1 //===-- ConvertExpr.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Lower/ConvertExpr.h"
14 #include "flang/Common/default-kinds.h"
15 #include "flang/Common/unwrap.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/real.h"
18 #include "flang/Evaluate/traverse.h"
19 #include "flang/Lower/Allocatable.h"
20 #include "flang/Lower/Bridge.h"
21 #include "flang/Lower/BuiltinModules.h"
22 #include "flang/Lower/CallInterface.h"
23 #include "flang/Lower/Coarray.h"
24 #include "flang/Lower/ComponentPath.h"
25 #include "flang/Lower/ConvertType.h"
26 #include "flang/Lower/ConvertVariable.h"
27 #include "flang/Lower/CustomIntrinsicCall.h"
28 #include "flang/Lower/DumpEvaluateExpr.h"
29 #include "flang/Lower/IntrinsicCall.h"
30 #include "flang/Lower/Mangler.h"
31 #include "flang/Lower/Runtime.h"
32 #include "flang/Lower/Support/Utils.h"
33 #include "flang/Optimizer/Builder/Character.h"
34 #include "flang/Optimizer/Builder/Complex.h"
35 #include "flang/Optimizer/Builder/Factory.h"
36 #include "flang/Optimizer/Builder/Runtime/Character.h"
37 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
38 #include "flang/Optimizer/Builder/Runtime/Ragged.h"
39 #include "flang/Optimizer/Builder/Todo.h"
40 #include "flang/Optimizer/Dialect/FIRAttr.h"
41 #include "flang/Optimizer/Dialect/FIRDialect.h"
42 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
43 #include "flang/Optimizer/Support/FatalError.h"
44 #include "flang/Semantics/expression.h"
45 #include "flang/Semantics/symbol.h"
46 #include "flang/Semantics/tools.h"
47 #include "flang/Semantics/type.h"
48 #include "mlir/Dialect/Func/IR/FuncOps.h"
49 #include "llvm/ADT/TypeSwitch.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 
56 #define DEBUG_TYPE "flang-lower-expr"
57 
58 //===----------------------------------------------------------------------===//
59 // The composition and structure of Fortran::evaluate::Expr is defined in
60 // the various header files in include/flang/Evaluate. You are referred
61 // there for more information on these data structures. Generally speaking,
62 // these data structures are a strongly typed family of abstract data types
63 // that, composed as trees, describe the syntax of Fortran expressions.
64 //
65 // This part of the bridge can traverse these tree structures and lower them
66 // to the correct FIR representation in SSA form.
67 //===----------------------------------------------------------------------===//
68 
69 static llvm::cl::opt<bool> generateArrayCoordinate(
70     "gen-array-coor",
71     llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
72     llvm::cl::init(false));
73 
74 // The default attempts to balance a modest allocation size with expected user
75 // input to minimize bounds checks and reallocations during dynamic array
76 // construction. Some user codes may have very large array constructors for
77 // which the default can be increased.
78 static llvm::cl::opt<unsigned> clInitialBufferSize(
79     "array-constructor-initial-buffer-size",
80     llvm::cl::desc(
81         "set the incremental array construction buffer size (default=32)"),
82     llvm::cl::init(32u));
83 
84 /// The various semantics of a program constituent (or a part thereof) as it may
85 /// appear in an expression.
86 ///
87 /// Given the following Fortran declarations.
88 /// ```fortran
89 ///   REAL :: v1, v2, v3
90 ///   REAL, POINTER :: vp1
91 ///   REAL :: a1(c), a2(c)
92 ///   REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
93 ///   FUNCTION f2(arg)                ! array -> array
94 ///   vp1 => v3       ! 1
95 ///   v1 = v2 * vp1   ! 2
96 ///   a1 = a1 + a2    ! 3
97 ///   a1 = f1(a2)     ! 4
98 ///   a1 = f2(a2)     ! 5
99 /// ```
100 ///
101 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
102 /// constructed from the DataAddr of `v3`.
103 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
104 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
105 /// dereference in the `vp1` case.
106 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
107 /// is CopyInCopyOut as `a1` is replaced elementally by the additions.
108 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
109 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
110 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
111 ///  In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
112 ///  `a1` on the lhs is again CopyInCopyOut.
113 enum class ConstituentSemantics {
114   // Scalar data reference semantics.
115   //
116   // For these let `v` be the location in memory of a variable with value `x`
117   DataValue, // refers to the value `x`
118   DataAddr,  // refers to the address `v`
119   BoxValue,  // refers to a box value containing `v`
120   BoxAddr,   // refers to the address of a box value containing `v`
121 
122   // Array data reference semantics.
123   //
124   // For these let `a` be the location in memory of a sequence of value `[xs]`.
125   // Let `x_i` be the `i`-th value in the sequence `[xs]`.
126 
127   // Referentially transparent. Refers to the array's value, `[xs]`.
128   RefTransparent,
129   // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
130   // note 2). (Passing a copy by reference to simulate pass-by-value.)
131   ByValueArg,
132   // Refers to the merge of array value `[xs]` with another array value `[ys]`.
133   // This merged array value will be written into memory location `a`.
134   CopyInCopyOut,
135   // Similar to CopyInCopyOut but `a` may be a transient projection (rather than
136   // a whole array).
137   ProjectedCopyInCopyOut,
138   // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
139   // automatically by the framework. Instead, and address for `[xs]` is made
140   // accessible so that custom assignments to `[xs]` can be implemented.
141   CustomCopyInCopyOut,
142   // Referentially opaque. Refers to the address of `x_i`.
143   RefOpaque
144 };
145 
146 /// Convert parser's INTEGER relational operators to MLIR.  TODO: using
147 /// unordered, but we may want to cons ordered in certain situation.
148 static mlir::arith::CmpIPredicate
149 translateRelational(Fortran::common::RelationalOperator rop) {
150   switch (rop) {
151   case Fortran::common::RelationalOperator::LT:
152     return mlir::arith::CmpIPredicate::slt;
153   case Fortran::common::RelationalOperator::LE:
154     return mlir::arith::CmpIPredicate::sle;
155   case Fortran::common::RelationalOperator::EQ:
156     return mlir::arith::CmpIPredicate::eq;
157   case Fortran::common::RelationalOperator::NE:
158     return mlir::arith::CmpIPredicate::ne;
159   case Fortran::common::RelationalOperator::GT:
160     return mlir::arith::CmpIPredicate::sgt;
161   case Fortran::common::RelationalOperator::GE:
162     return mlir::arith::CmpIPredicate::sge;
163   }
164   llvm_unreachable("unhandled INTEGER relational operator");
165 }
166 
167 /// Convert parser's REAL relational operators to MLIR.
168 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
169 /// requirements in the IEEE context (table 17.1 of F2018). This choice is
170 /// also applied in other contexts because it is easier and in line with
171 /// other Fortran compilers.
172 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
173 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
174 /// whether the comparison will signal or not in case of quiet NaN argument.
175 static mlir::arith::CmpFPredicate
176 translateFloatRelational(Fortran::common::RelationalOperator rop) {
177   switch (rop) {
178   case Fortran::common::RelationalOperator::LT:
179     return mlir::arith::CmpFPredicate::OLT;
180   case Fortran::common::RelationalOperator::LE:
181     return mlir::arith::CmpFPredicate::OLE;
182   case Fortran::common::RelationalOperator::EQ:
183     return mlir::arith::CmpFPredicate::OEQ;
184   case Fortran::common::RelationalOperator::NE:
185     return mlir::arith::CmpFPredicate::UNE;
186   case Fortran::common::RelationalOperator::GT:
187     return mlir::arith::CmpFPredicate::OGT;
188   case Fortran::common::RelationalOperator::GE:
189     return mlir::arith::CmpFPredicate::OGE;
190   }
191   llvm_unreachable("unhandled REAL relational operator");
192 }
193 
194 static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
195                                           mlir::Location loc,
196                                           fir::ExtendedValue actual) {
197   if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
198     return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
199                                                         *ptrOrAlloc);
200   // Optional case (not that optional allocatable/pointer cannot be absent
201   // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
202   // therefore possible to catch them in the `then` case above.
203   return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
204                                           fir::getBase(actual));
205 }
206 
207 /// Convert the array_load, `load`, to an extended value. If `path` is not
208 /// empty, then traverse through the components designated. The base value is
209 /// `newBase`. This does not accept an array_load with a slice operand.
210 static fir::ExtendedValue
211 arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc,
212                   fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path,
213                   mlir::Value newBase, mlir::Value newLen = {}) {
214   // Recover the extended value from the load.
215   if (load.getSlice())
216     fir::emitFatalError(loc, "array_load with slice is not allowed");
217   mlir::Type arrTy = load.getType();
218   if (!path.empty()) {
219     mlir::Type ty = fir::applyPathToType(arrTy, path);
220     if (!ty)
221       fir::emitFatalError(loc, "path does not apply to type");
222     if (!ty.isa<fir::SequenceType>()) {
223       if (fir::isa_char(ty)) {
224         mlir::Value len = newLen;
225         if (!len)
226           len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
227               load.getMemref());
228         if (!len) {
229           assert(load.getTypeparams().size() == 1 &&
230                  "length must be in array_load");
231           len = load.getTypeparams()[0];
232         }
233         return fir::CharBoxValue{newBase, len};
234       }
235       return newBase;
236     }
237     arrTy = ty.cast<fir::SequenceType>();
238   }
239 
240   auto arrayToExtendedValue =
241       [&](const llvm::SmallVector<mlir::Value> &extents,
242           const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue {
243     mlir::Type eleTy = fir::unwrapSequenceType(arrTy);
244     if (fir::isa_char(eleTy)) {
245       mlir::Value len = newLen;
246       if (!len)
247         len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
248             load.getMemref());
249       if (!len) {
250         assert(load.getTypeparams().size() == 1 &&
251                "length must be in array_load");
252         len = load.getTypeparams()[0];
253       }
254       return fir::CharArrayBoxValue(newBase, len, extents, origins);
255     }
256     return fir::ArrayBoxValue(newBase, extents, origins);
257   };
258   // Use the shape op, if there is one.
259   mlir::Value shapeVal = load.getShape();
260   if (shapeVal) {
261     if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) {
262       auto extents = fir::factory::getExtents(shapeVal);
263       auto origins = fir::factory::getOrigins(shapeVal);
264       return arrayToExtendedValue(extents, origins);
265     }
266     if (!fir::isa_box_type(load.getMemref().getType()))
267       fir::emitFatalError(loc, "shift op is invalid in this context");
268   }
269 
270   // If we're dealing with the array_load op (not a subobject) and the load does
271   // not have any type parameters, then read the extents from the original box.
272   // The origin may be either from the box or a shift operation. Create and
273   // return the array extended value.
274   if (path.empty() && load.getTypeparams().empty()) {
275     auto oldBox = load.getMemref();
276     fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox);
277     auto extents = fir::factory::getExtents(loc, builder, exv);
278     auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv);
279     if (shapeVal) {
280       // shapeVal is a ShiftOp and load.memref() is a boxed value.
281       newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox,
282                                              shapeVal, /*slice=*/mlir::Value{});
283       origins = fir::factory::getOrigins(shapeVal);
284     }
285     return fir::substBase(arrayToExtendedValue(extents, origins), newBase);
286   }
287   TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires "
288             "dereferencing; generating the type parameters is a hard "
289             "requirement for correctness.");
290 }
291 
292 /// Place \p exv in memory if it is not already a memory reference. If
293 /// \p forceValueType is provided, the value is first casted to the provided
294 /// type before being stored (this is mainly intended for logicals whose value
295 /// may be `i1` but needed to be stored as Fortran logicals).
296 static fir::ExtendedValue
297 placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
298                          const fir::ExtendedValue &exv,
299                          mlir::Type storageType) {
300   mlir::Value valBase = fir::getBase(exv);
301   if (fir::conformsWithPassByRef(valBase.getType()))
302     return exv;
303 
304   assert(!fir::hasDynamicSize(storageType) &&
305          "only expect statically sized scalars to be by value");
306 
307   // Since `a` is not itself a valid referent, determine its value and
308   // create a temporary location at the beginning of the function for
309   // referencing.
310   mlir::Value val = builder.createConvert(loc, storageType, valBase);
311   mlir::Value temp = builder.createTemporary(
312       loc, storageType,
313       llvm::ArrayRef<mlir::NamedAttribute>{
314           Fortran::lower::getAdaptToByRefAttr(builder)});
315   builder.create<fir::StoreOp>(loc, val, temp);
316   return fir::substBase(exv, temp);
317 }
318 
319 // Copy a copy of scalar \p exv in a new temporary.
320 static fir::ExtendedValue
321 createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
322                          const fir::ExtendedValue &exv) {
323   assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
324   if (exv.getCharBox() != nullptr)
325     return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
326   if (fir::isDerivedWithLenParameters(exv))
327     TODO(loc, "copy derived type with length parameters");
328   mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
329   fir::ExtendedValue temp = builder.createTemporary(loc, type);
330   fir::factory::genScalarAssignment(builder, loc, temp, exv);
331   return temp;
332 }
333 
334 // An expression with non-zero rank is an array expression.
335 template <typename A>
336 static bool isArray(const A &x) {
337   return x.Rank() != 0;
338 }
339 
340 /// Is this a variable wrapped in parentheses?
341 template <typename A>
342 static bool isParenthesizedVariable(const A &) {
343   return false;
344 }
345 template <typename T>
346 static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
347   using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
348   using Parentheses = Fortran::evaluate::Parentheses<T>;
349   if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
350     if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
351       return Fortran::evaluate::IsVariable(parentheses->left());
352     return false;
353   } else {
354     return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
355                       expr.u);
356   }
357 }
358 
359 /// Does \p expr only refer to symbols that are mapped to IR values in \p symMap
360 /// ?
361 static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr,
362                                          Fortran::lower::SymMap &symMap) {
363   for (const auto &sym : Fortran::evaluate::CollectSymbols(expr))
364     if (!symMap.lookupSymbol(sym))
365       return false;
366   return true;
367 }
368 
369 /// Generate a load of a value from an address. Beware that this will lose
370 /// any dynamic type information for polymorphic entities (note that unlimited
371 /// polymorphic cannot be loaded and must not be provided here).
372 static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
373                                   mlir::Location loc,
374                                   const fir::ExtendedValue &addr) {
375   return addr.match(
376       [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
377       [&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
378         if (fir::unwrapRefType(fir::getBase(v).getType())
379                 .isa<fir::RecordType>())
380           return v;
381         return builder.create<fir::LoadOp>(loc, fir::getBase(v));
382       },
383       [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
384         return genLoad(builder, loc,
385                        fir::factory::genMutableBoxRead(builder, loc, box));
386       },
387       [&](const fir::BoxValue &box) -> fir::ExtendedValue {
388         if (box.isUnlimitedPolymorphic())
389           fir::emitFatalError(
390               loc,
391               "lowering attempting to load an unlimited polymorphic entity");
392         return genLoad(builder, loc,
393                        fir::factory::readBoxValue(builder, loc, box));
394       },
395       [&](const auto &) -> fir::ExtendedValue {
396         fir::emitFatalError(
397             loc, "attempting to load whole array or procedure address");
398       });
399 }
400 
401 /// Create an optional dummy argument value from entity \p exv that may be
402 /// absent. This can only be called with numerical or logical scalar \p exv.
403 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
404 /// value is zero (or false), otherwise it is the value of \p exv.
405 static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
406                                            mlir::Location loc,
407                                            const fir::ExtendedValue &exv,
408                                            mlir::Value isPresent) {
409   mlir::Type eleType = fir::getBaseTypeOf(exv);
410   assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
411          "must be a numerical or logical scalar");
412   return builder
413       .genIfOp(loc, {eleType}, isPresent,
414                /*withElseRegion=*/true)
415       .genThen([&]() {
416         mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
417         builder.create<fir::ResultOp>(loc, val);
418       })
419       .genElse([&]() {
420         mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
421         builder.create<fir::ResultOp>(loc, zero);
422       })
423       .getResults()[0];
424 }
425 
426 /// Create an optional dummy argument address from entity \p exv that may be
427 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
428 /// returned value is a null pointer, otherwise it is the address of \p exv.
429 static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
430                                           mlir::Location loc,
431                                           const fir::ExtendedValue &exv,
432                                           mlir::Value isPresent) {
433   // If it is an exv pointer/allocatable, then it cannot be absent
434   // because it is passed to a non-pointer/non-allocatable.
435   if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
436     return fir::factory::genMutableBoxRead(builder, loc, *box);
437   // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
438   // address and can be passed directly.
439   return exv;
440 }
441 
442 /// Create an optional dummy argument address from entity \p exv that may be
443 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
444 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p
445 /// exv.
446 static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
447                                          mlir::Location loc,
448                                          const fir::ExtendedValue &exv,
449                                          mlir::Value isPresent) {
450   // Non allocatable/pointer optional box -> simply forward
451   if (exv.getBoxOf<fir::BoxValue>())
452     return exv;
453 
454   fir::ExtendedValue newExv = exv;
455   // Optional allocatable/pointer -> Cannot be absent, but need to translate
456   // unallocated/diassociated into absent fir.box.
457   if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
458     newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
459 
460   // createBox will not do create any invalid memory dereferences if exv is
461   // absent. The created fir.box will not be usable, but the SelectOp below
462   // ensures it won't be.
463   mlir::Value box = builder.createBox(loc, newExv);
464   mlir::Type boxType = box.getType();
465   auto absent = builder.create<fir::AbsentOp>(loc, boxType);
466   auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
467       loc, boxType, isPresent, box, absent);
468   return fir::BoxValue(boxOrAbsent);
469 }
470 
471 /// Is this a call to an elemental procedure with at least one array argument?
472 static bool
473 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
474   if (procRef.IsElemental())
475     for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
476          procRef.arguments())
477       if (arg && arg->Rank() != 0)
478         return true;
479   return false;
480 }
481 template <typename T>
482 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
483   return false;
484 }
485 template <>
486 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
487   if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
488     return isElementalProcWithArrayArgs(*procRef);
489   return false;
490 }
491 
492 /// Some auxiliary data for processing initialization in ScalarExprLowering
493 /// below. This is currently used for generating dense attributed global
494 /// arrays.
495 struct InitializerData {
496   explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {}
497   llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values
498   mlir::Type rawType; // Type of elements processed for rawVals vector.
499   bool genRawVals;    // generate the rawVals vector if set.
500 };
501 
502 /// If \p arg is the address of a function with a denoted host-association tuple
503 /// argument, then return the host-associations tuple value of the current
504 /// procedure. Otherwise, return nullptr.
505 static mlir::Value
506 argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
507                    mlir::Value arg) {
508   if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
509     auto &builder = converter.getFirOpBuilder();
510     if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
511       if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
512         return converter.hostAssocTupleValue();
513   }
514   return {};
515 }
516 
517 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
518 /// \p funcAddr argument to a boxproc value, with the host-association as
519 /// required. Call the factory function to finish creating the tuple value.
520 static mlir::Value
521 createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter,
522                        mlir::Type argTy, mlir::Value funcAddr,
523                        mlir::Value charLen) {
524   auto boxTy =
525       argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>();
526   mlir::Location loc = converter.getCurrentLocation();
527   auto &builder = converter.getFirOpBuilder();
528   auto boxProc = [&]() -> mlir::Value {
529     if (auto host = argumentHostAssocs(converter, funcAddr))
530       return builder.create<fir::EmboxProcOp>(
531           loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host});
532     return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr);
533   }();
534   return fir::factory::createCharacterProcedureTuple(builder, loc, argTy,
535                                                      boxProc, charLen);
536 }
537 
538 /// Given an optional fir.box, returns an fir.box that is the original one if
539 /// it is present and it otherwise an unallocated box.
540 /// Absent fir.box are implemented as a null pointer descriptor. Generated
541 /// code may need to unconditionally read a fir.box that can be absent.
542 /// This helper allows creating a fir.box that can be read in all cases
543 /// outside of a fir.if (isPresent) region. However, the usages of the value
544 /// read from such box should still only be done in a fir.if(isPresent).
545 static fir::ExtendedValue
546 absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
547                           const fir::ExtendedValue &exv,
548                           mlir::Value isPresent) {
549   mlir::Value box = fir::getBase(exv);
550   mlir::Type boxType = box.getType();
551   assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
552   mlir::Value emptyBox =
553       fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
554   auto safeToReadBox =
555       builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
556   return fir::substBase(exv, safeToReadBox);
557 }
558 
559 // Helper to get the ultimate first symbol. This works around the fact that
560 // symbol resolution in the front end doesn't always resolve a symbol to its
561 // ultimate symbol but may leave placeholder indirections for use and host
562 // associations.
563 template <typename A>
564 const Fortran::semantics::Symbol &getFirstSym(const A &obj) {
565   return obj.GetFirstSymbol().GetUltimate();
566 }
567 
568 // Helper to get the ultimate last symbol.
569 template <typename A>
570 const Fortran::semantics::Symbol &getLastSym(const A &obj) {
571   return obj.GetLastSymbol().GetUltimate();
572 }
573 
574 static bool
575 isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
576   const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
577   if (!symbol)
578     return false;
579   const Fortran::semantics::Symbol *module =
580       symbol->GetUltimate().owner().GetSymbol();
581   return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
582 }
583 
584 namespace {
585 
586 /// Lowering of Fortran::evaluate::Expr<T> expressions
587 class ScalarExprLowering {
588 public:
589   using ExtValue = fir::ExtendedValue;
590 
591   explicit ScalarExprLowering(mlir::Location loc,
592                               Fortran::lower::AbstractConverter &converter,
593                               Fortran::lower::SymMap &symMap,
594                               Fortran::lower::StatementContext &stmtCtx,
595                               InitializerData *initializer = nullptr)
596       : location{loc}, converter{converter},
597         builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
598         inInitializer{initializer} {}
599 
600   ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
601     return gen(expr);
602   }
603 
604   /// Lower `expr` to be passed as a fir.box argument. Do not create a temp
605   /// for the expr if it is a variable that can be described as a fir.box.
606   ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
607     bool saveUseBoxArg = useBoxArg;
608     useBoxArg = true;
609     ExtValue result = gen(expr);
610     useBoxArg = saveUseBoxArg;
611     return result;
612   }
613 
614   ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
615     return genval(expr);
616   }
617 
618   /// Lower an expression that is a pointer or an allocatable to a
619   /// MutableBoxValue.
620   fir::MutableBoxValue
621   genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
622     // Pointers and allocatables can only be:
623     //    - a simple designator "x"
624     //    - a component designator "a%b(i,j)%x"
625     //    - a function reference "foo()"
626     //    - result of NULL() or NULL(MOLD) intrinsic.
627     //    NULL() requires some context to be lowered, so it is not handled
628     //    here and must be lowered according to the context where it appears.
629     ExtValue exv = std::visit(
630         [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
631     const fir::MutableBoxValue *mutableBox =
632         exv.getBoxOf<fir::MutableBoxValue>();
633     if (!mutableBox)
634       fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
635     return *mutableBox;
636   }
637 
638   template <typename T>
639   ExtValue genMutableBoxValueImpl(const T &) {
640     // NULL() case should not be handled here.
641     fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
642   }
643 
644   /// A `NULL()` in a position where a mutable box is expected has the same
645   /// semantics as an absent optional box value.
646   ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) {
647     mlir::Location loc = getLoc();
648     auto nullConst = builder.createNullConstant(loc);
649     auto noneTy = mlir::NoneType::get(builder.getContext());
650     auto polyRefTy = fir::LLVMPointerType::get(noneTy);
651     // MutableBoxValue will dereference the box, so create a bogus temporary for
652     // the `nullptr`. The LLVM optimizer will garbage collect the temp.
653     auto temp =
654         builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{});
655     auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst);
656     builder.create<fir::StoreOp>(loc, nullPtr, temp);
657     auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy));
658     return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp),
659                                 /*lenParameters=*/mlir::ValueRange{},
660                                 /*mutableProperties=*/{});
661   }
662 
663   template <typename T>
664   ExtValue
665   genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
666     return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
667   }
668 
669   template <typename T>
670   ExtValue
671   genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
672     return std::visit(
673         Fortran::common::visitors{
674             [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
675               return symMap.lookupSymbol(*sym).toExtendedValue();
676             },
677             [&](const Fortran::evaluate::Component &comp) -> ExtValue {
678               return genComponent(comp);
679             },
680             [&](const auto &) -> ExtValue {
681               fir::emitFatalError(getLoc(),
682                                   "not an allocatable or pointer designator");
683             }},
684         designator.u);
685   }
686 
687   template <typename T>
688   ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
689     return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
690                       expr.u);
691   }
692 
693   mlir::Location getLoc() { return location; }
694 
695   template <typename A>
696   mlir::Value genunbox(const A &expr) {
697     ExtValue e = genval(expr);
698     if (const fir::UnboxedValue *r = e.getUnboxed())
699       return *r;
700     fir::emitFatalError(getLoc(), "unboxed expression expected");
701   }
702 
703   /// Generate an integral constant of `value`
704   template <int KIND>
705   mlir::Value genIntegerConstant(mlir::MLIRContext *context,
706                                  std::int64_t value) {
707     mlir::Type type =
708         converter.genType(Fortran::common::TypeCategory::Integer, KIND);
709     return builder.createIntegerConstant(getLoc(), type, value);
710   }
711 
712   /// Generate a logical/boolean constant of `value`
713   mlir::Value genBoolConstant(bool value) {
714     return builder.createBool(getLoc(), value);
715   }
716 
717   /// Generate a real constant with a value `value`.
718   template <int KIND>
719   mlir::Value genRealConstant(mlir::MLIRContext *context,
720                               const llvm::APFloat &value) {
721     mlir::Type fltTy = Fortran::lower::convertReal(context, KIND);
722     return builder.createRealConstant(getLoc(), fltTy, value);
723   }
724 
725   mlir::Type getSomeKindInteger() { return builder.getIndexType(); }
726 
727   mlir::func::FuncOp getFunction(llvm::StringRef name,
728                                  mlir::FunctionType funTy) {
729     if (mlir::func::FuncOp func = builder.getNamedFunction(name))
730       return func;
731     return builder.createFunction(getLoc(), name, funTy);
732   }
733 
734   template <typename OpTy>
735   mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
736                               const ExtValue &left, const ExtValue &right) {
737     if (const fir::UnboxedValue *lhs = left.getUnboxed())
738       if (const fir::UnboxedValue *rhs = right.getUnboxed())
739         return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
740     fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
741   }
742   template <typename OpTy, typename A>
743   mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
744     ExtValue left = genval(ex.left());
745     return createCompareOp<OpTy>(pred, left, genval(ex.right()));
746   }
747 
748   template <typename OpTy>
749   mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
750                              const ExtValue &left, const ExtValue &right) {
751     if (const fir::UnboxedValue *lhs = left.getUnboxed())
752       if (const fir::UnboxedValue *rhs = right.getUnboxed())
753         return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
754     fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
755   }
756   template <typename OpTy, typename A>
757   mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
758     ExtValue left = genval(ex.left());
759     return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
760   }
761 
762   /// Create a call to the runtime to compare two CHARACTER values.
763   /// Precondition: This assumes that the two values have `fir.boxchar` type.
764   mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred,
765                                 const ExtValue &left, const ExtValue &right) {
766     return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right);
767   }
768 
769   template <typename A>
770   mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) {
771     ExtValue left = genval(ex.left());
772     return createCharCompare(pred, left, genval(ex.right()));
773   }
774 
775   /// Returns a reference to a symbol or its box/boxChar descriptor if it has
776   /// one.
777   ExtValue gen(Fortran::semantics::SymbolRef sym) {
778     if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym))
779       return val.match(
780           [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) {
781             return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr);
782           },
783           [&val](auto &) { return val.toExtendedValue(); });
784     LLVM_DEBUG(llvm::dbgs()
785                << "unknown symbol: " << sym << "\nmap: " << symMap << '\n');
786     fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value");
787   }
788 
789   ExtValue genLoad(const ExtValue &exv) {
790     return ::genLoad(builder, getLoc(), exv);
791   }
792 
793   ExtValue genval(Fortran::semantics::SymbolRef sym) {
794     mlir::Location loc = getLoc();
795     ExtValue var = gen(sym);
796     if (const fir::UnboxedValue *s = var.getUnboxed())
797       if (fir::isa_ref_type(s->getType())) {
798         // A function with multiple entry points returning different types
799         // tags all result variables with one of the largest types to allow
800         // them to share the same storage.  A reference to a result variable
801         // of one of the other types requires conversion to the actual type.
802         fir::UnboxedValue addr = *s;
803         if (Fortran::semantics::IsFunctionResult(sym)) {
804           mlir::Type resultType = converter.genType(*sym);
805           if (addr.getType() != resultType)
806             addr = builder.createConvert(loc, builder.getRefType(resultType),
807                                          addr);
808         }
809         return genLoad(addr);
810       }
811     return var;
812   }
813 
814   ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
815     TODO(getLoc(), "BOZ");
816   }
817 
818   /// Return indirection to function designated in ProcedureDesignator.
819   /// The type of the function indirection is not guaranteed to match the one
820   /// of the ProcedureDesignator due to Fortran implicit typing rules.
821   ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
822     mlir::Location loc = getLoc();
823     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
824             proc.GetSpecificIntrinsic()) {
825       mlir::FunctionType signature =
826           Fortran::lower::translateSignature(proc, converter);
827       // Intrinsic lowering is based on the generic name, so retrieve it here in
828       // case it is different from the specific name. The type of the specific
829       // intrinsic is retained in the signature.
830       std::string genericName =
831           converter.getFoldingContext().intrinsics().GetGenericIntrinsicName(
832               intrinsic->name);
833       mlir::SymbolRefAttr symbolRefAttr =
834           Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr(
835               builder, loc, genericName, signature);
836       mlir::Value funcPtr =
837           builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr);
838       return funcPtr;
839     }
840     const Fortran::semantics::Symbol *symbol = proc.GetSymbol();
841     assert(symbol && "expected symbol in ProcedureDesignator");
842     mlir::Value funcPtr;
843     mlir::Value funcPtrResultLength;
844     if (Fortran::semantics::IsDummy(*symbol)) {
845       Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol);
846       assert(val && "Dummy procedure not in symbol map");
847       funcPtr = val.getAddr();
848       if (fir::isCharacterProcedureTuple(funcPtr.getType(),
849                                          /*acceptRawFunc=*/false))
850         std::tie(funcPtr, funcPtrResultLength) =
851             fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr);
852     } else {
853       std::string name = converter.mangleName(*symbol);
854       mlir::func::FuncOp func =
855           Fortran::lower::getOrDeclareFunction(name, proc, converter);
856       // Abstract results require later rewrite of the function type.
857       // This currently does not happen inside GloalOps, causing LLVM
858       // IR verification failure. This helper is only here to catch these
859       // cases and emit a TODOs for now.
860       if (inInitializer && fir::hasAbstractResult(func.getFunctionType()))
861         TODO(converter.genLocation(symbol->name()),
862              "static description of non trivial procedure bindings");
863       funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(),
864                                               builder.getSymbolRefAttr(name));
865     }
866     if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) {
867       // The result length, if available here, must be propagated along the
868       // procedure address so that call sites where the result length is assumed
869       // can retrieve the length.
870       Fortran::evaluate::DynamicType resultType = proc.GetType().value();
871       if (const auto &lengthExpr = resultType.GetCharLength()) {
872         // The length expression may refer to dummy argument symbols that are
873         // meaningless without any actual arguments. Leave the length as
874         // unknown in that case, it be resolved on the call site
875         // with the actual arguments.
876         if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) {
877           mlir::Value rawLen = fir::getBase(genval(*lengthExpr));
878           // F2018 7.4.4.2 point 5.
879           funcPtrResultLength =
880               fir::factory::genMaxWithZero(builder, getLoc(), rawLen);
881         }
882       }
883       if (!funcPtrResultLength)
884         funcPtrResultLength = builder.createIntegerConstant(
885             loc, builder.getCharacterLengthType(), -1);
886       return fir::CharBoxValue{funcPtr, funcPtrResultLength};
887     }
888     return funcPtr;
889   }
890   ExtValue genval(const Fortran::evaluate::NullPointer &) {
891     return builder.createNullConstant(getLoc());
892   }
893 
894   static bool
895   isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) {
896     if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
897       if (const Fortran::semantics::DerivedTypeSpec *derived =
898               declTy->AsDerived())
899         return Fortran::semantics::CountLenParameters(*derived) > 0;
900     return false;
901   }
902 
903   static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) {
904     if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType())
905       if (const Fortran::semantics::DerivedTypeSpec *derived =
906               declType->AsDerived())
907         return Fortran::semantics::IsIsoCType(derived);
908     return false;
909   }
910 
911   /// Lower structure constructor without a temporary. This can be used in
912   /// fir::GloablOp, and assumes that the structure component is a constant.
913   ExtValue genStructComponentInInitializer(
914       const Fortran::evaluate::StructureConstructor &ctor) {
915     mlir::Location loc = getLoc();
916     mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
917     auto recTy = ty.cast<fir::RecordType>();
918     auto fieldTy = fir::FieldType::get(ty.getContext());
919     mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);
920 
921     for (const auto &[sym, expr] : ctor.values()) {
922       // Parent components need more work because they do not appear in the
923       // fir.rec type.
924       if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
925         TODO(loc, "parent component in structure constructor");
926 
927       llvm::StringRef name = toStringRef(sym->name());
928       mlir::Type componentTy = recTy.getType(name);
929       // FIXME: type parameters must come from the derived-type-spec
930       auto field = builder.create<fir::FieldIndexOp>(
931           loc, fieldTy, name, ty,
932           /*typeParams=*/mlir::ValueRange{} /*TODO*/);
933 
934       if (Fortran::semantics::IsAllocatable(sym))
935         TODO(loc, "allocatable component in structure constructor");
936 
937       if (Fortran::semantics::IsPointer(sym)) {
938         mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
939             converter, loc, componentTy, expr.value());
940         res = builder.create<fir::InsertValueOp>(
941             loc, recTy, res, initialTarget,
942             builder.getArrayAttr(field.getAttributes()));
943         continue;
944       }
945 
946       if (isDerivedTypeWithLengthParameters(sym))
947         TODO(loc, "component with length parameters in structure constructor");
948 
949       if (isBuiltinCPtr(sym)) {
950         // Builtin c_ptr and c_funptr have special handling because initial
951         // value are handled for them as an extension.
952         mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
953             converter, loc, expr.value()));
954         if (addr.getType() == componentTy) {
955           // Do nothing. The Ev::Expr was returned as a value that can be
956           // inserted directly to the component without an intermediary.
957         } else {
958           // The Ev::Expr returned is an initializer that is a pointer (e.g.,
959           // null) that must be inserted into an intermediate cptr record
960           // value's address field, which ought to be an intptr_t on the target.
961           assert((fir::isa_ref_type(addr.getType()) ||
962                   addr.getType().isa<mlir::FunctionType>()) &&
963                  "expect reference type for address field");
964           assert(fir::isa_derived(componentTy) &&
965                  "expect C_PTR, C_FUNPTR to be a record");
966           auto cPtrRecTy = componentTy.cast<fir::RecordType>();
967           llvm::StringRef addrFieldName =
968               Fortran::lower::builtin::cptrFieldName;
969           mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
970           auto addrField = builder.create<fir::FieldIndexOp>(
971               loc, fieldTy, addrFieldName, componentTy,
972               /*typeParams=*/mlir::ValueRange{});
973           mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
974           auto undef = builder.create<fir::UndefOp>(loc, componentTy);
975           addr = builder.create<fir::InsertValueOp>(
976               loc, componentTy, undef, castAddr,
977               builder.getArrayAttr(addrField.getAttributes()));
978         }
979         res = builder.create<fir::InsertValueOp>(
980             loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
981         continue;
982       }
983 
984       mlir::Value val = fir::getBase(genval(expr.value()));
985       assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
986       mlir::Value castVal = builder.createConvert(loc, componentTy, val);
987       res = builder.create<fir::InsertValueOp>(
988           loc, recTy, res, castVal,
989           builder.getArrayAttr(field.getAttributes()));
990     }
991     return res;
992   }
993 
994   /// A structure constructor is lowered two ways. In an initializer context,
995   /// the entire structure must be constant, so the aggregate value is
996   /// constructed inline. This allows it to be the body of a GlobalOp.
997   /// Otherwise, the structure constructor is in an expression. In that case, a
998   /// temporary object is constructed in the stack frame of the procedure.
999   ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
1000     if (inInitializer)
1001       return genStructComponentInInitializer(ctor);
1002     mlir::Location loc = getLoc();
1003     mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
1004     auto recTy = ty.cast<fir::RecordType>();
1005     auto fieldTy = fir::FieldType::get(ty.getContext());
1006     mlir::Value res = builder.createTemporary(loc, recTy);
1007 
1008     for (const auto &value : ctor.values()) {
1009       const Fortran::semantics::Symbol &sym = *value.first;
1010       const Fortran::lower::SomeExpr &expr = value.second.value();
1011       // Parent components need more work because they do not appear in the
1012       // fir.rec type.
