &stmtCtx) { 1133 if (!box.isArray()) 1134 return; 1135 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1136 mlir::IndexType idxTy = builder.getIndexType(); 1137 if (box.isStaticArray()) { 1138 for (int64_t extent : box.staticShape()) 1139 result.emplace_back(builder.createIntegerConstant(loc, idxTy, extent)); 1140 return; 1141 } 1142 for (const auto &spec : llvm::enumerate(box.dynamicBound())) { 1143 if (auto up = spec.value()->ubound().GetExplicit()) { 1144 auto expr = Fortran::lower::SomeExpr{*up}; 1145 mlir::Value ub = builder.createConvert( 1146 loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx)); 1147 if (lowerBounds.empty()) 1148 result.emplace_back(Fortran::lower::genMaxWithZero(builder, loc, ub)); 1149 else 1150 result.emplace_back( 1151 computeExtent(builder, loc, lowerBounds[spec.index()], ub)); 1152 } else if (spec.value()->ubound().isStar()) { 1153 // Assumed extent is undefined. Must be provided by user's code. 1154 result.emplace_back(builder.create<fir::UndefOp>(loc, idxTy)); 1155 } 1156 } 1157 assert(result.empty() || result.size() == box.dynamicBound().size()); 1158 } 1159 1160 /// Lower explicit character length if any. Return empty mlir::Value if no 1161 /// explicit length. 1162 static mlir::Value 1163 lowerExplicitCharLen(Fortran::lower::AbstractConverter &converter, 1164 mlir::Location loc, const Fortran::lower::BoxAnalyzer &box, 1165 Fortran::lower::SymMap &symMap, 1166 Fortran::lower::StatementContext &stmtCtx) { 1167 if (!box.isChar()) 1168 return mlir::Value{}; 1169 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1170 mlir::Type lenTy = builder.getCharacterLengthType(); 1171 if (llvm::Optional<int64_t> len = box.getCharLenConst()) 1172 return builder.createIntegerConstant(loc, lenTy, *len); 1173 if (llvm::Optional<Fortran::lower::SomeExpr> lenExpr = box.getCharLenExpr()) 1174 // If the length expression is negative, the length is zero. See F2018 1175 // 7.4.4.2 point 5. 1176 return Fortran::lower::genMaxWithZero( 1177 builder, loc, 1178 genScalarValue(converter, loc, *lenExpr, symMap, stmtCtx)); 1179 return mlir::Value{}; 1180 } 1181 1182 /// Treat negative values as undefined. Assumed size arrays will return -1 from 1183 /// the front end for example. Using negative values can produce hard to find 1184 /// bugs much further along in the compilation. 1185 static mlir::Value genExtentValue(fir::FirOpBuilder &builder, 1186 mlir::Location loc, mlir::Type idxTy, 1187 long frontEndExtent) { 1188 if (frontEndExtent >= 0) 1189 return builder.createIntegerConstant(loc, idxTy, frontEndExtent); 1190 return builder.create<fir::UndefOp>(loc, idxTy); 1191 } 1192 1193 /// Lower specification expressions and attributes of variable \p var and 1194 /// add it to the symbol map. For a global or an alias, the address must be 1195 /// pre-computed and provided in \p preAlloc. A dummy argument for the current 1196 /// entry point has already been mapped to an mlir block argument in 1197 /// mapDummiesAndResults. Its mapping may be updated here. 1198 void Fortran::lower::mapSymbolAttributes( 1199 AbstractConverter &converter, const Fortran::lower::pft::Variable &var, 1200 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 1201 mlir::Value preAlloc) { 1202 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1203 const Fortran::semantics::Symbol &sym = var.getSymbol(); 1204 const mlir::Location loc = converter.genLocation(sym.name()); 1205 mlir::IndexType idxTy = builder.getIndexType(); 1206 const bool isDeclaredDummy = Fortran::semantics::IsDummy(sym); 1207 // An active dummy from the current entry point. 1208 const bool isDummy = isDeclaredDummy && symMap.lookupSymbol(sym).getAddr(); 1209 // An unused dummy from another entry point. 1210 const bool isUnusedEntryDummy = isDeclaredDummy && !isDummy; 1211 const bool isResult = Fortran::semantics::IsFunctionResult(sym); 1212 const bool replace = isDummy || isResult; 1213 fir::factory::CharacterExprHelper charHelp{builder, loc}; 1214 1215 if (Fortran::semantics::IsProcedure(sym)) { 1216 if (isUnusedEntryDummy) { 1217 // Additional discussion below. 