1 //===-- ConvertVariable.cpp -- bridge to lower to MLIR --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Lower/ConvertVariable.h" 14 #include "flang/Lower/AbstractConverter.h" 15 #include "flang/Lower/Allocatable.h" 16 #include "flang/Lower/BoxAnalyzer.h" 17 #include "flang/Lower/CallInterface.h" 18 #include "flang/Lower/ConvertExpr.h" 19 #include "flang/Lower/IntrinsicCall.h" 20 #include "flang/Lower/Mangler.h" 21 #include "flang/Lower/PFTBuilder.h" 22 #include "flang/Lower/StatementContext.h" 23 #include "flang/Lower/Support/Utils.h" 24 #include "flang/Lower/SymbolMap.h" 25 #include "flang/Lower/Todo.h" 26 #include "flang/Optimizer/Builder/Character.h" 27 #include "flang/Optimizer/Builder/FIRBuilder.h" 28 #include "flang/Optimizer/Builder/Runtime/Derived.h" 29 #include "flang/Optimizer/Dialect/FIRAttr.h" 30 #include "flang/Optimizer/Dialect/FIRDialect.h" 31 #include "flang/Optimizer/Dialect/FIROps.h" 32 #include "flang/Optimizer/Support/FIRContext.h" 33 #include "flang/Optimizer/Support/FatalError.h" 34 #include "flang/Semantics/runtime-type-info.h" 35 #include "flang/Semantics/tools.h" 36 #include "llvm/Support/Debug.h" 37 38 #define DEBUG_TYPE "flang-lower-variable" 39 40 /// Helper to lower a scalar expression using a specific symbol mapping. 41 static mlir::Value genScalarValue(Fortran::lower::AbstractConverter &converter, 42 mlir::Location loc, 43 const Fortran::lower::SomeExpr &expr, 44 Fortran::lower::SymMap &symMap, 45 Fortran::lower::StatementContext &context) { 46 // This does not use the AbstractConverter member function to override the 47 // symbol mapping to be used expression lowering. 48 return fir::getBase(Fortran::lower::createSomeExtendedExpression( 49 loc, converter, expr, symMap, context)); 50 } 51 52 /// Does this variable have a default initialization? 53 static bool hasDefaultInitialization(const Fortran::semantics::Symbol &sym) { 54 if (sym.has<Fortran::semantics::ObjectEntityDetails>() && sym.size()) 55 if (!Fortran::semantics::IsAllocatableOrPointer(sym)) 56 if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType()) 57 if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = 58 declTypeSpec->AsDerived()) 59 return derivedTypeSpec->HasDefaultInitialization(); 60 return false; 61 } 62 63 //===----------------------------------------------------------------===// 64 // Global variables instantiation (not for alias and common) 65 //===----------------------------------------------------------------===// 66 67 /// Helper to generate expression value inside global initializer. 68 static fir::ExtendedValue 69 genInitializerExprValue(Fortran::lower::AbstractConverter &converter, 70 mlir::Location loc, 71 const Fortran::lower::SomeExpr &expr, 72 Fortran::lower::StatementContext &stmtCtx) { 73 // Data initializer are constant value and should not depend on other symbols 74 // given the front-end fold parameter references. In any case, the "current" 75 // map of the converter should not be used since it holds mapping to 76 // mlir::Value from another mlir region. If these value are used by accident 77 // in the initializer, this will lead to segfaults in mlir code. 78 Fortran::lower::SymMap emptyMap; 79 return Fortran::lower::createSomeInitializerExpression(loc, converter, expr, 80 emptyMap, stmtCtx); 81 } 82 83 /// Can this symbol constant be placed in read-only memory? 84 static bool isConstant(const Fortran::semantics::Symbol &sym) { 85 return sym.attrs().test(Fortran::semantics::Attr::PARAMETER) || 86 sym.test(Fortran::semantics::Symbol::Flag::ReadOnly); 87 } 88 89 /// Is this a compiler generated symbol to describe derived types ? 90 static bool isRuntimeTypeInfoData(const Fortran::semantics::Symbol &sym) { 91 // So far, use flags to detect if this symbol were generated during 92 // semantics::BuildRuntimeDerivedTypeTables(). Scope cannot be used since the 93 // symbols are injected in the user scopes defining the described derived 94 // types. A robustness improvement for this test could be to get hands on the 95 // semantics::RuntimeDerivedTypeTables and to check if the symbol names 96 // belongs to this structure. 97 return sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated) && 98 sym.test(Fortran::semantics::Symbol::Flag::ReadOnly); 99 } 100 101 static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter, 102 const Fortran::lower::pft::Variable &var, 103 llvm::StringRef globalName, 104 mlir::StringAttr linkage); 105 106 /// Create the global op declaration without any initializer 107 static fir::GlobalOp declareGlobal(Fortran::lower::AbstractConverter &converter, 108 const Fortran::lower::pft::Variable &var, 109 llvm::StringRef globalName, 110 mlir::StringAttr linkage) { 111 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 112 if (fir::GlobalOp global = builder.getNamedGlobal(globalName)) 113 return global; 114 // Always define linkonce data since it may be optimized out from the module 115 // that actually owns the variable if it does not refers to it. 116 if (linkage == builder.createLinkOnceODRLinkage() || 117 linkage == builder.createLinkOnceLinkage()) 118 return defineGlobal(converter, var, globalName, linkage); 119 const Fortran::semantics::Symbol &sym = var.getSymbol(); 120 mlir::Location loc = converter.genLocation(sym.name()); 121 // Resolve potential host and module association before checking that this 122 // symbol is an object of a function pointer. 123 const Fortran::semantics::Symbol &ultimate = sym.GetUltimate(); 124 if (!ultimate.has<Fortran::semantics::ObjectEntityDetails>() && 125 !ultimate.has<Fortran::semantics::ProcEntityDetails>()) 126 mlir::emitError(loc, "lowering global declaration: symbol '") 127 << toStringRef(sym.name()) << "' has unexpected details\n"; 128 return builder.createGlobal(loc, converter.genType(var), globalName, linkage, 129 mlir::Attribute{}, isConstant(ultimate)); 130 } 131 132 /// Temporary helper to catch todos in initial data target lowering. 133 static bool 134 hasDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) { 135 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) 136 if (const Fortran::semantics::DerivedTypeSpec *derived = 137 declTy->AsDerived()) 138 return Fortran::semantics::CountLenParameters(*derived) > 0; 139 return false; 140 } 141 142 static mlir::Type unwrapElementType(mlir::Type type) { 143 if (mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(type)) 144 type = ty; 145 if (auto seqType = type.dyn_cast<fir::SequenceType>()) 146 type = seqType.getEleTy(); 147 return type; 148 } 149 150 fir::ExtendedValue Fortran::lower::genExtAddrInInitializer( 151 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 152 const Fortran::lower::SomeExpr &addr) { 153 Fortran::lower::SymMap globalOpSymMap; 154 Fortran::lower::AggregateStoreMap storeMap; 155 Fortran::lower::StatementContext stmtCtx; 156 if (const Fortran::semantics::Symbol *sym = 157 Fortran::evaluate::GetFirstSymbol(addr)) { 158 // Length parameters processing will need care in global initializer 159 // context. 160 if (hasDerivedTypeWithLengthParameters(*sym)) 161 TODO(loc, "initial-data-target with derived type length parameters"); 162 163 auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true); 164 Fortran::lower::instantiateVariable(converter, var, globalOpSymMap, 165 storeMap); 166 } 167 return Fortran::lower::createInitializerAddress(loc, converter, addr, 168 globalOpSymMap, stmtCtx); 169 } 170 171 /// create initial-data-target fir.box in a global initializer region. 172 mlir::Value Fortran::lower::genInitialDataTarget( 173 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 174 mlir::Type boxType, const Fortran::lower::SomeExpr &initialTarget) { 175 Fortran::lower::SymMap globalOpSymMap; 176 Fortran::lower::AggregateStoreMap storeMap; 177 Fortran::lower::StatementContext stmtCtx; 178 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 179 if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( 180 initialTarget)) 181 return fir::factory::createUnallocatedBox(builder, loc, boxType, 182 /*nonDeferredParams=*/llvm::None); 183 // Pointer initial data target, and NULL(mold). 184 if (const Fortran::semantics::Symbol *sym = 185 Fortran::evaluate::GetFirstSymbol(initialTarget)) { 186 // Length parameters processing will need care in global initializer 187 // context. 188 if (hasDerivedTypeWithLengthParameters(*sym)) 189 TODO(loc, "initial-data-target with derived type length parameters"); 190 191 auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true); 192 Fortran::lower::instantiateVariable(converter, var, globalOpSymMap, 193 storeMap); 194 } 195 mlir::Value box; 196 if (initialTarget.Rank() > 0) { 197 box = fir::getBase(Fortran::lower::createSomeArrayBox( 198 converter, initialTarget, globalOpSymMap, stmtCtx)); 199 } else { 200 fir::ExtendedValue addr = Fortran::lower::createInitializerAddress( 201 loc, converter, initialTarget, globalOpSymMap, stmtCtx); 202 box = builder.createBox(loc, addr); 203 } 204 // box is a fir.box<T>, not a fir.box<fir.ptr<T>> as it should to be used 205 // for pointers. A fir.convert should not be used here, because it would 206 // not actually set the pointer attribute in the descriptor. 207 // In a normal context, fir.rebox would be used to set the pointer attribute 208 // while copying the projection from another fir.box. But fir.rebox cannot be 209 // used in initializer because its current codegen expects that the input 210 // fir.box is in memory, which is not the case in initializers. 211 // So, just replace the fir.embox that created addr with one with 212 // fir.box<fir.ptr<T>> result type. 213 // Note that the descriptor cannot have been created with fir.rebox because 214 // the initial-data-target cannot be a fir.box itself (it cannot be 215 // assumed-shape, deferred-shape, or polymorphic as per C765). However the 216 // case where the initial data target is a derived type with length parameters 217 // will most likely be a bit trickier, hence the TODO above. 