1 //===-- ConvertExpr.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Lower/ConvertExpr.h" 14 #include "flang/Common/default-kinds.h" 15 #include "flang/Common/unwrap.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/real.h" 18 #include "flang/Evaluate/traverse.h" 19 #include "flang/Lower/Allocatable.h" 20 #include "flang/Lower/Bridge.h" 21 #include "flang/Lower/BuiltinModules.h" 22 #include "flang/Lower/CallInterface.h" 23 #include "flang/Lower/Coarray.h" 24 #include "flang/Lower/ComponentPath.h" 25 #include "flang/Lower/ConvertType.h" 26 #include "flang/Lower/ConvertVariable.h" 27 #include "flang/Lower/CustomIntrinsicCall.h" 28 #include "flang/Lower/DumpEvaluateExpr.h" 29 #include "flang/Lower/IntrinsicCall.h" 30 #include "flang/Lower/Mangler.h" 31 #include "flang/Lower/Runtime.h" 32 #include "flang/Lower/Support/Utils.h" 33 #include "flang/Optimizer/Builder/Character.h" 34 #include "flang/Optimizer/Builder/Complex.h" 35 #include "flang/Optimizer/Builder/Factory.h" 36 #include "flang/Optimizer/Builder/Runtime/Character.h" 37 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" 38 #include "flang/Optimizer/Builder/Runtime/Ragged.h" 39 #include "flang/Optimizer/Builder/Todo.h" 40 #include "flang/Optimizer/Dialect/FIRAttr.h" 41 #include "flang/Optimizer/Dialect/FIRDialect.h" 42 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 43 #include "flang/Optimizer/Support/FatalError.h" 44 #include "flang/Semantics/expression.h" 45 #include "flang/Semantics/symbol.h" 46 #include "flang/Semantics/tools.h" 47 #include "flang/Semantics/type.h" 48 #include "mlir/Dialect/Func/IR/FuncOps.h" 49 #include "llvm/ADT/TypeSwitch.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <algorithm> 55 56 #define DEBUG_TYPE "flang-lower-expr" 57 58 //===----------------------------------------------------------------------===// 59 // The composition and structure of Fortran::evaluate::Expr is defined in 60 // the various header files in include/flang/Evaluate. You are referred 61 // there for more information on these data structures. Generally speaking, 62 // these data structures are a strongly typed family of abstract data types 63 // that, composed as trees, describe the syntax of Fortran expressions. 64 // 65 // This part of the bridge can traverse these tree structures and lower them 66 // to the correct FIR representation in SSA form. 67 //===----------------------------------------------------------------------===// 68 69 static llvm::cl::opt<bool> generateArrayCoordinate( 70 "gen-array-coor", 71 llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"), 72 llvm::cl::init(false)); 73 74 // The default attempts to balance a modest allocation size with expected user 75 // input to minimize bounds checks and reallocations during dynamic array 76 // construction. Some user codes may have very large array constructors for 77 // which the default can be increased. 78 static llvm::cl::opt<unsigned> clInitialBufferSize( 79 "array-constructor-initial-buffer-size", 80 llvm::cl::desc( 81 "set the incremental array construction buffer size (default=32)"), 82 llvm::cl::init(32u)); 83 84 /// The various semantics of a program constituent (or a part thereof) as it may 85 /// appear in an expression. 86 /// 87 /// Given the following Fortran declarations. 88 /// ```fortran 89 /// REAL :: v1, v2, v3 90 /// REAL, POINTER :: vp1 91 /// REAL :: a1(c), a2(c) 92 /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array 93 /// FUNCTION f2(arg) ! array -> array 94 /// vp1 => v3 ! 1 95 /// v1 = v2 * vp1 ! 2 96 /// a1 = a1 + a2 ! 3 97 /// a1 = f1(a2) ! 4 98 /// a1 = f2(a2) ! 5 99 /// ``` 100 /// 101 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is 102 /// constructed from the DataAddr of `v3`. 103 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed 104 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double 105 /// dereference in the `vp1` case. 106 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs 107 /// is CopyInCopyOut as `a1` is replaced elementally by the additions. 108 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if 109 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/ 110 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut. 111 /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational. 112 /// `a1` on the lhs is again CopyInCopyOut. 113 enum class ConstituentSemantics { 114 // Scalar data reference semantics. 115 // 116 // For these let `v` be the location in memory of a variable with value `x` 117 DataValue, // refers to the value `x` 118 DataAddr, // refers to the address `v` 119 BoxValue, // refers to a box value containing `v` 120 BoxAddr, // refers to the address of a box value containing `v` 121 122 // Array data reference semantics. 123 // 124 // For these let `a` be the location in memory of a sequence of value `[xs]`. 125 // Let `x_i` be the `i`-th value in the sequence `[xs]`. 126 127 // Referentially transparent. Refers to the array's value, `[xs]`. 128 RefTransparent, 129 // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7 130 // note 2). (Passing a copy by reference to simulate pass-by-value.) 131 ByValueArg, 132 // Refers to the merge of array value `[xs]` with another array value `[ys]`. 133 // This merged array value will be written into memory location `a`. 134 CopyInCopyOut, 135 // Similar to CopyInCopyOut but `a` may be a transient projection (rather than 136 // a whole array). 137 ProjectedCopyInCopyOut, 138 // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned 139 // automatically by the framework. Instead, and address for `[xs]` is made 140 // accessible so that custom assignments to `[xs]` can be implemented. 141 CustomCopyInCopyOut, 142 // Referentially opaque. Refers to the address of `x_i`. 143 RefOpaque 144 }; 145 146 /// Convert parser's INTEGER relational operators to MLIR. TODO: using 147 /// unordered, but we may want to cons ordered in certain situation. 148 static mlir::arith::CmpIPredicate 149 translateRelational(Fortran::common::RelationalOperator rop) { 150 switch (rop) { 151 case Fortran::common::RelationalOperator::LT: 152 return mlir::arith::CmpIPredicate::slt; 153 case Fortran::common::RelationalOperator::LE: 154 return mlir::arith::CmpIPredicate::sle; 155 case Fortran::common::RelationalOperator::EQ: 156 return mlir::arith::CmpIPredicate::eq; 157 case Fortran::common::RelationalOperator::NE: 158 return mlir::arith::CmpIPredicate::ne; 159 case Fortran::common::RelationalOperator::GT: 160 return mlir::arith::CmpIPredicate::sgt; 161 case Fortran::common::RelationalOperator::GE: 162 return mlir::arith::CmpIPredicate::sge; 163 } 164 llvm_unreachable("unhandled INTEGER relational operator"); 165 } 166 167 /// Convert parser's REAL relational operators to MLIR. 168 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018 169 /// requirements in the IEEE context (table 17.1 of F2018). This choice is 170 /// also applied in other contexts because it is easier and in line with 171 /// other Fortran compilers. 172 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not 173 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee 174 /// whether the comparison will signal or not in case of quiet NaN argument. 175 static mlir::arith::CmpFPredicate 176 translateFloatRelational(Fortran::common::RelationalOperator rop) { 177 switch (rop) { 178 case Fortran::common::RelationalOperator::LT: 179 return mlir::arith::CmpFPredicate::OLT; 180 case Fortran::common::RelationalOperator::LE: 181 return mlir::arith::CmpFPredicate::OLE; 182 case Fortran::common::RelationalOperator::EQ: 183 return mlir::arith::CmpFPredicate::OEQ; 184 case Fortran::common::RelationalOperator::NE: 185 return mlir::arith::CmpFPredicate::UNE; 186 case Fortran::common::RelationalOperator::GT: 187 return mlir::arith::CmpFPredicate::OGT; 188 case Fortran::common::RelationalOperator::GE: 189 return mlir::arith::CmpFPredicate::OGE; 190 } 191 llvm_unreachable("unhandled REAL relational operator"); 192 } 193 194 static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder, 195 mlir::Location loc, 196 fir::ExtendedValue actual) { 197 if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>()) 198 return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 199 *ptrOrAlloc); 200 // Optional case (not that optional allocatable/pointer cannot be absent 201 // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is 202 // therefore possible to catch them in the `then` case above. 203 return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), 204 fir::getBase(actual)); 205 } 206 207 /// Convert the array_load, `load`, to an extended value. If `path` is not 208 /// empty, then traverse through the components designated. The base value is 209 /// `newBase`. This does not accept an array_load with a slice operand. 210 static fir::ExtendedValue 211 arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc, 212 fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path, 213 mlir::Value newBase, mlir::Value newLen = {}) { 214 // Recover the extended value from the load. 215 if (load.getSlice()) 216 fir::emitFatalError(loc, "array_load with slice is not allowed"); 217 mlir::Type arrTy = load.getType(); 218 if (!path.empty()) { 219 mlir::Type ty = fir::applyPathToType(arrTy, path); 220 if (!ty) 221 fir::emitFatalError(loc, "path does not apply to type"); 222 if (!ty.isa<fir::SequenceType>()) { 223 if (fir::isa_char(ty)) { 224 mlir::Value len = newLen; 225 if (!len) 226 len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 227 load.getMemref()); 228 if (!len) { 229 assert(load.getTypeparams().size() == 1 && 230 "length must be in array_load"); 231 len = load.getTypeparams()[0]; 232 } 233 return fir::CharBoxValue{newBase, len}; 234 } 235 return newBase; 236 } 237 arrTy = ty.cast<fir::SequenceType>(); 238 } 239 240 auto arrayToExtendedValue = 241 [&](const llvm::SmallVector<mlir::Value> &extents, 242 const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue { 243 mlir::Type eleTy = fir::unwrapSequenceType(arrTy); 244 if (fir::isa_char(eleTy)) { 245 mlir::Value len = newLen; 246 if (!len) 247 len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 248 load.getMemref()); 249 if (!len) { 250 assert(load.getTypeparams().size() == 1 && 251 "length must be in array_load"); 252 len = load.getTypeparams()[0]; 253 } 254 return fir::CharArrayBoxValue(newBase, len, extents, origins); 255 } 256 return fir::ArrayBoxValue(newBase, extents, origins); 257 }; 258 // Use the shape op, if there is one. 259 mlir::Value shapeVal = load.getShape(); 260 if (shapeVal) { 261 if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) { 262 auto extents = fir::factory::getExtents(shapeVal); 263 auto origins = fir::factory::getOrigins(shapeVal); 264 return arrayToExtendedValue(extents, origins); 265 } 266 if (!fir::isa_box_type(load.getMemref().getType())) 267 fir::emitFatalError(loc, "shift op is invalid in this context"); 268 } 269 270 // If we're dealing with the array_load op (not a subobject) and the load does 271 // not have any type parameters, then read the extents from the original box. 272 // The origin may be either from the box or a shift operation. Create and 273 // return the array extended value. 274 if (path.empty() && load.getTypeparams().empty()) { 275 auto oldBox = load.getMemref(); 276 fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox); 277 auto extents = fir::factory::getExtents(loc, builder, exv); 278 auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv); 279 if (shapeVal) { 280 // shapeVal is a ShiftOp and load.memref() is a boxed value. 281 newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox, 282 shapeVal, /*slice=*/mlir::Value{}); 283 origins = fir::factory::getOrigins(shapeVal); 284 } 285 return fir::substBase(arrayToExtendedValue(extents, origins), newBase); 286 } 287 TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires " 288 "dereferencing; generating the type parameters is a hard " 289 "requirement for correctness."); 290 } 291 292 /// Place \p exv in memory if it is not already a memory reference. If 293 /// \p forceValueType is provided, the value is first casted to the provided 294 /// type before being stored (this is mainly intended for logicals whose value 295 /// may be `i1` but needed to be stored as Fortran logicals). 296 static fir::ExtendedValue 297 placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc, 298 const fir::ExtendedValue &exv, 299 mlir::Type storageType) { 300 mlir::Value valBase = fir::getBase(exv); 301 if (fir::conformsWithPassByRef(valBase.getType())) 302 return exv; 303 304 assert(!fir::hasDynamicSize(storageType) && 305 "only expect statically sized scalars to be by value"); 306 307 // Since `a` is not itself a valid referent, determine its value and 308 // create a temporary location at the beginning of the function for 309 // referencing. 310 mlir::Value val = builder.createConvert(loc, storageType, valBase); 311 mlir::Value temp = builder.createTemporary( 312 loc, storageType, 313 llvm::ArrayRef<mlir::NamedAttribute>{ 314 Fortran::lower::getAdaptToByRefAttr(builder)}); 315 builder.create<fir::StoreOp>(loc, val, temp); 316 return fir::substBase(exv, temp); 317 } 318 319 // Copy a copy of scalar \p exv in a new temporary. 320 static fir::ExtendedValue 321 createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc, 322 const fir::ExtendedValue &exv) { 323 assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar"); 324 if (exv.getCharBox() != nullptr) 325 return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv); 326 if (fir::isDerivedWithLenParameters(exv)) 327 TODO(loc, "copy derived type with length parameters"); 328 mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType()); 329 fir::ExtendedValue temp = builder.createTemporary(loc, type); 330 fir::factory::genScalarAssignment(builder, loc, temp, exv); 331 return temp; 332 } 333 334 // An expression with non-zero rank is an array expression. 335 template <typename A> 336 static bool isArray(const A &x) { 337 return x.Rank() != 0; 338 } 339 340 /// Is this a variable wrapped in parentheses? 341 template <typename A> 342 static bool isParenthesizedVariable(const A &) { 343 return false; 344 } 345 template <typename T> 346 static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) { 347 using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u); 348 using Parentheses = Fortran::evaluate::Parentheses<T>; 349 if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) { 350 if (const auto *parentheses = std::get_if<Parentheses>(&expr.u)) 351 return Fortran::evaluate::IsVariable(parentheses->left()); 352 return false; 353 } else { 354 return std::visit([&](const auto &x) { return isParenthesizedVariable(x); }, 355 expr.u); 356 } 357 } 358 359 /// Does \p expr only refer to symbols that are mapped to IR values in \p symMap 360 /// ? 361 static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr, 362 Fortran::lower::SymMap &symMap) { 363 for (const auto &sym : Fortran::evaluate::CollectSymbols(expr)) 364 if (!symMap.lookupSymbol(sym)) 365 return false; 366 return true; 367 } 368 369 /// Generate a load of a value from an address. Beware that this will lose 370 /// any dynamic type information for polymorphic entities (note that unlimited 371 /// polymorphic cannot be loaded and must not be provided here). 372 static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder, 373 mlir::Location loc, 374 const fir::ExtendedValue &addr) { 375 return addr.match( 376 [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, 377 [&](const fir::UnboxedValue &v) -> fir::ExtendedValue { 378 if (fir::unwrapRefType(fir::getBase(v).getType()) 379 .isa<fir::RecordType>()) 380 return v; 381 return builder.create<fir::LoadOp>(loc, fir::getBase(v)); 382 }, 383 [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { 384 return genLoad(builder, loc, 385 fir::factory::genMutableBoxRead(builder, loc, box)); 386 }, 387 [&](const fir::BoxValue &box) -> fir::ExtendedValue { 388 if (box.isUnlimitedPolymorphic()) 389 fir::emitFatalError( 390 loc, 391 "lowering attempting to load an unlimited polymorphic entity"); 392 return genLoad(builder, loc, 393 fir::factory::readBoxValue(builder, loc, box)); 394 }, 395 [&](const auto &) -> fir::ExtendedValue { 396 fir::emitFatalError( 397 loc, "attempting to load whole array or procedure address"); 398 }); 399 } 400 401 /// Create an optional dummy argument value from entity \p exv that may be 402 /// absent. This can only be called with numerical or logical scalar \p exv. 403 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned 404 /// value is zero (or false), otherwise it is the value of \p exv. 405 static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder, 406 mlir::Location loc, 407 const fir::ExtendedValue &exv, 408 mlir::Value isPresent) { 409 mlir::Type eleType = fir::getBaseTypeOf(exv); 410 assert(exv.rank() == 0 && fir::isa_trivial(eleType) && 411 "must be a numerical or logical scalar"); 412 return builder 413 .genIfOp(loc, {eleType}, isPresent, 414 /*withElseRegion=*/true) 415 .genThen([&]() { 416 mlir::Value val = fir::getBase(genLoad(builder, loc, exv)); 417 builder.create<fir::ResultOp>(loc, val); 418 }) 419 .genElse([&]() { 420 mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType); 421 builder.create<fir::ResultOp>(loc, zero); 422 }) 423 .getResults()[0]; 424 } 425 426 /// Create an optional dummy argument address from entity \p exv that may be 427 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the 428 /// returned value is a null pointer, otherwise it is the address of \p exv. 429 static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder, 430 mlir::Location loc, 431 const fir::ExtendedValue &exv, 432 mlir::Value isPresent) { 433 // If it is an exv pointer/allocatable, then it cannot be absent 434 // because it is passed to a non-pointer/non-allocatable. 