1 //===-- ConvertExpr.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Lower/ConvertExpr.h" 14 #include "flang/Common/default-kinds.h" 15 #include "flang/Common/unwrap.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/real.h" 18 #include "flang/Evaluate/traverse.h" 19 #include "flang/Lower/Allocatable.h" 20 #include "flang/Lower/Bridge.h" 21 #include "flang/Lower/BuiltinModules.h" 22 #include "flang/Lower/CallInterface.h" 23 #include "flang/Lower/Coarray.h" 24 #include "flang/Lower/ComponentPath.h" 25 #include "flang/Lower/ConvertType.h" 26 #include "flang/Lower/ConvertVariable.h" 27 #include "flang/Lower/CustomIntrinsicCall.h" 28 #include "flang/Lower/DumpEvaluateExpr.h" 29 #include "flang/Lower/IntrinsicCall.h" 30 #include "flang/Lower/Mangler.h" 31 #include "flang/Lower/Runtime.h" 32 #include "flang/Lower/Support/Utils.h" 33 #include "flang/Lower/Todo.h" 34 #include "flang/Optimizer/Builder/Character.h" 35 #include "flang/Optimizer/Builder/Complex.h" 36 #include "flang/Optimizer/Builder/Factory.h" 37 #include "flang/Optimizer/Builder/Runtime/Character.h" 38 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" 39 #include "flang/Optimizer/Builder/Runtime/Ragged.h" 40 #include "flang/Optimizer/Dialect/FIRAttr.h" 41 #include "flang/Optimizer/Dialect/FIRDialect.h" 42 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 43 #include "flang/Optimizer/Support/FatalError.h" 44 #include "flang/Semantics/expression.h" 45 #include "flang/Semantics/symbol.h" 46 #include "flang/Semantics/tools.h" 47 #include "flang/Semantics/type.h" 48 #include "mlir/Dialect/Func/IR/FuncOps.h" 49 #include "llvm/ADT/TypeSwitch.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <algorithm> 55 56 #define DEBUG_TYPE "flang-lower-expr" 57 58 //===----------------------------------------------------------------------===// 59 // The composition and structure of Fortran::evaluate::Expr is defined in 60 // the various header files in include/flang/Evaluate. You are referred 61 // there for more information on these data structures. Generally speaking, 62 // these data structures are a strongly typed family of abstract data types 63 // that, composed as trees, describe the syntax of Fortran expressions. 64 // 65 // This part of the bridge can traverse these tree structures and lower them 66 // to the correct FIR representation in SSA form. 67 //===----------------------------------------------------------------------===// 68 69 static llvm::cl::opt<bool> generateArrayCoordinate( 70 "gen-array-coor", 71 llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"), 72 llvm::cl::init(false)); 73 74 // The default attempts to balance a modest allocation size with expected user 75 // input to minimize bounds checks and reallocations during dynamic array 76 // construction. Some user codes may have very large array constructors for 77 // which the default can be increased. 78 static llvm::cl::opt<unsigned> clInitialBufferSize( 79 "array-constructor-initial-buffer-size", 80 llvm::cl::desc( 81 "set the incremental array construction buffer size (default=32)"), 82 llvm::cl::init(32u)); 83 84 /// The various semantics of a program constituent (or a part thereof) as it may 85 /// appear in an expression. 86 /// 87 /// Given the following Fortran declarations. 88 /// ```fortran 89 /// REAL :: v1, v2, v3 90 /// REAL, POINTER :: vp1 91 /// REAL :: a1(c), a2(c) 92 /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array 93 /// FUNCTION f2(arg) ! array -> array 94 /// vp1 => v3 ! 1 95 /// v1 = v2 * vp1 ! 2 96 /// a1 = a1 + a2 ! 3 97 /// a1 = f1(a2) ! 4 98 /// a1 = f2(a2) ! 5 99 /// ``` 100 /// 101 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is 102 /// constructed from the DataAddr of `v3`. 103 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed 104 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double 105 /// dereference in the `vp1` case. 106 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs 107 /// is CopyInCopyOut as `a1` is replaced elementally by the additions. 108 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if 109 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/ 110 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut. 111 /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational. 112 /// `a1` on the lhs is again CopyInCopyOut. 113 enum class ConstituentSemantics { 114 // Scalar data reference semantics. 115 // 116 // For these let `v` be the location in memory of a variable with value `x` 117 DataValue, // refers to the value `x` 118 DataAddr, // refers to the address `v` 119 BoxValue, // refers to a box value containing `v` 120 BoxAddr, // refers to the address of a box value containing `v` 121 122 // Array data reference semantics. 123 // 124 // For these let `a` be the location in memory of a sequence of value `[xs]`. 125 // Let `x_i` be the `i`-th value in the sequence `[xs]`. 126 127 // Referentially transparent. Refers to the array's value, `[xs]`. 128 RefTransparent, 129 // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7 130 // note 2). (Passing a copy by reference to simulate pass-by-value.) 131 ByValueArg, 132 // Refers to the merge of array value `[xs]` with another array value `[ys]`. 133 // This merged array value will be written into memory location `a`. 134 CopyInCopyOut, 135 // Similar to CopyInCopyOut but `a` may be a transient projection (rather than 136 // a whole array). 137 ProjectedCopyInCopyOut, 138 // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned 139 // automatically by the framework. Instead, and address for `[xs]` is made 140 // accessible so that custom assignments to `[xs]` can be implemented. 141 CustomCopyInCopyOut, 142 // Referentially opaque. Refers to the address of `x_i`. 143 RefOpaque 144 }; 145 146 /// Convert parser's INTEGER relational operators to MLIR. TODO: using 147 /// unordered, but we may want to cons ordered in certain situation. 148 static mlir::arith::CmpIPredicate 149 translateRelational(Fortran::common::RelationalOperator rop) { 150 switch (rop) { 151 case Fortran::common::RelationalOperator::LT: 152 return mlir::arith::CmpIPredicate::slt; 153 case Fortran::common::RelationalOperator::LE: 154 return mlir::arith::CmpIPredicate::sle; 155 case Fortran::common::RelationalOperator::EQ: 156 return mlir::arith::CmpIPredicate::eq; 157 case Fortran::common::RelationalOperator::NE: 158 return mlir::arith::CmpIPredicate::ne; 159 case Fortran::common::RelationalOperator::GT: 160 return mlir::arith::CmpIPredicate::sgt; 161 case Fortran::common::RelationalOperator::GE: 162 return mlir::arith::CmpIPredicate::sge; 163 } 164 llvm_unreachable("unhandled INTEGER relational operator"); 165 } 166 167 /// Convert parser's REAL relational operators to MLIR. 168 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018 169 /// requirements in the IEEE context (table 17.1 of F2018). This choice is 170 /// also applied in other contexts because it is easier and in line with 171 /// other Fortran compilers. 172 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not 173 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee 174 /// whether the comparison will signal or not in case of quiet NaN argument. 175 static mlir::arith::CmpFPredicate 176 translateFloatRelational(Fortran::common::RelationalOperator rop) { 177 switch (rop) { 178 case Fortran::common::RelationalOperator::LT: 179 return mlir::arith::CmpFPredicate::OLT; 180 case Fortran::common::RelationalOperator::LE: 181 return mlir::arith::CmpFPredicate::OLE; 182 case Fortran::common::RelationalOperator::EQ: 183 return mlir::arith::CmpFPredicate::OEQ; 184 case Fortran::common::RelationalOperator::NE: 185 return mlir::arith::CmpFPredicate::UNE; 186 case Fortran::common::RelationalOperator::GT: 187 return mlir::arith::CmpFPredicate::OGT; 188 case Fortran::common::RelationalOperator::GE: 189 return mlir::arith::CmpFPredicate::OGE; 190 } 191 llvm_unreachable("unhandled REAL relational operator"); 192 } 193 194 static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder, 195 mlir::Location loc, 196 fir::ExtendedValue actual) { 197 if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>()) 198 return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 199 *ptrOrAlloc); 200 // Optional case (not that optional allocatable/pointer cannot be absent 201 // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is 202 // therefore possible to catch them in the `then` case above. 203 return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), 204 fir::getBase(actual)); 205 } 206 207 /// Convert the array_load, `load`, to an extended value. If `path` is not 208 /// empty, then traverse through the components designated. The base value is 209 /// `newBase`. This does not accept an array_load with a slice operand. 210 static fir::ExtendedValue 211 arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc, 212 fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path, 213 mlir::Value newBase, mlir::Value newLen = {}) { 214 // Recover the extended value from the load. 215 if (load.getSlice()) 216 fir::emitFatalError(loc, "array_load with slice is not allowed"); 217 mlir::Type arrTy = load.getType(); 218 if (!path.empty()) { 219 mlir::Type ty = fir::applyPathToType(arrTy, path); 220 if (!ty) 221 fir::emitFatalError(loc, "path does not apply to type"); 222 if (!ty.isa<fir::SequenceType>()) { 223 if (fir::isa_char(ty)) { 224 mlir::Value len = newLen; 225 if (!len) 226 len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 227 load.getMemref()); 228 if (!len) { 229 assert(load.getTypeparams().size() == 1 && 230 "length must be in array_load"); 231 len = load.getTypeparams()[0]; 232 } 233 return fir::CharBoxValue{newBase, len}; 234 } 235 return newBase; 236 } 237 arrTy = ty.cast<fir::SequenceType>(); 238 } 239 240 auto arrayToExtendedValue = 241 [&](const llvm::SmallVector<mlir::Value> &extents, 242 const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue { 243 mlir::Type eleTy = fir::unwrapSequenceType(arrTy); 244 if (fir::isa_char(eleTy)) { 245 mlir::Value len = newLen; 246 if (!len) 247 len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 248 load.getMemref()); 249 if (!len) { 250 assert(load.getTypeparams().size() == 1 && 251 "length must be in array_load"); 252 len = load.getTypeparams()[0]; 253 } 254 return fir::CharArrayBoxValue(newBase, len, extents, origins); 255 } 256 return fir::ArrayBoxValue(newBase, extents, origins); 257 }; 258 // Use the shape op, if there is one. 259 mlir::Value shapeVal = load.getShape(); 260 if (shapeVal) { 261 if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) { 262 auto extents = fir::factory::getExtents(shapeVal); 263 auto origins = fir::factory::getOrigins(shapeVal); 264 return arrayToExtendedValue(extents, origins); 265 } 266 if (!fir::isa_box_type(load.getMemref().getType())) 267 fir::emitFatalError(loc, "shift op is invalid in this context"); 268 } 269 270 // If we're dealing with the array_load op (not a subobject) and the load does 271 // not have any type parameters, then read the extents from the original box. 272 // The origin may be either from the box or a shift operation. Create and 273 // return the array extended value. 274 if (path.empty() && load.getTypeparams().empty()) { 275 auto oldBox = load.getMemref(); 276 fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox); 277 auto extents = fir::factory::getExtents(loc, builder, exv); 278 auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv); 279 if (shapeVal) { 280 // shapeVal is a ShiftOp and load.memref() is a boxed value. 281 newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox, 282 shapeVal, /*slice=*/mlir::Value{}); 283 origins = fir::factory::getOrigins(shapeVal); 284 } 285 return fir::substBase(arrayToExtendedValue(extents, origins), newBase); 286 } 287 TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires " 288 "dereferencing; generating the type parameters is a hard " 289 "requirement for correctness."); 290 } 291 292 /// Place \p exv in memory if it is not already a memory reference. If 293 /// \p forceValueType is provided, the value is first casted to the provided 294 /// type before being stored (this is mainly intended for logicals whose value 295 /// may be `i1` but needed to be stored as Fortran logicals). 296 static fir::ExtendedValue 297 placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc, 298 const fir::ExtendedValue &exv, 299 mlir::Type storageType) { 300 mlir::Value valBase = fir::getBase(exv); 301 if (fir::conformsWithPassByRef(valBase.getType())) 302 return exv; 303 304 assert(!fir::hasDynamicSize(storageType) && 305 "only expect statically sized scalars to be by value"); 306 307 // Since `a` is not itself a valid referent, determine its value and 308 // create a temporary location at the beginning of the function for 309 // referencing. 310 mlir::Value val = builder.createConvert(loc, storageType, valBase); 311 mlir::Value temp = builder.createTemporary( 312 loc, storageType, 313 llvm::ArrayRef<mlir::NamedAttribute>{ 314 Fortran::lower::getAdaptToByRefAttr(builder)}); 315 builder.create<fir::StoreOp>(loc, val, temp); 316 return fir::substBase(exv, temp); 317 } 318 319 // Copy a copy of scalar \p exv in a new temporary. 320 static fir::ExtendedValue 321 createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc, 322 const fir::ExtendedValue &exv) { 323 assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar"); 324 if (exv.getCharBox() != nullptr) 325 return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv); 326 if (fir::isDerivedWithLenParameters(exv)) 327 TODO(loc, "copy derived type with length parameters"); 328 mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType()); 329 fir::ExtendedValue temp = builder.createTemporary(loc, type); 330 fir::factory::genScalarAssignment(builder, loc, temp, exv); 331 return temp; 332 } 333 334 // An expression with non-zero rank is an array expression. 335 template <typename A> 336 static bool isArray(const A &x) { 337 return x.Rank() != 0; 338 } 339 340 /// Is this a variable wrapped in parentheses? 341 template <typename A> 342 static bool isParenthesizedVariable(const A &) { 343 return false; 344 } 345 template <typename T> 346 static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) { 347 using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u); 348 using Parentheses = Fortran::evaluate::Parentheses<T>; 349 if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) { 350 if (const auto *parentheses = std::get_if<Parentheses>(&expr.u)) 351 return Fortran::evaluate::IsVariable(parentheses->left()); 352 return false; 353 } else { 354 return std::visit([&](const auto &x) { return isParenthesizedVariable(x); }, 355 expr.u); 356 } 357 } 358 359 /// Does \p expr only refer to symbols that are mapped to IR values in \p symMap 360 /// ? 361 static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr, 362 Fortran::lower::SymMap &symMap) { 363 for (const auto &sym : Fortran::evaluate::CollectSymbols(expr)) 364 if (!symMap.lookupSymbol(sym)) 365 return false; 366 return true; 367 } 368 369 /// Generate a load of a value from an address. Beware that this will lose 370 /// any dynamic type information for polymorphic entities (note that unlimited 371 /// polymorphic cannot be loaded and must not be provided here). 372 static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder, 373 mlir::Location loc, 374 const fir::ExtendedValue &addr) { 375 return addr.match( 376 [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, 377 [&](const fir::UnboxedValue &v) -> fir::ExtendedValue { 378 if (fir::unwrapRefType(fir::getBase(v).getType()) 379 .isa<fir::RecordType>()) 380 return v; 381 return builder.create<fir::LoadOp>(loc, fir::getBase(v)); 382 }, 383 [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { 384 return genLoad(builder, loc, 385 fir::factory::genMutableBoxRead(builder, loc, box)); 386 }, 387 [&](const fir::BoxValue &box) -> fir::ExtendedValue { 388 if (box.isUnlimitedPolymorphic()) 389 fir::emitFatalError( 390 loc, 391 "lowering attempting to load an unlimited polymorphic entity"); 392 return genLoad(builder, loc, 393 fir::factory::readBoxValue(builder, loc, box)); 394 }, 395 [&](const auto &) -> fir::ExtendedValue { 396 fir::emitFatalError( 397 loc, "attempting to load whole array or procedure address"); 398 }); 399 } 400 401 /// Create an optional dummy argument value from entity \p exv that may be 402 /// absent. This can only be called with numerical or logical scalar \p exv. 403 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned 404 /// value is zero (or false), otherwise it is the value of \p exv. 405 static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder, 406 mlir::Location loc, 407 const fir::ExtendedValue &exv, 408 mlir::Value isPresent) { 409 mlir::Type eleType = fir::getBaseTypeOf(exv); 410 assert(exv.rank() == 0 && fir::isa_trivial(eleType) && 411 "must be a numerical or logical scalar"); 412 return builder 413 .genIfOp(loc, {eleType}, isPresent, 414 /*withElseRegion=*/true) 415 .genThen([&]() { 416 mlir::Value val = fir::getBase(genLoad(builder, loc, exv)); 417 builder.create<fir::ResultOp>(loc, val); 418 }) 419 .genElse([&]() { 420 mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType); 421 builder.create<fir::ResultOp>(loc, zero); 422 }) 423 .getResults()[0]; 424 } 425 426 /// Create an optional dummy argument address from entity \p exv that may be 427 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the 428 /// returned value is a null pointer, otherwise it is the address of \p exv. 429 static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder, 430 mlir::Location loc, 431 const fir::ExtendedValue &exv, 432 mlir::Value isPresent) { 433 // If it is an exv pointer/allocatable, then it cannot be absent 434 // because it is passed to a non-pointer/non-allocatable. 435 if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) 436 return fir::factory::genMutableBoxRead(builder, loc, *box); 437 // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL 438 // address and can be passed directly. 439 return exv; 440 } 441 442 /// Create an optional dummy argument address from entity \p exv that may be 443 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the 444 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p 445 /// exv. 446 static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder, 447 mlir::Location loc, 448 const fir::ExtendedValue &exv, 449 mlir::Value isPresent) { 450 // Non allocatable/pointer optional box -> simply forward 451 if (exv.getBoxOf<fir::BoxValue>()) 452 return exv; 453 454 fir::ExtendedValue newExv = exv; 455 // Optional allocatable/pointer -> Cannot be absent, but need to translate 456 // unallocated/diassociated into absent fir.box. 457 if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) 458 newExv = fir::factory::genMutableBoxRead(builder, loc, *box); 459 460 // createBox will not do create any invalid memory dereferences if exv is 461 // absent. The created fir.box will not be usable, but the SelectOp below 462 // ensures it won't be. 463 mlir::Value box = builder.createBox(loc, newExv); 464 mlir::Type boxType = box.getType(); 465 auto absent = builder.create<fir::AbsentOp>(loc, boxType); 466 auto boxOrAbsent = builder.create<mlir::arith::SelectOp>( 467 loc, boxType, isPresent, box, absent); 468 return fir::BoxValue(boxOrAbsent); 469 } 470 471 /// Is this a call to an elemental procedure with at least one array argument? 472 static bool 473 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) { 474 if (procRef.IsElemental()) 475 for (const std::optional<Fortran::evaluate::ActualArgument> &arg : 476 procRef.arguments()) 477 if (arg && arg->Rank() != 0) 478 return true; 479 return false; 480 } 481 template <typename T> 482 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) { 483 return false; 484 } 485 template <> 486 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) { 487 if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u)) 488 return isElementalProcWithArrayArgs(*procRef); 489 return false; 490 } 491 492 /// Some auxiliary data for processing initialization in ScalarExprLowering 493 /// below. This is currently used for generating dense attributed global 494 /// arrays. 495 struct InitializerData { 496 explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {} 497 llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values 498 mlir::Type rawType; // Type of elements processed for rawVals vector. 499 bool genRawVals; // generate the rawVals vector if set. 500 }; 501 502 /// If \p arg is the address of a function with a denoted host-association tuple 503 /// argument, then return the host-associations tuple value of the current 504 /// procedure. Otherwise, return nullptr. 505 static mlir::Value 506 argumentHostAssocs(Fortran::lower::AbstractConverter &converter, 507 mlir::Value arg) { 508 if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) { 509 auto &builder = converter.getFirOpBuilder(); 510 if (auto funcOp = builder.getNamedFunction(addr.getSymbol())) 511 if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName())) 512 return converter.hostAssocTupleValue(); 513 } 514 return {}; 515 } 516 517 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the 518 /// \p funcAddr argument to a boxproc value, with the host-association as 519 /// required. Call the factory function to finish creating the tuple value. 520 static mlir::Value 521 createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter, 522 mlir::Type argTy, mlir::Value funcAddr, 523 mlir::Value charLen) { 524 auto boxTy = 525 argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>(); 526 mlir::Location loc = converter.getCurrentLocation(); 527 auto &builder = converter.getFirOpBuilder(); 528 auto boxProc = [&]() -> mlir::Value { 529 if (auto host = argumentHostAssocs(converter, funcAddr)) 530 return builder.create<fir::EmboxProcOp>( 531 loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host}); 532 return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr); 533 }(); 534 return fir::factory::createCharacterProcedureTuple(builder, loc, argTy, 535 boxProc, charLen); 536 } 537 538 // Helper to get the ultimate first symbol. This works around the fact that 539 // symbol resolution in the front end doesn't always resolve a symbol to its 540 // ultimate symbol but may leave placeholder indirections for use and host 541 // associations. 542 template <typename A> 543 const Fortran::semantics::Symbol &getFirstSym(const A &obj) { 544 return obj.GetFirstSymbol().GetUltimate(); 545 } 546 547 // Helper to get the ultimate last symbol. 548 template <typename A> 549 const Fortran::semantics::Symbol &getLastSym(const A &obj) { 550 return obj.GetLastSymbol().GetUltimate(); 551 } 552 553 namespace { 554 555 /// Lowering of Fortran::evaluate::Expr<T> expressions 556 class ScalarExprLowering { 557 public: 558 using ExtValue = fir::ExtendedValue; 559 560 explicit ScalarExprLowering(mlir::Location loc, 561 Fortran::lower::AbstractConverter &converter, 562 Fortran::lower::SymMap &symMap, 563 Fortran::lower::StatementContext &stmtCtx, 564 InitializerData *initializer = nullptr) 565 : location{loc}, converter{converter}, 566 builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap}, 567 inInitializer{initializer} {} 568 569 ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) { 570 return gen(expr); 571 } 572 573 /// Lower `expr` to be passed as a fir.box argument. Do not create a temp 574 /// for the expr if it is a variable that can be described as a fir.box. 575 ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) { 576 bool saveUseBoxArg = useBoxArg; 577 useBoxArg = true; 578 ExtValue result = gen(expr); 579 useBoxArg = saveUseBoxArg; 580 return result; 581 } 582 583 ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) { 584 return genval(expr); 585 } 586 587 /// Lower an expression that is a pointer or an allocatable to a 588 /// MutableBoxValue. 589 fir::MutableBoxValue 590 genMutableBoxValue(const Fortran::lower::SomeExpr &expr) { 591 // Pointers and allocatables can only be: 592 // - a simple designator "x" 593 // - a component designator "a%b(i,j)%x" 594 // - a function reference "foo()" 595 // - result of NULL() or NULL(MOLD) intrinsic. 596 // NULL() requires some context to be lowered, so it is not handled 597 // here and must be lowered according to the context where it appears. 598 ExtValue exv = std::visit( 599 [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); 600 const fir::MutableBoxValue *mutableBox = 601 exv.getBoxOf<fir::MutableBoxValue>(); 602 if (!mutableBox) 603 fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue"); 604 return *mutableBox; 605 } 606 607 template <typename T> 608 ExtValue genMutableBoxValueImpl(const T &) { 609 // NULL() case should not be handled here. 610 fir::emitFatalError(getLoc(), "NULL() must be lowered in its context"); 611 } 612 613 /// A `NULL()` in a position where a mutable box is expected has the same 614 /// semantics as an absent optional box value. 615 ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) { 616 mlir::Location loc = getLoc(); 617 auto nullConst = builder.createNullConstant(loc); 618 auto noneTy = mlir::NoneType::get(builder.getContext()); 619 auto polyRefTy = fir::LLVMPointerType::get(noneTy); 620 // MutableBoxValue will dereference the box, so create a bogus temporary for 621 // the `nullptr`. The LLVM optimizer will garbage collect the temp. 622 auto temp = 623 builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{}); 624 auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst); 625 builder.create<fir::StoreOp>(loc, nullPtr, temp); 626 auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy)); 627 return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp), 628 /*lenParameters=*/mlir::ValueRange{}, 629 /*mutableProperties=*/{}); 630 } 631 632 template <typename T> 633 ExtValue 634 genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) { 635 return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef))); 636 } 637 638 template <typename T> 639 ExtValue 640 genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) { 641 return std::visit( 642 Fortran::common::visitors{ 643 [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue { 644 return symMap.lookupSymbol(*sym).toExtendedValue(); 645 }, 646 [&](const Fortran::evaluate::Component &comp) -> ExtValue { 647 return genComponent(comp); 648 }, 649 [&](const auto &) -> ExtValue { 650 fir::emitFatalError(getLoc(), 651 "not an allocatable or pointer designator"); 652 }}, 653 designator.u); 654 } 655 656 template <typename T> 657 ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) { 658 return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); }, 659 expr.u); 660 } 661 662 mlir::Location getLoc() { return location; } 663 664 template <typename A> 665 mlir::Value genunbox(const A &expr) { 666 ExtValue e = genval(expr); 667 if (const fir::UnboxedValue *r = e.getUnboxed()) 668 return *r; 669 fir::emitFatalError(getLoc(), "unboxed expression expected"); 670 } 671 672 /// Generate an integral constant of `value` 673 template <int KIND> 674 mlir::Value genIntegerConstant(mlir::MLIRContext *context, 675 std::int64_t value) { 676 mlir::Type type = 677 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 678 return builder.createIntegerConstant(getLoc(), type, value); 679 } 680 681 /// Generate a logical/boolean constant of `value` 682 mlir::Value genBoolConstant(bool value) { 683 return builder.createBool(getLoc(), value); 684 } 685 686 /// Generate a real constant with a value `value`. 687 template <int KIND> 688 mlir::Value genRealConstant(mlir::MLIRContext *context, 689 const llvm::APFloat &value) { 690 mlir::Type fltTy = Fortran::lower::convertReal(context, KIND); 691 return builder.createRealConstant(getLoc(), fltTy, value); 692 } 693 694 mlir::Type getSomeKindInteger() { return builder.getIndexType(); } 695 696 mlir::func::FuncOp getFunction(llvm::StringRef name, 697 mlir::FunctionType funTy) { 698 if (mlir::func::FuncOp func = builder.getNamedFunction(name)) 699 return func; 700 return builder.createFunction(getLoc(), name, funTy); 701 } 702 703 template <typename OpTy> 704 mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred, 705 const ExtValue &left, const ExtValue &right) { 706 if (const fir::UnboxedValue *lhs = left.getUnboxed()) 707 if (const fir::UnboxedValue *rhs = right.getUnboxed()) 708 return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); 709 fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); 710 } 711 template <typename OpTy, typename A> 712 mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) { 713 ExtValue left = genval(ex.left()); 714 return createCompareOp<OpTy>(pred, left, genval(ex.right())); 715 } 716 717 template <typename OpTy> 718 mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred, 719 const ExtValue &left, const ExtValue &right) { 720 if (const fir::UnboxedValue *lhs = left.getUnboxed()) 721 if (const fir::UnboxedValue *rhs = right.getUnboxed()) 722 return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); 723 fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); 724 } 725 template <typename OpTy, typename A> 726 mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) { 727 ExtValue left = genval(ex.left()); 728 return createFltCmpOp<OpTy>(pred, left, genval(ex.right())); 729 } 730 731 /// Create a call to the runtime to compare two CHARACTER values. 732 /// Precondition: This assumes that the two values have `fir.boxchar` type. 733 mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred, 734 const ExtValue &left, const ExtValue &right) { 735 return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right); 736 } 737 738 template <typename A> 739 mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) { 740 ExtValue left = genval(ex.left()); 741 return createCharCompare(pred, left, genval(ex.right())); 742 } 743 744 /// Returns a reference to a symbol or its box/boxChar descriptor if it has 745 /// one. 746 ExtValue gen(Fortran::semantics::SymbolRef sym) { 747 if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym)) 748 return val.match( 749 [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) { 750 return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr); 751 }, 752 [&val](auto &) { return val.toExtendedValue(); }); 753 LLVM_DEBUG(llvm::dbgs() 754 << "unknown symbol: " << sym << "\nmap: " << symMap << '\n'); 755 fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value"); 756 } 757 758 ExtValue genLoad(const ExtValue &exv) { 759 return ::genLoad(builder, getLoc(), exv); 760 } 761 762 ExtValue genval(Fortran::semantics::SymbolRef sym) { 763 mlir::Location loc = getLoc(); 764 ExtValue var = gen(sym); 765 if (const fir::UnboxedValue *s = var.getUnboxed()) 766 if (fir::isa_ref_type(s->getType())) { 767 // A function with multiple entry points returning different types 768 // tags all result variables with one of the largest types to allow 769 // them to share the same storage. A reference to a result variable 770 // of one of the other types requires conversion to the actual type. 771 fir::UnboxedValue addr = *s; 772 if (Fortran::semantics::IsFunctionResult(sym)) { 773 mlir::Type resultType = converter.genType(*sym); 774 if (addr.getType() != resultType) 775 addr = builder.createConvert(loc, builder.getRefType(resultType), 776 addr); 777 } 778 return genLoad(addr); 779 } 780 return var; 781 } 782 783 ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) { 784 TODO(getLoc(), "BOZ"); 785 } 786 787 /// Return indirection to function designated in ProcedureDesignator. 788 /// The type of the function indirection is not guaranteed to match the one 789 /// of the ProcedureDesignator due to Fortran implicit typing rules. 790 ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) { 791 mlir::Location loc = getLoc(); 792 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 793 proc.GetSpecificIntrinsic()) { 794 mlir::FunctionType signature = 795 Fortran::lower::translateSignature(proc, converter); 796 // Intrinsic lowering is based on the generic name, so retrieve it here in 797 // case it is different from the specific name. The type of the specific 798 // intrinsic is retained in the signature. 799 std::string genericName = 800 converter.getFoldingContext().intrinsics().GetGenericIntrinsicName( 801 intrinsic->name); 802 mlir::SymbolRefAttr symbolRefAttr = 803 Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr( 804 builder, loc, genericName, signature); 805 mlir::Value funcPtr = 806 builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr); 807 return funcPtr; 808 } 809 const Fortran::semantics::Symbol *symbol = proc.GetSymbol(); 810 assert(symbol && "expected symbol in ProcedureDesignator"); 811 mlir::Value funcPtr; 812 mlir::Value funcPtrResultLength; 813 if (Fortran::semantics::IsDummy(*symbol)) { 814 Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol); 815 assert(val && "Dummy procedure not in symbol map"); 816 funcPtr = val.getAddr(); 817 if (fir::isCharacterProcedureTuple(funcPtr.getType(), 818 /*acceptRawFunc=*/false)) 819 std::tie(funcPtr, funcPtrResultLength) = 820 fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr); 821 } else { 822 std::string name = converter.mangleName(*symbol); 823 mlir::func::FuncOp func = 824 Fortran::lower::getOrDeclareFunction(name, proc, converter); 825 funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(), 826 builder.getSymbolRefAttr(name)); 827 } 828 if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) { 829 // The result length, if available here, must be propagated along the 830 // procedure address so that call sites where the result length is assumed 831 // can retrieve the length. 832 Fortran::evaluate::DynamicType resultType = proc.GetType().value(); 833 if (const auto &lengthExpr = resultType.GetCharLength()) { 834 // The length expression may refer to dummy argument symbols that are 835 // meaningless without any actual arguments. Leave the length as 836 // unknown in that case, it be resolved on the call site 837 // with the actual arguments. 838 if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) { 839 mlir::Value rawLen = fir::getBase(genval(*lengthExpr)); 840 // F2018 7.4.4.2 point 5. 841 funcPtrResultLength = 842 Fortran::lower::genMaxWithZero(builder, getLoc(), rawLen); 843 } 844 } 845 if (!funcPtrResultLength) 846 funcPtrResultLength = builder.createIntegerConstant( 847 loc, builder.getCharacterLengthType(), -1); 848 return fir::CharBoxValue{funcPtr, funcPtrResultLength}; 849 } 850 return funcPtr; 851 } 852 ExtValue genval(const Fortran::evaluate::NullPointer &) { 853 return builder.createNullConstant(getLoc()); 854 } 855 856 static bool 857 isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) { 858 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) 859 if (const Fortran::semantics::DerivedTypeSpec *derived = 860 declTy->AsDerived()) 861 return Fortran::semantics::CountLenParameters(*derived) > 0; 862 return false; 863 } 864 865 static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) { 866 if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType()) 867 if (const Fortran::semantics::DerivedTypeSpec *derived = 868 declType->AsDerived()) 869 return Fortran::semantics::IsIsoCType(derived); 870 return false; 871 } 872 873 /// Lower structure constructor without a temporary. This can be used in 874 /// fir::GloablOp, and assumes that the structure component is a constant. 875 ExtValue genStructComponentInInitializer( 876 const Fortran::evaluate::StructureConstructor &ctor) { 877 mlir::Location loc = getLoc(); 878 mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); 879 auto recTy = ty.cast<fir::RecordType>(); 880 auto fieldTy = fir::FieldType::get(ty.getContext()); 881 mlir::Value res = builder.create<fir::UndefOp>(loc, recTy); 882 883 for (const auto &[sym, expr] : ctor.values()) { 884 // Parent components need more work because they do not appear in the 885 // fir.rec type. 886 if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp)) 887 TODO(loc, "parent component in structure constructor"); 888 889 llvm::StringRef name = toStringRef(sym->name()); 890 mlir::Type componentTy = recTy.getType(name); 891 // FIXME: type parameters must come from the derived-type-spec 892 auto field = builder.create<fir::FieldIndexOp>( 893 loc, fieldTy, name, ty, 894 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 895 896 if (Fortran::semantics::IsAllocatable(sym)) 897 TODO(loc, "allocatable component in structure constructor"); 898 899 if (Fortran::semantics::IsPointer(sym)) { 900 mlir::Value initialTarget = Fortran::lower::genInitialDataTarget( 901 converter, loc, componentTy, expr.value()); 902 res = builder.create<fir::InsertValueOp>( 903 loc, recTy, res, initialTarget, 904 builder.getArrayAttr(field.getAttributes())); 905 continue; 906 } 907 908 if (isDerivedTypeWithLengthParameters(sym)) 909 TODO(loc, "component with length parameters in structure constructor"); 910 911 if (isBuiltinCPtr(sym)) { 912 // Builtin c_ptr and c_funptr have special handling because initial 913 // value are handled for them as an extension. 914 mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer( 915 converter, loc, expr.value())); 916 if (addr.getType() == componentTy) { 917 // Do nothing. The Ev::Expr was returned as a value that can be 918 // inserted directly to the component without an intermediary. 919 } else { 920 // The Ev::Expr returned is an initializer that is a pointer (e.g., 921 // null) that must be inserted into an intermediate cptr record 922 // value's address field, which ought to be an intptr_t on the target. 923 assert((fir::isa_ref_type(addr.getType()) || 924 addr.getType().isa<mlir::FunctionType>()) && 925 "expect reference type for address field"); 926 assert(fir::isa_derived(componentTy) && 927 "expect C_PTR, C_FUNPTR to be a record"); 928 auto cPtrRecTy = componentTy.cast<fir::RecordType>(); 929 llvm::StringRef addrFieldName = 930 Fortran::lower::builtin::cptrFieldName; 931 mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName); 932 auto addrField = builder.create<fir::FieldIndexOp>( 933 loc, fieldTy, addrFieldName, componentTy, 934 /*typeParams=*/mlir::ValueRange{}); 935 mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr); 936 auto undef = builder.create<fir::UndefOp>(loc, componentTy); 937 addr = builder.create<fir::InsertValueOp>( 938 loc, componentTy, undef, castAddr, 939 builder.getArrayAttr(addrField.getAttributes())); 940 } 941 res = builder.create<fir::InsertValueOp>( 942 loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes())); 943 continue; 944 } 945 946 mlir::Value val = fir::getBase(genval(expr.value())); 947 assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value"); 948 mlir::Value castVal = builder.createConvert(loc, componentTy, val); 949 res = builder.create<fir::InsertValueOp>( 950 loc, recTy, res, castVal, 951 builder.getArrayAttr(field.getAttributes())); 952 } 953 return res; 954 } 955 956 /// A structure constructor is lowered two ways. In an initializer context, 957 /// the entire structure must be constant, so the aggregate value is 958 /// constructed inline. This allows it to be the body of a GlobalOp. 959 /// Otherwise, the structure constructor is in an expression. In that case, a 960 /// temporary object is constructed in the stack frame of the procedure. 