218 219 mlir::Operation *op = box.getDefiningOp(); 220 if (!op || !mlir::isa<fir::EmboxOp>(*op)) 221 fir::emitFatalError( 222 loc, "fir.box must be created with embox in global initializers"); 223 mlir::Type targetEleTy = unwrapElementType(box.getType()); 224 if (!fir::isa_char(targetEleTy)) 225 return builder.create<fir::EmboxOp>(loc, boxType, op->getOperands(), 226 op->getAttrs()); 227 228 // Handle the character case length particularities: embox takes a length 229 // value argument when the result type has unknown length, but not when the 230 // result type has constant length. The type of the initial target must be 231 // constant length, but the one of the pointer may not be. In this case, a 232 // length operand must be added. 233 auto targetLen = targetEleTy.cast<fir::CharacterType>().getLen(); 234 auto ptrLen = unwrapElementType(boxType).cast<fir::CharacterType>().getLen(); 235 if (ptrLen == targetLen) 236 // Nothing to do 237 return builder.create<fir::EmboxOp>(loc, boxType, op->getOperands(), 238 op->getAttrs()); 239 auto embox = mlir::cast<fir::EmboxOp>(*op); 240 auto ptrType = boxType.cast<fir::BoxType>().getEleTy(); 241 mlir::Value memref = builder.createConvert(loc, ptrType, embox.getMemref()); 242 if (targetLen == fir::CharacterType::unknownLen()) 243 // Drop the length argument. 244 return builder.create<fir::EmboxOp>(loc, boxType, memref, embox.getShape(), 245 embox.getSlice()); 246 // targetLen is constant and ptrLen is unknown. Add a length argument. 247 mlir::Value targetLenValue = 248 builder.createIntegerConstant(loc, builder.getIndexType(), targetLen); 249 return builder.create<fir::EmboxOp>(loc, boxType, memref, embox.getShape(), 250 embox.getSlice(), 251 mlir::ValueRange{targetLenValue}); 252 } 253 254 static mlir::Value genDefaultInitializerValue( 255 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 256 const Fortran::semantics::Symbol &sym, mlir::Type symTy, 257 Fortran::lower::StatementContext &stmtCtx) { 258 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 259 mlir::Type scalarType = symTy; 260 fir::SequenceType sequenceType; 261 if (auto ty = symTy.dyn_cast<fir::SequenceType>()) { 262 sequenceType = ty; 263 scalarType = ty.getEleTy(); 264 } 265 // Build a scalar default value of the symbol type, looping through the 266 // components to build each component initial value. 267 auto recTy = scalarType.cast<fir::RecordType>(); 268 auto fieldTy = fir::FieldType::get(scalarType.getContext()); 269 mlir::Value initialValue = builder.create<fir::UndefOp>(loc, scalarType); 270 const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType(); 271 assert(declTy && "var with default initialization must have a type"); 272 Fortran::semantics::OrderedComponentIterator components( 273 declTy->derivedTypeSpec()); 274 for (const auto &component : components) { 275 // Skip parent components, the sub-components of parent types are part of 276 // components and will be looped through right after. 277 if (component.test(Fortran::semantics::Symbol::Flag::ParentComp)) 278 continue; 279 mlir::Value componentValue; 280 llvm::StringRef name = toStringRef(component.name()); 281 mlir::Type componentTy = recTy.getType(name); 282 assert(componentTy && "component not found in type"); 283 if (const auto *object{ 284 component.detailsIf<Fortran::semantics::ObjectEntityDetails>()}) { 285 if (const auto &init = object->init()) { 286 // Component has explicit initialization. 287 if (Fortran::semantics::IsPointer(component)) 288 // Initial data target. 289 componentValue = 290 genInitialDataTarget(converter, loc, componentTy, *init); 291 else 292 // Initial value. 293 componentValue = fir::getBase( 294 genInitializerExprValue(converter, loc, *init, stmtCtx)); 295 } else if (Fortran::semantics::IsAllocatableOrPointer(component)) { 296 // Pointer or allocatable without initialization. 297 // Create deallocated/disassociated value. 298 // From a standard point of view, pointer without initialization do not 299 // need to be disassociated, but for sanity and simplicity, do it in 300 // global constructor since this has no runtime cost. 301 componentValue = fir::factory::createUnallocatedBox( 302 builder, loc, componentTy, llvm::None); 303 } else if (hasDefaultInitialization(component)) { 304 // Component type has default initialization. 305 componentValue = genDefaultInitializerValue(converter, loc, component, 306 componentTy, stmtCtx); 307 } else { 308 // Component has no initial value. 309 componentValue = builder.create<fir::UndefOp>(loc, componentTy); 310 } 311 } else if (const auto *proc{ 312 component 313 .detailsIf<Fortran::semantics::ProcEntityDetails>()}) { 314 if (proc->init().has_value()) 315 TODO(loc, "procedure pointer component default initialization"); 316 else 317 componentValue = builder.create<fir::UndefOp>(loc, componentTy); 318 } 319 assert(componentValue && "must have been computed"); 320 componentValue = builder.createConvert(loc, componentTy, componentValue); 321 // FIXME: type parameters must come from the derived-type-spec 322 auto field = builder.create<fir::FieldIndexOp>( 323 loc, fieldTy, name, scalarType, 324 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 325 initialValue = builder.create<fir::InsertValueOp>( 326 loc, recTy, initialValue, componentValue, 327 builder.getArrayAttr(field.getAttributes())); 328 } 329 330 if (sequenceType) { 331 // For arrays, duplicate the scalar value to all elements with an 332 // fir.insert_range covering the whole array. 333 auto arrayInitialValue = builder.create<fir::UndefOp>(loc, sequenceType); 334 llvm::SmallVector<int64_t> rangeBounds; 335 for (int64_t extent : sequenceType.getShape()) { 336 if (extent == fir::SequenceType::getUnknownExtent()) 337 TODO(loc, 338 "default initial value of array component with length parameters"); 339 rangeBounds.push_back(0); 340 rangeBounds.push_back(extent - 1); 341 } 342 return builder.create<fir::InsertOnRangeOp>( 343 loc, sequenceType, arrayInitialValue, initialValue, 344 builder.getIndexVectorAttr(rangeBounds)); 345 } 346 return initialValue; 347 } 348 349 /// Does this global already have an initializer ? 350 static bool globalIsInitialized(fir::GlobalOp global) { 351 return !global.getRegion().empty() || global.getInitVal(); 352 } 353 354 /// Call \p genInit to generate code inside \p global initializer region. 355 static void 356 createGlobalInitialization(fir::FirOpBuilder &builder, fir::GlobalOp global, 357 std::function<void(fir::FirOpBuilder &)> genInit) { 358 mlir::Region ®ion = global.getRegion(); 359 region.push_back(new mlir::Block); 360 mlir::Block &block = region.back(); 361 auto insertPt = builder.saveInsertionPoint(); 362 builder.setInsertionPointToStart(&block); 363 genInit(builder); 364 builder.restoreInsertionPoint(insertPt); 365 } 366 367 /// Create the global op and its init if it has one 368 static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter, 369 const Fortran::lower::pft::Variable &var, 370 llvm::StringRef globalName, 371 mlir::StringAttr linkage) { 372 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 373 const Fortran::semantics::Symbol &sym = var.getSymbol(); 374 mlir::Location loc = converter.genLocation(sym.name()); 375 bool isConst = isConstant(sym); 376 fir::GlobalOp global = builder.getNamedGlobal(globalName); 377 mlir::Type symTy = converter.genType(var); 378 379 if (global && globalIsInitialized(global)) 380 return global; 381 // If this is an array, check to see if we can use a dense attribute 382 // with a tensor mlir type. This optimization currently only supports 383 // rank-1 Fortran arrays of integer, real, or logical. The tensor 384 // type does not support nested structures which are needed for 385 // complex numbers. 386 // To get multidimensional arrays to work, we will have to use column major 387 // array ordering with the tensor type (so it matches column major ordering 388 // with the Fortran fir.array). By default, tensor types assume row major 389 // ordering. How to create this tensor type is to be determined. 390 if (symTy.isa<fir::SequenceType>() && sym.Rank() == 1 && 391 !Fortran::semantics::IsAllocatableOrPointer(sym)) { 392 mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy(); 393 if (eleTy.isa<mlir::IntegerType, mlir::FloatType, fir::LogicalType>()) { 394 const auto *details = 395 sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); 396 if (details->init()) { 397 global = Fortran::lower::createDenseGlobal( 398 loc, symTy, globalName, linkage, isConst, details->init().value(), 399 converter); 400 if (global) { 401 global.setVisibility(mlir::SymbolTable::Visibility::Public); 402 return global; 403 } 404 } 405 } 406 } 407 if (!global) 408 global = builder.createGlobal(loc, symTy, globalName, linkage, 409 mlir::Attribute{}, isConst); 410 if (Fortran::semantics::IsAllocatableOrPointer(sym)) { 411 const auto *details = 412 sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); 413 if (details && details->init()) { 414 auto expr = *details->init(); 415 createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { 416 mlir::Value box = 417 Fortran::lower::genInitialDataTarget(converter, loc, symTy, expr); 418 b.create<fir::HasValueOp>(loc, box); 419 }); 420 } else { 421 // Create unallocated/disassociated descriptor if no explicit init 422 createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { 423 mlir::Value box = 424 fir::factory::createUnallocatedBox(b, loc, symTy, llvm::None); 425 b.create<fir::HasValueOp>(loc, box); 426 }); 427 } 428 429 } else if (const auto *details = 430 sym.detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 431 if (details->init()) { 432 createGlobalInitialization( 433 builder, global, [&](fir::FirOpBuilder &builder) { 434 Fortran::lower::StatementContext stmtCtx( 435 /*cleanupProhibited=*/true); 436 fir::ExtendedValue initVal = genInitializerExprValue( 437 converter, loc, details->init().value(), stmtCtx); 438 mlir::Value castTo = 439 builder.createConvert(loc, symTy, fir::getBase(initVal)); 440 builder.create<fir::HasValueOp>(loc, castTo); 441 }); 442 } else if (hasDefaultInitialization(sym)) { 443 createGlobalInitialization( 444 builder, global, [&](fir::FirOpBuilder &builder) { 445 Fortran::lower::StatementContext stmtCtx( 446 /*cleanupProhibited=*/true); 447 mlir::Value initVal = 448 genDefaultInitializerValue(converter, loc, sym, symTy, stmtCtx); 449 mlir::Value castTo = builder.createConvert(loc, symTy, initVal); 450 builder.create<fir::HasValueOp>(loc, castTo); 451 }); 452 } 453 } else if (sym.has<Fortran::semantics::CommonBlockDetails>()) { 454 mlir::emitError(loc, "COMMON symbol processed elsewhere"); 455 } else { 456 TODO(loc, "global"); // Procedure pointer or something else 457 } 458 // Creates undefined initializer for globals without initializers 459 if (!globalIsInitialized(global)) 460 createGlobalInitialization( 461 builder, global, [&](fir::FirOpBuilder &builder) { 462 builder.create<fir::HasValueOp>( 463 loc, builder.create<fir::UndefOp>(loc, symTy)); 464 }); 465 // Set public visibility to prevent global definition to be optimized out 466 // even if they have no initializer and are unused in this compilation unit. 467 global.setVisibility(mlir::SymbolTable::Visibility::Public); 468 return global; 469 } 470 471 /// Return linkage attribute for \p var. 472 static mlir::StringAttr 473 getLinkageAttribute(fir::FirOpBuilder &builder, 474 const Fortran::lower::pft::Variable &var) { 475 // Runtime type info for a same derived type is identical in each compilation 476 // unit. It desired to avoid having to link against module that only define a 477 // type. Therefore the runtime type info is generated everywhere it is needed 478 // with `linkonce_odr` LLVM linkage. 