1baa12ddbSEric Schweitz //===-- ConvertType.cpp ---------------------------------------------------===//
2baa12ddbSEric Schweitz //
3baa12ddbSEric Schweitz // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4baa12ddbSEric Schweitz // See https://llvm.org/LICENSE.txt for license information.
5baa12ddbSEric Schweitz // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6baa12ddbSEric Schweitz //
7baa12ddbSEric Schweitz //===----------------------------------------------------------------------===//
8baa12ddbSEric Schweitz
9baa12ddbSEric Schweitz #include "flang/Lower/ConvertType.h"
102c2e5a5dSValentin Clement #include "flang/Lower/AbstractConverter.h"
119aeb7f03SValentin Clement #include "flang/Lower/CallInterface.h"
129aeb7f03SValentin Clement #include "flang/Lower/ConvertVariable.h"
13589d51eaSValentin Clement #include "flang/Lower/Mangler.h"
14baa12ddbSEric Schweitz #include "flang/Lower/PFTBuilder.h"
15e641c29fSValentin Clement #include "flang/Lower/Support/Utils.h"
165b66cc10SValentin Clement #include "flang/Optimizer/Builder/Todo.h"
17baa12ddbSEric Schweitz #include "flang/Optimizer/Dialect/FIRType.h"
18baa12ddbSEric Schweitz #include "flang/Semantics/tools.h"
19baa12ddbSEric Schweitz #include "flang/Semantics/type.h"
20baa12ddbSEric Schweitz #include "mlir/IR/Builders.h"
2109f7a55fSRiver Riddle #include "mlir/IR/BuiltinTypes.h"
22589d51eaSValentin Clement #include "llvm/Support/Debug.h"
23baa12ddbSEric Schweitz
24ad40cc14SValentin Clement #define DEBUG_TYPE "flang-lower-type"
25ad40cc14SValentin Clement
26ad40cc14SValentin Clement //===--------------------------------------------------------------------===//
27ad40cc14SValentin Clement // Intrinsic type translation helpers
28ad40cc14SValentin Clement //===--------------------------------------------------------------------===//
29ad40cc14SValentin Clement
genRealType(mlir::MLIRContext * context,int kind)300a0b3029SValentin Clement static mlir::Type genRealType(mlir::MLIRContext *context, int kind) {
310a0b3029SValentin Clement if (Fortran::evaluate::IsValidKindOfIntrinsicType(
320a0b3029SValentin Clement Fortran::common::TypeCategory::Real, kind)) {
330a0b3029SValentin Clement switch (kind) {
340a0b3029SValentin Clement case 2:
350a0b3029SValentin Clement return mlir::FloatType::getF16(context);
360a0b3029SValentin Clement case 3:
370a0b3029SValentin Clement return mlir::FloatType::getBF16(context);
380a0b3029SValentin Clement case 4:
390a0b3029SValentin Clement return mlir::FloatType::getF32(context);
400a0b3029SValentin Clement case 8:
410a0b3029SValentin Clement return mlir::FloatType::getF64(context);
420a0b3029SValentin Clement case 10:
430a0b3029SValentin Clement return mlir::FloatType::getF80(context);
440a0b3029SValentin Clement case 16:
450a0b3029SValentin Clement return mlir::FloatType::getF128(context);
460a0b3029SValentin Clement }
470a0b3029SValentin Clement }
480a0b3029SValentin Clement llvm_unreachable("REAL type translation not implemented");
490a0b3029SValentin Clement }
500a0b3029SValentin Clement
51ad40cc14SValentin Clement template <int KIND>
getIntegerBits()52ad40cc14SValentin Clement int getIntegerBits() {
53ad40cc14SValentin Clement return Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer,
54ad40cc14SValentin Clement KIND>::Scalar::bits;
55ad40cc14SValentin Clement }
genIntegerType(mlir::MLIRContext * context,int kind)56ad40cc14SValentin Clement static mlir::Type genIntegerType(mlir::MLIRContext *context, int kind) {
57ad40cc14SValentin Clement if (Fortran::evaluate::IsValidKindOfIntrinsicType(
58ad40cc14SValentin Clement Fortran::common::TypeCategory::Integer, kind)) {
59ad40cc14SValentin Clement switch (kind) {
60ad40cc14SValentin Clement case 1:
61ad40cc14SValentin Clement return mlir::IntegerType::get(context, getIntegerBits<1>());
62ad40cc14SValentin Clement case 2:
63ad40cc14SValentin Clement return mlir::IntegerType::get(context, getIntegerBits<2>());
64ad40cc14SValentin Clement case 4:
65ad40cc14SValentin Clement return mlir::IntegerType::get(context, getIntegerBits<4>());
66ad40cc14SValentin Clement case 8:
67ad40cc14SValentin Clement return mlir::IntegerType::get(context, getIntegerBits<8>());