1013       if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp))
1014         TODO(loc, "parent component in structure constructor");
1015 
1016       if (isDerivedTypeWithLengthParameters(sym))
1017         TODO(loc, "component with length parameters in structure constructor");
1018 
1019       llvm::StringRef name = toStringRef(sym.name());
1020       // FIXME: type parameters must come from the derived-type-spec
1021       mlir::Value field = builder.create<fir::FieldIndexOp>(
1022           loc, fieldTy, name, ty,
1023           /*typeParams=*/mlir::ValueRange{} /*TODO*/);
1024       mlir::Type coorTy = builder.getRefType(recTy.getType(name));
1025       auto coor = builder.create<fir::CoordinateOp>(loc, coorTy,
1026                                                     fir::getBase(res), field);
1027       ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor);
1028       to.match(
1029           [&](const fir::UnboxedValue &toPtr) {
1030             ExtValue value = genval(expr);
1031             fir::factory::genScalarAssignment(builder, loc, to, value);
1032           },
1033           [&](const fir::CharBoxValue &) {
1034             ExtValue value = genval(expr);
1035             fir::factory::genScalarAssignment(builder, loc, to, value);
1036           },
1037           [&](const fir::ArrayBoxValue &) {
1038             Fortran::lower::createSomeArrayAssignment(converter, to, expr,
1039                                                       symMap, stmtCtx);
1040           },
1041           [&](const fir::CharArrayBoxValue &) {
1042             Fortran::lower::createSomeArrayAssignment(converter, to, expr,
1043                                                       symMap, stmtCtx);
1044           },
1045           [&](const fir::BoxValue &toBox) {
1046             fir::emitFatalError(loc, "derived type components must not be "
1047                                      "represented by fir::BoxValue");
1048           },
1049           [&](const fir::MutableBoxValue &toBox) {
1050             if (toBox.isPointer()) {
1051               Fortran::lower::associateMutableBox(
1052                   converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx);
1053               return;
1054             }
1055             // For allocatable components, a deep copy is needed.
1056             TODO(loc, "allocatable components in derived type assignment");
1057           },
1058           [&](const fir::ProcBoxValue &toBox) {
1059             TODO(loc, "procedure pointer component in derived type assignment");
1060           });
1061     }
1062     return res;
1063   }
1064 
1065   /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
1066   ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
1067     return converter.impliedDoBinding(toStringRef(var.name));
1068   }
1069 
1070   ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
1071     ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base()))
1072                                           : gen(desc.base().GetComponent());
1073     mlir::IndexType idxTy = builder.getIndexType();
1074     mlir::Location loc = getLoc();
1075     auto castResult = [&](mlir::Value v) {
1076       using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
1077       return builder.createConvert(
1078           loc, converter.genType(ResTy::category, ResTy::kind), v);
1079     };
1080     switch (desc.field()) {
1081     case Fortran::evaluate::DescriptorInquiry::Field::Len:
1082       return castResult(fir::factory::readCharLen(builder, loc, exv));
1083     case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
1084       return castResult(fir::factory::readLowerBound(
1085           builder, loc, exv, desc.dimension(),
1086           builder.createIntegerConstant(loc, idxTy, 1)));
1087     case Fortran::evaluate::DescriptorInquiry::Field::Extent:
1088       return castResult(
1089           fir::factory::readExtent(builder, loc, exv, desc.dimension()));
1090     case Fortran::evaluate::DescriptorInquiry::Field::Rank:
1091       TODO(loc, "rank inquiry on assumed rank");
1092     case Fortran::evaluate::DescriptorInquiry::Field::Stride:
1093       // So far the front end does not generate this inquiry.
1094       TODO(loc, "stride inquiry");
1095     }
1096     llvm_unreachable("unknown descriptor inquiry");
1097   }
1098 
1099   ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
1100     TODO(getLoc(), "type parameter inquiry");
1101   }
1102 
1103   mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) {
1104     return fir::factory::Complex{builder, getLoc()}.extractComplexPart(
1105         cplx, isImagPart);
1106   }
1107 
1108   template <int KIND>
1109   ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
1110     return extractComplexPart(genunbox(part.left()), part.isImaginaryPart);
1111   }
1112 
1113   template <int KIND>
1114   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1115                       Fortran::common::TypeCategory::Integer, KIND>> &op) {
1116     mlir::Value input = genunbox(op.left());
1117     // Like LLVM, integer negation is the binary op "0 - value"
1118     mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
1119     return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
1120   }
1121   template <int KIND>
1122   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1123                       Fortran::common::TypeCategory::Real, KIND>> &op) {
1124     return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
1125   }
1126   template <int KIND>
1127   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1128                       Fortran::common::TypeCategory::Complex, KIND>> &op) {
1129     return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
1130   }
1131 
1132   template <typename OpTy>
1133   mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
1134     assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
1135     mlir::Value lhs = fir::getBase(left);
1136     mlir::Value rhs = fir::getBase(right);
1137     assert(lhs.getType() == rhs.getType() && "types must be the same");
1138     return builder.create<OpTy>(getLoc(), lhs, rhs);
1139   }
1140 
1141   template <typename OpTy, typename A>
1142   mlir::Value createBinaryOp(const A &ex) {
1143     ExtValue left = genval(ex.left());
1144     return createBinaryOp<OpTy>(left, genval(ex.right()));
1145   }
1146 
1147 #undef GENBIN
1148 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
1149   template <int KIND>                                                          \
1150   ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
1151                       Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
1152     return createBinaryOp<GenBinFirOp>(x);                                     \
1153   }
1154 
1155   GENBIN(Add, Integer, mlir::arith::AddIOp)
1156   GENBIN(Add, Real, mlir::arith::AddFOp)
1157   GENBIN(Add, Complex, fir::AddcOp)
1158   GENBIN(Subtract, Integer, mlir::arith::SubIOp)
1159   GENBIN(Subtract, Real, mlir::arith::SubFOp)
1160   GENBIN(Subtract, Complex, fir::SubcOp)
1161   GENBIN(Multiply, Integer, mlir::arith::MulIOp)
1162   GENBIN(Multiply, Real, mlir::arith::MulFOp)
1163   GENBIN(Multiply, Complex, fir::MulcOp)
1164   GENBIN(Divide, Integer, mlir::arith::DivSIOp)
1165   GENBIN(Divide, Real, mlir::arith::DivFOp)
1166   GENBIN(Divide, Complex, fir::DivcOp)
1167 
1168   template <Fortran::common::TypeCategory TC, int KIND>
1169   ExtValue genval(
1170       const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
1171     mlir::Type ty = converter.genType(TC, KIND);
1172     mlir::Value lhs = genunbox(op.left());
1173     mlir::Value rhs = genunbox(op.right());
1174     return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
1175   }
1176 
1177   template <Fortran::common::TypeCategory TC, int KIND>
1178   ExtValue genval(
1179       const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
1180           &op) {
1181     mlir::Type ty = converter.genType(TC, KIND);
1182     mlir::Value lhs = genunbox(op.left());
1183     mlir::Value rhs = genunbox(op.right());
1184     return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
1185   }
1186 
1187   template <int KIND>
1188   ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
1189     mlir::Value realPartValue = genunbox(op.left());
1190     return fir::factory::Complex{builder, getLoc()}.createComplex(
1191         KIND, realPartValue, genunbox(op.right()));
1192   }
1193 
1194   template <int KIND>
1195   ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
1196     ExtValue lhs = genval(op.left());
1197     ExtValue rhs = genval(op.right());
1198     const fir::CharBoxValue *lhsChar = lhs.getCharBox();
1199     const fir::CharBoxValue *rhsChar = rhs.getCharBox();
1200     if (lhsChar && rhsChar)
1201       return fir::factory::CharacterExprHelper{builder, getLoc()}
1202           .createConcatenate(*lhsChar, *rhsChar);
1203     TODO(getLoc(), "character array concatenate");
1204   }
1205 
1206   /// MIN and MAX operations
1207   template <Fortran::common::TypeCategory TC, int KIND>
1208   ExtValue
1209   genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
1210              &op) {
1211     mlir::Value lhs = genunbox(op.left());
1212     mlir::Value rhs = genunbox(op.right());
1213     switch (op.ordering) {
1214     case Fortran::evaluate::Ordering::Greater:
1215       return Fortran::lower::genMax(builder, getLoc(),
1216                                     llvm::ArrayRef<mlir::Value>{lhs, rhs});
1217     case Fortran::evaluate::Ordering::Less:
1218       return Fortran::lower::genMin(builder, getLoc(),
1219                                     llvm::ArrayRef<mlir::Value>{lhs, rhs});
1220     case Fortran::evaluate::Ordering::Equal:
1221       llvm_unreachable("Equal is not a valid ordering in this context");
1222     }
1223     llvm_unreachable("unknown ordering");
1224   }
1225 
1226   // Change the dynamic length information without actually changing the
1227   // underlying character storage.
1228   fir::ExtendedValue
1229   replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar,
1230                                mlir::Value newLenValue) {
1231     mlir::Location loc = getLoc();
1232     const fir::CharBoxValue *charBox = scalarChar.getCharBox();
1233     if (!charBox)
1234       fir::emitFatalError(loc, "expected scalar character");
1235     mlir::Value charAddr = charBox->getAddr();
1236     auto charType =
1237         fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>();
1238     if (charType.hasConstantLen()) {
1239       // Erase previous constant length from the base type.
1240       fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen();
1241       mlir::Type newCharTy = fir::CharacterType::get(
1242           builder.getContext(), charType.getFKind(), newLen);
1243       mlir::Type newType = fir::ReferenceType::get(newCharTy);
1244       charAddr = builder.createConvert(loc, newType, charAddr);
1245       return fir::CharBoxValue{charAddr, newLenValue};
1246     }
1247     return fir::CharBoxValue{charAddr, newLenValue};
1248   }
1249 
1250   template <int KIND>
1251   ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
1252     mlir::Value newLenValue = genunbox(x.right());
1253     fir::ExtendedValue lhs = gen(x.left());
1254     return replaceScalarCharacterLength(lhs, newLenValue);
1255   }
1256 
1257   template <int KIND>
1258   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1259                       Fortran::common::TypeCategory::Integer, KIND>> &op) {
1260     return createCompareOp<mlir::arith::CmpIOp>(op,
1261                                                 translateRelational(op.opr));
1262   }
1263   template <int KIND>
1264   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1265                       Fortran::common::TypeCategory::Real, KIND>> &op) {
1266     return createFltCmpOp<mlir::arith::CmpFOp>(
1267         op, translateFloatRelational(op.opr));
1268   }
1269   template <int KIND>
1270   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1271                       Fortran::common::TypeCategory::Complex, KIND>> &op) {
1272     return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr));
1273   }
1274   template <int KIND>
1275   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1276                       Fortran::common::TypeCategory::Character, KIND>> &op) {
1277     return createCharCompare(op, translateRelational(op.opr));
1278   }
1279 
1280   ExtValue
1281   genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
1282     return std::visit([&](const auto &x) { return genval(x); }, op.u);
1283   }
1284 
1285   template <Fortran::common::TypeCategory TC1, int KIND,
1286             Fortran::common::TypeCategory TC2>
1287   ExtValue
1288   genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
1289                                           TC2> &convert) {
1290     mlir::Type ty = converter.genType(TC1, KIND);
1291     auto fromExpr = genval(convert.left());
1292     auto loc = getLoc();
1293     return fromExpr.match(
1294         [&](const fir::CharBoxValue &boxchar) -> ExtValue {
1295           if constexpr (TC1 == Fortran::common::TypeCategory::Character &&
1296                         TC2 == TC1) {
1297             // Use char_convert. Each code point is translated from a
1298             // narrower/wider encoding to the target encoding. For example, 'A'
1299             // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol
1300             // for euro (0x20AC : i16) may be translated from a wide character
1301             // to "0xE2 0x82 0xAC" : UTF-8.
1302             mlir::Value bufferSize = boxchar.getLen();
1303             auto kindMap = builder.getKindMap();
1304             mlir::Value boxCharAddr = boxchar.getAddr();
1305             auto fromTy = boxCharAddr.getType();
1306             if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) {
1307               // boxchar is a value, not a variable. Turn it into a temporary.
1308               // As a value, it ought to have a constant LEN value.
1309               assert(charTy.hasConstantLen() && "must have constant length");
1310               mlir::Value tmp = builder.createTemporary(loc, charTy);
1311               builder.create<fir::StoreOp>(loc, boxCharAddr, tmp);
1312               boxCharAddr = tmp;
1313             }
1314             auto fromBits =
1315                 kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy)
1316                                                 .cast<fir::CharacterType>()
1317                                                 .getFKind());
1318             auto toBits = kindMap.getCharacterBitsize(
1319                 ty.cast<fir::CharacterType>().getFKind());
1320             if (toBits < fromBits) {
1321               // Scale by relative ratio to give a buffer of the same length.
1322               auto ratio = builder.createIntegerConstant(
1323                   loc, bufferSize.getType(), fromBits / toBits);
1324               bufferSize =
1325                   builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio);
1326             }
1327             auto dest = builder.create<fir::AllocaOp>(
1328                 loc, ty, mlir::ValueRange{bufferSize});
1329             builder.create<fir::CharConvertOp>(loc, boxCharAddr,
1330                                                boxchar.getLen(), dest);
1331             return fir::CharBoxValue{dest, boxchar.getLen()};
1332           } else {
1333             fir::emitFatalError(
1334                 loc, "unsupported evaluate::Convert between CHARACTER type "
1335                      "category and non-CHARACTER category");
1336           }
1337         },
1338         [&](const fir::UnboxedValue &value) -> ExtValue {
1339           return builder.convertWithSemantics(loc, ty, value);
1340         },
1341         [&](auto &) -> ExtValue {
1342           fir::emitFatalError(loc, "unsupported evaluate::Convert");
1343         });
1344   }
1345 
1346   template <typename A>
1347   ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
1348     ExtValue input = genval(op.left());
1349     mlir::Value base = fir::getBase(input);
1350     mlir::Value newBase =
1351         builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base);
1352     return fir::substBase(input, newBase);
1353   }
1354 
1355   template <int KIND>
1356   ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
1357     mlir::Value logical = genunbox(op.left());
1358     mlir::Value one = genBoolConstant(true);
1359     mlir::Value val =
1360         builder.createConvert(getLoc(), builder.getI1Type(), logical);
1361     return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
1362   }
1363 
1364   template <int KIND>
1365   ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
1366     mlir::IntegerType i1Type = builder.getI1Type();
1367     mlir::Value slhs = genunbox(op.left());
1368     mlir::Value srhs = genunbox(op.right());
1369     mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
1370     mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
1371     switch (op.logicalOperator) {
1372     case Fortran::evaluate::LogicalOperator::And:
1373       return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
1374     case Fortran::evaluate::LogicalOperator::Or:
1375       return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
1376     case Fortran::evaluate::LogicalOperator::Eqv:
1377       return createCompareOp<mlir::arith::CmpIOp>(
1378           mlir::arith::CmpIPredicate::eq, lhs, rhs);
1379     case Fortran::evaluate::LogicalOperator::Neqv:
1380       return createCompareOp<mlir::arith::CmpIOp>(
1381           mlir::arith::CmpIPredicate::ne, lhs, rhs);
1382     case Fortran::evaluate::LogicalOperator::Not:
1383       // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
1384       llvm_unreachable(".NOT. is not a binary operator");
1385     }
1386     llvm_unreachable("unhandled logical operation");
1387   }
1388 
1389   /// Convert a scalar literal constant to IR.
1390   template <Fortran::common::TypeCategory TC, int KIND>
1391   ExtValue genScalarLit(
1392       const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
1393           &value) {
1394     if constexpr (TC == Fortran::common::TypeCategory::Integer) {
1395       return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64());
1396     } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
1397       return genBoolConstant(value.IsTrue());
1398     } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
1399       std::string str = value.DumpHexadecimal();
1400       if constexpr (KIND == 2) {
1401         llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str};
1402         return genRealConstant<KIND>(builder.getContext(), floatVal);
1403       } else if constexpr (KIND == 3) {
1404         llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str};
1405         return genRealConstant<KIND>(builder.getContext(), floatVal);
1406       } else if constexpr (KIND == 4) {
1407         llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str};
1408         return genRealConstant<KIND>(builder.getContext(), floatVal);
1409       } else if constexpr (KIND == 10) {
1410         llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str};
1411         return genRealConstant<KIND>(builder.getContext(), floatVal);
1412       } else if constexpr (KIND == 16) {
1413         llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str};
1414         return genRealConstant<KIND>(builder.getContext(), floatVal);
1415       } else {
1416         // convert everything else to double
1417         llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str};
1418         return genRealConstant<KIND>(builder.getContext(), floatVal);
1419       }
1420     } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
1421       using TR =
1422           Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>;
1423       Fortran::evaluate::ComplexConstructor<KIND> ctor(
1424           Fortran::evaluate::Expr<TR>{
1425               Fortran::evaluate::Constant<TR>{value.REAL()}},
1426           Fortran::evaluate::Expr<TR>{
1427               Fortran::evaluate::Constant<TR>{value.AIMAG()}});
1428       return genunbox(ctor);
1429     } else /*constexpr*/ {
1430       llvm_unreachable("unhandled constant");
1431     }
1432   }
1433 
1434   /// Generate a raw literal value and store it in the rawVals vector.
1435   template <Fortran::common::TypeCategory TC, int KIND>
1436   void
1437   genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
1438                 &value) {
1439     mlir::Attribute val;
1440     assert(inInitializer != nullptr);
1441     if constexpr (TC == Fortran::common::TypeCategory::Integer) {
1442       inInitializer->rawType = converter.genType(TC, KIND);
1443       val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64());
1444     } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
1445       inInitializer->rawType =
1446           converter.genType(Fortran::common::TypeCategory::Integer, KIND);
1447       val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue());
1448     } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
1449       std::string str = value.DumpHexadecimal();
1450       inInitializer->rawType = converter.genType(TC, KIND);
1451       llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str};
1452       val = builder.getFloatAttr(inInitializer->rawType, floatVal);
1453     } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
1454       std::string strReal = value.REAL().DumpHexadecimal();
1455       std::string strImg = value.AIMAG().DumpHexadecimal();
1456       inInitializer->rawType = converter.genType(TC, KIND);
1457       llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND),
1458                             strReal};
1459       val = builder.getFloatAttr(inInitializer->rawType, realVal);
1460       inInitializer->rawVals.push_back(val);
1461       llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND),
1462                            strImg};
1463       val = builder.getFloatAttr(inInitializer->rawType, imgVal);
1464     }
1465     inInitializer->rawVals.push_back(val);
1466   }
1467 
1468   /// Convert a scalar literal CHARACTER to IR.
1469   template <int KIND>
1470   ExtValue
1471   genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
1472                    Fortran::common::TypeCategory::Character, KIND>> &value,
1473                int64_t len) {
1474     using ET = typename std::decay_t<decltype(value)>::value_type;
1475     if constexpr (KIND == 1) {
1476       assert(value.size() == static_cast<std::uint64_t>(len));
1477       // Outline character constant in ro data if it is not in an initializer.
1478       if (!inInitializer)
1479         return fir::factory::createStringLiteral(builder, getLoc(), value);
1480       // When in an initializer context, construct the literal op itself and do
1481       // not construct another constant object in rodata.
1482       fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value);
1483       mlir::Value lenp = builder.createIntegerConstant(
1484           getLoc(), builder.getCharacterLengthType(), len);
1485       return fir::CharBoxValue{stringLit.getResult(), lenp};
1486     }
1487     fir::CharacterType type =
1488         fir::CharacterType::get(builder.getContext(), KIND, len);
1489     auto consLit = [&]() -> fir::StringLitOp {
1490       mlir::MLIRContext *context = builder.getContext();
1491       std::int64_t size = static_cast<std::int64_t>(value.size());
1492       mlir::ShapedType shape = mlir::RankedTensorType::get(
1493           llvm::ArrayRef<std::int64_t>{size},
1494           mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
1495       auto denseAttr = mlir::DenseElementsAttr::get(
1496           shape, llvm::ArrayRef<ET>{value.data(), value.size()});
1497       auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
1498       mlir::NamedAttribute dataAttr(denseTag, denseAttr);
1499       auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
1500       mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
1501       llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
1502       return builder.create<fir::StringLitOp>(
1503           getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs);
1504     };
1505 
1506     mlir::Value lenp = builder.createIntegerConstant(
1507         getLoc(), builder.getCharacterLengthType(), len);
1508     // When in an initializer context, construct the literal op itself and do
1509     // not construct another constant object in rodata.
1510     if (inInitializer)
1511       return fir::CharBoxValue{consLit().getResult(), lenp};
1512 
1513     // Otherwise, the string is in a plain old expression so "outline" the value
1514     // by hashconsing it to a constant literal object.
1515 
1516     std::string globalName =
1517         fir::factory::uniqueCGIdent("cl", (const char *)value.c_str());
1518     fir::GlobalOp global = builder.getNamedGlobal(globalName);
1519     if (!global)
1520       global = builder.createGlobalConstant(
1521           getLoc(), type, globalName,
1522           [&](fir::FirOpBuilder &builder) {
1523             fir::StringLitOp str = consLit();
1524             builder.create<fir::HasValueOp>(getLoc(), str);
1525           },
1526           builder.createLinkOnceLinkage());
1527     auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
1528                                               global.getSymbol());
1529     return fir::CharBoxValue{addr, lenp};
1530   }
1531 
1532   template <Fortran::common::TypeCategory TC, int KIND>
1533   ExtValue genArrayLit(
1534       const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
1535           &con) {
1536     mlir::Location loc = getLoc();
1537     mlir::IndexType idxTy = builder.getIndexType();
1538     Fortran::evaluate::ConstantSubscript size =
1539         Fortran::evaluate::GetSize(con.shape());
1540     fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
1541     mlir::Type eleTy;
1542     if constexpr (TC == Fortran::common::TypeCategory::Character)
1543       eleTy = converter.genType(TC, KIND, {con.LEN()});
1544     else
1545       eleTy = converter.genType(TC, KIND);
1546     auto arrayTy = fir::SequenceType::get(shape, eleTy);
1547     mlir::Value array;
1548     llvm::SmallVector<mlir::Value> lbounds;
1549     llvm::SmallVector<mlir::Value> extents;
1550     if (!inInitializer || !inInitializer->genRawVals) {
1551       array = builder.create<fir::UndefOp>(loc, arrayTy);
1552       for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) {
1553         lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
1554         extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
1555       }
1556     }
1557     if (size == 0) {
1558       if constexpr (TC == Fortran::common::TypeCategory::Character) {
1559         mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
1560         return fir::CharArrayBoxValue{array, len, extents, lbounds};
1561       } else {
1562         return fir::ArrayBoxValue{array, extents, lbounds};
1563       }
1564     }
1565     Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
1566     auto createIdx = [&]() {
1567       llvm::SmallVector<mlir::Attribute> idx;
1568       for (size_t i = 0; i < subscripts.size(); ++i)
1569         idx.push_back(
1570             builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
1571       return idx;
1572     };
1573     if constexpr (TC == Fortran::common::TypeCategory::Character) {
1574       assert(array && "array must not be nullptr");
1575       do {
1576         mlir::Value elementVal =
1577             fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN()));
1578         array = builder.create<fir::InsertValueOp>(
1579             loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
1580       } while (con.IncrementSubscripts(subscripts));
1581       mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
1582       return fir::CharArrayBoxValue{array, len, extents, lbounds};
1583     } else {
1584       llvm::SmallVector<mlir::Attribute> rangeStartIdx;
1585       uint64_t rangeSize = 0;
1586       do {
1587         if (inInitializer && inInitializer->genRawVals) {
1588           genRawLit<TC, KIND>(con.At(subscripts));
1589           continue;
1590         }
1591         auto getElementVal = [&]() {
1592           return builder.createConvert(
1593               loc, eleTy,
1594               fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts))));
1595         };
1596         Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
1597         bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
1598                           con.At(subscripts) == con.At(nextSubscripts);
1599         if (!rangeSize && !nextIsSame) { // single (non-range) value
1600           array = builder.create<fir::InsertValueOp>(
1601               loc, arrayTy, array, getElementVal(),
1602               builder.getArrayAttr(createIdx()));
1603         } else if (!rangeSize) { // start a range
1604           rangeStartIdx = createIdx();
1605           rangeSize = 1;
1606         } else if (nextIsSame) { // expand a range
1607           ++rangeSize;
1608         } else { // end a range
1609           llvm::SmallVector<int64_t> rangeBounds;
1610           llvm::SmallVector<mlir::Attribute> idx = createIdx();
1611           for (size_t i = 0; i < idx.size(); ++i) {
1612             rangeBounds.push_back(rangeStartIdx[i]
1613                                       .cast<mlir::IntegerAttr>()
1614                                       .getValue()
1615                                       .getSExtValue());
1616             rangeBounds.push_back(
1617                 idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
1618           }
1619           array = builder.create<fir::InsertOnRangeOp>(
1620               loc, arrayTy, array, getElementVal(),
1621               builder.getIndexVectorAttr(rangeBounds));
1622           rangeSize = 0;
1623         }
1624       } while (con.IncrementSubscripts(subscripts));
1625       return fir::ArrayBoxValue{array, extents, lbounds};
1626     }
1627   }
1628 
1629   fir::ExtendedValue genArrayLit(
1630       const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
1631     mlir::Location loc = getLoc();
1632     mlir::IndexType idxTy = builder.getIndexType();
1633     Fortran::evaluate::ConstantSubscript size =
1634         Fortran::evaluate::GetSize(con.shape());
1635     fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
1636     mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec());
1637     auto arrayTy = fir::SequenceType::get(shape, eleTy);
1638     mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
1639     llvm::SmallVector<mlir::Value> lbounds;
1640     llvm::SmallVector<mlir::Value> extents;
1641     for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) {
1642       lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
1643       extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
1644     }
1645     if (size == 0)
1646       return fir::ArrayBoxValue{array, extents, lbounds};
1647     Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
1648     do {
1649       mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts)));
1650       llvm::SmallVector<mlir::Attribute> idx;
1651       for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds()))
1652         idx.push_back(builder.getIntegerAttr(idxTy, dim - lb));
1653       array = builder.create<fir::InsertValueOp>(
1654           loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx));
1655     } while (con.IncrementSubscripts(subscripts));
1656     return fir::ArrayBoxValue{array, extents, lbounds};
1657   }
1658 
1659   template <Fortran::common::TypeCategory TC, int KIND>
1660   ExtValue
1661   genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
1662              &con) {
1663     if (con.Rank() > 0)
1664       return genArrayLit(con);
1665     std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>>
1666         opt = con.GetScalarValue();
1667     assert(opt.has_value() && "constant has no value");
1668     if constexpr (TC == Fortran::common::TypeCategory::Character) {
1669       return genScalarLit<KIND>(opt.value(), con.LEN());
1670     } else {
1671       return genScalarLit<TC, KIND>(opt.value());
1672     }
1673   }
1674   fir::ExtendedValue genval(
1675       const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
1676     if (con.Rank() > 0)
1677       return genArrayLit(con);
1678     if (auto ctor = con.GetScalarValue())
1679       return genval(ctor.value());
1680     fir::emitFatalError(getLoc(),
1681                         "constant of derived type has no constructor");
1682   }
1683 
1684   template <typename A>
1685   ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
1686     fir::emitFatalError(getLoc(),
1687                         "array constructor: lowering should not reach here");
1688   }
1689 
1690   ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
1691     mlir::Location loc = getLoc();
1692     auto idxTy = builder.getI32Type();
1693     ExtValue exv = gen(x.complex());
1694     mlir::Value base = fir::getBase(exv);
1695     fir::factory::Complex helper{builder, loc};
1696     mlir::Type eleTy =
1697         helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType()));
1698     mlir::Value offset = builder.createIntegerConstant(
1699         loc, idxTy,
1700         x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
1701     mlir::Value result = builder.create<fir::CoordinateOp>(
1702         loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset});
1703     return {result};
1704   }
1705   ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
1706     return genLoad(gen(x));
1707   }
1708 
1709   /// Reference to a substring.
1710   ExtValue gen(const Fortran::evaluate::Substring &s) {
1711     // Get base string
1712     auto baseString = std::visit(
1713         Fortran::common::visitors{
1714             [&](const Fortran::evaluate::DataRef &x) { return gen(x); },
1715             [&](const Fortran::evaluate::StaticDataObject::Pointer &p)
1716                 -> ExtValue {
1717               if (std::optional<std::string> str = p->AsString())
1718                 return fir::factory::createStringLiteral(builder, getLoc(),
1719                                                          *str);
1720               // TODO: convert StaticDataObject to Constant<T> and use normal
1721               // constant path. Beware that StaticDataObject data() takes into
1722               // account build machine endianness.
1723               TODO(getLoc(),
1724                    "StaticDataObject::Pointer substring with kind > 1");
1725             },
1726         },
1727         s.parent());
1728     llvm::SmallVector<mlir::Value> bounds;
1729     mlir::Value lower = genunbox(s.lower());
1730     bounds.push_back(lower);
1731     if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) {
1732       mlir::Value upper = genunbox(*upperBound);
1733       bounds.push_back(upper);
1734     }
1735     fir::factory::CharacterExprHelper charHelper{builder, getLoc()};
1736     return baseString.match(
1737         [&](const fir::CharBoxValue &x) -> ExtValue {
1738           return charHelper.createSubstring(x, bounds);
1739         },
1740         [&](const fir::CharArrayBoxValue &) -> ExtValue {
1741           fir::emitFatalError(
1742               getLoc(),
1743               "array substring should be handled in array expression");
1744         },
1745         [&](const auto &) -> ExtValue {
1746           fir::emitFatalError(getLoc(), "substring base is not a CharBox");
1747         });
1748   }
1749 
1750   /// The value of a substring.
1751   ExtValue genval(const Fortran::evaluate::Substring &ss) {
1752     // FIXME: why is the value of a substring being lowered the same as the
1753     // address of a substring?
1754     return gen(ss);
1755   }
1756 
1757   ExtValue genval(const Fortran::evaluate::Subscript &subs) {
1758     if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
1759             &subs.u)) {
1760       if (s->value().Rank() > 0)
1761         fir::emitFatalError(getLoc(), "vector subscript is not scalar");
1762       return {genval(s->value())};
1763     }
1764     fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
1765   }
1766   ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
1767     return genval(subs);
1768   }
1769 
1770   ExtValue gen(const Fortran::evaluate::DataRef &dref) {
1771     return std::visit([&](const auto &x) { return gen(x); }, dref.u);
1772   }
1773   ExtValue genval(const Fortran::evaluate::DataRef &dref) {
1774     return std::visit([&](const auto &x) { return genval(x); }, dref.u);
1775   }
1776 
1777   // Helper function to turn the Component structure into a list of nested
1778   // components, ordered from largest/leftmost to smallest/rightmost:
1779   //  - where only the smallest/rightmost item may be allocatable or a pointer
1780   //    (nested allocatable/pointer components require nested coordinate_of ops)
1781   //  - that does not contain any parent components
1782   //    (the front end places parent components directly in the object)
1783   // Return the object used as the base coordinate for the component chain.
1784   static Fortran::evaluate::DataRef const *
1785   reverseComponents(const Fortran::evaluate::Component &cmpt,
1786                     std::list<const Fortran::evaluate::Component *> &list) {
1787     if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp))
1788       list.push_front(&cmpt);
1789     return std::visit(
1790         Fortran::common::visitors{
1791             [&](const Fortran::evaluate::Component &x) {
1792               if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x)))
1793                 return &cmpt.base();
1794               return reverseComponents(x, list);
1795             },
1796             [&](auto &) { return &cmpt.base(); },
1797         },
1798         cmpt.base().u);
1799   }
1800 
1801   // Return the coordinate of the component reference
1802   ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
1803     std::list<const Fortran::evaluate::Component *> list;
1804     const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
1805     llvm::SmallVector<mlir::Value> coorArgs;
1806     ExtValue obj = gen(*base);
1807     mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
1808     mlir::Location loc = getLoc();
1809     auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
1810     // FIXME: need to thread the LEN type parameters here.
1811     for (const Fortran::evaluate::Component *field : list) {
1812       auto recTy = ty.cast<fir::RecordType>();
1813       const Fortran::semantics::Symbol &sym = getLastSym(*field);
1814       llvm::StringRef name = toStringRef(sym.name());
1815       coorArgs.push_back(builder.create<fir::FieldIndexOp>(
1816           loc, fldTy, name, recTy, fir::getTypeParams(obj)));
1817       ty = recTy.getType(name);
1818     }
1819     ty = builder.getRefType(ty);
1820     return fir::factory::componentToExtendedValue(
1821         builder, loc,
1822         builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
1823                                           coorArgs));
1824   }
1825 
1826   ExtValue gen(const Fortran::evaluate::Component &cmpt) {
1827     // Components may be pointer or allocatable. In the gen() path, the mutable
1828     // aspect is lost to simplify handling on the client side. To retain the
1829     // mutable aspect, genMutableBoxValue should be used.
1830     return genComponent(cmpt).match(
1831         [&](const fir::MutableBoxValue &mutableBox) {
1832           return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox);
1833         },
1834         [](auto &box) -> ExtValue { return box; });
1835   }
1836 
1837   ExtValue genval(const Fortran::evaluate::Component &cmpt) {
1838     return genLoad(gen(cmpt));
1839   }
1840 
1841   // Determine the result type after removing `dims` dimensions from the array
1842   // type `arrTy`
1843   mlir::Type genSubType(mlir::Type arrTy, unsigned dims) {
1844     mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy);
1845     assert(unwrapTy && "must be a pointer or box type");
1846     auto seqTy = unwrapTy.cast<fir::SequenceType>();
1847     llvm::ArrayRef<int64_t> shape = seqTy.getShape();
1848     assert(shape.size() > 0 && "removing columns for sequence sans shape");
1849     assert(dims <= shape.size() && "removing more columns than exist");
1850     fir::SequenceType::Shape newBnds;
1851     // follow Fortran semantics and remove columns (from right)
1852     std::size_t e = shape.size() - dims;
1853     for (decltype(e) i = 0; i < e; ++i)
1854       newBnds.push_back(shape[i]);
1855     if (!newBnds.empty())
1856       return fir::SequenceType::get(newBnds, seqTy.getEleTy());
1857     return seqTy.getEleTy();
1858   }
1859 
1860   // Generate the code for a Bound value.
1861   ExtValue genval(const Fortran::semantics::Bound &bound) {
1862     if (bound.isExplicit()) {
1863       Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit();
1864       if (sub.has_value())
1865         return genval(*sub);
1866       return genIntegerConstant<8>(builder.getContext(), 1);
1867     }
1868     TODO(getLoc(), "non explicit semantics::Bound lowering");
1869   }
1870 
1871   static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
1872     for (const Fortran::evaluate::Subscript &sub : aref.subscript())
1873       if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
1874         return true;
1875     return false;
1876   }
1877 
1878   /// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
1879   ExtValue genCoordinateOp(const ExtValue &array,
1880                            const Fortran::evaluate::ArrayRef &aref) {
1881     mlir::Location loc = getLoc();
1882     // References to array of rank > 1 with non constant shape that are not
1883     // fir.box must be collapsed into an offset computation in lowering already.
1884     // The same is needed with dynamic length character arrays of all ranks.
1885     mlir::Type baseType =
1886         fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
1887     if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
1888         fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
1889       if (!array.getBoxOf<fir::BoxValue>())
1890         return genOffsetAndCoordinateOp(array, aref);
1891     // Generate a fir.coordinate_of with zero based array indexes.
1892     llvm::SmallVector<mlir::Value> args;
1893     for (const auto &subsc : llvm::enumerate(aref.subscript())) {
1894       ExtValue subVal = genSubscript(subsc.value());
1895       assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
1896       mlir::Value val = fir::getBase(subVal);
1897       mlir::Type ty = val.getType();
1898       mlir::Value lb = getLBound(array, subsc.index(), ty);
1899       args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
1900     }
1901 
1902     mlir::Value base = fir::getBase(array);
1903     auto seqTy =
1904         fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>();
1905     assert(args.size() == seqTy.getDimension());
1906     mlir::Type ty = builder.getRefType(seqTy.getEleTy());
1907     auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
1908     return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
1909   }
1910 
1911   /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
1912   /// of array indexes.
1913   /// This generates offset computation from the indexes and length parameters,
1914   /// and use the offset to access the element with a fir.coordinate_of. This
1915   /// must only be used if it is not possible to generate a normal
1916   /// fir.coordinate_of using array indexes (i.e. when the shape information is
1917   /// unavailable in the IR).
1918   ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
1919                                     const Fortran::evaluate::ArrayRef &aref) {
1920     mlir::Location loc = getLoc();
1921     mlir::Value addr = fir::getBase(array);
1922     mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
1923     auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
1924     mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
1925     mlir::Type refTy = builder.getRefType(eleTy);
1926     mlir::Value base = builder.createConvert(loc, seqTy, addr);
1927     mlir::IndexType idxTy = builder.getIndexType();
1928     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
1929     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
1930     auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
1931       return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
1932     };
1933     auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
1934       mlir::Value total = zero;
1935       assert(arr.getExtents().size() == aref.subscript().size());
1936       delta = builder.createConvert(loc, idxTy, delta);
1937       unsigned dim = 0;
1938       for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
1939         ExtValue subVal = genSubscript(sub);
1940         assert(fir::isUnboxedValue(subVal));
1941         mlir::Value val =
1942             builder.createConvert(loc, idxTy, fir::getBase(subVal));
1943         mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
1944         mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
1945         mlir::Value prod =
1946             builder.create<mlir::arith::MulIOp>(loc, delta, diff);
1947         total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
1948         if (ext)
1949           delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
1950         ++dim;
1951       }
1952       mlir::Type origRefTy = refTy;
1953       if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
1954         fir::CharacterType chTy =
1955             fir::factory::CharacterExprHelper::getCharacterType(refTy);
1956         if (fir::characterWithDynamicLen(chTy)) {
1957           mlir::MLIRContext *ctx = builder.getContext();
1958           fir::KindTy kind =
1959               fir::factory::CharacterExprHelper::getCharacterKind(chTy);
1960           fir::CharacterType singleTy =
1961               fir::CharacterType::getSingleton(ctx, kind);
1962           refTy = builder.getRefType(singleTy);
1963           mlir::Type seqRefTy =
1964               builder.getRefType(builder.getVarLenSeqTy(singleTy));
1965           base = builder.createConvert(loc, seqRefTy, base);
1966         }
1967       }
1968       auto coor = builder.create<fir::CoordinateOp>(
1969           loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
1970       // Convert to expected, original type after address arithmetic.