1218 mlir::Type dummyProcType = 1219 Fortran::lower::getDummyProcedureType(sym, converter); 1220 mlir::Value undefOp = builder.create<fir::UndefOp>(loc, dummyProcType); 1221 symMap.addSymbol(sym, undefOp); 1222 } 1223 if (Fortran::semantics::IsPointer(sym)) 1224 TODO(loc, "procedure pointers"); 1225 return; 1226 } 1227 1228 Fortran::lower::BoxAnalyzer ba; 1229 ba.analyze(sym); 1230 1231 // First deal with pointers and allocatables, because their handling here 1232 // is the same regardless of their rank. 1233 if (Fortran::semantics::IsAllocatableOrPointer(sym)) { 1234 // Get address of fir.box describing the entity. 1235 // global 1236 mlir::Value boxAlloc = preAlloc; 1237 // dummy or passed result 1238 if (!boxAlloc) 1239 if (Fortran::lower::SymbolBox symbox = symMap.lookupSymbol(sym)) 1240 boxAlloc = symbox.getAddr(); 1241 // local 1242 if (!boxAlloc) 1243 boxAlloc = createNewLocal(converter, loc, var, preAlloc); 1244 // Lower non deferred parameters. 1245 llvm::SmallVector<mlir::Value> nonDeferredLenParams; 1246 if (ba.isChar()) { 1247 if (mlir::Value len = 1248 lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx)) 1249 nonDeferredLenParams.push_back(len); 1250 else if (Fortran::semantics::IsAssumedLengthCharacter(sym)) 1251 TODO(loc, "assumed length character allocatable"); 1252 } else if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) { 1253 if (const Fortran::semantics::DerivedTypeSpec *derived = 1254 declTy->AsDerived()) 1255 if (Fortran::semantics::CountLenParameters(*derived) != 0) 1256 TODO(loc, 1257 "derived type allocatable or pointer with length parameters"); 1258 } 1259 fir::MutableBoxValue box = Fortran::lower::createMutableBox( 1260 converter, loc, var, boxAlloc, nonDeferredLenParams); 1261 symMap.addAllocatableOrPointer(var.getSymbol(), box, replace); 1262 return; 1263 } 1264 1265 if (isDummy) { 1266 mlir::Value dummyArg = symMap.lookupSymbol(sym).getAddr(); 1267 if (lowerToBoxValue(sym, dummyArg)) { 1268 llvm::SmallVector<mlir::Value> lbounds; 1269 llvm::SmallVector<mlir::Value> explicitExtents; 1270 llvm::SmallVector<mlir::Value> explicitParams; 1271 // Lower lower bounds, explicit type parameters and explicit 1272 // extents if any. 1273 if (ba.isChar()) 1274 if (mlir::Value len = 1275 lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx)) 1276 explicitParams.push_back(len); 1277 // TODO: derived type length parameters. 1278 lowerExplicitLowerBounds(converter, loc, ba, lbounds, symMap, stmtCtx); 1279 lowerExplicitExtents(converter, loc, ba, lbounds, explicitExtents, symMap, 1280 stmtCtx); 1281 symMap.addBoxSymbol(sym, dummyArg, lbounds, explicitParams, 1282 explicitExtents, replace); 1283 return; 1284 } 1285 } 1286 1287 // A dummy from another entry point that is not declared in the current 1288 // entry point requires a skeleton definition. Most such "unused" dummies 1289 // will not survive into final generated code, but some will. It is illegal 1290 // to reference one at run time if it does. Such a dummy is mapped to a 1291 // value in one of three ways: 1292 // 1293 // - Generate a fir::UndefOp value. This is lightweight, easy to clean up, 1294 // and often valid, but it may fail for a dummy with dynamic bounds, 1295 // or a dummy used to define another dummy. Information to distinguish 1296 // valid cases is not generally available here, with the exception of 1297 // dummy procedures. See the first function exit above. 1298 // 1299 // - Allocate an uninitialized stack slot. This is an intermediate-weight 1300 // solution that is harder to clean up. It is often valid, but may fail 1301 // for an object with dynamic bounds. This option is "automatically" 1302 // used by default for cases that do not use one of the other options. 1303 // 1304 // - Allocate a heap box/descriptor, initialized to zero. This always 1305 // works, but is more heavyweight and harder to clean up. It is used 1306 // for dynamic objects via calls to genUnusedEntryPointBox. 1307 1308 auto genUnusedEntryPointBox = [&]() { 1309 if (isUnusedEntryDummy) { 1310 assert(!Fortran::semantics::IsAllocatableOrPointer(sym) && 1311 "handled above"); 1312 // The box is read right away because lowering code does not expect 1313 // a non pointer/allocatable symbol to be mapped to a MutableBox. 1314 symMap.addSymbol(sym, fir::factory::genMutableBoxRead( 1315 builder, loc, 1316 fir::factory::createTempMutableBox( 1317 builder, loc, converter.genType(var)))); 1318 return true; 1319 } 1320 return false; 1321 }; 1322 1323 // Helper to generate scalars for the symbol properties. 