68ad40cc14SValentin Clement case 16:
69ad40cc14SValentin Clement return mlir::IntegerType::get(context, getIntegerBits<16>());
70ad40cc14SValentin Clement }
71ad40cc14SValentin Clement }
72ad40cc14SValentin Clement llvm_unreachable("INTEGER kind not translated");
73ad40cc14SValentin Clement }
74ad40cc14SValentin Clement
genLogicalType(mlir::MLIRContext * context,int KIND)75ad40cc14SValentin Clement static mlir::Type genLogicalType(mlir::MLIRContext *context, int KIND) {
76ad40cc14SValentin Clement if (Fortran::evaluate::IsValidKindOfIntrinsicType(
77ad40cc14SValentin Clement Fortran::common::TypeCategory::Logical, KIND))
78ad40cc14SValentin Clement return fir::LogicalType::get(context, KIND);
79ad40cc14SValentin Clement return {};
80ad40cc14SValentin Clement }
81ad40cc14SValentin Clement
genCharacterType(mlir::MLIRContext * context,int KIND,Fortran::lower::LenParameterTy len=fir::CharacterType::unknownLen ())828c22cb84SValentin Clement static mlir::Type genCharacterType(
838c22cb84SValentin Clement mlir::MLIRContext *context, int KIND,
848c22cb84SValentin Clement Fortran::lower::LenParameterTy len = fir::CharacterType::unknownLen()) {
858c22cb84SValentin Clement if (Fortran::evaluate::IsValidKindOfIntrinsicType(
868c22cb84SValentin Clement Fortran::common::TypeCategory::Character, KIND))
878c22cb84SValentin Clement return fir::CharacterType::get(context, KIND, len);
888c22cb84SValentin Clement return {};
898c22cb84SValentin Clement }
908c22cb84SValentin Clement
genComplexType(mlir::MLIRContext * context,int KIND)911ceb1d9bSValentin Clement static mlir::Type genComplexType(mlir::MLIRContext *context, int KIND) {
921ceb1d9bSValentin Clement if (Fortran::evaluate::IsValidKindOfIntrinsicType(
931ceb1d9bSValentin Clement Fortran::common::TypeCategory::Complex, KIND))
941ceb1d9bSValentin Clement return fir::ComplexType::get(context, KIND);
951ceb1d9bSValentin Clement return {};
961ceb1d9bSValentin Clement }
971ceb1d9bSValentin Clement
988c22cb84SValentin Clement static mlir::Type
genFIRType(mlir::MLIRContext * context,Fortran::common::TypeCategory tc,int kind,llvm::ArrayRef<Fortran::lower::LenParameterTy> lenParameters)998c22cb84SValentin Clement genFIRType(mlir::MLIRContext *context, Fortran::common::TypeCategory tc,
1008c22cb84SValentin Clement int kind,
1018c22cb84SValentin Clement llvm::ArrayRef<Fortran::lower::LenParameterTy> lenParameters) {
102ad40cc14SValentin Clement switch (tc) {
103ad40cc14SValentin Clement case Fortran::common::TypeCategory::Real:
1040a0b3029SValentin Clement return genRealType(context, kind);
105ad40cc14SValentin Clement case Fortran::common::TypeCategory::Integer:
106ad40cc14SValentin Clement return genIntegerType(context, kind);
107ad40cc14SValentin Clement case Fortran::common::TypeCategory::Complex:
1081ceb1d9bSValentin Clement return genComplexType(context, kind);
109ad40cc14SValentin Clement case Fortran::common::TypeCategory::Logical:
110ad40cc14SValentin Clement return genLogicalType(context, kind);
111ad40cc14SValentin Clement case Fortran::common::TypeCategory::Character:
1128c22cb84SValentin Clement if (!lenParameters.empty())
1138c22cb84SValentin Clement return genCharacterType(context, kind, lenParameters[0]);
1148c22cb84SValentin Clement return genCharacterType(context, kind);
115ad40cc14SValentin Clement default:
116ad40cc14SValentin Clement break;
117ad40cc14SValentin Clement }
118ad40cc14SValentin Clement llvm_unreachable("unhandled type category");
119baa12ddbSEric Schweitz }
120baa12ddbSEric Schweitz
121307ccf4cSValentin Clement //===--------------------------------------------------------------------===//
122307ccf4cSValentin Clement // Symbol and expression type translation
123307ccf4cSValentin Clement //===--------------------------------------------------------------------===//
124baa12ddbSEric Schweitz
125307ccf4cSValentin Clement /// TypeBuilder translates expression and symbol type taking into account
126307ccf4cSValentin Clement /// their shape and length parameters. For symbols, attributes such as
127307ccf4cSValentin Clement /// ALLOCATABLE or POINTER are reflected in the fir type.