1971       return builder.createConvert(loc, origRefTy, coor);
1972     };
1973     return array.match(
1974         [&](const fir::ArrayBoxValue &arr) -> ExtValue {
1975           // FIXME: this check can be removed when slicing is implemented
1976           if (isSlice(aref))
1977             fir::emitFatalError(
1978                 getLoc(),
1979                 "slice should be handled in array expression context");
1980           return genFullDim(arr, one);
1981         },
1982         [&](const fir::CharArrayBoxValue &arr) -> ExtValue {
1983           mlir::Value delta = arr.getLen();
1984           // If the length is known in the type, fir.coordinate_of will
1985           // already take the length into account.
1986           if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
1987             delta = one;
1988           return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
1989         },
1990         [&](const fir::BoxValue &arr) -> ExtValue {
1991           // CoordinateOp for BoxValue is not generated here. The dimensions
1992           // must be kept in the fir.coordinate_op so that potential fir.box
1993           // strides can be applied by codegen.
1994           fir::emitFatalError(
1995               loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
1996         },
1997         [&](const auto &) -> ExtValue {
1998           fir::emitFatalError(loc, "internal: array lowering failed");
1999         });
2000   }
2001 
2002   /// Lower an ArrayRef to a fir.array_coor.
2003   ExtValue genArrayCoorOp(const ExtValue &exv,
2004                           const Fortran::evaluate::ArrayRef &aref) {
2005     mlir::Location loc = getLoc();
2006     mlir::Value addr = fir::getBase(exv);
2007     mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
2008     mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
2009     mlir::Type refTy = builder.getRefType(eleTy);
2010     mlir::IndexType idxTy = builder.getIndexType();
2011     llvm::SmallVector<mlir::Value> arrayCoorArgs;
2012     // The ArrayRef is expected to be scalar here, arrays are handled in array
2013     // expression lowering. So no vector subscript or triplet is expected here.
2014     for (const auto &sub : aref.subscript()) {
2015       ExtValue subVal = genSubscript(sub);
2016       assert(fir::isUnboxedValue(subVal));
2017       arrayCoorArgs.push_back(
2018           builder.createConvert(loc, idxTy, fir::getBase(subVal)));
2019     }
2020     mlir::Value shape = builder.createShape(loc, exv);
2021     mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>(
2022         loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs,
2023         fir::getTypeParams(exv));
2024     return fir::factory::arrayElementToExtendedValue(builder, loc, exv,
2025                                                      elementAddr);
2026   }
2027 
2028   /// Return the coordinate of the array reference.
2029   ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
2030     ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base()))
2031                                            : gen(aref.base().GetComponent());
2032     // Check for command-line override to use array_coor op.
2033     if (generateArrayCoordinate)
2034       return genArrayCoorOp(base, aref);
2035     // Otherwise, use coordinate_of op.
2036     return genCoordinateOp(base, aref);
2037   }
2038 
2039   /// Return lower bounds of \p box in dimension \p dim. The returned value
2040   /// has type \ty.
2041   mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
2042     assert(box.rank() > 0 && "must be an array");
2043     mlir::Location loc = getLoc();
2044     mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
2045     mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
2046     return builder.createConvert(loc, ty, lb);
2047   }
2048 
2049   ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
2050     return genLoad(gen(aref));
2051   }
2052 
2053   ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
2054     return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
2055         .genAddr(coref);
2056   }
2057 
2058   ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
2059     return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
2060         .genValue(coref);
2061   }
2062 
2063   template <typename A>
2064   ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
2065     return std::visit([&](const auto &x) { return gen(x); }, des.u);
2066   }
2067   template <typename A>
2068   ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
2069     return std::visit([&](const auto &x) { return genval(x); }, des.u);
2070   }
2071 
2072   mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
2073     if (dt.category() != Fortran::common::TypeCategory::Derived)
2074       return converter.genType(dt.category(), dt.kind());
2075     return converter.genType(dt.GetDerivedTypeSpec());
2076   }
2077 
2078   /// Lower a function reference
2079   template <typename A>
2080   ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
2081     if (!funcRef.GetType().has_value())
2082       fir::emitFatalError(getLoc(), "a function must have a type");
2083     mlir::Type resTy = genType(*funcRef.GetType());
2084     return genProcedureRef(funcRef, {resTy});
2085   }
2086 
2087   /// Lower function call `funcRef` and return a reference to the resultant
2088   /// value. This is required for lowering expressions such as `f1(f2(v))`.
2089   template <typename A>
2090   ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
2091     ExtValue retVal = genFunctionRef(funcRef);
2092     mlir::Type resultType = converter.genType(toEvExpr(funcRef));
2093     return placeScalarValueInMemory(builder, getLoc(), retVal, resultType);
2094   }
2095 
2096   /// Helper to lower intrinsic arguments for inquiry intrinsic.
2097   ExtValue
2098   lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
2099     if (Fortran::evaluate::IsAllocatableOrPointerObject(
2100             expr, converter.getFoldingContext()))
2101       return genMutableBoxValue(expr);
2102     /// Do not create temps for array sections whose properties only need to be
2103     /// inquired: create a descriptor that will be inquired.
2104     if (Fortran::evaluate::IsVariable(expr) && isArray(expr) &&
2105         !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr))
2106       return lowerIntrinsicArgumentAsBox(expr);
2107     return gen(expr);
2108   }
2109 
2110   /// Helper to lower intrinsic arguments to a fir::BoxValue.
2111   /// It preserves all the non default lower bounds/non deferred length
2112   /// parameter information.
2113   ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
2114     mlir::Location loc = getLoc();
2115     ExtValue exv = genBoxArg(expr);
2116     mlir::Value box = builder.createBox(loc, exv);
2117     return fir::BoxValue(
2118         box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
2119         fir::factory::getNonDeferredLengthParams(exv));
2120   }
2121 
2122   /// Generate a call to a Fortran intrinsic or intrinsic module procedure.
2123   ExtValue genIntrinsicRef(
2124       const Fortran::evaluate::ProcedureRef &procRef,
2125       llvm::Optional<mlir::Type> resultType,
2126       llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
2127           llvm::None) {
2128     llvm::SmallVector<ExtValue> operands;
2129 
2130     std::string name =
2131         intrinsic ? intrinsic->name
2132                   : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
2133     mlir::Location loc = getLoc();
2134     if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
2135                          procRef, *intrinsic, converter)) {
2136       using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>;
2137       llvm::SmallVector<ExvAndPresence, 4> operands;
2138       auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
2139         ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr);
2140         mlir::Value isPresent =
2141             genActualIsPresentTest(builder, loc, optionalArg);
2142         operands.emplace_back(optionalArg, isPresent);
2143       };
2144       auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
2145         operands.emplace_back(genval(expr), llvm::None);
2146       };
2147       Fortran::lower::prepareCustomIntrinsicArgument(
2148           procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg,
2149           converter);
2150 
2151       auto getArgument = [&](std::size_t i) -> ExtValue {
2152         if (fir::conformsWithPassByRef(
2153                 fir::getBase(operands[i].first).getType()))
2154           return genLoad(operands[i].first);
2155         return operands[i].first;
2156       };
2157       auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
2158         return operands[i].second;
2159       };
2160       return Fortran::lower::lowerCustomIntrinsic(
2161           builder, loc, name, resultType, isPresent, getArgument,
2162           operands.size(), stmtCtx);
2163     }
2164 
2165     const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
2166         Fortran::lower::getIntrinsicArgumentLowering(name);
2167     for (const auto &arg : llvm::enumerate(procRef.arguments())) {
2168       auto *expr =
2169           Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
2170       if (!expr) {
2171         // Absent optional.
2172         operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument());
2173         continue;
2174       }
2175       if (!argLowering) {
2176         // No argument lowering instruction, lower by value.
2177         operands.emplace_back(genval(*expr));
2178         continue;
2179       }
2180       // Ad-hoc argument lowering handling.
2181       Fortran::lower::ArgLoweringRule argRules =
2182           Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
2183       if (argRules.handleDynamicOptional &&
2184           Fortran::evaluate::MayBePassedAsAbsentOptional(
2185               *expr, converter.getFoldingContext())) {
2186         ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
2187         mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
2188         switch (argRules.lowerAs) {
2189         case Fortran::lower::LowerIntrinsicArgAs::Value:
2190           operands.emplace_back(
2191               genOptionalValue(builder, loc, optional, isPresent));
2192           continue;
2193         case Fortran::lower::LowerIntrinsicArgAs::Addr:
2194           operands.emplace_back(
2195               genOptionalAddr(builder, loc, optional, isPresent));
2196           continue;
2197         case Fortran::lower::LowerIntrinsicArgAs::Box:
2198           operands.emplace_back(
2199               genOptionalBox(builder, loc, optional, isPresent));
2200           continue;
2201         case Fortran::lower::LowerIntrinsicArgAs::Inquired:
2202           operands.emplace_back(optional);
2203           continue;
2204         }
2205         llvm_unreachable("bad switch");
2206       }
2207       switch (argRules.lowerAs) {
2208       case Fortran::lower::LowerIntrinsicArgAs::Value:
2209         operands.emplace_back(genval(*expr));
2210         continue;
2211       case Fortran::lower::LowerIntrinsicArgAs::Addr:
2212         operands.emplace_back(gen(*expr));
2213         continue;
2214       case Fortran::lower::LowerIntrinsicArgAs::Box:
2215         operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
2216         continue;
2217       case Fortran::lower::LowerIntrinsicArgAs::Inquired:
2218         operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
2219         continue;
2220       }
2221       llvm_unreachable("bad switch");
2222     }
2223     // Let the intrinsic library lower the intrinsic procedure call
2224     return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
2225                                             operands, stmtCtx);
2226   }
2227 
2228   /// helper to detect statement functions
2229   static bool
2230   isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
2231     if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
2232       if (const auto *details =
2233               symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
2234         return details->stmtFunction().has_value();
2235     return false;
2236   }
2237 
2238   /// Generate Statement function calls
2239   ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) {
2240     const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
2241     assert(symbol && "expected symbol in ProcedureRef of statement functions");
2242     const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
2243 
2244     // Statement functions have their own scope, we just need to associate
2245     // the dummy symbols to argument expressions. They are no
2246     // optional/alternate return arguments. Statement functions cannot be
2247     // recursive (directly or indirectly) so it is safe to add dummy symbols to
2248     // the local map here.
2249     symMap.pushScope();
2250     for (auto [arg, bind] :
2251          llvm::zip(details.dummyArgs(), procRef.arguments())) {
2252       assert(arg && "alternate return in statement function");
2253       assert(bind && "optional argument in statement function");
2254       const auto *expr = bind->UnwrapExpr();
2255       // TODO: assumed type in statement function, that surprisingly seems
2256       // allowed, probably because nobody thought of restricting this usage.
2257       // gfortran/ifort compiles this.
2258       assert(expr && "assumed type used as statement function argument");
2259       // As per Fortran 2018 C1580, statement function arguments can only be
2260       // scalars, so just pass the box with the address. The only care is to
2261       // to use the dummy character explicit length if any instead of the
2262       // actual argument length (that can be bigger).
2263       if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType())
2264         if (type->category() == Fortran::semantics::DeclTypeSpec::Character)
2265           if (const Fortran::semantics::MaybeIntExpr &lenExpr =
2266                   type->characterTypeSpec().length().GetExplicit()) {
2267             mlir::Value len = fir::getBase(genval(*lenExpr));
2268             // F2018 7.4.4.2 point 5.
2269             len = fir::factory::genMaxWithZero(builder, getLoc(), len);
2270             symMap.addSymbol(*arg,
2271                              replaceScalarCharacterLength(gen(*expr), len));
2272             continue;
2273           }
2274       symMap.addSymbol(*arg, gen(*expr));
2275     }
2276 
2277     // Explicitly map statement function host associated symbols to their
2278     // parent scope lowered symbol box.
2279     for (const Fortran::semantics::SymbolRef &sym :
2280          Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
2281       if (const auto *details =
2282               sym->detailsIf<Fortran::semantics::HostAssocDetails>())
2283         if (!symMap.lookupSymbol(*sym))
2284           symMap.addSymbol(*sym, gen(details->symbol()));
2285 
2286     ExtValue result = genval(details.stmtFunction().value());
2287     LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n');
2288     symMap.popScope();
2289     return result;
2290   }
2291 
2292   /// Helper to package a Value and its properties into an ExtendedValue.
2293   static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base,
2294                                   llvm::ArrayRef<mlir::Value> extents,
2295                                   llvm::ArrayRef<mlir::Value> lengths) {
2296     mlir::Type type = base.getType();
2297     if (type.isa<fir::BoxType>())
2298       return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
2299     type = fir::unwrapRefType(type);
2300     if (type.isa<fir::BoxType>())
2301       return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
2302     if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
2303       if (seqTy.getDimension() != extents.size())
2304         fir::emitFatalError(loc, "incorrect number of extents for array");
2305       if (seqTy.getEleTy().isa<fir::CharacterType>()) {
2306         if (lengths.empty())
2307           fir::emitFatalError(loc, "missing length for character");
2308         assert(lengths.size() == 1);
2309         return fir::CharArrayBoxValue(base, lengths[0], extents);
2310       }
2311       return fir::ArrayBoxValue(base, extents);
2312     }
2313     if (type.isa<fir::CharacterType>()) {
2314       if (lengths.empty())
2315         fir::emitFatalError(loc, "missing length for character");
2316       assert(lengths.size() == 1);
2317       return fir::CharBoxValue(base, lengths[0]);
2318     }
2319     return base;
2320   }
2321 
2322   // Find the argument that corresponds to the host associations.
2323   // Verify some assumptions about how the signature was built here.
2324   [[maybe_unused]] static unsigned
2325   findHostAssocTuplePos(mlir::func::FuncOp fn) {
2326     // Scan the argument list from last to first as the host associations are
2327     // appended for now.
2328     for (unsigned i = fn.getNumArguments(); i > 0; --i)
2329       if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
2330         // Host assoc tuple must be last argument (for now).
2331         assert(i == fn.getNumArguments() && "tuple must be last");
2332         return i - 1;
2333       }
2334     llvm_unreachable("anyFuncArgsHaveAttr failed");
2335   }
2336 
2337   /// Create a contiguous temporary array with the same shape,
2338   /// length parameters and type as mold. It is up to the caller to deallocate
2339   /// the temporary.
2340   ExtValue genArrayTempFromMold(const ExtValue &mold,
2341                                 llvm::StringRef tempName) {
2342     mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
2343     assert(type && "expected descriptor or memory type");
2344     mlir::Location loc = getLoc();
2345     llvm::SmallVector<mlir::Value> extents =
2346         fir::factory::getExtents(loc, builder, mold);
2347     llvm::SmallVector<mlir::Value> allocMemTypeParams =
2348         fir::getTypeParams(mold);
2349     mlir::Value charLen;
2350     mlir::Type elementType = fir::unwrapSequenceType(type);
2351     if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
2352       charLen = allocMemTypeParams.empty()
2353                     ? fir::factory::readCharLen(builder, loc, mold)
2354                     : allocMemTypeParams[0];
2355       if (charType.hasDynamicLen() && allocMemTypeParams.empty())
2356         allocMemTypeParams.push_back(charLen);
2357     } else if (fir::hasDynamicSize(elementType)) {
2358       TODO(loc, "creating temporary for derived type with length parameters");
2359     }
2360 
2361     mlir::Value temp = builder.create<fir::AllocMemOp>(
2362         loc, type, tempName, allocMemTypeParams, extents);
2363     if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
2364       return fir::CharArrayBoxValue{temp, charLen, extents};
2365     return fir::ArrayBoxValue{temp, extents};
2366   }
2367 
2368   /// Copy \p source array into \p dest array. Both arrays must be
2369   /// conforming, but neither array must be contiguous.
2370   void genArrayCopy(ExtValue dest, ExtValue source) {
2371     return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
2372   }
2373 
2374   /// Lower a non-elemental procedure reference and read allocatable and pointer
2375   /// results into normal values.
2376   ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
2377                            llvm::Optional<mlir::Type> resultType) {
2378     ExtValue res = genRawProcedureRef(procRef, resultType);
2379     // In most contexts, pointers and allocatable do not appear as allocatable
2380     // or pointer variable on the caller side (see 8.5.3 note 1 for
2381     // allocatables). The few context where this can happen must call
2382     // genRawProcedureRef directly.
2383     if (const auto *box = res.getBoxOf<fir::MutableBoxValue>())
2384       return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
2385     return res;
2386   }
2387 
2388   /// Given a call site for which the arguments were already lowered, generate
2389   /// the call and return the result. This function deals with explicit result
2390   /// allocation and lowering if needed. It also deals with passing the host
2391   /// link to internal procedures.
2392   ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller,
2393                               mlir::FunctionType callSiteType,
2394                               llvm::Optional<mlir::Type> resultType) {
2395     mlir::Location loc = getLoc();
2396     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
2397     // Handle cases where caller must allocate the result or a fir.box for it.
2398     bool mustPopSymMap = false;
2399     if (caller.mustMapInterfaceSymbols()) {
2400       symMap.pushScope();
2401       mustPopSymMap = true;
2402       Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
2403     }
2404     // If this is an indirect call, retrieve the function address. Also retrieve
2405     // the result length if this is a character function (note that this length
2406     // will be used only if there is no explicit length in the local interface).
2407     mlir::Value funcPointer;
2408     mlir::Value charFuncPointerLength;
2409     if (const Fortran::semantics::Symbol *sym =
2410             caller.getIfIndirectCallSymbol()) {
2411       funcPointer = symMap.lookupSymbol(*sym).getAddr();
2412       if (!funcPointer)
2413         fir::emitFatalError(loc, "failed to find indirect call symbol address");
2414       if (fir::isCharacterProcedureTuple(funcPointer.getType(),
2415                                          /*acceptRawFunc=*/false))
2416         std::tie(funcPointer, charFuncPointerLength) =
2417             fir::factory::extractCharacterProcedureTuple(builder, loc,
2418                                                          funcPointer);
2419     }
2420 
2421     mlir::IndexType idxTy = builder.getIndexType();
2422     auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
2423       return builder.createConvert(
2424           loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
2425     };
2426     llvm::SmallVector<mlir::Value> resultLengths;
2427     auto allocatedResult = [&]() -> llvm::Optional<ExtValue> {
2428       llvm::SmallVector<mlir::Value> extents;
2429       llvm::SmallVector<mlir::Value> lengths;
2430       if (!caller.callerAllocateResult())
2431         return {};
2432       mlir::Type type = caller.getResultStorageType();
2433       if (type.isa<fir::SequenceType>())
2434         caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
2435           extents.emplace_back(lowerSpecExpr(e));
2436         });
2437       caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
2438         lengths.emplace_back(lowerSpecExpr(e));
2439       });
2440 
2441       // Result length parameters should not be provided to box storage
2442       // allocation and save_results, but they are still useful information to
2443       // keep in the ExtendedValue if non-deferred.
2444       if (!type.isa<fir::BoxType>()) {
2445         if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
2446           // Calling an assumed length function. This is only possible if this
2447           // is a call to a character dummy procedure.
2448           if (!charFuncPointerLength)
2449             fir::emitFatalError(loc, "failed to retrieve character function "
2450                                      "length while calling it");
2451           lengths.push_back(charFuncPointerLength);
2452         }
2453         resultLengths = lengths;
2454       }
2455 
2456       if (!extents.empty() || !lengths.empty()) {
2457         auto *bldr = &converter.getFirOpBuilder();
2458         auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
2459         auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
2460         mlir::Value sp =
2461             bldr->create<fir::CallOp>(
2462                     loc, stackSaveFn.getFunctionType().getResults(),
2463                     stackSaveSymbol, mlir::ValueRange{})
2464                 .getResult(0);
2465         stmtCtx.attachCleanup([bldr, loc, sp]() {
2466           auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
2467           auto stackRestoreSymbol =
2468               bldr->getSymbolRefAttr(stackRestoreFn.getName());
2469           bldr->create<fir::CallOp>(
2470               loc, stackRestoreFn.getFunctionType().getResults(),
2471               stackRestoreSymbol, mlir::ValueRange{sp});
2472         });
2473       }
2474       mlir::Value temp =
2475           builder.createTemporary(loc, type, ".result", extents, resultLengths);
2476       return toExtendedValue(loc, temp, extents, lengths);
2477     }();
2478 
2479     if (mustPopSymMap)
2480       symMap.popScope();
2481 
2482     // Place allocated result or prepare the fir.save_result arguments.
2483     mlir::Value arrayResultShape;
2484     if (allocatedResult) {
2485       if (std::optional<Fortran::lower::CallInterface<
2486               Fortran::lower::CallerInterface>::PassedEntity>
2487               resultArg = caller.getPassedResult()) {
2488         if (resultArg->passBy == PassBy::AddressAndLength)
2489           caller.placeAddressAndLengthInput(*resultArg,
2490                                             fir::getBase(*allocatedResult),
2491                                             fir::getLen(*allocatedResult));
2492         else if (resultArg->passBy == PassBy::BaseAddress)
2493           caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
2494         else
2495           fir::emitFatalError(
2496               loc, "only expect character scalar result to be passed by ref");
2497       } else {
2498         assert(caller.mustSaveResult());
2499         arrayResultShape = allocatedResult->match(
2500             [&](const fir::CharArrayBoxValue &) {
2501               return builder.createShape(loc, *allocatedResult);
2502             },
2503             [&](const fir::ArrayBoxValue &) {
2504               return builder.createShape(loc, *allocatedResult);
2505             },
2506             [&](const auto &) { return mlir::Value{}; });
2507       }
2508     }
2509 
2510     // In older Fortran, procedure argument types are inferred. This may lead
2511     // different view of what the function signature is in different locations.
2512     // Casts are inserted as needed below to accommodate this.
2513 
2514     // The mlir::func::FuncOp type prevails, unless it has a different number of
2515     // arguments which can happen in legal program if it was passed as a dummy
2516     // procedure argument earlier with no further type information.
2517     mlir::SymbolRefAttr funcSymbolAttr;
2518     bool addHostAssociations = false;
2519     if (!funcPointer) {
2520       mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
2521       mlir::SymbolRefAttr symbolAttr =
2522           builder.getSymbolRefAttr(caller.getMangledName());
2523       if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
2524           callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
2525           fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
2526                                    fir::getHostAssocAttrName())) {
2527         // The number of arguments is off by one, and we're lowering a function
2528         // with host associations. Modify call to include host associations
2529         // argument by appending the value at the end of the operands.
2530         assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
2531                converter.hostAssocTupleValue().getType());
2532         addHostAssociations = true;
2533       }
2534       if (!addHostAssociations &&
2535           (callSiteType.getNumResults() != funcOpType.getNumResults() ||
2536            callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
2537         // Deal with argument number mismatch by making a function pointer so
2538         // that function type cast can be inserted. Do not emit a warning here
2539         // because this can happen in legal program if the function is not
2540         // defined here and it was first passed as an argument without any more
2541         // information.
2542         funcPointer =
2543             builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
2544       } else if (callSiteType.getResults() != funcOpType.getResults()) {
2545         // Implicit interface result type mismatch are not standard Fortran, but
2546         // some compilers are not complaining about it.  The front end is not
2547         // protecting lowering from this currently. Support this with a
2548         // discouraging warning.
2549         LLVM_DEBUG(mlir::emitWarning(
2550             loc, "a return type mismatch is not standard compliant and may "
2551                  "lead to undefined behavior."));
2552         // Cast the actual function to the current caller implicit type because
2553         // that is the behavior we would get if we could not see the definition.
2554         funcPointer =
2555             builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
2556       } else {
2557         funcSymbolAttr = symbolAttr;
2558       }
2559     }
2560 
2561     mlir::FunctionType funcType =
2562         funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
2563     llvm::SmallVector<mlir::Value> operands;
2564     // First operand of indirect call is the function pointer. Cast it to
2565     // required function type for the call to handle procedures that have a
2566     // compatible interface in Fortran, but that have different signatures in
2567     // FIR.
2568     if (funcPointer) {
2569       operands.push_back(
2570           funcPointer.getType().isa<fir::BoxProcType>()
2571               ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
2572               : builder.createConvert(loc, funcType, funcPointer));
2573     }
2574 
2575     // Deal with potential mismatches in arguments types. Passing an array to a
2576     // scalar argument should for instance be tolerated here.
2577     bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
2578     for (auto [fst, snd] :
2579          llvm::zip(caller.getInputs(), funcType.getInputs())) {
2580       // When passing arguments to a procedure that can be called an implicit
2581       // interface, allow character actual arguments to be passed to dummy
2582       // arguments of any type and vice versa
2583       mlir::Value cast;
2584       auto *context = builder.getContext();
2585       if (snd.isa<fir::BoxProcType>() &&
2586           fst.getType().isa<mlir::FunctionType>()) {
2587         auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None);
2588         auto boxProcTy = builder.getBoxProcType(funcTy);
2589         if (mlir::Value host = argumentHostAssocs(converter, fst)) {
2590           cast = builder.create<fir::EmboxProcOp>(
2591               loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
2592         } else {
2593           cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
2594         }
2595       } else {
2596         cast = builder.convertWithSemantics(loc, snd, fst,
2597                                             callingImplicitInterface);
2598       }
2599       operands.push_back(cast);
2600     }
2601 
2602     // Add host associations as necessary.
2603     if (addHostAssociations)
2604       operands.push_back(converter.hostAssocTupleValue());
2605 
2606     auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
2607                                             funcSymbolAttr, operands);
2608 
2609     if (caller.mustSaveResult())
2610       builder.create<fir::SaveResultOp>(loc, call.getResult(0),
2611                                         fir::getBase(*allocatedResult),
2612                                         arrayResultShape, resultLengths);
2613 
2614     if (allocatedResult) {
2615       allocatedResult->match(
2616           [&](const fir::MutableBoxValue &box) {
2617             if (box.isAllocatable()) {
2618               // 9.7.3.2 point 4. Finalize allocatables.
2619               fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
2620               stmtCtx.attachCleanup([bldr, loc, box]() {
2621                 fir::factory::genFinalization(*bldr, loc, box);
2622               });
2623             }
2624           },
2625           [](const auto &) {});
2626       return *allocatedResult;
2627     }
2628 
2629     if (!resultType)
2630       return mlir::Value{}; // subroutine call
2631     // For now, Fortran return values are implemented with a single MLIR
2632     // function return value.
2633     assert(call.getNumResults() == 1 &&
2634            "Expected exactly one result in FUNCTION call");
2635     return call.getResult(0);
2636   }
2637 
2638   /// Like genExtAddr, but ensure the address returned is a temporary even if \p
2639   /// expr is variable inside parentheses.
2640   ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
2641     // In general, genExtAddr might not create a temp for variable inside
2642     // parentheses to avoid creating array temporary in sub-expressions. It only
2643     // ensures the sub-expression is not re-associated with other parts of the
2644     // expression. In the call semantics, there is a difference between expr and
2645     // variable (see R1524). For expressions, a variable storage must not be
2646     // argument associated since it could be modified inside the call, or the
2647     // variable could also be modified by other means during the call.
2648     if (!isParenthesizedVariable(expr))
2649       return genExtAddr(expr);
2650     if (expr.Rank() > 0)
2651       return asArray(expr);
2652     mlir::Location loc = getLoc();
2653     return genExtValue(expr).match(
2654         [&](const fir::CharBoxValue &boxChar) -> ExtValue {
2655           return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(
2656               boxChar);
2657         },
2658         [&](const fir::UnboxedValue &v) -> ExtValue {
2659           mlir::Type type = v.getType();
2660           mlir::Value value = v;
2661           if (fir::isa_ref_type(type))
2662             value = builder.create<fir::LoadOp>(loc, value);
2663           mlir::Value temp = builder.createTemporary(loc, value.getType());
2664           builder.create<fir::StoreOp>(loc, value, temp);
2665           return temp;
2666         },
2667         [&](const fir::BoxValue &x) -> ExtValue {
2668           // Derived type scalar that may be polymorphic.
2669           assert(!x.hasRank() && x.isDerived());
2670           if (x.isDerivedWithLenParameters())
2671             fir::emitFatalError(
2672                 loc, "making temps for derived type with length parameters");
2673           // TODO: polymorphic aspects should be kept but for now the temp
2674           // created always has the declared type.
2675           mlir::Value var =
2676               fir::getBase(fir::factory::readBoxValue(builder, loc, x));
2677           auto value = builder.create<fir::LoadOp>(loc, var);
2678           mlir::Value temp = builder.createTemporary(loc, value.getType());
2679           builder.create<fir::StoreOp>(loc, value, temp);
2680           return temp;
2681         },
2682         [&](const auto &) -> ExtValue {
2683           fir::emitFatalError(loc, "expr is not a scalar value");
2684         });
2685   }
2686 
2687   /// Helper structure to track potential copy-in of non contiguous variable
2688   /// argument into a contiguous temp. It is used to deallocate the temp that
2689   /// may have been created as well as to the copy-out from the temp to the
2690   /// variable after the call.
2691   struct CopyOutPair {
2692     ExtValue var;
2693     ExtValue temp;
2694     // Flag to indicate if the argument may have been modified by the
2695     // callee, in which case it must be copied-out to the variable.
2696     bool argMayBeModifiedByCall;
2697     // Optional boolean value that, if present and false, prevents
2698     // the copy-out and temp deallocation.
2699     llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime;
2700   };
2701   using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;
2702 
2703   /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
2704   /// not based on fir.box.
2705   /// This will lose any non contiguous stride information and dynamic type and
2706   /// should only be called if \p exv is known to be contiguous or if its base
2707   /// address will be replaced by a contiguous one. If \p exv is not a
2708   /// fir::BoxValue, this is a no-op.
2709   ExtValue readIfBoxValue(const ExtValue &exv) {
2710     if (const auto *box = exv.getBoxOf<fir::BoxValue>())
2711       return fir::factory::readBoxValue(builder, getLoc(), *box);
2712     return exv;
2713   }
2714 
2715   /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
2716   /// creation of the temp and copy-in can be made conditional at runtime by
2717   /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
2718   /// the temp and copy will only be made if the value is true at runtime).
2719   ExtValue genCopyIn(const ExtValue &actualArg,
2720                      const Fortran::lower::CallerInterface::PassedEntity &arg,
2721                      CopyOutPairs &copyOutPairs,
2722                      llvm::Optional<mlir::Value> restrictCopyAtRuntime,
2723                      bool byValue) {
2724     const bool doCopyOut = !byValue && arg.mayBeModifiedByCall();
2725     llvm::StringRef tempName = byValue ? ".copy" : ".copyinout";
2726     if (!restrictCopyAtRuntime) {
2727       ExtValue temp = genArrayTempFromMold(actualArg, tempName);
2728       if (arg.mayBeReadByCall())
2729         genArrayCopy(temp, actualArg);
2730       copyOutPairs.emplace_back(
2731           CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
2732       return temp;
2733     }
2734     // Otherwise, need to be careful to only copy-in if allowed at runtime.
2735     mlir::Location loc = getLoc();
2736     auto addrType = fir::HeapType::get(
2737         fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));
2738     mlir::Value addr =
2739         builder
2740             .genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
2741                      /*withElseRegion=*/true)
2742             .genThen([&]() {
2743               auto temp = genArrayTempFromMold(actualArg, tempName);
2744               if (arg.mayBeReadByCall())
2745                 genArrayCopy(temp, actualArg);
2746               builder.create<fir::ResultOp>(loc, fir::getBase(temp));
2747             })
2748             .genElse([&]() {
2749               auto nullPtr = builder.createNullConstant(loc, addrType);
2750               builder.create<fir::ResultOp>(loc, nullPtr);
2751             })
2752             .getResults()[0];
2753     // Associate the temp address with actualArg lengths and extents.
2754     fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
2755     copyOutPairs.emplace_back(
2756         CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
2757     return temp;
2758   }
2759 
2760   /// Generate copy-out if needed and free the temporary for an argument that
2761   /// has been copied-in into a contiguous temp.
2762   void genCopyOut(const CopyOutPair &copyOutPair) {
2763     mlir::Location loc = getLoc();
2764     if (!copyOutPair.restrictCopyAndFreeAtRuntime) {
2765       if (copyOutPair.argMayBeModifiedByCall)
2766         genArrayCopy(copyOutPair.var, copyOutPair.temp);
2767       builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
2768       return;
2769     }
2770     builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime)
2771         .genThen([&]() {
2772           if (copyOutPair.argMayBeModifiedByCall)
2773             genArrayCopy(copyOutPair.var, copyOutPair.temp);
2774           builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
2775         })
2776         .end();
2777   }
2778 
2779   /// Lower a designator to a variable that may be absent at runtime into an
2780   /// ExtendedValue where all the properties (base address, shape and length
2781   /// parameters) can be safely read (set to zero if not present). It also
2782   /// returns a boolean mlir::Value telling if the variable is present at
2783   /// runtime.
2784   /// This is useful to later be able to do conditional copy-in/copy-out
2785   /// or to retrieve the base address without having to deal with the case
2786   /// where the actual may be an absent fir.box.
2787   std::pair<ExtValue, mlir::Value>
2788   prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) {
2789     mlir::Location loc = getLoc();
2790     if (Fortran::evaluate::IsAllocatableOrPointerObject(
2791             expr, converter.getFoldingContext())) {
2792       // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
2793       // it is as if the argument was absent. The main care here is to
2794       // not do a copy-in/copy-out because the temp address, even though
2795       // pointing to a null size storage, would not be a nullptr and
2796       // therefore the argument would not be considered absent on the
2797       // callee side. Note: if wholeSymbol is optional, it cannot be
2798       // absent as per 15.5.2.12 point 7. and 8. We rely on this to
2799       // un-conditionally read the allocatable/pointer descriptor here.
2800       fir::MutableBoxValue mutableBox = genMutableBoxValue(expr);
2801       mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest(
2802           builder, loc, mutableBox);
2803       fir::ExtendedValue actualArg =
2804           fir::factory::genMutableBoxRead(builder, loc, mutableBox);
2805       return {actualArg, isPresent};
2806     }
2807     // Absent descriptor cannot be read. To avoid any issue in
2808     // copy-in/copy-out, and when retrieving the address/length
2809     // create an descriptor pointing to a null address here if the
2810     // fir.box is absent.
2811     ExtValue actualArg = gen(expr);
2812     mlir::Value actualArgBase = fir::getBase(actualArg);
2813     mlir::Value isPresent = builder.create<fir::IsPresentOp>(
2814         loc, builder.getI1Type(), actualArgBase);
2815     if (!actualArgBase.getType().isa<fir::BoxType>())
2816       return {actualArg, isPresent};
2817     ExtValue safeToReadBox =
2818         absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent);
2819     return {safeToReadBox, isPresent};
2820   }
2821 
2822   /// Create a temp on the stack for scalar actual arguments that may be absent
2823   /// at runtime, but must be passed via a temp if they are presents.
2824   fir::ExtendedValue
2825   createScalarTempForArgThatMayBeAbsent(ExtValue actualArg,
2826                                         mlir::Value isPresent) {
2827     mlir::Location loc = getLoc();
2828     mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType());
2829     if (fir::isDerivedWithLenParameters(actualArg))
2830       TODO(loc, "parametrized derived type optional scalar argument copy-in");
2831     if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) {
2832       mlir::Value len = charBox->getLen();
2833       mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0);
2834       len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero);
2835       mlir::Value temp = builder.createTemporary(
2836           loc, type, /*name=*/{},
2837           /*shape=*/{}, mlir::ValueRange{len},
2838           llvm::ArrayRef<mlir::NamedAttribute>{
2839               Fortran::lower::getAdaptToByRefAttr(builder)});
2840       return fir::CharBoxValue{temp, len};
2841     }
2842     assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) &&
2843            "must be simple scalar");
2844     return builder.createTemporary(
2845         loc, type,
2846         llvm::ArrayRef<mlir::NamedAttribute>{
2847             Fortran::lower::getAdaptToByRefAttr(builder)});
2848   }
2849 
2850   template <typename A>
2851   bool isCharacterType(const A &exp) {
2852     if (auto type = exp.GetType())
2853       return type->category() == Fortran::common::TypeCategory::Character;
2854     return false;
2855   }
2856 
2857   /// Lower an actual argument that must be passed via an address.
2858   /// This generates of the copy-in/copy-out if the actual is not contiguous, or
2859   /// the creation of the temp if the actual is a variable and \p byValue is
2860   /// true. It handles the cases where the actual may be absent, and all of the
2861   /// copying has to be conditional at runtime.
2862   ExtValue prepareActualToBaseAddressLike(
2863       const Fortran::lower::SomeExpr &expr,
2864       const Fortran::lower::CallerInterface::PassedEntity &arg,
2865       CopyOutPairs &copyOutPairs, bool byValue) {
2866     mlir::Location loc = getLoc();
2867     const bool isArray = expr.Rank() > 0;
2868     const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr);
2869     // It must be possible to modify VALUE arguments on the callee side, even
2870     // if the actual argument is a literal or named constant. Hence, the
2871     // address of static storage must not be passed in that case, and a copy
2872     // must be made even if this is not a variable.
2873     // Note: isArray should be used here, but genBoxArg already creates copies
2874     // for it, so do not duplicate the copy until genBoxArg behavior is changed.
2875     const bool isStaticConstantByValue =
2876         byValue && Fortran::evaluate::IsActuallyConstant(expr) &&
2877         (isCharacterType(expr));
2878     const bool variableNeedsCopy =
2879         actualArgIsVariable &&
2880         (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous(
2881                                     expr, converter.getFoldingContext())));
2882     const bool needsCopy = isStaticConstantByValue || variableNeedsCopy;
2883     auto argAddr = [&]() -> ExtValue {
2884       if (!actualArgIsVariable && !needsCopy)
2885         // Actual argument is not a variable. Make sure a variable address is
2886         // not passed.