961 ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) { 962 if (inInitializer) 963 return genStructComponentInInitializer(ctor); 964 mlir::Location loc = getLoc(); 965 mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); 966 auto recTy = ty.cast<fir::RecordType>(); 967 auto fieldTy = fir::FieldType::get(ty.getContext()); 968 mlir::Value res = builder.createTemporary(loc, recTy); 969 970 for (const auto &value : ctor.values()) { 971 const Fortran::semantics::Symbol &sym = *value.first; 972 const Fortran::lower::SomeExpr &expr = value.second.value(); 973 // Parent components need more work because they do not appear in the 974 // fir.rec type. 975 if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) 976 TODO(loc, "parent component in structure constructor"); 977 978 if (isDerivedTypeWithLengthParameters(sym)) 979 TODO(loc, "component with length parameters in structure constructor"); 980 981 llvm::StringRef name = toStringRef(sym.name()); 982 // FIXME: type parameters must come from the derived-type-spec 983 mlir::Value field = builder.create<fir::FieldIndexOp>( 984 loc, fieldTy, name, ty, 985 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 986 mlir::Type coorTy = builder.getRefType(recTy.getType(name)); 987 auto coor = builder.create<fir::CoordinateOp>(loc, coorTy, 988 fir::getBase(res), field); 989 ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor); 990 to.match( 991 [&](const fir::UnboxedValue &toPtr) { 992 ExtValue value = genval(expr); 993 fir::factory::genScalarAssignment(builder, loc, to, value); 994 }, 995 [&](const fir::CharBoxValue &) { 996 ExtValue value = genval(expr); 997 fir::factory::genScalarAssignment(builder, loc, to, value); 998 }, 999 [&](const fir::ArrayBoxValue &) { 1000 Fortran::lower::createSomeArrayAssignment(converter, to, expr, 1001 symMap, stmtCtx); 1002 }, 1003 [&](const fir::CharArrayBoxValue &) { 1004 Fortran::lower::createSomeArrayAssignment(converter, to, expr, 1005 symMap, stmtCtx); 1006 }, 1007 [&](const fir::BoxValue &toBox) { 1008 fir::emitFatalError(loc, "derived type components must not be " 1009 "represented by fir::BoxValue"); 1010 }, 1011 [&](const fir::MutableBoxValue &toBox) { 1012 if (toBox.isPointer()) { 1013 Fortran::lower::associateMutableBox( 1014 converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx); 1015 return; 1016 } 1017 // For allocatable components, a deep copy is needed. 1018 TODO(loc, "allocatable components in derived type assignment"); 1019 }, 1020 [&](const fir::ProcBoxValue &toBox) { 1021 TODO(loc, "procedure pointer component in derived type assignment"); 1022 }); 1023 } 1024 return res; 1025 } 1026 1027 /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol. 1028 ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) { 1029 return converter.impliedDoBinding(toStringRef(var.name)); 1030 } 1031 1032 ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) { 1033 ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base())) 1034 : gen(desc.base().GetComponent()); 1035 mlir::IndexType idxTy = builder.getIndexType(); 1036 mlir::Location loc = getLoc(); 1037 auto castResult = [&](mlir::Value v) { 1038 using ResTy = Fortran::evaluate::DescriptorInquiry::Result; 1039 return builder.createConvert( 1040 loc, converter.genType(ResTy::category, ResTy::kind), v); 1041 }; 1042 switch (desc.field()) { 1043 case Fortran::evaluate::DescriptorInquiry::Field::Len: 1044 return castResult(fir::factory::readCharLen(builder, loc, exv)); 1045 case Fortran::evaluate::DescriptorInquiry::Field::LowerBound: 1046 return castResult(fir::factory::readLowerBound( 1047 builder, loc, exv, desc.dimension(), 1048 builder.createIntegerConstant(loc, idxTy, 1))); 1049 case Fortran::evaluate::DescriptorInquiry::Field::Extent: 1050 return castResult( 1051 fir::factory::readExtent(builder, loc, exv, desc.dimension())); 1052 case Fortran::evaluate::DescriptorInquiry::Field::Rank: 1053 TODO(loc, "rank inquiry on assumed rank"); 1054 case Fortran::evaluate::DescriptorInquiry::Field::Stride: 1055 // So far the front end does not generate this inquiry. 1056 TODO(loc, "Stride inquiry"); 1057 } 1058 llvm_unreachable("unknown descriptor inquiry"); 1059 } 1060 1061 ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) { 1062 TODO(getLoc(), "type parameter inquiry"); 1063 } 1064 1065 mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) { 1066 return fir::factory::Complex{builder, getLoc()}.extractComplexPart( 1067 cplx, isImagPart); 1068 } 1069 1070 template <int KIND> 1071 ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) { 1072 return extractComplexPart(genunbox(part.left()), part.isImaginaryPart); 1073 } 1074 1075 template <int KIND> 1076 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1077 Fortran::common::TypeCategory::Integer, KIND>> &op) { 1078 mlir::Value input = genunbox(op.left()); 1079 // Like LLVM, integer negation is the binary op "0 - value" 1080 mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); 1081 return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input); 1082 } 1083 template <int KIND> 1084 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1085 Fortran::common::TypeCategory::Real, KIND>> &op) { 1086 return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left())); 1087 } 1088 template <int KIND> 1089 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1090 Fortran::common::TypeCategory::Complex, KIND>> &op) { 1091 return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left())); 1092 } 1093 1094 template <typename OpTy> 1095 mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) { 1096 assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right)); 1097 mlir::Value lhs = fir::getBase(left); 1098 mlir::Value rhs = fir::getBase(right); 1099 assert(lhs.getType() == rhs.getType() && "types must be the same"); 1100 return builder.create<OpTy>(getLoc(), lhs, rhs); 1101 } 1102 1103 template <typename OpTy, typename A> 1104 mlir::Value createBinaryOp(const A &ex) { 1105 ExtValue left = genval(ex.left()); 1106 return createBinaryOp<OpTy>(left, genval(ex.right())); 1107 } 1108 1109 #undef GENBIN 1110 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ 1111 template <int KIND> \ 1112 ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ 1113 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ 1114 return createBinaryOp<GenBinFirOp>(x); \ 1115 } 1116 1117 GENBIN(Add, Integer, mlir::arith::AddIOp) 1118 GENBIN(Add, Real, mlir::arith::AddFOp) 1119 GENBIN(Add, Complex, fir::AddcOp) 1120 GENBIN(Subtract, Integer, mlir::arith::SubIOp) 1121 GENBIN(Subtract, Real, mlir::arith::SubFOp) 1122 GENBIN(Subtract, Complex, fir::SubcOp) 1123 GENBIN(Multiply, Integer, mlir::arith::MulIOp) 1124 GENBIN(Multiply, Real, mlir::arith::MulFOp) 1125 GENBIN(Multiply, Complex, fir::MulcOp) 1126 GENBIN(Divide, Integer, mlir::arith::DivSIOp) 1127 GENBIN(Divide, Real, mlir::arith::DivFOp) 1128 GENBIN(Divide, Complex, fir::DivcOp) 1129 1130 template <Fortran::common::TypeCategory TC, int KIND> 1131 ExtValue genval( 1132 const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) { 1133 mlir::Type ty = converter.genType(TC, KIND); 1134 mlir::Value lhs = genunbox(op.left()); 1135 mlir::Value rhs = genunbox(op.right()); 1136 return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs); 1137 } 1138 1139 template <Fortran::common::TypeCategory TC, int KIND> 1140 ExtValue genval( 1141 const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> 1142 &op) { 1143 mlir::Type ty = converter.genType(TC, KIND); 1144 mlir::Value lhs = genunbox(op.left()); 1145 mlir::Value rhs = genunbox(op.right()); 1146 return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs); 1147 } 1148 1149 template <int KIND> 1150 ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) { 1151 mlir::Value realPartValue = genunbox(op.left()); 1152 return fir::factory::Complex{builder, getLoc()}.createComplex( 1153 KIND, realPartValue, genunbox(op.right())); 1154 } 1155 1156 template <int KIND> 1157 ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) { 1158 ExtValue lhs = genval(op.left()); 1159 ExtValue rhs = genval(op.right()); 1160 const fir::CharBoxValue *lhsChar = lhs.getCharBox(); 1161 const fir::CharBoxValue *rhsChar = rhs.getCharBox(); 1162 if (lhsChar && rhsChar) 1163 return fir::factory::CharacterExprHelper{builder, getLoc()} 1164 .createConcatenate(*lhsChar, *rhsChar); 1165 TODO(getLoc(), "character array concatenate"); 1166 } 1167 1168 /// MIN and MAX operations 1169 template <Fortran::common::TypeCategory TC, int KIND> 1170 ExtValue 1171 genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> 1172 &op) { 1173 mlir::Value lhs = genunbox(op.left()); 1174 mlir::Value rhs = genunbox(op.right()); 1175 switch (op.ordering) { 1176 case Fortran::evaluate::Ordering::Greater: 1177 return Fortran::lower::genMax(builder, getLoc(), 1178 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 1179 case Fortran::evaluate::Ordering::Less: 1180 return Fortran::lower::genMin(builder, getLoc(), 1181 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 1182 case Fortran::evaluate::Ordering::Equal: 1183 llvm_unreachable("Equal is not a valid ordering in this context"); 1184 } 1185 llvm_unreachable("unknown ordering"); 1186 } 1187 1188 // Change the dynamic length information without actually changing the 1189 // underlying character storage. 1190 fir::ExtendedValue 1191 replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar, 1192 mlir::Value newLenValue) { 1193 mlir::Location loc = getLoc(); 1194 const fir::CharBoxValue *charBox = scalarChar.getCharBox(); 1195 if (!charBox) 1196 fir::emitFatalError(loc, "expected scalar character"); 1197 mlir::Value charAddr = charBox->getAddr(); 1198 auto charType = 1199 fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>(); 1200 if (charType.hasConstantLen()) { 1201 // Erase previous constant length from the base type. 1202 fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen(); 1203 mlir::Type newCharTy = fir::CharacterType::get( 1204 builder.getContext(), charType.getFKind(), newLen); 1205 mlir::Type newType = fir::ReferenceType::get(newCharTy); 1206 charAddr = builder.createConvert(loc, newType, charAddr); 1207 return fir::CharBoxValue{charAddr, newLenValue}; 1208 } 1209 return fir::CharBoxValue{charAddr, newLenValue}; 1210 } 1211 1212 template <int KIND> 1213 ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) { 1214 mlir::Value newLenValue = genunbox(x.right()); 1215 fir::ExtendedValue lhs = gen(x.left()); 1216 return replaceScalarCharacterLength(lhs, newLenValue); 1217 } 1218 1219 template <int KIND> 1220 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1221 Fortran::common::TypeCategory::Integer, KIND>> &op) { 1222 return createCompareOp<mlir::arith::CmpIOp>(op, 1223 translateRelational(op.opr)); 1224 } 1225 template <int KIND> 1226 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1227 Fortran::common::TypeCategory::Real, KIND>> &op) { 1228 return createFltCmpOp<mlir::arith::CmpFOp>( 1229 op, translateFloatRelational(op.opr)); 1230 } 1231 template <int KIND> 1232 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1233 Fortran::common::TypeCategory::Complex, KIND>> &op) { 1234 return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr)); 1235 } 1236 template <int KIND> 1237 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1238 Fortran::common::TypeCategory::Character, KIND>> &op) { 1239 return createCharCompare(op, translateRelational(op.opr)); 1240 } 1241 1242 ExtValue 1243 genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) { 1244 return std::visit([&](const auto &x) { return genval(x); }, op.u); 1245 } 1246 1247 template <Fortran::common::TypeCategory TC1, int KIND, 1248 Fortran::common::TypeCategory TC2> 1249 ExtValue 1250 genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, 1251 TC2> &convert) { 1252 mlir::Type ty = converter.genType(TC1, KIND); 1253 auto fromExpr = genval(convert.left()); 1254 auto loc = getLoc(); 1255 return fromExpr.match( 1256 [&](const fir::CharBoxValue &boxchar) -> ExtValue { 1257 if constexpr (TC1 == Fortran::common::TypeCategory::Character && 1258 TC2 == TC1) { 1259 // Use char_convert. Each code point is translated from a 1260 // narrower/wider encoding to the target encoding. For example, 'A' 1261 // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol 1262 // for euro (0x20AC : i16) may be translated from a wide character 1263 // to "0xE2 0x82 0xAC" : UTF-8. 1264 mlir::Value bufferSize = boxchar.getLen(); 1265 auto kindMap = builder.getKindMap(); 1266 auto fromBits = kindMap.getCharacterBitsize( 1267 fir::unwrapRefType(boxchar.getAddr().getType()) 1268 .cast<fir::CharacterType>() 1269 .getFKind()); 1270 auto toBits = kindMap.getCharacterBitsize( 1271 ty.cast<fir::CharacterType>().getFKind()); 1272 if (toBits < fromBits) { 1273 // Scale by relative ratio to give a buffer of the same length. 1274 auto ratio = builder.createIntegerConstant( 1275 loc, bufferSize.getType(), fromBits / toBits); 1276 bufferSize = 1277 builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio); 1278 } 1279 auto dest = builder.create<fir::AllocaOp>( 1280 loc, ty, mlir::ValueRange{bufferSize}); 1281 builder.create<fir::CharConvertOp>(loc, boxchar.getAddr(), 1282 boxchar.getLen(), dest); 1283 return fir::CharBoxValue{dest, boxchar.getLen()}; 1284 } else { 1285 fir::emitFatalError( 1286 loc, "unsupported evaluate::Convert between CHARACTER type " 1287 "category and non-CHARACTER category"); 1288 } 1289 }, 1290 [&](const fir::UnboxedValue &value) -> ExtValue { 1291 return builder.convertWithSemantics(loc, ty, value); 1292 }, 1293 [&](auto &) -> ExtValue { 1294 fir::emitFatalError(loc, "unsupported evaluate::Convert"); 1295 }); 1296 } 1297 1298 template <typename A> 1299 ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) { 1300 ExtValue input = genval(op.left()); 1301 mlir::Value base = fir::getBase(input); 1302 mlir::Value newBase = 1303 builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base); 1304 return fir::substBase(input, newBase); 1305 } 1306 1307 template <int KIND> 1308 ExtValue genval(const Fortran::evaluate::Not<KIND> &op) { 1309 mlir::Value logical = genunbox(op.left()); 1310 mlir::Value one = genBoolConstant(true); 1311 mlir::Value val = 1312 builder.createConvert(getLoc(), builder.getI1Type(), logical); 1313 return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one); 1314 } 1315 1316 template <int KIND> 1317 ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) { 1318 mlir::IntegerType i1Type = builder.getI1Type(); 1319 mlir::Value slhs = genunbox(op.left()); 1320 mlir::Value srhs = genunbox(op.right()); 1321 mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs); 1322 mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs); 1323 switch (op.logicalOperator) { 1324 case Fortran::evaluate::LogicalOperator::And: 1325 return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs); 1326 case Fortran::evaluate::LogicalOperator::Or: 1327 return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs); 1328 case Fortran::evaluate::LogicalOperator::Eqv: 1329 return createCompareOp<mlir::arith::CmpIOp>( 1330 mlir::arith::CmpIPredicate::eq, lhs, rhs); 1331 case Fortran::evaluate::LogicalOperator::Neqv: 1332 return createCompareOp<mlir::arith::CmpIOp>( 1333 mlir::arith::CmpIPredicate::ne, lhs, rhs); 1334 case Fortran::evaluate::LogicalOperator::Not: 1335 // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>. 1336 llvm_unreachable(".NOT. is not a binary operator"); 1337 } 1338 llvm_unreachable("unhandled logical operation"); 1339 } 1340 1341 /// Convert a scalar literal constant to IR. 1342 template <Fortran::common::TypeCategory TC, int KIND> 1343 ExtValue genScalarLit( 1344 const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> 1345 &value) { 1346 if constexpr (TC == Fortran::common::TypeCategory::Integer) { 1347 return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64()); 1348 } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { 1349 return genBoolConstant(value.IsTrue()); 1350 } else if constexpr (TC == Fortran::common::TypeCategory::Real) { 1351 std::string str = value.DumpHexadecimal(); 1352 if constexpr (KIND == 2) { 1353 llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str}; 1354 return genRealConstant<KIND>(builder.getContext(), floatVal); 1355 } else if constexpr (KIND == 3) { 1356 llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str}; 1357 return genRealConstant<KIND>(builder.getContext(), floatVal); 1358 } else if constexpr (KIND == 4) { 1359 llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str}; 1360 return genRealConstant<KIND>(builder.getContext(), floatVal); 1361 } else if constexpr (KIND == 10) { 1362 llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str}; 1363 return genRealConstant<KIND>(builder.getContext(), floatVal); 1364 } else if constexpr (KIND == 16) { 1365 llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str}; 1366 return genRealConstant<KIND>(builder.getContext(), floatVal); 1367 } else { 1368 // convert everything else to double 1369 llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str}; 1370 return genRealConstant<KIND>(builder.getContext(), floatVal); 1371 } 1372 } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { 1373 using TR = 1374 Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>; 1375 Fortran::evaluate::ComplexConstructor<KIND> ctor( 1376 Fortran::evaluate::Expr<TR>{ 1377 Fortran::evaluate::Constant<TR>{value.REAL()}}, 1378 Fortran::evaluate::Expr<TR>{ 1379 Fortran::evaluate::Constant<TR>{value.AIMAG()}}); 1380 return genunbox(ctor); 1381 } else /*constexpr*/ { 1382 llvm_unreachable("unhandled constant"); 1383 } 1384 } 1385 1386 /// Generate a raw literal value and store it in the rawVals vector. 1387 template <Fortran::common::TypeCategory TC, int KIND> 1388 void 1389 genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> 1390 &value) { 1391 mlir::Attribute val; 1392 assert(inInitializer != nullptr); 1393 if constexpr (TC == Fortran::common::TypeCategory::Integer) { 1394 inInitializer->rawType = converter.genType(TC, KIND); 1395 val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64()); 1396 } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { 1397 inInitializer->rawType = 1398 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 1399 val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue()); 1400 } else if constexpr (TC == Fortran::common::TypeCategory::Real) { 1401 std::string str = value.DumpHexadecimal(); 1402 inInitializer->rawType = converter.genType(TC, KIND); 1403 llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str}; 1404 val = builder.getFloatAttr(inInitializer->rawType, floatVal); 1405 } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { 1406 std::string strReal = value.REAL().DumpHexadecimal(); 1407 std::string strImg = value.AIMAG().DumpHexadecimal(); 1408 inInitializer->rawType = converter.genType(TC, KIND); 1409 llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND), 1410 strReal}; 1411 val = builder.getFloatAttr(inInitializer->rawType, realVal); 1412 inInitializer->rawVals.push_back(val); 1413 llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND), 1414 strImg}; 1415 val = builder.getFloatAttr(inInitializer->rawType, imgVal); 1416 } 1417 inInitializer->rawVals.push_back(val); 1418 } 1419 1420 /// Convert a scalar literal CHARACTER to IR. 1421 template <int KIND> 1422 ExtValue 1423 genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type< 1424 Fortran::common::TypeCategory::Character, KIND>> &value, 1425 int64_t len) { 1426 using ET = typename std::decay_t<decltype(value)>::value_type; 1427 if constexpr (KIND == 1) { 1428 assert(value.size() == static_cast<std::uint64_t>(len)); 1429 // Outline character constant in ro data if it is not in an initializer. 1430 if (!inInitializer) 1431 return fir::factory::createStringLiteral(builder, getLoc(), value); 1432 // When in an initializer context, construct the literal op itself and do 1433 // not construct another constant object in rodata. 1434 fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value); 1435 mlir::Value lenp = builder.createIntegerConstant( 1436 getLoc(), builder.getCharacterLengthType(), len); 1437 return fir::CharBoxValue{stringLit.getResult(), lenp}; 1438 } 1439 fir::CharacterType type = 1440 fir::CharacterType::get(builder.getContext(), KIND, len); 1441 auto consLit = [&]() -> fir::StringLitOp { 1442 mlir::MLIRContext *context = builder.getContext(); 1443 std::int64_t size = static_cast<std::int64_t>(value.size()); 1444 mlir::ShapedType shape = mlir::RankedTensorType::get( 1445 llvm::ArrayRef<std::int64_t>{size}, 1446 mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8)); 1447 auto denseAttr = mlir::DenseElementsAttr::get( 1448 shape, llvm::ArrayRef<ET>{value.data(), value.size()}); 1449 auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist()); 1450 mlir::NamedAttribute dataAttr(denseTag, denseAttr); 1451 auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size()); 1452 mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len)); 1453 llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr}; 1454 return builder.create<fir::StringLitOp>( 1455 getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs); 1456 }; 1457 1458 mlir::Value lenp = builder.createIntegerConstant( 1459 getLoc(), builder.getCharacterLengthType(), len); 1460 // When in an initializer context, construct the literal op itself and do 1461 // not construct another constant object in rodata. 1462 if (inInitializer) 1463 return fir::CharBoxValue{consLit().getResult(), lenp}; 1464 1465 // Otherwise, the string is in a plain old expression so "outline" the value 1466 // by hashconsing it to a constant literal object. 1467 1468 std::string globalName = 1469 fir::factory::uniqueCGIdent("cl", (const char *)value.c_str()); 1470 fir::GlobalOp global = builder.getNamedGlobal(globalName); 1471 if (!global) 1472 global = builder.createGlobalConstant( 1473 getLoc(), type, globalName, 1474 [&](fir::FirOpBuilder &builder) { 1475 fir::StringLitOp str = consLit(); 1476 builder.create<fir::HasValueOp>(getLoc(), str); 1477 }, 1478 builder.createLinkOnceLinkage()); 1479 auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(), 1480 global.getSymbol()); 1481 return fir::CharBoxValue{addr, lenp}; 1482 } 1483 1484 template <Fortran::common::TypeCategory TC, int KIND> 1485 ExtValue genArrayLit( 1486 const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> 1487 &con) { 1488 mlir::Location loc = getLoc(); 1489 mlir::IndexType idxTy = builder.getIndexType(); 1490 Fortran::evaluate::ConstantSubscript size = 1491 Fortran::evaluate::GetSize(con.shape()); 1492 fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); 1493 mlir::Type eleTy; 1494 if constexpr (TC == Fortran::common::TypeCategory::Character) 1495 eleTy = converter.genType(TC, KIND, {con.LEN()}); 1496 else 1497 eleTy = converter.genType(TC, KIND); 1498 auto arrayTy = fir::SequenceType::get(shape, eleTy); 1499 mlir::Value array; 1500 llvm::SmallVector<mlir::Value> lbounds; 1501 llvm::SmallVector<mlir::Value> extents; 1502 if (!inInitializer || !inInitializer->genRawVals) { 1503 array = builder.create<fir::UndefOp>(loc, arrayTy); 1504 for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) { 1505 lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1)); 1506 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 1507 } 1508 } 1509 if (size == 0) { 1510 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1511 mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); 1512 return fir::CharArrayBoxValue{array, len, extents, lbounds}; 1513 } else { 1514 return fir::ArrayBoxValue{array, extents, lbounds}; 1515 } 1516 } 1517 Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); 1518 auto createIdx = [&]() { 1519 llvm::SmallVector<mlir::Attribute> idx; 1520 for (size_t i = 0; i < subscripts.size(); ++i) 1521 idx.push_back( 1522 builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i])); 1523 return idx; 1524 }; 1525 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1526 assert(array && "array must not be nullptr"); 1527 do { 1528 mlir::Value elementVal = 1529 fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN())); 1530 array = builder.create<fir::InsertValueOp>( 1531 loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx())); 1532 } while (con.IncrementSubscripts(subscripts)); 1533 mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); 1534 return fir::CharArrayBoxValue{array, len, extents, lbounds}; 1535 } else { 1536 llvm::SmallVector<mlir::Attribute> rangeStartIdx; 1537 uint64_t rangeSize = 0; 1538 do { 1539 if (inInitializer && inInitializer->genRawVals) { 1540 genRawLit<TC, KIND>(con.At(subscripts)); 1541 continue; 1542 } 1543 auto getElementVal = [&]() { 1544 return builder.createConvert( 1545 loc, eleTy, 1546 fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts)))); 1547 }; 1548 Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts; 1549 bool nextIsSame = con.IncrementSubscripts(nextSubscripts) && 1550 con.At(subscripts) == con.At(nextSubscripts); 1551 if (!rangeSize && !nextIsSame) { // single (non-range) value 1552 array = builder.create<fir::InsertValueOp>( 1553 loc, arrayTy, array, getElementVal(), 1554 builder.getArrayAttr(createIdx())); 1555 } else if (!rangeSize) { // start a range 1556 rangeStartIdx = createIdx(); 1557 rangeSize = 1; 1558 } else if (nextIsSame) { // expand a range 1559 ++rangeSize; 1560 } else { // end a range 1561 llvm::SmallVector<int64_t> rangeBounds; 1562 llvm::SmallVector<mlir::Attribute> idx = createIdx(); 1563 for (size_t i = 0; i < idx.size(); ++i) { 1564 rangeBounds.push_back(rangeStartIdx[i] 1565 .cast<mlir::IntegerAttr>() 1566 .getValue() 1567 .getSExtValue()); 1568 rangeBounds.push_back( 1569 idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue()); 1570 } 1571 array = builder.create<fir::InsertOnRangeOp>( 1572 loc, arrayTy, array, getElementVal(), 1573 builder.getIndexVectorAttr(rangeBounds)); 1574 rangeSize = 0; 1575 } 1576 } while (con.IncrementSubscripts(subscripts)); 1577 return fir::ArrayBoxValue{array, extents, lbounds}; 1578 } 1579 } 1580 1581 fir::ExtendedValue genArrayLit( 1582 const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { 1583 mlir::Location loc = getLoc(); 1584 mlir::IndexType idxTy = builder.getIndexType(); 1585 Fortran::evaluate::ConstantSubscript size = 1586 Fortran::evaluate::GetSize(con.shape()); 1587 fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); 1588 mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec()); 1589 auto arrayTy = fir::SequenceType::get(shape, eleTy); 1590 mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy); 1591 llvm::SmallVector<mlir::Value> lbounds; 1592 llvm::SmallVector<mlir::Value> extents; 1593 for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) { 1594 lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1)); 1595 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 1596 } 1597 if (size == 0) 1598 return fir::ArrayBoxValue{array, extents, lbounds}; 1599 Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); 1600 do { 1601 mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts))); 1602 llvm::SmallVector<mlir::Attribute> idx; 1603 for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds())) 1604 idx.push_back(builder.getIntegerAttr(idxTy, dim - lb)); 1605 array = builder.create<fir::InsertValueOp>( 1606 loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx)); 1607 } while (con.IncrementSubscripts(subscripts)); 1608 return fir::ArrayBoxValue{array, extents, lbounds}; 1609 } 1610 1611 template <Fortran::common::TypeCategory TC, int KIND> 1612 ExtValue 1613 genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> 1614 &con) { 1615 if (con.Rank() > 0) 1616 return genArrayLit(con); 1617 std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>> 1618 opt = con.GetScalarValue(); 1619 assert(opt.has_value() && "constant has no value"); 1620 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1621 return genScalarLit<KIND>(opt.value(), con.LEN()); 1622 } else { 1623 return genScalarLit<TC, KIND>(opt.value()); 1624 } 1625 } 1626 fir::ExtendedValue genval( 1627 const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { 1628 if (con.Rank() > 0) 1629 return genArrayLit(con); 1630 if (auto ctor = con.GetScalarValue()) 1631 return genval(ctor.value()); 1632 fir::emitFatalError(getLoc(), 1633 "constant of derived type has no constructor"); 1634 } 1635 1636 template <typename A> 1637 ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) { 1638 fir::emitFatalError(getLoc(), 1639 "array constructor: lowering should not reach here"); 1640 } 1641 1642 ExtValue gen(const Fortran::evaluate::ComplexPart &x) { 1643 mlir::Location loc = getLoc(); 1644 auto idxTy = builder.getI32Type(); 1645 ExtValue exv = gen(x.complex()); 1646 mlir::Value base = fir::getBase(exv); 1647 fir::factory::Complex helper{builder, loc}; 1648 mlir::Type eleTy = 1649 helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType())); 1650 mlir::Value offset = builder.createIntegerConstant( 1651 loc, idxTy, 1652 x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1); 1653 mlir::Value result = builder.create<fir::CoordinateOp>( 1654 loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset}); 1655 return {result}; 1656 } 1657 ExtValue genval(const Fortran::evaluate::ComplexPart &x) { 1658 return genLoad(gen(x)); 1659 } 1660 1661 /// Reference to a substring. 1662 ExtValue gen(const Fortran::evaluate::Substring &s) { 1663 // Get base string 1664 auto baseString = std::visit( 1665 Fortran::common::visitors{ 1666 [&](const Fortran::evaluate::DataRef &x) { return gen(x); }, 1667 [&](const Fortran::evaluate::StaticDataObject::Pointer &p) 1668 -> ExtValue { 1669 if (std::optional<std::string> str = p->AsString()) 1670 return fir::factory::createStringLiteral(builder, getLoc(), 1671 *str); 1672 // TODO: convert StaticDataObject to Constant<T> and use normal 1673 // constant path. Beware that StaticDataObject data() takes into 1674 // account build machine endianness. 1675 TODO(getLoc(), 1676 "StaticDataObject::Pointer substring with kind > 1"); 1677 }, 1678 }, 1679 s.parent()); 1680 llvm::SmallVector<mlir::Value> bounds; 1681 mlir::Value lower = genunbox(s.lower()); 1682 bounds.push_back(lower); 1683 if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) { 1684 mlir::Value upper = genunbox(*upperBound); 1685 bounds.push_back(upper); 1686 } 1687 fir::factory::CharacterExprHelper charHelper{builder, getLoc()}; 1688 return baseString.match( 1689 [&](const fir::CharBoxValue &x) -> ExtValue { 1690 return charHelper.createSubstring(x, bounds); 1691 }, 1692 [&](const fir::CharArrayBoxValue &) -> ExtValue { 1693 fir::emitFatalError( 1694 getLoc(), 1695 "array substring should be handled in array expression"); 1696 }, 1697 [&](const auto &) -> ExtValue { 1698 fir::emitFatalError(getLoc(), "substring base is not a CharBox"); 1699 }); 1700 } 1701 1702 /// The value of a substring. 1703 ExtValue genval(const Fortran::evaluate::Substring &ss) { 1704 // FIXME: why is the value of a substring being lowered the same as the 1705 // address of a substring? 1706 return gen(ss); 1707 } 1708 1709 ExtValue genval(const Fortran::evaluate::Subscript &subs) { 1710 if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>( 1711 &subs.u)) { 1712 if (s->value().Rank() > 0) 1713 fir::emitFatalError(getLoc(), "vector subscript is not scalar"); 1714 return {genval(s->value())}; 1715 } 1716 fir::emitFatalError(getLoc(), "subscript triple notation is not scalar"); 1717 } 1718 ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) { 1719 return genval(subs); 1720 } 1721 1722 ExtValue gen(const Fortran::evaluate::DataRef &dref) { 1723 return std::visit([&](const auto &x) { return gen(x); }, dref.u); 1724 } 1725 ExtValue genval(const Fortran::evaluate::DataRef &dref) { 1726 return std::visit([&](const auto &x) { return genval(x); }, dref.u); 1727 } 1728 1729 // Helper function to turn the Component structure into a list of nested 1730 // components, ordered from largest/leftmost to smallest/rightmost: 1731 // - where only the smallest/rightmost item may be allocatable or a pointer 1732 // (nested allocatable/pointer components require nested coordinate_of ops) 1733 // - that does not contain any parent components 1734 // (the front end places parent components directly in the object) 1735 // Return the object used as the base coordinate for the component chain. 1736 static Fortran::evaluate::DataRef const * 1737 reverseComponents(const Fortran::evaluate::Component &cmpt, 1738 std::list<const Fortran::evaluate::Component *> &list) { 1739 if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp)) 1740 list.push_front(&cmpt); 1741 return std::visit( 1742 Fortran::common::visitors{ 1743 [&](const Fortran::evaluate::Component &x) { 1744 if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x))) 1745 return &cmpt.base(); 1746 return reverseComponents(x, list); 1747 }, 1748 [&](auto &) { return &cmpt.base(); }, 1749 }, 1750 cmpt.base().u); 1751 } 1752 1753 // Return the coordinate of the component reference 1754 ExtValue genComponent(const Fortran::evaluate::Component &cmpt) { 1755 std::list<const Fortran::evaluate::Component *> list; 1756 const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list); 1757 llvm::SmallVector<mlir::Value> coorArgs; 1758 ExtValue obj = gen(*base); 1759 mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType()); 1760 mlir::Location loc = getLoc(); 1761 auto fldTy = fir::FieldType::get(&converter.getMLIRContext()); 1762 // FIXME: need to thread the LEN type parameters here. 1763 for (const Fortran::evaluate::Component *field : list) { 1764 auto recTy = ty.cast<fir::RecordType>(); 1765 const Fortran::semantics::Symbol &sym = getLastSym(*field); 1766 llvm::StringRef name = toStringRef(sym.name()); 1767 coorArgs.push_back(builder.create<fir::FieldIndexOp>( 1768 loc, fldTy, name, recTy, fir::getTypeParams(obj))); 1769 ty = recTy.getType(name); 1770 } 1771 ty = builder.getRefType(ty); 1772 return fir::factory::componentToExtendedValue( 1773 builder, loc, 1774 builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj), 1775 coorArgs)); 1776 } 1777 1778 ExtValue gen(const Fortran::evaluate::Component &cmpt) { 1779 // Components may be pointer or allocatable. In the gen() path, the mutable 1780 // aspect is lost to simplify handling on the client side. To retain the 1781 // mutable aspect, genMutableBoxValue should be used. 1782 return genComponent(cmpt).match( 1783 [&](const fir::MutableBoxValue &mutableBox) { 1784 return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox); 1785 }, 1786 [](auto &box) -> ExtValue { return box; }); 1787 } 1788 1789 ExtValue genval(const Fortran::evaluate::Component &cmpt) { 1790 return genLoad(gen(cmpt)); 1791 } 1792 1793 // Determine the result type after removing `dims` dimensions from the array 1794 // type `arrTy` 1795 mlir::Type genSubType(mlir::Type arrTy, unsigned dims) { 1796 mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy); 1797 assert(unwrapTy && "must be a pointer or box type"); 1798 auto seqTy = unwrapTy.cast<fir::SequenceType>(); 1799 llvm::ArrayRef<int64_t> shape = seqTy.getShape(); 1800 assert(shape.size() > 0 && "removing columns for sequence sans shape"); 1801 assert(dims <= shape.size() && "removing more columns than exist"); 1802 fir::SequenceType::Shape newBnds; 1803 // follow Fortran semantics and remove columns (from right) 1804 std::size_t e = shape.size() - dims; 1805 for (decltype(e) i = 0; i < e; ++i) 1806 newBnds.push_back(shape[i]); 1807 if (!newBnds.empty()) 1808 return fir::SequenceType::get(newBnds, seqTy.getEleTy()); 1809 return seqTy.getEleTy(); 1810 } 1811 1812 // Generate the code for a Bound value. 1813 ExtValue genval(const Fortran::semantics::Bound &bound) { 1814 if (bound.isExplicit()) { 1815 Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit(); 1816 if (sub.has_value()) 1817 return genval(*sub); 1818 return genIntegerConstant<8>(builder.getContext(), 1); 1819 } 1820 TODO(getLoc(), "non explicit semantics::Bound lowering"); 1821 } 1822 1823 static bool isSlice(const Fortran::evaluate::ArrayRef &aref) { 1824 for (const Fortran::evaluate::Subscript &sub : aref.subscript()) 1825 if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u)) 1826 return true; 1827 return false; 1828 } 1829 1830 /// Lower an ArrayRef to a fir.coordinate_of given its lowered base. 1831 ExtValue genCoordinateOp(const ExtValue &array, 1832 const Fortran::evaluate::ArrayRef &aref) { 1833 mlir::Location loc = getLoc(); 1834 // References to array of rank > 1 with non constant shape that are not 1835 // fir.box must be collapsed into an offset computation in lowering already. 1836 // The same is needed with dynamic length character arrays of all ranks. 1837 mlir::Type baseType = 1838 fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType()); 1839 if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) || 1840 fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType))) 1841 if (!array.getBoxOf<fir::BoxValue>()) 1842 return genOffsetAndCoordinateOp(array, aref); 1843 // Generate a fir.coordinate_of with zero based array indexes. 1844 llvm::SmallVector<mlir::Value> args; 1845 for (const auto &subsc : llvm::enumerate(aref.subscript())) { 1846 ExtValue subVal = genSubscript(subsc.value()); 1847 assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar"); 1848 mlir::Value val = fir::getBase(subVal); 1849 mlir::Type ty = val.getType(); 1850 mlir::Value lb = getLBound(array, subsc.index(), ty); 1851 args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb)); 1852 } 1853 1854 mlir::Value base = fir::getBase(array); 1855 auto seqTy = 1856 fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>(); 1857 assert(args.size() == seqTy.getDimension()); 1858 mlir::Type ty = builder.getRefType(seqTy.getEleTy()); 1859 auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args); 1860 return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr); 1861 } 1862 1863 /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead 1864 /// of array indexes. 1865 /// This generates offset computation from the indexes and length parameters, 1866 /// and use the offset to access the element with a fir.coordinate_of. This 1867 /// must only be used if it is not possible to generate a normal 1868 /// fir.coordinate_of using array indexes (i.e. when the shape information is 1869 /// unavailable in the IR). 1870 ExtValue genOffsetAndCoordinateOp(const ExtValue &array, 1871 const Fortran::evaluate::ArrayRef &aref) { 1872 mlir::Location loc = getLoc(); 1873 mlir::Value addr = fir::getBase(array); 1874 mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType()); 1875 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 1876 mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy)); 1877 mlir::Type refTy = builder.getRefType(eleTy); 1878 mlir::Value base = builder.createConvert(loc, seqTy, addr); 1879 mlir::IndexType idxTy = builder.getIndexType(); 1880 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 1881 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 1882 auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value { 1883 return arr.getLBounds().empty() ? one : arr.getLBounds()[dim]; 1884 }; 1885 auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value { 1886 mlir::Value total = zero; 1887 assert(arr.getExtents().size() == aref.subscript().size()); 1888 delta = builder.createConvert(loc, idxTy, delta); 1889 unsigned dim = 0; 1890 for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) { 1891 ExtValue subVal = genSubscript(sub); 1892 assert(fir::isUnboxedValue(subVal)); 1893 mlir::Value val = 1894 builder.createConvert(loc, idxTy, fir::getBase(subVal)); 1895 mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim)); 1896 mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb); 1897 mlir::Value prod = 1898 builder.create<mlir::arith::MulIOp>(loc, delta, diff); 1899 total = builder.create<mlir::arith::AddIOp>(loc, prod, total); 1900 if (ext) 1901 delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext); 1902 ++dim; 1903 } 1904 mlir::Type origRefTy = refTy; 1905 if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) { 1906 fir::CharacterType chTy = 1907 fir::factory::CharacterExprHelper::getCharacterType(refTy); 1908 if (fir::characterWithDynamicLen(chTy)) { 1909 mlir::MLIRContext *ctx = builder.getContext(); 1910 fir::KindTy kind = 1911 fir::factory::CharacterExprHelper::getCharacterKind(chTy); 1912 fir::CharacterType singleTy = 1913 fir::CharacterType::getSingleton(ctx, kind); 1914 refTy = builder.getRefType(singleTy); 1915 mlir::Type seqRefTy = 1916 builder.getRefType(builder.getVarLenSeqTy(singleTy)); 1917 base = builder.createConvert(loc, seqRefTy, base); 1918 } 1919 } 1920 auto coor = builder.create<fir::CoordinateOp>( 1921 loc, refTy, base, llvm::ArrayRef<mlir::Value>{total}); 1922 // Convert to expected, original type after address arithmetic. 