128307ccf4cSValentin Clement /// It uses evaluate::DynamicType and evaluate::Shape when possible to
129307ccf4cSValentin Clement /// avoid re-implementing type/shape analysis here.
130307ccf4cSValentin Clement /// Do not use the FirOpBuilder from the AbstractConverter to get fir/mlir types
131307ccf4cSValentin Clement /// since it is not guaranteed to exist yet when we lower types.
132baa12ddbSEric Schweitz namespace {
1339aeb7f03SValentin Clement struct TypeBuilder {
1349aeb7f03SValentin Clement
TypeBuilder__anon8bca3fa80111::TypeBuilder1352c2e5a5dSValentin Clement TypeBuilder(Fortran::lower::AbstractConverter &converter)
136ad40cc14SValentin Clement : converter{converter}, context{&converter.getMLIRContext()} {}
137ad40cc14SValentin Clement
genExprType__anon8bca3fa80111::TypeBuilder138e641c29fSValentin Clement mlir::Type genExprType(const Fortran::lower::SomeExpr &expr) {
139e641c29fSValentin Clement std::optional<Fortran::evaluate::DynamicType> dynamicType = expr.GetType();
140e641c29fSValentin Clement if (!dynamicType)
141e641c29fSValentin Clement return genTypelessExprType(expr);
142e641c29fSValentin Clement Fortran::common::TypeCategory category = dynamicType->category();
143e641c29fSValentin Clement
144e641c29fSValentin Clement mlir::Type baseType;
145e641c29fSValentin Clement if (category == Fortran::common::TypeCategory::Derived) {
146589d51eaSValentin Clement baseType = genDerivedType(dynamicType->GetDerivedTypeSpec());
147e641c29fSValentin Clement } else {
148e641c29fSValentin Clement // LOGICAL, INTEGER, REAL, COMPLEX, CHARACTER
1498c22cb84SValentin Clement llvm::SmallVector<Fortran::lower::LenParameterTy> params;
1508c22cb84SValentin Clement translateLenParameters(params, category, expr);
1518c22cb84SValentin Clement baseType = genFIRType(context, category, dynamicType->kind(), params);
152e641c29fSValentin Clement }
153e641c29fSValentin Clement std::optional<Fortran::evaluate::Shape> shapeExpr =
154e641c29fSValentin Clement Fortran::evaluate::GetShape(converter.getFoldingContext(), expr);
155e641c29fSValentin Clement fir::SequenceType::Shape shape;
156e641c29fSValentin Clement if (shapeExpr) {
157e641c29fSValentin Clement translateShape(shape, std::move(*shapeExpr));
158e641c29fSValentin Clement } else {
159e641c29fSValentin Clement // Shape static analysis cannot return something useful for the shape.
160e641c29fSValentin Clement // Use unknown extents.
161e641c29fSValentin Clement int rank = expr.Rank();
162e641c29fSValentin Clement if (rank < 0)
16339377d52SValentin Clement TODO(converter.getCurrentLocation(), "assumed rank expression types");
164e641c29fSValentin Clement for (int dim = 0; dim < rank; ++dim)
165e641c29fSValentin Clement shape.emplace_back(fir::SequenceType::getUnknownExtent());
166e641c29fSValentin Clement }
167e641c29fSValentin Clement if (!shape.empty())
168e641c29fSValentin Clement return fir::SequenceType::get(shape, baseType);
169e641c29fSValentin Clement return baseType;
170e641c29fSValentin Clement }
171e641c29fSValentin Clement
172ad40cc14SValentin Clement template <typename A>
translateShape__anon8bca3fa80111::TypeBuilder173c807aa53SValentin Clement void translateShape(A &shape, Fortran::evaluate::Shape &&shapeExpr) {
174c807aa53SValentin Clement for (Fortran::evaluate::MaybeExtentExpr extentExpr : shapeExpr) {
175c807aa53SValentin Clement fir::SequenceType::Extent extent = fir::SequenceType::getUnknownExtent();