479 if (var.hasSymbol() && isRuntimeTypeInfoData(var.getSymbol())) 480 return builder.createLinkOnceODRLinkage(); 481 if (var.isModuleVariable()) 482 return {}; // external linkage 483 // Otherwise, the variable is owned by a procedure and must not be visible in 484 // other compilation units. 485 return builder.createInternalLinkage(); 486 } 487 488 /// Instantiate a global variable. If it hasn't already been processed, add 489 /// the global to the ModuleOp as a new uniqued symbol and initialize it with 490 /// the correct value. It will be referenced on demand using `fir.addr_of`. 491 static void instantiateGlobal(Fortran::lower::AbstractConverter &converter, 492 const Fortran::lower::pft::Variable &var, 493 Fortran::lower::SymMap &symMap) { 494 const Fortran::semantics::Symbol &sym = var.getSymbol(); 495 assert(!var.isAlias() && "must be handled in instantiateAlias"); 496 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 497 std::string globalName = Fortran::lower::mangle::mangleName(sym); 498 mlir::Location loc = converter.genLocation(sym.name()); 499 fir::GlobalOp global = builder.getNamedGlobal(globalName); 500 mlir::StringAttr linkage = getLinkageAttribute(builder, var); 501 if (var.isModuleVariable()) { 502 // A module global was or will be defined when lowering the module. Emit 503 // only a declaration if the global does not exist at that point. 504 global = declareGlobal(converter, var, globalName, linkage); 505 } else { 506 global = defineGlobal(converter, var, globalName, linkage); 507 } 508 auto addrOf = builder.create<fir::AddrOfOp>(loc, global.resultType(), 509 global.getSymbol()); 510 Fortran::lower::StatementContext stmtCtx; 511 mapSymbolAttributes(converter, var, symMap, stmtCtx, addrOf); 512 } 513 514 //===----------------------------------------------------------------===// 515 // Local variables instantiation (not for alias) 516 //===----------------------------------------------------------------===// 517 518 /// Create a stack slot for a local variable. Precondition: the insertion 519 /// point of the builder must be in the entry block, which is currently being 520 /// constructed. 521 static mlir::Value createNewLocal(Fortran::lower::AbstractConverter &converter, 522 mlir::Location loc, 523 const Fortran::lower::pft::Variable &var, 524 mlir::Value preAlloc, 525 llvm::ArrayRef<mlir::Value> shape = {}, 526 llvm::ArrayRef<mlir::Value> lenParams = {}) { 527 if (preAlloc) 528 return preAlloc; 529 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 530 std::string nm = Fortran::lower::mangle::mangleName(var.getSymbol()); 531 mlir::Type ty = converter.genType(var); 532 const Fortran::semantics::Symbol &ultimateSymbol = 533 var.getSymbol().GetUltimate(); 534 llvm::StringRef symNm = toStringRef(ultimateSymbol.name()); 535 bool isTarg = var.isTarget(); 536 // Let the builder do all the heavy lifting. 537 return builder.allocateLocal(loc, ty, nm, symNm, shape, lenParams, isTarg); 538 } 539 540 /// Must \p var be default initialized at runtime when entering its scope. 541 static bool 542 mustBeDefaultInitializedAtRuntime(const Fortran::lower::pft::Variable &var) { 543 if (!var.hasSymbol()) 544 return false; 545 const Fortran::semantics::Symbol &sym = var.getSymbol(); 546 if (var.isGlobal()) 547 // Global variables are statically initialized. 548 return false; 549 if (Fortran::semantics::IsDummy(sym) && !Fortran::semantics::IsIntentOut(sym)) 550 return false; 551 // Local variables (including function results), and intent(out) dummies must 552 // be default initialized at runtime if their type has default initialization. 553 return hasDefaultInitialization(sym); 554 } 555 556 /// Call default initialization runtime routine to initialize \p var. 557 static void 558 defaultInitializeAtRuntime(Fortran::lower::AbstractConverter &converter, 559 const Fortran::lower::pft::Variable &var, 560 Fortran::lower::SymMap &symMap) { 561 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 562 mlir::Location loc = converter.getCurrentLocation(); 563 const Fortran::semantics::Symbol &sym = var.getSymbol(); 564 fir::ExtendedValue exv = symMap.lookupSymbol(sym).toExtendedValue(); 565 if (Fortran::semantics::IsOptional(sym)) { 566 // 15.5.2.12 point 3, absent optional dummies are not initialized. 567 // Creating descriptor/passing null descriptor to the runtime would 568 // create runtime crashes. 569 auto isPresent = builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), 570 fir::getBase(exv)); 571 builder.genIfThen(loc, isPresent) 572 .genThen([&]() { 573 auto box = builder.createBox(loc, exv); 574 fir::runtime::genDerivedTypeInitialize(builder, loc, box); 575 }) 576 .end(); 577 } else { 578 mlir::Value box = builder.createBox(loc, exv); 579 fir::runtime::genDerivedTypeInitialize(builder, loc, box); 580 } 581 } 582 583 /// Instantiate a local variable. Precondition: Each variable will be visited 584 /// such that if its properties depend on other variables, the variables upon 585 /// which its properties depend will already have been visited. 586 static void instantiateLocal(Fortran::lower::AbstractConverter &converter, 587 const Fortran::lower::pft::Variable &var, 588 Fortran::lower::SymMap &symMap) { 589 assert(!var.isAlias()); 590 Fortran::lower::StatementContext stmtCtx; 591 mapSymbolAttributes(converter, var, symMap, stmtCtx); 592 if (mustBeDefaultInitializedAtRuntime(var)) 593 defaultInitializeAtRuntime(converter, var, symMap); 594 } 595 596 //===----------------------------------------------------------------===// 597 // Aliased (EQUIVALENCE) variables instantiation 598 //===----------------------------------------------------------------===// 599 600 /// Insert \p aggregateStore instance into an AggregateStoreMap. 601 static void insertAggregateStore(Fortran::lower::AggregateStoreMap &storeMap, 602 const Fortran::lower::pft::Variable &var, 603 mlir::Value aggregateStore) { 604 std::size_t off = var.getAggregateStore().getOffset(); 605 Fortran::lower::AggregateStoreKey key = {var.getOwningScope(), off}; 606 storeMap[key] = aggregateStore; 607 } 608 609 /// Retrieve the aggregate store instance of \p alias from an 610 /// AggregateStoreMap. 611 static mlir::Value 612 getAggregateStore(Fortran::lower::AggregateStoreMap &storeMap, 613 const Fortran::lower::pft::Variable &alias) { 614 Fortran::lower::AggregateStoreKey key = {alias.getOwningScope(), 615 alias.getAlias()}; 616 auto iter = storeMap.find(key); 617 assert(iter != storeMap.end()); 618 return iter->second; 619 } 620 621 /// Build the name for the storage of a global equivalence. 622 static std::string mangleGlobalAggregateStore( 623 const Fortran::lower::pft::Variable::AggregateStore &st) { 624 return Fortran::lower::mangle::mangleName(st.getNamingSymbol()); 625 } 626 627 /// Build the type for the storage of an equivalence. 628 static mlir::Type 629 getAggregateType(Fortran::lower::AbstractConverter &converter, 630 const Fortran::lower::pft::Variable::AggregateStore &st) { 631 if (const Fortran::semantics::Symbol *initSym = st.getInitialValueSymbol()) 632 return converter.genType(*initSym); 633 mlir::IntegerType byteTy = converter.getFirOpBuilder().getIntegerType(8); 634 return fir::SequenceType::get(std::get<1>(st.interval), byteTy); 635 } 636 637 /// Define a GlobalOp for the storage of a global equivalence described 638 /// by \p aggregate. The global is named \p aggName and is created with 639 /// the provided \p linkage. 640 /// If any of the equivalence members are initialized, an initializer is 641 /// created for the equivalence. 642 /// This is to be used when lowering the scope that owns the equivalence 643 /// (as opposed to simply using it through host or use association). 644 /// This is not to be used for equivalence of common block members (they 645 /// already have the common block GlobalOp for them, see defineCommonBlock). 646 static fir::GlobalOp defineGlobalAggregateStore( 647 Fortran::lower::AbstractConverter &converter, 648 const Fortran::lower::pft::Variable::AggregateStore &aggregate, 649 llvm::StringRef aggName, mlir::StringAttr linkage) { 650 assert(aggregate.isGlobal() && "not a global interval"); 651 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 652 fir::GlobalOp global = builder.getNamedGlobal(aggName); 653 if (global && globalIsInitialized(global)) 654 return global; 655 mlir::Location loc = converter.getCurrentLocation(); 656 mlir::Type aggTy = getAggregateType(converter, aggregate); 657 if (!global) 658 global = builder.createGlobal(loc, aggTy, aggName, linkage); 659 660 if (const Fortran::semantics::Symbol *initSym = 661 aggregate.getInitialValueSymbol()) 662 if (const auto *objectDetails = 663 initSym->detailsIf<Fortran::semantics::ObjectEntityDetails>()) 664 if (objectDetails->init()) { 665 createGlobalInitialization( 666 builder, global, [&](fir::FirOpBuilder &builder) { 667 Fortran::lower::StatementContext stmtCtx; 668 mlir::Value initVal = fir::getBase(genInitializerExprValue( 669 converter, loc, objectDetails->init().value(), stmtCtx)); 670 builder.create<fir::HasValueOp>(loc, initVal); 671 }); 672 return global; 673 } 674 // Equivalence has no Fortran initial value. Create an undefined FIR initial 675 // value to ensure this is consider an object definition in the IR regardless 676 // of the linkage. 