1923 return builder.createConvert(loc, origRefTy, coor); 1924 }; 1925 return array.match( 1926 [&](const fir::ArrayBoxValue &arr) -> ExtValue { 1927 // FIXME: this check can be removed when slicing is implemented 1928 if (isSlice(aref)) 1929 fir::emitFatalError( 1930 getLoc(), 1931 "slice should be handled in array expression context"); 1932 return genFullDim(arr, one); 1933 }, 1934 [&](const fir::CharArrayBoxValue &arr) -> ExtValue { 1935 mlir::Value delta = arr.getLen(); 1936 // If the length is known in the type, fir.coordinate_of will 1937 // already take the length into account. 1938 if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr)) 1939 delta = one; 1940 return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen()); 1941 }, 1942 [&](const fir::BoxValue &arr) -> ExtValue { 1943 // CoordinateOp for BoxValue is not generated here. The dimensions 1944 // must be kept in the fir.coordinate_op so that potential fir.box 1945 // strides can be applied by codegen. 1946 fir::emitFatalError( 1947 loc, "internal: BoxValue in dim-collapsed fir.coordinate_of"); 1948 }, 1949 [&](const auto &) -> ExtValue { 1950 fir::emitFatalError(loc, "internal: array lowering failed"); 1951 }); 1952 } 1953 1954 /// Lower an ArrayRef to a fir.array_coor. 1955 ExtValue genArrayCoorOp(const ExtValue &exv, 1956 const Fortran::evaluate::ArrayRef &aref) { 1957 mlir::Location loc = getLoc(); 1958 mlir::Value addr = fir::getBase(exv); 1959 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); 1960 mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 1961 mlir::Type refTy = builder.getRefType(eleTy); 1962 mlir::IndexType idxTy = builder.getIndexType(); 1963 llvm::SmallVector<mlir::Value> arrayCoorArgs; 1964 // The ArrayRef is expected to be scalar here, arrays are handled in array 1965 // expression lowering. So no vector subscript or triplet is expected here. 1966 for (const auto &sub : aref.subscript()) { 1967 ExtValue subVal = genSubscript(sub); 1968 assert(fir::isUnboxedValue(subVal)); 1969 arrayCoorArgs.push_back( 1970 builder.createConvert(loc, idxTy, fir::getBase(subVal))); 1971 } 1972 mlir::Value shape = builder.createShape(loc, exv); 1973 mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>( 1974 loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs, 1975 fir::getTypeParams(exv)); 1976 return fir::factory::arrayElementToExtendedValue(builder, loc, exv, 1977 elementAddr); 1978 } 1979 1980 /// Return the coordinate of the array reference. 1981 ExtValue gen(const Fortran::evaluate::ArrayRef &aref) { 1982 ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base())) 1983 : gen(aref.base().GetComponent()); 1984 // Check for command-line override to use array_coor op. 1985 if (generateArrayCoordinate) 1986 return genArrayCoorOp(base, aref); 1987 // Otherwise, use coordinate_of op. 1988 return genCoordinateOp(base, aref); 1989 } 1990 1991 /// Return lower bounds of \p box in dimension \p dim. The returned value 1992 /// has type \ty. 1993 mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) { 1994 assert(box.rank() > 0 && "must be an array"); 1995 mlir::Location loc = getLoc(); 1996 mlir::Value one = builder.createIntegerConstant(loc, ty, 1); 1997 mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one); 1998 return builder.createConvert(loc, ty, lb); 1999 } 2000 2001 ExtValue genval(const Fortran::evaluate::ArrayRef &aref) { 2002 return genLoad(gen(aref)); 2003 } 2004 2005 ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) { 2006 return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} 2007 .genAddr(coref); 2008 } 2009 2010 ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) { 2011 return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} 2012 .genValue(coref); 2013 } 2014 2015 template <typename A> 2016 ExtValue gen(const Fortran::evaluate::Designator<A> &des) { 2017 return std::visit([&](const auto &x) { return gen(x); }, des.u); 2018 } 2019 template <typename A> 2020 ExtValue genval(const Fortran::evaluate::Designator<A> &des) { 2021 return std::visit([&](const auto &x) { return genval(x); }, des.u); 2022 } 2023 2024 mlir::Type genType(const Fortran::evaluate::DynamicType &dt) { 2025 if (dt.category() != Fortran::common::TypeCategory::Derived) 2026 return converter.genType(dt.category(), dt.kind()); 2027 return converter.genType(dt.GetDerivedTypeSpec()); 2028 } 2029 2030 /// Lower a function reference 2031 template <typename A> 2032 ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) { 2033 if (!funcRef.GetType().has_value()) 2034 fir::emitFatalError(getLoc(), "a function must have a type"); 2035 mlir::Type resTy = genType(*funcRef.GetType()); 2036 return genProcedureRef(funcRef, {resTy}); 2037 } 2038 2039 /// Lower function call `funcRef` and return a reference to the resultant 2040 /// value. This is required for lowering expressions such as `f1(f2(v))`. 2041 template <typename A> 2042 ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) { 2043 ExtValue retVal = genFunctionRef(funcRef); 2044 mlir::Type resultType = converter.genType(toEvExpr(funcRef)); 2045 return placeScalarValueInMemory(builder, getLoc(), retVal, resultType); 2046 } 2047 2048 /// Helper to lower intrinsic arguments for inquiry intrinsic. 2049 ExtValue 2050 lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) { 2051 if (Fortran::evaluate::IsAllocatableOrPointerObject( 2052 expr, converter.getFoldingContext())) 2053 return genMutableBoxValue(expr); 2054 /// Do not create temps for array sections whose properties only need to be 2055 /// inquired: create a descriptor that will be inquired. 2056 if (Fortran::evaluate::IsVariable(expr) && isArray(expr) && 2057 !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)) 2058 return lowerIntrinsicArgumentAsBox(expr); 2059 return gen(expr); 2060 } 2061 2062 /// Helper to lower intrinsic arguments to a fir::BoxValue. 2063 /// It preserves all the non default lower bounds/non deferred length 2064 /// parameter information. 2065 ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) { 2066 mlir::Location loc = getLoc(); 2067 ExtValue exv = genBoxArg(expr); 2068 mlir::Value box = builder.createBox(loc, exv); 2069 return fir::BoxValue( 2070 box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv), 2071 fir::factory::getNonDeferredLengthParams(exv)); 2072 } 2073 2074 /// Generate a call to an intrinsic function. 2075 ExtValue 2076 genIntrinsicRef(const Fortran::evaluate::ProcedureRef &procRef, 2077 const Fortran::evaluate::SpecificIntrinsic &intrinsic, 2078 llvm::Optional<mlir::Type> resultType) { 2079 llvm::SmallVector<ExtValue> operands; 2080 2081 llvm::StringRef name = intrinsic.name; 2082 mlir::Location loc = getLoc(); 2083 if (Fortran::lower::intrinsicRequiresCustomOptionalHandling( 2084 procRef, intrinsic, converter)) { 2085 using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>; 2086 llvm::SmallVector<ExvAndPresence, 4> operands; 2087 auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { 2088 ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr); 2089 mlir::Value isPresent = 2090 genActualIsPresentTest(builder, loc, optionalArg); 2091 operands.emplace_back(optionalArg, isPresent); 2092 }; 2093 auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) { 2094 operands.emplace_back(genval(expr), llvm::None); 2095 }; 2096 Fortran::lower::prepareCustomIntrinsicArgument( 2097 procRef, intrinsic, resultType, prepareOptionalArg, prepareOtherArg, 2098 converter); 2099 2100 auto getArgument = [&](std::size_t i) -> ExtValue { 2101 if (fir::conformsWithPassByRef( 2102 fir::getBase(operands[i].first).getType())) 2103 return genLoad(operands[i].first); 2104 return operands[i].first; 2105 }; 2106 auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> { 2107 return operands[i].second; 2108 }; 2109 return Fortran::lower::lowerCustomIntrinsic( 2110 builder, loc, name, resultType, isPresent, getArgument, 2111 operands.size(), stmtCtx); 2112 } 2113 2114 const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering = 2115 Fortran::lower::getIntrinsicArgumentLowering(name); 2116 for (const auto &[arg, dummy] : 2117 llvm::zip(procRef.arguments(), 2118 intrinsic.characteristics.value().dummyArguments)) { 2119 auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg); 2120 if (!expr) { 2121 // Absent optional. 2122 operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument()); 2123 continue; 2124 } 2125 if (!argLowering) { 2126 // No argument lowering instruction, lower by value. 2127 operands.emplace_back(genval(*expr)); 2128 continue; 2129 } 2130 // Ad-hoc argument lowering handling. 2131 Fortran::lower::ArgLoweringRule argRules = 2132 Fortran::lower::lowerIntrinsicArgumentAs(loc, *argLowering, 2133 dummy.name); 2134 if (argRules.handleDynamicOptional && 2135 Fortran::evaluate::MayBePassedAsAbsentOptional( 2136 *expr, converter.getFoldingContext())) { 2137 ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr); 2138 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional); 2139 switch (argRules.lowerAs) { 2140 case Fortran::lower::LowerIntrinsicArgAs::Value: 2141 operands.emplace_back( 2142 genOptionalValue(builder, loc, optional, isPresent)); 2143 continue; 2144 case Fortran::lower::LowerIntrinsicArgAs::Addr: 2145 operands.emplace_back( 2146 genOptionalAddr(builder, loc, optional, isPresent)); 2147 continue; 2148 case Fortran::lower::LowerIntrinsicArgAs::Box: 2149 operands.emplace_back( 2150 genOptionalBox(builder, loc, optional, isPresent)); 2151 continue; 2152 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 2153 operands.emplace_back(optional); 2154 continue; 2155 } 2156 llvm_unreachable("bad switch"); 2157 } 2158 switch (argRules.lowerAs) { 2159 case Fortran::lower::LowerIntrinsicArgAs::Value: 2160 operands.emplace_back(genval(*expr)); 2161 continue; 2162 case Fortran::lower::LowerIntrinsicArgAs::Addr: 2163 operands.emplace_back(gen(*expr)); 2164 continue; 2165 case Fortran::lower::LowerIntrinsicArgAs::Box: 2166 operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr)); 2167 continue; 2168 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 2169 operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr)); 2170 continue; 2171 } 2172 llvm_unreachable("bad switch"); 2173 } 2174 // Let the intrinsic library lower the intrinsic procedure call 2175 return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType, 2176 operands, stmtCtx); 2177 } 2178 2179 template <typename A> 2180 bool isCharacterType(const A &exp) { 2181 if (auto type = exp.GetType()) 2182 return type->category() == Fortran::common::TypeCategory::Character; 2183 return false; 2184 } 2185 2186 /// helper to detect statement functions 2187 static bool 2188 isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) { 2189 if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol()) 2190 if (const auto *details = 2191 symbol->detailsIf<Fortran::semantics::SubprogramDetails>()) 2192 return details->stmtFunction().has_value(); 2193 return false; 2194 } 2195 /// Generate Statement function calls 2196 ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) { 2197 const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); 2198 assert(symbol && "expected symbol in ProcedureRef of statement functions"); 2199 const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>(); 2200 2201 // Statement functions have their own scope, we just need to associate 2202 // the dummy symbols to argument expressions. They are no 2203 // optional/alternate return arguments. Statement functions cannot be 2204 // recursive (directly or indirectly) so it is safe to add dummy symbols to 2205 // the local map here. 2206 symMap.pushScope(); 2207 for (auto [arg, bind] : 2208 llvm::zip(details.dummyArgs(), procRef.arguments())) { 2209 assert(arg && "alternate return in statement function"); 2210 assert(bind && "optional argument in statement function"); 2211 const auto *expr = bind->UnwrapExpr(); 2212 // TODO: assumed type in statement function, that surprisingly seems 2213 // allowed, probably because nobody thought of restricting this usage. 2214 // gfortran/ifort compiles this. 2215 assert(expr && "assumed type used as statement function argument"); 2216 // As per Fortran 2018 C1580, statement function arguments can only be 2217 // scalars, so just pass the box with the address. The only care is to 2218 // to use the dummy character explicit length if any instead of the 2219 // actual argument length (that can be bigger). 2220 if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType()) 2221 if (type->category() == Fortran::semantics::DeclTypeSpec::Character) 2222 if (const Fortran::semantics::MaybeIntExpr &lenExpr = 2223 type->characterTypeSpec().length().GetExplicit()) { 2224 mlir::Value len = fir::getBase(genval(*lenExpr)); 2225 // F2018 7.4.4.2 point 5. 2226 len = Fortran::lower::genMaxWithZero(builder, getLoc(), len); 2227 symMap.addSymbol(*arg, 2228 replaceScalarCharacterLength(gen(*expr), len)); 2229 continue; 2230 } 2231 symMap.addSymbol(*arg, gen(*expr)); 2232 } 2233 2234 // Explicitly map statement function host associated symbols to their 2235 // parent scope lowered symbol box. 2236 for (const Fortran::semantics::SymbolRef &sym : 2237 Fortran::evaluate::CollectSymbols(*details.stmtFunction())) 2238 if (const auto *details = 2239 sym->detailsIf<Fortran::semantics::HostAssocDetails>()) 2240 if (!symMap.lookupSymbol(*sym)) 2241 symMap.addSymbol(*sym, gen(details->symbol())); 2242 2243 ExtValue result = genval(details.stmtFunction().value()); 2244 LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n'); 2245 symMap.popScope(); 2246 return result; 2247 } 2248 2249 /// Helper to package a Value and its properties into an ExtendedValue. 2250 static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base, 2251 llvm::ArrayRef<mlir::Value> extents, 2252 llvm::ArrayRef<mlir::Value> lengths) { 2253 mlir::Type type = base.getType(); 2254 if (type.isa<fir::BoxType>()) 2255 return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents); 2256 type = fir::unwrapRefType(type); 2257 if (type.isa<fir::BoxType>()) 2258 return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {}); 2259 if (auto seqTy = type.dyn_cast<fir::SequenceType>()) { 2260 if (seqTy.getDimension() != extents.size()) 2261 fir::emitFatalError(loc, "incorrect number of extents for array"); 2262 if (seqTy.getEleTy().isa<fir::CharacterType>()) { 2263 if (lengths.empty()) 2264 fir::emitFatalError(loc, "missing length for character"); 2265 assert(lengths.size() == 1); 2266 return fir::CharArrayBoxValue(base, lengths[0], extents); 2267 } 2268 return fir::ArrayBoxValue(base, extents); 2269 } 2270 if (type.isa<fir::CharacterType>()) { 2271 if (lengths.empty()) 2272 fir::emitFatalError(loc, "missing length for character"); 2273 assert(lengths.size() == 1); 2274 return fir::CharBoxValue(base, lengths[0]); 2275 } 2276 return base; 2277 } 2278 2279 // Find the argument that corresponds to the host associations. 2280 // Verify some assumptions about how the signature was built here. 2281 [[maybe_unused]] static unsigned 2282 findHostAssocTuplePos(mlir::func::FuncOp fn) { 2283 // Scan the argument list from last to first as the host associations are 2284 // appended for now. 2285 for (unsigned i = fn.getNumArguments(); i > 0; --i) 2286 if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) { 2287 // Host assoc tuple must be last argument (for now). 2288 assert(i == fn.getNumArguments() && "tuple must be last"); 2289 return i - 1; 2290 } 2291 llvm_unreachable("anyFuncArgsHaveAttr failed"); 2292 } 2293 2294 /// Create a contiguous temporary array with the same shape, 2295 /// length parameters and type as mold. It is up to the caller to deallocate 2296 /// the temporary. 2297 ExtValue genArrayTempFromMold(const ExtValue &mold, 2298 llvm::StringRef tempName) { 2299 mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType()); 2300 assert(type && "expected descriptor or memory type"); 2301 mlir::Location loc = getLoc(); 2302 llvm::SmallVector<mlir::Value> extents = 2303 fir::factory::getExtents(loc, builder, mold); 2304 llvm::SmallVector<mlir::Value> allocMemTypeParams = 2305 fir::getTypeParams(mold); 2306 mlir::Value charLen; 2307 mlir::Type elementType = fir::unwrapSequenceType(type); 2308 if (auto charType = elementType.dyn_cast<fir::CharacterType>()) { 2309 charLen = allocMemTypeParams.empty() 2310 ? fir::factory::readCharLen(builder, loc, mold) 2311 : allocMemTypeParams[0]; 2312 if (charType.hasDynamicLen() && allocMemTypeParams.empty()) 2313 allocMemTypeParams.push_back(charLen); 2314 } else if (fir::hasDynamicSize(elementType)) { 2315 TODO(loc, "Creating temporary for derived type with length parameters"); 2316 } 2317 2318 mlir::Value temp = builder.create<fir::AllocMemOp>( 2319 loc, type, tempName, allocMemTypeParams, extents); 2320 if (fir::unwrapSequenceType(type).isa<fir::CharacterType>()) 2321 return fir::CharArrayBoxValue{temp, charLen, extents}; 2322 return fir::ArrayBoxValue{temp, extents}; 2323 } 2324 2325 /// Copy \p source array into \p dest array. Both arrays must be 2326 /// conforming, but neither array must be contiguous. 2327 void genArrayCopy(ExtValue dest, ExtValue source) { 2328 return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx); 2329 } 2330 2331 /// Lower a non-elemental procedure reference and read allocatable and pointer 2332 /// results into normal values. 2333 ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, 2334 llvm::Optional<mlir::Type> resultType) { 2335 ExtValue res = genRawProcedureRef(procRef, resultType); 2336 // In most contexts, pointers and allocatable do not appear as allocatable 2337 // or pointer variable on the caller side (see 8.5.3 note 1 for 2338 // allocatables). The few context where this can happen must call 2339 // genRawProcedureRef directly. 2340 if (const auto *box = res.getBoxOf<fir::MutableBoxValue>()) 2341 return fir::factory::genMutableBoxRead(builder, getLoc(), *box); 2342 return res; 2343 } 2344 2345 /// Given a call site for which the arguments were already lowered, generate 2346 /// the call and return the result. This function deals with explicit result 2347 /// allocation and lowering if needed. It also deals with passing the host 2348 /// link to internal procedures. 2349 ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller, 2350 mlir::FunctionType callSiteType, 2351 llvm::Optional<mlir::Type> resultType) { 2352 mlir::Location loc = getLoc(); 2353 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 2354 // Handle cases where caller must allocate the result or a fir.box for it. 2355 bool mustPopSymMap = false; 2356 if (caller.mustMapInterfaceSymbols()) { 2357 symMap.pushScope(); 2358 mustPopSymMap = true; 2359 Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap); 2360 } 2361 // If this is an indirect call, retrieve the function address. Also retrieve 2362 // the result length if this is a character function (note that this length 2363 // will be used only if there is no explicit length in the local interface). 2364 mlir::Value funcPointer; 2365 mlir::Value charFuncPointerLength; 2366 if (const Fortran::semantics::Symbol *sym = 2367 caller.getIfIndirectCallSymbol()) { 2368 funcPointer = symMap.lookupSymbol(*sym).getAddr(); 2369 if (!funcPointer) 2370 fir::emitFatalError(loc, "failed to find indirect call symbol address"); 2371 if (fir::isCharacterProcedureTuple(funcPointer.getType(), 2372 /*acceptRawFunc=*/false)) 2373 std::tie(funcPointer, charFuncPointerLength) = 2374 fir::factory::extractCharacterProcedureTuple(builder, loc, 2375 funcPointer); 2376 } 2377 2378 mlir::IndexType idxTy = builder.getIndexType(); 2379 auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value { 2380 return builder.createConvert( 2381 loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx))); 2382 }; 2383 llvm::SmallVector<mlir::Value> resultLengths; 2384 auto allocatedResult = [&]() -> llvm::Optional<ExtValue> { 2385 llvm::SmallVector<mlir::Value> extents; 2386 llvm::SmallVector<mlir::Value> lengths; 2387 if (!caller.callerAllocateResult()) 2388 return {}; 2389 mlir::Type type = caller.getResultStorageType(); 2390 if (type.isa<fir::SequenceType>()) 2391 caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) { 2392 extents.emplace_back(lowerSpecExpr(e)); 2393 }); 2394 caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) { 2395 lengths.emplace_back(lowerSpecExpr(e)); 2396 }); 2397 2398 // Result length parameters should not be provided to box storage 2399 // allocation and save_results, but they are still useful information to 2400 // keep in the ExtendedValue if non-deferred. 2401 if (!type.isa<fir::BoxType>()) { 2402 if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) { 2403 // Calling an assumed length function. This is only possible if this 2404 // is a call to a character dummy procedure. 2405 if (!charFuncPointerLength) 2406 fir::emitFatalError(loc, "failed to retrieve character function " 2407 "length while calling it"); 2408 lengths.push_back(charFuncPointerLength); 2409 } 2410 resultLengths = lengths; 2411 } 2412 2413 if (!extents.empty() || !lengths.empty()) { 2414 auto *bldr = &converter.getFirOpBuilder(); 2415 auto stackSaveFn = fir::factory::getLlvmStackSave(builder); 2416 auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName()); 2417 mlir::Value sp = 2418 bldr->create<fir::CallOp>( 2419 loc, stackSaveFn.getFunctionType().getResults(), 2420 stackSaveSymbol, mlir::ValueRange{}) 2421 .getResult(0); 2422 stmtCtx.attachCleanup([bldr, loc, sp]() { 2423 auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr); 2424 auto stackRestoreSymbol = 2425 bldr->getSymbolRefAttr(stackRestoreFn.getName()); 2426 bldr->create<fir::CallOp>( 2427 loc, stackRestoreFn.getFunctionType().getResults(), 2428 stackRestoreSymbol, mlir::ValueRange{sp}); 2429 }); 2430 } 2431 mlir::Value temp = 2432 builder.createTemporary(loc, type, ".result", extents, resultLengths); 2433 return toExtendedValue(loc, temp, extents, lengths); 2434 }(); 2435 2436 if (mustPopSymMap) 2437 symMap.popScope(); 2438 2439 // Place allocated result or prepare the fir.save_result arguments. 2440 mlir::Value arrayResultShape; 2441 if (allocatedResult) { 2442 if (std::optional<Fortran::lower::CallInterface< 2443 Fortran::lower::CallerInterface>::PassedEntity> 2444 resultArg = caller.getPassedResult()) { 2445 if (resultArg->passBy == PassBy::AddressAndLength) 2446 caller.placeAddressAndLengthInput(*resultArg, 2447 fir::getBase(*allocatedResult), 2448 fir::getLen(*allocatedResult)); 2449 else if (resultArg->passBy == PassBy::BaseAddress) 2450 caller.placeInput(*resultArg, fir::getBase(*allocatedResult)); 2451 else 2452 fir::emitFatalError( 2453 loc, "only expect character scalar result to be passed by ref"); 2454 } else { 2455 assert(caller.mustSaveResult()); 2456 arrayResultShape = allocatedResult->match( 2457 [&](const fir::CharArrayBoxValue &) { 2458 return builder.createShape(loc, *allocatedResult); 2459 }, 2460 [&](const fir::ArrayBoxValue &) { 2461 return builder.createShape(loc, *allocatedResult); 2462 }, 2463 [&](const auto &) { return mlir::Value{}; }); 2464 } 2465 } 2466 2467 // In older Fortran, procedure argument types are inferred. This may lead 2468 // different view of what the function signature is in different locations. 2469 // Casts are inserted as needed below to accommodate this. 2470 2471 // The mlir::func::FuncOp type prevails, unless it has a different number of 2472 // arguments which can happen in legal program if it was passed as a dummy 2473 // procedure argument earlier with no further type information. 2474 mlir::SymbolRefAttr funcSymbolAttr; 2475 bool addHostAssociations = false; 2476 if (!funcPointer) { 2477 mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType(); 2478 mlir::SymbolRefAttr symbolAttr = 2479 builder.getSymbolRefAttr(caller.getMangledName()); 2480 if (callSiteType.getNumResults() == funcOpType.getNumResults() && 2481 callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() && 2482 fir::anyFuncArgsHaveAttr(caller.getFuncOp(), 2483 fir::getHostAssocAttrName())) { 2484 // The number of arguments is off by one, and we're lowering a function 2485 // with host associations. Modify call to include host associations 2486 // argument by appending the value at the end of the operands. 2487 assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) == 2488 converter.hostAssocTupleValue().getType()); 2489 addHostAssociations = true; 2490 } 2491 if (!addHostAssociations && 2492 (callSiteType.getNumResults() != funcOpType.getNumResults() || 2493 callSiteType.getNumInputs() != funcOpType.getNumInputs())) { 2494 // Deal with argument number mismatch by making a function pointer so 2495 // that function type cast can be inserted. Do not emit a warning here 2496 // because this can happen in legal program if the function is not 2497 // defined here and it was first passed as an argument without any more 2498 // information. 2499 funcPointer = 2500 builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr); 2501 } else if (callSiteType.getResults() != funcOpType.getResults()) { 2502 // Implicit interface result type mismatch are not standard Fortran, but 2503 // some compilers are not complaining about it. The front end is not 2504 // protecting lowering from this currently. Support this with a 2505 // discouraging warning. 2506 LLVM_DEBUG(mlir::emitWarning( 2507 loc, "a return type mismatch is not standard compliant and may " 2508 "lead to undefined behavior.")); 2509 // Cast the actual function to the current caller implicit type because 2510 // that is the behavior we would get if we could not see the definition. 2511 funcPointer = 2512 builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr); 2513 } else { 2514 funcSymbolAttr = symbolAttr; 2515 } 2516 } 2517 2518 mlir::FunctionType funcType = 2519 funcPointer ? callSiteType : caller.getFuncOp().getFunctionType(); 2520 llvm::SmallVector<mlir::Value> operands; 2521 // First operand of indirect call is the function pointer. Cast it to 2522 // required function type for the call to handle procedures that have a 2523 // compatible interface in Fortran, but that have different signatures in 2524 // FIR. 2525 if (funcPointer) { 2526 operands.push_back( 2527 funcPointer.getType().isa<fir::BoxProcType>() 2528 ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer) 2529 : builder.createConvert(loc, funcType, funcPointer)); 2530 } 2531 2532 // Deal with potential mismatches in arguments types. Passing an array to a 2533 // scalar argument should for instance be tolerated here. 2534 bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface(); 2535 for (auto [fst, snd] : 2536 llvm::zip(caller.getInputs(), funcType.getInputs())) { 2537 // When passing arguments to a procedure that can be called an implicit 2538 // interface, allow character actual arguments to be passed to dummy 2539 // arguments of any type and vice versa 2540 mlir::Value cast; 2541 auto *context = builder.getContext(); 2542 if (snd.isa<fir::BoxProcType>() && 2543 fst.getType().isa<mlir::FunctionType>()) { 2544 auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None); 2545 auto boxProcTy = builder.getBoxProcType(funcTy); 2546 if (mlir::Value host = argumentHostAssocs(converter, fst)) { 2547 cast = builder.create<fir::EmboxProcOp>( 2548 loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host}); 2549 } else { 2550 cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst); 2551 } 2552 } else { 2553 cast = builder.convertWithSemantics(loc, snd, fst, 2554 callingImplicitInterface); 2555 } 2556 operands.push_back(cast); 2557 } 2558 2559 // Add host associations as necessary. 2560 if (addHostAssociations) 2561 operands.push_back(converter.hostAssocTupleValue()); 2562 2563 auto call = builder.create<fir::CallOp>(loc, funcType.getResults(), 2564 funcSymbolAttr, operands); 2565 2566 if (caller.mustSaveResult()) 2567 builder.create<fir::SaveResultOp>( 2568 loc, call.getResult(0), fir::getBase(allocatedResult.getValue()), 2569 arrayResultShape, resultLengths); 2570 2571 if (allocatedResult) { 2572 allocatedResult->match( 2573 [&](const fir::MutableBoxValue &box) { 2574 if (box.isAllocatable()) { 2575 // 9.7.3.2 point 4. Finalize allocatables. 2576 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 2577 stmtCtx.attachCleanup([bldr, loc, box]() { 2578 fir::factory::genFinalization(*bldr, loc, box); 2579 }); 2580 } 2581 }, 2582 [](const auto &) {}); 2583 return *allocatedResult; 2584 } 2585 2586 if (!resultType.hasValue()) 2587 return mlir::Value{}; // subroutine call 2588 // For now, Fortran return values are implemented with a single MLIR 2589 // function return value. 2590 assert(call.getNumResults() == 1 && 2591 "Expected exactly one result in FUNCTION call"); 2592 return call.getResult(0); 2593 } 2594 2595 /// Like genExtAddr, but ensure the address returned is a temporary even if \p 2596 /// expr is variable inside parentheses. 2597 ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) { 2598 // In general, genExtAddr might not create a temp for variable inside 2599 // parentheses to avoid creating array temporary in sub-expressions. It only 2600 // ensures the sub-expression is not re-associated with other parts of the 2601 // expression. In the call semantics, there is a difference between expr and 2602 // variable (see R1524). For expressions, a variable storage must not be 2603 // argument associated since it could be modified inside the call, or the 2604 // variable could also be modified by other means during the call. 2605 if (!isParenthesizedVariable(expr)) 2606 return genExtAddr(expr); 2607 if (expr.Rank() > 0) 2608 return asArray(expr); 2609 mlir::Location loc = getLoc(); 2610 return genExtValue(expr).match( 2611 [&](const fir::CharBoxValue &boxChar) -> ExtValue { 2612 return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom( 2613 boxChar); 2614 }, 2615 [&](const fir::UnboxedValue &v) -> ExtValue { 2616 mlir::Type type = v.getType(); 2617 mlir::Value value = v; 2618 if (fir::isa_ref_type(type)) 2619 value = builder.create<fir::LoadOp>(loc, value); 2620 mlir::Value temp = builder.createTemporary(loc, value.getType()); 2621 builder.create<fir::StoreOp>(loc, value, temp); 2622 return temp; 2623 }, 2624 [&](const fir::BoxValue &x) -> ExtValue { 2625 // Derived type scalar that may be polymorphic. 2626 assert(!x.hasRank() && x.isDerived()); 2627 if (x.isDerivedWithLenParameters()) 2628 fir::emitFatalError( 2629 loc, "making temps for derived type with length parameters"); 2630 // TODO: polymorphic aspects should be kept but for now the temp 2631 // created always has the declared type. 2632 mlir::Value var = 2633 fir::getBase(fir::factory::readBoxValue(builder, loc, x)); 2634 auto value = builder.create<fir::LoadOp>(loc, var); 2635 mlir::Value temp = builder.createTemporary(loc, value.getType()); 2636 builder.create<fir::StoreOp>(loc, value, temp); 2637 return temp; 2638 }, 2639 [&](const auto &) -> ExtValue { 2640 fir::emitFatalError(loc, "expr is not a scalar value"); 2641 }); 2642 } 2643 2644 /// Helper structure to track potential copy-in of non contiguous variable 2645 /// argument into a contiguous temp. It is used to deallocate the temp that 2646 /// may have been created as well as to the copy-out from the temp to the 2647 /// variable after the call. 2648 struct CopyOutPair { 2649 ExtValue var; 2650 ExtValue temp; 2651 // Flag to indicate if the argument may have been modified by the 2652 // callee, in which case it must be copied-out to the variable. 2653 bool argMayBeModifiedByCall; 2654 // Optional boolean value that, if present and false, prevents 2655 // the copy-out and temp deallocation. 2656 llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime; 2657 }; 2658 using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>; 2659 2660 /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories 2661 /// not based on fir.box. 2662 /// This will lose any non contiguous stride information and dynamic type and 2663 /// should only be called if \p exv is known to be contiguous or if its base 2664 /// address will be replaced by a contiguous one. If \p exv is not a 2665 /// fir::BoxValue, this is a no-op. 2666 ExtValue readIfBoxValue(const ExtValue &exv) { 2667 if (const auto *box = exv.getBoxOf<fir::BoxValue>()) 2668 return fir::factory::readBoxValue(builder, getLoc(), *box); 2669 return exv; 2670 } 2671 2672 /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The 2673 /// creation of the temp and copy-in can be made conditional at runtime by 2674 /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case 2675 /// the temp and copy will only be made if the value is true at runtime). 2676 ExtValue genCopyIn(const ExtValue &actualArg, 2677 const Fortran::lower::CallerInterface::PassedEntity &arg, 2678 CopyOutPairs ©OutPairs, 2679 llvm::Optional<mlir::Value> restrictCopyAtRuntime) { 2680 if (!restrictCopyAtRuntime) { 2681 ExtValue temp = genArrayTempFromMold(actualArg, ".copyinout"); 2682 if (arg.mayBeReadByCall()) 2683 genArrayCopy(temp, actualArg); 2684 copyOutPairs.emplace_back(CopyOutPair{ 2685 actualArg, temp, arg.mayBeModifiedByCall(), restrictCopyAtRuntime}); 2686 return temp; 2687 } 2688 // Otherwise, need to be careful to only copy-in if allowed at runtime. 2689 mlir::Location loc = getLoc(); 2690 auto addrType = fir::HeapType::get( 2691 fir::unwrapPassByRefType(fir::getBase(actualArg).getType())); 2692 mlir::Value addr = 2693 builder 2694 .genIfOp(loc, {addrType}, *restrictCopyAtRuntime, 2695 /*withElseRegion=*/true) 2696 .genThen([&]() { 2697 auto temp = genArrayTempFromMold(actualArg, ".copyinout"); 2698 if (arg.mayBeReadByCall()) 2699 genArrayCopy(temp, actualArg); 2700 builder.create<fir::ResultOp>(loc, fir::getBase(temp)); 2701 }) 2702 .genElse([&]() { 2703 auto nullPtr = builder.createNullConstant(loc, addrType); 2704 builder.create<fir::ResultOp>(loc, nullPtr); 2705 }) 2706 .getResults()[0]; 2707 // Associate the temp address with actualArg lengths and extents. 2708 fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr); 2709 copyOutPairs.emplace_back(CopyOutPair{ 2710 actualArg, temp, arg.mayBeModifiedByCall(), restrictCopyAtRuntime}); 2711 return temp; 2712 } 2713 2714 /// Generate copy-out if needed and free the temporary for an argument that 2715 /// has been copied-in into a contiguous temp. 2716 void genCopyOut(const CopyOutPair ©OutPair) { 2717 mlir::Location loc = getLoc(); 2718 if (!copyOutPair.restrictCopyAndFreeAtRuntime) { 2719 if (copyOutPair.argMayBeModifiedByCall) 2720 genArrayCopy(copyOutPair.var, copyOutPair.temp); 2721 builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); 2722 return; 2723 } 2724 builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime) 2725 .genThen([&]() { 2726 if (copyOutPair.argMayBeModifiedByCall) 2727 genArrayCopy(copyOutPair.var, copyOutPair.temp); 2728 builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); 2729 }) 2730 .end(); 2731 } 2732 2733 /// Lower a designator to a variable that may be absent at runtime into an 2734 /// ExtendedValue where all the properties (base address, shape and length 2735 /// parameters) can be safely read (set to zero if not present). It also 2736 /// returns a boolean mlir::Value telling if the variable is present at 2737 /// runtime. 2738 /// This is useful to later be able to do conditional copy-in/copy-out 2739 /// or to retrieve the base address without having to deal with the case 2740 /// where the actual may be an absent fir.box. 2741 std::pair<ExtValue, mlir::Value> 2742 prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) { 2743 mlir::Location loc = getLoc(); 2744 if (Fortran::evaluate::IsAllocatableOrPointerObject( 2745 expr, converter.getFoldingContext())) { 2746 // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, 2747 // it is as if the argument was absent. The main care here is to 2748 // not do a copy-in/copy-out because the temp address, even though 2749 // pointing to a null size storage, would not be a nullptr and 2750 // therefore the argument would not be considered absent on the 2751 // callee side. Note: if wholeSymbol is optional, it cannot be 2752 // absent as per 15.5.2.12 point 7. and 8. We rely on this to 2753 // un-conditionally read the allocatable/pointer descriptor here. 2754 fir::MutableBoxValue mutableBox = genMutableBoxValue(expr); 2755 mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest( 2756 builder, loc, mutableBox); 2757 fir::ExtendedValue actualArg = 2758 fir::factory::genMutableBoxRead(builder, loc, mutableBox); 2759 return {actualArg, isPresent}; 2760 } 2761 // Absent descriptor cannot be read. To avoid any issue in 2762 // copy-in/copy-out, and when retrieving the address/length 2763 // create an descriptor pointing to a null address here if the 2764 // fir.box is absent. 2765 ExtValue actualArg = gen(expr); 2766 mlir::Value actualArgBase = fir::getBase(actualArg); 2767 mlir::Value isPresent = builder.create<fir::IsPresentOp>( 2768 loc, builder.getI1Type(), actualArgBase); 2769 if (!actualArgBase.getType().isa<fir::BoxType>()) 2770 return {actualArg, isPresent}; 2771 ExtValue safeToReadBox; 2772 return {safeToReadBox, isPresent}; 2773 } 2774 2775 /// Create a temp on the stack for scalar actual arguments that may be absent 2776 /// at runtime, but must be passed via a temp if they are presents. 2777 fir::ExtendedValue 2778 createScalarTempForArgThatMayBeAbsent(ExtValue actualArg, 2779 mlir::Value isPresent) { 2780 mlir::Location loc = getLoc(); 2781 mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType()); 2782 if (fir::isDerivedWithLenParameters(actualArg)) 2783 TODO(loc, "parametrized derived type optional scalar argument copy-in"); 2784 if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) { 2785 mlir::Value len = charBox->getLen(); 2786 mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0); 2787 len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero); 2788 mlir::Value temp = builder.createTemporary( 2789 loc, type, /*name=*/{}, /*shape=*/{}, mlir::ValueRange{len}, 2790 llvm::ArrayRef<mlir::NamedAttribute>{ 2791 Fortran::lower::getAdaptToByRefAttr(builder)}); 2792 return fir::CharBoxValue{temp, len}; 2793 } 2794 assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) && 2795 "must be simple scalar"); 2796 return builder.createTemporary( 2797 loc, type, 2798 llvm::ArrayRef<mlir::NamedAttribute>{ 2799 Fortran::lower::getAdaptToByRefAttr(builder)}); 2800 } 2801 2802 /// Lower an actual argument that must be passed via an address. 2803 /// This generates of the copy-in/copy-out if the actual is not contiguous, or 2804 /// the creation of the temp if the actual is a variable and \p byValue is 2805 /// true. It handles the cases where the actual may be absent, and all of the 2806 /// copying has to be conditional at runtime. 2807 ExtValue prepareActualToBaseAddressLike( 2808 const Fortran::lower::SomeExpr &expr, 2809 const Fortran::lower::CallerInterface::PassedEntity &arg, 2810 CopyOutPairs ©OutPairs, bool byValue) { 2811 mlir::Location loc = getLoc(); 2812 const bool isArray = expr.Rank() > 0; 2813 const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr); 2814 // It must be possible to modify VALUE arguments on the callee side, even 2815 // if the actual argument is a literal or named constant. Hence, the 2816 // address of static storage must not be passed in that case, and a copy 2817 // must be made even if this is not a variable. 2818 // Note: isArray should be used here, but genBoxArg already creates copies 2819 // for it, so do not duplicate the copy until genBoxArg behavior is changed. 2820 const bool isStaticConstantByValue = 2821 byValue && Fortran::evaluate::IsActuallyConstant(expr) && 2822 (isCharacterType(expr)); 2823 const bool variableNeedsCopy = 2824 actualArgIsVariable && 2825 (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous( 2826 expr, converter.getFoldingContext()))); 2827 const bool needsCopy = isStaticConstantByValue || variableNeedsCopy; 2828 auto argAddr = [&]() -> ExtValue { 2829 if (!actualArgIsVariable && !needsCopy) 2830 // Actual argument is not a variable. Make sure a variable address is 2831 // not passed. 