176c807aa53SValentin Clement if (std::optional<std::int64_t> constantExtent =
177c807aa53SValentin Clement toInt64(std::move(extentExpr)))
178c807aa53SValentin Clement extent = *constantExtent;
179c807aa53SValentin Clement shape.push_back(extent);
180c807aa53SValentin Clement }
181c807aa53SValentin Clement }
182c807aa53SValentin Clement
183c807aa53SValentin Clement template <typename A>
toInt64__anon8bca3fa80111::TypeBuilder184ad40cc14SValentin Clement std::optional<std::int64_t> toInt64(A &&expr) {
185ad40cc14SValentin Clement return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
186ad40cc14SValentin Clement converter.getFoldingContext(), std::move(expr)));
187ad40cc14SValentin Clement }
188ad40cc14SValentin Clement
genTypelessExprType__anon8bca3fa80111::TypeBuilder189e641c29fSValentin Clement mlir::Type genTypelessExprType(const Fortran::lower::SomeExpr &expr) {
190e641c29fSValentin Clement return std::visit(
191e641c29fSValentin Clement Fortran::common::visitors{
192e641c29fSValentin Clement [&](const Fortran::evaluate::BOZLiteralConstant &) -> mlir::Type {
193e641c29fSValentin Clement return mlir::NoneType::get(context);
194e641c29fSValentin Clement },
195e641c29fSValentin Clement [&](const Fortran::evaluate::NullPointer &) -> mlir::Type {
196e641c29fSValentin Clement return fir::ReferenceType::get(mlir::NoneType::get(context));
197e641c29fSValentin Clement },
198e641c29fSValentin Clement [&](const Fortran::evaluate::ProcedureDesignator &proc)
199e641c29fSValentin Clement -> mlir::Type {
2009aeb7f03SValentin Clement return Fortran::lower::translateSignature(proc, converter);
201e641c29fSValentin Clement },
202e641c29fSValentin Clement [&](const Fortran::evaluate::ProcedureRef &) -> mlir::Type {
203e641c29fSValentin Clement return mlir::NoneType::get(context);
204e641c29fSValentin Clement },
205e641c29fSValentin Clement [](const auto &x) -> mlir::Type {
206e641c29fSValentin Clement using T = std::decay_t<decltype(x)>;
207e641c29fSValentin Clement static_assert(!Fortran::common::HasMember<
208e641c29fSValentin Clement T, Fortran::evaluate::TypelessExpression>,
20939377d52SValentin Clement "missing typeless expr handling");
210e641c29fSValentin Clement llvm::report_fatal_error("not a typeless expression");
211e641c29fSValentin Clement },
212e641c29fSValentin Clement },
213e641c29fSValentin Clement expr.u);
214e641c29fSValentin Clement }
215e641c29fSValentin Clement
genSymbolType__anon8bca3fa80111::TypeBuilder216ad40cc14SValentin Clement mlir::Type genSymbolType(const Fortran::semantics::Symbol &symbol,
217ad40cc14SValentin Clement bool isAlloc = false, bool isPtr = false) {
218ad40cc14SValentin Clement mlir::Location loc = converter.genLocation(symbol.name());
219ad40cc14SValentin Clement mlir::Type ty;
220ad40cc14SValentin Clement // If the symbol is not the same as the ultimate one (i.e, it is host or use
221ad40cc14SValentin Clement // associated), all the symbol properties are the ones of the ultimate
222ad40cc14SValentin Clement // symbol but the volatile and asynchronous attributes that may differ. To
223ad40cc14SValentin Clement // avoid issues with helper functions that would not follow association
224ad40cc14SValentin Clement // links, the fir type is built based on the ultimate symbol. This relies
225ad40cc14SValentin Clement // on the fact volatile and asynchronous are not reflected in fir types.