2887         return genTempExtAddr(expr);
2888       ExtValue baseAddr;
2889       if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
2890                                   expr, converter.getFoldingContext())) {
2891         auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr);
2892         const ExtValue &actualArg = actualArgBind;
2893         if (!needsCopy)
2894           return actualArg;
2895 
2896         if (isArray)
2897           return genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue);
2898         // Scalars, create a temp, and use it conditionally at runtime if
2899         // the argument is present.
2900         ExtValue temp =
2901             createScalarTempForArgThatMayBeAbsent(actualArg, isPresent);
2902         mlir::Type tempAddrTy = fir::getBase(temp).getType();
2903         mlir::Value selectAddr =
2904             builder
2905                 .genIfOp(loc, {tempAddrTy}, isPresent,
2906                          /*withElseRegion=*/true)
2907                 .genThen([&]() {
2908                   fir::factory::genScalarAssignment(builder, loc, temp,
2909                                                     actualArg);
2910                   builder.create<fir::ResultOp>(loc, fir::getBase(temp));
2911                 })
2912                 .genElse([&]() {
2913                   mlir::Value absent =
2914                       builder.create<fir::AbsentOp>(loc, tempAddrTy);
2915                   builder.create<fir::ResultOp>(loc, absent);
2916                 })
2917                 .getResults()[0];
2918         return fir::substBase(temp, selectAddr);
2919       }
2920       // Actual cannot be absent, the actual argument can safely be
2921       // copied-in/copied-out without any care if needed.
2922       if (isArray) {
2923         ExtValue box = genBoxArg(expr);
2924         if (needsCopy)
2925           return genCopyIn(box, arg, copyOutPairs,
2926                            /*restrictCopyAtRuntime=*/llvm::None, byValue);
2927         // Contiguous: just use the box we created above!
2928         // This gets "unboxed" below, if needed.
2929         return box;
2930       }
2931       // Actual argument is a non-optional, non-pointer, non-allocatable
2932       // scalar.
2933       ExtValue actualArg = genExtAddr(expr);
2934       if (needsCopy)
2935         return createInMemoryScalarCopy(builder, loc, actualArg);
2936       return actualArg;
2937     }();
2938     // Scalar and contiguous expressions may be lowered to a fir.box,
2939     // either to account for potential polymorphism, or because lowering
2940     // did not account for some contiguity hints.
2941     // Here, polymorphism does not matter (an entity of the declared type
2942     // is passed, not one of the dynamic type), and the expr is known to
2943     // be simply contiguous, so it is safe to unbox it and pass the
2944     // address without making a copy.
2945     return readIfBoxValue(argAddr);
2946   }
2947 
2948   /// Lower a non-elemental procedure reference.
2949   ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
2950                               llvm::Optional<mlir::Type> resultType) {
2951     mlir::Location loc = getLoc();
2952     if (isElementalProcWithArrayArgs(procRef))
2953       fir::emitFatalError(loc, "trying to lower elemental procedure with array "
2954                                "arguments as normal procedure");
2955 
2956     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
2957             procRef.proc().GetSpecificIntrinsic())
2958       return genIntrinsicRef(procRef, resultType, *intrinsic);
2959 
2960     if (isIntrinsicModuleProcRef(procRef))
2961       return genIntrinsicRef(procRef, resultType);
2962 
2963     if (isStatementFunctionCall(procRef))
2964       return genStmtFunctionRef(procRef);
2965 
2966     Fortran::lower::CallerInterface caller(procRef, converter);
2967     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
2968 
2969     llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
2970     // List of <var, temp> where temp must be copied into var after the call.
2971     CopyOutPairs copyOutPairs;
2972 
2973     mlir::FunctionType callSiteType = caller.genFunctionType();
2974 
2975     // Lower the actual arguments and map the lowered values to the dummy
2976     // arguments.
2977     for (const Fortran::lower::CallInterface<
2978              Fortran::lower::CallerInterface>::PassedEntity &arg :
2979          caller.getPassedArguments()) {
2980       const auto *actual = arg.entity;
2981       mlir::Type argTy = callSiteType.getInput(arg.firArgument);
2982       if (!actual) {
2983         // Optional dummy argument for which there is no actual argument.
2984         caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
2985         continue;
2986       }
2987       const auto *expr = actual->UnwrapExpr();
2988       if (!expr)
2989         TODO(loc, "assumed type actual argument lowering");
2990 
2991       if (arg.passBy == PassBy::Value) {
2992         ExtValue argVal = genval(*expr);
2993         if (!fir::isUnboxedValue(argVal))
2994           fir::emitFatalError(
2995               loc, "internal error: passing non trivial value by value");
2996         caller.placeInput(arg, fir::getBase(argVal));
2997         continue;
2998       }
2999 
3000       if (arg.passBy == PassBy::MutableBox) {
3001         if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
3002                 *expr)) {
3003           // If expr is NULL(), the mutableBox created must be a deallocated
3004           // pointer with the dummy argument characteristics (see table 16.5
3005           // in Fortran 2018 standard).
3006           // No length parameters are set for the created box because any non
3007           // deferred type parameters of the dummy will be evaluated on the
3008           // callee side, and it is illegal to use NULL without a MOLD if any
3009           // dummy length parameters are assumed.
3010           mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
3011           assert(boxTy && boxTy.isa<fir::BoxType>() &&
3012                  "must be a fir.box type");
3013           mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
3014           mlir::Value nullBox = fir::factory::createUnallocatedBox(
3015               builder, loc, boxTy, /*nonDeferredParams=*/{});
3016           builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
3017           caller.placeInput(arg, boxStorage);
3018           continue;
3019         }
3020         if (fir::isPointerType(argTy) &&
3021             !Fortran::evaluate::IsObjectPointer(
3022                 *expr, converter.getFoldingContext())) {
3023           // Passing a non POINTER actual argument to a POINTER dummy argument.
3024           // Create a pointer of the dummy argument type and assign the actual
3025           // argument to it.
3026           mlir::Value irBox =
3027               builder.createTemporary(loc, fir::unwrapRefType(argTy));
3028           // Non deferred parameters will be evaluated on the callee side.
3029           fir::MutableBoxValue pointer(irBox,
3030                                        /*nonDeferredParams=*/mlir::ValueRange{},
3031                                        /*mutableProperties=*/{});
3032           Fortran::lower::associateMutableBox(converter, loc, pointer, *expr,
3033                                               /*lbounds=*/llvm::None, stmtCtx);
3034           caller.placeInput(arg, irBox);
3035           continue;
3036         }
3037         // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
3038         fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
3039         mlir::Value irBox =
3040             fir::factory::getMutableIRBox(builder, loc, mutableBox);
3041         caller.placeInput(arg, irBox);
3042         if (arg.mayBeModifiedByCall())
3043           mutableModifiedByCall.emplace_back(std::move(mutableBox));
3044         continue;
3045       }
3046       if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar ||
3047           arg.passBy == PassBy::BaseAddressValueAttribute ||
3048           arg.passBy == PassBy::CharBoxValueAttribute) {
3049         const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute ||
3050                              arg.passBy == PassBy::CharBoxValueAttribute;
3051         ExtValue argAddr =
3052             prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue);
3053         if (arg.passBy == PassBy::BaseAddress ||
3054             arg.passBy == PassBy::BaseAddressValueAttribute) {
3055           caller.placeInput(arg, fir::getBase(argAddr));
3056         } else {
3057           assert(arg.passBy == PassBy::BoxChar ||
3058                  arg.passBy == PassBy::CharBoxValueAttribute);
3059           auto helper = fir::factory::CharacterExprHelper{builder, loc};
3060           auto boxChar = argAddr.match(
3061               [&](const fir::CharBoxValue &x) { return helper.createEmbox(x); },
3062               [&](const fir::CharArrayBoxValue &x) {
3063                 return helper.createEmbox(x);
3064               },
3065               [&](const auto &x) -> mlir::Value {
3066                 // Fortran allows an actual argument of a completely different
3067                 // type to be passed to a procedure expecting a CHARACTER in the
3068                 // dummy argument position. When this happens, the data pointer
3069                 // argument is simply assumed to point to CHARACTER data and the
3070                 // LEN argument used is garbage. Simulate this behavior by
3071                 // free-casting the base address to be a !fir.char reference and
3072                 // setting the LEN argument to undefined. What could go wrong?
3073                 auto dataPtr = fir::getBase(x);
3074                 assert(!dataPtr.getType().template isa<fir::BoxType>());
3075                 return builder.convertWithSemantics(
3076                     loc, argTy, dataPtr,
3077                     /*allowCharacterConversion=*/true);
3078               });
3079           caller.placeInput(arg, boxChar);
3080         }
3081       } else if (arg.passBy == PassBy::Box) {
3082         // Before lowering to an address, handle the allocatable/pointer actual
3083         // argument to optional fir.box dummy. It is legal to pass
3084         // unallocated/disassociated entity to an optional. In this case, an
3085         // absent fir.box must be created instead of a fir.box with a null value
3086         // (Fortran 2018 15.5.2.12 point 1).
3087         if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject(
3088                                     *expr, converter.getFoldingContext())) {
3089           // Note that passing an absent allocatable to a non-allocatable
3090           // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
3091           // nothing has to be done to generate an absent argument in this case,
3092           // and it is OK to unconditionally read the mutable box here.
3093           fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
3094           mlir::Value isAllocated =
3095               fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
3096                                                            mutableBox);
3097           auto absent = builder.create<fir::AbsentOp>(loc, argTy);
3098           /// For now, assume it is not OK to pass the allocatable/pointer
3099           /// descriptor to a non pointer/allocatable dummy. That is a strict
3100           /// interpretation of 18.3.6 point 4 that stipulates the descriptor
3101           /// has the dummy attributes in BIND(C) contexts.
3102           mlir::Value box = builder.createBox(
3103               loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox));
3104           // Need the box types to be exactly similar for the selectOp.
3105           mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
3106           caller.placeInput(arg, builder.create<mlir::arith::SelectOp>(
3107                                      loc, isAllocated, convertedBox, absent));
3108         } else {
3109           // Make sure a variable address is only passed if the expression is
3110           // actually a variable.
3111           mlir::Value box =
3112               Fortran::evaluate::IsVariable(*expr)
3113                   ? builder.createBox(loc, genBoxArg(*expr))
3114                   : builder.createBox(getLoc(), genTempExtAddr(*expr));
3115           caller.placeInput(arg, box);
3116         }
3117       } else if (arg.passBy == PassBy::AddressAndLength) {
3118         ExtValue argRef = genExtAddr(*expr);
3119         caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
3120                                           fir::getLen(argRef));
3121       } else if (arg.passBy == PassBy::CharProcTuple) {
3122         ExtValue argRef = genExtAddr(*expr);
3123         mlir::Value tuple = createBoxProcCharTuple(
3124             converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
3125         caller.placeInput(arg, tuple);
3126       } else {
3127         TODO(loc, "pass by value in non elemental function call");
3128       }
3129     }
3130 
3131     ExtValue result = genCallOpAndResult(caller, callSiteType, resultType);
3132 
3133     // Sync pointers and allocatables that may have been modified during the
3134     // call.
3135     for (const auto &mutableBox : mutableModifiedByCall)
3136       fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox);
3137     // Handle case where result was passed as argument
3138 
3139     // Copy-out temps that were created for non contiguous variable arguments if
3140     // needed.
3141     for (const auto &copyOutPair : copyOutPairs)
3142       genCopyOut(copyOutPair);
3143 
3144     return result;
3145   }
3146 
3147   template <typename A>
3148   ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
3149     ExtValue result = genFunctionRef(funcRef);
3150     if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
3151       return genLoad(result);
3152     return result;
3153   }
3154 
3155   ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
3156     llvm::Optional<mlir::Type> resTy;
3157     if (procRef.hasAlternateReturns())
3158       resTy = builder.getIndexType();
3159     return genProcedureRef(procRef, resTy);
3160   }
3161 
3162   template <typename A>
3163   bool isScalar(const A &x) {
3164     return x.Rank() == 0;
3165   }
3166 
3167   /// Helper to detect Transformational function reference.
3168   template <typename T>
3169   bool isTransformationalRef(const T &) {
3170     return false;
3171   }
3172   template <typename T>
3173   bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
3174     return !funcRef.IsElemental() && funcRef.Rank();
3175   }
3176   template <typename T>
3177   bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
3178     return std::visit([&](const auto &e) { return isTransformationalRef(e); },
3179                       expr.u);
3180   }
3181 
3182   template <typename A>
3183   ExtValue asArray(const A &x) {
3184     return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
3185                                                     symMap, stmtCtx);
3186   }
3187 
3188   /// Lower an array value as an argument. This argument can be passed as a box
3189   /// value, so it may be possible to avoid making a temporary.
3190   template <typename A>
3191   ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) {
3192     return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u);
3193   }
3194   template <typename A, typename B>
3195   ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) {
3196     return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u);
3197   }
3198   template <typename A, typename B>
3199   ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) {
3200     // Designator is being passed as an argument to a procedure. Lower the
3201     // expression to a boxed value.
3202     auto someExpr = toEvExpr(x);
3203     return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap,
3204                                           stmtCtx);
3205   }
3206   template <typename A, typename B>
3207   ExtValue asArrayArg(const A &, const B &x) {
3208     // If the expression to pass as an argument is not a designator, then create
3209     // an array temp.
3210     return asArray(x);
3211   }
3212 
3213   template <typename A>
3214   ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
3215     // Whole array symbols or components, and results of transformational
3216     // functions already have a storage and the scalar expression lowering path
3217     // is used to not create a new temporary storage.
3218     if (isScalar(x) ||
3219         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
3220         isTransformationalRef(x))
3221       return std::visit([&](const auto &e) { return genref(e); }, x.u);
3222     if (useBoxArg)
3223       return asArrayArg(x);
3224     return asArray(x);
3225   }
3226   template <typename A>
3227   ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
3228     if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
3229         inInitializer)
3230       return std::visit([&](const auto &e) { return genval(e); }, x.u);
3231     return asArray(x);
3232   }
3233 
3234   template <int KIND>
3235   ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
3236                       Fortran::common::TypeCategory::Logical, KIND>> &exp) {
3237     return std::visit([&](const auto &e) { return genval(e); }, exp.u);
3238   }
3239 
3240   using RefSet =
3241       std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
3242                  Fortran::evaluate::DataRef, Fortran::evaluate::Component,
3243                  Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
3244                  Fortran::semantics::SymbolRef>;
3245   template <typename A>
3246   static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;
3247 
3248   template <typename A, typename = std::enable_if_t<inRefSet<A>>>
3249   ExtValue genref(const A &a) {
3250     return gen(a);
3251   }
3252   template <typename A>
3253   ExtValue genref(const A &a) {
3254     if (inInitializer) {
3255       // Initialization expressions can never allocate memory.
3256       return genval(a);
3257     }
3258     mlir::Type storageType = converter.genType(toEvExpr(a));
3259     return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
3260   }
3261 
3262   template <typename A, template <typename> typename T,
3263             typename B = std::decay_t<T<A>>,
3264             std::enable_if_t<
3265                 std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
3266                     std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
3267                     std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
3268                 bool> = true>
3269   ExtValue genref(const T<A> &x) {
3270     return gen(x);
3271   }
3272 
3273 private:
3274   mlir::Location location;
3275   Fortran::lower::AbstractConverter &converter;
3276   fir::FirOpBuilder &builder;
3277   Fortran::lower::StatementContext &stmtCtx;
3278   Fortran::lower::SymMap &symMap;
3279   InitializerData *inInitializer = nullptr;
3280   bool useBoxArg = false; // expression lowered as argument
3281 };
3282 } // namespace
3283 
3284 // Helper for changing the semantics in a given context. Preserves the current
3285 // semantics which is resumed when the "push" goes out of scope.
3286 #define PushSemantics(PushVal)                                                 \
3287   [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ =                 \
3288       Fortran::common::ScopedSet(semant, PushVal);
3289 
3290 static bool isAdjustedArrayElementType(mlir::Type t) {
3291   return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
3292 }
3293 static bool elementTypeWasAdjusted(mlir::Type t) {
3294   if (auto ty = t.dyn_cast<fir::ReferenceType>())
3295     return isAdjustedArrayElementType(ty.getEleTy());
3296   return false;
3297 }
3298 static mlir::Type adjustedArrayElementType(mlir::Type t) {
3299   return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t;
3300 }
3301 
3302 /// Helper to generate calls to scalar user defined assignment procedures.
3303 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder,
3304                                                mlir::Location loc,
3305                                                mlir::func::FuncOp func,
3306                                                const fir::ExtendedValue &lhs,
3307                                                const fir::ExtendedValue &rhs) {
3308   auto prepareUserDefinedArg =
3309       [](fir::FirOpBuilder &builder, mlir::Location loc,
3310          const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value {
3311     if (argType.isa<fir::BoxCharType>()) {
3312       const fir::CharBoxValue *charBox = value.getCharBox();
3313       assert(charBox && "argument type mismatch in elemental user assignment");
3314       return fir::factory::CharacterExprHelper{builder, loc}.createEmbox(
3315           *charBox);
3316     }
3317     if (argType.isa<fir::BoxType>()) {
3318       mlir::Value box = builder.createBox(loc, value);
3319       return builder.createConvert(loc, argType, box);
3320     }
3321     // Simple pass by address.
3322     mlir::Type argBaseType = fir::unwrapRefType(argType);
3323     assert(!fir::hasDynamicSize(argBaseType));
3324     mlir::Value from = fir::getBase(value);
3325     if (argBaseType != fir::unwrapRefType(from.getType())) {
3326       // With logicals, it is possible that from is i1 here.
3327       if (fir::isa_ref_type(from.getType()))
3328         from = builder.create<fir::LoadOp>(loc, from);
3329       from = builder.createConvert(loc, argBaseType, from);
3330     }
3331     if (!fir::isa_ref_type(from.getType())) {
3332       mlir::Value temp = builder.createTemporary(loc, argBaseType);
3333       builder.create<fir::StoreOp>(loc, from, temp);
3334       from = temp;
3335     }
3336     return builder.createConvert(loc, argType, from);
3337   };
3338   assert(func.getNumArguments() == 2);
3339   mlir::Type lhsType = func.getFunctionType().getInput(0);
3340   mlir::Type rhsType = func.getFunctionType().getInput(1);
3341   mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType);
3342   mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType);
3343   builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg});
3344 }
3345 
3346 /// Convert the result of a fir.array_modify to an ExtendedValue given the
3347 /// related fir.array_load.
3348 static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder,
3349                                            mlir::Location loc,
3350                                            fir::ArrayLoadOp load,
3351                                            mlir::Value elementAddr) {
3352   mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType());
3353   if (fir::isa_char(eleTy)) {
3354     auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
3355         load.getMemref());
3356     if (!len) {
3357       assert(load.getTypeparams().size() == 1 &&
3358              "length must be in array_load");
3359       len = load.getTypeparams()[0];
3360     }
3361     return fir::CharBoxValue{elementAddr, len};
3362   }
3363   return elementAddr;
3364 }
3365 
3366 //===----------------------------------------------------------------------===//
3367 //
3368 // Lowering of scalar expressions in an explicit iteration space context.
3369 //
3370 //===----------------------------------------------------------------------===//
3371 
3372 // Shared code for creating a copy of a derived type element. This function is
3373 // called from a continuation.
3374 inline static fir::ArrayAmendOp
3375 createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
3376                         fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
3377                         const fir::ExtendedValue &elementExv, mlir::Type eleTy,
3378                         mlir::Value innerArg) {
3379   if (destLoad.getTypeparams().empty()) {
3380     fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
3381   } else {
3382     auto boxTy = fir::BoxType::get(eleTy);
3383     auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
3384                                               mlir::Value{}, mlir::Value{},
3385                                               destLoad.getTypeparams());
3386     auto fromBox = builder.create<fir::EmboxOp>(
3387         loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
3388         destLoad.getTypeparams());
3389     fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
3390                                       fir::BoxValue(fromBox));
3391   }
3392   return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
3393                                            destAcc);
3394 }
3395 
3396 inline static fir::ArrayAmendOp
3397 createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
3398                      fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
3399                      const fir::ExtendedValue &srcExv, mlir::Value innerArg,
3400                      llvm::ArrayRef<mlir::Value> bounds) {
3401   fir::CharBoxValue dstChar(dstOp, dstLen);
3402   fir::factory::CharacterExprHelper helper{builder, loc};
3403   if (!bounds.empty()) {
3404     dstChar = helper.createSubstring(dstChar, bounds);
3405     fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
3406                                    dstChar.getAddr(), dstChar.getLen(), builder,
3407                                    loc);
3408     // Update the LEN to the substring's LEN.
3409     dstLen = dstChar.getLen();
3410   }
3411   // For a CHARACTER, we generate the element assignment loops inline.
3412   helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
3413   // Mark this array element as amended.
3414   mlir::Type ty = innerArg.getType();
3415   auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
3416   return amend;
3417 }
3418 
3419 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
3420 /// the actual extents and lengths. This is only to allow their propagation as
3421 /// ExtendedValue without triggering verifier failures when propagating
3422 /// character/arrays as unboxed values. Only the base of the resulting
3423 /// ExtendedValue should be used, it is undefined to use the length or extents
3424 /// of the extended value returned,
3425 inline static fir::ExtendedValue
3426 convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
3427                        mlir::Value val, mlir::Value len) {
3428   mlir::Type ty = fir::unwrapRefType(val.getType());
3429   mlir::IndexType idxTy = builder.getIndexType();
3430   auto seqTy = ty.cast<fir::SequenceType>();
3431   auto undef = builder.create<fir::UndefOp>(loc, idxTy);
3432   llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
3433   if (fir::isa_char(seqTy.getEleTy()))
3434     return fir::CharArrayBoxValue(val, len ? len : undef, extents);
3435   return fir::ArrayBoxValue(val, extents);
3436 }
3437 
3438 //===----------------------------------------------------------------------===//
3439 //
3440 // Lowering of array expressions.
3441 //
3442 //===----------------------------------------------------------------------===//
3443 
3444 namespace {
3445 class ArrayExprLowering {
3446   using ExtValue = fir::ExtendedValue;
3447 
3448   /// Structure to keep track of lowered array operands in the
3449   /// array expression. Useful to later deduce the shape of the
3450   /// array expression.
3451   struct ArrayOperand {
3452     /// Array base (can be a fir.box).
3453     mlir::Value memref;
3454     /// ShapeOp, ShapeShiftOp or ShiftOp
3455     mlir::Value shape;
3456     /// SliceOp
3457     mlir::Value slice;
3458     /// Can this operand be absent ?
3459     bool mayBeAbsent = false;
3460   };
3461 
3462   using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
3463   using PathComponent = Fortran::lower::PathComponent;
3464 
3465   /// Active iteration space.
3466   using IterationSpace = Fortran::lower::IterationSpace;
3467   using IterSpace = const Fortran::lower::IterationSpace &;
3468 
3469   /// Current continuation. Function that will generate IR for a single
3470   /// iteration of the pending iterative loop structure.
3471   using CC = Fortran::lower::GenerateElementalArrayFunc;
3472 
3473   /// Projection continuation. Function that will project one iteration space
3474   /// into another.
3475   using PC = std::function<IterationSpace(IterSpace)>;
3476   using ArrayBaseTy =
3477       std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
3478                    const Fortran::evaluate::DataRef *>;
3479   using ComponentPath = Fortran::lower::ComponentPath;
3480 
3481 public:
3482   //===--------------------------------------------------------------------===//
3483   // Regular array assignment
3484   //===--------------------------------------------------------------------===//
3485 
3486   /// Entry point for array assignments. Both the left-hand and right-hand sides
3487   /// can either be ExtendedValue or evaluate::Expr.
3488   template <typename TL, typename TR>
3489   static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
3490                                    Fortran::lower::SymMap &symMap,
3491                                    Fortran::lower::StatementContext &stmtCtx,
3492                                    const TL &lhs, const TR &rhs) {
3493     ArrayExprLowering ael(converter, stmtCtx, symMap,
3494                           ConstituentSemantics::CopyInCopyOut);
3495     ael.lowerArrayAssignment(lhs, rhs);
3496   }
3497 
3498   template <typename TL, typename TR>
3499   void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
3500     mlir::Location loc = getLoc();
3501     /// Here the target subspace is not necessarily contiguous. The ArrayUpdate
3502     /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
3503     /// in `destination`.
3504     PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
3505     ccStoreToDest = genarr(lhs);
3506     determineShapeOfDest(lhs);
3507     semant = ConstituentSemantics::RefTransparent;
3508     ExtValue exv = lowerArrayExpression(rhs);
3509     if (explicitSpaceIsActive()) {
3510       explicitSpace->finalizeContext();
3511       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3512     } else {
3513       builder.create<fir::ArrayMergeStoreOp>(
3514           loc, destination, fir::getBase(exv), destination.getMemref(),
3515           destination.getSlice(), destination.getTypeparams());
3516     }
3517   }
3518 
3519   //===--------------------------------------------------------------------===//
3520   // WHERE array assignment, FORALL assignment, and FORALL+WHERE array
3521   // assignment
3522   //===--------------------------------------------------------------------===//
3523 
3524   /// Entry point for array assignment when the iteration space is explicitly
3525   /// defined (Fortran's FORALL) with or without masks, and/or the implied
3526   /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
3527   /// space and implicit space with masks) may be present.
3528   static void lowerAnyMaskedArrayAssignment(
3529       Fortran::lower::AbstractConverter &converter,
3530       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3531       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3532       Fortran::lower::ExplicitIterSpace &explicitSpace,
3533       Fortran::lower::ImplicitIterSpace &implicitSpace) {
3534     if (explicitSpace.isActive() && lhs.Rank() == 0) {
3535       // Scalar assignment expression in a FORALL context.
3536       ArrayExprLowering ael(converter, stmtCtx, symMap,
3537                             ConstituentSemantics::RefTransparent,
3538                             &explicitSpace, &implicitSpace);
3539       ael.lowerScalarAssignment(lhs, rhs);
3540       return;
3541     }
3542     // Array assignment expression in a FORALL and/or WHERE context.
3543     ArrayExprLowering ael(converter, stmtCtx, symMap,
3544                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3545                           &implicitSpace);
3546     ael.lowerArrayAssignment(lhs, rhs);
3547   }
3548 
3549   //===--------------------------------------------------------------------===//
3550   // Array assignment to array of pointer box values.
3551   //===--------------------------------------------------------------------===//
3552 
3553   /// Entry point for assignment to pointer in an array of pointers.
3554   static void lowerArrayOfPointerAssignment(
3555       Fortran::lower::AbstractConverter &converter,
3556       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3557       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3558       Fortran::lower::ExplicitIterSpace &explicitSpace,
3559       Fortran::lower::ImplicitIterSpace &implicitSpace,
3560       const llvm::SmallVector<mlir::Value> &lbounds,
3561       llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
3562     ArrayExprLowering ael(converter, stmtCtx, symMap,
3563                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3564                           &implicitSpace);
3565     ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds);
3566   }
3567 
3568   /// Scalar pointer assignment in an explicit iteration space.
3569   ///
3570   /// Pointers may be bound to targets in a FORALL context. This is a scalar
3571   /// assignment in the sense there is never an implied iteration space, even if
3572   /// the pointer is to a target with non-zero rank. Since the pointer
3573   /// assignment must appear in a FORALL construct, correctness may require that
3574   /// the array of pointers follow copy-in/copy-out semantics. The pointer
3575   /// assignment may include a bounds-spec (lower bounds), a bounds-remapping
3576   /// (lower and upper bounds), or neither.
3577   void lowerArrayOfPointerAssignment(
3578       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3579       const llvm::SmallVector<mlir::Value> &lbounds,
3580       llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
3581     setPointerAssignmentBounds(lbounds, ubounds);
3582     if (rhs.Rank() == 0 ||
3583         (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) &&
3584          Fortran::evaluate::IsAllocatableOrPointerObject(
3585              rhs, converter.getFoldingContext()))) {
3586       lowerScalarAssignment(lhs, rhs);
3587       return;
3588     }
3589     TODO(getLoc(),
3590          "auto boxing of a ranked expression on RHS for pointer assignment");
3591   }
3592 
3593   //===--------------------------------------------------------------------===//
3594   // Array assignment to allocatable array
3595   //===--------------------------------------------------------------------===//
3596 
3597   /// Entry point for assignment to allocatable array.
3598   static void lowerAllocatableArrayAssignment(
3599       Fortran::lower::AbstractConverter &converter,
3600       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3601       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3602       Fortran::lower::ExplicitIterSpace &explicitSpace,
3603       Fortran::lower::ImplicitIterSpace &implicitSpace) {
3604     ArrayExprLowering ael(converter, stmtCtx, symMap,
3605                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3606                           &implicitSpace);
3607     ael.lowerAllocatableArrayAssignment(lhs, rhs);
3608   }
3609 
3610   /// Assignment to allocatable array.
3611   ///
3612   /// The semantics are reverse that of a "regular" array assignment. The rhs
3613   /// defines the iteration space of the computation and the lhs is
3614   /// resized/reallocated to fit if necessary.
3615   void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
3616                                        const Fortran::lower::SomeExpr &rhs) {
3617     // With assignment to allocatable, we want to lower the rhs first and use
3618     // its shape to determine if we need to reallocate, etc.
3619     mlir::Location loc = getLoc();
3620     // FIXME: If the lhs is in an explicit iteration space, the assignment may
3621     // be to an array of allocatable arrays rather than a single allocatable
3622     // array.
3623     fir::MutableBoxValue mutableBox =
3624         Fortran::lower::createMutableBox(loc, converter, lhs, symMap);
3625     mlir::Type resultTy = converter.genType(rhs);
3626     if (rhs.Rank() > 0)
3627       determineShapeOfDest(rhs);
3628     auto rhsCC = [&]() {
3629       PushSemantics(ConstituentSemantics::RefTransparent);
3630       return genarr(rhs);
3631     }();
3632 
3633     llvm::SmallVector<mlir::Value> lengthParams;
3634     // Currently no safe way to gather length from rhs (at least for
3635     // character, it cannot be taken from array_loads since it may be
3636     // changed by concatenations).
3637     if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
3638         mutableBox.isDerivedWithLenParameters())
3639       TODO(loc, "gather rhs length parameters in assignment to allocatable");
3640 
3641     // The allocatable must take lower bounds from the expr if it is
3642     // reallocated and the right hand side is not a scalar.
3643     const bool takeLboundsIfRealloc = rhs.Rank() > 0;
3644     llvm::SmallVector<mlir::Value> lbounds;
3645     // When the reallocated LHS takes its lower bounds from the RHS,
3646     // they will be non default only if the RHS is a whole array
3647     // variable. Otherwise, lbounds is left empty and default lower bounds
3648     // will be used.
3649     if (takeLboundsIfRealloc &&
3650         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
3651       assert(arrayOperands.size() == 1 &&
3652              "lbounds can only come from one array");
3653       auto lbs = fir::factory::getOrigins(arrayOperands[0].shape);
3654       lbounds.append(lbs.begin(), lbs.end());
3655     }
3656     fir::factory::MutableBoxReallocation realloc =
3657         fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
3658                                          lengthParams);
3659     // Create ArrayLoad for the mutable box and save it into `destination`.
3660     PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
3661     ccStoreToDest = genarr(realloc.newValue);
3662     // If the rhs is scalar, get shape from the allocatable ArrayLoad.
3663     if (destShape.empty())
3664       destShape = getShape(destination);
3665     // Finish lowering the loop nest.
3666     assert(destination && "destination must have been set");
3667     ExtValue exv = lowerArrayExpression(rhsCC, resultTy);
3668     if (explicitSpaceIsActive()) {
3669       explicitSpace->finalizeContext();
3670       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3671     } else {
3672       builder.create<fir::ArrayMergeStoreOp>(
3673           loc, destination, fir::getBase(exv), destination.getMemref(),
3674           destination.getSlice(), destination.getTypeparams());
3675     }
3676     fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
3677                                   takeLboundsIfRealloc, realloc);
3678   }
3679 
3680   /// Entry point for when an array expression appears in a context where the
3681   /// result must be boxed. (BoxValue semantics.)
3682   static ExtValue
3683   lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
3684                             Fortran::lower::SymMap &symMap,
3685                             Fortran::lower::StatementContext &stmtCtx,
3686                             const Fortran::lower::SomeExpr &expr) {
3687     ArrayExprLowering ael{converter, stmtCtx, symMap,
3688                           ConstituentSemantics::BoxValue};
3689     return ael.lowerBoxedArrayExpr(expr);
3690   }
3691 
3692   ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
3693     PushSemantics(ConstituentSemantics::BoxValue);
3694     return std::visit(
3695         [&](const auto &e) {
3696           auto f = genarr(e);
3697           ExtValue exv = f(IterationSpace{});
3698           if (fir::getBase(exv).getType().template isa<fir::BoxType>())
3699             return exv;
3700           fir::emitFatalError(getLoc(), "array must be emboxed");
3701         },
3702         exp.u);
3703   }
3704 
3705   /// Entry point into lowering an expression with rank. This entry point is for
3706   /// lowering a rhs expression, for example. (RefTransparent semantics.)
3707   static ExtValue
3708   lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
3709                           Fortran::lower::SymMap &symMap,
3710                           Fortran::lower::StatementContext &stmtCtx,
3711                           const Fortran::lower::SomeExpr &expr) {
3712     ArrayExprLowering ael{converter, stmtCtx, symMap};
3713     ael.determineShapeOfDest(expr);
3714     ExtValue loopRes = ael.lowerArrayExpression(expr);
3715     fir::ArrayLoadOp dest = ael.destination;
3716     mlir::Value tempRes = dest.getMemref();
3717     fir::FirOpBuilder &builder = converter.getFirOpBuilder();
3718     mlir::Location loc = converter.getCurrentLocation();
3719     builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
3720                                            tempRes, dest.getSlice(),
3721                                            dest.getTypeparams());
3722 
3723     auto arrTy =
3724         fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
3725     if (auto charTy =
3726             arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
3727       if (fir::characterWithDynamicLen(charTy))
3728         TODO(loc, "CHARACTER does not have constant LEN");
3729       mlir::Value len = builder.createIntegerConstant(
3730           loc, builder.getCharacterLengthType(), charTy.getLen());
3731       return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
3732     }
3733     return fir::ArrayBoxValue(tempRes, dest.getExtents());
3734   }
3735 
3736   static void lowerLazyArrayExpression(
3737       Fortran::lower::AbstractConverter &converter,
3738       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3739       const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) {
3740     ArrayExprLowering ael(converter, stmtCtx, symMap);
3741     ael.lowerLazyArrayExpression(expr, raggedHeader);
3742   }
3743 
3744   /// Lower the expression \p expr into a buffer that is created on demand. The
3745   /// variable containing the pointer to the buffer is \p var and the variable
3746   /// containing the shape of the buffer is \p shapeBuffer.
3747   void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr,
3748                                 mlir::Value header) {
3749     mlir::Location loc = getLoc();
3750     mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder);
3751     mlir::IntegerType i32Ty = builder.getIntegerType(32);
3752 
3753     // Once the loop extents have been computed, which may require being inside
3754     // some explicit loops, lazily allocate the expression on the heap. The
3755     // following continuation creates the buffer as needed.
3756     ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) {
3757       mlir::IntegerType i64Ty = builder.getIntegerType(64);
3758       mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1);
3759       fir::runtime::genRaggedArrayAllocate(
3760           loc, builder, header, /*asHeaders=*/false, byteSize, shape);
3761     };
3762 
3763     // Create a dummy array_load before the loop. We're storing to a lazy
3764     // temporary, so there will be no conflict and no copy-in. TODO: skip this
3765     // as there isn't any necessity for it.
3766     ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp {
3767       mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
3768       auto var = builder.create<fir::CoordinateOp>(
3769           loc, builder.getRefType(hdrTy.getType(1)), header, one);
3770       auto load = builder.create<fir::LoadOp>(loc, var);
3771       mlir::Type eleTy =
3772           fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
3773       auto seqTy = fir::SequenceType::get(eleTy, shape.size());
3774       mlir::Value castTo =
3775           builder.createConvert(loc, fir::HeapType::get(seqTy), load);
3776       mlir::Value shapeOp = builder.genShape(loc, shape);
3777       return builder.create<fir::ArrayLoadOp>(
3778           loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None);
3779     };
3780     // Custom lowering of the element store to deal with the extra indirection
3781     // to the lazy allocated buffer.
3782     ccStoreToDest = [=](IterSpace iters) {
3783       mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
3784       auto var = builder.create<fir::CoordinateOp>(
3785           loc, builder.getRefType(hdrTy.getType(1)), header, one);
3786       auto load = builder.create<fir::LoadOp>(loc, var);
3787       mlir::Type eleTy =
3788           fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
3789       auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size());
3790       auto toTy = fir::HeapType::get(seqTy);
3791       mlir::Value castTo = builder.createConvert(loc, toTy, load);
3792       mlir::Value shape = builder.genShape(loc, genIterationShape());
3793       llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
3794           loc, builder, castTo.getType(), shape, iters.iterVec());
3795       auto eleAddr = builder.create<fir::ArrayCoorOp>(
3796           loc, builder.getRefType(eleTy), castTo, shape,
3797           /*slice=*/mlir::Value{}, indices, destination.getTypeparams());
3798       mlir::Value eleVal =
3799           builder.createConvert(loc, eleTy, iters.getElement());
3800       builder.create<fir::StoreOp>(loc, eleVal, eleAddr);
3801       return iters.innerArgument();
3802     };
3803 
3804     // Lower the array expression now. Clean-up any temps that may have
3805     // been generated when lowering `expr` right after the lowered value
3806     // was stored to the ragged array temporary. The local temps will not
3807     // be needed afterwards.