677 createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &builder) { 678 Fortran::lower::StatementContext stmtCtx; 679 mlir::Value initVal = builder.create<fir::UndefOp>(loc, aggTy); 680 builder.create<fir::HasValueOp>(loc, initVal); 681 }); 682 return global; 683 } 684 685 /// Declare a GlobalOp for the storage of a global equivalence described 686 /// by \p aggregate. The global is named \p aggName and is created with 687 /// the provided \p linkage. 688 /// No initializer is built for the created GlobalOp. 689 /// This is to be used when lowering the scope that uses members of an 690 /// equivalence it through host or use association. 691 /// This is not to be used for equivalence of common block members (they 692 /// already have the common block GlobalOp for them, see defineCommonBlock). 693 static fir::GlobalOp declareGlobalAggregateStore( 694 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 695 const Fortran::lower::pft::Variable::AggregateStore &aggregate, 696 llvm::StringRef aggName, mlir::StringAttr linkage) { 697 assert(aggregate.isGlobal() && "not a global interval"); 698 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 699 if (fir::GlobalOp global = builder.getNamedGlobal(aggName)) 700 return global; 701 mlir::Type aggTy = getAggregateType(converter, aggregate); 702 return builder.createGlobal(loc, aggTy, aggName, linkage); 703 } 704 705 /// This is an aggregate store for a set of EQUIVALENCED variables. Create the 706 /// storage on the stack or global memory and add it to the map. 707 static void 708 instantiateAggregateStore(Fortran::lower::AbstractConverter &converter, 709 const Fortran::lower::pft::Variable &var, 710 Fortran::lower::AggregateStoreMap &storeMap) { 711 assert(var.isAggregateStore() && "not an interval"); 712 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 713 mlir::IntegerType i8Ty = builder.getIntegerType(8); 714 mlir::Location loc = converter.getCurrentLocation(); 715 std::string aggName = mangleGlobalAggregateStore(var.getAggregateStore()); 716 if (var.isGlobal()) { 717 fir::GlobalOp global; 718 auto &aggregate = var.getAggregateStore(); 719 mlir::StringAttr linkage = getLinkageAttribute(builder, var); 720 if (var.isModuleVariable()) { 721 // A module global was or will be defined when lowering the module. Emit 722 // only a declaration if the global does not exist at that point. 723 global = declareGlobalAggregateStore(converter, loc, aggregate, aggName, 724 linkage); 725 } else { 726 global = 727 defineGlobalAggregateStore(converter, aggregate, aggName, linkage); 728 } 729 auto addr = builder.create<fir::AddrOfOp>(loc, global.resultType(), 730 global.getSymbol()); 731 auto size = std::get<1>(var.getInterval()); 732 fir::SequenceType::Shape shape(1, size); 733 auto seqTy = fir::SequenceType::get(shape, i8Ty); 734 mlir::Type refTy = builder.getRefType(seqTy); 735 mlir::Value aggregateStore = builder.createConvert(loc, refTy, addr); 736 insertAggregateStore(storeMap, var, aggregateStore); 737 return; 738 } 739 // This is a local aggregate, allocate an anonymous block of memory. 740 auto size = std::get<1>(var.getInterval()); 741 fir::SequenceType::Shape shape(1, size); 742 auto seqTy = fir::SequenceType::get(shape, i8Ty); 743 mlir::Value local = 744 builder.allocateLocal(loc, seqTy, aggName, "", llvm::None, llvm::None, 745 /*target=*/false); 746 insertAggregateStore(storeMap, var, local); 747 } 748 749 /// Cast an alias address (variable part of an equivalence) to fir.ptr so that 750 /// the optimizer is conservative and avoids doing copy elision in assignment 751 /// involving equivalenced variables. 752 /// TODO: Represent the equivalence aliasing constraint in another way to avoid 753 /// pessimizing array assignments involving equivalenced variables. 754 static mlir::Value castAliasToPointer(fir::FirOpBuilder &builder, 755 mlir::Location loc, mlir::Type aliasType, 756 mlir::Value aliasAddr) { 757 return builder.createConvert(loc, fir::PointerType::get(aliasType), 758 aliasAddr); 759 } 760 761 /// Instantiate a member of an equivalence. Compute its address in its 762 /// aggregate storage and lower its attributes. 763 static void instantiateAlias(Fortran::lower::AbstractConverter &converter, 764 const Fortran::lower::pft::Variable &var, 765 Fortran::lower::SymMap &symMap, 766 Fortran::lower::AggregateStoreMap &storeMap) { 767 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 768 assert(var.isAlias()); 769 const Fortran::semantics::Symbol &sym = var.getSymbol(); 770 const mlir::Location loc = converter.genLocation(sym.name()); 771 mlir::IndexType idxTy = builder.getIndexType(); 772 std::size_t aliasOffset = var.getAlias(); 773 mlir::Value store = getAggregateStore(storeMap, var); 774 mlir::IntegerType i8Ty = builder.getIntegerType(8); 775 mlir::Type i8Ptr = builder.getRefType(i8Ty); 776 mlir::Value offset = builder.createIntegerConstant( 777 loc, idxTy, sym.GetUltimate().offset() - aliasOffset); 778 auto ptr = builder.create<fir::CoordinateOp>(loc, i8Ptr, store, 779 mlir::ValueRange{offset}); 780 mlir::Value preAlloc = 781 castAliasToPointer(builder, loc, converter.genType(sym), ptr); 782 Fortran::lower::StatementContext stmtCtx; 783 mapSymbolAttributes(converter, var, symMap, stmtCtx, preAlloc); 784 // Default initialization is possible for equivalence members: see 785 // F2018 19.5.3.4. Note that if several equivalenced entities have 786 // default initialization, they must have the same type, and the standard 787 // allows the storage to be default initialized several times (this has 788 // no consequences other than wasting some execution time). For now, 789 // do not try optimizing this to single default initializations of 790 // the equivalenced storages. Keep lowering simple. 791 if (mustBeDefaultInitializedAtRuntime(var)) 792 defaultInitializeAtRuntime(converter, var, symMap); 793 } 794 795 //===--------------------------------------------------------------===// 796 // COMMON blocks instantiation 797 //===--------------------------------------------------------------===// 798 799 /// Does any member of the common block has an initializer ? 800 static bool 801 commonBlockHasInit(const Fortran::semantics::MutableSymbolVector &cmnBlkMems) { 802 for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { 803 if (const auto *memDet = 804 mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) 805 if (memDet->init()) 806 return true; 807 } 808 return false; 809 } 810 811 /// Build a tuple type for a common block based on the common block 812 /// members and the common block size. 813 /// This type is only needed to build common block initializers where 814 /// the initial value is the collection of the member initial values. 815 static mlir::TupleType getTypeOfCommonWithInit( 816 Fortran::lower::AbstractConverter &converter, 817 const Fortran::semantics::MutableSymbolVector &cmnBlkMems, 818 std::size_t commonSize) { 819 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 820 llvm::SmallVector<mlir::Type> members; 821 std::size_t counter = 0; 822 for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { 823 if (const auto *memDet = 824 mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 825 if (mem->offset() > counter) { 826 fir::SequenceType::Shape len = { 827 static_cast<fir::SequenceType::Extent>(mem->offset() - counter)}; 828 mlir::IntegerType byteTy = builder.getIntegerType(8); 829 auto memTy = fir::SequenceType::get(len, byteTy); 830 members.push_back(memTy); 831 counter = mem->offset(); 832 } 833 if (memDet->init()) { 834 mlir::Type memTy = converter.genType(*mem); 835 members.push_back(memTy); 836 counter = mem->offset() + mem->size(); 837 } 838 } 839 } 840 if (counter < commonSize) { 841 fir::SequenceType::Shape len = { 842 static_cast<fir::SequenceType::Extent>(commonSize - counter)}; 843 mlir::IntegerType byteTy = builder.getIntegerType(8); 844 auto memTy = fir::SequenceType::get(len, byteTy); 845 members.push_back(memTy); 846 } 847 return mlir::TupleType::get(builder.getContext(), members); 848 } 849 850 /// Common block members may have aliases. They are not in the common block 851 /// member list from the symbol. We need to know about these aliases if they 852 /// have initializer to generate the common initializer. 853 /// This function takes care of adding aliases with initializer to the member 854 /// list. 855 static Fortran::semantics::MutableSymbolVector 856 getCommonMembersWithInitAliases(const Fortran::semantics::Symbol &common) { 857 const auto &commonDetails = 858 common.get<Fortran::semantics::CommonBlockDetails>(); 859 auto members = commonDetails.objects(); 860 861 // The number and size of equivalence and common is expected to be small, so 862 // no effort is given to optimize this loop of complexity equivalenced 863 // common members * common members 864 for (const Fortran::semantics::EquivalenceSet &set : 865 common.owner().equivalenceSets()) 866 for (const Fortran::semantics::EquivalenceObject &obj : set) { 867 if (!obj.symbol.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) { 868 if (const auto &details = 869 obj.symbol 870 .detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 871 const Fortran::semantics::Symbol *com = 872 FindCommonBlockContaining(obj.symbol); 873 if (!details->init() || com != &common) 874 continue; 875 // This is an alias with an init that belongs to the list 876 if (std::find(members.begin(), members.end(), obj.symbol) == 877 members.end()) 878 members.emplace_back(obj.symbol); 879 } 880 } 881 } 882 return members; 883 } 884 885 /// Define a global for a common block if it does not already exist in the 886 /// mlir module. 