226ad40cc14SValentin Clement const Fortran::semantics::Symbol &ultimate = symbol.GetUltimate();
2271e1f60c6SV Donaldson if (Fortran::semantics::IsProcedurePointer(ultimate))
2281e1f60c6SV Donaldson TODO(loc, "procedure pointers");
229ad40cc14SValentin Clement if (const Fortran::semantics::DeclTypeSpec *type = ultimate.GetType()) {
230ad40cc14SValentin Clement if (const Fortran::semantics::IntrinsicTypeSpec *tySpec =
231ad40cc14SValentin Clement type->AsIntrinsic()) {
232ad40cc14SValentin Clement int kind = toInt64(Fortran::common::Clone(tySpec->kind())).value();
2338c22cb84SValentin Clement llvm::SmallVector<Fortran::lower::LenParameterTy> params;
2348c22cb84SValentin Clement translateLenParameters(params, tySpec->category(), ultimate);
2358c22cb84SValentin Clement ty = genFIRType(context, tySpec->category(), kind, params);
236ad40cc14SValentin Clement } else if (type->IsPolymorphic()) {
23739377d52SValentin Clement TODO(loc, "support for polymorphic types");
238589d51eaSValentin Clement } else if (const Fortran::semantics::DerivedTypeSpec *tySpec =
239589d51eaSValentin Clement type->AsDerived()) {
240589d51eaSValentin Clement ty = genDerivedType(*tySpec);
241ad40cc14SValentin Clement } else {
242ad40cc14SValentin Clement fir::emitFatalError(loc, "symbol's type must have a type spec");
243ad40cc14SValentin Clement }
244ad40cc14SValentin Clement } else {
245ad40cc14SValentin Clement fir::emitFatalError(loc, "symbol must have a type");
246ad40cc14SValentin Clement }
247c807aa53SValentin Clement if (ultimate.IsObjectArray()) {
248c807aa53SValentin Clement auto shapeExpr = Fortran::evaluate::GetShapeHelper{
249c807aa53SValentin Clement converter.getFoldingContext()}(ultimate);
250c807aa53SValentin Clement if (!shapeExpr)
25139377d52SValentin Clement TODO(loc, "assumed rank symbol type");
252c807aa53SValentin Clement fir::SequenceType::Shape shape;
253c807aa53SValentin Clement translateShape(shape, std::move(*shapeExpr));
254c807aa53SValentin Clement ty = fir::SequenceType::get(shape, ty);
255c807aa53SValentin Clement }
256ad40cc14SValentin Clement
257ad40cc14SValentin Clement if (Fortran::semantics::IsPointer(symbol))
258ad40cc14SValentin Clement return fir::BoxType::get(fir::PointerType::get(ty));
259ad40cc14SValentin Clement if (Fortran::semantics::IsAllocatable(symbol))
260ad40cc14SValentin Clement return fir::BoxType::get(fir::HeapType::get(ty));
261ad40cc14SValentin Clement // isPtr and isAlloc are variable that were promoted to be on the
262ad40cc14SValentin Clement // heap or to be pointers, but they do not have Fortran allocatable
263ad40cc14SValentin Clement // or pointer semantics, so do not use box for them.
264ad40cc14SValentin Clement if (isPtr)
265ad40cc14SValentin Clement return fir::PointerType::get(ty);
266ad40cc14SValentin Clement if (isAlloc)
267ad40cc14SValentin Clement return fir::HeapType::get(ty);
268ad40cc14SValentin Clement return ty;
269ad40cc14SValentin Clement }
270baa12ddbSEric Schweitz
271589d51eaSValentin Clement /// Does \p component has non deferred lower bounds that are not compile time
272589d51eaSValentin Clement /// constant 1.
componentHasNonDefaultLowerBounds__anon8bca3fa80111::TypeBuilder273589d51eaSValentin Clement static bool componentHasNonDefaultLowerBounds(
274589d51eaSValentin Clement const Fortran::semantics::Symbol &component) {
275589d51eaSValentin Clement if (const auto *objDetails =
276589d51eaSValentin Clement component.detailsIf<Fortran::semantics::ObjectEntityDetails>())
277589d51eaSValentin Clement for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape())
278589d51eaSValentin Clement if (auto lb = bounds.lbound().GetExplicit())
279589d51eaSValentin Clement if (auto constant = Fortran::evaluate::ToInt64(*lb))
280589d51eaSValentin Clement if (!constant || *constant != 1)
281589d51eaSValentin Clement return true;
282589d51eaSValentin Clement return false;
283589d51eaSValentin Clement }
284589d51eaSValentin Clement
genDerivedType__anon8bca3fa80111::TypeBuilder285589d51eaSValentin Clement mlir::Type genDerivedType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
286589d51eaSValentin Clement std::vector<std::pair<std::string, mlir::Type>> ps;
287589d51eaSValentin Clement std::vector<std::pair<std::string, mlir::Type>> cs;
288589d51eaSValentin Clement const Fortran::semantics::Symbol &typeSymbol = tySpec.typeSymbol();
289589d51eaSValentin Clement if (mlir::Type ty = getTypeIfDerivedAlreadyInConstruction(typeSymbol))
290589d51eaSValentin Clement return ty;
291*740633ffSValentin Clement
292*740633ffSValentin Clement if (Fortran::semantics::IsFinalizable(tySpec))
293*740633ffSValentin Clement TODO(converter.genLocation(tySpec.name()), "derived type finalization");
294*740633ffSValentin Clement
295589d51eaSValentin Clement auto rec = fir::RecordType::get(context,
296589d51eaSValentin Clement Fortran::lower::mangle::mangleName(tySpec));
297589d51eaSValentin Clement // Maintain the stack of types for recursive references.