1324 auto genValue = [&](const Fortran::lower::SomeExpr &expr) { 1325 return genScalarValue(converter, loc, expr, symMap, stmtCtx); 1326 }; 1327 1328 // For symbols reaching this point, all properties are constant and can be 1329 // read/computed already into ssa values. 1330 1331 // The origin must be \vec{1}. 1332 auto populateShape = [&](auto &shapes, const auto &bounds, mlir::Value box) { 1333 for (auto iter : llvm::enumerate(bounds)) { 1334 auto *spec = iter.value(); 1335 assert(spec->lbound().GetExplicit() && 1336 "lbound must be explicit with constant value 1"); 1337 if (auto high = spec->ubound().GetExplicit()) { 1338 Fortran::lower::SomeExpr highEx{*high}; 1339 mlir::Value ub = genValue(highEx); 1340 ub = builder.createConvert(loc, idxTy, ub); 1341 shapes.emplace_back(genMaxWithZero(builder, loc, ub)); 1342 } else if (spec->ubound().isColon()) { 1343 assert(box && "assumed bounds require a descriptor"); 1344 mlir::Value dim = 1345 builder.createIntegerConstant(loc, idxTy, iter.index()); 1346 auto dimInfo = 1347 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim); 1348 shapes.emplace_back(dimInfo.getResult(1)); 1349 } else if (spec->ubound().isStar()) { 1350 shapes.emplace_back(builder.create<fir::UndefOp>(loc, idxTy)); 1351 } else { 1352 llvm::report_fatal_error("unknown bound category"); 1353 } 1354 } 1355 }; 1356 1357 // The origin is not \vec{1}. 1358 auto populateLBoundsExtents = [&](auto &lbounds, auto &extents, 1359 const auto &bounds, mlir::Value box) { 1360 for (auto iter : llvm::enumerate(bounds)) { 1361 auto *spec = iter.value(); 1362 fir::BoxDimsOp dimInfo; 1363 mlir::Value ub, lb; 1364 if (spec->lbound().isColon() || spec->ubound().isColon()) { 1365 // This is an assumed shape because allocatables and pointers extents 1366 // are not constant in the scope and are not read here. 1367 assert(box && "deferred bounds require a descriptor"); 1368 mlir::Value dim = 1369 builder.createIntegerConstant(loc, idxTy, iter.index()); 1370 dimInfo = 1371 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim); 1372 extents.emplace_back(dimInfo.getResult(1)); 1373 if (auto low = spec->lbound().GetExplicit()) { 1374 auto expr = Fortran::lower::SomeExpr{*low}; 1375 mlir::Value lb = builder.createConvert(loc, idxTy, genValue(expr)); 1376 lbounds.emplace_back(lb); 1377 } else { 1378 // Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.) 1379 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, 1)); 1380 } 1381 } else { 1382 if (auto low = spec->lbound().GetExplicit()) { 1383 auto expr = Fortran::lower::SomeExpr{*low}; 1384 lb = builder.createConvert(loc, idxTy, genValue(expr)); 1385 } else { 1386 TODO(loc, "assumed rank lowering"); 1387 } 1388 lbounds.emplace_back(lb); 1389 1390 if (auto high = spec->ubound().GetExplicit()) { 1391 auto expr = Fortran::lower::SomeExpr{*high}; 1392 ub = builder.createConvert(loc, idxTy, genValue(expr)); 1393 extents.emplace_back(computeExtent(builder, loc, lb, ub)); 1394 } else { 1395 // An assumed size array. The extent is not computed. 1396 assert(spec->ubound().isStar() && "expected assumed size"); 1397 extents.emplace_back(builder.create<fir::UndefOp>(loc, idxTy)); 1398 } 1399 } 1400 } 1401 }; 1402 1403 // Lower length expression for non deferred and non dummy assumed length 1404 // characters. 1405 auto genExplicitCharLen = 1406 [&](llvm::Optional<Fortran::lower::SomeExpr> charLen) -> mlir::Value { 1407 if (!charLen) 1408 fir::emitFatalError(loc, "expected explicit character length"); 1409 mlir::Value rawLen = genValue(*charLen); 1410 // If the length expression is negative, the length is zero. See 1411 // F2018 7.4.4.2 point 5. 1412 return genMaxWithZero(builder, loc, rawLen); 1413 }; 1414 1415 ba.match( 1416 //===--------------------------------------------------------------===// 1417 // Trivial case. 1418 //===--------------------------------------------------------------===// 1419 [&](const Fortran::lower::details::ScalarSym &) { 1420 if (isDummy) { 1421 // This is an argument. 1422 if (!symMap.lookupSymbol(sym)) 1423 mlir::emitError(loc, "symbol \"") 1424 << toStringRef(sym.name()) << "\" must already be in map"; 1425 return; 1426 } else if (isResult) { 1427 // Some Fortran results may be passed by argument (e.g. derived 1428 // types) 1429 if (symMap.lookupSymbol(sym)) 1430 return; 1431 } 1432 // Otherwise, it's a local variable or function result. 