3808     stmtCtx.pushScope();
3809     [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr);
3810     stmtCtx.finalize(/*popScope=*/true);
3811     assert(fir::getBase(loopRes));
3812   }
3813 
3814   static void
3815   lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter,
3816                                Fortran::lower::SymMap &symMap,
3817                                Fortran::lower::StatementContext &stmtCtx,
3818                                Fortran::lower::ExplicitIterSpace &explicitSpace,
3819                                Fortran::lower::ImplicitIterSpace &implicitSpace,
3820                                const Fortran::evaluate::ProcedureRef &procRef) {
3821     ArrayExprLowering ael(converter, stmtCtx, symMap,
3822                           ConstituentSemantics::CustomCopyInCopyOut,
3823                           &explicitSpace, &implicitSpace);
3824     assert(procRef.arguments().size() == 2);
3825     const auto *lhs = procRef.arguments()[0].value().UnwrapExpr();
3826     const auto *rhs = procRef.arguments()[1].value().UnwrapExpr();
3827     assert(lhs && rhs &&
3828            "user defined assignment arguments must be expressions");
3829     mlir::func::FuncOp func =
3830         Fortran::lower::CallerInterface(procRef, converter).getFuncOp();
3831     ael.lowerElementalUserAssignment(func, *lhs, *rhs);
3832   }
3833 
3834   void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment,
3835                                     const Fortran::lower::SomeExpr &lhs,
3836                                     const Fortran::lower::SomeExpr &rhs) {
3837     mlir::Location loc = getLoc();
3838     PushSemantics(ConstituentSemantics::CustomCopyInCopyOut);
3839     auto genArrayModify = genarr(lhs);
3840     ccStoreToDest = [=](IterSpace iters) -> ExtValue {
3841       auto modifiedArray = genArrayModify(iters);
3842       auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>(
3843           fir::getBase(modifiedArray).getDefiningOp());
3844       assert(arrayModify && "must be created by ArrayModifyOp");
3845       fir::ExtendedValue lhs =
3846           arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0));
3847       genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs,
3848                                          iters.elementExv());
3849       return modifiedArray;
3850     };
3851     determineShapeOfDest(lhs);
3852     semant = ConstituentSemantics::RefTransparent;
3853     auto exv = lowerArrayExpression(rhs);
3854     if (explicitSpaceIsActive()) {
3855       explicitSpace->finalizeContext();
3856       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3857     } else {
3858       builder.create<fir::ArrayMergeStoreOp>(
3859           loc, destination, fir::getBase(exv), destination.getMemref(),
3860           destination.getSlice(), destination.getTypeparams());
3861     }
3862   }
3863 
3864   /// Lower an elemental subroutine call with at least one array argument.
3865   /// An elemental subroutine is an exception and does not have copy-in/copy-out
3866   /// semantics. See 15.8.3.
3867   /// Do NOT use this for user defined assignments.
3868   static void
3869   lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter,
3870                            Fortran::lower::SymMap &symMap,
3871                            Fortran::lower::StatementContext &stmtCtx,
3872                            const Fortran::lower::SomeExpr &call) {
3873     ArrayExprLowering ael(converter, stmtCtx, symMap,
3874                           ConstituentSemantics::RefTransparent);
3875     ael.lowerElementalSubroutine(call);
3876   }
3877 
3878   // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
3879   // This is skipping generation of copy-in/copy-out code for analysis that is
3880   // required when arguments are in parentheses.
3881   void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) {
3882     auto f = genarr(call);
3883     llvm::SmallVector<mlir::Value> shape = genIterationShape();
3884     auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{});
3885     f(iterSpace);
3886     finalizeElementCtx();
3887     builder.restoreInsertionPoint(insPt);
3888   }
3889 
3890   ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs,
3891                                  const Fortran::lower::SomeExpr &rhs) {
3892     PushSemantics(ConstituentSemantics::RefTransparent);
3893     // 1) Lower the rhs expression with array_fetch op(s).
3894     IterationSpace iters;
3895     iters.setElement(genarr(rhs)(iters));
3896     // 2) Lower the lhs expression to an array_update.
3897     semant = ConstituentSemantics::ProjectedCopyInCopyOut;
3898     auto lexv = genarr(lhs)(iters);
3899     // 3) Finalize the inner context.
3900     explicitSpace->finalizeContext();
3901     // 4) Thread the array value updated forward. Note: the lhs might be
3902     // ill-formed (performing scalar assignment in an array context),
3903     // in which case there is no array to thread.
3904     auto createResult = [&](auto op) {
3905       mlir::Value oldInnerArg = op.getSequence();
3906       std::size_t offset = explicitSpace->argPosition(oldInnerArg);
3907       explicitSpace->setInnerArg(offset, fir::getBase(lexv));
3908       builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
3909     };
3910     llvm::TypeSwitch<mlir::Operation *, void>(
3911         fir::getBase(lexv).getDefiningOp())
3912         .Case([&](fir::ArrayUpdateOp op) { createResult(op); })
3913         .Case([&](fir::ArrayAmendOp op) { createResult(op); })
3914         .Case([&](fir::ArrayModifyOp op) { createResult(op); })
3915         .Default([&](mlir::Operation *) {});
3916     return lexv;
3917   }
3918 
3919   static ExtValue lowerScalarUserAssignment(
3920       Fortran::lower::AbstractConverter &converter,
3921       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3922       Fortran::lower::ExplicitIterSpace &explicitIterSpace,
3923       mlir::func::FuncOp userAssignmentFunction,
3924       const Fortran::lower::SomeExpr &lhs,
3925       const Fortran::lower::SomeExpr &rhs) {
3926     Fortran::lower::ImplicitIterSpace implicit;
3927     ArrayExprLowering ael(converter, stmtCtx, symMap,
3928                           ConstituentSemantics::RefTransparent,
3929                           &explicitIterSpace, &implicit);
3930     return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs);
3931   }
3932 
3933   ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment,
3934                                      const Fortran::lower::SomeExpr &lhs,
3935                                      const Fortran::lower::SomeExpr &rhs) {
3936     mlir::Location loc = getLoc();
3937     if (rhs.Rank() > 0)
3938       TODO(loc, "user-defined elemental assigment from expression with rank");
3939     // 1) Lower the rhs expression with array_fetch op(s).
3940     IterationSpace iters;
3941     iters.setElement(genarr(rhs)(iters));
3942     fir::ExtendedValue elementalExv = iters.elementExv();
3943     // 2) Lower the lhs expression to an array_modify.
3944     semant = ConstituentSemantics::CustomCopyInCopyOut;
3945     auto lexv = genarr(lhs)(iters);
3946     bool isIllFormedLHS = false;
3947     // 3) Insert the call
3948     if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
3949             fir::getBase(lexv).getDefiningOp())) {
3950       mlir::Value oldInnerArg = modifyOp.getSequence();
3951       std::size_t offset = explicitSpace->argPosition(oldInnerArg);
3952       explicitSpace->setInnerArg(offset, fir::getBase(lexv));
3953       fir::ExtendedValue exv = arrayModifyToExv(
3954           builder, loc, *explicitSpace->getLhsLoad(0), modifyOp.getResult(0));
3955       genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv,
3956                                          elementalExv);
3957     } else {
3958       // LHS is ill formed, it is a scalar with no references to FORALL
3959       // subscripts, so there is actually no array assignment here. The user
3960       // code is probably bad, but still insert user assignment call since it
3961       // was not rejected by semantics (a warning was emitted).
3962       isIllFormedLHS = true;
3963       genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment,
3964                                          lexv, elementalExv);
3965     }
3966     // 4) Finalize the inner context.
3967     explicitSpace->finalizeContext();
3968     // 5). Thread the array value updated forward.
3969     if (!isIllFormedLHS)
3970       builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
3971     return lexv;
3972   }
3973 
3974 private:
3975   void determineShapeOfDest(const fir::ExtendedValue &lhs) {
3976     destShape = fir::factory::getExtents(getLoc(), builder, lhs);
3977   }
3978 
3979   void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
3980     if (!destShape.empty())
3981       return;
3982     if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
3983       return;
3984     mlir::Type idxTy = builder.getIndexType();
3985     mlir::Location loc = getLoc();
3986     if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
3987             Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
3988                                                   lhs))
3989       for (Fortran::common::ConstantSubscript extent : *constantShape)
3990         destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
3991   }
3992 
3993   bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) {
3994     return false;
3995   }
3996   bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) {
3997     TODO(getLoc(), "coarray ref");
3998     return false;
3999   }
4000   bool genShapeFromDataRef(const Fortran::evaluate::Component &x) {
4001     return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false;
4002   }
4003   bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) {
4004     if (x.Rank() == 0)
4005       return false;
4006     if (x.base().Rank() > 0)
4007       if (genShapeFromDataRef(x.base()))
4008         return true;
4009     // x has rank and x.base did not produce a shape.
4010     ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base()))
4011                                        : asScalarRef(x.base().GetComponent());
4012     mlir::Location loc = getLoc();
4013     mlir::IndexType idxTy = builder.getIndexType();
4014     llvm::SmallVector<mlir::Value> definedShape =
4015         fir::factory::getExtents(loc, builder, exv);
4016     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
4017     for (auto ss : llvm::enumerate(x.subscript())) {
4018       std::visit(Fortran::common::visitors{
4019                      [&](const Fortran::evaluate::Triplet &trip) {
4020                        // For a subscript of triple notation, we compute the
4021                        // range of this dimension of the iteration space.
4022                        auto lo = [&]() {
4023                          if (auto optLo = trip.lower())
4024                            return fir::getBase(asScalar(*optLo));
4025                          return getLBound(exv, ss.index(), one);
4026                        }();
4027                        auto hi = [&]() {
4028                          if (auto optHi = trip.upper())
4029                            return fir::getBase(asScalar(*optHi));
4030                          return getUBound(exv, ss.index(), one);
4031                        }();
4032                        auto step = builder.createConvert(
4033                            loc, idxTy, fir::getBase(asScalar(trip.stride())));
4034                        auto extent = builder.genExtentFromTriplet(loc, lo, hi,
4035                                                                   step, idxTy);
4036                        destShape.push_back(extent);
4037                      },
4038                      [&](auto) {}},
4039                  ss.value().u);
4040     }
4041     return true;
4042   }
4043   bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) {
4044     if (x.IsSymbol())
4045       return genShapeFromDataRef(getFirstSym(x));
4046     return genShapeFromDataRef(x.GetComponent());
4047   }
4048   bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) {
4049     return std::visit([&](const auto &v) { return genShapeFromDataRef(v); },
4050                       x.u);
4051   }
4052 
4053   /// When in an explicit space, the ranked component must be evaluated to
4054   /// determine the actual number of iterations when slicing triples are
4055   /// present. Lower these expressions here.
4056   bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) {
4057     LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
4058         llvm::dbgs() << "determine shape of:\n", lhs));
4059     // FIXME: We may not want to use ExtractDataRef here since it doesn't deal
4060     // with substrings, etc.
4061     std::optional<Fortran::evaluate::DataRef> dref =
4062         Fortran::evaluate::ExtractDataRef(lhs);
4063     return dref.has_value() ? genShapeFromDataRef(*dref) : false;
4064   }
4065 
4066   /// CHARACTER and derived type elements are treated as memory references. The
4067   /// numeric types are treated as values.
4068   static mlir::Type adjustedArraySubtype(mlir::Type ty,
4069                                          mlir::ValueRange indices) {
4070     mlir::Type pathTy = fir::applyPathToType(ty, indices);
4071     assert(pathTy && "indices failed to apply to type");
4072     return adjustedArrayElementType(pathTy);
4073   }
4074 
4075   /// Lower rhs of an array expression.
4076   ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
4077     mlir::Type resTy = converter.genType(exp);
4078     return std::visit(
4079         [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
4080         exp.u);
4081   }
4082   ExtValue lowerArrayExpression(const ExtValue &exv) {
4083     assert(!explicitSpace);
4084     mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
4085     return lowerArrayExpression(genarr(exv), resTy);
4086   }
4087 
4088   void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
4089                       const Fortran::evaluate::Substring *substring) {
4090     if (!substring)
4091       return;
4092     bounds.push_back(fir::getBase(asScalar(substring->lower())));
4093     if (auto upper = substring->upper())
4094       bounds.push_back(fir::getBase(asScalar(*upper)));
4095   }
4096 
4097   /// Convert the original value, \p origVal, to type \p eleTy. When in a
4098   /// pointer assignment context, generate an appropriate `fir.rebox` for
4099   /// dealing with any bounds parameters on the pointer assignment.
4100   mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy,
4101                                       mlir::Value origVal) {
4102     mlir::Value val = builder.createConvert(loc, eleTy, origVal);
4103     if (isBoundsSpec()) {
4104       auto lbs = *lbounds;
4105       if (lbs.size() > 0) {
4106         // Rebox the value with user-specified shift.
4107         auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size());
4108         mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs);
4109         val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp,
4110                                            mlir::Value{});
4111       }
4112     } else if (isBoundsRemap()) {
4113       auto lbs = *lbounds;
4114       if (lbs.size() > 0) {
4115         // Rebox the value with user-specified shift and shape.
4116         auto shapeShiftArgs = flatZip(lbs, *ubounds);
4117         auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size());
4118         mlir::Value shapeShift =
4119             builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs);
4120         val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift,
4121                                            mlir::Value{});
4122       }
4123     }
4124     return val;
4125   }
4126 
4127   /// Default store to destination implementation.
4128   /// This implements the default case, which is to assign the value in
4129   /// `iters.element` into the destination array, `iters.innerArgument`. Handles
4130   /// by value and by reference assignment.
4131   CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
4132     return [=](IterSpace iterSpace) -> ExtValue {
4133       mlir::Location loc = getLoc();
4134       mlir::Value innerArg = iterSpace.innerArgument();
4135       fir::ExtendedValue exv = iterSpace.elementExv();
4136       mlir::Type arrTy = innerArg.getType();
4137       mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
4138       if (isAdjustedArrayElementType(eleTy)) {
4139         // The elemental update is in the memref domain. Under this semantics,
4140         // we must always copy the computed new element from its location in
4141         // memory into the destination array.
4142         mlir::Type resRefTy = builder.getRefType(eleTy);
4143         // Get a reference to the array element to be amended.
4144         auto arrayOp = builder.create<fir::ArrayAccessOp>(
4145             loc, resRefTy, innerArg, iterSpace.iterVec(),
4146             destination.getTypeparams());
4147         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
4148           llvm::SmallVector<mlir::Value> substringBounds;
4149           populateBounds(substringBounds, substring);
4150           mlir::Value dstLen = fir::factory::genLenOfCharacter(
4151               builder, loc, destination, iterSpace.iterVec(), substringBounds);
4152           fir::ArrayAmendOp amend = createCharArrayAmend(
4153               loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
4154           return abstractArrayExtValue(amend, dstLen);
4155         }
4156         if (fir::isa_derived(eleTy)) {
4157           fir::ArrayAmendOp amend = createDerivedArrayAmend(
4158               loc, destination, builder, arrayOp, exv, eleTy, innerArg);
4159           return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
4160         }
4161         assert(eleTy.isa<fir::SequenceType>() && "must be an array");
4162         TODO(loc, "array (as element) assignment");
4163       }
4164       // By value semantics. The element is being assigned by value.
4165       auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv));
4166       auto update = builder.create<fir::ArrayUpdateOp>(
4167           loc, arrTy, innerArg, ele, iterSpace.iterVec(),
4168           destination.getTypeparams());
4169       return abstractArrayExtValue(update);
4170     };
4171   }
4172 
4173   /// For an elemental array expression.
4174   ///   1. Lower the scalars and array loads.
4175   ///   2. Create the iteration space.
4176   ///   3. Create the element-by-element computation in the loop.
4177   ///   4. Return the resulting array value.
4178   /// If no destination was set in the array context, a temporary of
4179   /// \p resultTy will be created to hold the evaluated expression.
4180   /// Otherwise, \p resultTy is ignored and the expression is evaluated
4181   /// in the destination. \p f is a continuation built from an
4182   /// evaluate::Expr or an ExtendedValue.
4183   ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
4184     mlir::Location loc = getLoc();
4185     auto [iterSpace, insPt] = genIterSpace(resultTy);
4186     auto exv = f(iterSpace);
4187     iterSpace.setElement(std::move(exv));
4188     auto lambda = ccStoreToDest
4189                       ? *ccStoreToDest
4190                       : defaultStoreToDestination(/*substring=*/nullptr);
4191     mlir::Value updVal = fir::getBase(lambda(iterSpace));
4192     finalizeElementCtx();
4193     builder.create<fir::ResultOp>(loc, updVal);
4194     builder.restoreInsertionPoint(insPt);
4195     return abstractArrayExtValue(iterSpace.outerResult());
4196   }
4197 
4198   /// Compute the shape of a slice.
4199   llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) {
4200     llvm::SmallVector<mlir::Value> slicedShape;
4201     auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp());
4202     mlir::Operation::operand_range triples = slOp.getTriples();
4203     mlir::IndexType idxTy = builder.getIndexType();
4204     mlir::Location loc = getLoc();
4205     for (unsigned i = 0, end = triples.size(); i < end; i += 3) {
4206       if (!mlir::isa_and_nonnull<fir::UndefOp>(
4207               triples[i + 1].getDefiningOp())) {
4208         // (..., lb:ub:step, ...) case:  extent = max((ub-lb+step)/step, 0)
4209         // See Fortran 2018 9.5.3.3.2 section for more details.
4210         mlir::Value res = builder.genExtentFromTriplet(
4211             loc, triples[i], triples[i + 1], triples[i + 2], idxTy);
4212         slicedShape.emplace_back(res);
4213       } else {
4214         // do nothing. `..., i, ...` case, so dimension is dropped.
4215       }
4216     }
4217     return slicedShape;
4218   }
4219 
4220   /// Get the shape from an ArrayOperand. The shape of the array is adjusted if
4221   /// the array was sliced.
4222   llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
4223     if (array.slice)
4224       return computeSliceShape(array.slice);
4225     if (array.memref.getType().isa<fir::BoxType>())
4226       return fir::factory::readExtents(builder, getLoc(),
4227                                        fir::BoxValue{array.memref});
4228     return fir::factory::getExtents(array.shape);
4229   }
4230 
4231   /// Get the shape from an ArrayLoad.
4232   llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
4233     return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
4234                                  arrayLoad.getSlice()});
4235   }
4236 
4237   /// Returns the first array operand that may not be absent. If all
4238   /// array operands may be absent, return the first one.
4239   const ArrayOperand &getInducingShapeArrayOperand() const {
4240     assert(!arrayOperands.empty());
4241     for (const ArrayOperand &op : arrayOperands)
4242       if (!op.mayBeAbsent)
4243         return op;
4244     // If all arrays operand appears in optional position, then none of them
4245     // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
4246     // first operands.
4247     // TODO: There is an opportunity to add a runtime check here that
4248     // this array is present as required.
4249     return arrayOperands[0];
4250   }
4251 
4252   /// Generate the shape of the iteration space over the array expression. The
4253   /// iteration space may be implicit, explicit, or both. If it is implied it is
4254   /// based on the destination and operand array loads, or an optional
4255   /// Fortran::evaluate::Shape from the front end. If the shape is explicit,
4256   /// this returns any implicit shape component, if it exists.
4257   llvm::SmallVector<mlir::Value> genIterationShape() {
4258     // Use the precomputed destination shape.
4259     if (!destShape.empty())
4260       return destShape;
4261     // Otherwise, use the destination's shape.
4262     if (destination)
4263       return getShape(destination);
4264     // Otherwise, use the first ArrayLoad operand shape.
4265     if (!arrayOperands.empty())
4266       return getShape(getInducingShapeArrayOperand());
4267     fir::emitFatalError(getLoc(),
4268                         "failed to compute the array expression shape");
4269   }
4270 
4271   bool explicitSpaceIsActive() const {
4272     return explicitSpace && explicitSpace->isActive();
4273   }
4274 
4275   bool implicitSpaceHasMasks() const {
4276     return implicitSpace && !implicitSpace->empty();
4277   }
4278 
4279   CC genMaskAccess(mlir::Value tmp, mlir::Value shape) {
4280     mlir::Location loc = getLoc();
4281     return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) {
4282       mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType());
4283       auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
4284       mlir::Type eleRefTy = builder->getRefType(eleTy);
4285       mlir::IntegerType i1Ty = builder->getI1Type();
4286       // Adjust indices for any shift of the origin of the array.
4287       llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
4288           loc, *builder, tmp.getType(), shape, iters.iterVec());
4289       auto addr =
4290           builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape,
4291                                             /*slice=*/mlir::Value{}, indices,
4292                                             /*typeParams=*/llvm::None);
4293       auto load = builder->create<fir::LoadOp>(loc, addr);
4294       return builder->createConvert(loc, i1Ty, load);
4295     };
4296   }
4297 
4298   /// Construct the incremental instantiations of the ragged array structure.
4299   /// Rebind the lazy buffer variable, etc. as we go.
4300   template <bool withAllocation = false>
4301   mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) {
4302     assert(explicitSpaceIsActive());
4303     mlir::Location loc = getLoc();
4304     mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder);
4305     llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack =
4306         explicitSpace->getLoopStack();
4307     const std::size_t depth = loopStack.size();
4308     mlir::IntegerType i64Ty = builder.getIntegerType(64);
4309     [[maybe_unused]] mlir::Value byteSize =
4310         builder.createIntegerConstant(loc, i64Ty, 1);
4311     mlir::Value header = implicitSpace->lookupMaskHeader(expr);
4312     for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) {
4313       auto insPt = builder.saveInsertionPoint();
4314       if (i < depth - 1)
4315         builder.setInsertionPoint(loopStack[i + 1][0]);
4316 
4317       // Compute and gather the extents.
4318       llvm::SmallVector<mlir::Value> extents;
4319       for (auto doLoop : loopStack[i])
4320         extents.push_back(builder.genExtentFromTriplet(
4321             loc, doLoop.getLowerBound(), doLoop.getUpperBound(),
4322             doLoop.getStep(), i64Ty));
4323       if constexpr (withAllocation) {
4324         fir::runtime::genRaggedArrayAllocate(
4325             loc, builder, header, /*asHeader=*/true, byteSize, extents);
4326       }
4327 
4328       // Compute the dynamic position into the header.
4329       llvm::SmallVector<mlir::Value> offsets;
4330       for (auto doLoop : loopStack[i]) {
4331         auto m = builder.create<mlir::arith::SubIOp>(
4332             loc, doLoop.getInductionVar(), doLoop.getLowerBound());
4333         auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep());
4334         mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1);
4335         offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one));
4336       }
4337       mlir::IntegerType i32Ty = builder.getIntegerType(32);
4338       mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1);
4339       mlir::Type coorTy = builder.getRefType(raggedTy.getType(1));
4340       auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
4341       auto toTy = fir::SequenceType::get(raggedTy, offsets.size());
4342       mlir::Type toRefTy = builder.getRefType(toTy);
4343       auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff);
4344       mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr);
4345       auto shapeOp = builder.genShape(loc, extents);
4346       header = builder.create<fir::ArrayCoorOp>(
4347           loc, builder.getRefType(raggedTy), hdArr, shapeOp,
4348           /*slice=*/mlir::Value{}, offsets,
4349           /*typeparams=*/mlir::ValueRange{});
4350       auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
4351       auto inVar = builder.create<fir::LoadOp>(loc, hdrVar);
4352       mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
4353       mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2));
4354       auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two);
4355       auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh);
4356       // Replace the binding.
4357       implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr));
4358       if (i < depth - 1)
4359         builder.restoreInsertionPoint(insPt);
4360     }
4361     return header;
4362   }
4363 
4364   /// Lower mask expressions with implied iteration spaces from the variants of
4365   /// WHERE syntax. Since it is legal for mask expressions to have side-effects
4366   /// and modify values that will be used for the lhs, rhs, or both of
4367   /// subsequent assignments, the mask must be evaluated before the assignment
4368   /// is processed.
4369   /// Mask expressions are array expressions too.
4370   void genMasks() {
4371     // Lower the mask expressions, if any.
4372     if (implicitSpaceHasMasks()) {
4373       mlir::Location loc = getLoc();
4374       // Mask expressions are array expressions too.
4375       for (const auto *e : implicitSpace->getExprs())
4376         if (e && !implicitSpace->isLowered(e)) {
4377           if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) {
4378             // Allocate the mask buffer lazily.
4379             assert(explicitSpaceIsActive());
4380             mlir::Value header =
4381                 prepareRaggedArrays</*withAllocations=*/true>(e);
4382             Fortran::lower::createLazyArrayTempValue(converter, *e, header,
4383                                                      symMap, stmtCtx);
4384             // Close the explicit loops.
4385             builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs());
4386             builder.setInsertionPointAfter(explicitSpace->getOuterLoop());
4387             // Open a new copy of the explicit loop nest.
4388             explicitSpace->genLoopNest();
4389             continue;
4390           }
4391           fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue(
4392               converter, *e, symMap, stmtCtx);
4393           mlir::Value shape = builder.createShape(loc, tmp);
4394           implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape));
4395         }
4396 
4397       // Set buffer from the header.
4398       for (const auto *e : implicitSpace->getExprs()) {
4399         if (!e)
4400           continue;
4401         if (implicitSpace->lookupMaskVariable(e)) {
4402           // Index into the ragged buffer to retrieve cached results.
4403           const int rank = e->Rank();
4404           assert(destShape.empty() ||
4405                  static_cast<std::size_t>(rank) == destShape.size());
4406           mlir::Value header = prepareRaggedArrays(e);
4407           mlir::TupleType raggedTy =
4408               fir::factory::getRaggedArrayHeaderType(builder);
4409           mlir::IntegerType i32Ty = builder.getIntegerType(32);
4410           mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
4411           auto coor1 = builder.create<fir::CoordinateOp>(
4412               loc, builder.getRefType(raggedTy.getType(1)), header, one);
4413           auto db = builder.create<fir::LoadOp>(loc, coor1);
4414           mlir::Type eleTy =
4415               fir::unwrapSequenceType(fir::unwrapRefType(db.getType()));
4416           mlir::Type buffTy =
4417               builder.getRefType(fir::SequenceType::get(eleTy, rank));
4418           // Address of ragged buffer data.
4419           mlir::Value buff = builder.createConvert(loc, buffTy, db);
4420 
4421           mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
4422           auto coor2 = builder.create<fir::CoordinateOp>(
4423               loc, builder.getRefType(raggedTy.getType(2)), header, two);
4424           auto shBuff = builder.create<fir::LoadOp>(loc, coor2);
4425           mlir::IntegerType i64Ty = builder.getIntegerType(64);
4426           mlir::IndexType idxTy = builder.getIndexType();
4427           llvm::SmallVector<mlir::Value> extents;
4428           for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) {
4429             mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i);
4430             auto coor = builder.create<fir::CoordinateOp>(
4431                 loc, builder.getRefType(i64Ty), shBuff, off);
4432             auto ldExt = builder.create<fir::LoadOp>(loc, coor);
4433             extents.push_back(builder.createConvert(loc, idxTy, ldExt));
4434           }
4435           if (destShape.empty())
4436             destShape = extents;
4437           // Construct shape of buffer.
4438           mlir::Value shapeOp = builder.genShape(loc, extents);
4439 
4440           // Replace binding with the local result.
4441           implicitSpace->rebind(e, genMaskAccess(buff, shapeOp));
4442         }
4443       }
4444     }
4445   }
4446 
4447   // FIXME: should take multiple inner arguments.
4448   std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
4449   genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
4450     mlir::Location loc = getLoc();
4451     mlir::IndexType idxTy = builder.getIndexType();
4452     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
4453     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
4454     llvm::SmallVector<mlir::Value> loopUppers;
4455 
4456     // Convert any implied shape to closed interval form. The fir.do_loop will
4457     // run from 0 to `extent - 1` inclusive.
4458     for (auto extent : shape)
4459       loopUppers.push_back(
4460           builder.create<mlir::arith::SubIOp>(loc, extent, one));
4461 
4462     // Iteration space is created with outermost columns, innermost rows
4463     llvm::SmallVector<fir::DoLoopOp> loops;
4464 
4465     const std::size_t loopDepth = loopUppers.size();
4466     llvm::SmallVector<mlir::Value> ivars;
4467 
4468     for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
4469       if (i.index() > 0) {
4470         assert(!loops.empty());
4471         builder.setInsertionPointToStart(loops.back().getBody());
4472       }
4473       fir::DoLoopOp loop;
4474       if (innerArg) {
4475         loop = builder.create<fir::DoLoopOp>(
4476             loc, zero, i.value(), one, isUnordered(),
4477             /*finalCount=*/false, mlir::ValueRange{innerArg});
4478         innerArg = loop.getRegionIterArgs().front();
4479         if (explicitSpaceIsActive())
4480           explicitSpace->setInnerArg(0, innerArg);
4481       } else {
4482         loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
4483                                              isUnordered(),
4484                                              /*finalCount=*/false);
4485       }
4486       ivars.push_back(loop.getInductionVar());
4487       loops.push_back(loop);
4488     }
4489 
4490     if (innerArg)
4491       for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
4492            ++i) {
4493         builder.setInsertionPointToEnd(loops[i].getBody());
4494         builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
4495       }
4496 
4497     // Move insertion point to the start of the innermost loop in the nest.
4498     builder.setInsertionPointToStart(loops.back().getBody());
4499     // Set `afterLoopNest` to just after the entire loop nest.
4500     auto currPt = builder.saveInsertionPoint();
4501     builder.setInsertionPointAfter(loops[0]);
4502     auto afterLoopNest = builder.saveInsertionPoint();
4503     builder.restoreInsertionPoint(currPt);
4504 
4505     // Put the implicit loop variables in row to column order to match FIR's
4506     // Ops. (The loops were constructed from outermost column to innermost
4507     // row.)
4508     mlir::Value outerRes = loops[0].getResult(0);
4509     return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
4510             afterLoopNest};
4511   }
4512 
4513   /// Build the iteration space into which the array expression will be lowered.
4514   /// The resultType is used to create a temporary, if needed.
4515   std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
4516   genIterSpace(mlir::Type resultType) {
4517     mlir::Location loc = getLoc();
4518     llvm::SmallVector<mlir::Value> shape = genIterationShape();
4519     if (!destination) {
4520       // Allocate storage for the result if it is not already provided.
4521       destination = createAndLoadSomeArrayTemp(resultType, shape);
4522     }
4523 
4524     // Generate the lazy mask allocation, if one was given.
4525     if (ccPrelude)
4526       ccPrelude.value()(shape);
4527 
4528     // Now handle the implicit loops.
4529     mlir::Value inner = explicitSpaceIsActive()
4530                             ? explicitSpace->getInnerArgs().front()
4531                             : destination.getResult();
4532     auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
4533     mlir::Value innerArg = iters.innerArgument();
4534 
4535     // Generate the mask conditional structure, if there are masks. Unlike the
4536     // explicit masks, which are interleaved, these mask expression appear in
4537     // the innermost loop.
4538     if (implicitSpaceHasMasks()) {
4539       // Recover the cached condition from the mask buffer.
4540       auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
4541         return implicitSpace->getBoundClosure(e)(iters);
4542       };
4543 
4544       // Handle the negated conditions in topological order of the WHERE
4545       // clauses. See 10.2.3.2p4 as to why this control structure is produced.
4546       for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
4547            implicitSpace->getMasks()) {
4548         const std::size_t size = maskExprs.size() - 1;
4549         auto genFalseBlock = [&](const auto *e, auto &&cond) {
4550           auto ifOp = builder.create<fir::IfOp>(
4551               loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
4552               /*withElseRegion=*/true);
4553           builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
4554           builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
4555           builder.create<fir::ResultOp>(loc, innerArg);
4556           builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
4557         };
4558         auto genTrueBlock = [&](const auto *e, auto &&cond) {
4559           auto ifOp = builder.create<fir::IfOp>(
4560               loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
4561               /*withElseRegion=*/true);
4562           builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
4563           builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
4564           builder.create<fir::ResultOp>(loc, innerArg);
4565           builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
4566         };
4567         for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
4568           if (const auto *e = maskExprs[i])
4569             genFalseBlock(e, genCond(e, iters));
4570 
4571         // The last condition is either non-negated or unconditionally negated.
4572         if (const auto *e = maskExprs[size])
4573           genTrueBlock(e, genCond(e, iters));
4574       }
4575     }
4576 
4577     // We're ready to lower the body (an assignment statement) for this context
4578     // of loop nests at this point.
4579     return {iters, afterLoopNest};
4580   }
4581 
4582   fir::ArrayLoadOp
4583   createAndLoadSomeArrayTemp(mlir::Type type,
4584                              llvm::ArrayRef<mlir::Value> shape) {
4585     if (ccLoadDest)
4586       return ccLoadDest.value()(shape);
4587     auto seqTy = type.dyn_cast<fir::SequenceType>();
4588     assert(seqTy && "must be an array");
4589     mlir::Location loc = getLoc();
4590     // TODO: Need to thread the length parameters here. For character, they may
4591     // differ from the operands length (e.g concatenation). So the array loads
4592     // type parameters are not enough.
4593     if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
4594       if (charTy.hasDynamicLen())
4595         TODO(loc, "character array expression temp with dynamic length");
4596     if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
4597       if (recTy.getNumLenParams() > 0)
4598         TODO(loc, "derived type array expression temp with length parameters");
4599     mlir::Value temp = seqTy.hasConstantShape()
4600                            ? builder.create<fir::AllocMemOp>(loc, type)
4601                            : builder.create<fir::AllocMemOp>(
4602                                  loc, type, ".array.expr", llvm::None, shape);
4603     fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
4604     stmtCtx.attachCleanup(
4605         [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
4606     mlir::Value shapeOp = genShapeOp(shape);
4607     return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
4608                                             /*slice=*/mlir::Value{},
4609                                             llvm::None);
4610   }
4611 
4612   static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
4613                                  llvm::ArrayRef<mlir::Value> shape) {
4614     mlir::IndexType idxTy = builder.getIndexType();
4615     llvm::SmallVector<mlir::Value> idxShape;
4616     for (auto s : shape)
4617       idxShape.push_back(builder.createConvert(loc, idxTy, s));
4618     auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size());
4619     return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape);
4620   }
4621 
4622   fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
4623     return genShapeOp(getLoc(), builder, shape);
4624   }
4625 
4626   //===--------------------------------------------------------------------===//
4627   // Expression traversal and lowering.
4628   //===--------------------------------------------------------------------===//
4629 
4630   /// Lower the expression, \p x, in a scalar context.
4631   template <typename A>
4632   ExtValue asScalar(const A &x) {
4633     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
4634   }
4635 
4636   /// Lower the expression, \p x, in a scalar context. If this is an explicit
4637   /// space, the expression may be scalar and refer to an array. We want to
4638   /// raise the array access to array operations in FIR to analyze potential
4639   /// conflicts even when the result is a scalar element.
4640   template <typename A>
4641   ExtValue asScalarArray(const A &x) {
4642     return explicitSpaceIsActive() && !isPointerAssignment()
4643                ? genarr(x)(IterationSpace{})
4644                : asScalar(x);
4645   }
4646 
4647   /// Lower the expression in a scalar context to a memory reference.
4648   template <typename A>
4649   ExtValue asScalarRef(const A &x) {
4650     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
4651   }
4652 
4653   /// Lower an expression without dereferencing any indirection that may be
4654   /// a nullptr (because this is an absent optional or unallocated/disassociated
4655   /// descriptor). The returned expression cannot be addressed directly, it is
4656   /// meant to inquire about its status before addressing the related entity.
4657   template <typename A>
4658   ExtValue asInquired(const A &x) {
4659     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
4660         .lowerIntrinsicArgumentAsInquired(x);
4661   }
4662 
4663   /// Some temporaries are allocated on an element-by-element basis during the
4664   /// array expression evaluation. Collect the cleanups here so the resources
4665   /// can be freed before the next loop iteration, avoiding memory leaks. etc.
4666   Fortran::lower::StatementContext &getElementCtx() {
4667     if (!elementCtx) {
4668       stmtCtx.pushScope();
4669       elementCtx = true;
4670     }
4671     return stmtCtx;
4672   }
4673 
4674   /// If there were temporaries created for this element evaluation, finalize
4675   /// and deallocate the resources now. This should be done just prior the the
4676   /// fir::ResultOp at the end of the innermost loop.
4677   void finalizeElementCtx() {
4678     if (elementCtx) {
4679       stmtCtx.finalize(/*popScope=*/true);
4680       elementCtx = false;
4681     }
4682   }
4683 
4684   /// Lower an elemental function array argument. This ensures array
4685   /// sub-expressions that are not variables and must be passed by address
4686   /// are lowered by value and placed in memory.
4687   template <typename A>
4688   CC genElementalArgument(const A &x) {
4689     // Ensure the returned element is in memory if this is what was requested.
4690     if ((semant == ConstituentSemantics::RefOpaque ||
4691          semant == ConstituentSemantics::DataAddr ||
4692          semant == ConstituentSemantics::ByValueArg)) {
4693       if (!Fortran::evaluate::IsVariable(x)) {
4694         PushSemantics(ConstituentSemantics::DataValue);
4695         CC cc = genarr(x);
4696         mlir::Location loc = getLoc();
4697         if (isParenthesizedVariable(x)) {
4698           // Parenthesised variables are lowered to a reference to the variable
4699           // storage. When passing it as an argument, a copy must be passed.