887 /// There is no "declare" version since there is not a 888 /// scope that owns common blocks more that the others. All scopes using 889 /// a common block attempts to define it with common linkage. 890 static fir::GlobalOp 891 defineCommonBlock(Fortran::lower::AbstractConverter &converter, 892 const Fortran::semantics::Symbol &common) { 893 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 894 std::string commonName = Fortran::lower::mangle::mangleName(common); 895 fir::GlobalOp global = builder.getNamedGlobal(commonName); 896 if (global) 897 return global; 898 Fortran::semantics::MutableSymbolVector cmnBlkMems = 899 getCommonMembersWithInitAliases(common); 900 mlir::Location loc = converter.genLocation(common.name()); 901 mlir::IndexType idxTy = builder.getIndexType(); 902 mlir::StringAttr linkage = builder.createCommonLinkage(); 903 if (!common.name().size() || !commonBlockHasInit(cmnBlkMems)) { 904 // A blank (anonymous) COMMON block must always be initialized to zero. 905 // A named COMMON block sans initializers is also initialized to zero. 906 // mlir::Vector types must have a strictly positive size, so at least 907 // temporarily, force a zero size COMMON block to have one byte. 908 const auto sz = static_cast<fir::SequenceType::Extent>( 909 common.size() > 0 ? common.size() : 1); 910 fir::SequenceType::Shape shape = {sz}; 911 mlir::IntegerType i8Ty = builder.getIntegerType(8); 912 auto commonTy = fir::SequenceType::get(shape, i8Ty); 913 auto vecTy = mlir::VectorType::get(sz, i8Ty); 914 mlir::Attribute zero = builder.getIntegerAttr(i8Ty, 0); 915 auto init = mlir::DenseElementsAttr::get(vecTy, llvm::makeArrayRef(zero)); 916 return builder.createGlobal(loc, commonTy, commonName, linkage, init); 917 } 918 919 // Named common with initializer, sort members by offset before generating 920 // the type and initializer. 921 std::sort(cmnBlkMems.begin(), cmnBlkMems.end(), 922 [](auto &s1, auto &s2) { return s1->offset() < s2->offset(); }); 923 mlir::TupleType commonTy = 924 getTypeOfCommonWithInit(converter, cmnBlkMems, common.size()); 925 auto initFunc = [&](fir::FirOpBuilder &builder) { 926 mlir::Value cb = builder.create<fir::UndefOp>(loc, commonTy); 927 unsigned tupIdx = 0; 928 std::size_t offset = 0; 929 LLVM_DEBUG(llvm::dbgs() << "block {\n"); 930 for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { 931 if (const auto *memDet = 932 mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) { 933 if (mem->offset() > offset) { 934 ++tupIdx; 935 offset = mem->offset(); 936 } 937 if (memDet->init()) { 938 LLVM_DEBUG(llvm::dbgs() 939 << "offset: " << mem->offset() << " is " << *mem << '\n'); 940 Fortran::lower::StatementContext stmtCtx; 941 auto initExpr = memDet->init().value(); 942 fir::ExtendedValue initVal = 943 Fortran::semantics::IsPointer(*mem) 944 ? Fortran::lower::genInitialDataTarget( 945 converter, loc, converter.genType(*mem), initExpr) 946 : genInitializerExprValue(converter, loc, initExpr, stmtCtx); 947 mlir::IntegerAttr offVal = builder.getIntegerAttr(idxTy, tupIdx); 948 mlir::Value castVal = builder.createConvert( 949 loc, commonTy.getType(tupIdx), fir::getBase(initVal)); 950 cb = builder.create<fir::InsertValueOp>(loc, commonTy, cb, castVal, 951 builder.getArrayAttr(offVal)); 952 ++tupIdx; 953 offset = mem->offset() + mem->size(); 954 } 955 } 956 } 957 LLVM_DEBUG(llvm::dbgs() << "}\n"); 958 builder.create<fir::HasValueOp>(loc, cb); 959 }; 960 // create the global object 961 return builder.createGlobal(loc, commonTy, commonName, 962 /*isConstant=*/false, initFunc); 963 } 964 /// The COMMON block is a global structure. `var` will be at some offset 965 /// within the COMMON block. Adds the address of `var` (COMMON + offset) to 966 /// the symbol map. 967 static void instantiateCommon(Fortran::lower::AbstractConverter &converter, 968 const Fortran::semantics::Symbol &common, 969 const Fortran::lower::pft::Variable &var, 970 Fortran::lower::SymMap &symMap) { 971 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 972 const Fortran::semantics::Symbol &varSym = var.getSymbol(); 973 mlir::Location loc = converter.genLocation(varSym.name()); 974 975 mlir::Value commonAddr; 976 if (Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(common)) 977 commonAddr = symBox.getAddr(); 978 if (!commonAddr) { 979 // introduce a local AddrOf and add it to the map 980 fir::GlobalOp global = defineCommonBlock(converter, common); 981 commonAddr = builder.create<fir::AddrOfOp>(loc, global.resultType(), 982 global.getSymbol()); 983 984 symMap.addSymbol(common, commonAddr); 985 } 986 std::size_t byteOffset = varSym.GetUltimate().offset(); 987 mlir::IntegerType i8Ty = builder.getIntegerType(8); 988 mlir::Type i8Ptr = builder.getRefType(i8Ty); 989 mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty)); 990 mlir::Value base = builder.createConvert(loc, seqTy, commonAddr); 991 mlir::Value offs = 992 builder.createIntegerConstant(loc, builder.getIndexType(), byteOffset); 993 auto varAddr = builder.create<fir::CoordinateOp>(loc, i8Ptr, base, 994 mlir::ValueRange{offs}); 995 mlir::Type symType = converter.genType(var.getSymbol()); 996 mlir::Value local; 997 if (Fortran::semantics::FindEquivalenceSet(var.getSymbol()) != nullptr) 998 local = castAliasToPointer(builder, loc, symType, varAddr); 999 else 1000 local = builder.createConvert(loc, builder.getRefType(symType), varAddr); 1001 Fortran::lower::StatementContext stmtCtx; 1002 mapSymbolAttributes(converter, var, symMap, stmtCtx, local); 1003 } 1004 1005 //===--------------------------------------------------------------===// 1006 // Lower Variables specification expressions and attributes 1007 //===--------------------------------------------------------------===// 1008 1009 /// Helper to decide if a dummy argument must be tracked in an BoxValue. 1010 static bool lowerToBoxValue(const Fortran::semantics::Symbol &sym, 1011 mlir::Value dummyArg) { 1012 // Only dummy arguments coming as fir.box can be tracked in an BoxValue. 1013 if (!dummyArg || !dummyArg.getType().isa<fir::BoxType>()) 1014 return false; 1015 // Non contiguous arrays must be tracked in an BoxValue. 1016 if (sym.Rank() > 0 && !sym.attrs().test(Fortran::semantics::Attr::CONTIGUOUS)) 1017 return true; 1018 // Assumed rank and optional fir.box cannot yet be read while lowering the 1019 // specifications. 1020 if (Fortran::evaluate::IsAssumedRank(sym) || 1021 Fortran::semantics::IsOptional(sym)) 1022 return true; 1023 // Polymorphic entity should be tracked through a fir.box that has the 1024 // dynamic type info. 1025 if (const Fortran::semantics::DeclTypeSpec *type = sym.GetType()) 1026 if (type->IsPolymorphic()) 1027 return true; 1028 return false; 1029 } 1030 1031 /// Compute extent from lower and upper bound. 1032 static mlir::Value computeExtent(fir::FirOpBuilder &builder, mlir::Location loc, 1033 mlir::Value lb, mlir::Value ub) { 1034 mlir::IndexType idxTy = builder.getIndexType(); 1035 // Let the folder deal with the common `ub - <const> + 1` case. 1036 auto diff = builder.create<mlir::arith::SubIOp>(loc, idxTy, ub, lb); 1037 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 1038 return builder.create<mlir::arith::AddIOp>(loc, idxTy, diff, one); 1039 } 1040 1041 /// Lower explicit lower bounds into \p result. Does nothing if this is not an 1042 /// array, or if the lower bounds are deferred, or all implicit or one. 1043 static void lowerExplicitLowerBounds( 1044 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 1045 const Fortran::lower::BoxAnalyzer &box, 1046 llvm::SmallVectorImpl<mlir::Value> &result, Fortran::lower::SymMap &symMap, 1047 Fortran::lower::StatementContext &stmtCtx) { 1048 if (!box.isArray() || box.lboundIsAllOnes()) 1049 return; 1050 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1051 mlir::IndexType idxTy = builder.getIndexType(); 1052 if (box.isStaticArray()) { 1053 for (int64_t lb : box.staticLBound()) 1054 result.emplace_back(builder.createIntegerConstant(loc, idxTy, lb)); 1055 return; 1056 } 1057 for (const Fortran::semantics::ShapeSpec *spec : box.dynamicBound()) { 1058 if (auto low = spec->lbound().GetExplicit()) { 1059 auto expr = Fortran::lower::SomeExpr{*low}; 1060 mlir::Value lb = builder.createConvert( 1061 loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx)); 1062 result.emplace_back(lb); 1063 } else if (!spec->lbound().isColon()) { 1064 // Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.) 1065 result.emplace_back(builder.createIntegerConstant(loc, idxTy, 1)); 1066 } 1067 } 1068 assert(result.empty() || result.size() == box.dynamicBound().size()); 1069 } 1070 1071 /// Lower explicit extents into \p result if this is an explicit-shape or 1072 /// assumed-size array. Does nothing if this is not an explicit-shape or 1073 /// assumed-size array. 1074 static void lowerExplicitExtents(Fortran::lower::AbstractConverter &converter, 1075 mlir::Location loc, 1076 const Fortran::lower::BoxAnalyzer &box, 1077 llvm::ArrayRef<mlir::Value> lowerBounds, 1078 llvm::SmallVectorImpl<mlir::Value> &result, 1079 Fortran::lower::SymMap &symMap, 1080 Fortran::lower::StatementContext &stmtCtx) { 1081 if (!box.isArray()) 1082 return; 1083 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1084 mlir::IndexType idxTy = builder.getIndexType(); 1085 if (box.isStaticArray()) { 1086 for (int64_t extent : box.staticShape()) 1087 result.emplace_back(builder.createIntegerConstant(loc, idxTy, extent)); 1088 return; 1089 } 1090 for (const auto &spec : llvm::enumerate(box.dynamicBound())) { 1091 if (auto up = spec.value()->ubound().GetExplicit()) { 1092 auto expr = Fortran::lower::SomeExpr{*up}; 1093 mlir::Value ub = builder.createConvert( 1094 loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx)); 1095 if (lowerBounds.empty()) 1096 result.emplace_back(ub); 1097 else 1098 result.emplace_back( 1099 computeExtent(builder, loc, lowerBounds[spec.index()], ub)); 1100 } else if (spec.value()->ubound().isStar()) { 1101 // Assumed extent is undefined. Must be provided by user's code. 1102 result.emplace_back(builder.create<fir::UndefOp>(loc, idxTy)); 1103 } 1104 } 1105 assert(result.empty() || result.size() == box.dynamicBound().size()); 1106 } 1107 1108 /// Lower explicit character length if any. Return empty mlir::Value if no 1109 /// explicit length. 