2832 return genTempExtAddr(expr); 2833 ExtValue baseAddr; 2834 if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional( 2835 expr, converter.getFoldingContext())) { 2836 auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr); 2837 const ExtValue &actualArg = actualArgBind; 2838 if (!needsCopy) 2839 return actualArg; 2840 2841 if (isArray) 2842 return genCopyIn(actualArg, arg, copyOutPairs, 2843 isPresent /*, byValue*/); 2844 // Scalars, create a temp, and use it conditionally at runtime if 2845 // the argument is present. 2846 ExtValue temp = 2847 createScalarTempForArgThatMayBeAbsent(actualArg, isPresent); 2848 mlir::Type tempAddrTy = fir::getBase(temp).getType(); 2849 mlir::Value selectAddr = 2850 builder 2851 .genIfOp(loc, {tempAddrTy}, isPresent, 2852 /*withElseRegion=*/true) 2853 .genThen([&]() { 2854 fir::factory::genScalarAssignment(builder, loc, temp, 2855 actualArg); 2856 builder.create<fir::ResultOp>(loc, fir::getBase(temp)); 2857 }) 2858 .genElse([&]() { 2859 mlir::Value absent = 2860 builder.create<fir::AbsentOp>(loc, tempAddrTy); 2861 builder.create<fir::ResultOp>(loc, absent); 2862 }) 2863 .getResults()[0]; 2864 return fir::substBase(temp, selectAddr); 2865 } 2866 // Actual cannot be absent, the actual argument can safely be 2867 // copied-in/copied-out without any care if needed. 2868 if (isArray) { 2869 ExtValue box = genBoxArg(expr); 2870 if (needsCopy) 2871 return genCopyIn(box, arg, copyOutPairs, 2872 /*restrictCopyAtRuntime=*/llvm::None /*, byValue*/); 2873 // Contiguous: just use the box we created above! 2874 // This gets "unboxed" below, if needed. 2875 return box; 2876 } 2877 // Actual argument is a non-optional, non-pointer, non-allocatable 2878 // scalar. 2879 ExtValue actualArg = genExtAddr(expr); 2880 if (needsCopy) 2881 return createInMemoryScalarCopy(builder, loc, actualArg); 2882 return actualArg; 2883 }(); 2884 // Scalar and contiguous expressions may be lowered to a fir.box, 2885 // either to account for potential polymorphism, or because lowering 2886 // did not account for some contiguity hints. 2887 // Here, polymorphism does not matter (an entity of the declared type 2888 // is passed, not one of the dynamic type), and the expr is known to 2889 // be simply contiguous, so it is safe to unbox it and pass the 2890 // address without making a copy. 2891 return readIfBoxValue(argAddr); 2892 } 2893 2894 /// Lower a non-elemental procedure reference. 2895 ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, 2896 llvm::Optional<mlir::Type> resultType) { 2897 mlir::Location loc = getLoc(); 2898 if (isElementalProcWithArrayArgs(procRef)) 2899 fir::emitFatalError(loc, "trying to lower elemental procedure with array " 2900 "arguments as normal procedure"); 2901 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 2902 procRef.proc().GetSpecificIntrinsic()) 2903 return genIntrinsicRef(procRef, *intrinsic, resultType); 2904 2905 if (isStatementFunctionCall(procRef)) 2906 return genStmtFunctionRef(procRef); 2907 2908 Fortran::lower::CallerInterface caller(procRef, converter); 2909 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 2910 2911 llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall; 2912 // List of <var, temp> where temp must be copied into var after the call. 2913 CopyOutPairs copyOutPairs; 2914 2915 mlir::FunctionType callSiteType = caller.genFunctionType(); 2916 2917 // Lower the actual arguments and map the lowered values to the dummy 2918 // arguments. 2919 for (const Fortran::lower::CallInterface< 2920 Fortran::lower::CallerInterface>::PassedEntity &arg : 2921 caller.getPassedArguments()) { 2922 const auto *actual = arg.entity; 2923 mlir::Type argTy = callSiteType.getInput(arg.firArgument); 2924 if (!actual) { 2925 // Optional dummy argument for which there is no actual argument. 2926 caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy)); 2927 continue; 2928 } 2929 const auto *expr = actual->UnwrapExpr(); 2930 if (!expr) 2931 TODO(loc, "assumed type actual argument lowering"); 2932 2933 if (arg.passBy == PassBy::Value) { 2934 ExtValue argVal = genval(*expr); 2935 if (!fir::isUnboxedValue(argVal)) 2936 fir::emitFatalError( 2937 loc, "internal error: passing non trivial value by value"); 2938 caller.placeInput(arg, fir::getBase(argVal)); 2939 continue; 2940 } 2941 2942 if (arg.passBy == PassBy::MutableBox) { 2943 if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( 2944 *expr)) { 2945 // If expr is NULL(), the mutableBox created must be a deallocated 2946 // pointer with the dummy argument characteristics (see table 16.5 2947 // in Fortran 2018 standard). 2948 // No length parameters are set for the created box because any non 2949 // deferred type parameters of the dummy will be evaluated on the 2950 // callee side, and it is illegal to use NULL without a MOLD if any 2951 // dummy length parameters are assumed. 2952 mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy); 2953 assert(boxTy && boxTy.isa<fir::BoxType>() && 2954 "must be a fir.box type"); 2955 mlir::Value boxStorage = builder.createTemporary(loc, boxTy); 2956 mlir::Value nullBox = fir::factory::createUnallocatedBox( 2957 builder, loc, boxTy, /*nonDeferredParams=*/{}); 2958 builder.create<fir::StoreOp>(loc, nullBox, boxStorage); 2959 caller.placeInput(arg, boxStorage); 2960 continue; 2961 } 2962 if (fir::isPointerType(argTy) && 2963 !Fortran::evaluate::IsObjectPointer( 2964 *expr, converter.getFoldingContext())) { 2965 // Passing a non POINTER actual argument to a POINTER dummy argument. 2966 // Create a pointer of the dummy argument type and assign the actual 2967 // argument to it. 2968 mlir::Value irBox = 2969 builder.createTemporary(loc, fir::unwrapRefType(argTy)); 2970 // Non deferred parameters will be evaluated on the callee side. 2971 fir::MutableBoxValue pointer(irBox, 2972 /*nonDeferredParams=*/mlir::ValueRange{}, 2973 /*mutableProperties=*/{}); 2974 Fortran::lower::associateMutableBox(converter, loc, pointer, *expr, 2975 /*lbounds=*/llvm::None, stmtCtx); 2976 caller.placeInput(arg, irBox); 2977 continue; 2978 } 2979 // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE. 2980 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 2981 mlir::Value irBox = 2982 fir::factory::getMutableIRBox(builder, loc, mutableBox); 2983 caller.placeInput(arg, irBox); 2984 if (arg.mayBeModifiedByCall()) 2985 mutableModifiedByCall.emplace_back(std::move(mutableBox)); 2986 continue; 2987 } 2988 const bool actualArgIsVariable = Fortran::evaluate::IsVariable(*expr); 2989 if (arg.passBy == PassBy::BaseAddressValueAttribute) { 2990 mlir::Value temp; 2991 if (isArray(*expr)) { 2992 auto val = genBoxArg(*expr); 2993 if (!actualArgIsVariable) 2994 temp = getBase(val); 2995 else { 2996 ExtValue copy = genArrayTempFromMold(val, ".copy"); 2997 genArrayCopy(copy, val); 2998 temp = fir::getBase(copy); 2999 } 3000 } else { 3001 mlir::Value val = fir::getBase(genval(*expr)); 3002 temp = builder.createTemporary( 3003 loc, val.getType(), 3004 llvm::ArrayRef<mlir::NamedAttribute>{ 3005 Fortran::lower::getAdaptToByRefAttr(builder)}); 3006 builder.create<fir::StoreOp>(loc, val, temp); 3007 } 3008 caller.placeInput(arg, temp); 3009 continue; 3010 } 3011 if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar) { 3012 const bool actualIsSimplyContiguous = 3013 !actualArgIsVariable || Fortran::evaluate::IsSimplyContiguous( 3014 *expr, converter.getFoldingContext()); 3015 auto argAddr = [&]() -> ExtValue { 3016 ExtValue baseAddr; 3017 if (actualArgIsVariable && arg.isOptional()) { 3018 if (Fortran::evaluate::IsAllocatableOrPointerObject( 3019 *expr, converter.getFoldingContext())) { 3020 // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, 3021 // it is as if the argument was absent. The main care here is to 3022 // not do a copy-in/copy-out because the temp address, even though 3023 // pointing to a null size storage, would not be a nullptr and 3024 // therefore the argument would not be considered absent on the 3025 // callee side. Note: if wholeSymbol is optional, it cannot be 3026 // absent as per 15.5.2.12 point 7. and 8. We rely on this to 3027 // un-conditionally read the allocatable/pointer descriptor here. 3028 if (actualIsSimplyContiguous) 3029 return genBoxArg(*expr); 3030 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 3031 mlir::Value isAssociated = 3032 fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 3033 mutableBox); 3034 fir::ExtendedValue actualExv = 3035 fir::factory::genMutableBoxRead(builder, loc, mutableBox); 3036 return genCopyIn(actualExv, arg, copyOutPairs, isAssociated); 3037 } 3038 if (const Fortran::semantics::Symbol *wholeSymbol = 3039 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef( 3040 *expr)) 3041 if (Fortran::semantics::IsOptional(*wholeSymbol)) { 3042 ExtValue actualArg = gen(*expr); 3043 mlir::Value actualArgBase = fir::getBase(actualArg); 3044 if (!actualArgBase.getType().isa<fir::BoxType>()) 3045 return actualArg; 3046 // Do not read wholeSymbol descriptor that may be a nullptr in 3047 // case wholeSymbol is absent. 3048 // Absent descriptor cannot be read. To avoid any issue in 3049 // copy-in/copy-out, and when retrieving the address/length 3050 // create an descriptor pointing to a null address here if the 3051 // fir.box is absent. 3052 mlir::Value isPresent = builder.create<fir::IsPresentOp>( 3053 loc, builder.getI1Type(), actualArgBase); 3054 mlir::Type boxType = actualArgBase.getType(); 3055 mlir::Value emptyBox = fir::factory::createUnallocatedBox( 3056 builder, loc, boxType, llvm::None); 3057 auto safeToReadBox = builder.create<mlir::arith::SelectOp>( 3058 loc, isPresent, actualArgBase, emptyBox); 3059 fir::ExtendedValue safeToReadExv = 3060 fir::substBase(actualArg, safeToReadBox); 3061 if (actualIsSimplyContiguous) 3062 return safeToReadExv; 3063 return genCopyIn(safeToReadExv, arg, copyOutPairs, isPresent); 3064 } 3065 // Fall through: The actual argument can safely be 3066 // copied-in/copied-out without any care if needed. 3067 } 3068 if (actualArgIsVariable && expr->Rank() > 0) { 3069 ExtValue box = genBoxArg(*expr); 3070 if (!actualIsSimplyContiguous) 3071 return genCopyIn(box, arg, copyOutPairs, 3072 /*restrictCopyAtRuntime=*/llvm::None); 3073 // Contiguous: just use the box we created above! 3074 // This gets "unboxed" below, if needed. 3075 return box; 3076 } 3077 // Actual argument is a non optional/non pointer/non allocatable 3078 // scalar. 3079 if (actualArgIsVariable) 3080 return genExtAddr(*expr); 3081 // Actual argument is not a variable. Make sure a variable address is 3082 // not passed. 3083 return genTempExtAddr(*expr); 3084 }(); 3085 // Scalar and contiguous expressions may be lowered to a fir.box, 3086 // either to account for potential polymorphism, or because lowering 3087 // did not account for some contiguity hints. 3088 // Here, polymorphism does not matter (an entity of the declared type 3089 // is passed, not one of the dynamic type), and the expr is known to 3090 // be simply contiguous, so it is safe to unbox it and pass the 3091 // address without making a copy. 3092 argAddr = readIfBoxValue(argAddr); 3093 3094 if (arg.passBy == PassBy::BaseAddress) { 3095 caller.placeInput(arg, fir::getBase(argAddr)); 3096 } else { 3097 assert(arg.passBy == PassBy::BoxChar); 3098 auto helper = fir::factory::CharacterExprHelper{builder, loc}; 3099 auto boxChar = argAddr.match( 3100 [&](const fir::CharBoxValue &x) { return helper.createEmbox(x); }, 3101 [&](const fir::CharArrayBoxValue &x) { 3102 return helper.createEmbox(x); 3103 }, 3104 [&](const auto &x) -> mlir::Value { 3105 // Fortran allows an actual argument of a completely different 3106 // type to be passed to a procedure expecting a CHARACTER in the 3107 // dummy argument position. When this happens, the data pointer 3108 // argument is simply assumed to point to CHARACTER data and the 3109 // LEN argument used is garbage. Simulate this behavior by 3110 // free-casting the base address to be a !fir.char reference and 3111 // setting the LEN argument to undefined. What could go wrong? 3112 auto dataPtr = fir::getBase(x); 3113 assert(!dataPtr.getType().template isa<fir::BoxType>()); 3114 return builder.convertWithSemantics( 3115 loc, argTy, dataPtr, 3116 /*allowCharacterConversion=*/true); 3117 }); 3118 caller.placeInput(arg, boxChar); 3119 } 3120 } else if (arg.passBy == PassBy::Box) { 3121 // Before lowering to an address, handle the allocatable/pointer actual 3122 // argument to optional fir.box dummy. It is legal to pass 3123 // unallocated/disassociated entity to an optional. In this case, an 3124 // absent fir.box must be created instead of a fir.box with a null value 3125 // (Fortran 2018 15.5.2.12 point 1). 3126 if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject( 3127 *expr, converter.getFoldingContext())) { 3128 // Note that passing an absent allocatable to a non-allocatable 3129 // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So 3130 // nothing has to be done to generate an absent argument in this case, 3131 // and it is OK to unconditionally read the mutable box here. 3132 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 3133 mlir::Value isAllocated = 3134 fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 3135 mutableBox); 3136 auto absent = builder.create<fir::AbsentOp>(loc, argTy); 3137 /// For now, assume it is not OK to pass the allocatable/pointer 3138 /// descriptor to a non pointer/allocatable dummy. That is a strict 3139 /// interpretation of 18.3.6 point 4 that stipulates the descriptor 3140 /// has the dummy attributes in BIND(C) contexts. 3141 mlir::Value box = builder.createBox( 3142 loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox)); 3143 // Need the box types to be exactly similar for the selectOp. 3144 mlir::Value convertedBox = builder.createConvert(loc, argTy, box); 3145 caller.placeInput(arg, builder.create<mlir::arith::SelectOp>( 3146 loc, isAllocated, convertedBox, absent)); 3147 } else { 3148 // Make sure a variable address is only passed if the expression is 3149 // actually a variable. 3150 mlir::Value box = 3151 actualArgIsVariable 3152 ? builder.createBox(loc, genBoxArg(*expr)) 3153 : builder.createBox(getLoc(), genTempExtAddr(*expr)); 3154 caller.placeInput(arg, box); 3155 } 3156 } else if (arg.passBy == PassBy::AddressAndLength) { 3157 ExtValue argRef = genExtAddr(*expr); 3158 caller.placeAddressAndLengthInput(arg, fir::getBase(argRef), 3159 fir::getLen(argRef)); 3160 } else if (arg.passBy == PassBy::CharProcTuple) { 3161 ExtValue argRef = genExtAddr(*expr); 3162 mlir::Value tuple = createBoxProcCharTuple( 3163 converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); 3164 caller.placeInput(arg, tuple); 3165 } else { 3166 TODO(loc, "pass by value in non elemental function call"); 3167 } 3168 } 3169 3170 ExtValue result = genCallOpAndResult(caller, callSiteType, resultType); 3171 3172 // Sync pointers and allocatables that may have been modified during the 3173 // call. 3174 for (const auto &mutableBox : mutableModifiedByCall) 3175 fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox); 3176 // Handle case where result was passed as argument 3177 3178 // Copy-out temps that were created for non contiguous variable arguments if 3179 // needed. 3180 for (const auto ©OutPair : copyOutPairs) 3181 genCopyOut(copyOutPair); 3182 3183 return result; 3184 } 3185 3186 template <typename A> 3187 ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) { 3188 ExtValue result = genFunctionRef(funcRef); 3189 if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType())) 3190 return genLoad(result); 3191 return result; 3192 } 3193 3194 ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) { 3195 llvm::Optional<mlir::Type> resTy; 3196 if (procRef.hasAlternateReturns()) 3197 resTy = builder.getIndexType(); 3198 return genProcedureRef(procRef, resTy); 3199 } 3200 3201 template <typename A> 3202 bool isScalar(const A &x) { 3203 return x.Rank() == 0; 3204 } 3205 3206 /// Helper to detect Transformational function reference. 3207 template <typename T> 3208 bool isTransformationalRef(const T &) { 3209 return false; 3210 } 3211 template <typename T> 3212 bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) { 3213 return !funcRef.IsElemental() && funcRef.Rank(); 3214 } 3215 template <typename T> 3216 bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) { 3217 return std::visit([&](const auto &e) { return isTransformationalRef(e); }, 3218 expr.u); 3219 } 3220 3221 template <typename A> 3222 ExtValue asArray(const A &x) { 3223 return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x), 3224 symMap, stmtCtx); 3225 } 3226 3227 /// Lower an array value as an argument. This argument can be passed as a box 3228 /// value, so it may be possible to avoid making a temporary. 3229 template <typename A> 3230 ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) { 3231 return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u); 3232 } 3233 template <typename A, typename B> 3234 ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) { 3235 return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u); 3236 } 3237 template <typename A, typename B> 3238 ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) { 3239 // Designator is being passed as an argument to a procedure. Lower the 3240 // expression to a boxed value. 3241 auto someExpr = toEvExpr(x); 3242 return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap, 3243 stmtCtx); 3244 } 3245 template <typename A, typename B> 3246 ExtValue asArrayArg(const A &, const B &x) { 3247 // If the expression to pass as an argument is not a designator, then create 3248 // an array temp. 3249 return asArray(x); 3250 } 3251 3252 template <typename A> 3253 ExtValue gen(const Fortran::evaluate::Expr<A> &x) { 3254 // Whole array symbols or components, and results of transformational 3255 // functions already have a storage and the scalar expression lowering path 3256 // is used to not create a new temporary storage. 3257 if (isScalar(x) || 3258 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) || 3259 isTransformationalRef(x)) 3260 return std::visit([&](const auto &e) { return genref(e); }, x.u); 3261 if (useBoxArg) 3262 return asArrayArg(x); 3263 return asArray(x); 3264 } 3265 template <typename A> 3266 ExtValue genval(const Fortran::evaluate::Expr<A> &x) { 3267 if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) || 3268 inInitializer) 3269 return std::visit([&](const auto &e) { return genval(e); }, x.u); 3270 return asArray(x); 3271 } 3272 3273 template <int KIND> 3274 ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type< 3275 Fortran::common::TypeCategory::Logical, KIND>> &exp) { 3276 return std::visit([&](const auto &e) { return genval(e); }, exp.u); 3277 } 3278 3279 using RefSet = 3280 std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring, 3281 Fortran::evaluate::DataRef, Fortran::evaluate::Component, 3282 Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef, 3283 Fortran::semantics::SymbolRef>; 3284 template <typename A> 3285 static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>; 3286 3287 template <typename A, typename = std::enable_if_t<inRefSet<A>>> 3288 ExtValue genref(const A &a) { 3289 return gen(a); 3290 } 3291 template <typename A> 3292 ExtValue genref(const A &a) { 3293 if (inInitializer) { 3294 // Initialization expressions can never allocate memory. 3295 return genval(a); 3296 } 3297 mlir::Type storageType = converter.genType(toEvExpr(a)); 3298 return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType); 3299 } 3300 3301 template <typename A, template <typename> typename T, 3302 typename B = std::decay_t<T<A>>, 3303 std::enable_if_t< 3304 std::is_same_v<B, Fortran::evaluate::Expr<A>> || 3305 std::is_same_v<B, Fortran::evaluate::Designator<A>> || 3306 std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>, 3307 bool> = true> 3308 ExtValue genref(const T<A> &x) { 3309 return gen(x); 3310 } 3311 3312 private: 3313 mlir::Location location; 3314 Fortran::lower::AbstractConverter &converter; 3315 fir::FirOpBuilder &builder; 3316 Fortran::lower::StatementContext &stmtCtx; 3317 Fortran::lower::SymMap &symMap; 3318 InitializerData *inInitializer = nullptr; 3319 bool useBoxArg = false; // expression lowered as argument 3320 }; 3321 } // namespace 3322 3323 // Helper for changing the semantics in a given context. Preserves the current 3324 // semantics which is resumed when the "push" goes out of scope. 3325 #define PushSemantics(PushVal) \ 3326 [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ = \ 3327 Fortran::common::ScopedSet(semant, PushVal); 3328 3329 static bool isAdjustedArrayElementType(mlir::Type t) { 3330 return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>(); 3331 } 3332 static bool elementTypeWasAdjusted(mlir::Type t) { 3333 if (auto ty = t.dyn_cast<fir::ReferenceType>()) 3334 return isAdjustedArrayElementType(ty.getEleTy()); 3335 return false; 3336 } 3337 static mlir::Type adjustedArrayElementType(mlir::Type t) { 3338 return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t; 3339 } 3340 3341 /// Helper to generate calls to scalar user defined assignment procedures. 3342 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder, 3343 mlir::Location loc, 3344 mlir::func::FuncOp func, 3345 const fir::ExtendedValue &lhs, 3346 const fir::ExtendedValue &rhs) { 3347 auto prepareUserDefinedArg = 3348 [](fir::FirOpBuilder &builder, mlir::Location loc, 3349 const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value { 3350 if (argType.isa<fir::BoxCharType>()) { 3351 const fir::CharBoxValue *charBox = value.getCharBox(); 3352 assert(charBox && "argument type mismatch in elemental user assignment"); 3353 return fir::factory::CharacterExprHelper{builder, loc}.createEmbox( 3354 *charBox); 3355 } 3356 if (argType.isa<fir::BoxType>()) { 3357 mlir::Value box = builder.createBox(loc, value); 3358 return builder.createConvert(loc, argType, box); 3359 } 3360 // Simple pass by address. 3361 mlir::Type argBaseType = fir::unwrapRefType(argType); 3362 assert(!fir::hasDynamicSize(argBaseType)); 3363 mlir::Value from = fir::getBase(value); 3364 if (argBaseType != fir::unwrapRefType(from.getType())) { 3365 // With logicals, it is possible that from is i1 here. 3366 if (fir::isa_ref_type(from.getType())) 3367 from = builder.create<fir::LoadOp>(loc, from); 3368 from = builder.createConvert(loc, argBaseType, from); 3369 } 3370 if (!fir::isa_ref_type(from.getType())) { 3371 mlir::Value temp = builder.createTemporary(loc, argBaseType); 3372 builder.create<fir::StoreOp>(loc, from, temp); 3373 from = temp; 3374 } 3375 return builder.createConvert(loc, argType, from); 3376 }; 3377 assert(func.getNumArguments() == 2); 3378 mlir::Type lhsType = func.getFunctionType().getInput(0); 3379 mlir::Type rhsType = func.getFunctionType().getInput(1); 3380 mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType); 3381 mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType); 3382 builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg}); 3383 } 3384 3385 /// Convert the result of a fir.array_modify to an ExtendedValue given the 3386 /// related fir.array_load. 3387 static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder, 3388 mlir::Location loc, 3389 fir::ArrayLoadOp load, 3390 mlir::Value elementAddr) { 3391 mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType()); 3392 if (fir::isa_char(eleTy)) { 3393 auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 3394 load.getMemref()); 3395 if (!len) { 3396 assert(load.getTypeparams().size() == 1 && 3397 "length must be in array_load"); 3398 len = load.getTypeparams()[0]; 3399 } 3400 return fir::CharBoxValue{elementAddr, len}; 3401 } 3402 return elementAddr; 3403 } 3404 3405 //===----------------------------------------------------------------------===// 3406 // 3407 // Lowering of scalar expressions in an explicit iteration space context. 3408 // 3409 //===----------------------------------------------------------------------===// 3410 3411 // Shared code for creating a copy of a derived type element. This function is 3412 // called from a continuation. 3413 inline static fir::ArrayAmendOp 3414 createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad, 3415 fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc, 3416 const fir::ExtendedValue &elementExv, mlir::Type eleTy, 3417 mlir::Value innerArg) { 3418 if (destLoad.getTypeparams().empty()) { 3419 fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv); 3420 } else { 3421 auto boxTy = fir::BoxType::get(eleTy); 3422 auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(), 3423 mlir::Value{}, mlir::Value{}, 3424 destLoad.getTypeparams()); 3425 auto fromBox = builder.create<fir::EmboxOp>( 3426 loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{}, 3427 destLoad.getTypeparams()); 3428 fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox), 3429 fir::BoxValue(fromBox)); 3430 } 3431 return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg, 3432 destAcc); 3433 } 3434 3435 inline static fir::ArrayAmendOp 3436 createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder, 3437 fir::ArrayAccessOp dstOp, mlir::Value &dstLen, 3438 const fir::ExtendedValue &srcExv, mlir::Value innerArg, 3439 llvm::ArrayRef<mlir::Value> bounds) { 3440 fir::CharBoxValue dstChar(dstOp, dstLen); 3441 fir::factory::CharacterExprHelper helper{builder, loc}; 3442 if (!bounds.empty()) { 3443 dstChar = helper.createSubstring(dstChar, bounds); 3444 fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv), 3445 dstChar.getAddr(), dstChar.getLen(), builder, 3446 loc); 3447 // Update the LEN to the substring's LEN. 3448 dstLen = dstChar.getLen(); 3449 } 3450 // For a CHARACTER, we generate the element assignment loops inline. 3451 helper.createAssign(fir::ExtendedValue{dstChar}, srcExv); 3452 // Mark this array element as amended. 3453 mlir::Type ty = innerArg.getType(); 3454 auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp); 3455 return amend; 3456 } 3457 3458 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting 3459 /// the actual extents and lengths. This is only to allow their propagation as 3460 /// ExtendedValue without triggering verifier failures when propagating 3461 /// character/arrays as unboxed values. Only the base of the resulting 3462 /// ExtendedValue should be used, it is undefined to use the length or extents 3463 /// of the extended value returned, 3464 inline static fir::ExtendedValue 3465 convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder, 3466 mlir::Value val, mlir::Value len) { 3467 mlir::Type ty = fir::unwrapRefType(val.getType()); 3468 mlir::IndexType idxTy = builder.getIndexType(); 3469 auto seqTy = ty.cast<fir::SequenceType>(); 3470 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 3471 llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef); 3472 if (fir::isa_char(seqTy.getEleTy())) 3473 return fir::CharArrayBoxValue(val, len ? len : undef, extents); 3474 return fir::ArrayBoxValue(val, extents); 3475 } 3476 3477 //===----------------------------------------------------------------------===// 3478 // 3479 // Lowering of array expressions. 3480 // 3481 //===----------------------------------------------------------------------===// 3482 3483 namespace { 3484 class ArrayExprLowering { 3485 using ExtValue = fir::ExtendedValue; 3486 3487 /// Structure to keep track of lowered array operands in the 3488 /// array expression. Useful to later deduce the shape of the 3489 /// array expression. 3490 struct ArrayOperand { 3491 /// Array base (can be a fir.box). 3492 mlir::Value memref; 3493 /// ShapeOp, ShapeShiftOp or ShiftOp 3494 mlir::Value shape; 3495 /// SliceOp 3496 mlir::Value slice; 3497 /// Can this operand be absent ? 3498 bool mayBeAbsent = false; 3499 }; 3500 3501 using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts; 3502 using PathComponent = Fortran::lower::PathComponent; 3503 3504 /// Active iteration space. 3505 using IterationSpace = Fortran::lower::IterationSpace; 3506 using IterSpace = const Fortran::lower::IterationSpace &; 3507 3508 /// Current continuation. Function that will generate IR for a single 3509 /// iteration of the pending iterative loop structure. 3510 using CC = Fortran::lower::GenerateElementalArrayFunc; 3511 3512 /// Projection continuation. Function that will project one iteration space 3513 /// into another. 3514 using PC = std::function<IterationSpace(IterSpace)>; 3515 using ArrayBaseTy = 3516 std::variant<std::monostate, const Fortran::evaluate::ArrayRef *, 3517 const Fortran::evaluate::DataRef *>; 3518 using ComponentPath = Fortran::lower::ComponentPath; 3519 3520 public: 3521 //===--------------------------------------------------------------------===// 3522 // Regular array assignment 3523 //===--------------------------------------------------------------------===// 3524 3525 /// Entry point for array assignments. Both the left-hand and right-hand sides 3526 /// can either be ExtendedValue or evaluate::Expr. 3527 template <typename TL, typename TR> 3528 static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter, 3529 Fortran::lower::SymMap &symMap, 3530 Fortran::lower::StatementContext &stmtCtx, 3531 const TL &lhs, const TR &rhs) { 3532 ArrayExprLowering ael(converter, stmtCtx, symMap, 3533 ConstituentSemantics::CopyInCopyOut); 3534 ael.lowerArrayAssignment(lhs, rhs); 3535 } 3536 3537 template <typename TL, typename TR> 3538 void lowerArrayAssignment(const TL &lhs, const TR &rhs) { 3539 mlir::Location loc = getLoc(); 3540 /// Here the target subspace is not necessarily contiguous. The ArrayUpdate 3541 /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad 3542 /// in `destination`. 3543 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); 3544 ccStoreToDest = genarr(lhs); 3545 determineShapeOfDest(lhs); 3546 semant = ConstituentSemantics::RefTransparent; 3547 ExtValue exv = lowerArrayExpression(rhs); 3548 if (explicitSpaceIsActive()) { 3549 explicitSpace->finalizeContext(); 3550 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3551 } else { 3552 builder.create<fir::ArrayMergeStoreOp>( 3553 loc, destination, fir::getBase(exv), destination.getMemref(), 3554 destination.getSlice(), destination.getTypeparams()); 3555 } 3556 } 3557 3558 //===--------------------------------------------------------------------===// 3559 // WHERE array assignment, FORALL assignment, and FORALL+WHERE array 3560 // assignment 3561 //===--------------------------------------------------------------------===// 3562 3563 /// Entry point for array assignment when the iteration space is explicitly 3564 /// defined (Fortran's FORALL) with or without masks, and/or the implied 3565 /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit 3566 /// space and implicit space with masks) may be present. 3567 static void lowerAnyMaskedArrayAssignment( 3568 Fortran::lower::AbstractConverter &converter, 3569 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3570 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3571 Fortran::lower::ExplicitIterSpace &explicitSpace, 3572 Fortran::lower::ImplicitIterSpace &implicitSpace) { 3573 if (explicitSpace.isActive() && lhs.Rank() == 0) { 3574 // Scalar assignment expression in a FORALL context. 3575 ArrayExprLowering ael(converter, stmtCtx, symMap, 3576 ConstituentSemantics::RefTransparent, 3577 &explicitSpace, &implicitSpace); 3578 ael.lowerScalarAssignment(lhs, rhs); 3579 return; 3580 } 3581 // Array assignment expression in a FORALL and/or WHERE context. 3582 ArrayExprLowering ael(converter, stmtCtx, symMap, 3583 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3584 &implicitSpace); 3585 ael.lowerArrayAssignment(lhs, rhs); 3586 } 3587 3588 //===--------------------------------------------------------------------===// 3589 // Array assignment to array of pointer box values. 3590 //===--------------------------------------------------------------------===// 3591 3592 /// Entry point for assignment to pointer in an array of pointers. 3593 static void lowerArrayOfPointerAssignment( 3594 Fortran::lower::AbstractConverter &converter, 3595 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3596 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3597 Fortran::lower::ExplicitIterSpace &explicitSpace, 3598 Fortran::lower::ImplicitIterSpace &implicitSpace, 3599 const llvm::SmallVector<mlir::Value> &lbounds, 3600 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) { 3601 ArrayExprLowering ael(converter, stmtCtx, symMap, 3602 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3603 &implicitSpace); 3604 ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds); 3605 } 3606 3607 /// Scalar pointer assignment in an explicit iteration space. 3608 /// 3609 /// Pointers may be bound to targets in a FORALL context. This is a scalar 3610 /// assignment in the sense there is never an implied iteration space, even if 3611 /// the pointer is to a target with non-zero rank. Since the pointer 3612 /// assignment must appear in a FORALL construct, correctness may require that 3613 /// the array of pointers follow copy-in/copy-out semantics. The pointer 3614 /// assignment may include a bounds-spec (lower bounds), a bounds-remapping 3615 /// (lower and upper bounds), or neither. 3616 void lowerArrayOfPointerAssignment( 3617 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3618 const llvm::SmallVector<mlir::Value> &lbounds, 3619 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) { 3620 setPointerAssignmentBounds(lbounds, ubounds); 3621 if (rhs.Rank() == 0 || 3622 (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) && 3623 Fortran::evaluate::IsAllocatableOrPointerObject( 3624 rhs, converter.getFoldingContext()))) { 3625 lowerScalarAssignment(lhs, rhs); 3626 return; 3627 } 3628 TODO(getLoc(), 3629 "auto boxing of a ranked expression on RHS for pointer assignment"); 3630 } 3631 3632 //===--------------------------------------------------------------------===// 3633 // Array assignment to allocatable array 3634 //===--------------------------------------------------------------------===// 3635 3636 /// Entry point for assignment to allocatable array. 3637 static void lowerAllocatableArrayAssignment( 3638 Fortran::lower::AbstractConverter &converter, 3639 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3640 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3641 Fortran::lower::ExplicitIterSpace &explicitSpace, 3642 Fortran::lower::ImplicitIterSpace &implicitSpace) { 3643 ArrayExprLowering ael(converter, stmtCtx, symMap, 3644 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3645 &implicitSpace); 3646 ael.lowerAllocatableArrayAssignment(lhs, rhs); 3647 } 3648 3649 /// Assignment to allocatable array. 3650 /// 3651 /// The semantics are reverse that of a "regular" array assignment. The rhs 3652 /// defines the iteration space of the computation and the lhs is 3653 /// resized/reallocated to fit if necessary. 3654 void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs, 3655 const Fortran::lower::SomeExpr &rhs) { 3656 // With assignment to allocatable, we want to lower the rhs first and use 3657 // its shape to determine if we need to reallocate, etc. 3658 mlir::Location loc = getLoc(); 3659 // FIXME: If the lhs is in an explicit iteration space, the assignment may 3660 // be to an array of allocatable arrays rather than a single allocatable 3661 // array. 3662 fir::MutableBoxValue mutableBox = 3663 Fortran::lower::createMutableBox(loc, converter, lhs, symMap); 3664 mlir::Type resultTy = converter.genType(rhs); 3665 if (rhs.Rank() > 0) 3666 determineShapeOfDest(rhs); 3667 auto rhsCC = [&]() { 3668 PushSemantics(ConstituentSemantics::RefTransparent); 3669 return genarr(rhs); 3670 }(); 3671 3672 llvm::SmallVector<mlir::Value> lengthParams; 3673 // Currently no safe way to gather length from rhs (at least for 3674 // character, it cannot be taken from array_loads since it may be 3675 // changed by concatenations). 3676 if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) || 3677 mutableBox.isDerivedWithLenParameters()) 3678 TODO(loc, "gather rhs length parameters in assignment to allocatable"); 3679 3680 // The allocatable must take lower bounds from the expr if it is 3681 // reallocated and the right hand side is not a scalar. 3682 const bool takeLboundsIfRealloc = rhs.Rank() > 0; 3683 llvm::SmallVector<mlir::Value> lbounds; 3684 // When the reallocated LHS takes its lower bounds from the RHS, 3685 // they will be non default only if the RHS is a whole array 3686 // variable. Otherwise, lbounds is left empty and default lower bounds 3687 // will be used. 3688 if (takeLboundsIfRealloc && 3689 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) { 3690 assert(arrayOperands.size() == 1 && 3691 "lbounds can only come from one array"); 3692 auto lbs = fir::factory::getOrigins(arrayOperands[0].shape); 3693 lbounds.append(lbs.begin(), lbs.end()); 3694 } 3695 fir::factory::MutableBoxReallocation realloc = 3696 fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape, 3697 lengthParams); 3698 // Create ArrayLoad for the mutable box and save it into `destination`. 3699 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); 3700 ccStoreToDest = genarr(realloc.newValue); 3701 // If the rhs is scalar, get shape from the allocatable ArrayLoad. 3702 if (destShape.empty()) 3703 destShape = getShape(destination); 3704 // Finish lowering the loop nest. 3705 assert(destination && "destination must have been set"); 3706 ExtValue exv = lowerArrayExpression(rhsCC, resultTy); 3707 if (explicitSpaceIsActive()) { 3708 explicitSpace->finalizeContext(); 3709 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3710 } else { 3711 builder.create<fir::ArrayMergeStoreOp>( 3712 loc, destination, fir::getBase(exv), destination.getMemref(), 3713 destination.getSlice(), destination.getTypeparams()); 3714 } 3715 fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds, 3716 takeLboundsIfRealloc, realloc); 3717 } 3718 3719 /// Entry point for when an array expression appears in a context where the 3720 /// result must be boxed. (BoxValue semantics.) 3721 static ExtValue 3722 lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter, 3723 Fortran::lower::SymMap &symMap, 3724 Fortran::lower::StatementContext &stmtCtx, 3725 const Fortran::lower::SomeExpr &expr) { 3726 ArrayExprLowering ael{converter, stmtCtx, symMap, 3727 ConstituentSemantics::BoxValue}; 3728 return ael.lowerBoxedArrayExpr(expr); 3729 } 3730 3731 ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) { 3732 PushSemantics(ConstituentSemantics::BoxValue); 3733 return std::visit( 3734 [&](const auto &e) { 3735 auto f = genarr(e); 3736 ExtValue exv = f(IterationSpace{}); 3737 if (fir::getBase(exv).getType().template isa<fir::BoxType>()) 3738 return exv; 3739 fir::emitFatalError(getLoc(), "array must be emboxed"); 3740 }, 3741 exp.u); 3742 } 3743 3744 /// Entry point into lowering an expression with rank. This entry point is for 3745 /// lowering a rhs expression, for example. (RefTransparent semantics.) 3746 static ExtValue 3747 lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter, 3748 Fortran::lower::SymMap &symMap, 3749 Fortran::lower::StatementContext &stmtCtx, 3750 const Fortran::lower::SomeExpr &expr) { 3751 ArrayExprLowering ael{converter, stmtCtx, symMap}; 3752 ael.determineShapeOfDest(expr); 3753 ExtValue loopRes = ael.lowerArrayExpression(expr); 3754 fir::ArrayLoadOp dest = ael.destination; 3755 mlir::Value tempRes = dest.getMemref(); 3756 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 3757 mlir::Location loc = converter.getCurrentLocation(); 3758 builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes), 3759 tempRes, dest.getSlice(), 3760 dest.getTypeparams()); 3761 3762 auto arrTy = 3763 fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>(); 3764 if (auto charTy = 3765 arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) { 3766 if (fir::characterWithDynamicLen(charTy)) 3767 TODO(loc, "CHARACTER does not have constant LEN"); 3768 mlir::Value len = builder.createIntegerConstant( 3769 loc, builder.getCharacterLengthType(), charTy.getLen()); 3770 return fir::CharArrayBoxValue(tempRes, len, dest.getExtents()); 3771 } 3772 return fir::ArrayBoxValue(tempRes, dest.getExtents()); 3773 } 3774 3775 static void lowerLazyArrayExpression( 3776 Fortran::lower::AbstractConverter &converter, 3777 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3778 const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) { 3779 ArrayExprLowering ael(converter, stmtCtx, symMap); 3780 ael.lowerLazyArrayExpression(expr, raggedHeader); 3781 } 3782 3783 /// Lower the expression \p expr into a buffer that is created on demand. The 3784 /// variable containing the pointer to the buffer is \p var and the variable 3785 /// containing the shape of the buffer is \p shapeBuffer. 