4700           return [=](IterSpace iters) -> ExtValue {
4701             return createInMemoryScalarCopy(builder, loc, cc(iters));
4702           };
4703         }
4704         mlir::Type storageType =
4705             fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
4706         return [=](IterSpace iters) -> ExtValue {
4707           return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
4708         };
4709       }
4710     }
4711     return genarr(x);
4712   }
4713 
4714   // A reference to a Fortran elemental intrinsic or intrinsic module procedure.
4715   CC genElementalIntrinsicProcRef(
4716       const Fortran::evaluate::ProcedureRef &procRef,
4717       llvm::Optional<mlir::Type> retTy,
4718       llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
4719           llvm::None) {
4720 
4721     llvm::SmallVector<CC> operands;
4722     std::string name =
4723         intrinsic ? intrinsic->name
4724                   : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
4725     const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
4726         Fortran::lower::getIntrinsicArgumentLowering(name);
4727     mlir::Location loc = getLoc();
4728     if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
4729                          procRef, *intrinsic, converter)) {
4730       using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>;
4731       llvm::SmallVector<CcPairT> operands;
4732       auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
4733         if (expr.Rank() == 0) {
4734           ExtValue optionalArg = this->asInquired(expr);
4735           mlir::Value isPresent =
4736               genActualIsPresentTest(builder, loc, optionalArg);
4737           operands.emplace_back(
4738               [=](IterSpace iters) -> ExtValue {
4739                 return genLoad(builder, loc, optionalArg);
4740               },
4741               isPresent);
4742         } else {
4743           auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
4744           operands.emplace_back(cc, isPresent);
4745         }
4746       };
4747       auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
4748         PushSemantics(ConstituentSemantics::RefTransparent);
4749         operands.emplace_back(genElementalArgument(expr), llvm::None);
4750       };
4751       Fortran::lower::prepareCustomIntrinsicArgument(
4752           procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
4753           converter);
4754 
4755       fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
4756       return [=](IterSpace iters) -> ExtValue {
4757         auto getArgument = [&](std::size_t i) -> ExtValue {
4758           return operands[i].first(iters);
4759         };
4760         auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
4761           return operands[i].second;
4762         };
4763         return Fortran::lower::lowerCustomIntrinsic(
4764             *bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
4765             getElementCtx());
4766       };
4767     }
4768     /// Otherwise, pre-lower arguments and use intrinsic lowering utility.
4769     for (const auto &arg : llvm::enumerate(procRef.arguments())) {
4770       const auto *expr =
4771           Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
4772       if (!expr) {
4773         // Absent optional.
4774         operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
4775       } else if (!argLowering) {
4776         // No argument lowering instruction, lower by value.
4777         PushSemantics(ConstituentSemantics::RefTransparent);
4778         operands.emplace_back(genElementalArgument(*expr));
4779       } else {
4780         // Ad-hoc argument lowering handling.
4781         Fortran::lower::ArgLoweringRule argRules =
4782             Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
4783         if (argRules.handleDynamicOptional &&
4784             Fortran::evaluate::MayBePassedAsAbsentOptional(
4785                 *expr, converter.getFoldingContext())) {
4786           // Currently, there is not elemental intrinsic that requires lowering
4787           // a potentially absent argument to something else than a value (apart
4788           // from character MAX/MIN that are handled elsewhere.)
4789           if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value)
4790             TODO(loc, "lowering non trivial optional elemental intrinsic array "
4791                       "argument");
4792           PushSemantics(ConstituentSemantics::RefTransparent);
4793           operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
4794           continue;
4795         }
4796         switch (argRules.lowerAs) {
4797         case Fortran::lower::LowerIntrinsicArgAs::Value: {
4798           PushSemantics(ConstituentSemantics::RefTransparent);
4799           operands.emplace_back(genElementalArgument(*expr));
4800         } break;
4801         case Fortran::lower::LowerIntrinsicArgAs::Addr: {
4802           // Note: assume does not have Fortran VALUE attribute semantics.
4803           PushSemantics(ConstituentSemantics::RefOpaque);
4804           operands.emplace_back(genElementalArgument(*expr));
4805         } break;
4806         case Fortran::lower::LowerIntrinsicArgAs::Box: {
4807           PushSemantics(ConstituentSemantics::RefOpaque);
4808           auto lambda = genElementalArgument(*expr);
4809           operands.emplace_back([=](IterSpace iters) {
4810             return builder.createBox(loc, lambda(iters));
4811           });
4812         } break;
4813         case Fortran::lower::LowerIntrinsicArgAs::Inquired:
4814           TODO(loc, "intrinsic function with inquired argument");
4815           break;
4816         }
4817       }
4818     }
4819 
4820     // Let the intrinsic library lower the intrinsic procedure call
4821     return [=](IterSpace iters) {
4822       llvm::SmallVector<ExtValue> args;
4823       for (const auto &cc : operands)
4824         args.push_back(cc(iters));
4825       return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
4826                                               getElementCtx());
4827     };
4828   }
4829 
4830   /// Lower a procedure reference to a user-defined elemental procedure.
4831   CC genElementalUserDefinedProcRef(
4832       const Fortran::evaluate::ProcedureRef &procRef,
4833       llvm::Optional<mlir::Type> retTy) {
4834     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
4835 
4836     // 10.1.4 p5. Impure elemental procedures must be called in element order.
4837     if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol())
4838       if (!Fortran::semantics::IsPureProcedure(*procSym))
4839         setUnordered(false);
4840 
4841     Fortran::lower::CallerInterface caller(procRef, converter);
4842     llvm::SmallVector<CC> operands;
4843     operands.reserve(caller.getPassedArguments().size());
4844     mlir::Location loc = getLoc();
4845     mlir::FunctionType callSiteType = caller.genFunctionType();
4846     for (const Fortran::lower::CallInterface<
4847              Fortran::lower::CallerInterface>::PassedEntity &arg :
4848          caller.getPassedArguments()) {
4849       // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
4850       // arguments must be called in element order.
4851       if (arg.mayBeModifiedByCall())
4852         setUnordered(false);
4853       const auto *actual = arg.entity;
4854       mlir::Type argTy = callSiteType.getInput(arg.firArgument);
4855       if (!actual) {
4856         // Optional dummy argument for which there is no actual argument.
4857         auto absent = builder.create<fir::AbsentOp>(loc, argTy);
4858         operands.emplace_back([=](IterSpace) { return absent; });
4859         continue;
4860       }
4861       const auto *expr = actual->UnwrapExpr();
4862       if (!expr)
4863         TODO(loc, "assumed type actual argument lowering");
4864 
4865       LLVM_DEBUG(expr->AsFortran(llvm::dbgs()
4866                                  << "argument: " << arg.firArgument << " = [")
4867                  << "]\n");
4868       if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
4869                                   *expr, converter.getFoldingContext()))
4870         TODO(loc,
4871              "passing dynamically optional argument to elemental procedures");
4872       switch (arg.passBy) {
4873       case PassBy::Value: {
4874         // True pass-by-value semantics.
4875         PushSemantics(ConstituentSemantics::RefTransparent);
4876         operands.emplace_back(genElementalArgument(*expr));
4877       } break;
4878       case PassBy::BaseAddressValueAttribute: {
4879         // VALUE attribute or pass-by-reference to a copy semantics. (byval*)
4880         if (isArray(*expr)) {
4881           PushSemantics(ConstituentSemantics::ByValueArg);
4882           operands.emplace_back(genElementalArgument(*expr));
4883         } else {
4884           // Store scalar value in a temp to fulfill VALUE attribute.
4885           mlir::Value val = fir::getBase(asScalar(*expr));
4886           mlir::Value temp = builder.createTemporary(
4887               loc, val.getType(),
4888               llvm::ArrayRef<mlir::NamedAttribute>{
4889                   Fortran::lower::getAdaptToByRefAttr(builder)});
4890           builder.create<fir::StoreOp>(loc, val, temp);
4891           operands.emplace_back(
4892               [=](IterSpace iters) -> ExtValue { return temp; });
4893         }
4894       } break;
4895       case PassBy::BaseAddress: {
4896         if (isArray(*expr)) {
4897           PushSemantics(ConstituentSemantics::RefOpaque);
4898           operands.emplace_back(genElementalArgument(*expr));
4899         } else {
4900           ExtValue exv = asScalarRef(*expr);
4901           operands.emplace_back([=](IterSpace iters) { return exv; });
4902         }
4903       } break;
4904       case PassBy::CharBoxValueAttribute: {
4905         if (isArray(*expr)) {
4906           PushSemantics(ConstituentSemantics::DataValue);
4907           auto lambda = genElementalArgument(*expr);
4908           operands.emplace_back([=](IterSpace iters) {
4909             return fir::factory::CharacterExprHelper{builder, loc}
4910                 .createTempFrom(lambda(iters));
4911           });
4912         } else {
4913           fir::factory::CharacterExprHelper helper(builder, loc);
4914           fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr));
4915           operands.emplace_back(
4916               [=](IterSpace iters) -> ExtValue { return argVal; });
4917         }
4918       } break;
4919       case PassBy::BoxChar: {
4920         PushSemantics(ConstituentSemantics::RefOpaque);
4921         operands.emplace_back(genElementalArgument(*expr));
4922       } break;
4923       case PassBy::AddressAndLength:
4924         // PassBy::AddressAndLength is only used for character results. Results
4925         // are not handled here.
4926         fir::emitFatalError(
4927             loc, "unexpected PassBy::AddressAndLength in elemental call");
4928         break;
4929       case PassBy::CharProcTuple: {
4930         ExtValue argRef = asScalarRef(*expr);
4931         mlir::Value tuple = createBoxProcCharTuple(
4932             converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
4933         operands.emplace_back(
4934             [=](IterSpace iters) -> ExtValue { return tuple; });
4935       } break;
4936       case PassBy::Box:
4937       case PassBy::MutableBox:
4938         // See C15100 and C15101
4939         fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE");
4940       }
4941     }
4942 
4943     if (caller.getIfIndirectCallSymbol())
4944       fir::emitFatalError(loc, "cannot be indirect call");
4945 
4946     // The lambda is mutable so that `caller` copy can be modified inside it.
4947     return
4948         [=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue {
4949           for (const auto &[cc, argIface] :
4950                llvm::zip(operands, caller.getPassedArguments())) {
4951             auto exv = cc(iters);
4952             auto arg = exv.match(
4953                 [&](const fir::CharBoxValue &cb) -> mlir::Value {
4954                   return fir::factory::CharacterExprHelper{builder, loc}
4955                       .createEmbox(cb);
4956                 },
4957                 [&](const auto &) { return fir::getBase(exv); });
4958             caller.placeInput(argIface, arg);
4959           }
4960           return ScalarExprLowering{loc, converter, symMap, getElementCtx()}
4961               .genCallOpAndResult(caller, callSiteType, retTy);
4962         };
4963   }
4964 
4965   /// Generate a procedure reference. This code is shared for both functions and
4966   /// subroutines, the difference being reflected by `retTy`.
4967   CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
4968                 llvm::Optional<mlir::Type> retTy) {
4969     mlir::Location loc = getLoc();
4970     if (procRef.IsElemental()) {
4971       if (const Fortran::evaluate::SpecificIntrinsic *intrin =
4972               procRef.proc().GetSpecificIntrinsic()) {
4973         // All elemental intrinsic functions are pure and cannot modify their
4974         // arguments. The only elemental subroutine, MVBITS has an Intent(inout)
4975         // argument. So for this last one, loops must be in element order
4976         // according to 15.8.3 p1.
4977         if (!retTy)
4978           setUnordered(false);
4979 
4980         // Elemental intrinsic call.
4981         // The intrinsic procedure is called once per element of the array.
4982         return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
4983       }
4984       if (isIntrinsicModuleProcRef(procRef))
4985         return genElementalIntrinsicProcRef(procRef, retTy);
4986       if (ScalarExprLowering::isStatementFunctionCall(procRef))
4987         fir::emitFatalError(loc, "statement function cannot be elemental");
4988 
4989       // Elemental call.
4990       // The procedure is called once per element of the array argument(s).
4991       return genElementalUserDefinedProcRef(procRef, retTy);
4992     }
4993 
4994     // Transformational call.
4995     // The procedure is called once and produces a value of rank > 0.
4996     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
4997             procRef.proc().GetSpecificIntrinsic()) {
4998       if (explicitSpaceIsActive() && procRef.Rank() == 0) {
4999         // Elide any implicit loop iters.
5000         return [=, &procRef](IterSpace) {
5001           return ScalarExprLowering{loc, converter, symMap, stmtCtx}
5002               .genIntrinsicRef(procRef, retTy, *intrinsic);
5003         };
5004       }
5005       return genarr(
5006           ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
5007               procRef, retTy, *intrinsic));
5008     }
5009 
5010     if (explicitSpaceIsActive() && procRef.Rank() == 0) {
5011       // Elide any implicit loop iters.
5012       return [=, &procRef](IterSpace) {
5013         return ScalarExprLowering{loc, converter, symMap, stmtCtx}
5014             .genProcedureRef(procRef, retTy);
5015       };
5016     }
5017     // In the default case, the call can be hoisted out of the loop nest. Apply
5018     // the iterations to the result, which may be an array value.
5019     return genarr(
5020         ScalarExprLowering{loc, converter, symMap, stmtCtx}.genProcedureRef(
5021             procRef, retTy));
5022   }
5023 
5024   CC genarr(const Fortran::evaluate::ProcedureDesignator &) {
5025     TODO(getLoc(), "procedure designator");
5026   }
5027   CC genarr(const Fortran::evaluate::ProcedureRef &x) {
5028     if (x.hasAlternateReturns())
5029       fir::emitFatalError(getLoc(),
5030                           "array procedure reference with alt-return");
5031     return genProcRef(x, llvm::None);
5032   }
5033   template <typename A>
5034   CC genScalarAndForwardValue(const A &x) {
5035     ExtValue result = asScalar(x);
5036     return [=](IterSpace) { return result; };
5037   }
5038   template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
5039                             A, Fortran::evaluate::TypelessExpression>>>
5040   CC genarr(const A &x) {
5041     return genScalarAndForwardValue(x);
5042   }
5043 
5044   template <typename A>
5045   CC genarr(const Fortran::evaluate::Expr<A> &x) {
5046     LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
5047     if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) ||
5048         isElementalProcWithArrayArgs(x))
5049       return std::visit([&](const auto &e) { return genarr(e); }, x.u);
5050     if (explicitSpaceIsActive()) {
5051       assert(!isArray(x) && !isLeftHandSide());
5052       auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u);
5053       auto result = cc(IterationSpace{});
5054       return [=](IterSpace) { return result; };
5055     }
5056     return genScalarAndForwardValue(x);
5057   }
5058 
5059   // Converting a value of memory bound type requires creating a temp and
5060   // copying the value.
5061   static ExtValue convertAdjustedType(fir::FirOpBuilder &builder,
5062                                       mlir::Location loc, mlir::Type toType,
5063                                       const ExtValue &exv) {
5064     return exv.match(
5065         [&](const fir::CharBoxValue &cb) -> ExtValue {
5066           mlir::Value len = cb.getLen();
5067           auto mem =
5068               builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len});
5069           fir::CharBoxValue result(mem, len);
5070           fir::factory::CharacterExprHelper{builder, loc}.createAssign(
5071               ExtValue{result}, exv);
5072           return result;
5073         },
5074         [&](const auto &) -> ExtValue {
5075           fir::emitFatalError(loc, "convert on adjusted extended value");
5076         });
5077   }
5078   template <Fortran::common::TypeCategory TC1, int KIND,
5079             Fortran::common::TypeCategory TC2>
5080   CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
5081                                              TC2> &x) {
5082     mlir::Location loc = getLoc();
5083     auto lambda = genarr(x.left());
5084     mlir::Type ty = converter.genType(TC1, KIND);
5085     return [=](IterSpace iters) -> ExtValue {
5086       auto exv = lambda(iters);
5087       mlir::Value val = fir::getBase(exv);
5088       auto valTy = val.getType();
5089       if (elementTypeWasAdjusted(valTy) &&
5090           !(fir::isa_ref_type(valTy) && fir::isa_integer(ty)))
5091         return convertAdjustedType(builder, loc, ty, exv);
5092       return builder.createConvert(loc, ty, val);
5093     };
5094   }
5095 
5096   template <int KIND>
5097   CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
5098     mlir::Location loc = getLoc();
5099     auto lambda = genarr(x.left());
5100     bool isImagPart = x.isImaginaryPart;
5101     return [=](IterSpace iters) -> ExtValue {
5102       mlir::Value lhs = fir::getBase(lambda(iters));
5103       return fir::factory::Complex{builder, loc}.extractComplexPart(lhs,
5104                                                                     isImagPart);
5105     };
5106   }
5107 
5108   template <typename T>
5109   CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
5110     mlir::Location loc = getLoc();
5111     if (isReferentiallyOpaque()) {
5112       // Context is a call argument in, for example, an elemental procedure
5113       // call. TODO: all array arguments should use array_load, array_access,
5114       // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
5115       // array_merge_store ops.
5116       TODO(loc, "parentheses on argument in elemental call");
5117     }
5118     auto f = genarr(x.left());
5119     return [=](IterSpace iters) -> ExtValue {
5120       auto val = f(iters);
5121       mlir::Value base = fir::getBase(val);
5122       auto newBase =
5123           builder.create<fir::NoReassocOp>(loc, base.getType(), base);
5124       return fir::substBase(val, newBase);
5125     };
5126   }
5127   template <int KIND>
5128   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5129                 Fortran::common::TypeCategory::Integer, KIND>> &x) {
5130     mlir::Location loc = getLoc();
5131     auto f = genarr(x.left());
5132     return [=](IterSpace iters) -> ExtValue {
5133       mlir::Value val = fir::getBase(f(iters));
5134       mlir::Type ty =
5135           converter.genType(Fortran::common::TypeCategory::Integer, KIND);
5136       mlir::Value zero = builder.createIntegerConstant(loc, ty, 0);
5137       return builder.create<mlir::arith::SubIOp>(loc, zero, val);
5138     };
5139   }
5140   template <int KIND>
5141   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5142                 Fortran::common::TypeCategory::Real, KIND>> &x) {
5143     mlir::Location loc = getLoc();
5144     auto f = genarr(x.left());
5145     return [=](IterSpace iters) -> ExtValue {
5146       return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters)));
5147     };
5148   }
5149   template <int KIND>
5150   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5151                 Fortran::common::TypeCategory::Complex, KIND>> &x) {
5152     mlir::Location loc = getLoc();
5153     auto f = genarr(x.left());
5154     return [=](IterSpace iters) -> ExtValue {
5155       return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters)));
5156     };
5157   }
5158 
5159   //===--------------------------------------------------------------------===//
5160   // Binary elemental ops
5161   //===--------------------------------------------------------------------===//
5162 
5163   template <typename OP, typename A>
5164   CC createBinaryOp(const A &evEx) {
5165     mlir::Location loc = getLoc();
5166     auto lambda = genarr(evEx.left());
5167     auto rf = genarr(evEx.right());
5168     return [=](IterSpace iters) -> ExtValue {
5169       mlir::Value left = fir::getBase(lambda(iters));
5170       mlir::Value right = fir::getBase(rf(iters));
5171       return builder.create<OP>(loc, left, right);
5172     };
5173   }
5174 
5175 #undef GENBIN
5176 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
5177   template <int KIND>                                                          \
5178   CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type<       \
5179                 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) {       \
5180     return createBinaryOp<GenBinFirOp>(x);                                     \
5181   }
5182 
5183   GENBIN(Add, Integer, mlir::arith::AddIOp)
5184   GENBIN(Add, Real, mlir::arith::AddFOp)
5185   GENBIN(Add, Complex, fir::AddcOp)
5186   GENBIN(Subtract, Integer, mlir::arith::SubIOp)
5187   GENBIN(Subtract, Real, mlir::arith::SubFOp)
5188   GENBIN(Subtract, Complex, fir::SubcOp)
5189   GENBIN(Multiply, Integer, mlir::arith::MulIOp)
5190   GENBIN(Multiply, Real, mlir::arith::MulFOp)
5191   GENBIN(Multiply, Complex, fir::MulcOp)
5192   GENBIN(Divide, Integer, mlir::arith::DivSIOp)
5193   GENBIN(Divide, Real, mlir::arith::DivFOp)
5194   GENBIN(Divide, Complex, fir::DivcOp)
5195 
5196   template <Fortran::common::TypeCategory TC, int KIND>
5197   CC genarr(
5198       const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
5199     mlir::Location loc = getLoc();
5200     mlir::Type ty = converter.genType(TC, KIND);
5201     auto lf = genarr(x.left());
5202     auto rf = genarr(x.right());
5203     return [=](IterSpace iters) -> ExtValue {
5204       mlir::Value lhs = fir::getBase(lf(iters));
5205       mlir::Value rhs = fir::getBase(rf(iters));
5206       return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
5207     };
5208   }
5209   template <Fortran::common::TypeCategory TC, int KIND>
5210   CC genarr(
5211       const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
5212     mlir::Location loc = getLoc();
5213     auto lf = genarr(x.left());
5214     auto rf = genarr(x.right());
5215     switch (x.ordering) {
5216     case Fortran::evaluate::Ordering::Greater:
5217       return [=](IterSpace iters) -> ExtValue {
5218         mlir::Value lhs = fir::getBase(lf(iters));
5219         mlir::Value rhs = fir::getBase(rf(iters));
5220         return Fortran::lower::genMax(builder, loc,
5221                                       llvm::ArrayRef<mlir::Value>{lhs, rhs});
5222       };
5223     case Fortran::evaluate::Ordering::Less:
5224       return [=](IterSpace iters) -> ExtValue {
5225         mlir::Value lhs = fir::getBase(lf(iters));
5226         mlir::Value rhs = fir::getBase(rf(iters));
5227         return Fortran::lower::genMin(builder, loc,
5228                                       llvm::ArrayRef<mlir::Value>{lhs, rhs});
5229       };
5230     case Fortran::evaluate::Ordering::Equal:
5231       llvm_unreachable("Equal is not a valid ordering in this context");
5232     }
5233     llvm_unreachable("unknown ordering");
5234   }
5235   template <Fortran::common::TypeCategory TC, int KIND>
5236   CC genarr(
5237       const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
5238           &x) {
5239     mlir::Location loc = getLoc();
5240     auto ty = converter.genType(TC, KIND);
5241     auto lf = genarr(x.left());
5242     auto rf = genarr(x.right());
5243     return [=](IterSpace iters) {
5244       mlir::Value lhs = fir::getBase(lf(iters));
5245       mlir::Value rhs = fir::getBase(rf(iters));
5246       return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
5247     };
5248   }
5249   template <int KIND>
5250   CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
5251     mlir::Location loc = getLoc();
5252     auto lf = genarr(x.left());
5253     auto rf = genarr(x.right());
5254     return [=](IterSpace iters) -> ExtValue {
5255       mlir::Value lhs = fir::getBase(lf(iters));
5256       mlir::Value rhs = fir::getBase(rf(iters));
5257       return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs);
5258     };
5259   }
5260 
5261   /// Fortran's concatenation operator `//`.
5262   template <int KIND>
5263   CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
5264     mlir::Location loc = getLoc();
5265     auto lf = genarr(x.left());
5266     auto rf = genarr(x.right());
5267     return [=](IterSpace iters) -> ExtValue {
5268       auto lhs = lf(iters);
5269       auto rhs = rf(iters);
5270       const fir::CharBoxValue *lchr = lhs.getCharBox();
5271       const fir::CharBoxValue *rchr = rhs.getCharBox();
5272       if (lchr && rchr) {
5273         return fir::factory::CharacterExprHelper{builder, loc}
5274             .createConcatenate(*lchr, *rchr);
5275       }
5276       TODO(loc, "concat on unexpected extended values");
5277       return mlir::Value{};
5278     };
5279   }
5280 
5281   template <int KIND>
5282   CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
5283     auto lf = genarr(x.left());
5284     mlir::Value rhs = fir::getBase(asScalar(x.right()));
5285     return [=](IterSpace iters) -> ExtValue {
5286       mlir::Value lhs = fir::getBase(lf(iters));
5287       return fir::CharBoxValue{lhs, rhs};
5288     };
5289   }
5290 
5291   template <typename A>
5292   CC genarr(const Fortran::evaluate::Constant<A> &x) {
5293     if (x.Rank() == 0)
5294       return genScalarAndForwardValue(x);
5295     mlir::Location loc = getLoc();
5296     mlir::IndexType idxTy = builder.getIndexType();
5297     mlir::Type arrTy = converter.genType(toEvExpr(x));
5298     std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x);
5299     fir::GlobalOp global = builder.getNamedGlobal(globalName);
5300     if (!global) {
5301       mlir::Type symTy = arrTy;
5302       mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
5303       // If we have a rank-1 array of integer, real, or logical, then we can
5304       // create a global array with the dense attribute.
5305       //
5306       // The mlir tensor type can only handle integer, real, or logical. It
5307       // does not currently support nested structures which is required for
5308       // complex.
5309       //
5310       // Also, we currently handle just rank-1 since tensor type assumes
5311       // row major array ordering. We will need to reorder the dimensions
5312       // in the tensor type to support Fortran's column major array ordering.
5313       // How to create this tensor type is to be determined.
5314       if (x.Rank() == 1 &&
5315           eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>())
5316         global = Fortran::lower::createDenseGlobal(
5317             loc, arrTy, globalName, builder.createInternalLinkage(), true,
5318             toEvExpr(x), converter);
5319       // Note: If call to createDenseGlobal() returns 0, then call
5320       // createGlobalConstant() below.
5321       if (!global)
5322         global = builder.createGlobalConstant(
5323             loc, arrTy, globalName,
5324             [&](fir::FirOpBuilder &builder) {
5325               Fortran::lower::StatementContext stmtCtx(
5326                   /*cleanupProhibited=*/true);
5327               fir::ExtendedValue result =
5328                   Fortran::lower::createSomeInitializerExpression(
5329                       loc, converter, toEvExpr(x), symMap, stmtCtx);
5330               mlir::Value castTo =
5331                   builder.createConvert(loc, arrTy, fir::getBase(result));
5332               builder.create<fir::HasValueOp>(loc, castTo);
5333             },
5334             builder.createInternalLinkage());
5335     }
5336     auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
5337                                               global.getSymbol());
5338     auto seqTy = global.getType().cast<fir::SequenceType>();
5339     llvm::SmallVector<mlir::Value> extents;
5340     for (auto extent : seqTy.getShape())
5341       extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
5342     if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) {
5343       mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(),
5344                                                       charTy.getLen());
5345       return genarr(fir::CharArrayBoxValue{addr, len, extents});
5346     }
5347     return genarr(fir::ArrayBoxValue{addr, extents});
5348   }
5349 
5350   //===--------------------------------------------------------------------===//
5351   // A vector subscript expression may be wrapped with a cast to INTEGER*8.
5352   // Get rid of it here so the vector can be loaded. Add it back when
5353   // generating the elemental evaluation (inside the loop nest).
5354 
5355   static Fortran::lower::SomeExpr
5356   ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
5357                       Fortran::common::TypeCategory::Integer, 8>> &x) {
5358     return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u);
5359   }
5360   template <Fortran::common::TypeCategory FROM>
5361   static Fortran::lower::SomeExpr ignoreEvConvert(
5362       const Fortran::evaluate::Convert<
5363           Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>,
5364           FROM> &x) {
5365     return toEvExpr(x.left());
5366   }
5367   template <typename A>
5368   static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) {
5369     return toEvExpr(x);
5370   }
5371 
5372   //===--------------------------------------------------------------------===//
5373   // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
5374   // be used to determine the lbound, ubound of the vector.
5375 
5376   template <typename A>
5377   static const Fortran::semantics::Symbol *
5378   extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) {
5379     return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); },
5380                       x.u);
5381   }
5382   template <typename A>
5383   static const Fortran::semantics::Symbol *
5384   extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) {
5385     return Fortran::evaluate::UnwrapWholeSymbolDataRef(x);
5386   }
5387   template <typename A>
5388   static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) {
5389     return nullptr;
5390   }
5391 
5392   //===--------------------------------------------------------------------===//
5393 
5394   /// Get the declared lower bound value of the array `x` in dimension `dim`.
5395   /// The argument `one` must be an ssa-value for the constant 1.
5396   mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) {
5397     return fir::factory::readLowerBound(builder, getLoc(), x, dim, one);
5398   }
5399 
5400   /// Get the declared upper bound value of the array `x` in dimension `dim`.
5401   /// The argument `one` must be an ssa-value for the constant 1.
5402   mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) {
5403     mlir::Location loc = getLoc();
5404     mlir::Value lb = getLBound(x, dim, one);
5405     mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim);
5406     auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent);
5407     return builder.create<mlir::arith::SubIOp>(loc, add, one);
5408   }
5409 
5410   /// Return the extent of the boxed array `x` in dimesion `dim`.
5411   mlir::Value getExtent(const ExtValue &x, unsigned dim) {
5412     return fir::factory::readExtent(builder, getLoc(), x, dim);
5413   }
5414 
5415   template <typename A>
5416   ExtValue genArrayBase(const A &base) {
5417     ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx};
5418     return base.IsSymbol() ? sel.gen(getFirstSym(base))
5419                            : sel.gen(base.GetComponent());
5420   }
5421 
5422   template <typename A>
5423   bool hasEvArrayRef(const A &x) {
5424     struct HasEvArrayRefHelper
5425         : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> {
5426       HasEvArrayRefHelper()
5427           : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {}
5428       using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator();
5429       bool operator()(const Fortran::evaluate::ArrayRef &) const {
5430         return true;
5431       }
5432     } helper;
5433     return helper(x);
5434   }
5435 
5436   CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr,
5437                                   std::size_t dim) {
5438     PushSemantics(ConstituentSemantics::RefTransparent);
5439     auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr);
5440     llvm::SmallVector<mlir::Value> savedDestShape = destShape;
5441     destShape.clear();
5442     auto result = genarr(expr);
5443     if (destShape.empty())
5444       TODO(getLoc(), "expected vector to have an extent");
5445     assert(destShape.size() == 1 && "vector has rank > 1");
5446     if (destShape[0] != savedDestShape[dim]) {
5447       // Not the same, so choose the smaller value.
5448       mlir::Location loc = getLoc();
5449       auto cmp = builder.create<mlir::arith::CmpIOp>(
5450           loc, mlir::arith::CmpIPredicate::sgt, destShape[0],
5451           savedDestShape[dim]);
5452       auto sel = builder.create<mlir::arith::SelectOp>(
5453           loc, cmp, savedDestShape[dim], destShape[0]);
5454       savedDestShape[dim] = sel;
5455       destShape = savedDestShape;
5456     }
5457     return result;
5458   }
5459 
5460   /// Generate an access by vector subscript using the index in the iteration
5461   /// vector at `dim`.
5462   mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch,
5463                                 IterSpace iters, std::size_t dim) {
5464     IterationSpace vecIters(iters,
5465                             llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)});
5466     fir::ExtendedValue fetch = genArrFetch(vecIters);
5467     mlir::IndexType idxTy = builder.getIndexType();
5468     return builder.createConvert(loc, idxTy, fir::getBase(fetch));
5469   }
5470 
5471   /// When we have an array reference, the expressions specified in each
5472   /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
5473   /// (loop-invarianet) scalar expressions. This returns the base entity, the
5474   /// resulting type, and a continuation to adjust the default iteration space.
5475   void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv,
5476                        const Fortran::evaluate::ArrayRef &x, bool atBase) {
5477     mlir::Location loc = getLoc();
5478     mlir::IndexType idxTy = builder.getIndexType();
5479     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
5480     llvm::SmallVector<mlir::Value> &trips = cmptData.trips;
5481     LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n');
5482     auto &pc = cmptData.pc;
5483     const bool useTripsForSlice = !explicitSpaceIsActive();
5484     const bool createDestShape = destShape.empty();
5485     bool useSlice = false;
5486     std::size_t shapeIndex = 0;
5487     for (auto sub : llvm::enumerate(x.subscript())) {
5488       const std::size_t subsIndex = sub.index();
5489       std::visit(
5490           Fortran::common::visitors{
5491               [&](const Fortran::evaluate::Triplet &t) {
5492                 mlir::Value lowerBound;
5493                 if (auto optLo = t.lower())
5494                   lowerBound = fir::getBase(asScalar(*optLo));
5495                 else
5496                   lowerBound = getLBound(arrayExv, subsIndex, one);
5497                 lowerBound = builder.createConvert(loc, idxTy, lowerBound);
5498                 mlir::Value stride = fir::getBase(asScalar(t.stride()));
5499                 stride = builder.createConvert(loc, idxTy, stride);
5500                 if (useTripsForSlice || createDestShape) {
5501                   // Generate a slice operation for the triplet. The first and
5502                   // second position of the triplet may be omitted, and the
5503                   // declared lbound and/or ubound expression values,
5504                   // respectively, should be used instead.
5505                   trips.push_back(lowerBound);
5506                   mlir::Value upperBound;
5507                   if (auto optUp = t.upper())
5508                     upperBound = fir::getBase(asScalar(*optUp));
5509                   else
5510                     upperBound = getUBound(arrayExv, subsIndex, one);
5511                   upperBound = builder.createConvert(loc, idxTy, upperBound);
5512                   trips.push_back(upperBound);
5513                   trips.push_back(stride);
5514                   if (createDestShape) {
5515                     auto extent = builder.genExtentFromTriplet(
5516                         loc, lowerBound, upperBound, stride, idxTy);
5517                     destShape.push_back(extent);
5518                   }
5519                   useSlice = true;
5520                 }
5521                 if (!useTripsForSlice) {
5522                   auto currentPC = pc;
5523                   pc = [=](IterSpace iters) {
5524                     IterationSpace newIters = currentPC(iters);
5525                     mlir::Value impliedIter = newIters.iterValue(subsIndex);
5526                     // FIXME: must use the lower bound of this component.
5527                     auto arrLowerBound =
5528                         atBase ? getLBound(arrayExv, subsIndex, one) : one;
5529                     auto initial = builder.create<mlir::arith::SubIOp>(
5530                         loc, lowerBound, arrLowerBound);
5531                     auto prod = builder.create<mlir::arith::MulIOp>(
5532                         loc, impliedIter, stride);
5533                     auto result =
5534                         builder.create<mlir::arith::AddIOp>(loc, initial, prod);
5535                     newIters.setIndexValue(subsIndex, result);
5536                     return newIters;
5537                   };
5538                 }
5539                 shapeIndex++;
5540               },
5541               [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) {
5542                 const auto &e = ie.value(); // dereference
5543                 if (isArray(e)) {
5544                   // This is a vector subscript. Use the index values as read
5545                   // from a vector to determine the temporary array value.
5546                   // Note: 9.5.3.3.3(3) specifies undefined behavior for
5547                   // multiple updates to any specific array element through a
5548                   // vector subscript with replicated values.
5549                   assert(!isBoxValue() &&
5550                          "fir.box cannot be created with vector subscripts");
5551                   auto arrExpr = ignoreEvConvert(e);
5552                   if (createDestShape)
5553                     destShape.push_back(fir::factory::getExtentAtDimension(
5554                         loc, builder, arrayExv, subsIndex));
5555                   auto genArrFetch =
5556                       genVectorSubscriptArrayFetch(arrExpr, shapeIndex);
5557                   auto currentPC = pc;
5558                   pc = [=](IterSpace iters) {
5559                     IterationSpace newIters = currentPC(iters);
5560                     auto val = genAccessByVector(loc, genArrFetch, newIters,
5561                                                  subsIndex);
5562                     // Value read from vector subscript array and normalized
5563                     // using the base array's lower bound value.
5564                     mlir::Value lb = fir::factory::readLowerBound(
5565                         builder, loc, arrayExv, subsIndex, one);
5566                     auto origin = builder.create<mlir::arith::SubIOp>(
5567                         loc, idxTy, val, lb);
5568                     newIters.setIndexValue(subsIndex, origin);
5569                     return newIters;
5570                   };
5571                   if (useTripsForSlice) {
5572                     LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape =
5573                         getShape(arrayOperands.back());
5574                     auto undef = builder.create<fir::UndefOp>(loc, idxTy);
5575                     trips.push_back(undef);
5576                     trips.push_back(undef);
5577                     trips.push_back(undef);
5578                   }
5579                   shapeIndex++;
5580                 } else {
5581                   // This is a regular scalar subscript.
5582                   if (useTripsForSlice) {
5583                     // A regular scalar index, which does not yield an array
5584                     // section. Use a degenerate slice operation
5585                     // `(e:undef:undef)` in this dimension as a placeholder.
5586                     // This does not necessarily change the rank of the original
5587                     // array, so the iteration space must also be extended to
5588                     // include this expression in this dimension to adjust to
5589                     // the array's declared rank.
5590                     mlir::Value v = fir::getBase(asScalar(e));
5591                     trips.push_back(v);
5592                     auto undef = builder.create<fir::UndefOp>(loc, idxTy);
5593                     trips.push_back(undef);
5594                     trips.push_back(undef);
5595                     auto currentPC = pc;
5596                     // Cast `e` to index type.
5597                     mlir::Value iv = builder.createConvert(loc, idxTy, v);
5598                     // Normalize `e` by subtracting the declared lbound.
5599                     mlir::Value lb = fir::factory::readLowerBound(
5600                         builder, loc, arrayExv, subsIndex, one);
5601                     mlir::Value ivAdj =
5602                         builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb);
5603                     // Add lbound adjusted value of `e` to the iteration vector
5604                     // (except when creating a box because the iteration vector
5605                     // is empty).