298589d51eaSValentin Clement derivedTypeInConstruction.emplace_back(typeSymbol, rec);
299589d51eaSValentin Clement
300589d51eaSValentin Clement // Gather the record type fields.
301589d51eaSValentin Clement // (1) The data components.
302589d51eaSValentin Clement for (const auto &field :
303589d51eaSValentin Clement Fortran::semantics::OrderedComponentIterator(tySpec)) {
304589d51eaSValentin Clement // Lowering is assuming non deferred component lower bounds are always 1.
305589d51eaSValentin Clement // Catch any situations where this is not true for now.
306589d51eaSValentin Clement if (componentHasNonDefaultLowerBounds(field))
307589d51eaSValentin Clement TODO(converter.genLocation(field.name()),
30839377d52SValentin Clement "derived type components with non default lower bounds");
3098594b051SPeter Klausler if (IsProcedure(field))
310589d51eaSValentin Clement TODO(converter.genLocation(field.name()), "procedure components");
311589d51eaSValentin Clement mlir::Type ty = genSymbolType(field);
312589d51eaSValentin Clement // Do not add the parent component (component of the parents are
313589d51eaSValentin Clement // added and should be sufficient, the parent component would
314589d51eaSValentin Clement // duplicate the fields).
315589d51eaSValentin Clement if (field.test(Fortran::semantics::Symbol::Flag::ParentComp))
316589d51eaSValentin Clement continue;
317589d51eaSValentin Clement cs.emplace_back(field.name().ToString(), ty);
318589d51eaSValentin Clement }
319589d51eaSValentin Clement
320589d51eaSValentin Clement // (2) The LEN type parameters.
321589d51eaSValentin Clement for (const auto ¶m :
322589d51eaSValentin Clement Fortran::semantics::OrderParameterDeclarations(typeSymbol))
323589d51eaSValentin Clement if (param->get<Fortran::semantics::TypeParamDetails>().attr() ==
324589d51eaSValentin Clement Fortran::common::TypeParamAttr::Len)
325589d51eaSValentin Clement ps.emplace_back(param->name().ToString(), genSymbolType(*param));
326589d51eaSValentin Clement
327589d51eaSValentin Clement rec.finalize(ps, cs);
328589d51eaSValentin Clement popDerivedTypeInConstruction();
329589d51eaSValentin Clement
3309aeb7f03SValentin Clement mlir::Location loc = converter.genLocation(typeSymbol.name());
331589d51eaSValentin Clement if (!ps.empty()) {
332589d51eaSValentin Clement // This type is a PDT (parametric derived type). Create the functions to
333589d51eaSValentin Clement // use for allocation, dereferencing, and address arithmetic here.
33439377d52SValentin Clement TODO(loc, "parameterized derived types");
335589d51eaSValentin Clement }
336589d51eaSValentin Clement LLVM_DEBUG(llvm::dbgs() << "derived type: " << rec << '\n');
3379aeb7f03SValentin Clement
3389aeb7f03SValentin Clement // Generate the type descriptor object if any
3399aeb7f03SValentin Clement if (const Fortran::semantics::Scope *derivedScope =
3409aeb7f03SValentin Clement tySpec.scope() ? tySpec.scope() : tySpec.typeSymbol().scope())
3419aeb7f03SValentin Clement if (const Fortran::semantics::Symbol *typeInfoSym =
3429aeb7f03SValentin Clement derivedScope->runtimeDerivedTypeDescription())
3439aeb7f03SValentin Clement converter.registerRuntimeTypeInfo(loc, *typeInfoSym);
344589d51eaSValentin Clement return rec;
345589d51eaSValentin Clement }
346589d51eaSValentin Clement
3478c22cb84SValentin Clement // To get the character length from a symbol, make an fold a designator for
3488c22cb84SValentin Clement // the symbol to cover the case where the symbol is an assumed length named
3498c22cb84SValentin Clement // constant and its length comes from its init expression length.