3786 void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr, 3787 mlir::Value header) { 3788 mlir::Location loc = getLoc(); 3789 mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder); 3790 mlir::IntegerType i32Ty = builder.getIntegerType(32); 3791 3792 // Once the loop extents have been computed, which may require being inside 3793 // some explicit loops, lazily allocate the expression on the heap. The 3794 // following continuation creates the buffer as needed. 3795 ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) { 3796 mlir::IntegerType i64Ty = builder.getIntegerType(64); 3797 mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1); 3798 fir::runtime::genRaggedArrayAllocate( 3799 loc, builder, header, /*asHeaders=*/false, byteSize, shape); 3800 }; 3801 3802 // Create a dummy array_load before the loop. We're storing to a lazy 3803 // temporary, so there will be no conflict and no copy-in. TODO: skip this 3804 // as there isn't any necessity for it. 3805 ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp { 3806 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 3807 auto var = builder.create<fir::CoordinateOp>( 3808 loc, builder.getRefType(hdrTy.getType(1)), header, one); 3809 auto load = builder.create<fir::LoadOp>(loc, var); 3810 mlir::Type eleTy = 3811 fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); 3812 auto seqTy = fir::SequenceType::get(eleTy, shape.size()); 3813 mlir::Value castTo = 3814 builder.createConvert(loc, fir::HeapType::get(seqTy), load); 3815 mlir::Value shapeOp = builder.genShape(loc, shape); 3816 return builder.create<fir::ArrayLoadOp>( 3817 loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None); 3818 }; 3819 // Custom lowering of the element store to deal with the extra indirection 3820 // to the lazy allocated buffer. 3821 ccStoreToDest = [=](IterSpace iters) { 3822 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 3823 auto var = builder.create<fir::CoordinateOp>( 3824 loc, builder.getRefType(hdrTy.getType(1)), header, one); 3825 auto load = builder.create<fir::LoadOp>(loc, var); 3826 mlir::Type eleTy = 3827 fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); 3828 auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size()); 3829 auto toTy = fir::HeapType::get(seqTy); 3830 mlir::Value castTo = builder.createConvert(loc, toTy, load); 3831 mlir::Value shape = builder.genShape(loc, genIterationShape()); 3832 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 3833 loc, builder, castTo.getType(), shape, iters.iterVec()); 3834 auto eleAddr = builder.create<fir::ArrayCoorOp>( 3835 loc, builder.getRefType(eleTy), castTo, shape, 3836 /*slice=*/mlir::Value{}, indices, destination.getTypeparams()); 3837 mlir::Value eleVal = 3838 builder.createConvert(loc, eleTy, iters.getElement()); 3839 builder.create<fir::StoreOp>(loc, eleVal, eleAddr); 3840 return iters.innerArgument(); 3841 }; 3842 3843 // Lower the array expression now. Clean-up any temps that may have 3844 // been generated when lowering `expr` right after the lowered value 3845 // was stored to the ragged array temporary. The local temps will not 3846 // be needed afterwards. 3847 stmtCtx.pushScope(); 3848 [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr); 3849 stmtCtx.finalize(/*popScope=*/true); 3850 assert(fir::getBase(loopRes)); 3851 } 3852 3853 static void 3854 lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter, 3855 Fortran::lower::SymMap &symMap, 3856 Fortran::lower::StatementContext &stmtCtx, 3857 Fortran::lower::ExplicitIterSpace &explicitSpace, 3858 Fortran::lower::ImplicitIterSpace &implicitSpace, 3859 const Fortran::evaluate::ProcedureRef &procRef) { 3860 ArrayExprLowering ael(converter, stmtCtx, symMap, 3861 ConstituentSemantics::CustomCopyInCopyOut, 3862 &explicitSpace, &implicitSpace); 3863 assert(procRef.arguments().size() == 2); 3864 const auto *lhs = procRef.arguments()[0].value().UnwrapExpr(); 3865 const auto *rhs = procRef.arguments()[1].value().UnwrapExpr(); 3866 assert(lhs && rhs && 3867 "user defined assignment arguments must be expressions"); 3868 mlir::func::FuncOp func = 3869 Fortran::lower::CallerInterface(procRef, converter).getFuncOp(); 3870 ael.lowerElementalUserAssignment(func, *lhs, *rhs); 3871 } 3872 3873 void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment, 3874 const Fortran::lower::SomeExpr &lhs, 3875 const Fortran::lower::SomeExpr &rhs) { 3876 mlir::Location loc = getLoc(); 3877 PushSemantics(ConstituentSemantics::CustomCopyInCopyOut); 3878 auto genArrayModify = genarr(lhs); 3879 ccStoreToDest = [=](IterSpace iters) -> ExtValue { 3880 auto modifiedArray = genArrayModify(iters); 3881 auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>( 3882 fir::getBase(modifiedArray).getDefiningOp()); 3883 assert(arrayModify && "must be created by ArrayModifyOp"); 3884 fir::ExtendedValue lhs = 3885 arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0)); 3886 genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs, 3887 iters.elementExv()); 3888 return modifiedArray; 3889 }; 3890 determineShapeOfDest(lhs); 3891 semant = ConstituentSemantics::RefTransparent; 3892 auto exv = lowerArrayExpression(rhs); 3893 if (explicitSpaceIsActive()) { 3894 explicitSpace->finalizeContext(); 3895 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3896 } else { 3897 builder.create<fir::ArrayMergeStoreOp>( 3898 loc, destination, fir::getBase(exv), destination.getMemref(), 3899 destination.getSlice(), destination.getTypeparams()); 3900 } 3901 } 3902 3903 /// Lower an elemental subroutine call with at least one array argument. 3904 /// An elemental subroutine is an exception and does not have copy-in/copy-out 3905 /// semantics. See 15.8.3. 3906 /// Do NOT use this for user defined assignments. 3907 static void 3908 lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter, 3909 Fortran::lower::SymMap &symMap, 3910 Fortran::lower::StatementContext &stmtCtx, 3911 const Fortran::lower::SomeExpr &call) { 3912 ArrayExprLowering ael(converter, stmtCtx, symMap, 3913 ConstituentSemantics::RefTransparent); 3914 ael.lowerElementalSubroutine(call); 3915 } 3916 3917 // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&). 3918 // This is skipping generation of copy-in/copy-out code for analysis that is 3919 // required when arguments are in parentheses. 3920 void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) { 3921 auto f = genarr(call); 3922 llvm::SmallVector<mlir::Value> shape = genIterationShape(); 3923 auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{}); 3924 f(iterSpace); 3925 finalizeElementCtx(); 3926 builder.restoreInsertionPoint(insPt); 3927 } 3928 3929 ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs, 3930 const Fortran::lower::SomeExpr &rhs) { 3931 PushSemantics(ConstituentSemantics::RefTransparent); 3932 // 1) Lower the rhs expression with array_fetch op(s). 3933 IterationSpace iters; 3934 iters.setElement(genarr(rhs)(iters)); 3935 // 2) Lower the lhs expression to an array_update. 3936 semant = ConstituentSemantics::ProjectedCopyInCopyOut; 3937 auto lexv = genarr(lhs)(iters); 3938 // 3) Finalize the inner context. 3939 explicitSpace->finalizeContext(); 3940 // 4) Thread the array value updated forward. Note: the lhs might be 3941 // ill-formed (performing scalar assignment in an array context), 3942 // in which case there is no array to thread. 3943 auto createResult = [&](auto op) { 3944 mlir::Value oldInnerArg = op.getSequence(); 3945 std::size_t offset = explicitSpace->argPosition(oldInnerArg); 3946 explicitSpace->setInnerArg(offset, fir::getBase(lexv)); 3947 builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); 3948 }; 3949 llvm::TypeSwitch<mlir::Operation *, void>( 3950 fir::getBase(lexv).getDefiningOp()) 3951 .Case([&](fir::ArrayUpdateOp op) { createResult(op); }) 3952 .Case([&](fir::ArrayAmendOp op) { createResult(op); }) 3953 .Case([&](fir::ArrayModifyOp op) { createResult(op); }) 3954 .Default([&](mlir::Operation *) {}); 3955 return lexv; 3956 } 3957 3958 static ExtValue lowerScalarUserAssignment( 3959 Fortran::lower::AbstractConverter &converter, 3960 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3961 Fortran::lower::ExplicitIterSpace &explicitIterSpace, 3962 mlir::func::FuncOp userAssignmentFunction, 3963 const Fortran::lower::SomeExpr &lhs, 3964 const Fortran::lower::SomeExpr &rhs) { 3965 Fortran::lower::ImplicitIterSpace implicit; 3966 ArrayExprLowering ael(converter, stmtCtx, symMap, 3967 ConstituentSemantics::RefTransparent, 3968 &explicitIterSpace, &implicit); 3969 return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs); 3970 } 3971 3972 ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment, 3973 const Fortran::lower::SomeExpr &lhs, 3974 const Fortran::lower::SomeExpr &rhs) { 3975 mlir::Location loc = getLoc(); 3976 if (rhs.Rank() > 0) 3977 TODO(loc, "user-defined elemental assigment from expression with rank"); 3978 // 1) Lower the rhs expression with array_fetch op(s). 3979 IterationSpace iters; 3980 iters.setElement(genarr(rhs)(iters)); 3981 fir::ExtendedValue elementalExv = iters.elementExv(); 3982 // 2) Lower the lhs expression to an array_modify. 3983 semant = ConstituentSemantics::CustomCopyInCopyOut; 3984 auto lexv = genarr(lhs)(iters); 3985 bool isIllFormedLHS = false; 3986 // 3) Insert the call 3987 if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>( 3988 fir::getBase(lexv).getDefiningOp())) { 3989 mlir::Value oldInnerArg = modifyOp.getSequence(); 3990 std::size_t offset = explicitSpace->argPosition(oldInnerArg); 3991 explicitSpace->setInnerArg(offset, fir::getBase(lexv)); 3992 fir::ExtendedValue exv = arrayModifyToExv( 3993 builder, loc, explicitSpace->getLhsLoad(0).getValue(), 3994 modifyOp.getResult(0)); 3995 genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv, 3996 elementalExv); 3997 } else { 3998 // LHS is ill formed, it is a scalar with no references to FORALL 3999 // subscripts, so there is actually no array assignment here. The user 4000 // code is probably bad, but still insert user assignment call since it 4001 // was not rejected by semantics (a warning was emitted). 4002 isIllFormedLHS = true; 4003 genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment, 4004 lexv, elementalExv); 4005 } 4006 // 4) Finalize the inner context. 4007 explicitSpace->finalizeContext(); 4008 // 5). Thread the array value updated forward. 4009 if (!isIllFormedLHS) 4010 builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); 4011 return lexv; 4012 } 4013 4014 private: 4015 void determineShapeOfDest(const fir::ExtendedValue &lhs) { 4016 destShape = fir::factory::getExtents(getLoc(), builder, lhs); 4017 } 4018 4019 void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) { 4020 if (!destShape.empty()) 4021 return; 4022 if (explicitSpaceIsActive() && determineShapeWithSlice(lhs)) 4023 return; 4024 mlir::Type idxTy = builder.getIndexType(); 4025 mlir::Location loc = getLoc(); 4026 if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape = 4027 Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(), 4028 lhs)) 4029 for (Fortran::common::ConstantSubscript extent : *constantShape) 4030 destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 4031 } 4032 4033 bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) { 4034 return false; 4035 } 4036 bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) { 4037 TODO(getLoc(), "coarray ref"); 4038 return false; 4039 } 4040 bool genShapeFromDataRef(const Fortran::evaluate::Component &x) { 4041 return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false; 4042 } 4043 bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) { 4044 if (x.Rank() == 0) 4045 return false; 4046 if (x.base().Rank() > 0) 4047 if (genShapeFromDataRef(x.base())) 4048 return true; 4049 // x has rank and x.base did not produce a shape. 4050 ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base())) 4051 : asScalarRef(x.base().GetComponent()); 4052 mlir::Location loc = getLoc(); 4053 mlir::IndexType idxTy = builder.getIndexType(); 4054 llvm::SmallVector<mlir::Value> definedShape = 4055 fir::factory::getExtents(loc, builder, exv); 4056 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 4057 for (auto ss : llvm::enumerate(x.subscript())) { 4058 std::visit(Fortran::common::visitors{ 4059 [&](const Fortran::evaluate::Triplet &trip) { 4060 // For a subscript of triple notation, we compute the 4061 // range of this dimension of the iteration space. 4062 auto lo = [&]() { 4063 if (auto optLo = trip.lower()) 4064 return fir::getBase(asScalar(*optLo)); 4065 return getLBound(exv, ss.index(), one); 4066 }(); 4067 auto hi = [&]() { 4068 if (auto optHi = trip.upper()) 4069 return fir::getBase(asScalar(*optHi)); 4070 return getUBound(exv, ss.index(), one); 4071 }(); 4072 auto step = builder.createConvert( 4073 loc, idxTy, fir::getBase(asScalar(trip.stride()))); 4074 auto extent = builder.genExtentFromTriplet(loc, lo, hi, 4075 step, idxTy); 4076 destShape.push_back(extent); 4077 }, 4078 [&](auto) {}}, 4079 ss.value().u); 4080 } 4081 return true; 4082 } 4083 bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) { 4084 if (x.IsSymbol()) 4085 return genShapeFromDataRef(getFirstSym(x)); 4086 return genShapeFromDataRef(x.GetComponent()); 4087 } 4088 bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) { 4089 return std::visit([&](const auto &v) { return genShapeFromDataRef(v); }, 4090 x.u); 4091 } 4092 4093 /// When in an explicit space, the ranked component must be evaluated to 4094 /// determine the actual number of iterations when slicing triples are 4095 /// present. Lower these expressions here. 4096 bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) { 4097 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump( 4098 llvm::dbgs() << "determine shape of:\n", lhs)); 4099 // FIXME: We may not want to use ExtractDataRef here since it doesn't deal 4100 // with substrings, etc. 4101 std::optional<Fortran::evaluate::DataRef> dref = 4102 Fortran::evaluate::ExtractDataRef(lhs); 4103 return dref.has_value() ? genShapeFromDataRef(*dref) : false; 4104 } 4105 4106 /// CHARACTER and derived type elements are treated as memory references. The 4107 /// numeric types are treated as values. 4108 static mlir::Type adjustedArraySubtype(mlir::Type ty, 4109 mlir::ValueRange indices) { 4110 mlir::Type pathTy = fir::applyPathToType(ty, indices); 4111 assert(pathTy && "indices failed to apply to type"); 4112 return adjustedArrayElementType(pathTy); 4113 } 4114 4115 ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) { 4116 mlir::Type resTy = converter.genType(exp); 4117 return std::visit( 4118 [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); }, 4119 exp.u); 4120 } 4121 ExtValue lowerArrayExpression(const ExtValue &exv) { 4122 assert(!explicitSpace); 4123 mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType()); 4124 return lowerArrayExpression(genarr(exv), resTy); 4125 } 4126 4127 void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds, 4128 const Fortran::evaluate::Substring *substring) { 4129 if (!substring) 4130 return; 4131 bounds.push_back(fir::getBase(asScalar(substring->lower()))); 4132 if (auto upper = substring->upper()) 4133 bounds.push_back(fir::getBase(asScalar(*upper))); 4134 } 4135 4136 /// Convert the original value, \p origVal, to type \p eleTy. When in a 4137 /// pointer assignment context, generate an appropriate `fir.rebox` for 4138 /// dealing with any bounds parameters on the pointer assignment. 4139 mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy, 4140 mlir::Value origVal) { 4141 mlir::Value val = builder.createConvert(loc, eleTy, origVal); 4142 if (isBoundsSpec()) { 4143 auto lbs = lbounds.getValue(); 4144 if (lbs.size() > 0) { 4145 // Rebox the value with user-specified shift. 4146 auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size()); 4147 mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs); 4148 val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp, 4149 mlir::Value{}); 4150 } 4151 } else if (isBoundsRemap()) { 4152 auto lbs = lbounds.getValue(); 4153 if (lbs.size() > 0) { 4154 // Rebox the value with user-specified shift and shape. 4155 auto shapeShiftArgs = flatZip(lbs, ubounds.getValue()); 4156 auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size()); 4157 mlir::Value shapeShift = 4158 builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs); 4159 val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift, 4160 mlir::Value{}); 4161 } 4162 } 4163 return val; 4164 } 4165 4166 /// Default store to destination implementation. 4167 /// This implements the default case, which is to assign the value in 4168 /// `iters.element` into the destination array, `iters.innerArgument`. Handles 4169 /// by value and by reference assignment. 4170 CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) { 4171 return [=](IterSpace iterSpace) -> ExtValue { 4172 mlir::Location loc = getLoc(); 4173 mlir::Value innerArg = iterSpace.innerArgument(); 4174 fir::ExtendedValue exv = iterSpace.elementExv(); 4175 mlir::Type arrTy = innerArg.getType(); 4176 mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec()); 4177 if (isAdjustedArrayElementType(eleTy)) { 4178 // The elemental update is in the memref domain. Under this semantics, 4179 // we must always copy the computed new element from its location in 4180 // memory into the destination array. 4181 mlir::Type resRefTy = builder.getRefType(eleTy); 4182 // Get a reference to the array element to be amended. 4183 auto arrayOp = builder.create<fir::ArrayAccessOp>( 4184 loc, resRefTy, innerArg, iterSpace.iterVec(), 4185 destination.getTypeparams()); 4186 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 4187 llvm::SmallVector<mlir::Value> substringBounds; 4188 populateBounds(substringBounds, substring); 4189 mlir::Value dstLen = fir::factory::genLenOfCharacter( 4190 builder, loc, destination, iterSpace.iterVec(), substringBounds); 4191 fir::ArrayAmendOp amend = createCharArrayAmend( 4192 loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds); 4193 return abstractArrayExtValue(amend, dstLen); 4194 } 4195 if (fir::isa_derived(eleTy)) { 4196 fir::ArrayAmendOp amend = createDerivedArrayAmend( 4197 loc, destination, builder, arrayOp, exv, eleTy, innerArg); 4198 return abstractArrayExtValue(amend /*FIXME: typeparams?*/); 4199 } 4200 assert(eleTy.isa<fir::SequenceType>() && "must be an array"); 4201 TODO(loc, "array (as element) assignment"); 4202 } 4203 // By value semantics. The element is being assigned by value. 4204 auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv)); 4205 auto update = builder.create<fir::ArrayUpdateOp>( 4206 loc, arrTy, innerArg, ele, iterSpace.iterVec(), 4207 destination.getTypeparams()); 4208 return abstractArrayExtValue(update); 4209 }; 4210 } 4211 4212 /// For an elemental array expression. 4213 /// 1. Lower the scalars and array loads. 4214 /// 2. Create the iteration space. 4215 /// 3. Create the element-by-element computation in the loop. 4216 /// 4. Return the resulting array value. 4217 /// If no destination was set in the array context, a temporary of 4218 /// \p resultTy will be created to hold the evaluated expression. 4219 /// Otherwise, \p resultTy is ignored and the expression is evaluated 4220 /// in the destination. \p f is a continuation built from an 4221 /// evaluate::Expr or an ExtendedValue. 4222 ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) { 4223 mlir::Location loc = getLoc(); 4224 auto [iterSpace, insPt] = genIterSpace(resultTy); 4225 auto exv = f(iterSpace); 4226 iterSpace.setElement(std::move(exv)); 4227 auto lambda = ccStoreToDest.hasValue() 4228 ? ccStoreToDest.getValue() 4229 : defaultStoreToDestination(/*substring=*/nullptr); 4230 mlir::Value updVal = fir::getBase(lambda(iterSpace)); 4231 finalizeElementCtx(); 4232 builder.create<fir::ResultOp>(loc, updVal); 4233 builder.restoreInsertionPoint(insPt); 4234 return abstractArrayExtValue(iterSpace.outerResult()); 4235 } 4236 4237 /// Compute the shape of a slice. 4238 llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) { 4239 llvm::SmallVector<mlir::Value> slicedShape; 4240 auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp()); 4241 mlir::Operation::operand_range triples = slOp.getTriples(); 4242 mlir::IndexType idxTy = builder.getIndexType(); 4243 mlir::Location loc = getLoc(); 4244 for (unsigned i = 0, end = triples.size(); i < end; i += 3) { 4245 if (!mlir::isa_and_nonnull<fir::UndefOp>( 4246 triples[i + 1].getDefiningOp())) { 4247 // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0) 4248 // See Fortran 2018 9.5.3.3.2 section for more details. 4249 mlir::Value res = builder.genExtentFromTriplet( 4250 loc, triples[i], triples[i + 1], triples[i + 2], idxTy); 4251 slicedShape.emplace_back(res); 4252 } else { 4253 // do nothing. `..., i, ...` case, so dimension is dropped. 4254 } 4255 } 4256 return slicedShape; 4257 } 4258 4259 /// Get the shape from an ArrayOperand. The shape of the array is adjusted if 4260 /// the array was sliced. 4261 llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) { 4262 if (array.slice) 4263 return computeSliceShape(array.slice); 4264 if (array.memref.getType().isa<fir::BoxType>()) 4265 return fir::factory::readExtents(builder, getLoc(), 4266 fir::BoxValue{array.memref}); 4267 return fir::factory::getExtents(array.shape); 4268 } 4269 4270 /// Get the shape from an ArrayLoad. 4271 llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) { 4272 return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(), 4273 arrayLoad.getSlice()}); 4274 } 4275 4276 /// Returns the first array operand that may not be absent. If all 4277 /// array operands may be absent, return the first one. 4278 const ArrayOperand &getInducingShapeArrayOperand() const { 4279 assert(!arrayOperands.empty()); 4280 for (const ArrayOperand &op : arrayOperands) 4281 if (!op.mayBeAbsent) 4282 return op; 4283 // If all arrays operand appears in optional position, then none of them 4284 // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the 4285 // first operands. 4286 // TODO: There is an opportunity to add a runtime check here that 4287 // this array is present as required. 4288 return arrayOperands[0]; 4289 } 4290 4291 /// Generate the shape of the iteration space over the array expression. The 4292 /// iteration space may be implicit, explicit, or both. If it is implied it is 4293 /// based on the destination and operand array loads, or an optional 4294 /// Fortran::evaluate::Shape from the front end. If the shape is explicit, 4295 /// this returns any implicit shape component, if it exists. 4296 llvm::SmallVector<mlir::Value> genIterationShape() { 4297 // Use the precomputed destination shape. 4298 if (!destShape.empty()) 4299 return destShape; 4300 // Otherwise, use the destination's shape. 4301 if (destination) 4302 return getShape(destination); 4303 // Otherwise, use the first ArrayLoad operand shape. 4304 if (!arrayOperands.empty()) 4305 return getShape(getInducingShapeArrayOperand()); 4306 fir::emitFatalError(getLoc(), 4307 "failed to compute the array expression shape"); 4308 } 4309 4310 bool explicitSpaceIsActive() const { 4311 return explicitSpace && explicitSpace->isActive(); 4312 } 4313 4314 bool implicitSpaceHasMasks() const { 4315 return implicitSpace && !implicitSpace->empty(); 4316 } 4317 4318 CC genMaskAccess(mlir::Value tmp, mlir::Value shape) { 4319 mlir::Location loc = getLoc(); 4320 return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) { 4321 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType()); 4322 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 4323 mlir::Type eleRefTy = builder->getRefType(eleTy); 4324 mlir::IntegerType i1Ty = builder->getI1Type(); 4325 // Adjust indices for any shift of the origin of the array. 4326 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 4327 loc, *builder, tmp.getType(), shape, iters.iterVec()); 4328 auto addr = builder->create<fir::ArrayCoorOp>( 4329 loc, eleRefTy, tmp, shape, /*slice=*/mlir::Value{}, indices, 4330 /*typeParams=*/llvm::None); 4331 auto load = builder->create<fir::LoadOp>(loc, addr); 4332 return builder->createConvert(loc, i1Ty, load); 4333 }; 4334 } 4335 4336 /// Construct the incremental instantiations of the ragged array structure. 4337 /// Rebind the lazy buffer variable, etc. as we go. 4338 template <bool withAllocation = false> 4339 mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) { 4340 assert(explicitSpaceIsActive()); 4341 mlir::Location loc = getLoc(); 4342 mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder); 4343 llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack = 4344 explicitSpace->getLoopStack(); 4345 const std::size_t depth = loopStack.size(); 4346 mlir::IntegerType i64Ty = builder.getIntegerType(64); 4347 [[maybe_unused]] mlir::Value byteSize = 4348 builder.createIntegerConstant(loc, i64Ty, 1); 4349 mlir::Value header = implicitSpace->lookupMaskHeader(expr); 4350 for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) { 4351 auto insPt = builder.saveInsertionPoint(); 4352 if (i < depth - 1) 4353 builder.setInsertionPoint(loopStack[i + 1][0]); 4354 4355 // Compute and gather the extents. 4356 llvm::SmallVector<mlir::Value> extents; 4357 for (auto doLoop : loopStack[i]) 4358 extents.push_back(builder.genExtentFromTriplet( 4359 loc, doLoop.getLowerBound(), doLoop.getUpperBound(), 4360 doLoop.getStep(), i64Ty)); 4361 if constexpr (withAllocation) { 4362 fir::runtime::genRaggedArrayAllocate( 4363 loc, builder, header, /*asHeader=*/true, byteSize, extents); 4364 } 4365 4366 // Compute the dynamic position into the header. 4367 llvm::SmallVector<mlir::Value> offsets; 4368 for (auto doLoop : loopStack[i]) { 4369 auto m = builder.create<mlir::arith::SubIOp>( 4370 loc, doLoop.getInductionVar(), doLoop.getLowerBound()); 4371 auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep()); 4372 mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1); 4373 offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one)); 4374 } 4375 mlir::IntegerType i32Ty = builder.getIntegerType(32); 4376 mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1); 4377 mlir::Type coorTy = builder.getRefType(raggedTy.getType(1)); 4378 auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); 4379 auto toTy = fir::SequenceType::get(raggedTy, offsets.size()); 4380 mlir::Type toRefTy = builder.getRefType(toTy); 4381 auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff); 4382 mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr); 4383 auto shapeOp = builder.genShape(loc, extents); 4384 header = builder.create<fir::ArrayCoorOp>( 4385 loc, builder.getRefType(raggedTy), hdArr, shapeOp, 4386 /*slice=*/mlir::Value{}, offsets, 4387 /*typeparams=*/mlir::ValueRange{}); 4388 auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); 4389 auto inVar = builder.create<fir::LoadOp>(loc, hdrVar); 4390 mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); 4391 mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2)); 4392 auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two); 4393 auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh); 4394 // Replace the binding. 4395 implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr)); 4396 if (i < depth - 1) 4397 builder.restoreInsertionPoint(insPt); 4398 } 4399 return header; 4400 } 4401 4402 /// Lower mask expressions with implied iteration spaces from the variants of 4403 /// WHERE syntax. Since it is legal for mask expressions to have side-effects 4404 /// and modify values that will be used for the lhs, rhs, or both of 4405 /// subsequent assignments, the mask must be evaluated before the assignment 4406 /// is processed. 4407 /// Mask expressions are array expressions too. 4408 void genMasks() { 4409 // Lower the mask expressions, if any. 4410 if (implicitSpaceHasMasks()) { 4411 mlir::Location loc = getLoc(); 4412 // Mask expressions are array expressions too. 4413 for (const auto *e : implicitSpace->getExprs()) 4414 if (e && !implicitSpace->isLowered(e)) { 4415 if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) { 4416 // Allocate the mask buffer lazily. 4417 assert(explicitSpaceIsActive()); 4418 mlir::Value header = 4419 prepareRaggedArrays</*withAllocations=*/true>(e); 4420 Fortran::lower::createLazyArrayTempValue(converter, *e, header, 4421 symMap, stmtCtx); 4422 // Close the explicit loops. 4423 builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs()); 4424 builder.setInsertionPointAfter(explicitSpace->getOuterLoop()); 4425 // Open a new copy of the explicit loop nest. 4426 explicitSpace->genLoopNest(); 4427 continue; 4428 } 4429 fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue( 4430 converter, *e, symMap, stmtCtx); 4431 mlir::Value shape = builder.createShape(loc, tmp); 4432 implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape)); 4433 } 4434 4435 // Set buffer from the header. 4436 for (const auto *e : implicitSpace->getExprs()) { 4437 if (!e) 4438 continue; 4439 if (implicitSpace->lookupMaskVariable(e)) { 4440 // Index into the ragged buffer to retrieve cached results. 4441 const int rank = e->Rank(); 4442 assert(destShape.empty() || 4443 static_cast<std::size_t>(rank) == destShape.size()); 4444 mlir::Value header = prepareRaggedArrays(e); 4445 mlir::TupleType raggedTy = 4446 fir::factory::getRaggedArrayHeaderType(builder); 4447 mlir::IntegerType i32Ty = builder.getIntegerType(32); 4448 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 4449 auto coor1 = builder.create<fir::CoordinateOp>( 4450 loc, builder.getRefType(raggedTy.getType(1)), header, one); 4451 auto db = builder.create<fir::LoadOp>(loc, coor1); 4452 mlir::Type eleTy = 4453 fir::unwrapSequenceType(fir::unwrapRefType(db.getType())); 4454 mlir::Type buffTy = 4455 builder.getRefType(fir::SequenceType::get(eleTy, rank)); 4456 // Address of ragged buffer data. 4457 mlir::Value buff = builder.createConvert(loc, buffTy, db); 4458 4459 mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); 4460 auto coor2 = builder.create<fir::CoordinateOp>( 4461 loc, builder.getRefType(raggedTy.getType(2)), header, two); 4462 auto shBuff = builder.create<fir::LoadOp>(loc, coor2); 4463 mlir::IntegerType i64Ty = builder.getIntegerType(64); 4464 mlir::IndexType idxTy = builder.getIndexType(); 4465 llvm::SmallVector<mlir::Value> extents; 4466 for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) { 4467 mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i); 4468 auto coor = builder.create<fir::CoordinateOp>( 4469 loc, builder.getRefType(i64Ty), shBuff, off); 4470 auto ldExt = builder.create<fir::LoadOp>(loc, coor); 4471 extents.push_back(builder.createConvert(loc, idxTy, ldExt)); 4472 } 4473 if (destShape.empty()) 4474 destShape = extents; 4475 // Construct shape of buffer. 4476 mlir::Value shapeOp = builder.genShape(loc, extents); 4477 4478 // Replace binding with the local result. 4479 implicitSpace->rebind(e, genMaskAccess(buff, shapeOp)); 4480 } 4481 } 4482 } 4483 } 4484 4485 // FIXME: should take multiple inner arguments. 4486 std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> 4487 genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) { 4488 mlir::Location loc = getLoc(); 4489 mlir::IndexType idxTy = builder.getIndexType(); 4490 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 4491 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 4492 llvm::SmallVector<mlir::Value> loopUppers; 4493 4494 // Convert any implied shape to closed interval form. The fir.do_loop will 4495 // run from 0 to `extent - 1` inclusive. 4496 for (auto extent : shape) 4497 loopUppers.push_back( 4498 builder.create<mlir::arith::SubIOp>(loc, extent, one)); 4499 4500 // Iteration space is created with outermost columns, innermost rows 4501 llvm::SmallVector<fir::DoLoopOp> loops; 4502 4503 const std::size_t loopDepth = loopUppers.size(); 4504 llvm::SmallVector<mlir::Value> ivars; 4505 4506 for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) { 4507 if (i.index() > 0) { 4508 assert(!loops.empty()); 4509 builder.setInsertionPointToStart(loops.back().getBody()); 4510 } 4511 fir::DoLoopOp loop; 4512 if (innerArg) { 4513 loop = builder.create<fir::DoLoopOp>( 4514 loc, zero, i.value(), one, isUnordered(), 4515 /*finalCount=*/false, mlir::ValueRange{innerArg}); 4516 innerArg = loop.getRegionIterArgs().front(); 4517 if (explicitSpaceIsActive()) 4518 explicitSpace->setInnerArg(0, innerArg); 4519 } else { 4520 loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one, 4521 isUnordered(), 4522 /*finalCount=*/false); 4523 } 4524 ivars.push_back(loop.getInductionVar()); 4525 loops.push_back(loop); 4526 } 4527 4528 if (innerArg) 4529 for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth; 4530 ++i) { 4531 builder.setInsertionPointToEnd(loops[i].getBody()); 4532 builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0)); 4533 } 4534 4535 // Move insertion point to the start of the innermost loop in the nest. 4536 builder.setInsertionPointToStart(loops.back().getBody()); 4537 // Set `afterLoopNest` to just after the entire loop nest. 4538 auto currPt = builder.saveInsertionPoint(); 4539 builder.setInsertionPointAfter(loops[0]); 4540 auto afterLoopNest = builder.saveInsertionPoint(); 4541 builder.restoreInsertionPoint(currPt); 4542 4543 // Put the implicit loop variables in row to column order to match FIR's 4544 // Ops. (The loops were constructed from outermost column to innermost 4545 // row.) 4546 mlir::Value outerRes = loops[0].getResult(0); 4547 return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)), 4548 afterLoopNest}; 4549 } 4550 4551 /// Build the iteration space into which the array expression will be lowered. 4552 /// The resultType is used to create a temporary, if needed. 4553 std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> 4554 genIterSpace(mlir::Type resultType) { 4555 mlir::Location loc = getLoc(); 4556 llvm::SmallVector<mlir::Value> shape = genIterationShape(); 4557 if (!destination) { 4558 // Allocate storage for the result if it is not already provided. 4559 destination = createAndLoadSomeArrayTemp(resultType, shape); 4560 } 4561 4562 // Generate the lazy mask allocation, if one was given. 4563 if (ccPrelude.hasValue()) 4564 ccPrelude.getValue()(shape); 4565 4566 // Now handle the implicit loops. 4567 mlir::Value inner = explicitSpaceIsActive() 4568 ? explicitSpace->getInnerArgs().front() 4569 : destination.getResult(); 4570 auto [iters, afterLoopNest] = genImplicitLoops(shape, inner); 4571 mlir::Value innerArg = iters.innerArgument(); 4572 4573 // Generate the mask conditional structure, if there are masks. Unlike the 4574 // explicit masks, which are interleaved, these mask expression appear in 4575 // the innermost loop. 4576 if (implicitSpaceHasMasks()) { 4577 // Recover the cached condition from the mask buffer. 4578 auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) { 4579 return implicitSpace->getBoundClosure(e)(iters); 4580 }; 4581 4582 // Handle the negated conditions in topological order of the WHERE 4583 // clauses. See 10.2.3.2p4 as to why this control structure is produced. 4584 for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs : 4585 implicitSpace->getMasks()) { 4586 const std::size_t size = maskExprs.size() - 1; 4587 auto genFalseBlock = [&](const auto *e, auto &&cond) { 4588 auto ifOp = builder.create<fir::IfOp>( 4589 loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), 4590 /*withElseRegion=*/true); 4591 builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); 4592 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 4593 builder.create<fir::ResultOp>(loc, innerArg); 4594 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 4595 }; 4596 auto genTrueBlock = [&](const auto *e, auto &&cond) { 4597 auto ifOp = builder.create<fir::IfOp>( 4598 loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), 4599 /*withElseRegion=*/true); 4600 builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); 4601 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 4602 builder.create<fir::ResultOp>(loc, innerArg); 4603 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 4604 }; 4605 for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) 4606 if (const auto *e = maskExprs[i]) 4607 genFalseBlock(e, genCond(e, iters)); 4608 4609 // The last condition is either non-negated or unconditionally negated. 4610 if (const auto *e = maskExprs[size]) 4611 genTrueBlock(e, genCond(e, iters)); 4612 } 4613 } 4614 4615 // We're ready to lower the body (an assignment statement) for this context 4616 // of loop nests at this point. 4617 return {iters, afterLoopNest}; 4618 } 4619 4620 fir::ArrayLoadOp 4621 createAndLoadSomeArrayTemp(mlir::Type type, 4622 llvm::ArrayRef<mlir::Value> shape) { 4623 if (ccLoadDest.hasValue()) 4624 return ccLoadDest.getValue()(shape); 4625 auto seqTy = type.dyn_cast<fir::SequenceType>(); 4626 assert(seqTy && "must be an array"); 4627 mlir::Location loc = getLoc(); 4628 // TODO: Need to thread the length parameters here. For character, they may 4629 // differ from the operands length (e.g concatenation). So the array loads 4630 // type parameters are not enough. 4631 if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) 4632 if (charTy.hasDynamicLen()) 4633 TODO(loc, "character array expression temp with dynamic length"); 4634 if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>()) 4635 if (recTy.getNumLenParams() > 0) 4636 TODO(loc, "derived type array expression temp with length parameters"); 4637 mlir::Value temp = seqTy.hasConstantShape() 4638 ? builder.create<fir::AllocMemOp>(loc, type) 4639 : builder.create<fir::AllocMemOp>( 4640 loc, type, ".array.expr", llvm::None, shape); 4641 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 4642 stmtCtx.attachCleanup( 4643 [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); }); 4644 mlir::Value shapeOp = genShapeOp(shape); 4645 return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp, 4646 /*slice=*/mlir::Value{}, 4647 llvm::None); 4648 } 4649 4650 static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder, 4651 llvm::ArrayRef<mlir::Value> shape) { 4652 mlir::IndexType idxTy = builder.getIndexType(); 4653 llvm::SmallVector<mlir::Value> idxShape; 4654 for (auto s : shape) 4655 idxShape.push_back(builder.createConvert(loc, idxTy, s)); 4656 auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size()); 4657 return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape); 4658 } 4659 4660 fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) { 4661 return genShapeOp(getLoc(), builder, shape); 4662 } 4663 4664 //===--------------------------------------------------------------------===// 4665 // Expression traversal and lowering. 4666 //===--------------------------------------------------------------------===// 4667 4668 /// Lower the expression, \p x, in a scalar context. 4669 template <typename A> 4670 ExtValue asScalar(const A &x) { 4671 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x); 4672 } 4673 4674 /// Lower the expression, \p x, in a scalar context. If this is an explicit 4675 /// space, the expression may be scalar and refer to an array. We want to 4676 /// raise the array access to array operations in FIR to analyze potential 4677 /// conflicts even when the result is a scalar element. 4678 template <typename A> 4679 ExtValue asScalarArray(const A &x) { 4680 return explicitSpaceIsActive() && !isPointerAssignment() 4681 ? genarr(x)(IterationSpace{}) 4682 : asScalar(x); 4683 } 4684 4685 /// Lower the expression in a scalar context to a memory reference. 