435 if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) 436 return fir::factory::genMutableBoxRead(builder, loc, *box); 437 // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL 438 // address and can be passed directly. 439 return exv; 440 } 441 442 /// Create an optional dummy argument address from entity \p exv that may be 443 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the 444 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p 445 /// exv. 446 static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder, 447 mlir::Location loc, 448 const fir::ExtendedValue &exv, 449 mlir::Value isPresent) { 450 // Non allocatable/pointer optional box -> simply forward 451 if (exv.getBoxOf<fir::BoxValue>()) 452 return exv; 453 454 fir::ExtendedValue newExv = exv; 455 // Optional allocatable/pointer -> Cannot be absent, but need to translate 456 // unallocated/diassociated into absent fir.box. 457 if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) 458 newExv = fir::factory::genMutableBoxRead(builder, loc, *box); 459 460 // createBox will not do create any invalid memory dereferences if exv is 461 // absent. The created fir.box will not be usable, but the SelectOp below 462 // ensures it won't be. 463 mlir::Value box = builder.createBox(loc, newExv); 464 mlir::Type boxType = box.getType(); 465 auto absent = builder.create<fir::AbsentOp>(loc, boxType); 466 auto boxOrAbsent = builder.create<mlir::arith::SelectOp>( 467 loc, boxType, isPresent, box, absent); 468 return fir::BoxValue(boxOrAbsent); 469 } 470 471 /// Is this a call to an elemental procedure with at least one array argument? 472 static bool 473 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) { 474 if (procRef.IsElemental()) 475 for (const std::optional<Fortran::evaluate::ActualArgument> &arg : 476 procRef.arguments()) 477 if (arg && arg->Rank() != 0) 478 return true; 479 return false; 480 } 481 template <typename T> 482 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) { 483 return false; 484 } 485 template <> 486 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) { 487 if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u)) 488 return isElementalProcWithArrayArgs(*procRef); 489 return false; 490 } 491 492 /// Some auxiliary data for processing initialization in ScalarExprLowering 493 /// below. This is currently used for generating dense attributed global 494 /// arrays. 495 struct InitializerData { 496 explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {} 497 llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values 498 mlir::Type rawType; // Type of elements processed for rawVals vector. 499 bool genRawVals; // generate the rawVals vector if set. 500 }; 501 502 /// If \p arg is the address of a function with a denoted host-association tuple 503 /// argument, then return the host-associations tuple value of the current 504 /// procedure. Otherwise, return nullptr. 505 static mlir::Value 506 argumentHostAssocs(Fortran::lower::AbstractConverter &converter, 507 mlir::Value arg) { 508 if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) { 509 auto &builder = converter.getFirOpBuilder(); 510 if (auto funcOp = builder.getNamedFunction(addr.getSymbol())) 511 if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName())) 512 return converter.hostAssocTupleValue(); 513 } 514 return {}; 515 } 516 517 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the 518 /// \p funcAddr argument to a boxproc value, with the host-association as 519 /// required. Call the factory function to finish creating the tuple value. 520 static mlir::Value 521 createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter, 522 mlir::Type argTy, mlir::Value funcAddr, 523 mlir::Value charLen) { 524 auto boxTy = 525 argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>(); 526 mlir::Location loc = converter.getCurrentLocation(); 527 auto &builder = converter.getFirOpBuilder(); 528 auto boxProc = [&]() -> mlir::Value { 529 if (auto host = argumentHostAssocs(converter, funcAddr)) 530 return builder.create<fir::EmboxProcOp>( 531 loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host}); 532 return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr); 533 }(); 534 return fir::factory::createCharacterProcedureTuple(builder, loc, argTy, 535 boxProc, charLen); 536 } 537 538 /// Given an optional fir.box, returns an fir.box that is the original one if 539 /// it is present and it otherwise an unallocated box. 540 /// Absent fir.box are implemented as a null pointer descriptor. Generated 541 /// code may need to unconditionally read a fir.box that can be absent. 542 /// This helper allows creating a fir.box that can be read in all cases 543 /// outside of a fir.if (isPresent) region. However, the usages of the value 544 /// read from such box should still only be done in a fir.if(isPresent). 545 static fir::ExtendedValue 546 absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc, 547 const fir::ExtendedValue &exv, 548 mlir::Value isPresent) { 549 mlir::Value box = fir::getBase(exv); 550 mlir::Type boxType = box.getType(); 551 assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box"); 552 mlir::Value emptyBox = 553 fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None); 554 auto safeToReadBox = 555 builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox); 556 return fir::substBase(exv, safeToReadBox); 557 } 558 559 // Helper to get the ultimate first symbol. This works around the fact that 560 // symbol resolution in the front end doesn't always resolve a symbol to its 561 // ultimate symbol but may leave placeholder indirections for use and host 562 // associations. 563 template <typename A> 564 const Fortran::semantics::Symbol &getFirstSym(const A &obj) { 565 return obj.GetFirstSymbol().GetUltimate(); 566 } 567 568 // Helper to get the ultimate last symbol. 569 template <typename A> 570 const Fortran::semantics::Symbol &getLastSym(const A &obj) { 571 return obj.GetLastSymbol().GetUltimate(); 572 } 573 574 static bool 575 isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) { 576 const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); 577 if (!symbol) 578 return false; 579 const Fortran::semantics::Symbol *module = 580 symbol->GetUltimate().owner().GetSymbol(); 581 return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC); 582 } 583 584 namespace { 585 586 /// Lowering of Fortran::evaluate::Expr<T> expressions 587 class ScalarExprLowering { 588 public: 589 using ExtValue = fir::ExtendedValue; 590 591 explicit ScalarExprLowering(mlir::Location loc, 592 Fortran::lower::AbstractConverter &converter, 593 Fortran::lower::SymMap &symMap, 594 Fortran::lower::StatementContext &stmtCtx, 595 InitializerData *initializer = nullptr) 596 : location{loc}, converter{converter}, 597 builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap}, 598 inInitializer{initializer} {} 599 600 ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) { 601 return gen(expr); 602 } 603 604 /// Lower `expr` to be passed as a fir.box argument. Do not create a temp 605 /// for the expr if it is a variable that can be described as a fir.box. 606 ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) { 607 bool saveUseBoxArg = useBoxArg; 608 useBoxArg = true; 609 ExtValue result = gen(expr); 610 useBoxArg = saveUseBoxArg; 611 return result; 612 } 613 614 ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) { 615 return genval(expr); 616 } 617 618 /// Lower an expression that is a pointer or an allocatable to a 619 /// MutableBoxValue. 620 fir::MutableBoxValue 621 genMutableBoxValue(const Fortran::lower::SomeExpr &expr) { 622 // Pointers and allocatables can only be: 623 // - a simple designator "x" 624 // - a component designator "a%b(i,j)%x" 625 // - a function reference "foo()" 626 // - result of NULL() or NULL(MOLD) intrinsic. 627 // NULL() requires some context to be lowered, so it is not handled 628 // here and must be lowered according to the context where it appears. 629 ExtValue exv = std::visit( 630 [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); 631 const fir::MutableBoxValue *mutableBox = 632 exv.getBoxOf<fir::MutableBoxValue>(); 633 if (!mutableBox) 634 fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue"); 635 return *mutableBox; 636 } 637 638 template <typename T> 639 ExtValue genMutableBoxValueImpl(const T &) { 640 // NULL() case should not be handled here. 641 fir::emitFatalError(getLoc(), "NULL() must be lowered in its context"); 642 } 643 644 /// A `NULL()` in a position where a mutable box is expected has the same 645 /// semantics as an absent optional box value. 646 ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) { 647 mlir::Location loc = getLoc(); 648 auto nullConst = builder.createNullConstant(loc); 649 auto noneTy = mlir::NoneType::get(builder.getContext()); 650 auto polyRefTy = fir::LLVMPointerType::get(noneTy); 651 // MutableBoxValue will dereference the box, so create a bogus temporary for 652 // the `nullptr`. The LLVM optimizer will garbage collect the temp. 653 auto temp = 654 builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{}); 655 auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst); 656 builder.create<fir::StoreOp>(loc, nullPtr, temp); 657 auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy)); 658 return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp), 659 /*lenParameters=*/mlir::ValueRange{}, 660 /*mutableProperties=*/{}); 661 } 662 663 template <typename T> 664 ExtValue 665 genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) { 666 return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef))); 667 } 668 669 template <typename T> 670 ExtValue 671 genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) { 672 return std::visit( 673 Fortran::common::visitors{ 674 [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue { 675 return symMap.lookupSymbol(*sym).toExtendedValue(); 676 }, 677 [&](const Fortran::evaluate::Component &comp) -> ExtValue { 678 return genComponent(comp); 679 }, 680 [&](const auto &) -> ExtValue { 681 fir::emitFatalError(getLoc(), 682 "not an allocatable or pointer designator"); 683 }}, 684 designator.u); 685 } 686 687 template <typename T> 688 ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) { 689 return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); }, 690 expr.u); 691 } 692 693 mlir::Location getLoc() { return location; } 694 695 template <typename A> 696 mlir::Value genunbox(const A &expr) { 697 ExtValue e = genval(expr); 698 if (const fir::UnboxedValue *r = e.getUnboxed()) 699 return *r; 700 fir::emitFatalError(getLoc(), "unboxed expression expected"); 701 } 702 703 /// Generate an integral constant of `value` 704 template <int KIND> 705 mlir::Value genIntegerConstant(mlir::MLIRContext *context, 706 std::int64_t value) { 707 mlir::Type type = 708 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 709 return builder.createIntegerConstant(getLoc(), type, value); 710 } 711 712 /// Generate a logical/boolean constant of `value` 713 mlir::Value genBoolConstant(bool value) { 714 return builder.createBool(getLoc(), value); 715 } 716 717 /// Generate a real constant with a value `value`. 718 template <int KIND> 719 mlir::Value genRealConstant(mlir::MLIRContext *context, 720 const llvm::APFloat &value) { 721 mlir::Type fltTy = Fortran::lower::convertReal(context, KIND); 722 return builder.createRealConstant(getLoc(), fltTy, value); 723 } 724 725 mlir::Type getSomeKindInteger() { return builder.getIndexType(); } 726 727 mlir::func::FuncOp getFunction(llvm::StringRef name, 728 mlir::FunctionType funTy) { 729 if (mlir::func::FuncOp func = builder.getNamedFunction(name)) 730 return func; 731 return builder.createFunction(getLoc(), name, funTy); 732 } 733 734 template <typename OpTy> 735 mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred, 736 const ExtValue &left, const ExtValue &right) { 737 if (const fir::UnboxedValue *lhs = left.getUnboxed()) 738 if (const fir::UnboxedValue *rhs = right.getUnboxed()) 739 return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); 740 fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); 741 } 742 template <typename OpTy, typename A> 743 mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) { 744 ExtValue left = genval(ex.left()); 745 return createCompareOp<OpTy>(pred, left, genval(ex.right())); 746 } 747 748 template <typename OpTy> 749 mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred, 750 const ExtValue &left, const ExtValue &right) { 751 if (const fir::UnboxedValue *lhs = left.getUnboxed()) 752 if (const fir::UnboxedValue *rhs = right.getUnboxed()) 753 return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); 754 fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); 755 } 756 template <typename OpTy, typename A> 757 mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) { 758 ExtValue left = genval(ex.left()); 759 return createFltCmpOp<OpTy>(pred, left, genval(ex.right())); 760 } 761 762 /// Create a call to the runtime to compare two CHARACTER values. 763 /// Precondition: This assumes that the two values have `fir.boxchar` type. 764 mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred, 765 const ExtValue &left, const ExtValue &right) { 766 return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right); 767 } 768 769 template <typename A> 770 mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) { 771 ExtValue left = genval(ex.left()); 772 return createCharCompare(pred, left, genval(ex.right())); 773 } 774 775 /// Returns a reference to a symbol or its box/boxChar descriptor if it has 776 /// one. 777 ExtValue gen(Fortran::semantics::SymbolRef sym) { 778 if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym)) 779 return val.match( 780 [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) { 781 return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr); 782 }, 783 [&val](auto &) { return val.toExtendedValue(); }); 784 LLVM_DEBUG(llvm::dbgs() 785 << "unknown symbol: " << sym << "\nmap: " << symMap << '\n'); 786 fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value"); 787 } 788 789 ExtValue genLoad(const ExtValue &exv) { 790 return ::genLoad(builder, getLoc(), exv); 791 } 792 793 ExtValue genval(Fortran::semantics::SymbolRef sym) { 794 mlir::Location loc = getLoc(); 795 ExtValue var = gen(sym); 796 if (const fir::UnboxedValue *s = var.getUnboxed()) 797 if (fir::isa_ref_type(s->getType())) { 798 // A function with multiple entry points returning different types 799 // tags all result variables with one of the largest types to allow 800 // them to share the same storage. A reference to a result variable 801 // of one of the other types requires conversion to the actual type. 802 fir::UnboxedValue addr = *s; 803 if (Fortran::semantics::IsFunctionResult(sym)) { 804 mlir::Type resultType = converter.genType(*sym); 805 if (addr.getType() != resultType) 806 addr = builder.createConvert(loc, builder.getRefType(resultType), 807 addr); 808 } 809 return genLoad(addr); 810 } 811 return var; 812 } 813 814 ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) { 815 TODO(getLoc(), "BOZ"); 816 } 817 818 /// Return indirection to function designated in ProcedureDesignator. 819 /// The type of the function indirection is not guaranteed to match the one 820 /// of the ProcedureDesignator due to Fortran implicit typing rules. 821 ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) { 822 mlir::Location loc = getLoc(); 823 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 824 proc.GetSpecificIntrinsic()) { 825 mlir::FunctionType signature = 826 Fortran::lower::translateSignature(proc, converter); 827 // Intrinsic lowering is based on the generic name, so retrieve it here in 828 // case it is different from the specific name. The type of the specific 829 // intrinsic is retained in the signature. 