1433 mlir::Value local = createNewLocal(converter, loc, var, preAlloc); 1434 symMap.addSymbol(sym, local); 1435 }, 1436 1437 //===--------------------------------------------------------------===// 1438 // The non-trivial cases are when we have an argument or local that has 1439 // a repetition value. Arguments might be passed as simple pointers and 1440 // need to be cast to a multi-dimensional array with constant bounds 1441 // (possibly with a missing column), bounds computed in the callee 1442 // (here), or with bounds from the caller (boxed somewhere else). Locals 1443 // have the same properties except they are never boxed arguments from 1444 // the caller and never having a missing column size. 1445 //===--------------------------------------------------------------===// 1446 1447 [&](const Fortran::lower::details::ScalarStaticChar &x) { 1448 // type is a CHARACTER, determine the LEN value 1449 auto charLen = x.charLen(); 1450 if (replace) { 1451 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1452 std::pair<mlir::Value, mlir::Value> unboxchar = 1453 charHelp.createUnboxChar(symBox.getAddr()); 1454 mlir::Value boxAddr = unboxchar.first; 1455 // Set/override LEN with a constant 1456 mlir::Value len = builder.createIntegerConstant(loc, idxTy, charLen); 1457 symMap.addCharSymbol(sym, boxAddr, len, true); 1458 return; 1459 } 1460 mlir::Value len = builder.createIntegerConstant(loc, idxTy, charLen); 1461 if (preAlloc) { 1462 symMap.addCharSymbol(sym, preAlloc, len); 1463 return; 1464 } 1465 mlir::Value local = createNewLocal(converter, loc, var, preAlloc); 1466 symMap.addCharSymbol(sym, local, len); 1467 }, 1468 1469 //===--------------------------------------------------------------===// 1470 1471 [&](const Fortran::lower::details::ScalarDynamicChar &x) { 1472 if (genUnusedEntryPointBox()) 1473 return; 1474 // type is a CHARACTER, determine the LEN value 1475 auto charLen = x.charLen(); 1476 if (replace) { 1477 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1478 mlir::Value boxAddr = symBox.getAddr(); 1479 mlir::Value len; 1480 mlir::Type addrTy = boxAddr.getType(); 1481 if (addrTy.isa<fir::BoxCharType>() || addrTy.isa<fir::BoxType>()) 1482 std::tie(boxAddr, len) = charHelp.createUnboxChar(symBox.getAddr()); 1483 // Override LEN with an expression 1484 if (charLen) 1485 len = genExplicitCharLen(charLen); 1486 symMap.addCharSymbol(sym, boxAddr, len, true); 1487 return; 1488 } 1489 // local CHARACTER variable 1490 mlir::Value len = genExplicitCharLen(charLen); 1491 if (preAlloc) { 1492 symMap.addCharSymbol(sym, preAlloc, len); 1493 return; 1494 } 1495 llvm::SmallVector<mlir::Value> lengths = {len}; 1496 mlir::Value local = 1497 createNewLocal(converter, loc, var, preAlloc, llvm::None, lengths); 1498 symMap.addCharSymbol(sym, local, len); 1499 }, 1500 1501 //===--------------------------------------------------------------===// 1502 1503 [&](const Fortran::lower::details::StaticArray &x) { 1504 // object shape is constant, not a character 1505 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1506 mlir::Value addr = symMap.lookupSymbol(sym).getAddr(); 1507 if (addr) 1508 addr = builder.createConvert(loc, castTy, addr); 1509 if (x.lboundAllOnes()) { 1510 // if lower bounds are all ones, build simple shaped object 1511 llvm::SmallVector<mlir::Value> shape; 1512 for (int64_t i : x.shapes) 1513 shape.push_back(genExtentValue(builder, loc, idxTy, i)); 1514 mlir::Value local = 1515 isDummy ? addr : createNewLocal(converter, loc, var, preAlloc); 1516 symMap.addSymbolWithShape(sym, local, shape, isDummy); 1517 return; 1518 } 1519 // If object is an array process the lower bound and extent values by 1520 // constructing constants and populating the lbounds and extents. 