4686 template <typename A> 4687 ExtValue asScalarRef(const A &x) { 4688 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x); 4689 } 4690 4691 /// Lower an expression without dereferencing any indirection that may be 4692 /// a nullptr (because this is an absent optional or unallocated/disassociated 4693 /// descriptor). The returned expression cannot be addressed directly, it is 4694 /// meant to inquire about its status before addressing the related entity. 4695 template <typename A> 4696 ExtValue asInquired(const A &x) { 4697 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx} 4698 .lowerIntrinsicArgumentAsInquired(x); 4699 } 4700 4701 /// Some temporaries are allocated on an element-by-element basis during the 4702 /// array expression evaluation. Collect the cleanups here so the resources 4703 /// can be freed before the next loop iteration, avoiding memory leaks. etc. 4704 Fortran::lower::StatementContext &getElementCtx() { 4705 if (!elementCtx) { 4706 stmtCtx.pushScope(); 4707 elementCtx = true; 4708 } 4709 return stmtCtx; 4710 } 4711 4712 /// If there were temporaries created for this element evaluation, finalize 4713 /// and deallocate the resources now. This should be done just prior the the 4714 /// fir::ResultOp at the end of the innermost loop. 4715 void finalizeElementCtx() { 4716 if (elementCtx) { 4717 stmtCtx.finalize(/*popScope=*/true); 4718 elementCtx = false; 4719 } 4720 } 4721 4722 /// Lower an elemental function array argument. This ensures array 4723 /// sub-expressions that are not variables and must be passed by address 4724 /// are lowered by value and placed in memory. 4725 template <typename A> 4726 CC genElementalArgument(const A &x) { 4727 // Ensure the returned element is in memory if this is what was requested. 4728 if ((semant == ConstituentSemantics::RefOpaque || 4729 semant == ConstituentSemantics::DataAddr || 4730 semant == ConstituentSemantics::ByValueArg)) { 4731 if (!Fortran::evaluate::IsVariable(x)) { 4732 PushSemantics(ConstituentSemantics::DataValue); 4733 CC cc = genarr(x); 4734 mlir::Location loc = getLoc(); 4735 if (isParenthesizedVariable(x)) { 4736 // Parenthesised variables are lowered to a reference to the variable 4737 // storage. When passing it as an argument, a copy must be passed. 4738 return [=](IterSpace iters) -> ExtValue { 4739 return createInMemoryScalarCopy(builder, loc, cc(iters)); 4740 }; 4741 } 4742 mlir::Type storageType = 4743 fir::unwrapSequenceType(converter.genType(toEvExpr(x))); 4744 return [=](IterSpace iters) -> ExtValue { 4745 return placeScalarValueInMemory(builder, loc, cc(iters), storageType); 4746 }; 4747 } 4748 } 4749 return genarr(x); 4750 } 4751 4752 // A procedure reference to a Fortran elemental intrinsic procedure. 4753 CC genElementalIntrinsicProcRef( 4754 const Fortran::evaluate::ProcedureRef &procRef, 4755 llvm::Optional<mlir::Type> retTy, 4756 const Fortran::evaluate::SpecificIntrinsic &intrinsic) { 4757 llvm::SmallVector<CC> operands; 4758 llvm::StringRef name = intrinsic.name; 4759 const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering = 4760 Fortran::lower::getIntrinsicArgumentLowering(name); 4761 mlir::Location loc = getLoc(); 4762 if (Fortran::lower::intrinsicRequiresCustomOptionalHandling( 4763 procRef, intrinsic, converter)) { 4764 using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>; 4765 llvm::SmallVector<CcPairT> operands; 4766 auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { 4767 if (expr.Rank() == 0) { 4768 ExtValue optionalArg = this->asInquired(expr); 4769 mlir::Value isPresent = 4770 genActualIsPresentTest(builder, loc, optionalArg); 4771 operands.emplace_back( 4772 [=](IterSpace iters) -> ExtValue { 4773 return genLoad(builder, loc, optionalArg); 4774 }, 4775 isPresent); 4776 } else { 4777 auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr); 4778 operands.emplace_back(cc, isPresent); 4779 } 4780 }; 4781 auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) { 4782 PushSemantics(ConstituentSemantics::RefTransparent); 4783 operands.emplace_back(genElementalArgument(expr), llvm::None); 4784 }; 4785 Fortran::lower::prepareCustomIntrinsicArgument( 4786 procRef, intrinsic, retTy, prepareOptionalArg, prepareOtherArg, 4787 converter); 4788 4789 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 4790 llvm::StringRef name = intrinsic.name; 4791 return [=](IterSpace iters) -> ExtValue { 4792 auto getArgument = [&](std::size_t i) -> ExtValue { 4793 return operands[i].first(iters); 4794 }; 4795 auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> { 4796 return operands[i].second; 4797 }; 4798 return Fortran::lower::lowerCustomIntrinsic( 4799 *bldr, loc, name, retTy, isPresent, getArgument, operands.size(), 4800 getElementCtx()); 4801 }; 4802 } 4803 /// Otherwise, pre-lower arguments and use intrinsic lowering utility. 4804 for (const auto &[arg, dummy] : 4805 llvm::zip(procRef.arguments(), 4806 intrinsic.characteristics.value().dummyArguments)) { 4807 const auto *expr = 4808 Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg); 4809 if (!expr) { 4810 // Absent optional. 4811 operands.emplace_back([=](IterSpace) { return mlir::Value{}; }); 4812 } else if (!argLowering) { 4813 // No argument lowering instruction, lower by value. 4814 PushSemantics(ConstituentSemantics::RefTransparent); 4815 operands.emplace_back(genElementalArgument(*expr)); 4816 } else { 4817 // Ad-hoc argument lowering handling. 4818 Fortran::lower::ArgLoweringRule argRules = 4819 Fortran::lower::lowerIntrinsicArgumentAs(getLoc(), *argLowering, 4820 dummy.name); 4821 if (argRules.handleDynamicOptional && 4822 Fortran::evaluate::MayBePassedAsAbsentOptional( 4823 *expr, converter.getFoldingContext())) { 4824 // Currently, there is not elemental intrinsic that requires lowering 4825 // a potentially absent argument to something else than a value (apart 4826 // from character MAX/MIN that are handled elsewhere.) 4827 if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value) 4828 TODO(loc, "lowering non trivial optional elemental intrinsic array " 4829 "argument"); 4830 PushSemantics(ConstituentSemantics::RefTransparent); 4831 operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr)); 4832 continue; 4833 } 4834 switch (argRules.lowerAs) { 4835 case Fortran::lower::LowerIntrinsicArgAs::Value: { 4836 PushSemantics(ConstituentSemantics::RefTransparent); 4837 operands.emplace_back(genElementalArgument(*expr)); 4838 } break; 4839 case Fortran::lower::LowerIntrinsicArgAs::Addr: { 4840 // Note: assume does not have Fortran VALUE attribute semantics. 4841 PushSemantics(ConstituentSemantics::RefOpaque); 4842 operands.emplace_back(genElementalArgument(*expr)); 4843 } break; 4844 case Fortran::lower::LowerIntrinsicArgAs::Box: { 4845 PushSemantics(ConstituentSemantics::RefOpaque); 4846 auto lambda = genElementalArgument(*expr); 4847 operands.emplace_back([=](IterSpace iters) { 4848 return builder.createBox(loc, lambda(iters)); 4849 }); 4850 } break; 4851 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 4852 TODO(loc, "intrinsic function with inquired argument"); 4853 break; 4854 } 4855 } 4856 } 4857 4858 // Let the intrinsic library lower the intrinsic procedure call 4859 return [=](IterSpace iters) { 4860 llvm::SmallVector<ExtValue> args; 4861 for (const auto &cc : operands) 4862 args.push_back(cc(iters)); 4863 return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args, 4864 getElementCtx()); 4865 }; 4866 } 4867 4868 /// Lower a procedure reference to a user-defined elemental procedure. 4869 CC genElementalUserDefinedProcRef( 4870 const Fortran::evaluate::ProcedureRef &procRef, 4871 llvm::Optional<mlir::Type> retTy) { 4872 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 4873 4874 // 10.1.4 p5. Impure elemental procedures must be called in element order. 4875 if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol()) 4876 if (!Fortran::semantics::IsPureProcedure(*procSym)) 4877 setUnordered(false); 4878 4879 Fortran::lower::CallerInterface caller(procRef, converter); 4880 llvm::SmallVector<CC> operands; 4881 operands.reserve(caller.getPassedArguments().size()); 4882 mlir::Location loc = getLoc(); 4883 mlir::FunctionType callSiteType = caller.genFunctionType(); 4884 for (const Fortran::lower::CallInterface< 4885 Fortran::lower::CallerInterface>::PassedEntity &arg : 4886 caller.getPassedArguments()) { 4887 // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout) 4888 // arguments must be called in element order. 4889 if (arg.mayBeModifiedByCall()) 4890 setUnordered(false); 4891 const auto *actual = arg.entity; 4892 mlir::Type argTy = callSiteType.getInput(arg.firArgument); 4893 if (!actual) { 4894 // Optional dummy argument for which there is no actual argument. 4895 auto absent = builder.create<fir::AbsentOp>(loc, argTy); 4896 operands.emplace_back([=](IterSpace) { return absent; }); 4897 continue; 4898 } 4899 const auto *expr = actual->UnwrapExpr(); 4900 if (!expr) 4901 TODO(loc, "assumed type actual argument lowering"); 4902 4903 LLVM_DEBUG(expr->AsFortran(llvm::dbgs() 4904 << "argument: " << arg.firArgument << " = [") 4905 << "]\n"); 4906 if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional( 4907 *expr, converter.getFoldingContext())) 4908 TODO(loc, 4909 "passing dynamically optional argument to elemental procedures"); 4910 switch (arg.passBy) { 4911 case PassBy::Value: { 4912 // True pass-by-value semantics. 4913 PushSemantics(ConstituentSemantics::RefTransparent); 4914 operands.emplace_back(genElementalArgument(*expr)); 4915 } break; 4916 case PassBy::BaseAddressValueAttribute: { 4917 // VALUE attribute or pass-by-reference to a copy semantics. (byval*) 4918 if (isArray(*expr)) { 4919 PushSemantics(ConstituentSemantics::ByValueArg); 4920 operands.emplace_back(genElementalArgument(*expr)); 4921 } else { 4922 // Store scalar value in a temp to fulfill VALUE attribute. 4923 mlir::Value val = fir::getBase(asScalar(*expr)); 4924 mlir::Value temp = builder.createTemporary( 4925 loc, val.getType(), 4926 llvm::ArrayRef<mlir::NamedAttribute>{ 4927 Fortran::lower::getAdaptToByRefAttr(builder)}); 4928 builder.create<fir::StoreOp>(loc, val, temp); 4929 operands.emplace_back( 4930 [=](IterSpace iters) -> ExtValue { return temp; }); 4931 } 4932 } break; 4933 case PassBy::BaseAddress: { 4934 if (isArray(*expr)) { 4935 PushSemantics(ConstituentSemantics::RefOpaque); 4936 operands.emplace_back(genElementalArgument(*expr)); 4937 } else { 4938 ExtValue exv = asScalarRef(*expr); 4939 operands.emplace_back([=](IterSpace iters) { return exv; }); 4940 } 4941 } break; 4942 case PassBy::CharBoxValueAttribute: { 4943 if (isArray(*expr)) { 4944 PushSemantics(ConstituentSemantics::DataValue); 4945 auto lambda = genElementalArgument(*expr); 4946 operands.emplace_back([=](IterSpace iters) { 4947 return fir::factory::CharacterExprHelper{builder, loc} 4948 .createTempFrom(lambda(iters)); 4949 }); 4950 } else { 4951 fir::factory::CharacterExprHelper helper(builder, loc); 4952 fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr)); 4953 operands.emplace_back( 4954 [=](IterSpace iters) -> ExtValue { return argVal; }); 4955 } 4956 } break; 4957 case PassBy::BoxChar: { 4958 PushSemantics(ConstituentSemantics::RefOpaque); 4959 operands.emplace_back(genElementalArgument(*expr)); 4960 } break; 4961 case PassBy::AddressAndLength: 4962 // PassBy::AddressAndLength is only used for character results. Results 4963 // are not handled here. 4964 fir::emitFatalError( 4965 loc, "unexpected PassBy::AddressAndLength in elemental call"); 4966 break; 4967 case PassBy::CharProcTuple: { 4968 ExtValue argRef = asScalarRef(*expr); 4969 mlir::Value tuple = createBoxProcCharTuple( 4970 converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); 4971 operands.emplace_back( 4972 [=](IterSpace iters) -> ExtValue { return tuple; }); 4973 } break; 4974 case PassBy::Box: 4975 case PassBy::MutableBox: 4976 // See C15100 and C15101 4977 fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE"); 4978 } 4979 } 4980 4981 if (caller.getIfIndirectCallSymbol()) 4982 fir::emitFatalError(loc, "cannot be indirect call"); 4983 4984 // The lambda is mutable so that `caller` copy can be modified inside it. 4985 return 4986 [=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue { 4987 for (const auto &[cc, argIface] : 4988 llvm::zip(operands, caller.getPassedArguments())) { 4989 auto exv = cc(iters); 4990 auto arg = exv.match( 4991 [&](const fir::CharBoxValue &cb) -> mlir::Value { 4992 return fir::factory::CharacterExprHelper{builder, loc} 4993 .createEmbox(cb); 4994 }, 4995 [&](const auto &) { return fir::getBase(exv); }); 4996 caller.placeInput(argIface, arg); 4997 } 4998 return ScalarExprLowering{loc, converter, symMap, getElementCtx()} 4999 .genCallOpAndResult(caller, callSiteType, retTy); 5000 }; 5001 } 5002 5003 /// Generate a procedure reference. This code is shared for both functions and 5004 /// subroutines, the difference being reflected by `retTy`. 5005 CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef, 5006 llvm::Optional<mlir::Type> retTy) { 5007 mlir::Location loc = getLoc(); 5008 if (procRef.IsElemental()) { 5009 if (const Fortran::evaluate::SpecificIntrinsic *intrin = 5010 procRef.proc().GetSpecificIntrinsic()) { 5011 // All elemental intrinsic functions are pure and cannot modify their 5012 // arguments. The only elemental subroutine, MVBITS has an Intent(inout) 5013 // argument. So for this last one, loops must be in element order 5014 // according to 15.8.3 p1. 5015 if (!retTy) 5016 setUnordered(false); 5017 5018 // Elemental intrinsic call. 5019 // The intrinsic procedure is called once per element of the array. 5020 return genElementalIntrinsicProcRef(procRef, retTy, *intrin); 5021 } 5022 if (ScalarExprLowering::isStatementFunctionCall(procRef)) 5023 fir::emitFatalError(loc, "statement function cannot be elemental"); 5024 5025 // Elemental call. 5026 // The procedure is called once per element of the array argument(s). 5027 return genElementalUserDefinedProcRef(procRef, retTy); 5028 } 5029 5030 // Transformational call. 5031 // The procedure is called once and produces a value of rank > 0. 5032 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 5033 procRef.proc().GetSpecificIntrinsic()) { 5034 if (explicitSpaceIsActive() && procRef.Rank() == 0) { 5035 // Elide any implicit loop iters. 5036 return [=, &procRef](IterSpace) { 5037 return ScalarExprLowering{loc, converter, symMap, stmtCtx} 5038 .genIntrinsicRef(procRef, *intrinsic, retTy); 5039 }; 5040 } 5041 return genarr( 5042 ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef( 5043 procRef, *intrinsic, retTy)); 5044 } 5045 5046 if (explicitSpaceIsActive() && procRef.Rank() == 0) { 5047 // Elide any implicit loop iters. 5048 return [=, &procRef](IterSpace) { 5049 return ScalarExprLowering{loc, converter, symMap, stmtCtx} 5050 .genProcedureRef(procRef, retTy); 5051 }; 5052 } 5053 // In the default case, the call can be hoisted out of the loop nest. Apply 5054 // the iterations to the result, which may be an array value. 5055 return genarr( 5056 ScalarExprLowering{loc, converter, symMap, stmtCtx}.genProcedureRef( 5057 procRef, retTy)); 5058 } 5059 5060 CC genarr(const Fortran::evaluate::ProcedureDesignator &) { 5061 TODO(getLoc(), "procedure designator"); 5062 } 5063 CC genarr(const Fortran::evaluate::ProcedureRef &x) { 5064 if (x.hasAlternateReturns()) 5065 fir::emitFatalError(getLoc(), 5066 "array procedure reference with alt-return"); 5067 return genProcRef(x, llvm::None); 5068 } 5069 template <typename A> 5070 CC genScalarAndForwardValue(const A &x) { 5071 ExtValue result = asScalar(x); 5072 return [=](IterSpace) { return result; }; 5073 } 5074 template <typename A, typename = std::enable_if_t<Fortran::common::HasMember< 5075 A, Fortran::evaluate::TypelessExpression>>> 5076 CC genarr(const A &x) { 5077 return genScalarAndForwardValue(x); 5078 } 5079 5080 template <typename A> 5081 CC genarr(const Fortran::evaluate::Expr<A> &x) { 5082 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x)); 5083 if (isArray(x) || explicitSpaceIsActive() || 5084 isElementalProcWithArrayArgs(x)) 5085 return std::visit([&](const auto &e) { return genarr(e); }, x.u); 5086 return genScalarAndForwardValue(x); 5087 } 5088 5089 // Converting a value of memory bound type requires creating a temp and 5090 // copying the value. 5091 static ExtValue convertAdjustedType(fir::FirOpBuilder &builder, 5092 mlir::Location loc, mlir::Type toType, 5093 const ExtValue &exv) { 5094 return exv.match( 5095 [&](const fir::CharBoxValue &cb) -> ExtValue { 5096 mlir::Value len = cb.getLen(); 5097 auto mem = 5098 builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len}); 5099 fir::CharBoxValue result(mem, len); 5100 fir::factory::CharacterExprHelper{builder, loc}.createAssign( 5101 ExtValue{result}, exv); 5102 return result; 5103 }, 5104 [&](const auto &) -> ExtValue { 5105 fir::emitFatalError(loc, "convert on adjusted extended value"); 5106 }); 5107 } 5108 template <Fortran::common::TypeCategory TC1, int KIND, 5109 Fortran::common::TypeCategory TC2> 5110 CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, 5111 TC2> &x) { 5112 mlir::Location loc = getLoc(); 5113 auto lambda = genarr(x.left()); 5114 mlir::Type ty = converter.genType(TC1, KIND); 5115 return [=](IterSpace iters) -> ExtValue { 5116 auto exv = lambda(iters); 5117 mlir::Value val = fir::getBase(exv); 5118 auto valTy = val.getType(); 5119 if (elementTypeWasAdjusted(valTy) && 5120 !(fir::isa_ref_type(valTy) && fir::isa_integer(ty))) 5121 return convertAdjustedType(builder, loc, ty, exv); 5122 return builder.createConvert(loc, ty, val); 5123 }; 5124 } 5125 5126 template <int KIND> 5127 CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) { 5128 mlir::Location loc = getLoc(); 5129 auto lambda = genarr(x.left()); 5130 bool isImagPart = x.isImaginaryPart; 5131 return [=](IterSpace iters) -> ExtValue { 5132 mlir::Value lhs = fir::getBase(lambda(iters)); 5133 return fir::factory::Complex{builder, loc}.extractComplexPart(lhs, 5134 isImagPart); 5135 }; 5136 } 5137 5138 template <typename T> 5139 CC genarr(const Fortran::evaluate::Parentheses<T> &x) { 5140 mlir::Location loc = getLoc(); 5141 if (isReferentiallyOpaque()) { 5142 // Context is a call argument in, for example, an elemental procedure 5143 // call. TODO: all array arguments should use array_load, array_access, 5144 // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have 5145 // array_merge_store ops. 5146 TODO(loc, "parentheses on argument in elemental call"); 5147 } 5148 auto f = genarr(x.left()); 5149 return [=](IterSpace iters) -> ExtValue { 5150 auto val = f(iters); 5151 mlir::Value base = fir::getBase(val); 5152 auto newBase = 5153 builder.create<fir::NoReassocOp>(loc, base.getType(), base); 5154 return fir::substBase(val, newBase); 5155 }; 5156 } 5157 template <int KIND> 5158 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5159 Fortran::common::TypeCategory::Integer, KIND>> &x) { 5160 mlir::Location loc = getLoc(); 5161 auto f = genarr(x.left()); 5162 return [=](IterSpace iters) -> ExtValue { 5163 mlir::Value val = fir::getBase(f(iters)); 5164 mlir::Type ty = 5165 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 5166 mlir::Value zero = builder.createIntegerConstant(loc, ty, 0); 5167 return builder.create<mlir::arith::SubIOp>(loc, zero, val); 5168 }; 5169 } 5170 template <int KIND> 5171 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5172 Fortran::common::TypeCategory::Real, KIND>> &x) { 5173 mlir::Location loc = getLoc(); 5174 auto f = genarr(x.left()); 5175 return [=](IterSpace iters) -> ExtValue { 5176 return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters))); 5177 }; 5178 } 5179 template <int KIND> 5180 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5181 Fortran::common::TypeCategory::Complex, KIND>> &x) { 5182 mlir::Location loc = getLoc(); 5183 auto f = genarr(x.left()); 5184 return [=](IterSpace iters) -> ExtValue { 5185 return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters))); 5186 }; 5187 } 5188 5189 //===--------------------------------------------------------------------===// 5190 // Binary elemental ops 5191 //===--------------------------------------------------------------------===// 5192 5193 template <typename OP, typename A> 5194 CC createBinaryOp(const A &evEx) { 5195 mlir::Location loc = getLoc(); 5196 auto lambda = genarr(evEx.left()); 5197 auto rf = genarr(evEx.right()); 5198 return [=](IterSpace iters) -> ExtValue { 5199 mlir::Value left = fir::getBase(lambda(iters)); 5200 mlir::Value right = fir::getBase(rf(iters)); 5201 return builder.create<OP>(loc, left, right); 5202 }; 5203 } 5204 5205 #undef GENBIN 5206 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ 5207 template <int KIND> \ 5208 CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ 5209 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ 5210 return createBinaryOp<GenBinFirOp>(x); \ 5211 } 5212 5213 GENBIN(Add, Integer, mlir::arith::AddIOp) 5214 GENBIN(Add, Real, mlir::arith::AddFOp) 5215 GENBIN(Add, Complex, fir::AddcOp) 5216 GENBIN(Subtract, Integer, mlir::arith::SubIOp) 5217 GENBIN(Subtract, Real, mlir::arith::SubFOp) 5218 GENBIN(Subtract, Complex, fir::SubcOp) 5219 GENBIN(Multiply, Integer, mlir::arith::MulIOp) 5220 GENBIN(Multiply, Real, mlir::arith::MulFOp) 5221 GENBIN(Multiply, Complex, fir::MulcOp) 5222 GENBIN(Divide, Integer, mlir::arith::DivSIOp) 5223 GENBIN(Divide, Real, mlir::arith::DivFOp) 5224 GENBIN(Divide, Complex, fir::DivcOp) 5225 5226 template <Fortran::common::TypeCategory TC, int KIND> 5227 CC genarr( 5228 const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { 5229 mlir::Location loc = getLoc(); 5230 mlir::Type ty = converter.genType(TC, KIND); 5231 auto lf = genarr(x.left()); 5232 auto rf = genarr(x.right()); 5233 return [=](IterSpace iters) -> ExtValue { 5234 mlir::Value lhs = fir::getBase(lf(iters)); 5235 mlir::Value rhs = fir::getBase(rf(iters)); 5236 return Fortran::lower::genPow(builder, loc, ty, lhs, rhs); 5237 }; 5238 } 5239 template <Fortran::common::TypeCategory TC, int KIND> 5240 CC genarr( 5241 const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { 5242 mlir::Location loc = getLoc(); 5243 auto lf = genarr(x.left()); 5244 auto rf = genarr(x.right()); 5245 switch (x.ordering) { 5246 case Fortran::evaluate::Ordering::Greater: 5247 return [=](IterSpace iters) -> ExtValue { 5248 mlir::Value lhs = fir::getBase(lf(iters)); 5249 mlir::Value rhs = fir::getBase(rf(iters)); 5250 return Fortran::lower::genMax(builder, loc, 5251 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 5252 }; 5253 case Fortran::evaluate::Ordering::Less: 5254 return [=](IterSpace iters) -> ExtValue { 5255 mlir::Value lhs = fir::getBase(lf(iters)); 5256 mlir::Value rhs = fir::getBase(rf(iters)); 5257 return Fortran::lower::genMin(builder, loc, 5258 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 5259 }; 5260 case Fortran::evaluate::Ordering::Equal: 5261 llvm_unreachable("Equal is not a valid ordering in this context"); 5262 } 5263 llvm_unreachable("unknown ordering"); 5264 } 5265 template <Fortran::common::TypeCategory TC, int KIND> 5266 CC genarr( 5267 const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> 5268 &x) { 5269 mlir::Location loc = getLoc(); 5270 auto ty = converter.genType(TC, KIND); 5271 auto lf = genarr(x.left()); 5272 auto rf = genarr(x.right()); 5273 return [=](IterSpace iters) { 5274 mlir::Value lhs = fir::getBase(lf(iters)); 5275 mlir::Value rhs = fir::getBase(rf(iters)); 5276 return Fortran::lower::genPow(builder, loc, ty, lhs, rhs); 5277 }; 5278 } 5279 template <int KIND> 5280 CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) { 5281 mlir::Location loc = getLoc(); 5282 auto lf = genarr(x.left()); 5283 auto rf = genarr(x.right()); 5284 return [=](IterSpace iters) -> ExtValue { 5285 mlir::Value lhs = fir::getBase(lf(iters)); 5286 mlir::Value rhs = fir::getBase(rf(iters)); 5287 return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs); 5288 }; 5289 } 5290 5291 /// Fortran's concatenation operator `//`. 5292 template <int KIND> 5293 CC genarr(const Fortran::evaluate::Concat<KIND> &x) { 5294 mlir::Location loc = getLoc(); 5295 auto lf = genarr(x.left()); 5296 auto rf = genarr(x.right()); 5297 return [=](IterSpace iters) -> ExtValue { 5298 auto lhs = lf(iters); 5299 auto rhs = rf(iters); 5300 const fir::CharBoxValue *lchr = lhs.getCharBox(); 5301 const fir::CharBoxValue *rchr = rhs.getCharBox(); 5302 if (lchr && rchr) { 5303 return fir::factory::CharacterExprHelper{builder, loc} 5304 .createConcatenate(*lchr, *rchr); 5305 } 5306 TODO(loc, "concat on unexpected extended values"); 5307 return mlir::Value{}; 5308 }; 5309 } 5310 5311 template <int KIND> 5312 CC genarr(const Fortran::evaluate::SetLength<KIND> &x) { 5313 auto lf = genarr(x.left()); 5314 mlir::Value rhs = fir::getBase(asScalar(x.right())); 5315 return [=](IterSpace iters) -> ExtValue { 5316 mlir::Value lhs = fir::getBase(lf(iters)); 5317 return fir::CharBoxValue{lhs, rhs}; 5318 }; 5319 } 5320 5321 template <typename A> 5322 CC genarr(const Fortran::evaluate::Constant<A> &x) { 5323 if (/*explicitSpaceIsActive() &&*/ x.Rank() == 0) 5324 return genScalarAndForwardValue(x); 5325 mlir::Location loc = getLoc(); 5326 mlir::IndexType idxTy = builder.getIndexType(); 5327 mlir::Type arrTy = converter.genType(toEvExpr(x)); 5328 std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x); 5329 fir::GlobalOp global = builder.getNamedGlobal(globalName); 5330 if (!global) { 5331 mlir::Type symTy = arrTy; 5332 mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy(); 5333 // If we have a rank-1 array of integer, real, or logical, then we can 5334 // create a global array with the dense attribute. 5335 // 5336 // The mlir tensor type can only handle integer, real, or logical. It 5337 // does not currently support nested structures which is required for 5338 // complex. 5339 // 5340 // Also, we currently handle just rank-1 since tensor type assumes 5341 // row major array ordering. We will need to reorder the dimensions 5342 // in the tensor type to support Fortran's column major array ordering. 5343 // How to create this tensor type is to be determined. 5344 if (x.Rank() == 1 && 5345 eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>()) 5346 global = Fortran::lower::createDenseGlobal( 5347 loc, arrTy, globalName, builder.createInternalLinkage(), true, 5348 toEvExpr(x), converter); 5349 // Note: If call to createDenseGlobal() returns 0, then call 5350 // createGlobalConstant() below. 5351 if (!global) 5352 global = builder.createGlobalConstant( 5353 loc, arrTy, globalName, 5354 [&](fir::FirOpBuilder &builder) { 5355 Fortran::lower::StatementContext stmtCtx( 5356 /*cleanupProhibited=*/true); 5357 fir::ExtendedValue result = 5358 Fortran::lower::createSomeInitializerExpression( 5359 loc, converter, toEvExpr(x), symMap, stmtCtx); 5360 mlir::Value castTo = 5361 builder.createConvert(loc, arrTy, fir::getBase(result)); 5362 builder.create<fir::HasValueOp>(loc, castTo); 5363 }, 5364 builder.createInternalLinkage()); 5365 } 5366 auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(), 5367 global.getSymbol()); 5368 auto seqTy = global.getType().cast<fir::SequenceType>(); 5369 llvm::SmallVector<mlir::Value> extents; 5370 for (auto extent : seqTy.getShape()) 5371 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 5372 if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) { 5373 mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(), 5374 charTy.getLen()); 5375 return genarr(fir::CharArrayBoxValue{addr, len, extents}); 5376 } 5377 return genarr(fir::ArrayBoxValue{addr, extents}); 5378 } 5379 5380 //===--------------------------------------------------------------------===// 5381 // A vector subscript expression may be wrapped with a cast to INTEGER*8. 5382 // Get rid of it here so the vector can be loaded. Add it back when 5383 // generating the elemental evaluation (inside the loop nest). 5384 5385 static Fortran::lower::SomeExpr 5386 ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type< 5387 Fortran::common::TypeCategory::Integer, 8>> &x) { 5388 return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u); 5389 } 5390 template <Fortran::common::TypeCategory FROM> 5391 static Fortran::lower::SomeExpr ignoreEvConvert( 5392 const Fortran::evaluate::Convert< 5393 Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>, 5394 FROM> &x) { 5395 return toEvExpr(x.left()); 5396 } 5397 template <typename A> 5398 static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) { 5399 return toEvExpr(x); 5400 } 5401 5402 //===--------------------------------------------------------------------===// 5403 // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can 5404 // be used to determine the lbound, ubound of the vector. 5405 5406 template <typename A> 5407 static const Fortran::semantics::Symbol * 5408 extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) { 5409 return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); }, 5410 x.u); 5411 } 5412 template <typename A> 5413 static const Fortran::semantics::Symbol * 5414 extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) { 5415 return Fortran::evaluate::UnwrapWholeSymbolDataRef(x); 5416 } 5417 template <typename A> 5418 static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) { 5419 return nullptr; 5420 } 5421 5422 //===--------------------------------------------------------------------===// 5423 5424 /// Get the declared lower bound value of the array `x` in dimension `dim`. 5425 /// The argument `one` must be an ssa-value for the constant 1. 5426 mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) { 5427 return fir::factory::readLowerBound(builder, getLoc(), x, dim, one); 5428 } 5429 5430 /// Get the declared upper bound value of the array `x` in dimension `dim`. 5431 /// The argument `one` must be an ssa-value for the constant 1. 5432 mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) { 5433 mlir::Location loc = getLoc(); 5434 mlir::Value lb = getLBound(x, dim, one); 5435 mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim); 5436 auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); 5437 return builder.create<mlir::arith::SubIOp>(loc, add, one); 5438 } 5439 5440 /// Return the extent of the boxed array `x` in dimesion `dim`. 5441 mlir::Value getExtent(const ExtValue &x, unsigned dim) { 5442 return fir::factory::readExtent(builder, getLoc(), x, dim); 5443 } 5444 5445 template <typename A> 5446 ExtValue genArrayBase(const A &base) { 5447 ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx}; 5448 return base.IsSymbol() ? sel.gen(getFirstSym(base)) 5449 : sel.gen(base.GetComponent()); 5450 } 5451 5452 template <typename A> 5453 bool hasEvArrayRef(const A &x) { 5454 struct HasEvArrayRefHelper 5455 : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> { 5456 HasEvArrayRefHelper() 5457 : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {} 5458 using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator(); 5459 bool operator()(const Fortran::evaluate::ArrayRef &) const { 5460 return true; 5461 } 5462 } helper; 5463 return helper(x); 5464 } 5465 5466 CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr, 5467 std::size_t dim) { 5468 PushSemantics(ConstituentSemantics::RefTransparent); 5469 auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr); 5470 llvm::SmallVector<mlir::Value> savedDestShape = destShape; 5471 destShape.clear(); 5472 auto result = genarr(expr); 5473 if (destShape.empty()) 5474 TODO(getLoc(), "expected vector to have an extent"); 5475 assert(destShape.size() == 1 && "vector has rank > 1"); 5476 if (destShape[0] != savedDestShape[dim]) { 5477 // Not the same, so choose the smaller value. 5478 mlir::Location loc = getLoc(); 5479 auto cmp = builder.create<mlir::arith::CmpIOp>( 5480 loc, mlir::arith::CmpIPredicate::sgt, destShape[0], 5481 savedDestShape[dim]); 5482 auto sel = builder.create<mlir::arith::SelectOp>( 5483 loc, cmp, savedDestShape[dim], destShape[0]); 5484 savedDestShape[dim] = sel; 5485 destShape = savedDestShape; 5486 } 5487 return result; 5488 } 5489 5490 /// Generate an access by vector subscript using the index in the iteration 5491 /// vector at `dim`. 5492 mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch, 5493 IterSpace iters, std::size_t dim) { 5494 IterationSpace vecIters(iters, 5495 llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)}); 5496 fir::ExtendedValue fetch = genArrFetch(vecIters); 5497 mlir::IndexType idxTy = builder.getIndexType(); 5498 return builder.createConvert(loc, idxTy, fir::getBase(fetch)); 5499 } 5500 5501 /// When we have an array reference, the expressions specified in each 5502 /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple 5503 /// (loop-invarianet) scalar expressions. This returns the base entity, the 5504 /// resulting type, and a continuation to adjust the default iteration space. 5505 void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv, 5506 const Fortran::evaluate::ArrayRef &x, bool atBase) { 5507 mlir::Location loc = getLoc(); 5508 mlir::IndexType idxTy = builder.getIndexType(); 5509 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 5510 llvm::SmallVector<mlir::Value> &trips = cmptData.trips; 5511 LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n'); 5512 auto &pc = cmptData.pc; 5513 const bool useTripsForSlice = !explicitSpaceIsActive(); 5514 const bool createDestShape = destShape.empty(); 5515 bool useSlice = false; 5516 std::size_t shapeIndex = 0; 5517 for (auto sub : llvm::enumerate(x.subscript())) { 5518 const std::size_t subsIndex = sub.index(); 5519 std::visit( 5520 Fortran::common::visitors{ 5521 [&](const Fortran::evaluate::Triplet &t) { 5522 mlir::Value lowerBound; 5523 if (auto optLo = t.lower()) 5524 lowerBound = fir::getBase(asScalar(*optLo)); 5525 else 5526 lowerBound = getLBound(arrayExv, subsIndex, one); 5527 lowerBound = builder.createConvert(loc, idxTy, lowerBound); 5528 mlir::Value stride = fir::getBase(asScalar(t.stride())); 5529 stride = builder.createConvert(loc, idxTy, stride); 5530 if (useTripsForSlice || createDestShape) { 5531 // Generate a slice operation for the triplet. The first and 5532 // second position of the triplet may be omitted, and the 5533 // declared lbound and/or ubound expression values, 5534 // respectively, should be used instead. 5535 trips.push_back(lowerBound); 5536 mlir::Value upperBound; 5537 if (auto optUp = t.upper()) 5538 upperBound = fir::getBase(asScalar(*optUp)); 5539 else 5540 upperBound = getUBound(arrayExv, subsIndex, one); 5541 upperBound = builder.createConvert(loc, idxTy, upperBound); 5542 trips.push_back(upperBound); 5543 trips.push_back(stride); 5544 if (createDestShape) { 5545 auto extent = builder.genExtentFromTriplet( 5546 loc, lowerBound, upperBound, stride, idxTy); 5547 destShape.push_back(extent); 5548 } 5549 useSlice = true; 5550 } 5551 if (!useTripsForSlice) { 5552 auto currentPC = pc; 5553 pc = [=](IterSpace iters) { 5554 IterationSpace newIters = currentPC(iters); 5555 mlir::Value impliedIter = newIters.iterValue(subsIndex); 5556 // FIXME: must use the lower bound of this component. 5557 auto arrLowerBound = 5558 atBase ? getLBound(arrayExv, subsIndex, one) : one; 5559 auto initial = builder.create<mlir::arith::SubIOp>( 5560 loc, lowerBound, arrLowerBound); 5561 auto prod = builder.create<mlir::arith::MulIOp>( 5562 loc, impliedIter, stride); 5563 auto result = 5564 builder.create<mlir::arith::AddIOp>(loc, initial, prod); 5565 newIters.setIndexValue(subsIndex, result); 5566 return newIters; 5567 }; 5568 } 5569 shapeIndex++; 5570 }, 5571 [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) { 5572 const auto &e = ie.value(); // dereference 5573 if (isArray(e)) { 5574 // This is a vector subscript. Use the index values as read 5575 // from a vector to determine the temporary array value. 5576 // Note: 9.5.3.3.3(3) specifies undefined behavior for 5577 // multiple updates to any specific array element through a 5578 // vector subscript with replicated values. 5579 assert(!isBoxValue() && 5580 "fir.box cannot be created with vector subscripts"); 5581 auto arrExpr = ignoreEvConvert(e); 5582 if (createDestShape) 5583 destShape.push_back(fir::factory::getExtentAtDimension( 5584 loc, builder, arrayExv, subsIndex)); 5585 auto genArrFetch = 5586 genVectorSubscriptArrayFetch(arrExpr, shapeIndex); 5587 auto currentPC = pc; 5588 pc = [=](IterSpace iters) { 5589 IterationSpace newIters = currentPC(iters); 5590 auto val = genAccessByVector(loc, genArrFetch, newIters, 5591 subsIndex); 5592 // Value read from vector subscript array and normalized 5593 // using the base array's lower bound value. 5594 mlir::Value lb = fir::factory::readLowerBound( 5595 builder, loc, arrayExv, subsIndex, one); 5596 auto origin = builder.create<mlir::arith::SubIOp>( 5597 loc, idxTy, val, lb); 5598 newIters.setIndexValue(subsIndex, origin); 5599 return newIters; 5600 }; 5601 if (useTripsForSlice) { 5602 LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape = 5603 getShape(arrayOperands.back()); 5604 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 5605 trips.push_back(undef); 5606 trips.push_back(undef); 5607 trips.push_back(undef); 5608 } 5609 shapeIndex++; 5610 } else { 5611 // This is a regular scalar subscript. 5612 if (useTripsForSlice) { 5613 // A regular scalar index, which does not yield an array 5614 // section. Use a degenerate slice operation 5615 // `(e:undef:undef)` in this dimension as a placeholder. 5616 // This does not necessarily change the rank of the original 5617 // array, so the iteration space must also be extended to 5618 // include this expression in this dimension to adjust to 5619 // the array's declared rank. 5620 mlir::Value v = fir::getBase(asScalar(e)); 5621 trips.push_back(v); 5622 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 5623 trips.push_back(undef); 5624 trips.push_back(undef); 5625 auto currentPC = pc; 5626 // Cast `e` to index type. 5627 mlir::Value iv = builder.createConvert(loc, idxTy, v); 5628 // Normalize `e` by subtracting the declared lbound. 5629 mlir::Value lb = fir::factory::readLowerBound( 5630 builder, loc, arrayExv, subsIndex, one); 5631 mlir::Value ivAdj = 5632 builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb); 5633 // Add lbound adjusted value of `e` to the iteration vector 5634 // (except when creating a box because the iteration vector 5635 // is empty). 5636 if (!isBoxValue()) 5637 pc = [=](IterSpace iters) { 5638 IterationSpace newIters = currentPC(iters); 5639 newIters.insertIndexValue(subsIndex, ivAdj); 5640 return newIters; 5641 }; 5642 } else { 5643 auto currentPC = pc; 5644 mlir::Value newValue = fir::getBase(asScalarArray(e)); 5645 mlir::Value result = 5646 builder.createConvert(loc, idxTy, newValue); 5647 mlir::Value lb = fir::factory::readLowerBound( 5648 builder, loc, arrayExv, subsIndex, one); 5649 result = builder.create<mlir::arith::SubIOp>(loc, idxTy, 5650 result, lb); 5651 pc = [=](IterSpace iters) { 5652 IterationSpace newIters = currentPC(iters); 5653 newIters.insertIndexValue(subsIndex, result); 5654 return newIters; 5655 }; 5656 } 5657 } 5658 }}, 5659 sub.value().u); 5660 } 5661 if (!useSlice) 5662 trips.clear(); 5663 } 5664 5665 static mlir::Type unwrapBoxEleTy(mlir::Type ty) { 5666 if (auto boxTy = ty.dyn_cast<fir::BoxType>()) 5667 return fir::unwrapRefType(boxTy.getEleTy()); 5668 return ty; 5669 } 5670 5671 llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) { 5672 llvm::SmallVector<mlir::Value> result; 5673 ty = unwrapBoxEleTy(ty); 5674 mlir::Location loc = getLoc(); 5675 mlir::IndexType idxTy = builder.getIndexType(); 5676 for (auto extent : ty.cast<fir::SequenceType>().getShape()) { 5677 auto v = extent == fir::SequenceType::getUnknownExtent() 5678 ? builder.create<fir::UndefOp>(loc, idxTy).getResult() 5679 : builder.createIntegerConstant(loc, idxTy, extent); 5680 result.push_back(v); 5681 } 5682 return result; 5683 } 5684 5685 CC genarr(const Fortran::semantics::SymbolRef &sym, 5686 ComponentPath &components) { 5687 return genarr(sym.get(), components); 5688 } 5689 5690 ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) { 5691 return convertToArrayBoxValue(getLoc(), builder, val, len); 5692 } 5693 5694 CC genarr(const ExtValue &extMemref) { 5695 ComponentPath dummy(/*isImplicit=*/true); 5696 return genarr(extMemref, dummy); 5697 } 5698 5699 /// Base case of generating an array reference, 5700 CC genarr(const ExtValue &extMemref, ComponentPath &components) { 5701 mlir::Location loc = getLoc(); 5702 mlir::Value memref = fir::getBase(extMemref); 5703 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType()); 5704 assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array"); 5705 mlir::Value shape = builder.createShape(loc, extMemref); 5706 mlir::Value slice; 5707 if (components.isSlice()) { 5708 if (isBoxValue() && components.substring) { 5709 // Append the substring operator to emboxing Op as it will become an 5710 // interior adjustment (add offset, adjust LEN) to the CHARACTER value 5711 // being referenced in the descriptor. 