830 std::string genericName = 831 converter.getFoldingContext().intrinsics().GetGenericIntrinsicName( 832 intrinsic->name); 833 mlir::SymbolRefAttr symbolRefAttr = 834 Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr( 835 builder, loc, genericName, signature); 836 mlir::Value funcPtr = 837 builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr); 838 return funcPtr; 839 } 840 const Fortran::semantics::Symbol *symbol = proc.GetSymbol(); 841 assert(symbol && "expected symbol in ProcedureDesignator"); 842 mlir::Value funcPtr; 843 mlir::Value funcPtrResultLength; 844 if (Fortran::semantics::IsDummy(*symbol)) { 845 Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol); 846 assert(val && "Dummy procedure not in symbol map"); 847 funcPtr = val.getAddr(); 848 if (fir::isCharacterProcedureTuple(funcPtr.getType(), 849 /*acceptRawFunc=*/false)) 850 std::tie(funcPtr, funcPtrResultLength) = 851 fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr); 852 } else { 853 std::string name = converter.mangleName(*symbol); 854 mlir::func::FuncOp func = 855 Fortran::lower::getOrDeclareFunction(name, proc, converter); 856 // Abstract results require later rewrite of the function type. 857 // This currently does not happen inside GloalOps, causing LLVM 858 // IR verification failure. This helper is only here to catch these 859 // cases and emit a TODOs for now. 860 if (inInitializer && fir::hasAbstractResult(func.getFunctionType())) 861 TODO(converter.genLocation(symbol->name()), 862 "static description of non trivial procedure bindings"); 863 funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(), 864 builder.getSymbolRefAttr(name)); 865 } 866 if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) { 867 // The result length, if available here, must be propagated along the 868 // procedure address so that call sites where the result length is assumed 869 // can retrieve the length. 870 Fortran::evaluate::DynamicType resultType = proc.GetType().value(); 871 if (const auto &lengthExpr = resultType.GetCharLength()) { 872 // The length expression may refer to dummy argument symbols that are 873 // meaningless without any actual arguments. Leave the length as 874 // unknown in that case, it be resolved on the call site 875 // with the actual arguments. 876 if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) { 877 mlir::Value rawLen = fir::getBase(genval(*lengthExpr)); 878 // F2018 7.4.4.2 point 5. 879 funcPtrResultLength = 880 fir::factory::genMaxWithZero(builder, getLoc(), rawLen); 881 } 882 } 883 if (!funcPtrResultLength) 884 funcPtrResultLength = builder.createIntegerConstant( 885 loc, builder.getCharacterLengthType(), -1); 886 return fir::CharBoxValue{funcPtr, funcPtrResultLength}; 887 } 888 return funcPtr; 889 } 890 ExtValue genval(const Fortran::evaluate::NullPointer &) { 891 return builder.createNullConstant(getLoc()); 892 } 893 894 static bool 895 isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) { 896 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) 897 if (const Fortran::semantics::DerivedTypeSpec *derived = 898 declTy->AsDerived()) 899 return Fortran::semantics::CountLenParameters(*derived) > 0; 900 return false; 901 } 902 903 static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) { 904 if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType()) 905 if (const Fortran::semantics::DerivedTypeSpec *derived = 906 declType->AsDerived()) 907 return Fortran::semantics::IsIsoCType(derived); 908 return false; 909 } 910 911 /// Lower structure constructor without a temporary. This can be used in 912 /// fir::GloablOp, and assumes that the structure component is a constant. 913 ExtValue genStructComponentInInitializer( 914 const Fortran::evaluate::StructureConstructor &ctor) { 915 mlir::Location loc = getLoc(); 916 mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); 917 auto recTy = ty.cast<fir::RecordType>(); 918 auto fieldTy = fir::FieldType::get(ty.getContext()); 919 mlir::Value res = builder.create<fir::UndefOp>(loc, recTy); 920 921 for (const auto &[sym, expr] : ctor.values()) { 922 // Parent components need more work because they do not appear in the 923 // fir.rec type. 924 if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp)) 925 TODO(loc, "parent component in structure constructor"); 926 927 llvm::StringRef name = toStringRef(sym->name()); 928 mlir::Type componentTy = recTy.getType(name); 929 // FIXME: type parameters must come from the derived-type-spec 930 auto field = builder.create<fir::FieldIndexOp>( 931 loc, fieldTy, name, ty, 932 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 933 934 if (Fortran::semantics::IsAllocatable(sym)) 935 TODO(loc, "allocatable component in structure constructor"); 936 937 if (Fortran::semantics::IsPointer(sym)) { 938 mlir::Value initialTarget = Fortran::lower::genInitialDataTarget( 939 converter, loc, componentTy, expr.value()); 940 res = builder.create<fir::InsertValueOp>( 941 loc, recTy, res, initialTarget, 942 builder.getArrayAttr(field.getAttributes())); 943 continue; 944 } 945 946 if (isDerivedTypeWithLengthParameters(sym)) 947 TODO(loc, "component with length parameters in structure constructor"); 948 949 if (isBuiltinCPtr(sym)) { 950 // Builtin c_ptr and c_funptr have special handling because initial 951 // value are handled for them as an extension. 952 mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer( 953 converter, loc, expr.value())); 954 if (addr.getType() == componentTy) { 955 // Do nothing. The Ev::Expr was returned as a value that can be 956 // inserted directly to the component without an intermediary. 957 } else { 958 // The Ev::Expr returned is an initializer that is a pointer (e.g., 959 // null) that must be inserted into an intermediate cptr record 960 // value's address field, which ought to be an intptr_t on the target. 961 assert((fir::isa_ref_type(addr.getType()) || 962 addr.getType().isa<mlir::FunctionType>()) && 963 "expect reference type for address field"); 964 assert(fir::isa_derived(componentTy) && 965 "expect C_PTR, C_FUNPTR to be a record"); 966 auto cPtrRecTy = componentTy.cast<fir::RecordType>(); 967 llvm::StringRef addrFieldName = 968 Fortran::lower::builtin::cptrFieldName; 969 mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName); 970 auto addrField = builder.create<fir::FieldIndexOp>( 971 loc, fieldTy, addrFieldName, componentTy, 972 /*typeParams=*/mlir::ValueRange{}); 973 mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr); 974 auto undef = builder.create<fir::UndefOp>(loc, componentTy); 975 addr = builder.create<fir::InsertValueOp>( 976 loc, componentTy, undef, castAddr, 977 builder.getArrayAttr(addrField.getAttributes())); 978 } 979 res = builder.create<fir::InsertValueOp>( 980 loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes())); 981 continue; 982 } 983 984 mlir::Value val = fir::getBase(genval(expr.value())); 985 assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value"); 986 mlir::Value castVal = builder.createConvert(loc, componentTy, val); 987 res = builder.create<fir::InsertValueOp>( 988 loc, recTy, res, castVal, 989 builder.getArrayAttr(field.getAttributes())); 990 } 991 return res; 992 } 993 994 /// A structure constructor is lowered two ways. In an initializer context, 995 /// the entire structure must be constant, so the aggregate value is 996 /// constructed inline. This allows it to be the body of a GlobalOp. 997 /// Otherwise, the structure constructor is in an expression. In that case, a 998 /// temporary object is constructed in the stack frame of the procedure. 999 ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) { 1000 if (inInitializer) 1001 return genStructComponentInInitializer(ctor); 1002 mlir::Location loc = getLoc(); 1003 mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); 1004 auto recTy = ty.cast<fir::RecordType>(); 1005 auto fieldTy = fir::FieldType::get(ty.getContext()); 1006 mlir::Value res = builder.createTemporary(loc, recTy); 1007 1008 for (const auto &value : ctor.values()) { 1009 const Fortran::semantics::Symbol &sym = *value.first; 1010 const Fortran::lower::SomeExpr &expr = value.second.value(); 1011 // Parent components need more work because they do not appear in the 1012 // fir.rec type. 1013 if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) 1014 TODO(loc, "parent component in structure constructor"); 1015 1016 if (isDerivedTypeWithLengthParameters(sym)) 1017 TODO(loc, "component with length parameters in structure constructor"); 1018 1019 llvm::StringRef name = toStringRef(sym.name()); 1020 // FIXME: type parameters must come from the derived-type-spec 1021 mlir::Value field = builder.create<fir::FieldIndexOp>( 1022 loc, fieldTy, name, ty, 1023 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 1024 mlir::Type coorTy = builder.getRefType(recTy.getType(name)); 1025 auto coor = builder.create<fir::CoordinateOp>(loc, coorTy, 1026 fir::getBase(res), field); 1027 ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor); 1028 to.match( 1029 [&](const fir::UnboxedValue &toPtr) { 1030 ExtValue value = genval(expr); 1031 fir::factory::genScalarAssignment(builder, loc, to, value); 1032 }, 1033 [&](const fir::CharBoxValue &) { 1034 ExtValue value = genval(expr); 1035 fir::factory::genScalarAssignment(builder, loc, to, value); 1036 }, 1037 [&](const fir::ArrayBoxValue &) { 1038 Fortran::lower::createSomeArrayAssignment(converter, to, expr, 1039 symMap, stmtCtx); 1040 }, 1041 [&](const fir::CharArrayBoxValue &) { 1042 Fortran::lower::createSomeArrayAssignment(converter, to, expr, 1043 symMap, stmtCtx); 1044 }, 1045 [&](const fir::BoxValue &toBox) { 1046 fir::emitFatalError(loc, "derived type components must not be " 1047 "represented by fir::BoxValue"); 1048 }, 1049 [&](const fir::MutableBoxValue &toBox) { 1050 if (toBox.isPointer()) { 1051 Fortran::lower::associateMutableBox( 1052 converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx); 1053 return; 1054 } 1055 // For allocatable components, a deep copy is needed. 1056 TODO(loc, "allocatable components in derived type assignment"); 1057 }, 1058 [&](const fir::ProcBoxValue &toBox) { 1059 TODO(loc, "procedure pointer component in derived type assignment"); 1060 }); 1061 } 1062 return res; 1063 } 1064 1065 /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol. 1066 ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) { 1067 return converter.impliedDoBinding(toStringRef(var.name)); 1068 } 1069 1070 ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) { 1071 ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base())) 1072 : gen(desc.base().GetComponent()); 1073 mlir::IndexType idxTy = builder.getIndexType(); 1074 mlir::Location loc = getLoc(); 1075 auto castResult = [&](mlir::Value v) { 1076 using ResTy = Fortran::evaluate::DescriptorInquiry::Result; 1077 return builder.createConvert( 1078 loc, converter.genType(ResTy::category, ResTy::kind), v); 1079 }; 1080 switch (desc.field()) { 1081 case Fortran::evaluate::DescriptorInquiry::Field::Len: 1082 return castResult(fir::factory::readCharLen(builder, loc, exv)); 1083 case Fortran::evaluate::DescriptorInquiry::Field::LowerBound: 1084 return castResult(fir::factory::readLowerBound( 1085 builder, loc, exv, desc.dimension(), 1086 builder.createIntegerConstant(loc, idxTy, 1))); 1087 case Fortran::evaluate::DescriptorInquiry::Field::Extent: 1088 return castResult( 1089 fir::factory::readExtent(builder, loc, exv, desc.dimension())); 1090 case Fortran::evaluate::DescriptorInquiry::Field::Rank: 1091 TODO(loc, "rank inquiry on assumed rank"); 1092 case Fortran::evaluate::DescriptorInquiry::Field::Stride: 1093 // So far the front end does not generate this inquiry. 1094 TODO(loc, "stride inquiry"); 1095 } 1096 llvm_unreachable("unknown descriptor inquiry"); 1097 } 1098 1099 ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) { 1100 TODO(getLoc(), "type parameter inquiry"); 1101 } 1102 1103 mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) { 1104 return fir::factory::Complex{builder, getLoc()}.extractComplexPart( 1105 cplx, isImagPart); 1106 } 1107 1108 template <int KIND> 1109 ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) { 1110 return extractComplexPart(genunbox(part.left()), part.isImaginaryPart); 1111 } 1112 1113 template <int KIND> 1114 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1115 Fortran::common::TypeCategory::Integer, KIND>> &op) { 1116 mlir::Value input = genunbox(op.left()); 1117 // Like LLVM, integer negation is the binary op "0 - value" 1118 mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); 1119 return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input); 1120 } 1121 template <int KIND> 1122 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1123 Fortran::common::TypeCategory::Real, KIND>> &op) { 1124 return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left())); 1125 } 1126 template <int KIND> 1127 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1128 Fortran::common::TypeCategory::Complex, KIND>> &op) { 1129 return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left())); 1130 } 1131 1132 template <typename OpTy> 1133 mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) { 1134 assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right)); 1135 mlir::Value lhs = fir::getBase(left); 1136 mlir::Value rhs = fir::getBase(right); 1137 assert(lhs.getType() == rhs.getType() && "types must be the same"); 1138 return builder.create<OpTy>(getLoc(), lhs, rhs); 1139 } 1140 1141 template <typename OpTy, typename A> 1142 mlir::Value createBinaryOp(const A &ex) { 1143 ExtValue left = genval(ex.left()); 1144 return createBinaryOp<OpTy>(left, genval(ex.right())); 1145 } 1146 1147 #undef GENBIN 1148 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ 1149 template <int KIND> \ 1150 ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ 1151 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ 1152 return createBinaryOp<GenBinFirOp>(x); \ 1153 } 1154 1155 GENBIN(Add, Integer, mlir::arith::AddIOp) 1156 GENBIN(Add, Real, mlir::arith::AddFOp) 1157 GENBIN(Add, Complex, fir::AddcOp) 1158 GENBIN(Subtract, Integer, mlir::arith::SubIOp) 1159 GENBIN(Subtract, Real, mlir::arith::SubFOp) 1160 GENBIN(Subtract, Complex, fir::SubcOp) 1161 GENBIN(Multiply, Integer, mlir::arith::MulIOp) 1162 GENBIN(Multiply, Real, mlir::arith::MulFOp) 1163 GENBIN(Multiply, Complex, fir::MulcOp) 1164 GENBIN(Divide, Integer, mlir::arith::DivSIOp) 1165 GENBIN(Divide, Real, mlir::arith::DivFOp) 1166 GENBIN(Divide, Complex, fir::DivcOp) 1167 1168 template <Fortran::common::TypeCategory TC, int KIND> 1169 ExtValue genval( 1170 const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) { 1171 mlir::Type ty = converter.genType(TC, KIND); 1172 mlir::Value lhs = genunbox(op.left()); 1173 mlir::Value rhs = genunbox(op.right()); 1174 return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs); 1175 } 1176 1177 template <Fortran::common::TypeCategory TC, int KIND> 1178 ExtValue genval( 1179 const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> 1180 &op) { 1181 mlir::Type ty = converter.genType(TC, KIND); 1182 mlir::Value lhs = genunbox(op.left()); 1183 mlir::Value rhs = genunbox(op.right()); 1184 return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs); 1185 } 1186 1187 template <int KIND> 1188 ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) { 1189 mlir::Value realPartValue = genunbox(op.left()); 1190 return fir::factory::Complex{builder, getLoc()}.createComplex( 1191 KIND, realPartValue, genunbox(op.right())); 1192 } 1193 1194 template <int KIND> 1195 ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) { 1196 ExtValue lhs = genval(op.left()); 1197 ExtValue rhs = genval(op.right()); 1198 const fir::CharBoxValue *lhsChar = lhs.getCharBox(); 1199 const fir::CharBoxValue *rhsChar = rhs.getCharBox(); 1200 if (lhsChar && rhsChar) 1201 return fir::factory::CharacterExprHelper{builder, getLoc()} 1202 .createConcatenate(*lhsChar, *rhsChar); 1203 TODO(getLoc(), "character array concatenate"); 1204 } 1205 1206 /// MIN and MAX operations 1207 template <Fortran::common::TypeCategory TC, int KIND> 1208 ExtValue 1209 genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> 1210 &op) { 1211 mlir::Value lhs = genunbox(op.left()); 1212 mlir::Value rhs = genunbox(op.right()); 1213 switch (op.ordering) { 1214 case Fortran::evaluate::Ordering::Greater: 1215 return Fortran::lower::genMax(builder, getLoc(), 1216 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 1217 case Fortran::evaluate::Ordering::Less: 1218 return Fortran::lower::genMin(builder, getLoc(), 1219 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 1220 case Fortran::evaluate::Ordering::Equal: 1221 llvm_unreachable("Equal is not a valid ordering in this context"); 1222 } 1223 llvm_unreachable("unknown ordering"); 1224 } 1225 1226 // Change the dynamic length information without actually changing the 1227 // underlying character storage. 