1521 llvm::SmallVector<mlir::Value> extents; 1522 llvm::SmallVector<mlir::Value> lbounds; 1523 for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) { 1524 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst)); 1525 extents.emplace_back(genExtentValue(builder, loc, idxTy, snd)); 1526 } 1527 mlir::Value local = 1528 isDummy ? addr 1529 : createNewLocal(converter, loc, var, preAlloc, extents); 1530 assert(isDummy || Fortran::lower::isExplicitShape(sym)); 1531 symMap.addSymbolWithBounds(sym, local, extents, lbounds, isDummy); 1532 }, 1533 1534 //===--------------------------------------------------------------===// 1535 1536 [&](const Fortran::lower::details::DynamicArray &x) { 1537 if (genUnusedEntryPointBox()) 1538 return; 1539 // cast to the known constant parts from the declaration 1540 mlir::Type varType = converter.genType(var); 1541 mlir::Value addr = symMap.lookupSymbol(sym).getAddr(); 1542 mlir::Value argBox; 1543 mlir::Type castTy = builder.getRefType(varType); 1544 if (addr) { 1545 if (auto boxTy = addr.getType().dyn_cast<fir::BoxType>()) { 1546 argBox = addr; 1547 mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); 1548 addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox); 1549 } 1550 addr = builder.createConvert(loc, castTy, addr); 1551 } 1552 if (x.lboundAllOnes()) { 1553 // if lower bounds are all ones, build simple shaped object 1554 llvm::SmallVector<mlir::Value> shapes; 1555 populateShape(shapes, x.bounds, argBox); 1556 if (isDummy) { 1557 symMap.addSymbolWithShape(sym, addr, shapes, true); 1558 return; 1559 } 1560 // local array with computed bounds 1561 assert(Fortran::lower::isExplicitShape(sym) || 1562 Fortran::semantics::IsAllocatableOrPointer(sym)); 1563 mlir::Value local = 1564 createNewLocal(converter, loc, var, preAlloc, shapes); 1565 symMap.addSymbolWithShape(sym, local, shapes); 1566 return; 1567 } 1568 // if object is an array process the lower bound and extent values 1569 llvm::SmallVector<mlir::Value> extents; 1570 llvm::SmallVector<mlir::Value> lbounds; 1571 populateLBoundsExtents(lbounds, extents, x.bounds, argBox); 1572 if (isDummy) { 1573 symMap.addSymbolWithBounds(sym, addr, extents, lbounds, true); 1574 return; 1575 } 1576 // local array with computed bounds 1577 assert(Fortran::lower::isExplicitShape(sym)); 1578 mlir::Value local = 1579 createNewLocal(converter, loc, var, preAlloc, extents); 1580 symMap.addSymbolWithBounds(sym, local, extents, lbounds); 1581 }, 1582 1583 //===--------------------------------------------------------------===// 1584 1585 [&](const Fortran::lower::details::StaticArrayStaticChar &x) { 1586 // if element type is a CHARACTER, determine the LEN value 1587 auto charLen = x.charLen(); 1588 mlir::Value addr; 1589 mlir::Value len; 1590 if (isDummy) { 1591 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1592 std::pair<mlir::Value, mlir::Value> unboxchar = 1593 charHelp.createUnboxChar(symBox.getAddr()); 1594 addr = unboxchar.first; 1595 // Set/override LEN with a constant 1596 len = builder.createIntegerConstant(loc, idxTy, charLen); 1597 } else { 1598 // local CHARACTER variable 1599 len = builder.createIntegerConstant(loc, idxTy, charLen); 1600 } 1601 1602 // object shape is constant 1603 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1604 if (addr) 1605 addr = builder.createConvert(loc, castTy, addr); 1606 1607 if (x.lboundAllOnes()) { 1608 // if lower bounds are all ones, build simple shaped object 1609 llvm::SmallVector<mlir::Value> shape; 1610 for (int64_t i : x.shapes) 1611 shape.push_back(genExtentValue(builder, loc, idxTy, i)); 1612 mlir::Value local = 1613 isDummy ? addr : createNewLocal(converter, loc, var, preAlloc); 1614 symMap.addCharSymbolWithShape(sym, local, len, shape, isDummy); 1615 return; 1616 } 1617 1618 // if object is an array process the lower bound and extent values 1619 llvm::SmallVector<mlir::Value> extents; 1620 llvm::SmallVector<mlir::Value> lbounds; 1621 // construct constants and populate `bounds` 1622 for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) { 1623 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst)); 1624 extents.emplace_back(genExtentValue(builder, loc, idxTy, snd)); 1625 } 1626 1627 if (isDummy) { 1628 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1629 true); 1630 return; 1631 } 1632 // local CHARACTER array with computed bounds 1633 assert(Fortran::lower::isExplicitShape(sym)); 1634 mlir::Value local = 1635 createNewLocal(converter, loc, var, preAlloc, extents); 1636 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1637 }, 1638 1639 //===--------------------------------------------------------------===// 