3508c22cb84SValentin Clement template <int Kind>
3518c22cb84SValentin Clement fir::SequenceType::Extent
getCharacterLengthHelper__anon8bca3fa80111::TypeBuilder3528c22cb84SValentin Clement getCharacterLengthHelper(const Fortran::semantics::Symbol &symbol) {
3538c22cb84SValentin Clement using TC =
3548c22cb84SValentin Clement Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
3558c22cb84SValentin Clement auto designator = Fortran::evaluate::Fold(
3568c22cb84SValentin Clement converter.getFoldingContext(),
3578c22cb84SValentin Clement Fortran::evaluate::Expr<TC>{Fortran::evaluate::Designator<TC>{symbol}});
3588c22cb84SValentin Clement if (auto len = toInt64(std::move(designator.LEN())))
3598c22cb84SValentin Clement return *len;
3608c22cb84SValentin Clement return fir::SequenceType::getUnknownExtent();
3618c22cb84SValentin Clement }
3628c22cb84SValentin Clement
3638c22cb84SValentin Clement template <typename T>
translateLenParameters__anon8bca3fa80111::TypeBuilder3648c22cb84SValentin Clement void translateLenParameters(
3658c22cb84SValentin Clement llvm::SmallVectorImpl<Fortran::lower::LenParameterTy> ¶ms,
3668c22cb84SValentin Clement Fortran::common::TypeCategory category, const T &exprOrSym) {
3678c22cb84SValentin Clement if (category == Fortran::common::TypeCategory::Character)
3688c22cb84SValentin Clement params.push_back(getCharacterLength(exprOrSym));
3698c22cb84SValentin Clement else if (category == Fortran::common::TypeCategory::Derived)
37039377d52SValentin Clement TODO(converter.getCurrentLocation(), "derived type length parameters");
3718c22cb84SValentin Clement }
3728c22cb84SValentin Clement Fortran::lower::LenParameterTy
getCharacterLength__anon8bca3fa80111::TypeBuilder3738c22cb84SValentin Clement getCharacterLength(const Fortran::semantics::Symbol &symbol) {
3748c22cb84SValentin Clement const Fortran::semantics::DeclTypeSpec *type = symbol.GetType();
3758c22cb84SValentin Clement if (!type ||
3768c22cb84SValentin Clement type->category() != Fortran::semantics::DeclTypeSpec::Character ||
3778c22cb84SValentin Clement !type->AsIntrinsic())
3788c22cb84SValentin Clement llvm::report_fatal_error("not a character symbol");
3798c22cb84SValentin Clement int kind =
3808c22cb84SValentin Clement toInt64(Fortran::common::Clone(type->AsIntrinsic()->kind())).value();
3818c22cb84SValentin Clement switch (kind) {
3828c22cb84SValentin Clement case 1:
3838c22cb84SValentin Clement return getCharacterLengthHelper<1>(symbol);
3848c22cb84SValentin Clement case 2:
3858c22cb84SValentin Clement return getCharacterLengthHelper<2>(symbol);
3868c22cb84SValentin Clement case 4:
3878c22cb84SValentin Clement return getCharacterLengthHelper<4>(symbol);
3888c22cb84SValentin Clement }
3898c22cb84SValentin Clement llvm_unreachable("unknown character kind");
3908c22cb84SValentin Clement }
3918c22cb84SValentin Clement Fortran::lower::LenParameterTy
getCharacterLength__anon8bca3fa80111::TypeBuilder3928c22cb84SValentin Clement getCharacterLength(const Fortran::lower::SomeExpr &expr) {
3938c22cb84SValentin Clement // Do not use dynamic type length here. We would miss constant
3948c22cb84SValentin Clement // lengths opportunities because dynamic type only has the length
3958c22cb84SValentin Clement // if it comes from a declaration.
3968c22cb84SValentin Clement auto charExpr =
3978c22cb84SValentin Clement std::get<Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter>>(
3988c22cb84SValentin Clement expr.u);
3998c22cb84SValentin Clement if (auto constantLen = toInt64(charExpr.LEN()))
4008c22cb84SValentin Clement return *constantLen;
4018c22cb84SValentin Clement return fir::SequenceType::getUnknownExtent();
4028c22cb84SValentin Clement }
4038c22cb84SValentin Clement
genVariableType__anon8bca3fa80111::TypeBuilder4042c2e5a5dSValentin Clement mlir::Type genVariableType(const Fortran::lower::pft::Variable &var) {
405ad40cc14SValentin Clement return genSymbolType(var.getSymbol(), var.isHeapAlloc(), var.isPointer());
406baa12ddbSEric Schweitz }
407baa12ddbSEric Schweitz
408589d51eaSValentin Clement /// Derived type can be recursive. That is, pointer components of a derived
409589d51eaSValentin Clement /// type `t` have type `t`. This helper returns `t` if it is already being
410589d51eaSValentin Clement /// lowered to avoid infinite loops.