1228 fir::ExtendedValue 1229 replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar, 1230 mlir::Value newLenValue) { 1231 mlir::Location loc = getLoc(); 1232 const fir::CharBoxValue *charBox = scalarChar.getCharBox(); 1233 if (!charBox) 1234 fir::emitFatalError(loc, "expected scalar character"); 1235 mlir::Value charAddr = charBox->getAddr(); 1236 auto charType = 1237 fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>(); 1238 if (charType.hasConstantLen()) { 1239 // Erase previous constant length from the base type. 1240 fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen(); 1241 mlir::Type newCharTy = fir::CharacterType::get( 1242 builder.getContext(), charType.getFKind(), newLen); 1243 mlir::Type newType = fir::ReferenceType::get(newCharTy); 1244 charAddr = builder.createConvert(loc, newType, charAddr); 1245 return fir::CharBoxValue{charAddr, newLenValue}; 1246 } 1247 return fir::CharBoxValue{charAddr, newLenValue}; 1248 } 1249 1250 template <int KIND> 1251 ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) { 1252 mlir::Value newLenValue = genunbox(x.right()); 1253 fir::ExtendedValue lhs = gen(x.left()); 1254 return replaceScalarCharacterLength(lhs, newLenValue); 1255 } 1256 1257 template <int KIND> 1258 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1259 Fortran::common::TypeCategory::Integer, KIND>> &op) { 1260 return createCompareOp<mlir::arith::CmpIOp>(op, 1261 translateRelational(op.opr)); 1262 } 1263 template <int KIND> 1264 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1265 Fortran::common::TypeCategory::Real, KIND>> &op) { 1266 return createFltCmpOp<mlir::arith::CmpFOp>( 1267 op, translateFloatRelational(op.opr)); 1268 } 1269 template <int KIND> 1270 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1271 Fortran::common::TypeCategory::Complex, KIND>> &op) { 1272 return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr)); 1273 } 1274 template <int KIND> 1275 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1276 Fortran::common::TypeCategory::Character, KIND>> &op) { 1277 return createCharCompare(op, translateRelational(op.opr)); 1278 } 1279 1280 ExtValue 1281 genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) { 1282 return std::visit([&](const auto &x) { return genval(x); }, op.u); 1283 } 1284 1285 template <Fortran::common::TypeCategory TC1, int KIND, 1286 Fortran::common::TypeCategory TC2> 1287 ExtValue 1288 genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, 1289 TC2> &convert) { 1290 mlir::Type ty = converter.genType(TC1, KIND); 1291 auto fromExpr = genval(convert.left()); 1292 auto loc = getLoc(); 1293 return fromExpr.match( 1294 [&](const fir::CharBoxValue &boxchar) -> ExtValue { 1295 if constexpr (TC1 == Fortran::common::TypeCategory::Character && 1296 TC2 == TC1) { 1297 // Use char_convert. Each code point is translated from a 1298 // narrower/wider encoding to the target encoding. For example, 'A' 1299 // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol 1300 // for euro (0x20AC : i16) may be translated from a wide character 1301 // to "0xE2 0x82 0xAC" : UTF-8. 1302 mlir::Value bufferSize = boxchar.getLen(); 1303 auto kindMap = builder.getKindMap(); 1304 mlir::Value boxCharAddr = boxchar.getAddr(); 1305 auto fromTy = boxCharAddr.getType(); 1306 if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) { 1307 // boxchar is a value, not a variable. Turn it into a temporary. 1308 // As a value, it ought to have a constant LEN value. 1309 assert(charTy.hasConstantLen() && "must have constant length"); 1310 mlir::Value tmp = builder.createTemporary(loc, charTy); 1311 builder.create<fir::StoreOp>(loc, boxCharAddr, tmp); 1312 boxCharAddr = tmp; 1313 } 1314 auto fromBits = 1315 kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy) 1316 .cast<fir::CharacterType>() 1317 .getFKind()); 1318 auto toBits = kindMap.getCharacterBitsize( 1319 ty.cast<fir::CharacterType>().getFKind()); 1320 if (toBits < fromBits) { 1321 // Scale by relative ratio to give a buffer of the same length. 1322 auto ratio = builder.createIntegerConstant( 1323 loc, bufferSize.getType(), fromBits / toBits); 1324 bufferSize = 1325 builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio); 1326 } 1327 auto dest = builder.create<fir::AllocaOp>( 1328 loc, ty, mlir::ValueRange{bufferSize}); 1329 builder.create<fir::CharConvertOp>(loc, boxCharAddr, 1330 boxchar.getLen(), dest); 1331 return fir::CharBoxValue{dest, boxchar.getLen()}; 1332 } else { 1333 fir::emitFatalError( 1334 loc, "unsupported evaluate::Convert between CHARACTER type " 1335 "category and non-CHARACTER category"); 1336 } 1337 }, 1338 [&](const fir::UnboxedValue &value) -> ExtValue { 1339 return builder.convertWithSemantics(loc, ty, value); 1340 }, 1341 [&](auto &) -> ExtValue { 1342 fir::emitFatalError(loc, "unsupported evaluate::Convert"); 1343 }); 1344 } 1345 1346 template <typename A> 1347 ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) { 1348 ExtValue input = genval(op.left()); 1349 mlir::Value base = fir::getBase(input); 1350 mlir::Value newBase = 1351 builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base); 1352 return fir::substBase(input, newBase); 1353 } 1354 1355 template <int KIND> 1356 ExtValue genval(const Fortran::evaluate::Not<KIND> &op) { 1357 mlir::Value logical = genunbox(op.left()); 1358 mlir::Value one = genBoolConstant(true); 1359 mlir::Value val = 1360 builder.createConvert(getLoc(), builder.getI1Type(), logical); 1361 return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one); 1362 } 1363 1364 template <int KIND> 1365 ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) { 1366 mlir::IntegerType i1Type = builder.getI1Type(); 1367 mlir::Value slhs = genunbox(op.left()); 1368 mlir::Value srhs = genunbox(op.right()); 1369 mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs); 1370 mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs); 1371 switch (op.logicalOperator) { 1372 case Fortran::evaluate::LogicalOperator::And: 1373 return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs); 1374 case Fortran::evaluate::LogicalOperator::Or: 1375 return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs); 1376 case Fortran::evaluate::LogicalOperator::Eqv: 1377 return createCompareOp<mlir::arith::CmpIOp>( 1378 mlir::arith::CmpIPredicate::eq, lhs, rhs); 1379 case Fortran::evaluate::LogicalOperator::Neqv: 1380 return createCompareOp<mlir::arith::CmpIOp>( 1381 mlir::arith::CmpIPredicate::ne, lhs, rhs); 1382 case Fortran::evaluate::LogicalOperator::Not: 1383 // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>. 1384 llvm_unreachable(".NOT. is not a binary operator"); 1385 } 1386 llvm_unreachable("unhandled logical operation"); 1387 } 1388 1389 /// Convert a scalar literal constant to IR. 1390 template <Fortran::common::TypeCategory TC, int KIND> 1391 ExtValue genScalarLit( 1392 const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> 1393 &value) { 1394 if constexpr (TC == Fortran::common::TypeCategory::Integer) { 1395 return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64()); 1396 } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { 1397 return genBoolConstant(value.IsTrue()); 1398 } else if constexpr (TC == Fortran::common::TypeCategory::Real) { 1399 std::string str = value.DumpHexadecimal(); 1400 if constexpr (KIND == 2) { 1401 llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str}; 1402 return genRealConstant<KIND>(builder.getContext(), floatVal); 1403 } else if constexpr (KIND == 3) { 1404 llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str}; 1405 return genRealConstant<KIND>(builder.getContext(), floatVal); 1406 } else if constexpr (KIND == 4) { 1407 llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str}; 1408 return genRealConstant<KIND>(builder.getContext(), floatVal); 1409 } else if constexpr (KIND == 10) { 1410 llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str}; 1411 return genRealConstant<KIND>(builder.getContext(), floatVal); 1412 } else if constexpr (KIND == 16) { 1413 llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str}; 1414 return genRealConstant<KIND>(builder.getContext(), floatVal); 1415 } else { 1416 // convert everything else to double 1417 llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str}; 1418 return genRealConstant<KIND>(builder.getContext(), floatVal); 1419 } 1420 } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { 1421 using TR = 1422 Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>; 1423 Fortran::evaluate::ComplexConstructor<KIND> ctor( 1424 Fortran::evaluate::Expr<TR>{ 1425 Fortran::evaluate::Constant<TR>{value.REAL()}}, 1426 Fortran::evaluate::Expr<TR>{ 1427 Fortran::evaluate::Constant<TR>{value.AIMAG()}}); 1428 return genunbox(ctor); 1429 } else /*constexpr*/ { 1430 llvm_unreachable("unhandled constant"); 1431 } 1432 } 1433 1434 /// Generate a raw literal value and store it in the rawVals vector. 1435 template <Fortran::common::TypeCategory TC, int KIND> 1436 void 1437 genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> 1438 &value) { 1439 mlir::Attribute val; 1440 assert(inInitializer != nullptr); 1441 if constexpr (TC == Fortran::common::TypeCategory::Integer) { 1442 inInitializer->rawType = converter.genType(TC, KIND); 1443 val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64()); 1444 } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { 1445 inInitializer->rawType = 1446 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 1447 val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue()); 1448 } else if constexpr (TC == Fortran::common::TypeCategory::Real) { 1449 std::string str = value.DumpHexadecimal(); 1450 inInitializer->rawType = converter.genType(TC, KIND); 1451 llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str}; 1452 val = builder.getFloatAttr(inInitializer->rawType, floatVal); 1453 } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { 1454 std::string strReal = value.REAL().DumpHexadecimal(); 1455 std::string strImg = value.AIMAG().DumpHexadecimal(); 1456 inInitializer->rawType = converter.genType(TC, KIND); 1457 llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND), 1458 strReal}; 1459 val = builder.getFloatAttr(inInitializer->rawType, realVal); 1460 inInitializer->rawVals.push_back(val); 1461 llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND), 1462 strImg}; 1463 val = builder.getFloatAttr(inInitializer->rawType, imgVal); 1464 } 1465 inInitializer->rawVals.push_back(val); 1466 } 1467 1468 /// Convert a scalar literal CHARACTER to IR. 1469 template <int KIND> 1470 ExtValue 1471 genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type< 1472 Fortran::common::TypeCategory::Character, KIND>> &value, 1473 int64_t len) { 1474 using ET = typename std::decay_t<decltype(value)>::value_type; 1475 if constexpr (KIND == 1) { 1476 assert(value.size() == static_cast<std::uint64_t>(len)); 1477 // Outline character constant in ro data if it is not in an initializer. 1478 if (!inInitializer) 1479 return fir::factory::createStringLiteral(builder, getLoc(), value); 1480 // When in an initializer context, construct the literal op itself and do 1481 // not construct another constant object in rodata. 1482 fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value); 1483 mlir::Value lenp = builder.createIntegerConstant( 1484 getLoc(), builder.getCharacterLengthType(), len); 1485 return fir::CharBoxValue{stringLit.getResult(), lenp}; 1486 } 1487 fir::CharacterType type = 1488 fir::CharacterType::get(builder.getContext(), KIND, len); 1489 auto consLit = [&]() -> fir::StringLitOp { 1490 mlir::MLIRContext *context = builder.getContext(); 1491 std::int64_t size = static_cast<std::int64_t>(value.size()); 1492 mlir::ShapedType shape = mlir::RankedTensorType::get( 1493 llvm::ArrayRef<std::int64_t>{size}, 1494 mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8)); 1495 auto denseAttr = mlir::DenseElementsAttr::get( 1496 shape, llvm::ArrayRef<ET>{value.data(), value.size()}); 1497 auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist()); 1498 mlir::NamedAttribute dataAttr(denseTag, denseAttr); 1499 auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size()); 1500 mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len)); 1501 llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr}; 1502 return builder.create<fir::StringLitOp>( 1503 getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs); 1504 }; 1505 1506 mlir::Value lenp = builder.createIntegerConstant( 1507 getLoc(), builder.getCharacterLengthType(), len); 1508 // When in an initializer context, construct the literal op itself and do 1509 // not construct another constant object in rodata. 1510 if (inInitializer) 1511 return fir::CharBoxValue{consLit().getResult(), lenp}; 1512 1513 // Otherwise, the string is in a plain old expression so "outline" the value 1514 // by hashconsing it to a constant literal object. 1515 1516 std::string globalName = 1517 fir::factory::uniqueCGIdent("cl", (const char *)value.c_str()); 1518 fir::GlobalOp global = builder.getNamedGlobal(globalName); 1519 if (!global) 1520 global = builder.createGlobalConstant( 1521 getLoc(), type, globalName, 1522 [&](fir::FirOpBuilder &builder) { 1523 fir::StringLitOp str = consLit(); 1524 builder.create<fir::HasValueOp>(getLoc(), str); 1525 }, 1526 builder.createLinkOnceLinkage()); 1527 auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(), 1528 global.getSymbol()); 1529 return fir::CharBoxValue{addr, lenp}; 1530 } 1531 1532 template <Fortran::common::TypeCategory TC, int KIND> 1533 ExtValue genArrayLit( 1534 const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> 1535 &con) { 1536 mlir::Location loc = getLoc(); 1537 mlir::IndexType idxTy = builder.getIndexType(); 1538 Fortran::evaluate::ConstantSubscript size = 1539 Fortran::evaluate::GetSize(con.shape()); 1540 fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); 1541 mlir::Type eleTy; 1542 if constexpr (TC == Fortran::common::TypeCategory::Character) 1543 eleTy = converter.genType(TC, KIND, {con.LEN()}); 1544 else 1545 eleTy = converter.genType(TC, KIND); 1546 auto arrayTy = fir::SequenceType::get(shape, eleTy); 1547 mlir::Value array; 1548 llvm::SmallVector<mlir::Value> lbounds; 1549 llvm::SmallVector<mlir::Value> extents; 1550 if (!inInitializer || !inInitializer->genRawVals) { 1551 array = builder.create<fir::UndefOp>(loc, arrayTy); 1552 for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) { 1553 lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1)); 1554 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 1555 } 1556 } 1557 if (size == 0) { 1558 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1559 mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); 1560 return fir::CharArrayBoxValue{array, len, extents, lbounds}; 1561 } else { 1562 return fir::ArrayBoxValue{array, extents, lbounds}; 1563 } 1564 } 1565 Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); 1566 auto createIdx = [&]() { 1567 llvm::SmallVector<mlir::Attribute> idx; 1568 for (size_t i = 0; i < subscripts.size(); ++i) 1569 idx.push_back( 1570 builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i])); 1571 return idx; 1572 }; 1573 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1574 assert(array && "array must not be nullptr"); 1575 do { 1576 mlir::Value elementVal = 1577 fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN())); 1578 array = builder.create<fir::InsertValueOp>( 1579 loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx())); 1580 } while (con.IncrementSubscripts(subscripts)); 1581 mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); 1582 return fir::CharArrayBoxValue{array, len, extents, lbounds}; 1583 } else { 1584 llvm::SmallVector<mlir::Attribute> rangeStartIdx; 1585 uint64_t rangeSize = 0; 1586 do { 1587 if (inInitializer && inInitializer->genRawVals) { 1588 genRawLit<TC, KIND>(con.At(subscripts)); 1589 continue; 1590 } 1591 auto getElementVal = [&]() { 1592 return builder.createConvert( 1593 loc, eleTy, 1594 fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts)))); 1595 }; 1596 Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts; 1597 bool nextIsSame = con.IncrementSubscripts(nextSubscripts) && 1598 con.At(subscripts) == con.At(nextSubscripts); 1599 if (!rangeSize && !nextIsSame) { // single (non-range) value 1600 array = builder.create<fir::InsertValueOp>( 1601 loc, arrayTy, array, getElementVal(), 1602 builder.getArrayAttr(createIdx())); 1603 } else if (!rangeSize) { // start a range 1604 rangeStartIdx = createIdx(); 1605 rangeSize = 1; 1606 } else if (nextIsSame) { // expand a range 1607 ++rangeSize; 1608 } else { // end a range 1609 llvm::SmallVector<int64_t> rangeBounds; 1610 llvm::SmallVector<mlir::Attribute> idx = createIdx(); 1611 for (size_t i = 0; i < idx.size(); ++i) { 1612 rangeBounds.push_back(rangeStartIdx[i] 1613 .cast<mlir::IntegerAttr>() 1614 .getValue() 1615 .getSExtValue()); 1616 rangeBounds.push_back( 1617 idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue()); 1618 } 1619 array = builder.create<fir::InsertOnRangeOp>( 1620 loc, arrayTy, array, getElementVal(), 1621 builder.getIndexVectorAttr(rangeBounds)); 1622 rangeSize = 0; 1623 } 1624 } while (con.IncrementSubscripts(subscripts)); 1625 return fir::ArrayBoxValue{array, extents, lbounds}; 1626 } 1627 } 1628 1629 fir::ExtendedValue genArrayLit( 1630 const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { 1631 mlir::Location loc = getLoc(); 1632 mlir::IndexType idxTy = builder.getIndexType(); 1633 Fortran::evaluate::ConstantSubscript size = 1634 Fortran::evaluate::GetSize(con.shape()); 1635 fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); 1636 mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec()); 1637 auto arrayTy = fir::SequenceType::get(shape, eleTy); 1638 mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy); 1639 llvm::SmallVector<mlir::Value> lbounds; 1640 llvm::SmallVector<mlir::Value> extents; 1641 for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) { 1642 lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1)); 1643 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 1644 } 1645 if (size == 0) 1646 return fir::ArrayBoxValue{array, extents, lbounds}; 1647 Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); 1648 do { 1649 mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts))); 1650 llvm::SmallVector<mlir::Attribute> idx; 1651 for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds())) 1652 idx.push_back(builder.getIntegerAttr(idxTy, dim - lb)); 1653 array = builder.create<fir::InsertValueOp>( 1654 loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx)); 1655 } while (con.IncrementSubscripts(subscripts)); 1656 return fir::ArrayBoxValue{array, extents, lbounds}; 1657 } 1658 1659 template <Fortran::common::TypeCategory TC, int KIND> 1660 ExtValue 1661 genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> 1662 &con) { 1663 if (con.Rank() > 0) 1664 return genArrayLit(con); 1665 std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>> 1666 opt = con.GetScalarValue(); 1667 assert(opt.has_value() && "constant has no value"); 1668 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1669 return genScalarLit<KIND>(opt.value(), con.LEN()); 1670 } else { 1671 return genScalarLit<TC, KIND>(opt.value()); 1672 } 1673 } 1674 fir::ExtendedValue genval( 1675 const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { 1676 if (con.Rank() > 0) 1677 return genArrayLit(con); 1678 if (auto ctor = con.GetScalarValue()) 1679 return genval(ctor.value()); 1680 fir::emitFatalError(getLoc(), 1681 "constant of derived type has no constructor"); 1682 } 1683 1684 template <typename A> 1685 ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) { 1686 fir::emitFatalError(getLoc(), 1687 "array constructor: lowering should not reach here"); 1688 } 1689 1690 ExtValue gen(const Fortran::evaluate::ComplexPart &x) { 1691 mlir::Location loc = getLoc(); 1692 auto idxTy = builder.getI32Type(); 1693 ExtValue exv = gen(x.complex()); 1694 mlir::Value base = fir::getBase(exv); 1695 fir::factory::Complex helper{builder, loc}; 1696 mlir::Type eleTy = 1697 helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType())); 1698 mlir::Value offset = builder.createIntegerConstant( 1699 loc, idxTy, 1700 x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1); 1701 mlir::Value result = builder.create<fir::CoordinateOp>( 1702 loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset}); 1703 return {result}; 1704 } 1705 ExtValue genval(const Fortran::evaluate::ComplexPart &x) { 1706 return genLoad(gen(x)); 1707 } 1708 1709 /// Reference to a substring. 