1640 1641 [&](const Fortran::lower::details::StaticArrayDynamicChar &x) { 1642 if (genUnusedEntryPointBox()) 1643 return; 1644 mlir::Value addr; 1645 mlir::Value len; 1646 [[maybe_unused]] bool mustBeDummy = false; 1647 auto charLen = x.charLen(); 1648 // if element type is a CHARACTER, determine the LEN value 1649 if (isDummy) { 1650 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1651 std::pair<mlir::Value, mlir::Value> unboxchar = 1652 charHelp.createUnboxChar(symBox.getAddr()); 1653 addr = unboxchar.first; 1654 if (charLen) { 1655 // Set/override LEN with an expression 1656 len = genExplicitCharLen(charLen); 1657 } else { 1658 // LEN is from the boxchar 1659 len = unboxchar.second; 1660 mustBeDummy = true; 1661 } 1662 } else { 1663 // local CHARACTER variable 1664 len = genExplicitCharLen(charLen); 1665 } 1666 llvm::SmallVector<mlir::Value> lengths = {len}; 1667 1668 // cast to the known constant parts from the declaration 1669 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1670 if (addr) 1671 addr = builder.createConvert(loc, castTy, addr); 1672 1673 if (x.lboundAllOnes()) { 1674 // if lower bounds are all ones, build simple shaped object 1675 llvm::SmallVector<mlir::Value> shape; 1676 for (int64_t i : x.shapes) 1677 shape.push_back(genExtentValue(builder, loc, idxTy, i)); 1678 if (isDummy) { 1679 symMap.addCharSymbolWithShape(sym, addr, len, shape, true); 1680 return; 1681 } 1682 // local CHARACTER array with constant size 1683 mlir::Value local = createNewLocal(converter, loc, var, preAlloc, 1684 llvm::None, lengths); 1685 symMap.addCharSymbolWithShape(sym, local, len, shape); 1686 return; 1687 } 1688 1689 // if object is an array process the lower bound and extent values 1690 llvm::SmallVector<mlir::Value> extents; 1691 llvm::SmallVector<mlir::Value> lbounds; 1692 1693 // construct constants and populate `bounds` 1694 for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) { 1695 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst)); 1696 extents.emplace_back(genExtentValue(builder, loc, idxTy, snd)); 1697 } 1698 if (isDummy) { 1699 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1700 true); 1701 return; 1702 } 1703 // local CHARACTER array with computed bounds 1704 assert((!mustBeDummy) && (Fortran::lower::isExplicitShape(sym))); 1705 mlir::Value local = 1706 createNewLocal(converter, loc, var, preAlloc, llvm::None, lengths); 1707 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1708 }, 1709 1710 //===--------------------------------------------------------------===// 1711 1712 [&](const Fortran::lower::details::DynamicArrayStaticChar &x) { 1713 if (genUnusedEntryPointBox()) 1714 return; 1715 mlir::Value addr; 1716 mlir::Value len; 1717 mlir::Value argBox; 1718 auto charLen = x.charLen(); 1719 // if element type is a CHARACTER, determine the LEN value 1720 if (isDummy) { 1721 mlir::Value actualArg = symMap.lookupSymbol(sym).getAddr(); 1722 if (auto boxTy = actualArg.getType().dyn_cast<fir::BoxType>()) { 1723 argBox = actualArg; 1724 mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); 1725 addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox); 1726 } else { 1727 addr = charHelp.createUnboxChar(actualArg).first; 1728 } 1729 // Set/override LEN with a constant 1730 len = builder.createIntegerConstant(loc, idxTy, charLen); 1731 } else { 1732 // local CHARACTER variable 1733 len = builder.createIntegerConstant(loc, idxTy, charLen); 1734 } 1735 1736 // cast to the known constant parts from the declaration 1737 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1738 if (addr) 1739 addr = builder.createConvert(loc, castTy, addr); 1740 if (x.lboundAllOnes()) { 1741 // if lower bounds are all ones, build simple shaped object 1742 llvm::SmallVector<mlir::Value> shape; 1743 populateShape(shape, x.bounds, argBox); 1744 if (isDummy) { 1745 symMap.addCharSymbolWithShape(sym, addr, len, shape, true); 1746 return; 1747 } 1748 // local CHARACTER array 1749 mlir::Value local = 1750 createNewLocal(converter, loc, var, preAlloc, shape); 1751 symMap.addCharSymbolWithShape(sym, local, len, shape); 1752 return; 1753 } 1754 // if object is an array process the lower bound and extent values 1755 llvm::SmallVector<mlir::Value> extents; 1756 llvm::SmallVector<mlir::Value> lbounds; 1757 