getTypeIfDerivedAlreadyInConstruction__anon8bca3fa80111::TypeBuilder411589d51eaSValentin Clement mlir::Type getTypeIfDerivedAlreadyInConstruction(
412589d51eaSValentin Clement const Fortran::lower::SymbolRef derivedSym) const {
413589d51eaSValentin Clement for (const auto &[sym, type] : derivedTypeInConstruction)
414589d51eaSValentin Clement if (sym == derivedSym)
415589d51eaSValentin Clement return type;
416589d51eaSValentin Clement return {};
417589d51eaSValentin Clement }
418589d51eaSValentin Clement
popDerivedTypeInConstruction__anon8bca3fa80111::TypeBuilder419589d51eaSValentin Clement void popDerivedTypeInConstruction() {
420589d51eaSValentin Clement assert(!derivedTypeInConstruction.empty());
421589d51eaSValentin Clement derivedTypeInConstruction.pop_back();
422589d51eaSValentin Clement }
423589d51eaSValentin Clement
424589d51eaSValentin Clement /// Stack derived type being processed to avoid infinite loops in case of
425589d51eaSValentin Clement /// recursive derived types. The depth of derived types is expected to be
426589d51eaSValentin Clement /// shallow (<10), so a SmallVector is sufficient.
427589d51eaSValentin Clement llvm::SmallVector<std::pair<const Fortran::lower::SymbolRef, mlir::Type>>
428589d51eaSValentin Clement derivedTypeInConstruction;
429ad40cc14SValentin Clement Fortran::lower::AbstractConverter &converter;
430baa12ddbSEric Schweitz mlir::MLIRContext *context;
431baa12ddbSEric Schweitz };
432baa12ddbSEric Schweitz } // namespace
433baa12ddbSEric Schweitz
getFIRType(mlir::MLIRContext * context,Fortran::common::TypeCategory tc,int kind,llvm::ArrayRef<LenParameterTy> params)434dc6a3446SValentin Clement mlir::Type Fortran::lower::getFIRType(mlir::MLIRContext *context,
435dc6a3446SValentin Clement Fortran::common::TypeCategory tc,
4368c22cb84SValentin Clement int kind,
4378c22cb84SValentin Clement llvm::ArrayRef<LenParameterTy> params) {
4388c22cb84SValentin Clement return genFIRType(context, tc, kind, params);
439baa12ddbSEric Schweitz }
440baa12ddbSEric Schweitz
translateDerivedTypeToFIRType(Fortran::lower::AbstractConverter & converter,const Fortran::semantics::DerivedTypeSpec & tySpec)441589d51eaSValentin Clement mlir::Type Fortran::lower::translateDerivedTypeToFIRType(
442589d51eaSValentin Clement Fortran::lower::AbstractConverter &converter,
443589d51eaSValentin Clement const Fortran::semantics::DerivedTypeSpec &tySpec) {
444589d51eaSValentin Clement return TypeBuilder{converter}.genDerivedType(tySpec);
445589d51eaSValentin Clement }
446589d51eaSValentin Clement
translateSomeExprToFIRType(Fortran::lower::AbstractConverter & converter,const SomeExpr & expr)447baa12ddbSEric Schweitz mlir::Type Fortran::lower::translateSomeExprToFIRType(
448e641c29fSValentin Clement Fortran::lower::AbstractConverter &converter, const SomeExpr &expr) {
449e641c29fSValentin Clement return TypeBuilder{converter}.genExprType(expr);
450baa12ddbSEric Schweitz }
451baa12ddbSEric Schweitz
translateSymbolToFIRType(Fortran::lower::AbstractConverter & converter,const SymbolRef symbol)452baa12ddbSEric Schweitz mlir::Type Fortran::lower::translateSymbolToFIRType(
4532c2e5a5dSValentin Clement Fortran::lower::AbstractConverter &converter, const SymbolRef symbol) {
454ad40cc14SValentin Clement return TypeBuilder{converter}.genSymbolType(symbol);
455baa12ddbSEric Schweitz }
456baa12ddbSEric Schweitz
translateVariableToFIRType(Fortran::lower::AbstractConverter & converter,const Fortran::lower::pft::Variable & var)457baa12ddbSEric Schweitz mlir::Type Fortran::lower::translateVariableToFIRType(
4582c2e5a5dSValentin Clement Fortran::lower::AbstractConverter &converter,
459baa12ddbSEric Schweitz const Fortran::lower::pft::Variable &var) {
4602c2e5a5dSValentin Clement return TypeBuilder{converter}.genVariableType(var);
461baa12ddbSEric Schweitz }
462baa12ddbSEric Schweitz
convertReal(mlir::MLIRContext * context,int kind)463baa12ddbSEric Schweitz mlir::Type Fortran::lower::convertReal(mlir::MLIRContext *context, int kind) {
464b3d1f073SValentin Clement return genRealType(context, kind);
465baa12ddbSEric Schweitz }
466