1710 ExtValue gen(const Fortran::evaluate::Substring &s) { 1711 // Get base string 1712 auto baseString = std::visit( 1713 Fortran::common::visitors{ 1714 [&](const Fortran::evaluate::DataRef &x) { return gen(x); }, 1715 [&](const Fortran::evaluate::StaticDataObject::Pointer &p) 1716 -> ExtValue { 1717 if (std::optional<std::string> str = p->AsString()) 1718 return fir::factory::createStringLiteral(builder, getLoc(), 1719 *str); 1720 // TODO: convert StaticDataObject to Constant<T> and use normal 1721 // constant path. Beware that StaticDataObject data() takes into 1722 // account build machine endianness. 1723 TODO(getLoc(), 1724 "StaticDataObject::Pointer substring with kind > 1"); 1725 }, 1726 }, 1727 s.parent()); 1728 llvm::SmallVector<mlir::Value> bounds; 1729 mlir::Value lower = genunbox(s.lower()); 1730 bounds.push_back(lower); 1731 if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) { 1732 mlir::Value upper = genunbox(*upperBound); 1733 bounds.push_back(upper); 1734 } 1735 fir::factory::CharacterExprHelper charHelper{builder, getLoc()}; 1736 return baseString.match( 1737 [&](const fir::CharBoxValue &x) -> ExtValue { 1738 return charHelper.createSubstring(x, bounds); 1739 }, 1740 [&](const fir::CharArrayBoxValue &) -> ExtValue { 1741 fir::emitFatalError( 1742 getLoc(), 1743 "array substring should be handled in array expression"); 1744 }, 1745 [&](const auto &) -> ExtValue { 1746 fir::emitFatalError(getLoc(), "substring base is not a CharBox"); 1747 }); 1748 } 1749 1750 /// The value of a substring. 1751 ExtValue genval(const Fortran::evaluate::Substring &ss) { 1752 // FIXME: why is the value of a substring being lowered the same as the 1753 // address of a substring? 1754 return gen(ss); 1755 } 1756 1757 ExtValue genval(const Fortran::evaluate::Subscript &subs) { 1758 if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>( 1759 &subs.u)) { 1760 if (s->value().Rank() > 0) 1761 fir::emitFatalError(getLoc(), "vector subscript is not scalar"); 1762 return {genval(s->value())}; 1763 } 1764 fir::emitFatalError(getLoc(), "subscript triple notation is not scalar"); 1765 } 1766 ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) { 1767 return genval(subs); 1768 } 1769 1770 ExtValue gen(const Fortran::evaluate::DataRef &dref) { 1771 return std::visit([&](const auto &x) { return gen(x); }, dref.u); 1772 } 1773 ExtValue genval(const Fortran::evaluate::DataRef &dref) { 1774 return std::visit([&](const auto &x) { return genval(x); }, dref.u); 1775 } 1776 1777 // Helper function to turn the Component structure into a list of nested 1778 // components, ordered from largest/leftmost to smallest/rightmost: 1779 // - where only the smallest/rightmost item may be allocatable or a pointer 1780 // (nested allocatable/pointer components require nested coordinate_of ops) 1781 // - that does not contain any parent components 1782 // (the front end places parent components directly in the object) 1783 // Return the object used as the base coordinate for the component chain. 1784 static Fortran::evaluate::DataRef const * 1785 reverseComponents(const Fortran::evaluate::Component &cmpt, 1786 std::list<const Fortran::evaluate::Component *> &list) { 1787 if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp)) 1788 list.push_front(&cmpt); 1789 return std::visit( 1790 Fortran::common::visitors{ 1791 [&](const Fortran::evaluate::Component &x) { 1792 if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x))) 1793 return &cmpt.base(); 1794 return reverseComponents(x, list); 1795 }, 1796 [&](auto &) { return &cmpt.base(); }, 1797 }, 1798 cmpt.base().u); 1799 } 1800 1801 // Return the coordinate of the component reference 1802 ExtValue genComponent(const Fortran::evaluate::Component &cmpt) { 1803 std::list<const Fortran::evaluate::Component *> list; 1804 const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list); 1805 llvm::SmallVector<mlir::Value> coorArgs; 1806 ExtValue obj = gen(*base); 1807 mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType()); 1808 mlir::Location loc = getLoc(); 1809 auto fldTy = fir::FieldType::get(&converter.getMLIRContext()); 1810 // FIXME: need to thread the LEN type parameters here. 1811 for (const Fortran::evaluate::Component *field : list) { 1812 auto recTy = ty.cast<fir::RecordType>(); 1813 const Fortran::semantics::Symbol &sym = getLastSym(*field); 1814 llvm::StringRef name = toStringRef(sym.name()); 1815 coorArgs.push_back(builder.create<fir::FieldIndexOp>( 1816 loc, fldTy, name, recTy, fir::getTypeParams(obj))); 1817 ty = recTy.getType(name); 1818 } 1819 ty = builder.getRefType(ty); 1820 return fir::factory::componentToExtendedValue( 1821 builder, loc, 1822 builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj), 1823 coorArgs)); 1824 } 1825 1826 ExtValue gen(const Fortran::evaluate::Component &cmpt) { 1827 // Components may be pointer or allocatable. In the gen() path, the mutable 1828 // aspect is lost to simplify handling on the client side. To retain the 1829 // mutable aspect, genMutableBoxValue should be used. 1830 return genComponent(cmpt).match( 1831 [&](const fir::MutableBoxValue &mutableBox) { 1832 return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox); 1833 }, 1834 [](auto &box) -> ExtValue { return box; }); 1835 } 1836 1837 ExtValue genval(const Fortran::evaluate::Component &cmpt) { 1838 return genLoad(gen(cmpt)); 1839 } 1840 1841 // Determine the result type after removing `dims` dimensions from the array 1842 // type `arrTy` 1843 mlir::Type genSubType(mlir::Type arrTy, unsigned dims) { 1844 mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy); 1845 assert(unwrapTy && "must be a pointer or box type"); 1846 auto seqTy = unwrapTy.cast<fir::SequenceType>(); 1847 llvm::ArrayRef<int64_t> shape = seqTy.getShape(); 1848 assert(shape.size() > 0 && "removing columns for sequence sans shape"); 1849 assert(dims <= shape.size() && "removing more columns than exist"); 1850 fir::SequenceType::Shape newBnds; 1851 // follow Fortran semantics and remove columns (from right) 1852 std::size_t e = shape.size() - dims; 1853 for (decltype(e) i = 0; i < e; ++i) 1854 newBnds.push_back(shape[i]); 1855 if (!newBnds.empty()) 1856 return fir::SequenceType::get(newBnds, seqTy.getEleTy()); 1857 return seqTy.getEleTy(); 1858 } 1859 1860 // Generate the code for a Bound value. 1861 ExtValue genval(const Fortran::semantics::Bound &bound) { 1862 if (bound.isExplicit()) { 1863 Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit(); 1864 if (sub.has_value()) 1865 return genval(*sub); 1866 return genIntegerConstant<8>(builder.getContext(), 1); 1867 } 1868 TODO(getLoc(), "non explicit semantics::Bound lowering"); 1869 } 1870 1871 static bool isSlice(const Fortran::evaluate::ArrayRef &aref) { 1872 for (const Fortran::evaluate::Subscript &sub : aref.subscript()) 1873 if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u)) 1874 return true; 1875 return false; 1876 } 1877 1878 /// Lower an ArrayRef to a fir.coordinate_of given its lowered base. 1879 ExtValue genCoordinateOp(const ExtValue &array, 1880 const Fortran::evaluate::ArrayRef &aref) { 1881 mlir::Location loc = getLoc(); 1882 // References to array of rank > 1 with non constant shape that are not 1883 // fir.box must be collapsed into an offset computation in lowering already. 1884 // The same is needed with dynamic length character arrays of all ranks. 1885 mlir::Type baseType = 1886 fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType()); 1887 if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) || 1888 fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType))) 1889 if (!array.getBoxOf<fir::BoxValue>()) 1890 return genOffsetAndCoordinateOp(array, aref); 1891 // Generate a fir.coordinate_of with zero based array indexes. 1892 llvm::SmallVector<mlir::Value> args; 1893 for (const auto &subsc : llvm::enumerate(aref.subscript())) { 1894 ExtValue subVal = genSubscript(subsc.value()); 1895 assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar"); 1896 mlir::Value val = fir::getBase(subVal); 1897 mlir::Type ty = val.getType(); 1898 mlir::Value lb = getLBound(array, subsc.index(), ty); 1899 args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb)); 1900 } 1901 1902 mlir::Value base = fir::getBase(array); 1903 auto seqTy = 1904 fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>(); 1905 assert(args.size() == seqTy.getDimension()); 1906 mlir::Type ty = builder.getRefType(seqTy.getEleTy()); 1907 auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args); 1908 return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr); 1909 } 1910 1911 /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead 1912 /// of array indexes. 1913 /// This generates offset computation from the indexes and length parameters, 1914 /// and use the offset to access the element with a fir.coordinate_of. This 1915 /// must only be used if it is not possible to generate a normal 1916 /// fir.coordinate_of using array indexes (i.e. when the shape information is 1917 /// unavailable in the IR). 1918 ExtValue genOffsetAndCoordinateOp(const ExtValue &array, 1919 const Fortran::evaluate::ArrayRef &aref) { 1920 mlir::Location loc = getLoc(); 1921 mlir::Value addr = fir::getBase(array); 1922 mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType()); 1923 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 1924 mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy)); 1925 mlir::Type refTy = builder.getRefType(eleTy); 1926 mlir::Value base = builder.createConvert(loc, seqTy, addr); 1927 mlir::IndexType idxTy = builder.getIndexType(); 1928 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 1929 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 1930 auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value { 1931 return arr.getLBounds().empty() ? one : arr.getLBounds()[dim]; 1932 }; 1933 auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value { 1934 mlir::Value total = zero; 1935 assert(arr.getExtents().size() == aref.subscript().size()); 1936 delta = builder.createConvert(loc, idxTy, delta); 1937 unsigned dim = 0; 1938 for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) { 1939 ExtValue subVal = genSubscript(sub); 1940 assert(fir::isUnboxedValue(subVal)); 1941 mlir::Value val = 1942 builder.createConvert(loc, idxTy, fir::getBase(subVal)); 1943 mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim)); 1944 mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb); 1945 mlir::Value prod = 1946 builder.create<mlir::arith::MulIOp>(loc, delta, diff); 1947 total = builder.create<mlir::arith::AddIOp>(loc, prod, total); 1948 if (ext) 1949 delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext); 1950 ++dim; 1951 } 1952 mlir::Type origRefTy = refTy; 1953 if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) { 1954 fir::CharacterType chTy = 1955 fir::factory::CharacterExprHelper::getCharacterType(refTy); 1956 if (fir::characterWithDynamicLen(chTy)) { 1957 mlir::MLIRContext *ctx = builder.getContext(); 1958 fir::KindTy kind = 1959 fir::factory::CharacterExprHelper::getCharacterKind(chTy); 1960 fir::CharacterType singleTy = 1961 fir::CharacterType::getSingleton(ctx, kind); 1962 refTy = builder.getRefType(singleTy); 1963 mlir::Type seqRefTy = 1964 builder.getRefType(builder.getVarLenSeqTy(singleTy)); 1965 base = builder.createConvert(loc, seqRefTy, base); 1966 } 1967 } 1968 auto coor = builder.create<fir::CoordinateOp>( 1969 loc, refTy, base, llvm::ArrayRef<mlir::Value>{total}); 1970 // Convert to expected, original type after address arithmetic. 1971 return builder.createConvert(loc, origRefTy, coor); 1972 }; 1973 return array.match( 1974 [&](const fir::ArrayBoxValue &arr) -> ExtValue { 1975 // FIXME: this check can be removed when slicing is implemented 1976 if (isSlice(aref)) 1977 fir::emitFatalError( 1978 getLoc(), 1979 "slice should be handled in array expression context"); 1980 return genFullDim(arr, one); 1981 }, 1982 [&](const fir::CharArrayBoxValue &arr) -> ExtValue { 1983 mlir::Value delta = arr.getLen(); 1984 // If the length is known in the type, fir.coordinate_of will 1985 // already take the length into account. 1986 if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr)) 1987 delta = one; 1988 return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen()); 1989 }, 1990 [&](const fir::BoxValue &arr) -> ExtValue { 1991 // CoordinateOp for BoxValue is not generated here. The dimensions 1992 // must be kept in the fir.coordinate_op so that potential fir.box 1993 // strides can be applied by codegen. 1994 fir::emitFatalError( 1995 loc, "internal: BoxValue in dim-collapsed fir.coordinate_of"); 1996 }, 1997 [&](const auto &) -> ExtValue { 1998 fir::emitFatalError(loc, "internal: array lowering failed"); 1999 }); 2000 } 2001 2002 /// Lower an ArrayRef to a fir.array_coor. 2003 ExtValue genArrayCoorOp(const ExtValue &exv, 2004 const Fortran::evaluate::ArrayRef &aref) { 2005 mlir::Location loc = getLoc(); 2006 mlir::Value addr = fir::getBase(exv); 2007 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); 2008 mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 2009 mlir::Type refTy = builder.getRefType(eleTy); 2010 mlir::IndexType idxTy = builder.getIndexType(); 2011 llvm::SmallVector<mlir::Value> arrayCoorArgs; 2012 // The ArrayRef is expected to be scalar here, arrays are handled in array 2013 // expression lowering. So no vector subscript or triplet is expected here. 2014 for (const auto &sub : aref.subscript()) { 2015 ExtValue subVal = genSubscript(sub); 2016 assert(fir::isUnboxedValue(subVal)); 2017 arrayCoorArgs.push_back( 2018 builder.createConvert(loc, idxTy, fir::getBase(subVal))); 2019 } 2020 mlir::Value shape = builder.createShape(loc, exv); 2021 mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>( 2022 loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs, 2023 fir::getTypeParams(exv)); 2024 return fir::factory::arrayElementToExtendedValue(builder, loc, exv, 2025 elementAddr); 2026 } 2027 2028 /// Return the coordinate of the array reference. 