populateLBoundsExtents(lbounds, extents, x.bounds, argBox); 1758 if (isDummy) { 1759 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1760 true); 1761 return; 1762 } 1763 // local CHARACTER array with computed bounds 1764 assert(Fortran::lower::isExplicitShape(sym)); 1765 mlir::Value local = 1766 createNewLocal(converter, loc, var, preAlloc, extents); 1767 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1768 }, 1769 1770 //===--------------------------------------------------------------===// 1771 1772 [&](const Fortran::lower::details::DynamicArrayDynamicChar &x) { 1773 if (genUnusedEntryPointBox()) 1774 return; 1775 mlir::Value addr; 1776 mlir::Value len; 1777 mlir::Value argBox; 1778 auto charLen = x.charLen(); 1779 // if element type is a CHARACTER, determine the LEN value 1780 if (isDummy) { 1781 mlir::Value actualArg = symMap.lookupSymbol(sym).getAddr(); 1782 if (auto boxTy = actualArg.getType().dyn_cast<fir::BoxType>()) { 1783 argBox = actualArg; 1784 mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); 1785 addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox); 1786 if (charLen) 1787 // Set/override LEN with an expression. 1788 len = genExplicitCharLen(charLen); 1789 else 1790 // Get the length from the actual arguments. 1791 len = charHelp.readLengthFromBox(argBox); 1792 } else { 1793 std::pair<mlir::Value, mlir::Value> unboxchar = 1794 charHelp.createUnboxChar(actualArg); 1795 addr = unboxchar.first; 1796 if (charLen) { 1797 // Set/override LEN with an expression 1798 len = genExplicitCharLen(charLen); 1799 } else { 1800 // Get the length from the actual arguments. 1801 len = unboxchar.second; 1802 } 1803 } 1804 } else { 1805 // local CHARACTER variable 1806 len = genExplicitCharLen(charLen); 1807 } 1808 llvm::SmallVector<mlir::Value> lengths = {len}; 1809 1810 // cast to the known constant parts from the declaration 1811 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1812 if (addr) 1813 addr = builder.createConvert(loc, castTy, addr); 1814 if (x.lboundAllOnes()) { 1815 // if lower bounds are all ones, build simple shaped object 1816 llvm::SmallVector<mlir::Value> shape; 1817 populateShape(shape, x.bounds, argBox); 1818 if (isDummy) { 1819 symMap.addCharSymbolWithShape(sym, addr, len, shape, true); 1820 return; 1821 } 1822 // local CHARACTER array 1823 mlir::Value local = 1824 createNewLocal(converter, loc, var, preAlloc, shape, lengths); 1825 symMap.addCharSymbolWithShape(sym, local, len, shape); 1826 return; 1827 } 1828 // Process the lower bound and extent values. 1829 llvm::SmallVector<mlir::Value> extents; 1830 llvm::SmallVector<mlir::Value> lbounds; 1831 populateLBoundsExtents(lbounds, extents, x.bounds, argBox); 1832 if (isDummy) { 1833 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1834 true); 1835 return; 1836 } 1837 // local CHARACTER array with computed bounds 1838 assert(Fortran::lower::isExplicitShape(sym)); 1839 mlir::Value local = 1840 createNewLocal(converter, loc, var, preAlloc, extents, lengths); 1841 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1842 }, 1843 1844 //===--------------------------------------------------------------===// 1845 1846 [&](const Fortran::lower::BoxAnalyzer::None &) { 1847 mlir::emitError(loc, "symbol analysis failed on ") 1848 << toStringRef(sym.name()); 1849 }); 1850 } 1851 1852 void Fortran::lower::defineModuleVariable( 1853 AbstractConverter &converter, const Fortran::lower::pft::Variable &var) { 1854 // Use empty linkage for module variables, which makes them available 1855 // for use in another unit. 1856 mlir::StringAttr linkage = 1857 getLinkageAttribute(converter.getFirOpBuilder(), var); 1858 if (!var.isGlobal()) 1859 fir::emitFatalError(converter.getCurrentLocation(), 1860 "attempting to lower module variable as local"); 1861 // Define aggregate storages for equivalenced objects. 1862 if (var.isAggregateStore()) { 1863 const Fortran::lower::pft::Variable::AggregateStore &aggregate = 1864 var.getAggregateStore(); 1865 std::string aggName = mangleGlobalAggregateStore(aggregate); 1866 defineGlobalAggregateStore(converter, aggregate, aggName, linkage); 1867 return; 1868 } 1869 const Fortran::semantics::Symbol &sym = var.getSymbol(); 1870 if (const Fortran::semantics::Symbol *common = 1871 Fortran::semantics::FindCommonBlockContaining(var.getSymbol())) { 1872 // Nothing to do, common block are generated before everything. Ensure 1873 // this was done by calling getCommonBlockGlobal. 