5606                     if (!isBoxValue())
5607                       pc = [=](IterSpace iters) {
5608                         IterationSpace newIters = currentPC(iters);
5609                         newIters.insertIndexValue(subsIndex, ivAdj);
5610                         return newIters;
5611                       };
5612                   } else {
5613                     auto currentPC = pc;
5614                     mlir::Value newValue = fir::getBase(asScalarArray(e));
5615                     mlir::Value result =
5616                         builder.createConvert(loc, idxTy, newValue);
5617                     mlir::Value lb = fir::factory::readLowerBound(
5618                         builder, loc, arrayExv, subsIndex, one);
5619                     result = builder.create<mlir::arith::SubIOp>(loc, idxTy,
5620                                                                  result, lb);
5621                     pc = [=](IterSpace iters) {
5622                       IterationSpace newIters = currentPC(iters);
5623                       newIters.insertIndexValue(subsIndex, result);
5624                       return newIters;
5625                     };
5626                   }
5627                 }
5628               }},
5629           sub.value().u);
5630     }
5631     if (!useSlice)
5632       trips.clear();
5633   }
5634 
5635   static mlir::Type unwrapBoxEleTy(mlir::Type ty) {
5636     if (auto boxTy = ty.dyn_cast<fir::BoxType>())
5637       return fir::unwrapRefType(boxTy.getEleTy());
5638     return ty;
5639   }
5640 
5641   llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) {
5642     llvm::SmallVector<mlir::Value> result;
5643     ty = unwrapBoxEleTy(ty);
5644     mlir::Location loc = getLoc();
5645     mlir::IndexType idxTy = builder.getIndexType();
5646     for (auto extent : ty.cast<fir::SequenceType>().getShape()) {
5647       auto v = extent == fir::SequenceType::getUnknownExtent()
5648                    ? builder.create<fir::UndefOp>(loc, idxTy).getResult()
5649                    : builder.createIntegerConstant(loc, idxTy, extent);
5650       result.push_back(v);
5651     }
5652     return result;
5653   }
5654 
5655   CC genarr(const Fortran::semantics::SymbolRef &sym,
5656             ComponentPath &components) {
5657     return genarr(sym.get(), components);
5658   }
5659 
5660   ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
5661     return convertToArrayBoxValue(getLoc(), builder, val, len);
5662   }
5663 
5664   CC genarr(const ExtValue &extMemref) {
5665     ComponentPath dummy(/*isImplicit=*/true);
5666     return genarr(extMemref, dummy);
5667   }
5668 
5669   /// Base case of generating an array reference,
5670   CC genarr(const ExtValue &extMemref, ComponentPath &components) {
5671     mlir::Location loc = getLoc();
5672     mlir::Value memref = fir::getBase(extMemref);
5673     mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
5674     assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
5675     mlir::Value shape = builder.createShape(loc, extMemref);
5676     mlir::Value slice;
5677     if (components.isSlice()) {
5678       if (isBoxValue() && components.substring) {
5679         // Append the substring operator to emboxing Op as it will become an
5680         // interior adjustment (add offset, adjust LEN) to the CHARACTER value
5681         // being referenced in the descriptor.
5682         llvm::SmallVector<mlir::Value> substringBounds;
5683         populateBounds(substringBounds, components.substring);
5684         // Convert to (offset, size)
5685         mlir::Type iTy = substringBounds[0].getType();
5686         if (substringBounds.size() != 2) {
5687           fir::CharacterType charTy =
5688               fir::factory::CharacterExprHelper::getCharType(arrTy);
5689           if (charTy.hasConstantLen()) {
5690             mlir::IndexType idxTy = builder.getIndexType();
5691             fir::CharacterType::LenType charLen = charTy.getLen();
5692             mlir::Value lenValue =
5693                 builder.createIntegerConstant(loc, idxTy, charLen);
5694             substringBounds.push_back(lenValue);
5695           } else {
5696             llvm::SmallVector<mlir::Value> typeparams =
5697                 fir::getTypeParams(extMemref);
5698             substringBounds.push_back(typeparams.back());
5699           }
5700         }
5701         // Convert the lower bound to 0-based substring.
5702         mlir::Value one =
5703             builder.createIntegerConstant(loc, substringBounds[0].getType(), 1);
5704         substringBounds[0] =
5705             builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one);
5706         // Convert the upper bound to a length.
5707         mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]);
5708         mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0);
5709         auto size =
5710             builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]);
5711         auto cmp = builder.create<mlir::arith::CmpIOp>(
5712             loc, mlir::arith::CmpIPredicate::sgt, size, zero);
5713         // size = MAX(upper - (lower - 1), 0)
5714         substringBounds[1] =
5715             builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
5716         slice = builder.create<fir::SliceOp>(loc, components.trips,
5717                                              components.suffixComponents,
5718                                              substringBounds);
5719       } else {
5720         slice = builder.createSlice(loc, extMemref, components.trips,
5721                                     components.suffixComponents);
5722       }
5723       if (components.hasComponents()) {
5724         auto seqTy = arrTy.cast<fir::SequenceType>();
5725         mlir::Type eleTy =
5726             fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents);
5727         if (!eleTy)
5728           fir::emitFatalError(loc, "slicing path is ill-formed");
5729         if (auto realTy = eleTy.dyn_cast<fir::RealType>())
5730           eleTy = Fortran::lower::convertReal(realTy.getContext(),
5731                                               realTy.getFKind());
5732 
5733         // create the type of the projected array.
5734         arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy);
5735         LLVM_DEBUG(llvm::dbgs()
5736                    << "type of array projection from component slicing: "
5737                    << eleTy << ", " << arrTy << '\n');
5738       }
5739     }
5740     arrayOperands.push_back(ArrayOperand{memref, shape, slice});
5741     if (destShape.empty())
5742       destShape = getShape(arrayOperands.back());
5743     if (isBoxValue()) {
5744       // Semantics are a reference to a boxed array.
5745       // This case just requires that an embox operation be created to box the
5746       // value. The value of the box is forwarded in the continuation.
5747       mlir::Type reduceTy = reduceRank(arrTy, slice);
5748       auto boxTy = fir::BoxType::get(reduceTy);
5749       if (components.substring) {
5750         // Adjust char length to substring size.
5751         fir::CharacterType charTy =
5752             fir::factory::CharacterExprHelper::getCharType(reduceTy);
5753         auto seqTy = reduceTy.cast<fir::SequenceType>();
5754         // TODO: Use a constant for fir.char LEN if we can compute it.
5755         boxTy = fir::BoxType::get(
5756             fir::SequenceType::get(fir::CharacterType::getUnknownLen(
5757                                        builder.getContext(), charTy.getFKind()),
5758                                    seqTy.getDimension()));
5759       }
5760       mlir::Value embox =
5761           memref.getType().isa<fir::BoxType>()
5762               ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
5763                     .getResult()
5764               : builder
5765                     .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
5766                                           fir::getTypeParams(extMemref))
5767                     .getResult();
5768       return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); };
5769     }
5770     auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
5771     if (isReferentiallyOpaque()) {
5772       // Semantics are an opaque reference to an array.
5773       // This case forwards a continuation that will generate the address
5774       // arithmetic to the array element. This does not have copy-in/copy-out
5775       // semantics. No attempt to copy the array value will be made during the
5776       // interpretation of the Fortran statement.
5777       mlir::Type refEleTy = builder.getRefType(eleTy);
5778       return [=](IterSpace iters) -> ExtValue {
5779         // ArrayCoorOp does not expect zero based indices.
5780         llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
5781             loc, builder, memref.getType(), shape, iters.iterVec());
5782         mlir::Value coor = builder.create<fir::ArrayCoorOp>(
5783             loc, refEleTy, memref, shape, slice, indices,
5784             fir::getTypeParams(extMemref));
5785         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
5786           llvm::SmallVector<mlir::Value> substringBounds;
5787           populateBounds(substringBounds, components.substring);
5788           if (!substringBounds.empty()) {
5789             mlir::Value dstLen = fir::factory::genLenOfCharacter(
5790                 builder, loc, arrTy.cast<fir::SequenceType>(), memref,
5791                 fir::getTypeParams(extMemref), iters.iterVec(),
5792                 substringBounds);
5793             fir::CharBoxValue dstChar(coor, dstLen);
5794             return fir::factory::CharacterExprHelper{builder, loc}
5795                 .createSubstring(dstChar, substringBounds);
5796           }
5797         }
5798         return fir::factory::arraySectionElementToExtendedValue(
5799             builder, loc, extMemref, coor, slice);
5800       };
5801     }
5802     auto arrLoad = builder.create<fir::ArrayLoadOp>(
5803         loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
5804     mlir::Value arrLd = arrLoad.getResult();
5805     if (isProjectedCopyInCopyOut()) {
5806       // Semantics are projected copy-in copy-out.
5807       // The backing store of the destination of an array expression may be
5808       // partially modified. These updates are recorded in FIR by forwarding a
5809       // continuation that generates an `array_update` Op. The destination is
5810       // always loaded at the beginning of the statement and merged at the
5811       // end.
5812       destination = arrLoad;
5813       auto lambda = ccStoreToDest
5814                         ? ccStoreToDest.value()
5815                         : defaultStoreToDestination(components.substring);
5816       return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
5817     }
5818     if (isCustomCopyInCopyOut()) {
5819       // Create an array_modify to get the LHS element address and indicate
5820       // the assignment, the actual assignment must be implemented in
5821       // ccStoreToDest.
5822       destination = arrLoad;
5823       return [=](IterSpace iters) -> ExtValue {
5824         mlir::Value innerArg = iters.innerArgument();
5825         mlir::Type resTy = innerArg.getType();
5826         mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec());
5827         mlir::Type refEleTy =
5828             fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
5829         auto arrModify = builder.create<fir::ArrayModifyOp>(
5830             loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(),
5831             destination.getTypeparams());
5832         return abstractArrayExtValue(arrModify.getResult(1));
5833       };
5834     }
5835     if (isCopyInCopyOut()) {
5836       // Semantics are copy-in copy-out.
5837       // The continuation simply forwards the result of the `array_load` Op,
5838       // which is the value of the array as it was when loaded. All data
5839       // references with rank > 0 in an array expression typically have
5840       // copy-in copy-out semantics.
5841       return [=](IterSpace) -> ExtValue { return arrLd; };
5842     }
5843     mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
5844     if (isValueAttribute()) {
5845       // Semantics are value attribute.
5846       // Here the continuation will `array_fetch` a value from an array and
5847       // then store that value in a temporary. One can thus imitate pass by
5848       // value even when the call is pass by reference.
5849       return [=](IterSpace iters) -> ExtValue {
5850         mlir::Value base;
5851         mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
5852         if (isAdjustedArrayElementType(eleTy)) {
5853           mlir::Type eleRefTy = builder.getRefType(eleTy);
5854           base = builder.create<fir::ArrayAccessOp>(
5855               loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
5856         } else {
5857           base = builder.create<fir::ArrayFetchOp>(
5858               loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
5859         }
5860         mlir::Value temp = builder.createTemporary(
5861             loc, base.getType(),
5862             llvm::ArrayRef<mlir::NamedAttribute>{
5863                 Fortran::lower::getAdaptToByRefAttr(builder)});
5864         builder.create<fir::StoreOp>(loc, base, temp);
5865         return fir::factory::arraySectionElementToExtendedValue(
5866             builder, loc, extMemref, temp, slice);
5867       };
5868     }
5869     // In the default case, the array reference forwards an `array_fetch` or
5870     // `array_access` Op in the continuation.
5871     return [=](IterSpace iters) -> ExtValue {
5872       mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
5873       if (isAdjustedArrayElementType(eleTy)) {
5874         mlir::Type eleRefTy = builder.getRefType(eleTy);
5875         mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
5876             loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
5877         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
5878           llvm::SmallVector<mlir::Value> substringBounds;
5879           populateBounds(substringBounds, components.substring);
5880           if (!substringBounds.empty()) {
5881             mlir::Value dstLen = fir::factory::genLenOfCharacter(
5882                 builder, loc, arrLoad, iters.iterVec(), substringBounds);
5883             fir::CharBoxValue dstChar(arrayOp, dstLen);
5884             return fir::factory::CharacterExprHelper{builder, loc}
5885                 .createSubstring(dstChar, substringBounds);
5886           }
5887         }
5888         return fir::factory::arraySectionElementToExtendedValue(
5889             builder, loc, extMemref, arrayOp, slice);
5890       }
5891       auto arrFetch = builder.create<fir::ArrayFetchOp>(
5892           loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
5893       return fir::factory::arraySectionElementToExtendedValue(
5894           builder, loc, extMemref, arrFetch, slice);
5895     };
5896   }
5897 
5898   /// Given an optional fir.box, returns an fir.box that is the original one if
5899   /// it is present and it otherwise an unallocated box.
5900   /// Absent fir.box are implemented as a null pointer descriptor. Generated
5901   /// code may need to unconditionally read a fir.box that can be absent.
5902   /// This helper allows creating a fir.box that can be read in all cases
5903   /// outside of a fir.if (isPresent) region. However, the usages of the value
5904   /// read from such box should still only be done in a fir.if(isPresent).
5905   static fir::ExtendedValue
5906   absentBoxToUnalllocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
5907                              const fir::ExtendedValue &exv,
5908                              mlir::Value isPresent) {
5909     mlir::Value box = fir::getBase(exv);
5910     mlir::Type boxType = box.getType();
5911     assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
5912     mlir::Value emptyBox =
5913         fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
5914     auto safeToReadBox =
5915         builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
5916     return fir::substBase(exv, safeToReadBox);
5917   }
5918 
5919   std::tuple<CC, mlir::Value, mlir::Type>
5920   genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
5921     assert(expr.Rank() > 0 && "expr must be an array");
5922     mlir::Location loc = getLoc();
5923     ExtValue optionalArg = asInquired(expr);
5924     mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
5925     // Generate an array load and access to an array that may be an absent
5926     // optional or an unallocated optional.
5927     mlir::Value base = getBase(optionalArg);
5928     const bool hasOptionalAttr =
5929         fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
5930     mlir::Type baseType = fir::unwrapRefType(base.getType());
5931     const bool isBox = baseType.isa<fir::BoxType>();
5932     const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
5933         expr, converter.getFoldingContext());
5934     mlir::Type arrType = fir::unwrapPassByRefType(baseType);
5935     mlir::Type eleType = fir::unwrapSequenceType(arrType);
5936     ExtValue exv = optionalArg;
5937     if (hasOptionalAttr && isBox && !isAllocOrPtr) {
5938       // Elemental argument cannot be allocatable or pointers (C15100).
5939       // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
5940       // Pointer optional arrays cannot be absent. The only kind of entities
5941       // that can get here are optional assumed shape and polymorphic entities.
5942       exv = absentBoxToUnalllocatedBox(builder, loc, exv, isPresent);
5943     }
5944     // All the properties can be read from any fir.box but the read values may
5945     // be undefined and should only be used inside a fir.if (canBeRead) region.
5946     if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
5947       exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);
5948 
5949     mlir::Value memref = fir::getBase(exv);
5950     mlir::Value shape = builder.createShape(loc, exv);
5951     mlir::Value noSlice;
5952     auto arrLoad = builder.create<fir::ArrayLoadOp>(
5953         loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
5954     mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
5955     mlir::Value arrLd = arrLoad.getResult();
5956     // Mark the load to tell later passes it is unsafe to use this array_load
5957     // shape unconditionally.
5958     arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());
5959 
5960     // Place the array as optional on the arrayOperands stack so that its
5961     // shape will only be used as a fallback to induce the implicit loop nest
5962     // (that is if there is no non optional array arguments).
5963     arrayOperands.push_back(
5964         ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});
5965 
5966     // By value semantics.
5967     auto cc = [=](IterSpace iters) -> ExtValue {
5968       auto arrFetch = builder.create<fir::ArrayFetchOp>(
5969           loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
5970       return fir::factory::arraySectionElementToExtendedValue(
5971           builder, loc, exv, arrFetch, noSlice);
5972     };
5973     return {cc, isPresent, eleType};
5974   }
5975 
5976   /// Generate a continuation to pass \p expr to an OPTIONAL argument of an
5977   /// elemental procedure. This is meant to handle the cases where \p expr might
5978   /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
5979   /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
5980   /// directly be called instead.
5981   CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
5982     mlir::Location loc = getLoc();
5983     // Only by-value numerical and logical so far.
5984     if (semant != ConstituentSemantics::RefTransparent)
5985       TODO(loc, "optional arguments in user defined elemental procedures");
5986 
5987     // Handle scalar argument case (the if-then-else is generated outside of the
5988     // implicit loop nest).
5989     if (expr.Rank() == 0) {
5990       ExtValue optionalArg = asInquired(expr);
5991       mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
5992       mlir::Value elementValue =
5993           fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
5994       return [=](IterSpace iters) -> ExtValue { return elementValue; };
5995     }
5996 
5997     CC cc;
5998     mlir::Value isPresent;
5999     mlir::Type eleType;
6000     std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
6001     return [=](IterSpace iters) -> ExtValue {
6002       mlir::Value elementValue =
6003           builder
6004               .genIfOp(loc, {eleType}, isPresent,
6005                        /*withElseRegion=*/true)
6006               .genThen([&]() {
6007                 builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
6008               })
6009               .genElse([&]() {
6010                 mlir::Value zero =
6011                     fir::factory::createZeroValue(builder, loc, eleType);
6012                 builder.create<fir::ResultOp>(loc, zero);
6013               })
6014               .getResults()[0];
6015       return elementValue;
6016     };
6017   }
6018 
6019   /// Reduce the rank of a array to be boxed based on the slice's operands.
6020   static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
6021     if (slice) {
6022       auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
6023       assert(slOp && "expected slice op");
6024       auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
6025       assert(seqTy && "expected array type");
6026       mlir::Operation::operand_range triples = slOp.getTriples();
6027       fir::SequenceType::Shape shape;
6028       // reduce the rank for each invariant dimension
6029       for (unsigned i = 1, end = triples.size(); i < end; i += 3)
6030         if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp()))
6031           shape.push_back(fir::SequenceType::getUnknownExtent());
6032       return fir::SequenceType::get(shape, seqTy.getEleTy());
6033     }
6034     // not sliced, so no change in rank
6035     return arrTy;
6036   }
6037 
6038   /// Example: <code>array%RE</code>
6039   CC genarr(const Fortran::evaluate::ComplexPart &x,
6040             ComponentPath &components) {
6041     components.reversePath.push_back(&x);
6042     return genarr(x.complex(), components);
6043   }
6044 
6045   template <typename A>
6046   CC genSlicePath(const A &x, ComponentPath &components) {
6047     return genarr(x, components);
6048   }
6049 
6050   CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
6051             ComponentPath &components) {
6052     fir::emitFatalError(getLoc(), "substring of static array object");
6053   }
6054 
6055   /// Substrings (see 9.4.1)
6056   CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
6057     components.substring = &x;
6058     return std::visit([&](const auto &v) { return genarr(v, components); },
6059                       x.parent());
6060   }
6061 
6062   template <typename T>
6063   CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
6064     // Note that it's possible that the function being called returns either an
6065     // array or a scalar.  In the first case, use the element type of the array.
6066     return genProcRef(
6067         funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
6068   }
6069 
6070   //===--------------------------------------------------------------------===//
6071   // Array construction
6072   //===--------------------------------------------------------------------===//
6073 
6074   /// Target agnostic computation of the size of an element in the array.
6075   /// Returns the size in bytes with type `index` or a null Value if the element
6076   /// size is not constant.
6077   mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
6078                                  mlir::Type resTy) {
6079     mlir::Location loc = getLoc();
6080     mlir::IndexType idxTy = builder.getIndexType();
6081     mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
6082     if (fir::hasDynamicSize(eleTy)) {
6083       if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6084         // Array of char with dynamic length parameter. Downcast to an array
6085         // of singleton char, and scale by the len type parameter from
6086         // `exv`.
6087         exv.match(
6088             [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
6089             [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
6090             [&](const fir::BoxValue &box) {
6091               multiplier = fir::factory::CharacterExprHelper(builder, loc)
6092                                .readLengthFromBox(box.getAddr());
6093             },
6094             [&](const fir::MutableBoxValue &box) {
6095               multiplier = fir::factory::CharacterExprHelper(builder, loc)
6096                                .readLengthFromBox(box.getAddr());
6097             },
6098             [&](const auto &) {
6099               fir::emitFatalError(loc,
6100                                   "array constructor element has unknown size");
6101             });
6102         fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
6103             eleTy.getContext(), charTy.getFKind());
6104         if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
6105           assert(eleTy == seqTy.getEleTy());
6106           resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
6107         }
6108         eleTy = newEleTy;
6109       } else {
6110         TODO(loc, "dynamic sized type");
6111       }
6112     }
6113     mlir::Type eleRefTy = builder.getRefType(eleTy);
6114     mlir::Type resRefTy = builder.getRefType(resTy);
6115     mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
6116     auto offset = builder.create<fir::CoordinateOp>(
6117         loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
6118     return builder.createConvert(loc, idxTy, offset);
6119   }
6120 
6121   /// Get the function signature of the LLVM memcpy intrinsic.
6122   mlir::FunctionType memcpyType() {
6123     return fir::factory::getLlvmMemcpy(builder).getFunctionType();
6124   }
6125 
6126   /// Create a call to the LLVM memcpy intrinsic.
6127   void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
6128     mlir::Location loc = getLoc();
6129     mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
6130     mlir::SymbolRefAttr funcSymAttr =
6131         builder.getSymbolRefAttr(memcpyFunc.getName());
6132     mlir::FunctionType funcTy = memcpyFunc.getFunctionType();
6133     builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
6134   }
6135 
6136   // Construct code to check for a buffer overrun and realloc the buffer when
6137   // space is depleted. This is done between each item in the ac-value-list.
6138   mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
6139                          mlir::Value bufferSize, mlir::Value buffSize,
6140                          mlir::Value eleSz) {
6141     mlir::Location loc = getLoc();
6142     mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder);
6143     auto cond = builder.create<mlir::arith::CmpIOp>(
6144         loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
6145     auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
6146                                           /*withElseRegion=*/true);
6147     auto insPt = builder.saveInsertionPoint();
6148     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
6149     // Not enough space, resize the buffer.
6150     mlir::IndexType idxTy = builder.getIndexType();
6151     mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
6152     auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
6153     builder.create<fir::StoreOp>(loc, newSz, buffSize);
6154     mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
6155     mlir::SymbolRefAttr funcSymAttr =
6156         builder.getSymbolRefAttr(reallocFunc.getName());
6157     mlir::FunctionType funcTy = reallocFunc.getFunctionType();
6158     auto newMem = builder.create<fir::CallOp>(
6159         loc, funcTy.getResults(), funcSymAttr,
6160         llvm::ArrayRef<mlir::Value>{
6161             builder.createConvert(loc, funcTy.getInputs()[0], mem),
6162             builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
6163     mlir::Value castNewMem =
6164         builder.createConvert(loc, mem.getType(), newMem.getResult(0));
6165     builder.create<fir::ResultOp>(loc, castNewMem);
6166     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
6167     // Otherwise, just forward the buffer.
6168     builder.create<fir::ResultOp>(loc, mem);
6169     builder.restoreInsertionPoint(insPt);
6170     return ifOp.getResult(0);
6171   }
6172 
6173   /// Copy the next value (or vector of values) into the array being
6174   /// constructed.
6175   mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
6176                                        mlir::Value buffSize, mlir::Value mem,
6177                                        mlir::Value eleSz, mlir::Type eleTy,
6178                                        mlir::Type eleRefTy, mlir::Type resTy) {
6179     mlir::Location loc = getLoc();
6180     auto off = builder.create<fir::LoadOp>(loc, buffPos);
6181     auto limit = builder.create<fir::LoadOp>(loc, buffSize);
6182     mlir::IndexType idxTy = builder.getIndexType();
6183     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
6184 
6185     if (fir::isRecordWithAllocatableMember(eleTy))
6186       TODO(loc, "deep copy on allocatable members");
6187 
6188     if (!eleSz) {
6189       // Compute the element size at runtime.
6190       assert(fir::hasDynamicSize(eleTy));
6191       if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6192         auto charBytes =
6193             builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
6194         mlir::Value bytes =
6195             builder.createIntegerConstant(loc, idxTy, charBytes);
6196         mlir::Value length = fir::getLen(exv);
6197         if (!length)
6198           fir::emitFatalError(loc, "result is not boxed character");
6199         eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
6200       } else {
6201         TODO(loc, "PDT size");
6202         // Will call the PDT's size function with the type parameters.
6203       }
6204     }
6205 
6206     // Compute the coordinate using `fir.coordinate_of`, or, if the type has
6207     // dynamic size, generating the pointer arithmetic.
6208     auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
6209       mlir::Type refTy = eleRefTy;
6210       if (fir::hasDynamicSize(eleTy)) {
6211         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6212           // Scale a simple pointer using dynamic length and offset values.
6213           auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
6214                                                        charTy.getFKind());
6215           refTy = builder.getRefType(chTy);
6216           mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
6217           buff = builder.createConvert(loc, toTy, buff);
6218           off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
6219         } else {
6220           TODO(loc, "PDT offset");
6221         }
6222       }
6223       auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
6224                                                     mlir::ValueRange{off});
6225       return builder.createConvert(loc, eleRefTy, coor);
6226     };
6227 
6228     // Lambda to lower an abstract array box value.
6229     auto doAbstractArray = [&](const auto &v) {
6230       // Compute the array size.
6231       mlir::Value arrSz = one;
6232       for (auto ext : v.getExtents())
6233         arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);
6234 
6235       // Grow the buffer as needed.
6236       auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
6237       mem = growBuffer(mem, endOff, limit, buffSize, eleSz);
6238 
6239       // Copy the elements to the buffer.
6240       mlir::Value byteSz =
6241           builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
6242       auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6243       mlir::Value buffi = computeCoordinate(buff, off);
6244       llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
6245           builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
6246           /*volatile=*/builder.createBool(loc, false));
6247       createCallMemcpy(args);
6248 
6249       // Save the incremented buffer position.
6250       builder.create<fir::StoreOp>(loc, endOff, buffPos);
6251     };
6252 
6253     // Copy a trivial scalar value into the buffer.
6254     auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
6255       // Increment the buffer position.
6256       auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
6257 
6258       // Grow the buffer as needed.
6259       mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
6260 
6261       // Store the element in the buffer.
6262       mlir::Value buff =
6263           builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6264       auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
6265                                                      mlir::ValueRange{off});
6266       fir::factory::genScalarAssignment(
6267           builder, loc,
6268           [&]() -> ExtValue {
6269             if (len)
6270               return fir::CharBoxValue(buffi, len);
6271             return buffi;
6272           }(),
6273           v);
6274       builder.create<fir::StoreOp>(loc, plusOne, buffPos);
6275     };
6276 
6277     // Copy the value.
6278     exv.match(
6279         [&](mlir::Value) { doTrivialScalar(exv); },
6280         [&](const fir::CharBoxValue &v) {
6281           auto buffer = v.getBuffer();
6282           if (fir::isa_char(buffer.getType())) {
6283             doTrivialScalar(exv, eleSz);
6284           } else {
6285             // Increment the buffer position.
6286             auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
6287 
6288             // Grow the buffer as needed.
6289             mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
6290 
6291             // Store the element in the buffer.
6292             mlir::Value buff =
6293                 builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6294             mlir::Value buffi = computeCoordinate(buff, off);
6295             llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
6296                 builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
6297                 /*volatile=*/builder.createBool(loc, false));
6298             createCallMemcpy(args);
6299 
6300             builder.create<fir::StoreOp>(loc, plusOne, buffPos);
6301           }
6302         },
6303         [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
6304         [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
6305         [&](const auto &) {
6306           TODO(loc, "unhandled array constructor expression");
6307         });
6308     return mem;
6309   }
6310 
6311   // Lower the expr cases in an ac-value-list.
6312   template <typename A>
6313   std::pair<ExtValue, bool>
6314   genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
6315                           mlir::Value, mlir::Value, mlir::Value,
6316                           Fortran::lower::StatementContext &stmtCtx) {
6317     if (isArray(x))
6318       return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
6319               /*needCopy=*/true};
6320     return {asScalar(x), /*needCopy=*/true};
6321   }
6322 
6323   // Lower an ac-implied-do in an ac-value-list.
6324   template <typename A>
6325   std::pair<ExtValue, bool>
6326   genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
6327                           mlir::Type resTy, mlir::Value mem,
6328                           mlir::Value buffPos, mlir::Value buffSize,
6329                           Fortran::lower::StatementContext &) {
6330     mlir::Location loc = getLoc();
6331     mlir::IndexType idxTy = builder.getIndexType();
6332     mlir::Value lo =
6333         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
6334     mlir::Value up =
6335         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
6336     mlir::Value step =
6337         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
6338     auto seqTy = resTy.template cast<fir::SequenceType>();
6339     mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
6340     auto loop =
6341         builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
6342                                       /*finalCount=*/false, mem);
6343     // create a new binding for x.name(), to ac-do-variable, to the iteration
6344     // value.
6345     symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
6346     auto insPt = builder.saveInsertionPoint();
6347     builder.setInsertionPointToStart(loop.getBody());
6348     // Thread mem inside the loop via loop argument.
6349     mem = loop.getRegionIterArgs()[0];
6350 
6351     mlir::Type eleRefTy = builder.getRefType(eleTy);
6352 
6353     // Any temps created in the loop body must be freed inside the loop body.
6354     stmtCtx.pushScope();
6355     llvm::Optional<mlir::Value> charLen;
6356     for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
6357       auto [exv, copyNeeded] = std::visit(
6358           [&](const auto &v) {
6359             return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
6360                                            stmtCtx);
6361           },
6362           acv.u);
6363       mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
6364       mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
6365                                                   eleSz, eleTy, eleRefTy, resTy)
6366                        : fir::getBase(exv);
6367       if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
6368         charLen = builder.createTemporary(loc, builder.getI64Type());
6369         mlir::Value castLen =
6370             builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
6371         builder.create<fir::StoreOp>(loc, castLen, *charLen);
6372       }
6373     }
6374     stmtCtx.finalize(/*popScope=*/true);
6375 
6376     builder.create<fir::ResultOp>(loc, mem);
6377     builder.restoreInsertionPoint(insPt);
6378     mem = loop.getResult(0);
6379     symMap.popImpliedDoBinding();
6380     llvm::SmallVector<mlir::Value> extents = {
6381         builder.create<fir::LoadOp>(loc, buffPos).getResult()};
6382 
6383     // Convert to extended value.
6384     if (fir::isa_char(seqTy.getEleTy())) {
6385       auto len = builder.create<fir::LoadOp>(loc, *charLen);
6386       return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
6387     }
6388     return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
6389   }
6390 
6391   // To simplify the handling and interaction between the various cases, array
6392   // constructors are always lowered to the incremental construction code
6393   // pattern, even if the extent of the array value is constant. After the
6394   // MemToReg pass and constant folding, the optimizer should be able to
6395   // determine that all the buffer overrun tests are false when the
6396   // incremental construction wasn't actually required.
6397   template <typename A>
6398   CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
6399     mlir::Location loc = getLoc();
6400     auto evExpr = toEvExpr(x);
6401     mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
6402     mlir::IndexType idxTy = builder.getIndexType();
6403     auto seqTy = resTy.template cast<fir::SequenceType>();
6404     mlir::Type eleTy = fir::unwrapSequenceType(resTy);
6405     mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
6406     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
6407     mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
6408     builder.create<fir::StoreOp>(loc, zero, buffPos);
6409     // Allocate space for the array to be constructed.
6410     mlir::Value mem;
6411     if (fir::hasDynamicSize(resTy)) {
6412       if (fir::hasDynamicSize(eleTy)) {
6413         // The size of each element may depend on a general expression. Defer
6414         // creating the buffer until after the expression is evaluated.
6415         mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
6416         builder.create<fir::StoreOp>(loc, zero, buffSize);
6417       } else {
6418         mlir::Value initBuffSz =
6419             builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
6420         mem = builder.create<fir::AllocMemOp>(
6421             loc, eleTy, /*typeparams=*/llvm::None, initBuffSz);
6422         builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
6423       }
6424     } else {
6425       mem = builder.create<fir::AllocMemOp>(loc, resTy);
6426       int64_t buffSz = 1;
6427       for (auto extent : seqTy.getShape())
6428         buffSz *= extent;
6429       mlir::Value initBuffSz =
6430           builder.createIntegerConstant(loc, idxTy, buffSz);
6431       builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
6432     }
6433     // Compute size of element
6434     mlir::Type eleRefTy = builder.getRefType(eleTy);
6435 
6436     // Populate the buffer with the elements, growing as necessary.
6437     llvm::Optional<mlir::Value> charLen;
6438     for (const auto &expr : x) {
6439       auto [exv, copyNeeded] = std::visit(
6440           [&](const auto &e) {
6441             return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
6442                                            stmtCtx);
6443           },
6444           expr.u);
6445       mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
6446       mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
6447                                                   eleSz, eleTy, eleRefTy, resTy)
6448                        : fir::getBase(exv);
6449       if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
6450         charLen = builder.createTemporary(loc, builder.getI64Type());
6451         mlir::Value castLen =
6452             builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
6453         builder.create<fir::StoreOp>(loc, castLen, *charLen);
6454       }
6455     }
6456     mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6457     llvm::SmallVector<mlir::Value> extents = {
6458         builder.create<fir::LoadOp>(loc, buffPos)};
6459 
6460     // Cleanup the temporary.
6461     fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
6462     stmtCtx.attachCleanup(
6463         [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });
6464 
6465     // Return the continuation.
6466     if (fir::isa_char(seqTy.getEleTy())) {
6467       if (charLen) {
6468         auto len = builder.create<fir::LoadOp>(loc, charLen.value());
6469         return genarr(fir::CharArrayBoxValue{mem, len, extents});
6470       }
6471       return genarr(fir::CharArrayBoxValue{mem, zero, extents});
6472     }
6473     return genarr(fir::ArrayBoxValue{mem, extents});
6474   }
6475 
6476   CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
6477     fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0");
6478   }
6479   CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
6480     TODO(getLoc(), "array expr type parameter inquiry");
6481     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6482   }
6483   CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
6484     TODO(getLoc(), "array expr descriptor inquiry");
6485     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6486   }
6487   CC genarr(const Fortran::evaluate::StructureConstructor &x) {
6488     TODO(getLoc(), "structure constructor");
6489     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6490   }
6491 
6492   //===--------------------------------------------------------------------===//
6493   // LOCICAL operators (.NOT., .AND., .EQV., etc.)
6494   //===--------------------------------------------------------------------===//
6495 
6496   template <int KIND>
6497   CC genarr(const Fortran::evaluate::Not<KIND> &x) {
6498     mlir::Location loc = getLoc();
6499     mlir::IntegerType i1Ty = builder.getI1Type();
6500     auto lambda = genarr(x.left());
6501     mlir::Value truth = builder.createBool(loc, true);
6502     return [=](IterSpace iters) -> ExtValue {
6503       mlir::Value logical = fir::getBase(lambda(iters));
6504       mlir::Value val = builder.createConvert(loc, i1Ty, logical);
6505       return builder.create<mlir::arith::XOrIOp>(loc, val, truth);
6506     };
6507   }
6508   template <typename OP, typename A>
6509   CC createBinaryBoolOp(const A &x) {
6510     mlir::Location loc = getLoc();
6511     mlir::IntegerType i1Ty = builder.getI1Type();
6512     auto lf = genarr(x.left());
6513     auto rf = genarr(x.right());
6514     return [=](IterSpace iters) -> ExtValue {
6515       mlir::Value left = fir::getBase(lf(iters));
6516       mlir::Value right = fir::getBase(rf(iters));
6517       mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
6518       mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
6519       return builder.create<OP>(loc, lhs, rhs);
6520     };
6521   }
6522   template <typename OP, typename A>
6523   CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) {
6524     mlir::Location loc = getLoc();
6525     mlir::IntegerType i1Ty = builder.getI1Type();
6526     auto lf = genarr(x.left());
6527     auto rf = genarr(x.right());
6528     return [=](IterSpace iters) -> ExtValue {
6529       mlir::Value left = fir::getBase(lf(iters));
6530       mlir::Value right = fir::getBase(rf(iters));
6531       mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
6532       mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
6533       return builder.create<OP>(loc, pred, lhs, rhs);
6534     };
6535   }
6536   template <int KIND>
6537   CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
6538     switch (x.logicalOperator) {
6539     case Fortran::evaluate::LogicalOperator::And:
6540       return createBinaryBoolOp<mlir::arith::AndIOp>(x);
6541     case Fortran::evaluate::LogicalOperator::Or:
6542       return createBinaryBoolOp<mlir::arith::OrIOp>(x);
6543     case Fortran::evaluate::LogicalOperator::Eqv:
6544       return createCompareBoolOp<mlir::arith::CmpIOp>(
6545           mlir::arith::CmpIPredicate::eq, x);
6546     case Fortran::evaluate::LogicalOperator::Neqv:
6547       return createCompareBoolOp<mlir::arith::CmpIOp>(
6548           mlir::arith::CmpIPredicate::ne, x);
6549     case Fortran::evaluate::LogicalOperator::Not:
6550       llvm_unreachable(".NOT. handled elsewhere");
6551     }
6552     llvm_unreachable("unhandled case");
6553   }
6554 
6555   //===--------------------------------------------------------------------===//
6556   // Relational operators (<, <=, ==, etc.)