1110 static mlir::Value 1111 lowerExplicitCharLen(Fortran::lower::AbstractConverter &converter, 1112 mlir::Location loc, const Fortran::lower::BoxAnalyzer &box, 1113 Fortran::lower::SymMap &symMap, 1114 Fortran::lower::StatementContext &stmtCtx) { 1115 if (!box.isChar()) 1116 return mlir::Value{}; 1117 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1118 mlir::Type lenTy = builder.getCharacterLengthType(); 1119 if (llvm::Optional<int64_t> len = box.getCharLenConst()) 1120 return builder.createIntegerConstant(loc, lenTy, *len); 1121 if (llvm::Optional<Fortran::lower::SomeExpr> lenExpr = box.getCharLenExpr()) 1122 return genScalarValue(converter, loc, *lenExpr, symMap, stmtCtx); 1123 return mlir::Value{}; 1124 } 1125 1126 /// Treat negative values as undefined. Assumed size arrays will return -1 from 1127 /// the front end for example. Using negative values can produce hard to find 1128 /// bugs much further along in the compilation. 1129 static mlir::Value genExtentValue(fir::FirOpBuilder &builder, 1130 mlir::Location loc, mlir::Type idxTy, 1131 long frontEndExtent) { 1132 if (frontEndExtent >= 0) 1133 return builder.createIntegerConstant(loc, idxTy, frontEndExtent); 1134 return builder.create<fir::UndefOp>(loc, idxTy); 1135 } 1136 1137 /// Lower specification expressions and attributes of variable \p var and 1138 /// add it to the symbol map. 1139 /// For global and aliases, the address must be pre-computed and provided 1140 /// in \p preAlloc. 1141 /// Dummy arguments must have already been mapped to mlir block arguments 1142 /// their mapping may be updated here. 1143 void Fortran::lower::mapSymbolAttributes( 1144 AbstractConverter &converter, const Fortran::lower::pft::Variable &var, 1145 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 1146 mlir::Value preAlloc) { 1147 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1148 const Fortran::semantics::Symbol &sym = var.getSymbol(); 1149 const mlir::Location loc = converter.genLocation(sym.name()); 1150 mlir::IndexType idxTy = builder.getIndexType(); 1151 const bool isDummy = Fortran::semantics::IsDummy(sym); 1152 const bool isResult = Fortran::semantics::IsFunctionResult(sym); 1153 const bool replace = isDummy || isResult; 1154 fir::factory::CharacterExprHelper charHelp{builder, loc}; 1155 Fortran::lower::BoxAnalyzer ba; 1156 ba.analyze(sym); 1157 1158 // First deal with pointers an allocatables, because their handling here 1159 // is the same regardless of their rank. 1160 if (Fortran::semantics::IsAllocatableOrPointer(sym)) { 1161 // Get address of fir.box describing the entity. 1162 // global 1163 mlir::Value boxAlloc = preAlloc; 1164 // dummy or passed result 1165 if (!boxAlloc) 1166 if (Fortran::lower::SymbolBox symbox = symMap.lookupSymbol(sym)) 1167 boxAlloc = symbox.getAddr(); 1168 // local 1169 if (!boxAlloc) 1170 boxAlloc = createNewLocal(converter, loc, var, preAlloc); 1171 // Lower non deferred parameters. 1172 llvm::SmallVector<mlir::Value> nonDeferredLenParams; 1173 if (ba.isChar()) { 1174 if (mlir::Value len = 1175 lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx)) 1176 nonDeferredLenParams.push_back(len); 1177 else if (Fortran::semantics::IsAssumedLengthCharacter(sym)) 1178 TODO(loc, "assumed length character allocatable"); 1179 } else if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) { 1180 if (const Fortran::semantics::DerivedTypeSpec *derived = 1181 declTy->AsDerived()) 1182 if (Fortran::semantics::CountLenParameters(*derived) != 0) 1183 TODO(loc, 1184 "derived type allocatable or pointer with length parameters"); 1185 } 1186 fir::MutableBoxValue box = Fortran::lower::createMutableBox( 1187 converter, loc, var, boxAlloc, nonDeferredLenParams); 1188 symMap.addAllocatableOrPointer(var.getSymbol(), box, replace); 1189 return; 1190 } 1191 1192 if (isDummy) { 1193 mlir::Value dummyArg = symMap.lookupSymbol(sym).getAddr(); 1194 if (lowerToBoxValue(sym, dummyArg)) { 1195 llvm::SmallVector<mlir::Value> lbounds; 1196 llvm::SmallVector<mlir::Value> extents; 1197 llvm::SmallVector<mlir::Value> explicitParams; 1198 // Lower lower bounds, explicit type parameters and explicit 1199 // extents if any. 1200 if (ba.isChar()) 1201 if (mlir::Value len = 1202 lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx)) 1203 explicitParams.push_back(len); 1204 // TODO: derived type length parameters. 1205 lowerExplicitLowerBounds(converter, loc, ba, lbounds, symMap, stmtCtx); 1206 lowerExplicitExtents(converter, loc, ba, lbounds, extents, symMap, 1207 stmtCtx); 1208 symMap.addBoxSymbol(sym, dummyArg, lbounds, explicitParams, extents, 1209 replace); 1210 return; 1211 } 1212 } 1213 1214 // Helper to generate scalars for the symbol properties. 1215 auto genValue = [&](const Fortran::lower::SomeExpr &expr) { 1216 return genScalarValue(converter, loc, expr, symMap, stmtCtx); 1217 }; 1218 1219 // For symbols reaching this point, all properties are constant and can be 1220 // read/computed already into ssa values. 1221 1222 // The origin must be \vec{1}. 1223 auto populateShape = [&](auto &shapes, const auto &bounds, mlir::Value box) { 1224 for (auto iter : llvm::enumerate(bounds)) { 1225 auto *spec = iter.value(); 1226 assert(spec->lbound().GetExplicit() && 1227 "lbound must be explicit with constant value 1"); 1228 if (auto high = spec->ubound().GetExplicit()) { 1229 Fortran::lower::SomeExpr highEx{*high}; 1230 mlir::Value ub = genValue(highEx); 1231 shapes.emplace_back(builder.createConvert(loc, idxTy, ub)); 1232 } else if (spec->ubound().isColon()) { 1233 assert(box && "assumed bounds require a descriptor"); 1234 mlir::Value dim = 1235 builder.createIntegerConstant(loc, idxTy, iter.index()); 1236 auto dimInfo = 1237 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim); 1238 shapes.emplace_back(dimInfo.getResult(1)); 1239 } else if (spec->ubound().isStar()) { 1240 shapes.emplace_back(builder.create<fir::UndefOp>(loc, idxTy)); 1241 } else { 1242 llvm::report_fatal_error("unknown bound category"); 1243 } 1244 } 1245 }; 1246 1247 // The origin is not \vec{1}. 1248 auto populateLBoundsExtents = [&](auto &lbounds, auto &extents, 1249 const auto &bounds, mlir::Value box) { 1250 for (auto iter : llvm::enumerate(bounds)) { 1251 auto *spec = iter.value(); 1252 fir::BoxDimsOp dimInfo; 1253 mlir::Value ub, lb; 1254 if (spec->lbound().isColon() || spec->ubound().isColon()) { 1255 // This is an assumed shape because allocatables and pointers extents 1256 // are not constant in the scope and are not read here. 1257 assert(box && "deferred bounds require a descriptor"); 1258 mlir::Value dim = 1259 builder.createIntegerConstant(loc, idxTy, iter.index()); 1260 dimInfo = 1261 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim); 1262 extents.emplace_back(dimInfo.getResult(1)); 1263 if (auto low = spec->lbound().GetExplicit()) { 1264 auto expr = Fortran::lower::SomeExpr{*low}; 1265 mlir::Value lb = builder.createConvert(loc, idxTy, genValue(expr)); 1266 lbounds.emplace_back(lb); 1267 } else { 1268 // Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.) 1269 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, 1)); 1270 } 1271 } else { 1272 if (auto low = spec->lbound().GetExplicit()) { 1273 auto expr = Fortran::lower::SomeExpr{*low}; 1274 lb = builder.createConvert(loc, idxTy, genValue(expr)); 1275 } else { 1276 TODO(loc, "assumed rank lowering"); 1277 } 1278 1279 if (auto high = spec->ubound().GetExplicit()) { 1280 auto expr = Fortran::lower::SomeExpr{*high}; 1281 ub = builder.createConvert(loc, idxTy, genValue(expr)); 1282 lbounds.emplace_back(lb); 1283 extents.emplace_back(computeExtent(builder, loc, lb, ub)); 1284 } else { 1285 // An assumed size array. The extent is not computed. 1286 assert(spec->ubound().isStar() && "expected assumed size"); 1287 lbounds.emplace_back(lb); 1288 extents.emplace_back(builder.create<fir::UndefOp>(loc, idxTy)); 1289 } 1290 } 1291 } 1292 }; 1293 1294 // Lower length expression for non deferred and non dummy assumed length 1295 // characters. 1296 auto genExplicitCharLen = 1297 [&](llvm::Optional<Fortran::lower::SomeExpr> charLen) -> mlir::Value { 1298 if (!charLen) 1299 fir::emitFatalError(loc, "expected explicit character length"); 1300 mlir::Value rawLen = genValue(*charLen); 1301 // If the length expression is negative, the length is zero. See 1302 // F2018 7.4.4.2 point 5. 1303 return genMaxWithZero(builder, loc, rawLen); 1304 }; 1305 1306 ba.match( 1307 //===--------------------------------------------------------------===// 1308 // Trivial case. 1309 //===--------------------------------------------------------------===// 1310 [&](const Fortran::lower::details::ScalarSym &) { 1311 if (isDummy) { 1312 // This is an argument. 1313 if (!symMap.lookupSymbol(sym)) 1314 mlir::emitError(loc, "symbol \"") 1315 << toStringRef(sym.name()) << "\" must already be in map"; 1316 return; 1317 } else if (isResult) { 1318 // Some Fortran results may be passed by argument (e.g. derived 1319 // types) 1320 if (symMap.lookupSymbol(sym)) 1321 return; 1322 } 1323 // Otherwise, it's a local variable or function result. 