2029 ExtValue gen(const Fortran::evaluate::ArrayRef &aref) { 2030 ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base())) 2031 : gen(aref.base().GetComponent()); 2032 // Check for command-line override to use array_coor op. 2033 if (generateArrayCoordinate) 2034 return genArrayCoorOp(base, aref); 2035 // Otherwise, use coordinate_of op. 2036 return genCoordinateOp(base, aref); 2037 } 2038 2039 /// Return lower bounds of \p box in dimension \p dim. The returned value 2040 /// has type \ty. 2041 mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) { 2042 assert(box.rank() > 0 && "must be an array"); 2043 mlir::Location loc = getLoc(); 2044 mlir::Value one = builder.createIntegerConstant(loc, ty, 1); 2045 mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one); 2046 return builder.createConvert(loc, ty, lb); 2047 } 2048 2049 ExtValue genval(const Fortran::evaluate::ArrayRef &aref) { 2050 return genLoad(gen(aref)); 2051 } 2052 2053 ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) { 2054 return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} 2055 .genAddr(coref); 2056 } 2057 2058 ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) { 2059 return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} 2060 .genValue(coref); 2061 } 2062 2063 template <typename A> 2064 ExtValue gen(const Fortran::evaluate::Designator<A> &des) { 2065 return std::visit([&](const auto &x) { return gen(x); }, des.u); 2066 } 2067 template <typename A> 2068 ExtValue genval(const Fortran::evaluate::Designator<A> &des) { 2069 return std::visit([&](const auto &x) { return genval(x); }, des.u); 2070 } 2071 2072 mlir::Type genType(const Fortran::evaluate::DynamicType &dt) { 2073 if (dt.category() != Fortran::common::TypeCategory::Derived) 2074 return converter.genType(dt.category(), dt.kind()); 2075 return converter.genType(dt.GetDerivedTypeSpec()); 2076 } 2077 2078 /// Lower a function reference 2079 template <typename A> 2080 ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) { 2081 if (!funcRef.GetType().has_value()) 2082 fir::emitFatalError(getLoc(), "a function must have a type"); 2083 mlir::Type resTy = genType(*funcRef.GetType()); 2084 return genProcedureRef(funcRef, {resTy}); 2085 } 2086 2087 /// Lower function call `funcRef` and return a reference to the resultant 2088 /// value. This is required for lowering expressions such as `f1(f2(v))`. 2089 template <typename A> 2090 ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) { 2091 ExtValue retVal = genFunctionRef(funcRef); 2092 mlir::Type resultType = converter.genType(toEvExpr(funcRef)); 2093 return placeScalarValueInMemory(builder, getLoc(), retVal, resultType); 2094 } 2095 2096 /// Helper to lower intrinsic arguments for inquiry intrinsic. 2097 ExtValue 2098 lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) { 2099 if (Fortran::evaluate::IsAllocatableOrPointerObject( 2100 expr, converter.getFoldingContext())) 2101 return genMutableBoxValue(expr); 2102 /// Do not create temps for array sections whose properties only need to be 2103 /// inquired: create a descriptor that will be inquired. 2104 if (Fortran::evaluate::IsVariable(expr) && isArray(expr) && 2105 !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)) 2106 return lowerIntrinsicArgumentAsBox(expr); 2107 return gen(expr); 2108 } 2109 2110 /// Helper to lower intrinsic arguments to a fir::BoxValue. 2111 /// It preserves all the non default lower bounds/non deferred length 2112 /// parameter information. 2113 ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) { 2114 mlir::Location loc = getLoc(); 2115 ExtValue exv = genBoxArg(expr); 2116 mlir::Value box = builder.createBox(loc, exv); 2117 return fir::BoxValue( 2118 box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv), 2119 fir::factory::getNonDeferredLengthParams(exv)); 2120 } 2121 2122 /// Generate a call to a Fortran intrinsic or intrinsic module procedure. 2123 ExtValue genIntrinsicRef( 2124 const Fortran::evaluate::ProcedureRef &procRef, 2125 llvm::Optional<mlir::Type> resultType, 2126 llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = 2127 llvm::None) { 2128 llvm::SmallVector<ExtValue> operands; 2129 2130 std::string name = 2131 intrinsic ? intrinsic->name 2132 : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); 2133 mlir::Location loc = getLoc(); 2134 if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( 2135 procRef, *intrinsic, converter)) { 2136 using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>; 2137 llvm::SmallVector<ExvAndPresence, 4> operands; 2138 auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { 2139 ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr); 2140 mlir::Value isPresent = 2141 genActualIsPresentTest(builder, loc, optionalArg); 2142 operands.emplace_back(optionalArg, isPresent); 2143 }; 2144 auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) { 2145 operands.emplace_back(genval(expr), llvm::None); 2146 }; 2147 Fortran::lower::prepareCustomIntrinsicArgument( 2148 procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg, 2149 converter); 2150 2151 auto getArgument = [&](std::size_t i) -> ExtValue { 2152 if (fir::conformsWithPassByRef( 2153 fir::getBase(operands[i].first).getType())) 2154 return genLoad(operands[i].first); 2155 return operands[i].first; 2156 }; 2157 auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> { 2158 return operands[i].second; 2159 }; 2160 return Fortran::lower::lowerCustomIntrinsic( 2161 builder, loc, name, resultType, isPresent, getArgument, 2162 operands.size(), stmtCtx); 2163 } 2164 2165 const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering = 2166 Fortran::lower::getIntrinsicArgumentLowering(name); 2167 for (const auto &arg : llvm::enumerate(procRef.arguments())) { 2168 auto *expr = 2169 Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); 2170 if (!expr) { 2171 // Absent optional. 2172 operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument()); 2173 continue; 2174 } 2175 if (!argLowering) { 2176 // No argument lowering instruction, lower by value. 2177 operands.emplace_back(genval(*expr)); 2178 continue; 2179 } 2180 // Ad-hoc argument lowering handling. 2181 Fortran::lower::ArgLoweringRule argRules = 2182 Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index()); 2183 if (argRules.handleDynamicOptional && 2184 Fortran::evaluate::MayBePassedAsAbsentOptional( 2185 *expr, converter.getFoldingContext())) { 2186 ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr); 2187 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional); 2188 switch (argRules.lowerAs) { 2189 case Fortran::lower::LowerIntrinsicArgAs::Value: 2190 operands.emplace_back( 2191 genOptionalValue(builder, loc, optional, isPresent)); 2192 continue; 2193 case Fortran::lower::LowerIntrinsicArgAs::Addr: 2194 operands.emplace_back( 2195 genOptionalAddr(builder, loc, optional, isPresent)); 2196 continue; 2197 case Fortran::lower::LowerIntrinsicArgAs::Box: 2198 operands.emplace_back( 2199 genOptionalBox(builder, loc, optional, isPresent)); 2200 continue; 2201 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 2202 operands.emplace_back(optional); 2203 continue; 2204 } 2205 llvm_unreachable("bad switch"); 2206 } 2207 switch (argRules.lowerAs) { 2208 case Fortran::lower::LowerIntrinsicArgAs::Value: 2209 operands.emplace_back(genval(*expr)); 2210 continue; 2211 case Fortran::lower::LowerIntrinsicArgAs::Addr: 2212 operands.emplace_back(gen(*expr)); 2213 continue; 2214 case Fortran::lower::LowerIntrinsicArgAs::Box: 2215 operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr)); 2216 continue; 2217 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 2218 operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr)); 2219 continue; 2220 } 2221 llvm_unreachable("bad switch"); 2222 } 2223 // Let the intrinsic library lower the intrinsic procedure call 2224 return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType, 2225 operands, stmtCtx); 2226 } 2227 2228 /// helper to detect statement functions 2229 static bool 2230 isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) { 2231 if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol()) 2232 if (const auto *details = 2233 symbol->detailsIf<Fortran::semantics::SubprogramDetails>()) 2234 return details->stmtFunction().has_value(); 2235 return false; 2236 } 2237 2238 /// Generate Statement function calls 2239 ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) { 2240 const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); 2241 assert(symbol && "expected symbol in ProcedureRef of statement functions"); 2242 const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>(); 2243 2244 // Statement functions have their own scope, we just need to associate 2245 // the dummy symbols to argument expressions. They are no 2246 // optional/alternate return arguments. Statement functions cannot be 2247 // recursive (directly or indirectly) so it is safe to add dummy symbols to 2248 // the local map here. 2249 symMap.pushScope(); 2250 for (auto [arg, bind] : 2251 llvm::zip(details.dummyArgs(), procRef.arguments())) { 2252 assert(arg && "alternate return in statement function"); 2253 assert(bind && "optional argument in statement function"); 2254 const auto *expr = bind->UnwrapExpr(); 2255 // TODO: assumed type in statement function, that surprisingly seems 2256 // allowed, probably because nobody thought of restricting this usage. 2257 // gfortran/ifort compiles this. 2258 assert(expr && "assumed type used as statement function argument"); 2259 // As per Fortran 2018 C1580, statement function arguments can only be 2260 // scalars, so just pass the box with the address. The only care is to 2261 // to use the dummy character explicit length if any instead of the 2262 // actual argument length (that can be bigger). 2263 if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType()) 2264 if (type->category() == Fortran::semantics::DeclTypeSpec::Character) 2265 if (const Fortran::semantics::MaybeIntExpr &lenExpr = 2266 type->characterTypeSpec().length().GetExplicit()) { 2267 mlir::Value len = fir::getBase(genval(*lenExpr)); 2268 // F2018 7.4.4.2 point 5. 2269 len = fir::factory::genMaxWithZero(builder, getLoc(), len); 2270 symMap.addSymbol(*arg, 2271 replaceScalarCharacterLength(gen(*expr), len)); 2272 continue; 2273 } 2274 symMap.addSymbol(*arg, gen(*expr)); 2275 } 2276 2277 // Explicitly map statement function host associated symbols to their 2278 // parent scope lowered symbol box. 2279 for (const Fortran::semantics::SymbolRef &sym : 2280 Fortran::evaluate::CollectSymbols(*details.stmtFunction())) 2281 if (const auto *details = 2282 sym->detailsIf<Fortran::semantics::HostAssocDetails>()) 2283 if (!symMap.lookupSymbol(*sym)) 2284 symMap.addSymbol(*sym, gen(details->symbol())); 2285 2286 ExtValue result = genval(details.stmtFunction().value()); 2287 LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n'); 2288 symMap.popScope(); 2289 return result; 2290 } 2291 2292 /// Helper to package a Value and its properties into an ExtendedValue. 2293 static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base, 2294 llvm::ArrayRef<mlir::Value> extents, 2295 llvm::ArrayRef<mlir::Value> lengths) { 2296 mlir::Type type = base.getType(); 2297 if (type.isa<fir::BoxType>()) 2298 return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents); 2299 type = fir::unwrapRefType(type); 2300 if (type.isa<fir::BoxType>()) 2301 return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {}); 2302 if (auto seqTy = type.dyn_cast<fir::SequenceType>()) { 2303 if (seqTy.getDimension() != extents.size()) 2304 fir::emitFatalError(loc, "incorrect number of extents for array"); 2305 if (seqTy.getEleTy().isa<fir::CharacterType>()) { 2306 if (lengths.empty()) 2307 fir::emitFatalError(loc, "missing length for character"); 2308 assert(lengths.size() == 1); 2309 return fir::CharArrayBoxValue(base, lengths[0], extents); 2310 } 2311 return fir::ArrayBoxValue(base, extents); 2312 } 2313 if (type.isa<fir::CharacterType>()) { 2314 if (lengths.empty()) 2315 fir::emitFatalError(loc, "missing length for character"); 2316 assert(lengths.size() == 1); 2317 return fir::CharBoxValue(base, lengths[0]); 2318 } 2319 return base; 2320 } 2321 2322 // Find the argument that corresponds to the host associations. 2323 // Verify some assumptions about how the signature was built here. 2324 [[maybe_unused]] static unsigned 2325 findHostAssocTuplePos(mlir::func::FuncOp fn) { 2326 // Scan the argument list from last to first as the host associations are 2327 // appended for now. 2328 for (unsigned i = fn.getNumArguments(); i > 0; --i) 2329 if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) { 2330 // Host assoc tuple must be last argument (for now). 2331 assert(i == fn.getNumArguments() && "tuple must be last"); 2332 return i - 1; 2333 } 2334 llvm_unreachable("anyFuncArgsHaveAttr failed"); 2335 } 2336 2337 /// Create a contiguous temporary array with the same shape, 2338 /// length parameters and type as mold. It is up to the caller to deallocate 2339 /// the temporary. 2340 ExtValue genArrayTempFromMold(const ExtValue &mold, 2341 llvm::StringRef tempName) { 2342 mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType()); 2343 assert(type && "expected descriptor or memory type"); 2344 mlir::Location loc = getLoc(); 2345 llvm::SmallVector<mlir::Value> extents = 2346 fir::factory::getExtents(loc, builder, mold); 2347 llvm::SmallVector<mlir::Value> allocMemTypeParams = 2348 fir::getTypeParams(mold); 2349 mlir::Value charLen; 2350 mlir::Type elementType = fir::unwrapSequenceType(type); 2351 if (auto charType = elementType.dyn_cast<fir::CharacterType>()) { 2352 charLen = allocMemTypeParams.empty() 2353 ? fir::factory::readCharLen(builder, loc, mold) 2354 : allocMemTypeParams[0]; 2355 if (charType.hasDynamicLen() && allocMemTypeParams.empty()) 2356 allocMemTypeParams.push_back(charLen); 2357 } else if (fir::hasDynamicSize(elementType)) { 2358 TODO(loc, "creating temporary for derived type with length parameters"); 2359 } 2360 2361 mlir::Value temp = builder.create<fir::AllocMemOp>( 2362 loc, type, tempName, allocMemTypeParams, extents); 2363 if (fir::unwrapSequenceType(type).isa<fir::CharacterType>()) 2364 return fir::CharArrayBoxValue{temp, charLen, extents}; 2365 return fir::ArrayBoxValue{temp, extents}; 2366 } 2367 2368 /// Copy \p source array into \p dest array. Both arrays must be 2369 /// conforming, but neither array must be contiguous. 2370 void genArrayCopy(ExtValue dest, ExtValue source) { 2371 return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx); 2372 } 2373 2374 /// Lower a non-elemental procedure reference and read allocatable and pointer 2375 /// results into normal values. 2376 ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, 2377 llvm::Optional<mlir::Type> resultType) { 2378 ExtValue res = genRawProcedureRef(procRef, resultType); 2379 // In most contexts, pointers and allocatable do not appear as allocatable 2380 // or pointer variable on the caller side (see 8.5.3 note 1 for 2381 // allocatables). The few context where this can happen must call 2382 // genRawProcedureRef directly. 2383 if (const auto *box = res.getBoxOf<fir::MutableBoxValue>()) 2384 return fir::factory::genMutableBoxRead(builder, getLoc(), *box); 2385 return res; 2386 } 2387 2388 /// Given a call site for which the arguments were already lowered, generate 2389 /// the call and return the result. This function deals with explicit result 2390 /// allocation and lowering if needed. It also deals with passing the host 2391 /// link to internal procedures. 2392 ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller, 2393 mlir::FunctionType callSiteType, 2394 llvm::Optional<mlir::Type> resultType) { 2395 mlir::Location loc = getLoc(); 2396 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 2397 // Handle cases where caller must allocate the result or a fir.box for it. 2398 bool mustPopSymMap = false; 2399 if (caller.mustMapInterfaceSymbols()) { 2400 symMap.pushScope(); 2401 mustPopSymMap = true; 2402 Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap); 2403 } 2404 // If this is an indirect call, retrieve the function address. Also retrieve 2405 // the result length if this is a character function (note that this length 2406 // will be used only if there is no explicit length in the local interface). 2407 mlir::Value funcPointer; 2408 mlir::Value charFuncPointerLength; 2409 if (const Fortran::semantics::Symbol *sym = 2410 caller.getIfIndirectCallSymbol()) { 2411 funcPointer = symMap.lookupSymbol(*sym).getAddr(); 2412 if (!funcPointer) 2413 fir::emitFatalError(loc, "failed to find indirect call symbol address"); 2414 if (fir::isCharacterProcedureTuple(funcPointer.getType(), 2415 /*acceptRawFunc=*/false)) 2416 std::tie(funcPointer, charFuncPointerLength) = 2417 fir::factory::extractCharacterProcedureTuple(builder, loc, 2418 funcPointer); 2419 } 2420 2421 mlir::IndexType idxTy = builder.getIndexType(); 2422 auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value { 2423 return builder.createConvert( 2424 loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx))); 2425 }; 2426 llvm::SmallVector<mlir::Value> resultLengths; 2427 auto allocatedResult = [&]() -> llvm::Optional<ExtValue> { 2428 llvm::SmallVector<mlir::Value> extents; 2429 llvm::SmallVector<mlir::Value> lengths; 2430 if (!caller.callerAllocateResult()) 2431 return {}; 2432 mlir::Type type = caller.getResultStorageType(); 2433 if (type.isa<fir::SequenceType>()) 2434 caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) { 2435 extents.emplace_back(lowerSpecExpr(e)); 2436 }); 2437 caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) { 2438 lengths.emplace_back(lowerSpecExpr(e)); 2439 }); 2440 2441 // Result length parameters should not be provided to box storage 2442 // allocation and save_results, but they are still useful information to 2443 // keep in the ExtendedValue if non-deferred. 