1874 getCommonBlockGlobal(converter, *common); 1875 } else if (var.isAlias()) { 1876 // Do nothing. Mapping will be done on user side. 1877 } else { 1878 std::string globalName = Fortran::lower::mangle::mangleName(sym); 1879 defineGlobal(converter, var, globalName, linkage); 1880 } 1881 } 1882 1883 void Fortran::lower::instantiateVariable(AbstractConverter &converter, 1884 const pft::Variable &var, 1885 Fortran::lower::SymMap &symMap, 1886 AggregateStoreMap &storeMap) { 1887 if (var.isAggregateStore()) { 1888 instantiateAggregateStore(converter, var, storeMap); 1889 } else if (const Fortran::semantics::Symbol *common = 1890 Fortran::semantics::FindCommonBlockContaining( 1891 var.getSymbol().GetUltimate())) { 1892 instantiateCommon(converter, *common, var, symMap); 1893 } else if (var.isAlias()) { 1894 instantiateAlias(converter, var, symMap, storeMap); 1895 } else if (var.isGlobal()) { 1896 instantiateGlobal(converter, var, symMap); 1897 } else { 1898 instantiateLocal(converter, var, symMap); 1899 } 1900 } 1901 1902 void Fortran::lower::mapCallInterfaceSymbols( 1903 AbstractConverter &converter, const Fortran::lower::CallerInterface &caller, 1904 SymMap &symMap) { 1905 Fortran::lower::AggregateStoreMap storeMap; 1906 const Fortran::semantics::Symbol &result = caller.getResultSymbol(); 1907 for (Fortran::lower::pft::Variable var : 1908 Fortran::lower::pft::buildFuncResultDependencyList(result)) { 1909 if (var.isAggregateStore()) { 1910 instantiateVariable(converter, var, symMap, storeMap); 1911 } else { 1912 const Fortran::semantics::Symbol &sym = var.getSymbol(); 1913 const auto *hostDetails = 1914 sym.detailsIf<Fortran::semantics::HostAssocDetails>(); 1915 if (hostDetails && !var.isModuleVariable()) { 1916 // The callee is an internal procedure `A` whose result properties 1917 // depend on host variables. The caller may be the host, or another 1918 // internal procedure `B` contained in the same host. In the first 1919 // case, the host symbol is obviously mapped, in the second case, it 1920 // must also be mapped because 1921 // HostAssociations::internalProcedureBindings that was called when 1922 // lowering `B` will have mapped all host symbols of captured variables 1923 // to the tuple argument containing the composite of all host associated 1924 // variables, whether or not the host symbol is actually referred to in 1925 // `B`. Hence it is possible to simply lookup the variable associated to 1926 // the host symbol without having to go back to the tuple argument. 1927 Fortran::lower::SymbolBox hostValue = 1928 symMap.lookupSymbol(hostDetails->symbol()); 1929 assert(hostValue && "callee host symbol must be mapped on caller side"); 1930 symMap.addSymbol(sym, hostValue.toExtendedValue()); 1931 // The SymbolBox associated to the host symbols is complete, skip 1932 // instantiateVariable that would try to allocate a new storage. 1933 continue; 1934 } 1935 if (Fortran::semantics::IsDummy(sym) && sym.owner() == result.owner()) { 1936 // Get the argument for the dummy argument symbols of the current call. 1937 symMap.addSymbol(sym, caller.getArgumentValue(sym)); 1938 // All the properties of the dummy variable may not come from the actual 1939 // argument, let instantiateVariable handle this. 1940 } 1941 // If this is neither a host associated or dummy symbol, it must be a 1942 // module or common block variable to satisfy specification expression 1943 // requirements in 10.1.11, instantiateVariable will get its address and 1944 // properties. 1945 instantiateVariable(converter, var, symMap, storeMap); 1946 } 1947 } 1948 } 1949 1950 void Fortran::lower::createRuntimeTypeInfoGlobal( 1951 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 1952 const Fortran::semantics::Symbol &typeInfoSym) { 1953 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1954 std::string globalName = Fortran::lower::mangle::mangleName(typeInfoSym); 1955 auto var = Fortran::lower::pft::Variable(typeInfoSym, /*global=*/true); 1956 mlir::StringAttr linkage = getLinkageAttribute(builder, var); 1957 defineGlobal(converter, var, globalName, linkage); 1958 } 1959