6557   //===--------------------------------------------------------------------===//
6558 
6559   template <typename OP, typename PRED, typename A>
6560   CC createCompareOp(PRED pred, const A &x) {
6561     mlir::Location loc = getLoc();
6562     auto lf = genarr(x.left());
6563     auto rf = genarr(x.right());
6564     return [=](IterSpace iters) -> ExtValue {
6565       mlir::Value lhs = fir::getBase(lf(iters));
6566       mlir::Value rhs = fir::getBase(rf(iters));
6567       return builder.create<OP>(loc, pred, lhs, rhs);
6568     };
6569   }
6570   template <typename A>
6571   CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) {
6572     mlir::Location loc = getLoc();
6573     auto lf = genarr(x.left());
6574     auto rf = genarr(x.right());
6575     return [=](IterSpace iters) -> ExtValue {
6576       auto lhs = lf(iters);
6577       auto rhs = rf(iters);
6578       return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs);
6579     };
6580   }
6581   template <int KIND>
6582   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6583                 Fortran::common::TypeCategory::Integer, KIND>> &x) {
6584     return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x);
6585   }
6586   template <int KIND>
6587   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6588                 Fortran::common::TypeCategory::Character, KIND>> &x) {
6589     return createCompareCharOp(translateRelational(x.opr), x);
6590   }
6591   template <int KIND>
6592   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6593                 Fortran::common::TypeCategory::Real, KIND>> &x) {
6594     return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr),
6595                                                 x);
6596   }
6597   template <int KIND>
6598   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6599                 Fortran::common::TypeCategory::Complex, KIND>> &x) {
6600     return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x);
6601   }
6602   CC genarr(
6603       const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
6604     return std::visit([&](const auto &x) { return genarr(x); }, r.u);
6605   }
6606 
6607   template <typename A>
6608   CC genarr(const Fortran::evaluate::Designator<A> &des) {
6609     ComponentPath components(des.Rank() > 0);
6610     return std::visit([&](const auto &x) { return genarr(x, components); },
6611                       des.u);
6612   }
6613 
6614   /// Is the path component rank > 0?
6615   static bool ranked(const PathComponent &x) {
6616     return std::visit(Fortran::common::visitors{
6617                           [](const ImplicitSubscripts &) { return false; },
6618                           [](const auto *v) { return v->Rank() > 0; }},
6619                       x);
6620   }
6621 
6622   void extendComponent(Fortran::lower::ComponentPath &component,
6623                        mlir::Type coorTy, mlir::ValueRange vals) {
6624     auto *bldr = &converter.getFirOpBuilder();
6625     llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end());
6626     auto currentFunc = component.getExtendCoorRef();
6627     auto loc = getLoc();
6628     auto newCoorRef = [bldr, coorTy, offsets, currentFunc,
6629                        loc](mlir::Value val) -> mlir::Value {
6630       return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy),
6631                                              currentFunc(val), offsets);
6632     };
6633     component.extendCoorRef = newCoorRef;
6634   }
6635 
6636   //===-------------------------------------------------------------------===//
6637   // Array data references in an explicit iteration space.
6638   //
6639   // Use the base array that was loaded before the loop nest.
6640   //===-------------------------------------------------------------------===//
6641 
6642   /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
6643   /// array_update op. \p ty is the initial type of the array
6644   /// (reference). Returns the type of the element after application of the
6645   /// path in \p components.
6646   ///
6647   /// TODO: This needs to deal with array's with initial bounds other than 1.
6648   /// TODO: Thread type parameters correctly.
6649   mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) {
6650     mlir::Location loc = getLoc();
6651     mlir::Type ty = fir::getBase(arrayExv).getType();
6652     auto &revPath = components.reversePath;
6653     ty = fir::unwrapPassByRefType(ty);
6654     bool prefix = true;
6655     bool deref = false;
6656     auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) {
6657       if (deref) {
6658         extendComponent(components, ty, vals);
6659       } else if (prefix) {
6660         for (auto v : vals)
6661           components.prefixComponents.push_back(v);
6662       } else {
6663         for (auto v : vals)
6664           components.suffixComponents.push_back(v);
6665       }
6666     };
6667     mlir::IndexType idxTy = builder.getIndexType();
6668     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
6669     bool atBase = true;
6670     auto saveSemant = semant;
6671     if (isProjectedCopyInCopyOut())
6672       semant = ConstituentSemantics::RefTransparent;
6673     unsigned index = 0;
6674     for (const auto &v : llvm::reverse(revPath)) {
6675       std::visit(
6676           Fortran::common::visitors{
6677               [&](const ImplicitSubscripts &) {
6678                 prefix = false;
6679                 ty = fir::unwrapSequenceType(ty);
6680               },
6681               [&](const Fortran::evaluate::ComplexPart *x) {
6682                 assert(!prefix && "complex part must be at end");
6683                 mlir::Value offset = builder.createIntegerConstant(
6684                     loc, builder.getI32Type(),
6685                     x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0
6686                                                                           : 1);
6687                 components.suffixComponents.push_back(offset);
6688                 ty = fir::applyPathToType(ty, mlir::ValueRange{offset});
6689               },
6690               [&](const Fortran::evaluate::ArrayRef *x) {
6691                 if (Fortran::lower::isRankedArrayAccess(*x)) {
6692                   genSliceIndices(components, arrayExv, *x, atBase);
6693                   ty = fir::unwrapSeqOrBoxedSeqType(ty);
6694                 } else {
6695                   // Array access where the expressions are scalar and cannot
6696                   // depend upon the implied iteration space.
6697                   unsigned ssIndex = 0u;
6698                   llvm::SmallVector<mlir::Value> componentsToAdd;
6699                   for (const auto &ss : x->subscript()) {
6700                     std::visit(
6701                         Fortran::common::visitors{
6702                             [&](const Fortran::evaluate::
6703                                     IndirectSubscriptIntegerExpr &ie) {
6704                               const auto &e = ie.value();
6705                               if (isArray(e))
6706                                 fir::emitFatalError(
6707                                     loc,
6708                                     "multiple components along single path "
6709                                     "generating array subexpressions");
6710                               // Lower scalar index expression, append it to
6711                               // subs.
6712                               mlir::Value subscriptVal =
6713                                   fir::getBase(asScalarArray(e));
6714                               // arrayExv is the base array. It needs to reflect
6715                               // the current array component instead.
6716                               // FIXME: must use lower bound of this component,
6717                               // not just the constant 1.
6718                               mlir::Value lb =
6719                                   atBase ? fir::factory::readLowerBound(
6720                                                builder, loc, arrayExv, ssIndex,
6721                                                one)
6722                                          : one;
6723                               mlir::Value val = builder.createConvert(
6724                                   loc, idxTy, subscriptVal);
6725                               mlir::Value ivAdj =
6726                                   builder.create<mlir::arith::SubIOp>(
6727                                       loc, idxTy, val, lb);
6728                               componentsToAdd.push_back(
6729                                   builder.createConvert(loc, idxTy, ivAdj));
6730                             },
6731                             [&](const auto &) {
6732                               fir::emitFatalError(
6733                                   loc, "multiple components along single path "
6734                                        "generating array subexpressions");
6735                             }},
6736                         ss.u);
6737                     ssIndex++;
6738                   }
6739                   ty = fir::unwrapSeqOrBoxedSeqType(ty);
6740                   addComponentList(ty, componentsToAdd);
6741                 }
6742               },
6743               [&](const Fortran::evaluate::Component *x) {
6744                 auto fieldTy = fir::FieldType::get(builder.getContext());
6745                 llvm::StringRef name = toStringRef(getLastSym(*x).name());
6746                 if (auto recTy = ty.dyn_cast<fir::RecordType>()) {
6747                   ty = recTy.getType(name);
6748                   auto fld = builder.create<fir::FieldIndexOp>(
6749                       loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
6750                   addComponentList(ty, {fld});
6751                   if (index != revPath.size() - 1 || !isPointerAssignment()) {
6752                     // Need an intermediate  dereference if the boxed value
6753                     // appears in the middle of the component path or if it is
6754                     // on the right and this is not a pointer assignment.
6755                     if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
6756                       auto currentFunc = components.getExtendCoorRef();
6757                       auto loc = getLoc();
6758                       auto *bldr = &converter.getFirOpBuilder();
6759                       auto newCoorRef = [=](mlir::Value val) -> mlir::Value {
6760                         return bldr->create<fir::LoadOp>(loc, currentFunc(val));
6761                       };
6762                       components.extendCoorRef = newCoorRef;
6763                       deref = true;
6764                     }
6765                   }
6766                 } else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
6767                   ty = fir::unwrapRefType(boxTy.getEleTy());
6768                   auto recTy = ty.cast<fir::RecordType>();
6769                   ty = recTy.getType(name);
6770                   auto fld = builder.create<fir::FieldIndexOp>(
6771                       loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
6772                   extendComponent(components, ty, {fld});
6773                 } else {
6774                   TODO(loc, "other component type");
6775                 }
6776               }},
6777           v);
6778       atBase = false;
6779       ++index;
6780     }
6781     semant = saveSemant;
6782     ty = fir::unwrapSequenceType(ty);
6783     components.applied = true;
6784     return ty;
6785   }
6786 
6787   llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) {
6788     llvm::SmallVector<mlir::Value> result;
6789     if (components.substring)
6790       populateBounds(result, components.substring);
6791     return result;
6792   }
6793 
6794   CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) {
6795     mlir::Location loc = getLoc();
6796     auto revPath = components.reversePath;
6797     fir::ExtendedValue arrayExv =
6798         arrayLoadExtValue(builder, loc, load, {}, load);
6799     mlir::Type eleTy = lowerPath(arrayExv, components);
6800     auto currentPC = components.pc;
6801     auto pc = [=, prefix = components.prefixComponents,
6802                suffix = components.suffixComponents](IterSpace iters) {
6803       // Add path prefix and suffix.
6804       return IterationSpace(currentPC(iters), prefix, suffix);
6805     };
6806     components.resetPC();
6807     llvm::SmallVector<mlir::Value> substringBounds =
6808         genSubstringBounds(components);
6809     if (isProjectedCopyInCopyOut()) {
6810       destination = load;
6811       auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable {
6812         mlir::Value innerArg = esp->findArgumentOfLoad(load);
6813         if (isAdjustedArrayElementType(eleTy)) {
6814           mlir::Type eleRefTy = builder.getRefType(eleTy);
6815           auto arrayOp = builder.create<fir::ArrayAccessOp>(
6816               loc, eleRefTy, innerArg, iters.iterVec(), load.getTypeparams());
6817           if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6818             mlir::Value dstLen = fir::factory::genLenOfCharacter(
6819                 builder, loc, load, iters.iterVec(), substringBounds);
6820             fir::ArrayAmendOp amend = createCharArrayAmend(
6821                 loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg,
6822                 substringBounds);
6823             return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend,
6824                                      dstLen);
6825           }
6826           if (fir::isa_derived(eleTy)) {
6827             fir::ArrayAmendOp amend =
6828                 createDerivedArrayAmend(loc, load, builder, arrayOp,
6829                                         iters.elementExv(), eleTy, innerArg);
6830             return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
6831                                      amend);
6832           }
6833           assert(eleTy.isa<fir::SequenceType>());
6834           TODO(loc, "array (as element) assignment");
6835         }
6836         if (components.hasExtendCoorRef()) {
6837           auto eleBoxTy =
6838               fir::applyPathToType(innerArg.getType(), iters.iterVec());
6839           assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
6840           auto arrayOp = builder.create<fir::ArrayAccessOp>(
6841               loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(),
6842               fir::factory::getTypeParams(loc, builder, load));
6843           mlir::Value addr = components.getExtendCoorRef()(arrayOp);
6844           components.resetExtendCoorRef();
6845           // When the lhs is a boxed value and the context is not a pointer
6846           // assignment, then insert the dereference of the box before any
6847           // conversion and store.
6848           if (!isPointerAssignment()) {
6849             if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) {
6850               eleTy = boxTy.getEleTy();
6851               if (!(eleTy.isa<fir::PointerType>() ||
6852                     eleTy.isa<fir::HeapType>()))
6853                 eleTy = builder.getRefType(eleTy);
6854               addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr);
6855               eleTy = fir::unwrapRefType(eleTy);
6856             }
6857           }
6858           auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
6859           builder.create<fir::StoreOp>(loc, ele, addr);
6860           auto amend = builder.create<fir::ArrayAmendOp>(
6861               loc, innerArg.getType(), innerArg, arrayOp);
6862           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend);
6863         }
6864         auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
6865         auto update = builder.create<fir::ArrayUpdateOp>(
6866             loc, innerArg.getType(), innerArg, ele, iters.iterVec(),
6867             fir::factory::getTypeParams(loc, builder, load));
6868         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update);
6869       };
6870       return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6871     }
6872     if (isCustomCopyInCopyOut()) {
6873       // Create an array_modify to get the LHS element address and indicate
6874       // the assignment, and create the call to the user defined assignment.
6875       destination = load;
6876       auto lambda = [=](IterSpace iters) mutable {
6877         mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load);
6878         mlir::Type refEleTy =
6879             fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
6880         auto arrModify = builder.create<fir::ArrayModifyOp>(
6881             loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg,
6882             iters.iterVec(), load.getTypeparams());
6883         return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
6884                                  arrModify.getResult(1));
6885       };
6886       return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6887     }
6888     auto lambda = [=, semant = this->semant](IterSpace iters) mutable {
6889       if (semant == ConstituentSemantics::RefOpaque ||
6890           isAdjustedArrayElementType(eleTy)) {
6891         mlir::Type resTy = builder.getRefType(eleTy);
6892         // Use array element reference semantics.
6893         auto access = builder.create<fir::ArrayAccessOp>(
6894             loc, resTy, load, iters.iterVec(), load.getTypeparams());
6895         mlir::Value newBase = access;
6896         if (fir::isa_char(eleTy)) {
6897           mlir::Value dstLen = fir::factory::genLenOfCharacter(
6898               builder, loc, load, iters.iterVec(), substringBounds);
6899           if (!substringBounds.empty()) {
6900             fir::CharBoxValue charDst{access, dstLen};
6901             fir::factory::CharacterExprHelper helper{builder, loc};
6902             charDst = helper.createSubstring(charDst, substringBounds);
6903             newBase = charDst.getAddr();
6904           }
6905           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase,
6906                                    dstLen);
6907         }
6908         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase);
6909       }
6910       if (components.hasExtendCoorRef()) {
6911         auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec());
6912         assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
6913         auto access = builder.create<fir::ArrayAccessOp>(
6914             loc, builder.getRefType(eleBoxTy), load, iters.iterVec(),
6915             fir::factory::getTypeParams(loc, builder, load));
6916         mlir::Value addr = components.getExtendCoorRef()(access);
6917         components.resetExtendCoorRef();
6918         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr);
6919       }
6920       if (isPointerAssignment()) {
6921         auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec());
6922         if (!eleTy.isa<fir::BoxType>()) {
6923           // Rhs is a regular expression that will need to be boxed before
6924           // assigning to the boxed variable.
6925           auto typeParams = fir::factory::getTypeParams(loc, builder, load);
6926           auto access = builder.create<fir::ArrayAccessOp>(
6927               loc, builder.getRefType(eleTy), load, iters.iterVec(),
6928               typeParams);
6929           auto addr = components.getExtendCoorRef()(access);
6930           components.resetExtendCoorRef();
6931           auto ptrEleTy = fir::PointerType::get(eleTy);
6932           auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr);
6933           auto boxTy = fir::BoxType::get(ptrEleTy);
6934           // FIXME: The typeparams to the load may be different than those of
6935           // the subobject.
6936           if (components.hasExtendCoorRef())
6937             TODO(loc, "need to adjust typeparameter(s) to reflect the final "
6938                       "component");
6939           mlir::Value embox =
6940               builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr,
6941                                            /*shape=*/mlir::Value{},
6942                                            /*slice=*/mlir::Value{}, typeParams);
6943           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox);
6944         }
6945       }
6946       auto fetch = builder.create<fir::ArrayFetchOp>(
6947           loc, eleTy, load, iters.iterVec(), load.getTypeparams());
6948       return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch);
6949     };
6950     return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6951   }
6952 
6953   template <typename A>
6954   CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
6955     components.reversePath.push_back(ImplicitSubscripts{});
6956     ExtValue exv = asScalarRef(x);
6957     lowerPath(exv, components);
6958     auto lambda = genarr(exv, components);
6959     return [=](IterSpace iters) { return lambda(components.pc(iters)); };
6960   }
6961   CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
6962                             ComponentPath &components) {
6963     if (x.IsSymbol())
6964       return genImplicitArrayAccess(getFirstSym(x), components);
6965     return genImplicitArrayAccess(x.GetComponent(), components);
6966   }
6967 
6968   template <typename A>
6969   CC genAsScalar(const A &x) {
6970     mlir::Location loc = getLoc();
6971     if (isProjectedCopyInCopyOut()) {
6972       return [=, &x, builder = &converter.getFirOpBuilder()](
6973                  IterSpace iters) -> ExtValue {
6974         ExtValue exv = asScalarRef(x);
6975         mlir::Value val = fir::getBase(exv);
6976         mlir::Type eleTy = fir::unwrapRefType(val.getType());
6977         if (isAdjustedArrayElementType(eleTy)) {
6978           if (fir::isa_char(eleTy)) {
6979             fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
6980                 exv, iters.elementExv());
6981           } else if (fir::isa_derived(eleTy)) {
6982             TODO(loc, "assignment of derived type");
6983           } else {
6984             fir::emitFatalError(loc, "array type not expected in scalar");
6985           }
6986         } else {
6987           builder->create<fir::StoreOp>(loc, iters.getElement(), val);
6988         }
6989         return exv;
6990       };
6991     }
6992     return [=, &x](IterSpace) { return asScalar(x); };
6993   }
6994 
6995   bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x,
6996                                         ComponentPath &components) {
6997     return isPointerAssignment() && Fortran::semantics::IsPointer(x) &&
6998            !components.hasComponents();
6999   }
7000   bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x,
7001                                         ComponentPath &components) {
7002     return tailIsPointerInPointerAssignment(getLastSym(x), components);
7003   }
7004 
7005   CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
7006     if (explicitSpaceIsActive()) {
7007       if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components))
7008         components.reversePath.push_back(ImplicitSubscripts{});
7009       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
7010         return applyPathToArrayLoad(load, components);
7011     } else {
7012       return genImplicitArrayAccess(x, components);
7013     }
7014     if (pathIsEmpty(components))
7015       return components.substring ? genAsScalar(*components.substring)
7016                                   : genAsScalar(x);
7017     mlir::Location loc = getLoc();
7018     return [=](IterSpace) -> ExtValue {
7019       fir::emitFatalError(loc, "reached symbol with path");
7020     };
7021   }
7022 
7023   /// Lower a component path with or without rank.
7024   /// Example: <code>array%baz%qux%waldo</code>
7025   CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
7026     if (explicitSpaceIsActive()) {
7027       if (x.base().Rank() == 0 && x.Rank() > 0 &&
7028           !tailIsPointerInPointerAssignment(x, components))
7029         components.reversePath.push_back(ImplicitSubscripts{});
7030       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
7031         return applyPathToArrayLoad(load, components);
7032     } else {
7033       if (x.base().Rank() == 0)
7034         return genImplicitArrayAccess(x, components);
7035     }
7036     bool atEnd = pathIsEmpty(components);
7037     if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp))
7038       // Skip parent components; their components are placed directly in the
7039       // object.
7040       components.reversePath.push_back(&x);
7041     auto result = genarr(x.base(), components);
7042     if (components.applied)
7043       return result;
7044     if (atEnd)
7045       return genAsScalar(x);
7046     mlir::Location loc = getLoc();
7047     return [=](IterSpace) -> ExtValue {
7048       fir::emitFatalError(loc, "reached component with path");
7049     };
7050   }
7051 
7052   /// Array reference with subscripts. If this has rank > 0, this is a form
7053   /// of an array section (slice).
7054   ///
7055   /// There are two "slicing" primitives that may be applied on a dimension by
7056   /// dimension basis: (1) triple notation and (2) vector addressing. Since
7057   /// dimensions can be selectively sliced, some dimensions may contain
7058   /// regular scalar expressions and those dimensions do not participate in
7059   /// the array expression evaluation.
7060   CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
7061     if (explicitSpaceIsActive()) {
7062       if (Fortran::lower::isRankedArrayAccess(x))
7063         components.reversePath.push_back(ImplicitSubscripts{});
7064       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) {
7065         components.reversePath.push_back(&x);
7066         return applyPathToArrayLoad(load, components);
7067       }
7068     } else {
7069       if (Fortran::lower::isRankedArrayAccess(x)) {
7070         components.reversePath.push_back(&x);
7071         return genImplicitArrayAccess(x.base(), components);
7072       }
7073     }
7074     bool atEnd = pathIsEmpty(components);
7075     components.reversePath.push_back(&x);
7076     auto result = genarr(x.base(), components);
7077     if (components.applied)
7078       return result;
7079     mlir::Location loc = getLoc();
7080     if (atEnd) {
7081       if (x.Rank() == 0)
7082         return genAsScalar(x);
7083       fir::emitFatalError(loc, "expected scalar");
7084     }
7085     return [=](IterSpace) -> ExtValue {
7086       fir::emitFatalError(loc, "reached arrayref with path");
7087     };
7088   }
7089 
7090   CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
7091     TODO(getLoc(), "coarray reference");
7092   }
7093 
7094   CC genarr(const Fortran::evaluate::NamedEntity &x,
7095             ComponentPath &components) {
7096     return x.IsSymbol() ? genarr(getFirstSym(x), components)
7097                         : genarr(x.GetComponent(), components);
7098   }
7099 
7100   CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
7101     return std::visit([&](const auto &v) { return genarr(v, components); },
7102                       x.u);
7103   }
7104 
7105   bool pathIsEmpty(const ComponentPath &components) {
7106     return components.reversePath.empty();
7107   }
7108 
7109   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7110                              Fortran::lower::StatementContext &stmtCtx,
7111                              Fortran::lower::SymMap &symMap)
7112       : converter{converter}, builder{converter.getFirOpBuilder()},
7113         stmtCtx{stmtCtx}, symMap{symMap} {}
7114 
7115   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7116                              Fortran::lower::StatementContext &stmtCtx,
7117                              Fortran::lower::SymMap &symMap,
7118                              ConstituentSemantics sem)
7119       : converter{converter}, builder{converter.getFirOpBuilder()},
7120         stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}
7121 
7122   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7123                              Fortran::lower::StatementContext &stmtCtx,
7124                              Fortran::lower::SymMap &symMap,
7125                              ConstituentSemantics sem,
7126                              Fortran::lower::ExplicitIterSpace *expSpace,
7127                              Fortran::lower::ImplicitIterSpace *impSpace)
7128       : converter{converter}, builder{converter.getFirOpBuilder()},
7129         stmtCtx{stmtCtx}, symMap{symMap},
7130         explicitSpace(expSpace->isActive() ? expSpace : nullptr),
7131         implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} {
7132     // Generate any mask expressions, as necessary. This is the compute step
7133     // that creates the effective masks. See 10.2.3.2 in particular.
7134     genMasks();
7135   }
7136 
7137   mlir::Location getLoc() { return converter.getCurrentLocation(); }
7138 
7139   /// Array appears in a lhs context such that it is assigned after the rhs is
7140   /// fully evaluated.
7141   inline bool isCopyInCopyOut() {
7142     return semant == ConstituentSemantics::CopyInCopyOut;
7143   }
7144 
7145   /// Array appears in a lhs (or temp) context such that a projected,
7146   /// discontiguous subspace of the array is assigned after the rhs is fully
7147   /// evaluated. That is, the rhs array value is merged into a section of the
7148   /// lhs array.
7149   inline bool isProjectedCopyInCopyOut() {
7150     return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
7151   }
7152 
7153   // ???: Do we still need this?
7154   inline bool isCustomCopyInCopyOut() {
7155     return semant == ConstituentSemantics::CustomCopyInCopyOut;
7156   }
7157 
7158   /// Are we lowering in a left-hand side context?
7159   inline bool isLeftHandSide() {
7160     return isCopyInCopyOut() || isProjectedCopyInCopyOut() ||
7161            isCustomCopyInCopyOut();
7162   }
7163 
7164   /// Array appears in a context where it must be boxed.
7165   inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }
7166 
7167   /// Array appears in a context where differences in the memory reference can
7168   /// be observable in the computational results. For example, an array
7169   /// element is passed to an impure procedure.
7170   inline bool isReferentiallyOpaque() {
7171     return semant == ConstituentSemantics::RefOpaque;
7172   }
7173 
7174   /// Array appears in a context where it is passed as a VALUE argument.
7175   inline bool isValueAttribute() {
7176     return semant == ConstituentSemantics::ByValueArg;
7177   }
7178 
7179   /// Can the loops over the expression be unordered?
7180   inline bool isUnordered() const { return unordered; }
7181 
7182   void setUnordered(bool b) { unordered = b; }
7183 
7184   inline bool isPointerAssignment() const { return lbounds.has_value(); }
7185 
7186   inline bool isBoundsSpec() const {
7187     return isPointerAssignment() && !ubounds.has_value();
7188   }
7189 
7190   inline bool isBoundsRemap() const {
7191     return isPointerAssignment() && ubounds.has_value();
7192   }
7193 
7194   void setPointerAssignmentBounds(
7195       const llvm::SmallVector<mlir::Value> &lbs,
7196       llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) {
7197     lbounds = lbs;
7198     ubounds = ubs;
7199   }
7200 
7201   Fortran::lower::AbstractConverter &converter;
7202   fir::FirOpBuilder &builder;
7203   Fortran::lower::StatementContext &stmtCtx;
7204   bool elementCtx = false;
7205   Fortran::lower::SymMap &symMap;
7206   /// The continuation to generate code to update the destination.
7207   llvm::Optional<CC> ccStoreToDest;
7208   llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
7209   llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
7210       ccLoadDest;
7211   /// The destination is the loaded array into which the results will be
7212   /// merged.
7213   fir::ArrayLoadOp destination;
7214   /// The shape of the destination.
7215   llvm::SmallVector<mlir::Value> destShape;
7216   /// List of arrays in the expression that have been loaded.
7217   llvm::SmallVector<ArrayOperand> arrayOperands;
7218   /// If there is a user-defined iteration space, explicitShape will hold the
7219   /// information from the front end.
7220   Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
7221   Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
7222   ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
7223   /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only
7224   /// occur in an explicit iteration space.
7225   llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds;
7226   llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds;
7227   // Can the array expression be evaluated in any order?
7228   // Will be set to false if any of the expression parts prevent this.
7229   bool unordered = true;
7230 };
7231 } // namespace
7232 
7233 fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
7234     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7235     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7236     Fortran::lower::StatementContext &stmtCtx) {
7237   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7238   return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
7239 }
7240 
7241 fir::GlobalOp Fortran::lower::createDenseGlobal(
7242     mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName,
7243     mlir::StringAttr linkage, bool isConst,
7244     const Fortran::lower::SomeExpr &expr,
7245     Fortran::lower::AbstractConverter &converter) {
7246 
7247   Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true);
7248   Fortran::lower::SymMap emptyMap;
7249   InitializerData initData(/*genRawVals=*/true);
7250   ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx,
7251                          /*initializer=*/&initData);
7252   sel.genval(expr);
7253 
7254   size_t sz = initData.rawVals.size();
7255   llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz};
7256 
7257   mlir::RankedTensorType tensorTy;
7258   auto &builder = converter.getFirOpBuilder();
7259   mlir::Type iTy = initData.rawType;
7260   if (!iTy)
7261     return 0; // array extent is probably 0 in this case, so just return 0.
7262   tensorTy = mlir::RankedTensorType::get(sz, iTy);
7263   auto init = mlir::DenseElementsAttr::get(tensorTy, ar);
7264   return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
7265 }
7266 
7267 fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
7268     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7269     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7270     Fortran::lower::StatementContext &stmtCtx) {
7271   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7272   InitializerData initData; // needed for initializations
7273   return ScalarExprLowering{loc, converter, symMap, stmtCtx,
7274                             /*initializer=*/&initData}
7275       .genval(expr);
7276 }
7277 
7278 fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
7279     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7280     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7281     Fortran::lower::StatementContext &stmtCtx) {
7282   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
7283   return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr);
7284 }
7285 
7286 fir::ExtendedValue Fortran::lower::createInitializerAddress(
7287     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7288     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7289     Fortran::lower::StatementContext &stmtCtx) {
7290   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
7291   InitializerData init;
7292   return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr);
7293 }
7294 
7295 void Fortran::lower::createSomeArrayAssignment(
7296     Fortran::lower::AbstractConverter &converter,
7297     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7298     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7299   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7300              rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7301   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7302 }
7303 
7304 void Fortran::lower::createSomeArrayAssignment(
7305     Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
7306     const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap,
7307     Fortran::lower::StatementContext &stmtCtx) {
7308   LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
7309              rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7310   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7311 }
7312 void Fortran::lower::createSomeArrayAssignment(
7313     Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
7314     const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
7315     Fortran::lower::StatementContext &stmtCtx) {
7316   LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
7317              llvm::dbgs() << "assign expression: " << rhs << '\n';);
7318   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7319 }
7320 
7321 void Fortran::lower::createAnyMaskedArrayAssignment(
7322     Fortran::lower::AbstractConverter &converter,
7323     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7324     Fortran::lower::ExplicitIterSpace &explicitSpace,
7325     Fortran::lower::ImplicitIterSpace &implicitSpace,
7326     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7327   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7328              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7329              << " given the explicit iteration space:\n"
7330              << explicitSpace << "\n and implied mask conditions:\n"
7331              << implicitSpace << '\n';);
7332   ArrayExprLowering::lowerAnyMaskedArrayAssignment(
7333       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
7334 }
7335 
7336 void Fortran::lower::createAllocatableArrayAssignment(
7337     Fortran::lower::AbstractConverter &converter,
7338     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7339     Fortran::lower::ExplicitIterSpace &explicitSpace,
7340     Fortran::lower::ImplicitIterSpace &implicitSpace,
7341     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7342   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
7343              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7344              << " given the explicit iteration space:\n"
7345              << explicitSpace << "\n and implied mask conditions:\n"
7346              << implicitSpace << '\n';);
7347   ArrayExprLowering::lowerAllocatableArrayAssignment(
7348       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
7349 }
7350 
7351 void Fortran::lower::createArrayOfPointerAssignment(
7352     Fortran::lower::AbstractConverter &converter,
7353     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7354     Fortran::lower::ExplicitIterSpace &explicitSpace,
7355     Fortran::lower::ImplicitIterSpace &implicitSpace,
7356     const llvm::SmallVector<mlir::Value> &lbounds,
7357     llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds,
7358     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7359   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n';
7360              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7361              << " given the explicit iteration space:\n"
7362              << explicitSpace << "\n and implied mask conditions:\n"
7363              << implicitSpace << '\n';);
7364   assert(explicitSpace.isActive() && "must be in FORALL construct");
7365   ArrayExprLowering::lowerArrayOfPointerAssignment(
7366       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace,
7367       lbounds, ubounds);
7368 }
7369 
7370 fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
7371     Fortran::lower::AbstractConverter &converter,
7372     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7373     Fortran::lower::StatementContext &stmtCtx) {
7374   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7375   return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
7376                                                     expr);
7377 }
7378 
7379 void Fortran::lower::createLazyArrayTempValue(
7380     Fortran::lower::AbstractConverter &converter,
7381     const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader,
7382     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7383   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7384   ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr,
7385                                               raggedHeader);
7386 }
7387 
7388 fir::ExtendedValue
7389 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
7390                                    const Fortran::lower::SomeExpr &expr,
7391                                    Fortran::lower::SymMap &symMap,
7392                                    Fortran::lower::StatementContext &stmtCtx) {
7393   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
7394   return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
7395                                                       stmtCtx, expr);
7396 }
7397 
7398 fir::MutableBoxValue Fortran::lower::createMutableBox(
7399     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7400     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
7401   // MutableBox lowering StatementContext does not need to be propagated
7402   // to the caller because the result value is a variable, not a temporary
7403   // expression. The StatementContext clean-up can occur before using the
7404   // resulting MutableBoxValue. Variables of all other types are handled in the
7405   // bridge.
7406   Fortran::lower::StatementContext dummyStmtCtx;
7407   return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
7408       .genMutableBoxValue(expr);
7409 }
7410 
7411 fir::ExtendedValue Fortran::lower::createBoxValue(
7412     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7413     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7414     Fortran::lower::StatementContext &stmtCtx) {
7415   if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) &&
7416       !Fortran::evaluate::HasVectorSubscript(expr))
7417     return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx);
7418   fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress(
7419       loc, converter, expr, symMap, stmtCtx);
7420   return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr));
7421 }
7422 
7423 mlir::Value Fortran::lower::createSubroutineCall(
7424     AbstractConverter &converter, const evaluate::ProcedureRef &call,
7425     ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace,
7426     SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) {
7427   mlir::Location loc = converter.getCurrentLocation();
7428 
7429   if (isUserDefAssignment) {
7430     assert(call.arguments().size() == 2);
7431     const auto *lhs = call.arguments()[0].value().UnwrapExpr();
7432     const auto *rhs = call.arguments()[1].value().UnwrapExpr();
7433     assert(lhs && rhs &&
7434            "user defined assignment arguments must be expressions");
7435     if (call.IsElemental() && lhs->Rank() > 0) {
7436       // Elemental user defined assignment has special requirements to deal with
7437       // LHS/RHS overlaps. See 10.2.1.5 p2.
7438       ArrayExprLowering::lowerElementalUserAssignment(
7439           converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace,
7440           call);
7441     } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) {
7442       // Scalar defined assignment (elemental or not) in a FORALL context.
7443       mlir::func::FuncOp func =
7444           Fortran::lower::CallerInterface(call, converter).getFuncOp();
7445       ArrayExprLowering::lowerScalarUserAssignment(
7446           converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs);
7447     } else if (explicitIterSpace.isActive()) {
7448       // TODO: need to array fetch/modify sub-arrays?
7449       TODO(loc, "non elemental user defined array assignment inside FORALL");
7450     } else {
7451       if (!implicitIterSpace.empty())
7452         fir::emitFatalError(
7453             loc,
7454             "C1032: user defined assignment inside WHERE must be elemental");
7455       // Non elemental user defined assignment outside of FORALL and WHERE.
7456       // FIXME: The non elemental user defined assignment case with array
7457       // arguments must be take into account potential overlap. So far the front
7458       // end does not add parentheses around the RHS argument in the call as it
7459       // should according to 15.4.3.4.3 p2.
7460       Fortran::lower::createSomeExtendedExpression(
7461           loc, converter, toEvExpr(call), symMap, stmtCtx);
7462     }
7463     return {};
7464   }
7465 
7466   assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() &&
7467          "subroutine calls are not allowed inside WHERE and FORALL");
7468 
7469   if (isElementalProcWithArrayArgs(call)) {
7470     ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx,
7471                                                 toEvExpr(call));
7472     return {};
7473   }
7474   // Simple subroutine call, with potential alternate return.
7475   auto res = Fortran::lower::createSomeExtendedExpression(
7476       loc, converter, toEvExpr(call), symMap, stmtCtx);
7477   return fir::getBase(res);
7478 }
7479 
7480 template <typename A>
7481 fir::ArrayLoadOp genArrayLoad(mlir::Location loc,
7482                               Fortran::lower::AbstractConverter &converter,
7483                               fir::FirOpBuilder &builder, const A *x,
7484                               Fortran::lower::SymMap &symMap,
7485                               Fortran::lower::StatementContext &stmtCtx) {
7486   auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x);
7487   mlir::Value addr = fir::getBase(exv);
7488   mlir::Value shapeOp = builder.createShape(loc, exv);
7489   mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
7490   return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp,
7491                                           /*slice=*/mlir::Value{},
7492                                           fir::getTypeParams(exv));
7493 }
7494 template <>
7495 fir::ArrayLoadOp
7496 genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7497              fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x,
7498              Fortran::lower::SymMap &symMap,
7499              Fortran::lower::StatementContext &stmtCtx) {
7500   if (x->base().IsSymbol())
7501     return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap,
7502                         stmtCtx);
7503   return genArrayLoad(loc, converter, builder, &x->base().GetComponent(),
7504                       symMap, stmtCtx);
7505 }
7506 
7507 void Fortran::lower::createArrayLoads(
7508     Fortran::lower::AbstractConverter &converter,
7509     Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) {
7510   std::size_t counter = esp.getCounter();
7511   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
7512   mlir::Location loc = converter.getCurrentLocation();
7513   Fortran::lower::StatementContext &stmtCtx = esp.stmtContext();
7514   // Gen the fir.array_load ops.
7515   auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp {
7516     return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx);
7517   };
7518   if (esp.lhsBases[counter]) {
7519     auto &base = *esp.lhsBases[counter];
7520     auto load = std::visit(genLoad, base);
7521     esp.initialArgs.push_back(load);
7522     esp.resetInnerArgs();
7523     esp.bindLoad(base, load);
7524   }
7525   for (const auto &base : esp.rhsBases[counter])
7526     esp.bindLoad(base, std::visit(genLoad, base));
7527 }
7528 
7529 void Fortran::lower::createArrayMergeStores(
7530     Fortran::lower::AbstractConverter &converter,
7531     Fortran::lower::ExplicitIterSpace &esp) {
7532   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
7533   mlir::Location loc = converter.getCurrentLocation();
7534   builder.setInsertionPointAfter(esp.getOuterLoop());
7535   // Gen the fir.array_merge_store ops for all LHS arrays.
7536   for (auto i : llvm::enumerate(esp.getOuterLoop().getResults()))
7537     if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) {
7538       fir::ArrayLoadOp load = *ldOpt;
7539       builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(),
7540                                              load.getMemref(), load.getSlice(),
7541                                              load.getTypeparams());
7542     }
7543   if (esp.loopCleanup) {
7544     esp.loopCleanup.value()(builder);
7545     esp.loopCleanup = llvm::None;
7546   }
7547   esp.initialArgs.clear();
7548   esp.innerArgs.clear();
7549   esp.outerLoop = llvm::None;
7550   esp.resetBindings();
7551   esp.incrementCounter();
7552 }
7553