2444 if (!type.isa<fir::BoxType>()) { 2445 if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) { 2446 // Calling an assumed length function. This is only possible if this 2447 // is a call to a character dummy procedure. 2448 if (!charFuncPointerLength) 2449 fir::emitFatalError(loc, "failed to retrieve character function " 2450 "length while calling it"); 2451 lengths.push_back(charFuncPointerLength); 2452 } 2453 resultLengths = lengths; 2454 } 2455 2456 if (!extents.empty() || !lengths.empty()) { 2457 auto *bldr = &converter.getFirOpBuilder(); 2458 auto stackSaveFn = fir::factory::getLlvmStackSave(builder); 2459 auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName()); 2460 mlir::Value sp = 2461 bldr->create<fir::CallOp>( 2462 loc, stackSaveFn.getFunctionType().getResults(), 2463 stackSaveSymbol, mlir::ValueRange{}) 2464 .getResult(0); 2465 stmtCtx.attachCleanup([bldr, loc, sp]() { 2466 auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr); 2467 auto stackRestoreSymbol = 2468 bldr->getSymbolRefAttr(stackRestoreFn.getName()); 2469 bldr->create<fir::CallOp>( 2470 loc, stackRestoreFn.getFunctionType().getResults(), 2471 stackRestoreSymbol, mlir::ValueRange{sp}); 2472 }); 2473 } 2474 mlir::Value temp = 2475 builder.createTemporary(loc, type, ".result", extents, resultLengths); 2476 return toExtendedValue(loc, temp, extents, lengths); 2477 }(); 2478 2479 if (mustPopSymMap) 2480 symMap.popScope(); 2481 2482 // Place allocated result or prepare the fir.save_result arguments. 2483 mlir::Value arrayResultShape; 2484 if (allocatedResult) { 2485 if (std::optional<Fortran::lower::CallInterface< 2486 Fortran::lower::CallerInterface>::PassedEntity> 2487 resultArg = caller.getPassedResult()) { 2488 if (resultArg->passBy == PassBy::AddressAndLength) 2489 caller.placeAddressAndLengthInput(*resultArg, 2490 fir::getBase(*allocatedResult), 2491 fir::getLen(*allocatedResult)); 2492 else if (resultArg->passBy == PassBy::BaseAddress) 2493 caller.placeInput(*resultArg, fir::getBase(*allocatedResult)); 2494 else 2495 fir::emitFatalError( 2496 loc, "only expect character scalar result to be passed by ref"); 2497 } else { 2498 assert(caller.mustSaveResult()); 2499 arrayResultShape = allocatedResult->match( 2500 [&](const fir::CharArrayBoxValue &) { 2501 return builder.createShape(loc, *allocatedResult); 2502 }, 2503 [&](const fir::ArrayBoxValue &) { 2504 return builder.createShape(loc, *allocatedResult); 2505 }, 2506 [&](const auto &) { return mlir::Value{}; }); 2507 } 2508 } 2509 2510 // In older Fortran, procedure argument types are inferred. This may lead 2511 // different view of what the function signature is in different locations. 2512 // Casts are inserted as needed below to accommodate this. 2513 2514 // The mlir::func::FuncOp type prevails, unless it has a different number of 2515 // arguments which can happen in legal program if it was passed as a dummy 2516 // procedure argument earlier with no further type information. 2517 mlir::SymbolRefAttr funcSymbolAttr; 2518 bool addHostAssociations = false; 2519 if (!funcPointer) { 2520 mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType(); 2521 mlir::SymbolRefAttr symbolAttr = 2522 builder.getSymbolRefAttr(caller.getMangledName()); 2523 if (callSiteType.getNumResults() == funcOpType.getNumResults() && 2524 callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() && 2525 fir::anyFuncArgsHaveAttr(caller.getFuncOp(), 2526 fir::getHostAssocAttrName())) { 2527 // The number of arguments is off by one, and we're lowering a function 2528 // with host associations. Modify call to include host associations 2529 // argument by appending the value at the end of the operands. 2530 assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) == 2531 converter.hostAssocTupleValue().getType()); 2532 addHostAssociations = true; 2533 } 2534 if (!addHostAssociations && 2535 (callSiteType.getNumResults() != funcOpType.getNumResults() || 2536 callSiteType.getNumInputs() != funcOpType.getNumInputs())) { 2537 // Deal with argument number mismatch by making a function pointer so 2538 // that function type cast can be inserted. Do not emit a warning here 2539 // because this can happen in legal program if the function is not 2540 // defined here and it was first passed as an argument without any more 2541 // information. 2542 funcPointer = 2543 builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr); 2544 } else if (callSiteType.getResults() != funcOpType.getResults()) { 2545 // Implicit interface result type mismatch are not standard Fortran, but 2546 // some compilers are not complaining about it. The front end is not 2547 // protecting lowering from this currently. Support this with a 2548 // discouraging warning. 2549 LLVM_DEBUG(mlir::emitWarning( 2550 loc, "a return type mismatch is not standard compliant and may " 2551 "lead to undefined behavior.")); 2552 // Cast the actual function to the current caller implicit type because 2553 // that is the behavior we would get if we could not see the definition. 2554 funcPointer = 2555 builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr); 2556 } else { 2557 funcSymbolAttr = symbolAttr; 2558 } 2559 } 2560 2561 mlir::FunctionType funcType = 2562 funcPointer ? callSiteType : caller.getFuncOp().getFunctionType(); 2563 llvm::SmallVector<mlir::Value> operands; 2564 // First operand of indirect call is the function pointer. Cast it to 2565 // required function type for the call to handle procedures that have a 2566 // compatible interface in Fortran, but that have different signatures in 2567 // FIR. 2568 if (funcPointer) { 2569 operands.push_back( 2570 funcPointer.getType().isa<fir::BoxProcType>() 2571 ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer) 2572 : builder.createConvert(loc, funcType, funcPointer)); 2573 } 2574 2575 // Deal with potential mismatches in arguments types. Passing an array to a 2576 // scalar argument should for instance be tolerated here. 2577 bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface(); 2578 for (auto [fst, snd] : 2579 llvm::zip(caller.getInputs(), funcType.getInputs())) { 2580 // When passing arguments to a procedure that can be called an implicit 2581 // interface, allow character actual arguments to be passed to dummy 2582 // arguments of any type and vice versa 2583 mlir::Value cast; 2584 auto *context = builder.getContext(); 2585 if (snd.isa<fir::BoxProcType>() && 2586 fst.getType().isa<mlir::FunctionType>()) { 2587 auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None); 2588 auto boxProcTy = builder.getBoxProcType(funcTy); 2589 if (mlir::Value host = argumentHostAssocs(converter, fst)) { 2590 cast = builder.create<fir::EmboxProcOp>( 2591 loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host}); 2592 } else { 2593 cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst); 2594 } 2595 } else { 2596 cast = builder.convertWithSemantics(loc, snd, fst, 2597 callingImplicitInterface); 2598 } 2599 operands.push_back(cast); 2600 } 2601 2602 // Add host associations as necessary. 2603 if (addHostAssociations) 2604 operands.push_back(converter.hostAssocTupleValue()); 2605 2606 auto call = builder.create<fir::CallOp>(loc, funcType.getResults(), 2607 funcSymbolAttr, operands); 2608 2609 if (caller.mustSaveResult()) 2610 builder.create<fir::SaveResultOp>( 2611 loc, call.getResult(0), fir::getBase(allocatedResult.getValue()), 2612 arrayResultShape, resultLengths); 2613 2614 if (allocatedResult) { 2615 allocatedResult->match( 2616 [&](const fir::MutableBoxValue &box) { 2617 if (box.isAllocatable()) { 2618 // 9.7.3.2 point 4. Finalize allocatables. 2619 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 2620 stmtCtx.attachCleanup([bldr, loc, box]() { 2621 fir::factory::genFinalization(*bldr, loc, box); 2622 }); 2623 } 2624 }, 2625 [](const auto &) {}); 2626 return *allocatedResult; 2627 } 2628 2629 if (!resultType) 2630 return mlir::Value{}; // subroutine call 2631 // For now, Fortran return values are implemented with a single MLIR 2632 // function return value. 2633 assert(call.getNumResults() == 1 && 2634 "Expected exactly one result in FUNCTION call"); 2635 return call.getResult(0); 2636 } 2637 2638 /// Like genExtAddr, but ensure the address returned is a temporary even if \p 2639 /// expr is variable inside parentheses. 2640 ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) { 2641 // In general, genExtAddr might not create a temp for variable inside 2642 // parentheses to avoid creating array temporary in sub-expressions. It only 2643 // ensures the sub-expression is not re-associated with other parts of the 2644 // expression. In the call semantics, there is a difference between expr and 2645 // variable (see R1524). For expressions, a variable storage must not be 2646 // argument associated since it could be modified inside the call, or the 2647 // variable could also be modified by other means during the call. 2648 if (!isParenthesizedVariable(expr)) 2649 return genExtAddr(expr); 2650 if (expr.Rank() > 0) 2651 return asArray(expr); 2652 mlir::Location loc = getLoc(); 2653 return genExtValue(expr).match( 2654 [&](const fir::CharBoxValue &boxChar) -> ExtValue { 2655 return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom( 2656 boxChar); 2657 }, 2658 [&](const fir::UnboxedValue &v) -> ExtValue { 2659 mlir::Type type = v.getType(); 2660 mlir::Value value = v; 2661 if (fir::isa_ref_type(type)) 2662 value = builder.create<fir::LoadOp>(loc, value); 2663 mlir::Value temp = builder.createTemporary(loc, value.getType()); 2664 builder.create<fir::StoreOp>(loc, value, temp); 2665 return temp; 2666 }, 2667 [&](const fir::BoxValue &x) -> ExtValue { 2668 // Derived type scalar that may be polymorphic. 2669 assert(!x.hasRank() && x.isDerived()); 2670 if (x.isDerivedWithLenParameters()) 2671 fir::emitFatalError( 2672 loc, "making temps for derived type with length parameters"); 2673 // TODO: polymorphic aspects should be kept but for now the temp 2674 // created always has the declared type. 2675 mlir::Value var = 2676 fir::getBase(fir::factory::readBoxValue(builder, loc, x)); 2677 auto value = builder.create<fir::LoadOp>(loc, var); 2678 mlir::Value temp = builder.createTemporary(loc, value.getType()); 2679 builder.create<fir::StoreOp>(loc, value, temp); 2680 return temp; 2681 }, 2682 [&](const auto &) -> ExtValue { 2683 fir::emitFatalError(loc, "expr is not a scalar value"); 2684 }); 2685 } 2686 2687 /// Helper structure to track potential copy-in of non contiguous variable 2688 /// argument into a contiguous temp. It is used to deallocate the temp that 2689 /// may have been created as well as to the copy-out from the temp to the 2690 /// variable after the call. 2691 struct CopyOutPair { 2692 ExtValue var; 2693 ExtValue temp; 2694 // Flag to indicate if the argument may have been modified by the 2695 // callee, in which case it must be copied-out to the variable. 2696 bool argMayBeModifiedByCall; 2697 // Optional boolean value that, if present and false, prevents 2698 // the copy-out and temp deallocation. 2699 llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime; 2700 }; 2701 using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>; 2702 2703 /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories 2704 /// not based on fir.box. 2705 /// This will lose any non contiguous stride information and dynamic type and 2706 /// should only be called if \p exv is known to be contiguous or if its base 2707 /// address will be replaced by a contiguous one. If \p exv is not a 2708 /// fir::BoxValue, this is a no-op. 2709 ExtValue readIfBoxValue(const ExtValue &exv) { 2710 if (const auto *box = exv.getBoxOf<fir::BoxValue>()) 2711 return fir::factory::readBoxValue(builder, getLoc(), *box); 2712 return exv; 2713 } 2714 2715 /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The 2716 /// creation of the temp and copy-in can be made conditional at runtime by 2717 /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case 2718 /// the temp and copy will only be made if the value is true at runtime). 2719 ExtValue genCopyIn(const ExtValue &actualArg, 2720 const Fortran::lower::CallerInterface::PassedEntity &arg, 2721 CopyOutPairs ©OutPairs, 2722 llvm::Optional<mlir::Value> restrictCopyAtRuntime, 2723 bool byValue) { 2724 const bool doCopyOut = !byValue && arg.mayBeModifiedByCall(); 2725 llvm::StringRef tempName = byValue ? ".copy" : ".copyinout"; 2726 if (!restrictCopyAtRuntime) { 2727 ExtValue temp = genArrayTempFromMold(actualArg, tempName); 2728 if (arg.mayBeReadByCall()) 2729 genArrayCopy(temp, actualArg); 2730 copyOutPairs.emplace_back( 2731 CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); 2732 return temp; 2733 } 2734 // Otherwise, need to be careful to only copy-in if allowed at runtime. 2735 mlir::Location loc = getLoc(); 2736 auto addrType = fir::HeapType::get( 2737 fir::unwrapPassByRefType(fir::getBase(actualArg).getType())); 2738 mlir::Value addr = 2739 builder 2740 .genIfOp(loc, {addrType}, *restrictCopyAtRuntime, 2741 /*withElseRegion=*/true) 2742 .genThen([&]() { 2743 auto temp = genArrayTempFromMold(actualArg, tempName); 2744 if (arg.mayBeReadByCall()) 2745 genArrayCopy(temp, actualArg); 2746 builder.create<fir::ResultOp>(loc, fir::getBase(temp)); 2747 }) 2748 .genElse([&]() { 2749 auto nullPtr = builder.createNullConstant(loc, addrType); 2750 builder.create<fir::ResultOp>(loc, nullPtr); 2751 }) 2752 .getResults()[0]; 2753 // Associate the temp address with actualArg lengths and extents. 2754 fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr); 2755 copyOutPairs.emplace_back( 2756 CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); 2757 return temp; 2758 } 2759 2760 /// Generate copy-out if needed and free the temporary for an argument that 2761 /// has been copied-in into a contiguous temp. 2762 void genCopyOut(const CopyOutPair ©OutPair) { 2763 mlir::Location loc = getLoc(); 2764 if (!copyOutPair.restrictCopyAndFreeAtRuntime) { 2765 if (copyOutPair.argMayBeModifiedByCall) 2766 genArrayCopy(copyOutPair.var, copyOutPair.temp); 2767 builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); 2768 return; 2769 } 2770 builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime) 2771 .genThen([&]() { 2772 if (copyOutPair.argMayBeModifiedByCall) 2773 genArrayCopy(copyOutPair.var, copyOutPair.temp); 2774 builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); 2775 }) 2776 .end(); 2777 } 2778 2779 /// Lower a designator to a variable that may be absent at runtime into an 2780 /// ExtendedValue where all the properties (base address, shape and length 2781 /// parameters) can be safely read (set to zero if not present). It also 2782 /// returns a boolean mlir::Value telling if the variable is present at 2783 /// runtime. 2784 /// This is useful to later be able to do conditional copy-in/copy-out 2785 /// or to retrieve the base address without having to deal with the case 2786 /// where the actual may be an absent fir.box. 2787 std::pair<ExtValue, mlir::Value> 2788 prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) { 2789 mlir::Location loc = getLoc(); 2790 if (Fortran::evaluate::IsAllocatableOrPointerObject( 2791 expr, converter.getFoldingContext())) { 2792 // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, 2793 // it is as if the argument was absent. The main care here is to 2794 // not do a copy-in/copy-out because the temp address, even though 2795 // pointing to a null size storage, would not be a nullptr and 2796 // therefore the argument would not be considered absent on the 2797 // callee side. Note: if wholeSymbol is optional, it cannot be 2798 // absent as per 15.5.2.12 point 7. and 8. We rely on this to 2799 // un-conditionally read the allocatable/pointer descriptor here. 2800 fir::MutableBoxValue mutableBox = genMutableBoxValue(expr); 2801 mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest( 2802 builder, loc, mutableBox); 2803 fir::ExtendedValue actualArg = 2804 fir::factory::genMutableBoxRead(builder, loc, mutableBox); 2805 return {actualArg, isPresent}; 2806 } 2807 // Absent descriptor cannot be read. To avoid any issue in 2808 // copy-in/copy-out, and when retrieving the address/length 2809 // create an descriptor pointing to a null address here if the 2810 // fir.box is absent. 2811 ExtValue actualArg = gen(expr); 2812 mlir::Value actualArgBase = fir::getBase(actualArg); 2813 mlir::Value isPresent = builder.create<fir::IsPresentOp>( 2814 loc, builder.getI1Type(), actualArgBase); 2815 if (!actualArgBase.getType().isa<fir::BoxType>()) 2816 return {actualArg, isPresent}; 2817 ExtValue safeToReadBox = 2818 absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent); 2819 return {safeToReadBox, isPresent}; 2820 } 2821 2822 /// Create a temp on the stack for scalar actual arguments that may be absent 2823 /// at runtime, but must be passed via a temp if they are presents. 