1324 mlir::Value local = createNewLocal(converter, loc, var, preAlloc); 1325 symMap.addSymbol(sym, local); 1326 }, 1327 1328 //===--------------------------------------------------------------===// 1329 // The non-trivial cases are when we have an argument or local that has 1330 // a repetition value. Arguments might be passed as simple pointers and 1331 // need to be cast to a multi-dimensional array with constant bounds 1332 // (possibly with a missing column), bounds computed in the callee 1333 // (here), or with bounds from the caller (boxed somewhere else). Locals 1334 // have the same properties except they are never boxed arguments from 1335 // the caller and never having a missing column size. 1336 //===--------------------------------------------------------------===// 1337 1338 [&](const Fortran::lower::details::ScalarStaticChar &x) { 1339 // type is a CHARACTER, determine the LEN value 1340 auto charLen = x.charLen(); 1341 if (replace) { 1342 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1343 std::pair<mlir::Value, mlir::Value> unboxchar = 1344 charHelp.createUnboxChar(symBox.getAddr()); 1345 mlir::Value boxAddr = unboxchar.first; 1346 // Set/override LEN with a constant 1347 mlir::Value len = builder.createIntegerConstant(loc, idxTy, charLen); 1348 symMap.addCharSymbol(sym, boxAddr, len, true); 1349 return; 1350 } 1351 mlir::Value len = builder.createIntegerConstant(loc, idxTy, charLen); 1352 if (preAlloc) { 1353 symMap.addCharSymbol(sym, preAlloc, len); 1354 return; 1355 } 1356 mlir::Value local = createNewLocal(converter, loc, var, preAlloc); 1357 symMap.addCharSymbol(sym, local, len); 1358 }, 1359 1360 //===--------------------------------------------------------------===// 1361 1362 [&](const Fortran::lower::details::ScalarDynamicChar &x) { 1363 // type is a CHARACTER, determine the LEN value 1364 auto charLen = x.charLen(); 1365 if (replace) { 1366 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1367 mlir::Value boxAddr = symBox.getAddr(); 1368 mlir::Value len; 1369 mlir::Type addrTy = boxAddr.getType(); 1370 if (addrTy.isa<fir::BoxCharType>() || addrTy.isa<fir::BoxType>()) { 1371 std::tie(boxAddr, len) = charHelp.createUnboxChar(symBox.getAddr()); 1372 } else { 1373 // dummy from an other entry case: we cannot get a dynamic length 1374 // for it, it's illegal for the user program to use it. However, 1375 // since we are lowering all function unit statements regardless 1376 // of whether the execution will reach them or not, we need to 1377 // fill a value for the length here. 1378 len = builder.createIntegerConstant( 1379 loc, builder.getCharacterLengthType(), 1); 1380 } 1381 // Override LEN with an expression 1382 if (charLen) 1383 len = genExplicitCharLen(charLen); 1384 symMap.addCharSymbol(sym, boxAddr, len, true); 1385 return; 1386 } 1387 // local CHARACTER variable 1388 mlir::Value len = genExplicitCharLen(charLen); 1389 if (preAlloc) { 1390 symMap.addCharSymbol(sym, preAlloc, len); 1391 return; 1392 } 1393 llvm::SmallVector<mlir::Value> lengths = {len}; 1394 mlir::Value local = 1395 createNewLocal(converter, loc, var, preAlloc, llvm::None, lengths); 1396 symMap.addCharSymbol(sym, local, len); 1397 }, 1398 1399 //===--------------------------------------------------------------===// 1400 1401 [&](const Fortran::lower::details::StaticArray &x) { 1402 // object shape is constant, not a character 1403 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1404 mlir::Value addr = symMap.lookupSymbol(sym).getAddr(); 1405 if (addr) 1406 addr = builder.createConvert(loc, castTy, addr); 1407 if (x.lboundAllOnes()) { 1408 // if lower bounds are all ones, build simple shaped object 1409 llvm::SmallVector<mlir::Value> shape; 1410 for (int64_t i : x.shapes) 1411 shape.push_back(genExtentValue(builder, loc, idxTy, i)); 1412 mlir::Value local = 1413 isDummy ? addr : createNewLocal(converter, loc, var, preAlloc); 1414 symMap.addSymbolWithShape(sym, local, shape, isDummy); 1415 return; 1416 } 1417 // If object is an array process the lower bound and extent values by 1418 // constructing constants and populating the lbounds and extents. 1419 llvm::SmallVector<mlir::Value> extents; 1420 llvm::SmallVector<mlir::Value> lbounds; 1421 for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) { 1422 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst)); 1423 extents.emplace_back(genExtentValue(builder, loc, idxTy, snd)); 1424 } 1425 mlir::Value local = 1426 isDummy ? addr 1427 : createNewLocal(converter, loc, var, preAlloc, extents); 1428 assert(isDummy || Fortran::lower::isExplicitShape(sym)); 1429 symMap.addSymbolWithBounds(sym, local, extents, lbounds, isDummy); 1430 }, 1431 1432 //===--------------------------------------------------------------===// 1433 1434 [&](const Fortran::lower::details::DynamicArray &x) { 1435 // cast to the known constant parts from the declaration 1436 mlir::Type varType = converter.genType(var); 1437 mlir::Value addr = symMap.lookupSymbol(sym).getAddr(); 1438 mlir::Value argBox; 1439 mlir::Type castTy = builder.getRefType(varType); 1440 if (addr) { 1441 if (auto boxTy = addr.getType().dyn_cast<fir::BoxType>()) { 1442 argBox = addr; 1443 mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); 1444 addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox); 1445 } 1446 addr = builder.createConvert(loc, castTy, addr); 1447 } 1448 if (x.lboundAllOnes()) { 1449 // if lower bounds are all ones, build simple shaped object 1450 llvm::SmallVector<mlir::Value> shapes; 1451 populateShape(shapes, x.bounds, argBox); 1452 if (isDummy) { 1453 symMap.addSymbolWithShape(sym, addr, shapes, true); 1454 return; 1455 } 1456 // local array with computed bounds 1457 assert(Fortran::lower::isExplicitShape(sym) || 1458 Fortran::semantics::IsAllocatableOrPointer(sym)); 1459 mlir::Value local = 1460 createNewLocal(converter, loc, var, preAlloc, shapes); 1461 symMap.addSymbolWithShape(sym, local, shapes); 1462 return; 1463 } 1464 // if object is an array process the lower bound and extent values 1465 llvm::SmallVector<mlir::Value> extents; 1466 llvm::SmallVector<mlir::Value> lbounds; 1467 populateLBoundsExtents(lbounds, extents, x.bounds, argBox); 1468 if (isDummy) { 1469 symMap.addSymbolWithBounds(sym, addr, extents, lbounds, true); 1470 return; 1471 } 1472 // local array with computed bounds 1473 assert(Fortran::lower::isExplicitShape(sym)); 1474 mlir::Value local = 1475 createNewLocal(converter, loc, var, preAlloc, extents); 1476 symMap.addSymbolWithBounds(sym, local, extents, lbounds); 1477 }, 1478 1479 //===--------------------------------------------------------------===// 1480 1481 [&](const Fortran::lower::details::StaticArrayStaticChar &x) { 1482 // if element type is a CHARACTER, determine the LEN value 1483 auto charLen = x.charLen(); 1484 mlir::Value addr; 1485 mlir::Value len; 1486 if (isDummy) { 1487 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1488 std::pair<mlir::Value, mlir::Value> unboxchar = 1489 charHelp.createUnboxChar(symBox.getAddr()); 1490 addr = unboxchar.first; 1491 // Set/override LEN with a constant 1492 len = builder.createIntegerConstant(loc, idxTy, charLen); 1493 } else { 1494 // local CHARACTER variable 1495 len = builder.createIntegerConstant(loc, idxTy, charLen); 1496 } 1497 1498 // object shape is constant 1499 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1500 if (addr) 1501 addr = builder.createConvert(loc, castTy, addr); 1502 1503 if (x.lboundAllOnes()) { 1504 // if lower bounds are all ones, build simple shaped object 1505 llvm::SmallVector<mlir::Value> shape; 1506 for (int64_t i : x.shapes) 1507 shape.push_back(genExtentValue(builder, loc, idxTy, i)); 1508 mlir::Value local = 1509 isDummy ? addr : createNewLocal(converter, loc, var, preAlloc); 1510 symMap.addCharSymbolWithShape(sym, local, len, shape, isDummy); 1511 return; 1512 } 1513 1514 // if object is an array process the lower bound and extent values 1515 llvm::SmallVector<mlir::Value> extents; 1516 llvm::SmallVector<mlir::Value> lbounds; 1517 // construct constants and populate `bounds` 1518 for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) { 1519 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst)); 1520 extents.emplace_back(genExtentValue(builder, loc, idxTy, snd)); 1521 } 1522 1523 if (isDummy) { 1524 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1525 true); 1526 return; 1527 } 1528 // local CHARACTER array with computed bounds 1529 assert(Fortran::lower::isExplicitShape(sym)); 1530 mlir::Value local = 1531 createNewLocal(converter, loc, var, preAlloc, extents); 1532 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1533 }, 1534 1535 //===--------------------------------------------------------------===// 1536 1537 [&](const Fortran::lower::details::StaticArrayDynamicChar &x) { 1538 mlir::Value addr; 1539 mlir::Value len; 1540 [[maybe_unused]] bool mustBeDummy = false; 1541 auto charLen = x.charLen(); 1542 // if element type is a CHARACTER, determine the LEN value 1543 if (isDummy) { 1544 Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym); 1545 std::pair<mlir::Value, mlir::Value> unboxchar = 1546 charHelp.createUnboxChar(symBox.getAddr()); 1547 addr = unboxchar.first; 1548 if (charLen) { 1549 // Set/override LEN with an expression 1550 len = genExplicitCharLen(charLen); 1551 } else { 1552 // LEN is from the boxchar 1553 len = unboxchar.second; 1554 mustBeDummy = true; 1555 } 1556 } else { 1557 // local CHARACTER variable 1558 len = genExplicitCharLen(charLen); 1559 } 1560 llvm::SmallVector<mlir::Value> lengths = {len}; 1561 1562 // cast to the known constant parts from the declaration 1563 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1564 if (addr) 1565 addr = builder.createConvert(loc, castTy, addr); 1566 1567 if (x.lboundAllOnes()) { 1568 // if lower bounds are all ones, build simple shaped object 1569 llvm::SmallVector<mlir::Value> shape; 1570 for (int64_t i : x.shapes) 1571 shape.push_back(genExtentValue(builder, loc, idxTy, i)); 1572 if (isDummy) { 1573 symMap.addCharSymbolWithShape(sym, addr, len, shape, true); 1574 return; 1575 } 1576 // local CHARACTER array with constant size 1577 mlir::Value local = createNewLocal(converter, loc, var, preAlloc, 1578 llvm::None, lengths); 1579 symMap.addCharSymbolWithShape(sym, local, len, shape); 1580 return; 1581 } 1582 1583 // if object is an array process the lower bound and extent values 1584 llvm::SmallVector<mlir::Value> extents; 1585 llvm::SmallVector<mlir::Value> lbounds; 1586 1587 // construct constants and populate `bounds` 1588 for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) { 1589 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst)); 1590 extents.emplace_back(genExtentValue(builder, loc, idxTy, snd)); 1591 } 1592 if (isDummy) { 1593 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1594 true); 1595 return; 1596 } 1597 // local CHARACTER array with computed bounds 1598 assert((!mustBeDummy) && (Fortran::lower::isExplicitShape(sym))); 1599 mlir::Value local = 1600 createNewLocal(converter, loc, var, preAlloc, llvm::None, lengths); 1601 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1602 }, 1603 1604 //===--------------------------------------------------------------===// 