5712 llvm::SmallVector<mlir::Value> substringBounds; 5713 populateBounds(substringBounds, components.substring); 5714 // Convert to (offset, size) 5715 mlir::Type iTy = substringBounds[0].getType(); 5716 if (substringBounds.size() != 2) { 5717 fir::CharacterType charTy = 5718 fir::factory::CharacterExprHelper::getCharType(arrTy); 5719 if (charTy.hasConstantLen()) { 5720 mlir::IndexType idxTy = builder.getIndexType(); 5721 fir::CharacterType::LenType charLen = charTy.getLen(); 5722 mlir::Value lenValue = 5723 builder.createIntegerConstant(loc, idxTy, charLen); 5724 substringBounds.push_back(lenValue); 5725 } else { 5726 llvm::SmallVector<mlir::Value> typeparams = 5727 fir::getTypeParams(extMemref); 5728 substringBounds.push_back(typeparams.back()); 5729 } 5730 } 5731 // Convert the lower bound to 0-based substring. 5732 mlir::Value one = 5733 builder.createIntegerConstant(loc, substringBounds[0].getType(), 1); 5734 substringBounds[0] = 5735 builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one); 5736 // Convert the upper bound to a length. 5737 mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]); 5738 mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0); 5739 auto size = 5740 builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]); 5741 auto cmp = builder.create<mlir::arith::CmpIOp>( 5742 loc, mlir::arith::CmpIPredicate::sgt, size, zero); 5743 // size = MAX(upper - (lower - 1), 0) 5744 substringBounds[1] = 5745 builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero); 5746 slice = builder.create<fir::SliceOp>(loc, components.trips, 5747 components.suffixComponents, 5748 substringBounds); 5749 } else { 5750 slice = builder.createSlice(loc, extMemref, components.trips, 5751 components.suffixComponents); 5752 } 5753 if (components.hasComponents()) { 5754 auto seqTy = arrTy.cast<fir::SequenceType>(); 5755 mlir::Type eleTy = 5756 fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents); 5757 if (!eleTy) 5758 fir::emitFatalError(loc, "slicing path is ill-formed"); 5759 if (auto realTy = eleTy.dyn_cast<fir::RealType>()) 5760 eleTy = Fortran::lower::convertReal(realTy.getContext(), 5761 realTy.getFKind()); 5762 5763 // create the type of the projected array. 5764 arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy); 5765 LLVM_DEBUG(llvm::dbgs() 5766 << "type of array projection from component slicing: " 5767 << eleTy << ", " << arrTy << '\n'); 5768 } 5769 } 5770 arrayOperands.push_back(ArrayOperand{memref, shape, slice}); 5771 if (destShape.empty()) 5772 destShape = getShape(arrayOperands.back()); 5773 if (isBoxValue()) { 5774 // Semantics are a reference to a boxed array. 5775 // This case just requires that an embox operation be created to box the 5776 // value. The value of the box is forwarded in the continuation. 5777 mlir::Type reduceTy = reduceRank(arrTy, slice); 5778 auto boxTy = fir::BoxType::get(reduceTy); 5779 if (components.substring) { 5780 // Adjust char length to substring size. 5781 fir::CharacterType charTy = 5782 fir::factory::CharacterExprHelper::getCharType(reduceTy); 5783 auto seqTy = reduceTy.cast<fir::SequenceType>(); 5784 // TODO: Use a constant for fir.char LEN if we can compute it. 5785 boxTy = fir::BoxType::get( 5786 fir::SequenceType::get(fir::CharacterType::getUnknownLen( 5787 builder.getContext(), charTy.getFKind()), 5788 seqTy.getDimension())); 5789 } 5790 mlir::Value embox = 5791 memref.getType().isa<fir::BoxType>() 5792 ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice) 5793 .getResult() 5794 : builder 5795 .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice, 5796 fir::getTypeParams(extMemref)) 5797 .getResult(); 5798 return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); }; 5799 } 5800 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 5801 if (isReferentiallyOpaque()) { 5802 // Semantics are an opaque reference to an array. 5803 // This case forwards a continuation that will generate the address 5804 // arithmetic to the array element. This does not have copy-in/copy-out 5805 // semantics. No attempt to copy the array value will be made during the 5806 // interpretation of the Fortran statement. 5807 mlir::Type refEleTy = builder.getRefType(eleTy); 5808 return [=](IterSpace iters) -> ExtValue { 5809 // ArrayCoorOp does not expect zero based indices. 5810 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 5811 loc, builder, memref.getType(), shape, iters.iterVec()); 5812 mlir::Value coor = builder.create<fir::ArrayCoorOp>( 5813 loc, refEleTy, memref, shape, slice, indices, 5814 fir::getTypeParams(extMemref)); 5815 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 5816 llvm::SmallVector<mlir::Value> substringBounds; 5817 populateBounds(substringBounds, components.substring); 5818 if (!substringBounds.empty()) { 5819 mlir::Value dstLen = fir::factory::genLenOfCharacter( 5820 builder, loc, arrTy.cast<fir::SequenceType>(), memref, 5821 fir::getTypeParams(extMemref), iters.iterVec(), 5822 substringBounds); 5823 fir::CharBoxValue dstChar(coor, dstLen); 5824 return fir::factory::CharacterExprHelper{builder, loc} 5825 .createSubstring(dstChar, substringBounds); 5826 } 5827 } 5828 return fir::factory::arraySectionElementToExtendedValue( 5829 builder, loc, extMemref, coor, slice); 5830 }; 5831 } 5832 auto arrLoad = builder.create<fir::ArrayLoadOp>( 5833 loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref)); 5834 mlir::Value arrLd = arrLoad.getResult(); 5835 if (isProjectedCopyInCopyOut()) { 5836 // Semantics are projected copy-in copy-out. 5837 // The backing store of the destination of an array expression may be 5838 // partially modified. These updates are recorded in FIR by forwarding a 5839 // continuation that generates an `array_update` Op. The destination is 5840 // always loaded at the beginning of the statement and merged at the 5841 // end. 5842 destination = arrLoad; 5843 auto lambda = ccStoreToDest.hasValue() 5844 ? ccStoreToDest.getValue() 5845 : defaultStoreToDestination(components.substring); 5846 return [=](IterSpace iters) -> ExtValue { return lambda(iters); }; 5847 } 5848 if (isCustomCopyInCopyOut()) { 5849 // Create an array_modify to get the LHS element address and indicate 5850 // the assignment, the actual assignment must be implemented in 5851 // ccStoreToDest. 5852 destination = arrLoad; 5853 return [=](IterSpace iters) -> ExtValue { 5854 mlir::Value innerArg = iters.innerArgument(); 5855 mlir::Type resTy = innerArg.getType(); 5856 mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec()); 5857 mlir::Type refEleTy = 5858 fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); 5859 auto arrModify = builder.create<fir::ArrayModifyOp>( 5860 loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(), 5861 destination.getTypeparams()); 5862 return abstractArrayExtValue(arrModify.getResult(1)); 5863 }; 5864 } 5865 if (isCopyInCopyOut()) { 5866 // Semantics are copy-in copy-out. 5867 // The continuation simply forwards the result of the `array_load` Op, 5868 // which is the value of the array as it was when loaded. All data 5869 // references with rank > 0 in an array expression typically have 5870 // copy-in copy-out semantics. 5871 return [=](IterSpace) -> ExtValue { return arrLd; }; 5872 } 5873 mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); 5874 if (isValueAttribute()) { 5875 // Semantics are value attribute. 5876 // Here the continuation will `array_fetch` a value from an array and 5877 // then store that value in a temporary. One can thus imitate pass by 5878 // value even when the call is pass by reference. 5879 return [=](IterSpace iters) -> ExtValue { 5880 mlir::Value base; 5881 mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); 5882 if (isAdjustedArrayElementType(eleTy)) { 5883 mlir::Type eleRefTy = builder.getRefType(eleTy); 5884 base = builder.create<fir::ArrayAccessOp>( 5885 loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); 5886 } else { 5887 base = builder.create<fir::ArrayFetchOp>( 5888 loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); 5889 } 5890 mlir::Value temp = builder.createTemporary( 5891 loc, base.getType(), 5892 llvm::ArrayRef<mlir::NamedAttribute>{ 5893 Fortran::lower::getAdaptToByRefAttr(builder)}); 5894 builder.create<fir::StoreOp>(loc, base, temp); 5895 return fir::factory::arraySectionElementToExtendedValue( 5896 builder, loc, extMemref, temp, slice); 5897 }; 5898 } 5899 // In the default case, the array reference forwards an `array_fetch` or 5900 // `array_access` Op in the continuation. 5901 return [=](IterSpace iters) -> ExtValue { 5902 mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); 5903 if (isAdjustedArrayElementType(eleTy)) { 5904 mlir::Type eleRefTy = builder.getRefType(eleTy); 5905 mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>( 5906 loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); 5907 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 5908 llvm::SmallVector<mlir::Value> substringBounds; 5909 populateBounds(substringBounds, components.substring); 5910 if (!substringBounds.empty()) { 5911 mlir::Value dstLen = fir::factory::genLenOfCharacter( 5912 builder, loc, arrLoad, iters.iterVec(), substringBounds); 5913 fir::CharBoxValue dstChar(arrayOp, dstLen); 5914 return fir::factory::CharacterExprHelper{builder, loc} 5915 .createSubstring(dstChar, substringBounds); 5916 } 5917 } 5918 return fir::factory::arraySectionElementToExtendedValue( 5919 builder, loc, extMemref, arrayOp, slice); 5920 } 5921 auto arrFetch = builder.create<fir::ArrayFetchOp>( 5922 loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); 5923 return fir::factory::arraySectionElementToExtendedValue( 5924 builder, loc, extMemref, arrFetch, slice); 5925 }; 5926 } 5927 5928 /// Given an optional fir.box, returns an fir.box that is the original one if 5929 /// it is present and it otherwise an unallocated box. 5930 /// Absent fir.box are implemented as a null pointer descriptor. Generated 5931 /// code may need to unconditionally read a fir.box that can be absent. 5932 /// This helper allows creating a fir.box that can be read in all cases 5933 /// outside of a fir.if (isPresent) region. However, the usages of the value 5934 /// read from such box should still only be done in a fir.if(isPresent). 5935 static fir::ExtendedValue 5936 absentBoxToUnalllocatedBox(fir::FirOpBuilder &builder, mlir::Location loc, 5937 const fir::ExtendedValue &exv, 5938 mlir::Value isPresent) { 5939 mlir::Value box = fir::getBase(exv); 5940 mlir::Type boxType = box.getType(); 5941 assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box"); 5942 mlir::Value emptyBox = 5943 fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None); 5944 auto safeToReadBox = 5945 builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox); 5946 return fir::substBase(exv, safeToReadBox); 5947 } 5948 5949 std::tuple<CC, mlir::Value, mlir::Type> 5950 genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) { 5951 assert(expr.Rank() > 0 && "expr must be an array"); 5952 mlir::Location loc = getLoc(); 5953 ExtValue optionalArg = asInquired(expr); 5954 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); 5955 // Generate an array load and access to an array that may be an absent 5956 // optional or an unallocated optional. 5957 mlir::Value base = getBase(optionalArg); 5958 const bool hasOptionalAttr = 5959 fir::valueHasFirAttribute(base, fir::getOptionalAttrName()); 5960 mlir::Type baseType = fir::unwrapRefType(base.getType()); 5961 const bool isBox = baseType.isa<fir::BoxType>(); 5962 const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject( 5963 expr, converter.getFoldingContext()); 5964 mlir::Type arrType = fir::unwrapPassByRefType(baseType); 5965 mlir::Type eleType = fir::unwrapSequenceType(arrType); 5966 ExtValue exv = optionalArg; 5967 if (hasOptionalAttr && isBox && !isAllocOrPtr) { 5968 // Elemental argument cannot be allocatable or pointers (C15100). 5969 // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and 5970 // Pointer optional arrays cannot be absent. The only kind of entities 5971 // that can get here are optional assumed shape and polymorphic entities. 5972 exv = absentBoxToUnalllocatedBox(builder, loc, exv, isPresent); 5973 } 5974 // All the properties can be read from any fir.box but the read values may 5975 // be undefined and should only be used inside a fir.if (canBeRead) region. 5976 if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) 5977 exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); 5978 5979 mlir::Value memref = fir::getBase(exv); 5980 mlir::Value shape = builder.createShape(loc, exv); 5981 mlir::Value noSlice; 5982 auto arrLoad = builder.create<fir::ArrayLoadOp>( 5983 loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv)); 5984 mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); 5985 mlir::Value arrLd = arrLoad.getResult(); 5986 // Mark the load to tell later passes it is unsafe to use this array_load 5987 // shape unconditionally. 5988 arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr()); 5989 5990 // Place the array as optional on the arrayOperands stack so that its 5991 // shape will only be used as a fallback to induce the implicit loop nest 5992 // (that is if there is no non optional array arguments). 5993 arrayOperands.push_back( 5994 ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true}); 5995 5996 // By value semantics. 5997 auto cc = [=](IterSpace iters) -> ExtValue { 5998 auto arrFetch = builder.create<fir::ArrayFetchOp>( 5999 loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams); 6000 return fir::factory::arraySectionElementToExtendedValue( 6001 builder, loc, exv, arrFetch, noSlice); 6002 }; 6003 return {cc, isPresent, eleType}; 6004 } 6005 6006 /// Generate a continuation to pass \p expr to an OPTIONAL argument of an 6007 /// elemental procedure. This is meant to handle the cases where \p expr might 6008 /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an 6009 /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can 6010 /// directly be called instead. 6011 CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) { 6012 mlir::Location loc = getLoc(); 6013 // Only by-value numerical and logical so far. 6014 if (semant != ConstituentSemantics::RefTransparent) 6015 TODO(loc, "optional arguments in user defined elemental procedures"); 6016 6017 // Handle scalar argument case (the if-then-else is generated outside of the 6018 // implicit loop nest). 6019 if (expr.Rank() == 0) { 6020 ExtValue optionalArg = asInquired(expr); 6021 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); 6022 mlir::Value elementValue = 6023 fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent)); 6024 return [=](IterSpace iters) -> ExtValue { return elementValue; }; 6025 } 6026 6027 CC cc; 6028 mlir::Value isPresent; 6029 mlir::Type eleType; 6030 std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr); 6031 return [=](IterSpace iters) -> ExtValue { 6032 mlir::Value elementValue = 6033 builder 6034 .genIfOp(loc, {eleType}, isPresent, 6035 /*withElseRegion=*/true) 6036 .genThen([&]() { 6037 builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters))); 6038 }) 6039 .genElse([&]() { 6040 mlir::Value zero = 6041 fir::factory::createZeroValue(builder, loc, eleType); 6042 builder.create<fir::ResultOp>(loc, zero); 6043 }) 6044 .getResults()[0]; 6045 return elementValue; 6046 }; 6047 } 6048 6049 /// Reduce the rank of a array to be boxed based on the slice's operands. 6050 static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) { 6051 if (slice) { 6052 auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp()); 6053 assert(slOp && "expected slice op"); 6054 auto seqTy = arrTy.dyn_cast<fir::SequenceType>(); 6055 assert(seqTy && "expected array type"); 6056 mlir::Operation::operand_range triples = slOp.getTriples(); 6057 fir::SequenceType::Shape shape; 6058 // reduce the rank for each invariant dimension 6059 for (unsigned i = 1, end = triples.size(); i < end; i += 3) 6060 if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp())) 6061 shape.push_back(fir::SequenceType::getUnknownExtent()); 6062 return fir::SequenceType::get(shape, seqTy.getEleTy()); 6063 } 6064 // not sliced, so no change in rank 6065 return arrTy; 6066 } 6067 6068 /// Example: <code>array%RE</code> 6069 CC genarr(const Fortran::evaluate::ComplexPart &x, 6070 ComponentPath &components) { 6071 components.reversePath.push_back(&x); 6072 return genarr(x.complex(), components); 6073 } 6074 6075 template <typename A> 6076 CC genSlicePath(const A &x, ComponentPath &components) { 6077 return genarr(x, components); 6078 } 6079 6080 CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &, 6081 ComponentPath &components) { 6082 fir::emitFatalError(getLoc(), "substring of static array object"); 6083 } 6084 6085 /// Substrings (see 9.4.1) 6086 CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) { 6087 components.substring = &x; 6088 return std::visit([&](const auto &v) { return genarr(v, components); }, 6089 x.parent()); 6090 } 6091 6092 template <typename T> 6093 CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) { 6094 // Note that it's possible that the function being called returns either an 6095 // array or a scalar. In the first case, use the element type of the array. 6096 return genProcRef( 6097 funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef)))); 6098 } 6099 6100 //===--------------------------------------------------------------------===// 6101 // Array construction 6102 //===--------------------------------------------------------------------===// 6103 6104 /// Target agnostic computation of the size of an element in the array. 6105 /// Returns the size in bytes with type `index` or a null Value if the element 6106 /// size is not constant. 6107 mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy, 6108 mlir::Type resTy) { 6109 mlir::Location loc = getLoc(); 6110 mlir::IndexType idxTy = builder.getIndexType(); 6111 mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1); 6112 if (fir::hasDynamicSize(eleTy)) { 6113 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6114 // Array of char with dynamic length parameter. Downcast to an array 6115 // of singleton char, and scale by the len type parameter from 6116 // `exv`. 6117 exv.match( 6118 [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); }, 6119 [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); }, 6120 [&](const fir::BoxValue &box) { 6121 multiplier = fir::factory::CharacterExprHelper(builder, loc) 6122 .readLengthFromBox(box.getAddr()); 6123 }, 6124 [&](const fir::MutableBoxValue &box) { 6125 multiplier = fir::factory::CharacterExprHelper(builder, loc) 6126 .readLengthFromBox(box.getAddr()); 6127 }, 6128 [&](const auto &) { 6129 fir::emitFatalError(loc, 6130 "array constructor element has unknown size"); 6131 }); 6132 fir::CharacterType newEleTy = fir::CharacterType::getSingleton( 6133 eleTy.getContext(), charTy.getFKind()); 6134 if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) { 6135 assert(eleTy == seqTy.getEleTy()); 6136 resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy); 6137 } 6138 eleTy = newEleTy; 6139 } else { 6140 TODO(loc, "dynamic sized type"); 6141 } 6142 } 6143 mlir::Type eleRefTy = builder.getRefType(eleTy); 6144 mlir::Type resRefTy = builder.getRefType(resTy); 6145 mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy); 6146 auto offset = builder.create<fir::CoordinateOp>( 6147 loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier}); 6148 return builder.createConvert(loc, idxTy, offset); 6149 } 6150 6151 /// Get the function signature of the LLVM memcpy intrinsic. 6152 mlir::FunctionType memcpyType() { 6153 return fir::factory::getLlvmMemcpy(builder).getFunctionType(); 6154 } 6155 6156 /// Create a call to the LLVM memcpy intrinsic. 6157 void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) { 6158 mlir::Location loc = getLoc(); 6159 mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder); 6160 mlir::SymbolRefAttr funcSymAttr = 6161 builder.getSymbolRefAttr(memcpyFunc.getName()); 6162 mlir::FunctionType funcTy = memcpyFunc.getFunctionType(); 6163 builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args); 6164 } 6165 6166 // Construct code to check for a buffer overrun and realloc the buffer when 6167 // space is depleted. This is done between each item in the ac-value-list. 6168 mlir::Value growBuffer(mlir::Value mem, mlir::Value needed, 6169 mlir::Value bufferSize, mlir::Value buffSize, 6170 mlir::Value eleSz) { 6171 mlir::Location loc = getLoc(); 6172 mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder); 6173 auto cond = builder.create<mlir::arith::CmpIOp>( 6174 loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed); 6175 auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond, 6176 /*withElseRegion=*/true); 6177 auto insPt = builder.saveInsertionPoint(); 6178 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 6179 // Not enough space, resize the buffer. 6180 mlir::IndexType idxTy = builder.getIndexType(); 6181 mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2); 6182 auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two); 6183 builder.create<fir::StoreOp>(loc, newSz, buffSize); 6184 mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz); 6185 mlir::SymbolRefAttr funcSymAttr = 6186 builder.getSymbolRefAttr(reallocFunc.getName()); 6187 mlir::FunctionType funcTy = reallocFunc.getFunctionType(); 6188 auto newMem = builder.create<fir::CallOp>( 6189 loc, funcTy.getResults(), funcSymAttr, 6190 llvm::ArrayRef<mlir::Value>{ 6191 builder.createConvert(loc, funcTy.getInputs()[0], mem), 6192 builder.createConvert(loc, funcTy.getInputs()[1], byteSz)}); 6193 mlir::Value castNewMem = 6194 builder.createConvert(loc, mem.getType(), newMem.getResult(0)); 6195 builder.create<fir::ResultOp>(loc, castNewMem); 6196 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 6197 // Otherwise, just forward the buffer. 6198 builder.create<fir::ResultOp>(loc, mem); 6199 builder.restoreInsertionPoint(insPt); 6200 return ifOp.getResult(0); 6201 } 6202 6203 /// Copy the next value (or vector of values) into the array being 6204 /// constructed. 6205 mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos, 6206 mlir::Value buffSize, mlir::Value mem, 6207 mlir::Value eleSz, mlir::Type eleTy, 6208 mlir::Type eleRefTy, mlir::Type resTy) { 6209 mlir::Location loc = getLoc(); 6210 auto off = builder.create<fir::LoadOp>(loc, buffPos); 6211 auto limit = builder.create<fir::LoadOp>(loc, buffSize); 6212 mlir::IndexType idxTy = builder.getIndexType(); 6213 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 6214 6215 if (fir::isRecordWithAllocatableMember(eleTy)) 6216 TODO(loc, "deep copy on allocatable members"); 6217 6218 if (!eleSz) { 6219 // Compute the element size at runtime. 6220 assert(fir::hasDynamicSize(eleTy)); 6221 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6222 auto charBytes = 6223 builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8; 6224 mlir::Value bytes = 6225 builder.createIntegerConstant(loc, idxTy, charBytes); 6226 mlir::Value length = fir::getLen(exv); 6227 if (!length) 6228 fir::emitFatalError(loc, "result is not boxed character"); 6229 eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length); 6230 } else { 6231 TODO(loc, "PDT size"); 6232 // Will call the PDT's size function with the type parameters. 6233 } 6234 } 6235 6236 // Compute the coordinate using `fir.coordinate_of`, or, if the type has 6237 // dynamic size, generating the pointer arithmetic. 6238 auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) { 6239 mlir::Type refTy = eleRefTy; 6240 if (fir::hasDynamicSize(eleTy)) { 6241 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6242 // Scale a simple pointer using dynamic length and offset values. 6243 auto chTy = fir::CharacterType::getSingleton(charTy.getContext(), 6244 charTy.getFKind()); 6245 refTy = builder.getRefType(chTy); 6246 mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy)); 6247 buff = builder.createConvert(loc, toTy, buff); 6248 off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz); 6249 } else { 6250 TODO(loc, "PDT offset"); 6251 } 6252 } 6253 auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff, 6254 mlir::ValueRange{off}); 6255 return builder.createConvert(loc, eleRefTy, coor); 6256 }; 6257 6258 // Lambda to lower an abstract array box value. 6259 auto doAbstractArray = [&](const auto &v) { 6260 // Compute the array size. 6261 mlir::Value arrSz = one; 6262 for (auto ext : v.getExtents()) 6263 arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext); 6264 6265 // Grow the buffer as needed. 6266 auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz); 6267 mem = growBuffer(mem, endOff, limit, buffSize, eleSz); 6268 6269 // Copy the elements to the buffer. 6270 mlir::Value byteSz = 6271 builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz); 6272 auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6273 mlir::Value buffi = computeCoordinate(buff, off); 6274 llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( 6275 builder, loc, memcpyType(), buffi, v.getAddr(), byteSz, 6276 /*volatile=*/builder.createBool(loc, false)); 6277 createCallMemcpy(args); 6278 6279 // Save the incremented buffer position. 6280 builder.create<fir::StoreOp>(loc, endOff, buffPos); 6281 }; 6282 6283 // Copy a trivial scalar value into the buffer. 6284 auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) { 6285 // Increment the buffer position. 6286 auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); 6287 6288 // Grow the buffer as needed. 6289 mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); 6290 6291 // Store the element in the buffer. 6292 mlir::Value buff = 6293 builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6294 auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff, 6295 mlir::ValueRange{off}); 6296 fir::factory::genScalarAssignment( 6297 builder, loc, 6298 [&]() -> ExtValue { 6299 if (len) 6300 return fir::CharBoxValue(buffi, len); 6301 return buffi; 6302 }(), 6303 v); 6304 builder.create<fir::StoreOp>(loc, plusOne, buffPos); 6305 }; 6306 6307 // Copy the value. 6308 exv.match( 6309 [&](mlir::Value) { doTrivialScalar(exv); }, 6310 [&](const fir::CharBoxValue &v) { 6311 auto buffer = v.getBuffer(); 6312 if (fir::isa_char(buffer.getType())) { 6313 doTrivialScalar(exv, eleSz); 6314 } else { 6315 // Increment the buffer position. 6316 auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); 6317 6318 // Grow the buffer as needed. 6319 mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); 6320 6321 // Store the element in the buffer. 6322 mlir::Value buff = 6323 builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6324 mlir::Value buffi = computeCoordinate(buff, off); 6325 llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( 6326 builder, loc, memcpyType(), buffi, v.getAddr(), eleSz, 6327 /*volatile=*/builder.createBool(loc, false)); 6328 createCallMemcpy(args); 6329 6330 builder.create<fir::StoreOp>(loc, plusOne, buffPos); 6331 } 6332 }, 6333 [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); }, 6334 [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); }, 6335 [&](const auto &) { 6336 TODO(loc, "unhandled array constructor expression"); 6337 }); 6338 return mem; 6339 } 6340 6341 // Lower the expr cases in an ac-value-list. 6342 template <typename A> 6343 std::pair<ExtValue, bool> 6344 genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type, 6345 mlir::Value, mlir::Value, mlir::Value, 6346 Fortran::lower::StatementContext &stmtCtx) { 6347 if (isArray(x)) 6348 return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)), 6349 /*needCopy=*/true}; 6350 return {asScalar(x), /*needCopy=*/true}; 6351 } 6352 6353 // Lower an ac-implied-do in an ac-value-list. 6354 template <typename A> 6355 std::pair<ExtValue, bool> 6356 genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x, 6357 mlir::Type resTy, mlir::Value mem, 6358 mlir::Value buffPos, mlir::Value buffSize, 6359 Fortran::lower::StatementContext &) { 6360 mlir::Location loc = getLoc(); 6361 mlir::IndexType idxTy = builder.getIndexType(); 6362 mlir::Value lo = 6363 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower()))); 6364 mlir::Value up = 6365 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper()))); 6366 mlir::Value step = 6367 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride()))); 6368 auto seqTy = resTy.template cast<fir::SequenceType>(); 6369 mlir::Type eleTy = fir::unwrapSequenceType(seqTy); 6370 auto loop = 6371 builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false, 6372 /*finalCount=*/false, mem); 6373 // create a new binding for x.name(), to ac-do-variable, to the iteration 6374 // value. 6375 symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar()); 6376 auto insPt = builder.saveInsertionPoint(); 6377 builder.setInsertionPointToStart(loop.getBody()); 6378 // Thread mem inside the loop via loop argument. 6379 mem = loop.getRegionIterArgs()[0]; 6380 6381 mlir::Type eleRefTy = builder.getRefType(eleTy); 6382 6383 // Any temps created in the loop body must be freed inside the loop body. 6384 stmtCtx.pushScope(); 6385 llvm::Optional<mlir::Value> charLen; 6386 for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) { 6387 auto [exv, copyNeeded] = std::visit( 6388 [&](const auto &v) { 6389 return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize, 6390 stmtCtx); 6391 }, 6392 acv.u); 6393 mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); 6394 mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, 6395 eleSz, eleTy, eleRefTy, resTy) 6396 : fir::getBase(exv); 6397 if (fir::isa_char(seqTy.getEleTy()) && !charLen.hasValue()) { 6398 charLen = builder.createTemporary(loc, builder.getI64Type()); 6399 mlir::Value castLen = 6400 builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); 6401 builder.create<fir::StoreOp>(loc, castLen, charLen.getValue()); 6402 } 6403 } 6404 stmtCtx.finalize(/*popScope=*/true); 6405 6406 builder.create<fir::ResultOp>(loc, mem); 6407 builder.restoreInsertionPoint(insPt); 6408 mem = loop.getResult(0); 6409 symMap.popImpliedDoBinding(); 6410 llvm::SmallVector<mlir::Value> extents = { 6411 builder.create<fir::LoadOp>(loc, buffPos).getResult()}; 6412 6413 // Convert to extended value. 6414 if (fir::isa_char(seqTy.getEleTy())) { 6415 auto len = builder.create<fir::LoadOp>(loc, charLen.getValue()); 6416 return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false}; 6417 } 6418 return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false}; 6419 } 6420 6421 // To simplify the handling and interaction between the various cases, array 6422 // constructors are always lowered to the incremental construction code 6423 // pattern, even if the extent of the array value is constant. After the 6424 // MemToReg pass and constant folding, the optimizer should be able to 6425 // determine that all the buffer overrun tests are false when the 6426 // incremental construction wasn't actually required. 6427 template <typename A> 6428 CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) { 6429 mlir::Location loc = getLoc(); 6430 auto evExpr = toEvExpr(x); 6431 mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr); 6432 mlir::IndexType idxTy = builder.getIndexType(); 6433 auto seqTy = resTy.template cast<fir::SequenceType>(); 6434 mlir::Type eleTy = fir::unwrapSequenceType(resTy); 6435 mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size"); 6436 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 6437 mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos"); 6438 builder.create<fir::StoreOp>(loc, zero, buffPos); 6439 // Allocate space for the array to be constructed. 6440 mlir::Value mem; 6441 if (fir::hasDynamicSize(resTy)) { 6442 if (fir::hasDynamicSize(eleTy)) { 6443 // The size of each element may depend on a general expression. Defer 6444 // creating the buffer until after the expression is evaluated. 6445 mem = builder.createNullConstant(loc, builder.getRefType(eleTy)); 6446 builder.create<fir::StoreOp>(loc, zero, buffSize); 6447 } else { 6448 mlir::Value initBuffSz = 6449 builder.createIntegerConstant(loc, idxTy, clInitialBufferSize); 6450 mem = builder.create<fir::AllocMemOp>( 6451 loc, eleTy, /*typeparams=*/llvm::None, initBuffSz); 6452 builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); 6453 } 6454 } else { 6455 mem = builder.create<fir::AllocMemOp>(loc, resTy); 6456 int64_t buffSz = 1; 6457 for (auto extent : seqTy.getShape()) 6458 buffSz *= extent; 6459 mlir::Value initBuffSz = 6460 builder.createIntegerConstant(loc, idxTy, buffSz); 6461 builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); 6462 } 6463 // Compute size of element 6464 mlir::Type eleRefTy = builder.getRefType(eleTy); 6465 6466 // Populate the buffer with the elements, growing as necessary. 6467 llvm::Optional<mlir::Value> charLen; 6468 for (const auto &expr : x) { 6469 auto [exv, copyNeeded] = std::visit( 6470 [&](const auto &e) { 6471 return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize, 6472 stmtCtx); 6473 }, 6474 expr.u); 6475 mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); 6476 mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, 6477 eleSz, eleTy, eleRefTy, resTy) 6478 : fir::getBase(exv); 6479 if (fir::isa_char(seqTy.getEleTy()) && !charLen.hasValue()) { 6480 charLen = builder.createTemporary(loc, builder.getI64Type()); 6481 mlir::Value castLen = 6482 builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); 6483 builder.create<fir::StoreOp>(loc, castLen, charLen.getValue()); 6484 } 6485 } 6486 mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6487 llvm::SmallVector<mlir::Value> extents = { 6488 builder.create<fir::LoadOp>(loc, buffPos)}; 6489 6490 // Cleanup the temporary. 6491 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 6492 stmtCtx.attachCleanup( 6493 [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); }); 6494 6495 // Return the continuation. 6496 if (fir::isa_char(seqTy.getEleTy())) { 6497 if (charLen.hasValue()) { 6498 auto len = builder.create<fir::LoadOp>(loc, charLen.getValue()); 6499 return genarr(fir::CharArrayBoxValue{mem, len, extents}); 6500 } 6501 return genarr(fir::CharArrayBoxValue{mem, zero, extents}); 6502 } 6503 return genarr(fir::ArrayBoxValue{mem, extents}); 6504 } 6505 6506 CC genarr(const Fortran::evaluate::ImpliedDoIndex &) { 6507 fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0"); 6508 } 6509 CC genarr(const Fortran::evaluate::TypeParamInquiry &x) { 6510 TODO(getLoc(), "array expr type parameter inquiry"); 6511 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6512 } 6513 CC genarr(const Fortran::evaluate::DescriptorInquiry &x) { 6514 TODO(getLoc(), "array expr descriptor inquiry"); 6515 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6516 } 6517 CC genarr(const Fortran::evaluate::StructureConstructor &x) { 6518 TODO(getLoc(), "structure constructor"); 6519 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6520 } 6521 6522 //===--------------------------------------------------------------------===// 6523 // LOCICAL operators (.NOT., .AND., .EQV., etc.) 6524 //===--------------------------------------------------------------------===// 6525 6526 template <int KIND> 6527 CC genarr(const Fortran::evaluate::Not<KIND> &x) { 6528 mlir::Location loc = getLoc(); 6529 mlir::IntegerType i1Ty = builder.getI1Type(); 6530 auto lambda = genarr(x.left()); 6531 mlir::Value truth = builder.createBool(loc, true); 6532 return [=](IterSpace iters) -> ExtValue { 6533 mlir::Value logical = fir::getBase(lambda(iters)); 6534 mlir::Value val = builder.createConvert(loc, i1Ty, logical); 6535 return builder.create<mlir::arith::XOrIOp>(loc, val, truth); 6536 }; 6537 } 6538 template <typename OP, typename A> 6539 CC createBinaryBoolOp(const A &x) { 6540 mlir::Location loc = getLoc(); 6541 mlir::IntegerType i1Ty = builder.getI1Type(); 6542 auto lf = genarr(x.left()); 6543 auto rf = genarr(x.right()); 6544 return [=](IterSpace iters) -> ExtValue { 6545 mlir::Value left = fir::getBase(lf(iters)); 6546 mlir::Value right = fir::getBase(rf(iters)); 6547 mlir::Value lhs = builder.createConvert(loc, i1Ty, left); 6548 mlir::Value rhs = builder.createConvert(loc, i1Ty, right); 6549 return builder.create<OP>(loc, lhs, rhs); 6550 }; 6551 } 6552 template <typename OP, typename A> 6553 CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) { 6554 mlir::Location loc = getLoc(); 6555 mlir::IntegerType i1Ty = builder.getI1Type(); 6556 auto lf = genarr(x.left()); 6557 auto rf = genarr(x.right()); 6558 return [=](IterSpace iters) -> ExtValue { 6559 mlir::Value left = fir::getBase(lf(iters)); 6560 mlir::Value right = fir::getBase(rf(iters)); 6561 mlir::Value lhs = builder.createConvert(loc, i1Ty, left); 6562 mlir::Value rhs = builder.createConvert(loc, i1Ty, right); 6563 return builder.create<OP>(loc, pred, lhs, rhs); 6564 }; 6565 } 6566 template <int KIND> 6567 CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) { 6568 switch (x.logicalOperator) { 6569 case Fortran::evaluate::LogicalOperator::And: 6570 return createBinaryBoolOp<mlir::arith::AndIOp>(x); 6571 case Fortran::evaluate::LogicalOperator::Or: 6572 return createBinaryBoolOp<mlir::arith::OrIOp>(x); 6573 case Fortran::evaluate::LogicalOperator::Eqv: 6574 return createCompareBoolOp<mlir::arith::CmpIOp>( 6575 mlir::arith::CmpIPredicate::eq, x); 6576 case Fortran::evaluate::LogicalOperator::Neqv: 6577 return createCompareBoolOp<mlir::arith::CmpIOp>( 6578 mlir::arith::CmpIPredicate::ne, x); 6579 case Fortran::evaluate::LogicalOperator::Not: 6580 llvm_unreachable(".NOT. handled elsewhere"); 6581 } 6582 llvm_unreachable("unhandled case"); 6583 } 6584 6585 //===--------------------------------------------------------------------===// 6586 // Relational operators (<, <=, ==, etc.) 6587 //===--------------------------------------------------------------------===// 6588 6589 template <typename OP, typename PRED, typename A> 6590 CC createCompareOp(PRED pred, const A &x) { 6591 mlir::Location loc = getLoc(); 6592 auto lf = genarr(x.left()); 6593 auto rf = genarr(x.right()); 6594 return [=](IterSpace iters) -> ExtValue { 6595 mlir::Value lhs = fir::getBase(lf(iters)); 6596 mlir::Value rhs = fir::getBase(rf(iters)); 6597 return builder.create<OP>(loc, pred, lhs, rhs); 6598 }; 6599 } 6600 template <typename A> 6601 CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) { 6602 mlir::Location loc = getLoc(); 6603 auto lf = genarr(x.left()); 6604 auto rf = genarr(x.right()); 6605 return [=](IterSpace iters) -> ExtValue { 6606 auto lhs = lf(iters); 6607 auto rhs = rf(iters); 6608 return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs); 6609 }; 6610 } 6611 template <int KIND> 6612 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6613 Fortran::common::TypeCategory::Integer, KIND>> &x) { 6614 return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x); 6615 } 6616 template <int KIND> 6617 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6618 Fortran::common::TypeCategory::Character, KIND>> &x) { 6619 return createCompareCharOp(translateRelational(x.opr), x); 6620 } 6621 template <int KIND> 6622 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6623 Fortran::common::TypeCategory::Real, KIND>> &x) { 6624 return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr), 6625 x); 6626 } 6627 template <int KIND> 6628 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6629 Fortran::common::TypeCategory::Complex, KIND>> &x) { 6630 return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x); 6631 } 6632 CC genarr( 6633 const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) { 6634 return std::visit([&](const auto &x) { return genarr(x); }, r.u); 6635 } 6636 6637 template <typename A> 6638 CC genarr(const Fortran::evaluate::Designator<A> &des) { 6639 ComponentPath components(des.Rank() > 0); 6640 return std::visit([&](const auto &x) { return genarr(x, components); }, 6641 des.u); 6642 } 6643 6644 /// Is the path component rank > 0? 6645 static bool ranked(const PathComponent &x) { 6646 return std::visit(Fortran::common::visitors{ 6647 [](const ImplicitSubscripts &) { return false; }, 6648 [](const auto *v) { return v->Rank() > 0; }}, 6649 x); 6650 } 6651 6652 void extendComponent(Fortran::lower::ComponentPath &component, 6653 mlir::Type coorTy, mlir::ValueRange vals) { 6654 auto *bldr = &converter.getFirOpBuilder(); 6655 llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end()); 6656 auto currentFunc = component.getExtendCoorRef(); 6657 auto loc = getLoc(); 6658 auto newCoorRef = [bldr, coorTy, offsets, currentFunc, 6659 loc](mlir::Value val) -> mlir::Value { 6660 return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy), 6661 currentFunc(val), offsets); 6662 }; 6663 component.extendCoorRef = newCoorRef; 6664 } 6665 6666 //===-------------------------------------------------------------------===// 6667 // Array data references in an explicit iteration space. 6668 // 6669 // Use the base array that was loaded before the loop nest. 6670 //===-------------------------------------------------------------------===// 6671 6672 /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or 6673 /// array_update op. \p ty is the initial type of the array 6674 /// (reference). Returns the type of the element after application of the 6675 /// path in \p components. 6676 /// 6677 /// TODO: This needs to deal with array's with initial bounds other than 1. 6678 /// TODO: Thread type parameters correctly. 6679 mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) { 6680 mlir::Location loc = getLoc(); 6681 mlir::Type ty = fir::getBase(arrayExv).getType(); 6682 auto &revPath = components.reversePath; 6683 ty = fir::unwrapPassByRefType(ty); 6684 bool prefix = true; 6685 bool deref = false; 6686 auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) { 6687 if (deref) { 6688 extendComponent(components, ty, vals); 6689 } else if (prefix) { 6690 for (auto v : vals) 6691 components.prefixComponents.push_back(v); 6692 } else { 6693 for (auto v : vals) 6694 components.suffixComponents.push_back(v); 6695 } 6696 }; 6697 mlir::IndexType idxTy = builder.getIndexType(); 6698 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 6699 bool atBase = true; 6700 auto saveSemant = semant; 6701 if (isProjectedCopyInCopyOut()) 6702 semant = ConstituentSemantics::RefTransparent; 6703 unsigned index = 0; 6704 for (const auto &v : llvm::reverse(revPath)) { 6705 std::visit( 6706 Fortran::common::visitors{ 6707 [&](const ImplicitSubscripts &) { 6708 prefix = false; 6709 ty = fir::unwrapSequenceType(ty); 6710 }, 6711 [&](const Fortran::evaluate::ComplexPart *x) { 6712 assert(!prefix && "complex part must be at end"); 6713 mlir::Value offset = builder.createIntegerConstant( 6714 loc, builder.getI32Type(), 6715 x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 6716 : 1); 6717 components.suffixComponents.push_back(offset); 6718 ty = fir::applyPathToType(ty, mlir::ValueRange{offset}); 6719 }, 6720 [&](const Fortran::evaluate::ArrayRef *x) { 6721 if (Fortran::lower::isRankedArrayAccess(*x)) { 6722 genSliceIndices(components, arrayExv, *x, atBase); 6723 ty = fir::unwrapSeqOrBoxedSeqType(ty); 6724 } else { 6725 // Array access where the expressions are scalar and cannot 6726 // depend upon the implied iteration space. 6727 unsigned ssIndex = 0u; 6728 llvm::SmallVector<mlir::Value> componentsToAdd; 6729 for (const auto &ss : x->subscript()) { 6730 std::visit( 6731 Fortran::common::visitors{ 6732 [&](const Fortran::evaluate:: 6733 IndirectSubscriptIntegerExpr &ie) { 6734 const auto &e = ie.value(); 6735 if (isArray(e)) 6736 fir::emitFatalError( 6737 loc, 6738 "multiple components along single path " 6739 "generating array subexpressions"); 6740 // Lower scalar index expression, append it to 6741 // subs. 6742 mlir::Value subscriptVal = 6743 fir::getBase(asScalarArray(e)); 6744 // arrayExv is the base array. It needs to reflect 6745 // the current array component instead. 6746 // FIXME: must use lower bound of this component, 6747 // not just the constant 1. 6748 mlir::Value lb = 6749 atBase ? fir::factory::readLowerBound( 6750 builder, loc, arrayExv, ssIndex, 6751 one) 6752 : one; 6753 mlir::Value val = builder.createConvert( 6754 loc, idxTy, subscriptVal); 6755 mlir::Value ivAdj = 6756 builder.create<mlir::arith::SubIOp>( 6757 loc, idxTy, val, lb); 6758 componentsToAdd.push_back( 6759 builder.createConvert(loc, idxTy, ivAdj)); 6760 }, 6761 [&](const auto &) { 6762 fir::emitFatalError( 6763 loc, "multiple components along single path " 6764 "generating array subexpressions"); 6765 }}, 6766 ss.u); 6767 ssIndex++; 6768 } 6769 ty = fir::unwrapSeqOrBoxedSeqType(ty); 6770 addComponentList(ty, componentsToAdd); 6771 } 6772 }, 6773 [&](const Fortran::evaluate::Component *x) { 6774 auto fieldTy = fir::FieldType::get(builder.getContext()); 6775 llvm::StringRef name = toStringRef(getLastSym(*x).name()); 6776 if (auto recTy = ty.dyn_cast<fir::RecordType>()) { 6777 ty = recTy.getType(name); 6778 auto fld = builder.create<fir::FieldIndexOp>( 6779 loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); 6780 addComponentList(ty, {fld}); 6781 if (index != revPath.size() - 1 || !isPointerAssignment()) { 6782 // Need an intermediate dereference if the boxed value 6783 // appears in the middle of the component path or if it is 6784 // on the right and this is not a pointer assignment. 6785 if (auto boxTy = ty.dyn_cast<fir::BoxType>()) { 6786 auto currentFunc = components.getExtendCoorRef(); 6787 auto loc = getLoc(); 6788 auto *bldr = &converter.getFirOpBuilder(); 6789 auto newCoorRef = [=](mlir::Value val) -> mlir::Value { 6790 return bldr->create<fir::LoadOp>(loc, currentFunc(val)); 6791 }; 6792 components.extendCoorRef = newCoorRef; 6793 deref = true; 6794 } 6795 } 6796 } else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) { 6797 ty = fir::unwrapRefType(boxTy.getEleTy()); 6798 auto recTy = ty.cast<fir::RecordType>(); 6799 ty = recTy.getType(name); 6800 auto fld = builder.create<fir::FieldIndexOp>( 6801 loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); 6802 extendComponent(components, ty, {fld}); 6803 } else { 6804 TODO(loc, "other component type"); 6805 } 6806 }}, 6807 v); 6808 atBase = false; 6809 ++index; 6810 } 6811 semant = saveSemant; 6812 ty = fir::unwrapSequenceType(ty); 6813 components.applied = true; 6814 return ty; 6815 } 6816 6817 llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) { 6818 llvm::SmallVector<mlir::Value> result; 6819 if (components.substring) 6820 populateBounds(result, components.substring); 6821 return result; 6822 } 6823 6824 CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) { 6825 mlir::Location loc = getLoc(); 6826 auto revPath = components.reversePath; 6827 fir::ExtendedValue arrayExv = 6828 arrayLoadExtValue(builder, loc, load, {}, load); 6829 mlir::Type eleTy = lowerPath(arrayExv, components); 6830 auto currentPC = components.pc; 6831 auto pc = [=, prefix = components.prefixComponents, 6832 suffix = components.suffixComponents](IterSpace iters) { 6833 // Add path prefix and suffix. 6834 return IterationSpace(currentPC(iters), prefix, suffix); 6835 }; 6836 components.resetPC(); 6837 llvm::SmallVector<mlir::Value> substringBounds = 6838 genSubstringBounds(components); 6839 if (isProjectedCopyInCopyOut()) { 6840 destination = load; 6841 auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable { 6842 mlir::Value innerArg = esp->findArgumentOfLoad(load); 6843 if (isAdjustedArrayElementType(eleTy)) { 6844 mlir::Type eleRefTy = builder.getRefType(eleTy); 6845 auto arrayOp = builder.create<fir::ArrayAccessOp>( 6846 loc, eleRefTy, innerArg, iters.iterVec(), load.getTypeparams()); 6847 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6848 mlir::Value dstLen = fir::factory::genLenOfCharacter( 6849 builder, loc, load, iters.iterVec(), substringBounds); 6850 fir::ArrayAmendOp amend = createCharArrayAmend( 6851 loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg, 6852 substringBounds); 6853 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend, 6854 dstLen); 6855 } 6856 if (fir::isa_derived(eleTy)) { 6857 fir::ArrayAmendOp amend = 6858 createDerivedArrayAmend(loc, load, builder, arrayOp, 6859 iters.elementExv(), eleTy, innerArg); 6860 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), 6861 amend); 6862 } 6863 assert(eleTy.isa<fir::SequenceType>()); 6864 TODO(loc, "array (as element) assignment"); 6865 } 6866 if (components.hasExtendCoorRef()) { 6867 auto eleBoxTy = 6868 fir::applyPathToType(innerArg.getType(), iters.iterVec()); 6869 assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>()); 6870 auto arrayOp = builder.create<fir::ArrayAccessOp>( 6871 loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(), 6872 fir::factory::getTypeParams(loc, builder, load)); 6873 mlir::Value addr = components.getExtendCoorRef()(arrayOp); 6874 components.resetExtendCoorRef(); 6875 // When the lhs is a boxed value and the context is not a pointer 6876 // assignment, then insert the dereference of the box before any 6877 // conversion and store. 6878 if (!isPointerAssignment()) { 6879 if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) { 6880 eleTy = boxTy.getEleTy(); 6881 if (!(eleTy.isa<fir::PointerType>() || 6882 eleTy.isa<fir::HeapType>())) 6883 eleTy = builder.getRefType(eleTy); 6884 addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr); 6885 eleTy = fir::unwrapRefType(eleTy); 6886 } 6887 } 6888 auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); 6889 builder.create<fir::StoreOp>(loc, ele, addr); 6890 auto amend = builder.create<fir::ArrayAmendOp>( 6891 loc, innerArg.getType(), innerArg, arrayOp); 6892 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend); 6893 } 6894 auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); 6895 auto update = builder.create<fir::ArrayUpdateOp>( 6896 loc, innerArg.getType(), innerArg, ele, iters.iterVec(), 6897 fir::factory::getTypeParams(loc, builder, load)); 6898 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update); 6899 }; 6900 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6901 } 6902 if (isCustomCopyInCopyOut()) { 6903 // Create an array_modify to get the LHS element address and indicate 6904 // the assignment, and create the call to the user defined assignment. 6905 destination = load; 6906 auto lambda = [=](IterSpace iters) mutable { 6907 mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load); 6908 mlir::Type refEleTy = 6909 fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); 6910 auto arrModify = builder.create<fir::ArrayModifyOp>( 6911 loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg, 6912 iters.iterVec(), load.getTypeparams()); 6913 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), 6914 arrModify.getResult(1)); 6915 }; 6916 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6917 } 6918 auto lambda = [=, semant = this->semant](IterSpace iters) mutable { 6919 if (semant == ConstituentSemantics::RefOpaque || 6920 isAdjustedArrayElementType(eleTy)) { 6921 mlir::Type resTy = builder.getRefType(eleTy); 6922 // Use array element reference semantics. 6923 auto access = builder.create<fir::ArrayAccessOp>( 6924 loc, resTy, load, iters.iterVec(), load.getTypeparams()); 6925 mlir::Value newBase = access; 6926 if (fir::isa_char(eleTy)) { 6927 mlir::Value dstLen = fir::factory::genLenOfCharacter( 6928 builder, loc, load, iters.iterVec(), substringBounds); 6929 if (!substringBounds.empty()) { 6930 fir::CharBoxValue charDst{access, dstLen}; 6931 fir::factory::CharacterExprHelper helper{builder, loc}; 6932 charDst = helper.createSubstring(charDst, substringBounds); 6933 newBase = charDst.getAddr(); 6934 } 6935 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase, 6936 dstLen); 6937 } 6938 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase); 6939 } 6940 if (components.hasExtendCoorRef()) { 6941 auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec()); 6942 assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>()); 6943 auto access = builder.create<fir::ArrayAccessOp>( 6944 loc, builder.getRefType(eleBoxTy), load, iters.iterVec(), 6945 fir::factory::getTypeParams(loc, builder, load)); 6946 mlir::Value addr = components.getExtendCoorRef()(access); 6947 components.resetExtendCoorRef(); 6948 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr); 6949 } 6950 if (isPointerAssignment()) { 6951 auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec()); 6952 if (!eleTy.isa<fir::BoxType>()) { 6953 // Rhs is a regular expression that will need to be boxed before 6954 // assigning to the boxed variable. 6955 auto typeParams = fir::factory::getTypeParams(loc, builder, load); 6956 auto access = builder.create<fir::ArrayAccessOp>( 6957 loc, builder.getRefType(eleTy), load, iters.iterVec(), 6958 typeParams); 6959 auto addr = components.getExtendCoorRef()(access); 6960 components.resetExtendCoorRef(); 6961 auto ptrEleTy = fir::PointerType::get(eleTy); 6962 auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr); 6963 auto boxTy = fir::BoxType::get(ptrEleTy); 6964 // FIXME: The typeparams to the load may be different than those of 6965 // the subobject. 6966 if (components.hasExtendCoorRef()) 6967 TODO(loc, "need to adjust typeparameter(s) to reflect the final " 6968 "component"); 6969 mlir::Value embox = builder.create<fir::EmboxOp>( 6970 loc, boxTy, ptrAddr, /*shape=*/mlir::Value{}, 6971 /*slice=*/mlir::Value{}, typeParams); 6972 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox); 6973 } 6974 } 6975 auto fetch = builder.create<fir::ArrayFetchOp>( 6976 loc, eleTy, load, iters.iterVec(), load.getTypeparams()); 6977 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch); 6978 }; 6979 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6980 } 6981 6982 template <typename A> 6983 CC genImplicitArrayAccess(const A &x, ComponentPath &components) { 6984 components.reversePath.push_back(ImplicitSubscripts{}); 6985 ExtValue exv = asScalarRef(x); 6986 lowerPath(exv, components); 6987 auto lambda = genarr(exv, components); 6988 return [=](IterSpace iters) { return lambda(components.pc(iters)); }; 6989 } 6990 CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x, 6991 ComponentPath &components) { 6992 if (x.IsSymbol()) 6993 return genImplicitArrayAccess(getFirstSym(x), components); 6994 return genImplicitArrayAccess(x.GetComponent(), components); 6995 } 6996 6997 template <typename A> 6998 CC genAsScalar(const A &x) { 6999 mlir::Location loc = getLoc(); 7000 if (isProjectedCopyInCopyOut()) { 7001 return [=, &x, builder = &converter.getFirOpBuilder()]( 7002 IterSpace iters) -> ExtValue { 7003 ExtValue exv = asScalarRef(x); 7004 mlir::Value val = fir::getBase(exv); 7005 mlir::Type eleTy = fir::unwrapRefType(val.getType()); 7006 if (isAdjustedArrayElementType(eleTy)) { 7007 if (fir::isa_char(eleTy)) { 7008 fir::factory::CharacterExprHelper{*builder, loc}.createAssign( 7009 exv, iters.elementExv()); 7010 } else if (fir::isa_derived(eleTy)) { 7011 TODO(loc, "assignment of derived type"); 7012 } else { 7013 fir::emitFatalError(loc, "array type not expected in scalar"); 7014 } 7015 } else { 7016 builder->create<fir::StoreOp>(loc, iters.getElement(), val); 7017 } 7018 return exv; 7019 }; 7020 } 7021 return [=, &x](IterSpace) { return asScalar(x); }; 7022 } 7023 7024 bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x, 7025 ComponentPath &components) { 7026 return isPointerAssignment() && Fortran::semantics::IsPointer(x) && 7027 !components.hasComponents(); 7028 } 7029 bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x, 7030 ComponentPath &components) { 7031 return tailIsPointerInPointerAssignment(getLastSym(x), components); 7032 } 7033 7034 CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) { 7035 if (explicitSpaceIsActive()) { 7036 if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components)) 7037 components.reversePath.push_back(ImplicitSubscripts{}); 7038 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) 7039 return applyPathToArrayLoad(load, components); 7040 } else { 7041 return genImplicitArrayAccess(x, components); 7042 } 7043 if (pathIsEmpty(components)) 7044 return genAsScalar(x); 7045 mlir::Location loc = getLoc(); 7046 return [=](IterSpace) -> ExtValue { 7047 fir::emitFatalError(loc, "reached symbol with path"); 7048 }; 7049 } 7050 7051 /// Lower a component path with or without rank. 7052 /// Example: <code>array%baz%qux%waldo</code> 7053 CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) { 7054 if (explicitSpaceIsActive()) { 7055 if (x.base().Rank() == 0 && x.Rank() > 0 && 7056 !tailIsPointerInPointerAssignment(x, components)) 7057 components.reversePath.push_back(ImplicitSubscripts{}); 7058 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) 7059 return applyPathToArrayLoad(load, components); 7060 } else { 7061 if (x.base().Rank() == 0) 7062 return genImplicitArrayAccess(x, components); 7063 } 7064 bool atEnd = pathIsEmpty(components); 7065 if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp)) 7066 // Skip parent components; their components are placed directly in the 7067 // object. 7068 components.reversePath.push_back(&x); 7069 auto result = genarr(x.base(), components); 7070 if (components.applied) 7071 return result; 7072 if (atEnd) 7073 return genAsScalar(x); 7074 mlir::Location loc = getLoc(); 7075 return [=](IterSpace) -> ExtValue { 7076 fir::emitFatalError(loc, "reached component with path"); 7077 }; 7078 } 7079 7080 /// Array reference with subscripts. If this has rank > 0, this is a form 7081 /// of an array section (slice). 7082 /// 7083 /// There are two "slicing" primitives that may be applied on a dimension by 7084 /// dimension basis: (1) triple notation and (2) vector addressing. Since 7085 /// dimensions can be selectively sliced, some dimensions may contain 7086 /// regular scalar expressions and those dimensions do not participate in 7087 /// the array expression evaluation. 7088 CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) { 7089 if (explicitSpaceIsActive()) { 7090 if (Fortran::lower::isRankedArrayAccess(x)) 7091 components.reversePath.push_back(ImplicitSubscripts{}); 7092 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) { 7093 components.reversePath.push_back(&x); 7094 return applyPathToArrayLoad(load, components); 7095 } 7096 } else { 7097 if (Fortran::lower::isRankedArrayAccess(x)) { 7098 components.reversePath.push_back(&x); 7099 return genImplicitArrayAccess(x.base(), components); 7100 } 7101 } 7102 bool atEnd = pathIsEmpty(components); 7103 components.reversePath.push_back(&x); 7104 auto result = genarr(x.base(), components); 7105 if (components.applied) 7106 return result; 7107 mlir::Location loc = getLoc(); 7108 if (atEnd) { 7109 if (x.Rank() == 0) 7110 return genAsScalar(x); 7111 fir::emitFatalError(loc, "expected scalar"); 7112 } 7113 return [=](IterSpace) -> ExtValue { 7114 fir::emitFatalError(loc, "reached arrayref with path"); 7115 }; 7116 } 7117 7118 CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) { 7119 TODO(getLoc(), "coarray reference"); 7120 } 7121 7122 CC genarr(const Fortran::evaluate::NamedEntity &x, 7123 ComponentPath &components) { 7124 return x.IsSymbol() ? genarr(getFirstSym(x), components) 7125 : genarr(x.GetComponent(), components); 7126 } 7127 7128 CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) { 7129 return std::visit([&](const auto &v) { return genarr(v, components); }, 7130 x.u); 7131 } 7132 7133 bool pathIsEmpty(const ComponentPath &components) { 7134 return components.reversePath.empty(); 7135 } 7136 7137 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7138 Fortran::lower::StatementContext &stmtCtx, 7139 Fortran::lower::SymMap &symMap) 7140 : converter{converter}, builder{converter.getFirOpBuilder()}, 7141 stmtCtx{stmtCtx}, symMap{symMap} {} 7142 7143 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7144 Fortran::lower::StatementContext &stmtCtx, 7145 Fortran::lower::SymMap &symMap, 7146 ConstituentSemantics sem) 7147 : converter{converter}, builder{converter.getFirOpBuilder()}, 7148 stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {} 7149 7150 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7151 Fortran::lower::StatementContext &stmtCtx, 7152 Fortran::lower::SymMap &symMap, 7153 ConstituentSemantics sem, 7154 Fortran::lower::ExplicitIterSpace *expSpace, 7155 Fortran::lower::ImplicitIterSpace *impSpace) 7156 : converter{converter}, builder{converter.getFirOpBuilder()}, 7157 stmtCtx{stmtCtx}, symMap{symMap}, 7158 explicitSpace(expSpace->isActive() ? expSpace : nullptr), 7159 implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} { 7160 // Generate any mask expressions, as necessary. This is the compute step 7161 // that creates the effective masks. See 10.2.3.2 in particular. 7162 genMasks(); 7163 } 7164 7165 mlir::Location getLoc() { return converter.getCurrentLocation(); } 7166 7167 /// Array appears in a lhs context such that it is assigned after the rhs is 7168 /// fully evaluated. 7169 inline bool isCopyInCopyOut() { 7170 return semant == ConstituentSemantics::CopyInCopyOut; 7171 } 7172 7173 /// Array appears in a lhs (or temp) context such that a projected, 7174 /// discontiguous subspace of the array is assigned after the rhs is fully 7175 /// evaluated. That is, the rhs array value is merged into a section of the 7176 /// lhs array. 7177 inline bool isProjectedCopyInCopyOut() { 7178 return semant == ConstituentSemantics::ProjectedCopyInCopyOut; 7179 } 7180 7181 // ???: Do we still need this? 7182 inline bool isCustomCopyInCopyOut() { 7183 return semant == ConstituentSemantics::CustomCopyInCopyOut; 7184 } 7185 7186 /// Array appears in a context where it must be boxed. 7187 inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; } 7188 7189 /// Array appears in a context where differences in the memory reference can 7190 /// be observable in the computational results. For example, an array 7191 /// element is passed to an impure procedure. 7192 inline bool isReferentiallyOpaque() { 7193 return semant == ConstituentSemantics::RefOpaque; 7194 } 7195 7196 /// Array appears in a context where it is passed as a VALUE argument. 7197 inline bool isValueAttribute() { 7198 return semant == ConstituentSemantics::ByValueArg; 7199 } 7200 7201 /// Can the loops over the expression be unordered? 7202 inline bool isUnordered() const { return unordered; } 7203 7204 void setUnordered(bool b) { unordered = b; } 7205 7206 inline bool isPointerAssignment() const { return lbounds.hasValue(); } 7207 7208 inline bool isBoundsSpec() const { 7209 return isPointerAssignment() && !ubounds.hasValue(); 7210 } 7211 7212 inline bool isBoundsRemap() const { 7213 return isPointerAssignment() && ubounds.hasValue(); 7214 } 7215 7216 void setPointerAssignmentBounds( 7217 const llvm::SmallVector<mlir::Value> &lbs, 7218 llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) { 7219 lbounds = lbs; 7220 ubounds = ubs; 7221 } 7222 7223 Fortran::lower::AbstractConverter &converter; 7224 fir::FirOpBuilder &builder; 7225 Fortran::lower::StatementContext &stmtCtx; 7226 bool elementCtx = false; 7227 Fortran::lower::SymMap &symMap; 7228 /// The continuation to generate code to update the destination. 7229 llvm::Optional<CC> ccStoreToDest; 7230 llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude; 7231 llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>> 7232 ccLoadDest; 7233 /// The destination is the loaded array into which the results will be 7234 /// merged. 7235 fir::ArrayLoadOp destination; 7236 /// The shape of the destination. 7237 llvm::SmallVector<mlir::Value> destShape; 7238 /// List of arrays in the expression that have been loaded. 7239 llvm::SmallVector<ArrayOperand> arrayOperands; 7240 /// If there is a user-defined iteration space, explicitShape will hold the 7241 /// information from the front end. 7242 Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr; 7243 Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr; 7244 ConstituentSemantics semant = ConstituentSemantics::RefTransparent; 7245 /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only 7246 /// occur in an explicit iteration space. 7247 llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds; 7248 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds; 7249 // Can the array expression be evaluated in any order? 7250 // Will be set to false if any of the expression parts prevent this. 7251 bool unordered = true; 7252 }; 7253 } // namespace 7254 7255 fir::ExtendedValue Fortran::lower::createSomeExtendedExpression( 7256 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7257 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7258 Fortran::lower::StatementContext &stmtCtx) { 7259 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); 7260 return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr); 7261 } 7262 7263 fir::GlobalOp Fortran::lower::createDenseGlobal( 7264 mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName, 7265 mlir::StringAttr linkage, bool isConst, 7266 const Fortran::lower::SomeExpr &expr, 7267 Fortran::lower::AbstractConverter &converter) { 7268 7269 Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true); 7270 Fortran::lower::SymMap emptyMap; 7271 InitializerData initData(/*genRawVals=*/true); 7272 ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx, 7273 /*initializer=*/&initData); 7274 sel.genval(expr); 7275 7276 size_t sz = initData.rawVals.size(); 7277 llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz}; 7278 7279 mlir::RankedTensorType tensorTy; 7280 auto &builder = converter.getFirOpBuilder(); 7281 mlir::Type iTy = initData.rawType; 7282 if (!iTy) 7283 return 0; // array extent is probably 0 in this case, so just return 0. 7284 tensorTy = mlir::RankedTensorType::get(sz, iTy); 7285 auto init = mlir::DenseElementsAttr::get(tensorTy, ar); 7286 return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst); 7287 } 7288 7289 fir::ExtendedValue Fortran::lower::createSomeInitializerExpression( 7290 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7291 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7292 Fortran::lower::StatementContext &stmtCtx) { 7293 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); 7294 InitializerData initData; // needed for initializations 7295 return ScalarExprLowering{loc, converter, symMap, stmtCtx, 7296 /*initializer=*/&initData} 7297 .genval(expr); 7298 } 7299 7300 fir::ExtendedValue Fortran::lower::createSomeExtendedAddress( 7301 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7302 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7303 Fortran::lower::StatementContext &stmtCtx) { 7304 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); 7305 return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr); 7306 } 7307 7308 fir::ExtendedValue Fortran::lower::createInitializerAddress( 7309 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7310 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7311 Fortran::lower::StatementContext &stmtCtx) { 7312 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); 7313 InitializerData init; 7314 return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr); 7315 } 7316 7317 void Fortran::lower::createSomeArrayAssignment( 7318 Fortran::lower::AbstractConverter &converter, 7319 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7320 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7321 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; 7322 rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); 7323 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7324 } 7325 7326 void Fortran::lower::createSomeArrayAssignment( 7327 Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, 7328 const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap, 7329 Fortran::lower::StatementContext &stmtCtx) { 7330 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; 7331 rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); 7332 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7333 } 7334 void Fortran::lower::createSomeArrayAssignment( 7335 Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, 7336 const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap, 7337 Fortran::lower::StatementContext &stmtCtx) { 7338 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; 7339 llvm::dbgs() << "assign expression: " << rhs << '\n';); 7340 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7341 } 7342 7343 void Fortran::lower::createAnyMaskedArrayAssignment( 7344 Fortran::lower::AbstractConverter &converter, 7345 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7346 Fortran::lower::ExplicitIterSpace &explicitSpace, 7347 Fortran::lower::ImplicitIterSpace &implicitSpace, 7348 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7349 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; 7350 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7351 << " given the explicit iteration space:\n" 7352 << explicitSpace << "\n and implied mask conditions:\n" 7353 << implicitSpace << '\n';); 7354 ArrayExprLowering::lowerAnyMaskedArrayAssignment( 7355 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); 7356 } 7357 7358 void Fortran::lower::createAllocatableArrayAssignment( 7359 Fortran::lower::AbstractConverter &converter, 7360 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7361 Fortran::lower::ExplicitIterSpace &explicitSpace, 7362 Fortran::lower::ImplicitIterSpace &implicitSpace, 7363 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7364 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n'; 7365 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7366 << " given the explicit iteration space:\n" 7367 << explicitSpace << "\n and implied mask conditions:\n" 7368 << implicitSpace << '\n';); 7369 ArrayExprLowering::lowerAllocatableArrayAssignment( 7370 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); 7371 } 7372 7373 void Fortran::lower::createArrayOfPointerAssignment( 7374 Fortran::lower::AbstractConverter &converter, 7375 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7376 Fortran::lower::ExplicitIterSpace &explicitSpace, 7377 Fortran::lower::ImplicitIterSpace &implicitSpace, 7378 const llvm::SmallVector<mlir::Value> &lbounds, 7379 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds, 7380 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7381 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n'; 7382 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7383 << " given the explicit iteration space:\n" 7384 << explicitSpace << "\n and implied mask conditions:\n" 7385 << implicitSpace << '\n';); 7386 assert(explicitSpace.isActive() && "must be in FORALL construct"); 7387 ArrayExprLowering::lowerArrayOfPointerAssignment( 7388 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace, 7389 lbounds, ubounds); 7390 } 7391 7392 fir::ExtendedValue Fortran::lower::createSomeArrayTempValue( 7393 Fortran::lower::AbstractConverter &converter, 7394 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7395 Fortran::lower::StatementContext &stmtCtx) { 7396 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); 7397 return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx, 7398 expr); 7399 } 7400 7401 void Fortran::lower::createLazyArrayTempValue( 7402 Fortran::lower::AbstractConverter &converter, 7403 const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader, 7404 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7405 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); 7406 ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr, 7407 raggedHeader); 7408 } 7409 7410 fir::ExtendedValue 7411 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter, 7412 const Fortran::lower::SomeExpr &expr, 7413 Fortran::lower::SymMap &symMap, 7414 Fortran::lower::StatementContext &stmtCtx) { 7415 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n'); 7416 return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap, 7417 stmtCtx, expr); 7418 } 7419 7420 fir::MutableBoxValue Fortran::lower::createMutableBox( 7421 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7422 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) { 7423 // MutableBox lowering StatementContext does not need to be propagated 7424 // to the caller because the result value is a variable, not a temporary 7425 // expression. The StatementContext clean-up can occur before using the 7426 // resulting MutableBoxValue. Variables of all other types are handled in the 7427 // bridge. 7428 Fortran::lower::StatementContext dummyStmtCtx; 7429 return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx} 7430 .genMutableBoxValue(expr); 7431 } 7432 7433 fir::ExtendedValue Fortran::lower::createBoxValue( 7434 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7435 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7436 Fortran::lower::StatementContext &stmtCtx) { 7437 if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) && 7438 !Fortran::evaluate::HasVectorSubscript(expr)) 7439 return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx); 7440 fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress( 7441 loc, converter, expr, symMap, stmtCtx); 7442 return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr)); 7443 } 7444 7445 mlir::Value Fortran::lower::createSubroutineCall( 7446 AbstractConverter &converter, const evaluate::ProcedureRef &call, 7447 ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace, 7448 SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) { 7449 mlir::Location loc = converter.getCurrentLocation(); 7450 7451 if (isUserDefAssignment) { 7452 assert(call.arguments().size() == 2); 7453 const auto *lhs = call.arguments()[0].value().UnwrapExpr(); 7454 const auto *rhs = call.arguments()[1].value().UnwrapExpr(); 7455 assert(lhs && rhs && 7456 "user defined assignment arguments must be expressions"); 7457 if (call.IsElemental() && lhs->Rank() > 0) { 7458 // Elemental user defined assignment has special requirements to deal with 7459 // LHS/RHS overlaps. See 10.2.1.5 p2. 7460 ArrayExprLowering::lowerElementalUserAssignment( 7461 converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace, 7462 call); 7463 } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) { 7464 // Scalar defined assignment (elemental or not) in a FORALL context. 7465 mlir::func::FuncOp func = 7466 Fortran::lower::CallerInterface(call, converter).getFuncOp(); 7467 ArrayExprLowering::lowerScalarUserAssignment( 7468 converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs); 7469 } else if (explicitIterSpace.isActive()) { 7470 // TODO: need to array fetch/modify sub-arrays? 7471 TODO(loc, "non elemental user defined array assignment inside FORALL"); 7472 } else { 7473 if (!implicitIterSpace.empty()) 7474 fir::emitFatalError( 7475 loc, 7476 "C1032: user defined assignment inside WHERE must be elemental"); 7477 // Non elemental user defined assignment outside of FORALL and WHERE. 7478 // FIXME: The non elemental user defined assignment case with array 7479 // arguments must be take into account potential overlap. So far the front 7480 // end does not add parentheses around the RHS argument in the call as it 7481 // should according to 15.4.3.4.3 p2. 7482 Fortran::lower::createSomeExtendedExpression( 7483 loc, converter, toEvExpr(call), symMap, stmtCtx); 7484 } 7485 return {}; 7486 } 7487 7488 assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() && 7489 "subroutine calls are not allowed inside WHERE and FORALL"); 7490 7491 if (isElementalProcWithArrayArgs(call)) { 7492 ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx, 7493 toEvExpr(call)); 7494 return {}; 7495 } 7496 // Simple subroutine call, with potential alternate return. 7497 auto res = Fortran::lower::createSomeExtendedExpression( 7498 loc, converter, toEvExpr(call), symMap, stmtCtx); 7499 return fir::getBase(res); 7500 } 7501 7502 template <typename A> 7503 fir::ArrayLoadOp genArrayLoad(mlir::Location loc, 7504 Fortran::lower::AbstractConverter &converter, 7505 fir::FirOpBuilder &builder, const A *x, 7506 Fortran::lower::SymMap &symMap, 7507 Fortran::lower::StatementContext &stmtCtx) { 7508 auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x); 7509 mlir::Value addr = fir::getBase(exv); 7510 mlir::Value shapeOp = builder.createShape(loc, exv); 7511 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); 7512 return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp, 7513 /*slice=*/mlir::Value{}, 7514 fir::getTypeParams(exv)); 7515 } 7516 template <> 7517 fir::ArrayLoadOp 7518 genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7519 fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x, 7520 Fortran::lower::SymMap &symMap, 7521 Fortran::lower::StatementContext &stmtCtx) { 7522 if (x->base().IsSymbol()) 7523 return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap, 7524 stmtCtx); 7525 return genArrayLoad(loc, converter, builder, &x->base().GetComponent(), 7526 symMap, stmtCtx); 7527 } 7528 7529 void Fortran::lower::createArrayLoads( 7530 Fortran::lower::AbstractConverter &converter, 7531 Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) { 7532 std::size_t counter = esp.getCounter(); 7533 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 7534 mlir::Location loc = converter.getCurrentLocation(); 7535 Fortran::lower::StatementContext &stmtCtx = esp.stmtContext(); 7536 // Gen the fir.array_load ops. 7537 auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp { 7538 return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx); 7539 }; 7540 if (esp.lhsBases[counter].hasValue()) { 7541 auto &base = esp.lhsBases[counter].getValue(); 7542 auto load = std::visit(genLoad, base); 7543 esp.initialArgs.push_back(load); 7544 esp.resetInnerArgs(); 7545 esp.bindLoad(base, load); 7546 } 7547 for (const auto &base : esp.rhsBases[counter]) 7548 esp.bindLoad(base, std::visit(genLoad, base)); 7549 } 7550 7551 void Fortran::lower::createArrayMergeStores( 7552 Fortran::lower::AbstractConverter &converter, 7553 Fortran::lower::ExplicitIterSpace &esp) { 7554 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 7555 mlir::Location loc = converter.getCurrentLocation(); 7556 builder.setInsertionPointAfter(esp.getOuterLoop()); 7557 // Gen the fir.array_merge_store ops for all LHS arrays. 7558 for (auto i : llvm::enumerate(esp.getOuterLoop().getResults())) 7559 if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) { 7560 fir::ArrayLoadOp load = ldOpt.getValue(); 7561 builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(), 7562 load.getMemref(), load.getSlice(), 7563 load.getTypeparams()); 7564 } 7565 if (esp.loopCleanup.hasValue()) { 7566 esp.loopCleanup.getValue()(builder); 7567 esp.loopCleanup = llvm::None; 7568 } 7569 esp.initialArgs.clear(); 7570 esp.innerArgs.clear(); 7571 esp.outerLoop = llvm::None; 7572 esp.resetBindings(); 7573 esp.incrementCounter(); 7574 } 7575 7576 mlir::Value Fortran::lower::genMaxWithZero(fir::FirOpBuilder &builder, 7577 mlir::Location loc, 7578 mlir::Value value) { 7579 mlir::Value zero = builder.createIntegerConstant(loc, value.getType(), 0); 7580 if (mlir::Operation *definingOp = value.getDefiningOp()) 7581 if (auto cst = mlir::dyn_cast<mlir::arith::ConstantOp>(definingOp)) 7582 if (auto intAttr = cst.getValue().dyn_cast<mlir::IntegerAttr>()) 7583 return intAttr.getInt() < 0 ? zero : value; 7584 return Fortran::lower::genMax(builder, loc, 7585 llvm::SmallVector<mlir::Value>{value, zero}); 7586 } 7587