1605 1606 [&](const Fortran::lower::details::DynamicArrayStaticChar &x) { 1607 mlir::Value addr; 1608 mlir::Value len; 1609 mlir::Value argBox; 1610 auto charLen = x.charLen(); 1611 // if element type is a CHARACTER, determine the LEN value 1612 if (isDummy) { 1613 mlir::Value actualArg = symMap.lookupSymbol(sym).getAddr(); 1614 if (auto boxTy = actualArg.getType().dyn_cast<fir::BoxType>()) { 1615 argBox = actualArg; 1616 mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); 1617 addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox); 1618 } else { 1619 addr = charHelp.createUnboxChar(actualArg).first; 1620 } 1621 // Set/override LEN with a constant 1622 len = builder.createIntegerConstant(loc, idxTy, charLen); 1623 } else { 1624 // local CHARACTER variable 1625 len = builder.createIntegerConstant(loc, idxTy, charLen); 1626 } 1627 1628 // cast to the known constant parts from the declaration 1629 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1630 if (addr) 1631 addr = builder.createConvert(loc, castTy, addr); 1632 if (x.lboundAllOnes()) { 1633 // if lower bounds are all ones, build simple shaped object 1634 llvm::SmallVector<mlir::Value> shape; 1635 populateShape(shape, x.bounds, argBox); 1636 if (isDummy) { 1637 symMap.addCharSymbolWithShape(sym, addr, len, shape, true); 1638 return; 1639 } 1640 // local CHARACTER array 1641 mlir::Value local = 1642 createNewLocal(converter, loc, var, preAlloc, shape); 1643 symMap.addCharSymbolWithShape(sym, local, len, shape); 1644 return; 1645 } 1646 // if object is an array process the lower bound and extent values 1647 llvm::SmallVector<mlir::Value> extents; 1648 llvm::SmallVector<mlir::Value> lbounds; 1649 populateLBoundsExtents(lbounds, extents, x.bounds, argBox); 1650 if (isDummy) { 1651 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1652 true); 1653 return; 1654 } 1655 // local CHARACTER array with computed bounds 1656 assert(Fortran::lower::isExplicitShape(sym)); 1657 mlir::Value local = 1658 createNewLocal(converter, loc, var, preAlloc, extents); 1659 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1660 }, 1661 1662 //===--------------------------------------------------------------===// 1663 1664 [&](const Fortran::lower::details::DynamicArrayDynamicChar &x) { 1665 mlir::Value addr; 1666 mlir::Value len; 1667 mlir::Value argBox; 1668 auto charLen = x.charLen(); 1669 // if element type is a CHARACTER, determine the LEN value 1670 if (isDummy) { 1671 mlir::Value actualArg = symMap.lookupSymbol(sym).getAddr(); 1672 if (auto boxTy = actualArg.getType().dyn_cast<fir::BoxType>()) { 1673 argBox = actualArg; 1674 mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); 1675 addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox); 1676 if (charLen) 1677 // Set/override LEN with an expression. 1678 len = genExplicitCharLen(charLen); 1679 else 1680 // Get the length from the actual arguments. 1681 len = charHelp.readLengthFromBox(argBox); 1682 } else { 1683 std::pair<mlir::Value, mlir::Value> unboxchar = 1684 charHelp.createUnboxChar(actualArg); 1685 addr = unboxchar.first; 1686 if (charLen) { 1687 // Set/override LEN with an expression 1688 len = genExplicitCharLen(charLen); 1689 } else { 1690 // Get the length from the actual arguments. 1691 len = unboxchar.second; 1692 } 1693 } 1694 } else { 1695 // local CHARACTER variable 1696 len = genExplicitCharLen(charLen); 1697 } 1698 llvm::SmallVector<mlir::Value> lengths = {len}; 1699 1700 // cast to the known constant parts from the declaration 1701 mlir::Type castTy = builder.getRefType(converter.genType(var)); 1702 if (addr) 1703 addr = builder.createConvert(loc, castTy, addr); 1704 if (x.lboundAllOnes()) { 1705 // if lower bounds are all ones, build simple shaped object 1706 llvm::SmallVector<mlir::Value> shape; 1707 populateShape(shape, x.bounds, argBox); 1708 if (isDummy) { 1709 symMap.addCharSymbolWithShape(sym, addr, len, shape, true); 1710 return; 1711 } 1712 // local CHARACTER array 1713 mlir::Value local = 1714 createNewLocal(converter, loc, var, preAlloc, shape, lengths); 1715 symMap.addCharSymbolWithShape(sym, local, len, shape); 1716 return; 1717 } 1718 // Process the lower bound and extent values. 1719 llvm::SmallVector<mlir::Value> extents; 1720 llvm::SmallVector<mlir::Value> lbounds; 1721 populateLBoundsExtents(lbounds, extents, x.bounds, argBox); 1722 if (isDummy) { 1723 symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds, 1724 true); 1725 return; 1726 } 1727 // local CHARACTER array with computed bounds 1728 assert(Fortran::lower::isExplicitShape(sym)); 1729 mlir::Value local = 1730 createNewLocal(converter, loc, var, preAlloc, extents, lengths); 1731 symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds); 1732 }, 1733 1734 //===--------------------------------------------------------------===// 1735 1736 [&](const Fortran::lower::BoxAnalyzer::None &) { 1737 mlir::emitError(loc, "symbol analysis failed on ") 1738 << toStringRef(sym.name()); 1739 }); 1740 } 1741 1742 void Fortran::lower::defineModuleVariable( 1743 AbstractConverter &converter, const Fortran::lower::pft::Variable &var) { 1744 // Use empty linkage for module variables, which makes them available 1745 // for use in another unit. 1746 mlir::StringAttr linkage = 1747 getLinkageAttribute(converter.getFirOpBuilder(), var); 1748 if (!var.isGlobal()) 1749 fir::emitFatalError(converter.getCurrentLocation(), 1750 "attempting to lower module variable as local"); 1751 // Define aggregate storages for equivalenced objects. 1752 if (var.isAggregateStore()) { 1753 const Fortran::lower::pft::Variable::AggregateStore &aggregate = 1754 var.getAggregateStore(); 1755 std::string aggName = mangleGlobalAggregateStore(aggregate); 1756 defineGlobalAggregateStore(converter, aggregate, aggName, linkage); 1757 return; 1758 } 1759 const Fortran::semantics::Symbol &sym = var.getSymbol(); 1760 if (const Fortran::semantics::Symbol *common = 1761 Fortran::semantics::FindCommonBlockContaining(var.getSymbol())) { 1762 // Define common block containing the variable. 1763 defineCommonBlock(converter, *common); 1764 } else if (var.isAlias()) { 1765 // Do nothing. Mapping will be done on user side. 1766 } else { 1767 std::string globalName = Fortran::lower::mangle::mangleName(sym); 1768 defineGlobal(converter, var, globalName, linkage); 1769 } 1770 } 1771 1772 void Fortran::lower::instantiateVariable(AbstractConverter &converter, 1773 const pft::Variable &var, 1774 Fortran::lower::SymMap &symMap, 1775 AggregateStoreMap &storeMap) { 1776 if (var.isAggregateStore()) { 1777 instantiateAggregateStore(converter, var, storeMap); 1778 } else if (const Fortran::semantics::Symbol *common = 1779 Fortran::semantics::FindCommonBlockContaining( 1780 var.getSymbol().GetUltimate())) { 1781 instantiateCommon(converter, *common, var, symMap); 1782 } else if (var.isAlias()) { 1783 instantiateAlias(converter, var, symMap, storeMap); 1784 } else if (var.isGlobal()) { 1785 instantiateGlobal(converter, var, symMap); 1786 } else { 1787 instantiateLocal(converter, var, symMap); 1788 } 1789 } 1790 1791 void Fortran::lower::mapCallInterfaceSymbols( 1792 AbstractConverter &converter, const Fortran::lower::CallerInterface &caller, 1793 SymMap &symMap) { 1794 Fortran::lower::AggregateStoreMap storeMap; 1795 const Fortran::semantics::Symbol &result = caller.getResultSymbol(); 1796 for (Fortran::lower::pft::Variable var : 1797 Fortran::lower::pft::buildFuncResultDependencyList(result)) { 1798 if (var.isAggregateStore()) { 1799 instantiateVariable(converter, var, symMap, storeMap); 1800 } else { 1801 const Fortran::semantics::Symbol &sym = var.getSymbol(); 1802 const auto *hostDetails = 1803 sym.detailsIf<Fortran::semantics::HostAssocDetails>(); 1804 if (hostDetails && !var.isModuleVariable()) { 1805 // The callee is an internal procedure `A` whose result properties 1806 // depend on host variables. The caller may be the host, or another 1807 // internal procedure `B` contained in the same host. In the first 1808 // case, the host symbol is obviously mapped, in the second case, it 1809 // must also be mapped because 1810 // HostAssociations::internalProcedureBindings that was called when 1811 // lowering `B` will have mapped all host symbols of captured variables 1812 // to the tuple argument containing the composite of all host associated 1813 // variables, whether or not the host symbol is actually referred to in 1814 // `B`. Hence it is possible to simply lookup the variable associated to 1815 // the host symbol without having to go back to the tuple argument. 1816 Fortran::lower::SymbolBox hostValue = 1817 symMap.lookupSymbol(hostDetails->symbol()); 1818 assert(hostValue && "callee host symbol must be mapped on caller side"); 1819 symMap.addSymbol(sym, hostValue.toExtendedValue()); 1820 // The SymbolBox associated to the host symbols is complete, skip 1821 // instantiateVariable that would try to allocate a new storage. 1822 continue; 1823 } 1824 if (Fortran::semantics::IsDummy(sym) && sym.owner() == result.owner()) { 1825 // Get the argument for the dummy argument symbols of the current call. 1826 symMap.addSymbol(sym, caller.getArgumentValue(sym)); 1827 // All the properties of the dummy variable may not come from the actual 1828 // argument, let instantiateVariable handle this. 1829 } 1830 // If this is neither a host associated or dummy symbol, it must be a 1831 // module or common block variable to satisfy specification expression 1832 // requirements in 10.1.11, instantiateVariable will get its address and 1833 // properties. 1834 instantiateVariable(converter, var, symMap, storeMap); 1835 } 1836 } 1837 } 1838 1839 void Fortran::lower::createRuntimeTypeInfoGlobal( 1840 Fortran::lower::AbstractConverter &converter, mlir::Location loc, 1841 const Fortran::semantics::Symbol &typeInfoSym) { 1842 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 1843 std::string globalName = Fortran::lower::mangle::mangleName(typeInfoSym); 1844 auto var = Fortran::lower::pft::Variable(typeInfoSym, /*global=*/true); 1845 mlir::StringAttr linkage = getLinkageAttribute(builder, var); 1846 defineGlobal(converter, var, globalName, linkage); 1847 } 1848