2824 fir::ExtendedValue 2825 createScalarTempForArgThatMayBeAbsent(ExtValue actualArg, 2826 mlir::Value isPresent) { 2827 mlir::Location loc = getLoc(); 2828 mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType()); 2829 if (fir::isDerivedWithLenParameters(actualArg)) 2830 TODO(loc, "parametrized derived type optional scalar argument copy-in"); 2831 if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) { 2832 mlir::Value len = charBox->getLen(); 2833 mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0); 2834 len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero); 2835 mlir::Value temp = builder.createTemporary( 2836 loc, type, /*name=*/{}, 2837 /*shape=*/{}, mlir::ValueRange{len}, 2838 llvm::ArrayRef<mlir::NamedAttribute>{ 2839 Fortran::lower::getAdaptToByRefAttr(builder)}); 2840 return fir::CharBoxValue{temp, len}; 2841 } 2842 assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) && 2843 "must be simple scalar"); 2844 return builder.createTemporary( 2845 loc, type, 2846 llvm::ArrayRef<mlir::NamedAttribute>{ 2847 Fortran::lower::getAdaptToByRefAttr(builder)}); 2848 } 2849 2850 template <typename A> 2851 bool isCharacterType(const A &exp) { 2852 if (auto type = exp.GetType()) 2853 return type->category() == Fortran::common::TypeCategory::Character; 2854 return false; 2855 } 2856 2857 /// Lower an actual argument that must be passed via an address. 2858 /// This generates of the copy-in/copy-out if the actual is not contiguous, or 2859 /// the creation of the temp if the actual is a variable and \p byValue is 2860 /// true. It handles the cases where the actual may be absent, and all of the 2861 /// copying has to be conditional at runtime. 2862 ExtValue prepareActualToBaseAddressLike( 2863 const Fortran::lower::SomeExpr &expr, 2864 const Fortran::lower::CallerInterface::PassedEntity &arg, 2865 CopyOutPairs ©OutPairs, bool byValue) { 2866 mlir::Location loc = getLoc(); 2867 const bool isArray = expr.Rank() > 0; 2868 const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr); 2869 // It must be possible to modify VALUE arguments on the callee side, even 2870 // if the actual argument is a literal or named constant. Hence, the 2871 // address of static storage must not be passed in that case, and a copy 2872 // must be made even if this is not a variable. 2873 // Note: isArray should be used here, but genBoxArg already creates copies 2874 // for it, so do not duplicate the copy until genBoxArg behavior is changed. 2875 const bool isStaticConstantByValue = 2876 byValue && Fortran::evaluate::IsActuallyConstant(expr) && 2877 (isCharacterType(expr)); 2878 const bool variableNeedsCopy = 2879 actualArgIsVariable && 2880 (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous( 2881 expr, converter.getFoldingContext()))); 2882 const bool needsCopy = isStaticConstantByValue || variableNeedsCopy; 2883 auto argAddr = [&]() -> ExtValue { 2884 if (!actualArgIsVariable && !needsCopy) 2885 // Actual argument is not a variable. Make sure a variable address is 2886 // not passed. 2887 return genTempExtAddr(expr); 2888 ExtValue baseAddr; 2889 if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional( 2890 expr, converter.getFoldingContext())) { 2891 auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr); 2892 const ExtValue &actualArg = actualArgBind; 2893 if (!needsCopy) 2894 return actualArg; 2895 2896 if (isArray) 2897 return genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue); 2898 // Scalars, create a temp, and use it conditionally at runtime if 2899 // the argument is present. 2900 ExtValue temp = 2901 createScalarTempForArgThatMayBeAbsent(actualArg, isPresent); 2902 mlir::Type tempAddrTy = fir::getBase(temp).getType(); 2903 mlir::Value selectAddr = 2904 builder 2905 .genIfOp(loc, {tempAddrTy}, isPresent, 2906 /*withElseRegion=*/true) 2907 .genThen([&]() { 2908 fir::factory::genScalarAssignment(builder, loc, temp, 2909 actualArg); 2910 builder.create<fir::ResultOp>(loc, fir::getBase(temp)); 2911 }) 2912 .genElse([&]() { 2913 mlir::Value absent = 2914 builder.create<fir::AbsentOp>(loc, tempAddrTy); 2915 builder.create<fir::ResultOp>(loc, absent); 2916 }) 2917 .getResults()[0]; 2918 return fir::substBase(temp, selectAddr); 2919 } 2920 // Actual cannot be absent, the actual argument can safely be 2921 // copied-in/copied-out without any care if needed. 2922 if (isArray) { 2923 ExtValue box = genBoxArg(expr); 2924 if (needsCopy) 2925 return genCopyIn(box, arg, copyOutPairs, 2926 /*restrictCopyAtRuntime=*/llvm::None, byValue); 2927 // Contiguous: just use the box we created above! 2928 // This gets "unboxed" below, if needed. 2929 return box; 2930 } 2931 // Actual argument is a non-optional, non-pointer, non-allocatable 2932 // scalar. 2933 ExtValue actualArg = genExtAddr(expr); 2934 if (needsCopy) 2935 return createInMemoryScalarCopy(builder, loc, actualArg); 2936 return actualArg; 2937 }(); 2938 // Scalar and contiguous expressions may be lowered to a fir.box, 2939 // either to account for potential polymorphism, or because lowering 2940 // did not account for some contiguity hints. 2941 // Here, polymorphism does not matter (an entity of the declared type 2942 // is passed, not one of the dynamic type), and the expr is known to 2943 // be simply contiguous, so it is safe to unbox it and pass the 2944 // address without making a copy. 2945 return readIfBoxValue(argAddr); 2946 } 2947 2948 /// Lower a non-elemental procedure reference. 2949 ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, 2950 llvm::Optional<mlir::Type> resultType) { 2951 mlir::Location loc = getLoc(); 2952 if (isElementalProcWithArrayArgs(procRef)) 2953 fir::emitFatalError(loc, "trying to lower elemental procedure with array " 2954 "arguments as normal procedure"); 2955 2956 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 2957 procRef.proc().GetSpecificIntrinsic()) 2958 return genIntrinsicRef(procRef, resultType, *intrinsic); 2959 2960 if (isIntrinsicModuleProcRef(procRef)) 2961 return genIntrinsicRef(procRef, resultType); 2962 2963 if (isStatementFunctionCall(procRef)) 2964 return genStmtFunctionRef(procRef); 2965 2966 Fortran::lower::CallerInterface caller(procRef, converter); 2967 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 2968 2969 llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall; 2970 // List of <var, temp> where temp must be copied into var after the call. 2971 CopyOutPairs copyOutPairs; 2972 2973 mlir::FunctionType callSiteType = caller.genFunctionType(); 2974 2975 // Lower the actual arguments and map the lowered values to the dummy 2976 // arguments. 2977 for (const Fortran::lower::CallInterface< 2978 Fortran::lower::CallerInterface>::PassedEntity &arg : 2979 caller.getPassedArguments()) { 2980 const auto *actual = arg.entity; 2981 mlir::Type argTy = callSiteType.getInput(arg.firArgument); 2982 if (!actual) { 2983 // Optional dummy argument for which there is no actual argument. 2984 caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy)); 2985 continue; 2986 } 2987 const auto *expr = actual->UnwrapExpr(); 2988 if (!expr) 2989 TODO(loc, "assumed type actual argument lowering"); 2990 2991 if (arg.passBy == PassBy::Value) { 2992 ExtValue argVal = genval(*expr); 2993 if (!fir::isUnboxedValue(argVal)) 2994 fir::emitFatalError( 2995 loc, "internal error: passing non trivial value by value"); 2996 caller.placeInput(arg, fir::getBase(argVal)); 2997 continue; 2998 } 2999 3000 if (arg.passBy == PassBy::MutableBox) { 3001 if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( 3002 *expr)) { 3003 // If expr is NULL(), the mutableBox created must be a deallocated 3004 // pointer with the dummy argument characteristics (see table 16.5 3005 // in Fortran 2018 standard). 3006 // No length parameters are set for the created box because any non 3007 // deferred type parameters of the dummy will be evaluated on the 3008 // callee side, and it is illegal to use NULL without a MOLD if any 3009 // dummy length parameters are assumed. 3010 mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy); 3011 assert(boxTy && boxTy.isa<fir::BoxType>() && 3012 "must be a fir.box type"); 3013 mlir::Value boxStorage = builder.createTemporary(loc, boxTy); 3014 mlir::Value nullBox = fir::factory::createUnallocatedBox( 3015 builder, loc, boxTy, /*nonDeferredParams=*/{}); 3016 builder.create<fir::StoreOp>(loc, nullBox, boxStorage); 3017 caller.placeInput(arg, boxStorage); 3018 continue; 3019 } 3020 if (fir::isPointerType(argTy) && 3021 !Fortran::evaluate::IsObjectPointer( 3022 *expr, converter.getFoldingContext())) { 3023 // Passing a non POINTER actual argument to a POINTER dummy argument. 3024 // Create a pointer of the dummy argument type and assign the actual 3025 // argument to it. 3026 mlir::Value irBox = 3027 builder.createTemporary(loc, fir::unwrapRefType(argTy)); 3028 // Non deferred parameters will be evaluated on the callee side. 3029 fir::MutableBoxValue pointer(irBox, 3030 /*nonDeferredParams=*/mlir::ValueRange{}, 3031 /*mutableProperties=*/{}); 3032 Fortran::lower::associateMutableBox(converter, loc, pointer, *expr, 3033 /*lbounds=*/llvm::None, stmtCtx); 3034 caller.placeInput(arg, irBox); 3035 continue; 3036 } 3037 // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE. 3038 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 3039 mlir::Value irBox = 3040 fir::factory::getMutableIRBox(builder, loc, mutableBox); 3041 caller.placeInput(arg, irBox); 3042 if (arg.mayBeModifiedByCall()) 3043 mutableModifiedByCall.emplace_back(std::move(mutableBox)); 3044 continue; 3045 } 3046 if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar || 3047 arg.passBy == PassBy::BaseAddressValueAttribute || 3048 arg.passBy == PassBy::CharBoxValueAttribute) { 3049 const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute || 3050 arg.passBy == PassBy::CharBoxValueAttribute; 3051 ExtValue argAddr = 3052 prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue); 3053 if (arg.passBy == PassBy::BaseAddress || 3054 arg.passBy == PassBy::BaseAddressValueAttribute) { 3055 caller.placeInput(arg, fir::getBase(argAddr)); 3056 } else { 3057 assert(arg.passBy == PassBy::BoxChar || 3058 arg.passBy == PassBy::CharBoxValueAttribute); 3059 auto helper = fir::factory::CharacterExprHelper{builder, loc}; 3060 auto boxChar = argAddr.match( 3061 [&](const fir::CharBoxValue &x) { return helper.createEmbox(x); }, 3062 [&](const fir::CharArrayBoxValue &x) { 3063 return helper.createEmbox(x); 3064 }, 3065 [&](const auto &x) -> mlir::Value { 3066 // Fortran allows an actual argument of a completely different 3067 // type to be passed to a procedure expecting a CHARACTER in the 3068 // dummy argument position. When this happens, the data pointer 3069 // argument is simply assumed to point to CHARACTER data and the 3070 // LEN argument used is garbage. Simulate this behavior by 3071 // free-casting the base address to be a !fir.char reference and 3072 // setting the LEN argument to undefined. What could go wrong? 3073 auto dataPtr = fir::getBase(x); 3074 assert(!dataPtr.getType().template isa<fir::BoxType>()); 3075 return builder.convertWithSemantics( 3076 loc, argTy, dataPtr, 3077 /*allowCharacterConversion=*/true); 3078 }); 3079 caller.placeInput(arg, boxChar); 3080 } 3081 } else if (arg.passBy == PassBy::Box) { 3082 // Before lowering to an address, handle the allocatable/pointer actual 3083 // argument to optional fir.box dummy. It is legal to pass 3084 // unallocated/disassociated entity to an optional. In this case, an 3085 // absent fir.box must be created instead of a fir.box with a null value 3086 // (Fortran 2018 15.5.2.12 point 1). 3087 if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject( 3088 *expr, converter.getFoldingContext())) { 3089 // Note that passing an absent allocatable to a non-allocatable 3090 // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So 3091 // nothing has to be done to generate an absent argument in this case, 3092 // and it is OK to unconditionally read the mutable box here. 3093 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 3094 mlir::Value isAllocated = 3095 fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 3096 mutableBox); 3097 auto absent = builder.create<fir::AbsentOp>(loc, argTy); 3098 /// For now, assume it is not OK to pass the allocatable/pointer 3099 /// descriptor to a non pointer/allocatable dummy. That is a strict 3100 /// interpretation of 18.3.6 point 4 that stipulates the descriptor 3101 /// has the dummy attributes in BIND(C) contexts. 3102 mlir::Value box = builder.createBox( 3103 loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox)); 3104 // Need the box types to be exactly similar for the selectOp. 3105 mlir::Value convertedBox = builder.createConvert(loc, argTy, box); 3106 caller.placeInput(arg, builder.create<mlir::arith::SelectOp>( 3107 loc, isAllocated, convertedBox, absent)); 3108 } else { 3109 // Make sure a variable address is only passed if the expression is 3110 // actually a variable. 3111 mlir::Value box = 3112 Fortran::evaluate::IsVariable(*expr) 3113 ? builder.createBox(loc, genBoxArg(*expr)) 3114 : builder.createBox(getLoc(), genTempExtAddr(*expr)); 3115 caller.placeInput(arg, box); 3116 } 3117 } else if (arg.passBy == PassBy::AddressAndLength) { 3118 ExtValue argRef = genExtAddr(*expr); 3119 caller.placeAddressAndLengthInput(arg, fir::getBase(argRef), 3120 fir::getLen(argRef)); 3121 } else if (arg.passBy == PassBy::CharProcTuple) { 3122 ExtValue argRef = genExtAddr(*expr); 3123 mlir::Value tuple = createBoxProcCharTuple( 3124 converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); 3125 caller.placeInput(arg, tuple); 3126 } else { 3127 TODO(loc, "pass by value in non elemental function call"); 3128 } 3129 } 3130 3131 ExtValue result = genCallOpAndResult(caller, callSiteType, resultType); 3132 3133 // Sync pointers and allocatables that may have been modified during the 3134 // call. 3135 for (const auto &mutableBox : mutableModifiedByCall) 3136 fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox); 3137 // Handle case where result was passed as argument 3138 3139 // Copy-out temps that were created for non contiguous variable arguments if 3140 // needed. 3141 for (const auto ©OutPair : copyOutPairs) 3142 genCopyOut(copyOutPair); 3143 3144 return result; 3145 } 3146 3147 template <typename A> 3148 ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) { 3149 ExtValue result = genFunctionRef(funcRef); 3150 if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType())) 3151 return genLoad(result); 3152 return result; 3153 } 3154 3155 ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) { 3156 llvm::Optional<mlir::Type> resTy; 3157 if (procRef.hasAlternateReturns()) 3158 resTy = builder.getIndexType(); 3159 return genProcedureRef(procRef, resTy); 3160 } 3161 3162 template <typename A> 3163 bool isScalar(const A &x) { 3164 return x.Rank() == 0; 3165 } 3166 3167 /// Helper to detect Transformational function reference. 3168 template <typename T> 3169 bool isTransformationalRef(const T &) { 3170 return false; 3171 } 3172 template <typename T> 3173 bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) { 3174 return !funcRef.IsElemental() && funcRef.Rank(); 3175 } 3176 template <typename T> 3177 bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) { 3178 return std::visit([&](const auto &e) { return isTransformationalRef(e); }, 3179 expr.u); 3180 } 3181 3182 template <typename A> 3183 ExtValue asArray(const A &x) { 3184 return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x), 3185 symMap, stmtCtx); 3186 } 3187 3188 /// Lower an array value as an argument. This argument can be passed as a box 3189 /// value, so it may be possible to avoid making a temporary. 3190 template <typename A> 3191 ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) { 3192 return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u); 3193 } 3194 template <typename A, typename B> 3195 ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) { 3196 return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u); 3197 } 3198 template <typename A, typename B> 3199 ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) { 3200 // Designator is being passed as an argument to a procedure. Lower the 3201 // expression to a boxed value. 3202 auto someExpr = toEvExpr(x); 3203 return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap, 3204 stmtCtx); 3205 } 3206 template <typename A, typename B> 3207 ExtValue asArrayArg(const A &, const B &x) { 3208 // If the expression to pass as an argument is not a designator, then create 3209 // an array temp. 3210 return asArray(x); 3211 } 3212 3213 template <typename A> 3214 ExtValue gen(const Fortran::evaluate::Expr<A> &x) { 3215 // Whole array symbols or components, and results of transformational 3216 // functions already have a storage and the scalar expression lowering path 3217 // is used to not create a new temporary storage. 3218 if (isScalar(x) || 3219 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) || 3220 isTransformationalRef(x)) 3221 return std::visit([&](const auto &e) { return genref(e); }, x.u); 3222 if (useBoxArg) 3223 return asArrayArg(x); 3224 return asArray(x); 3225 } 3226 template <typename A> 3227 ExtValue genval(const Fortran::evaluate::Expr<A> &x) { 3228 if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) || 3229 inInitializer) 3230 return std::visit([&](const auto &e) { return genval(e); }, x.u); 3231 return asArray(x); 3232 } 3233 3234 template <int KIND> 3235 ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type< 3236 Fortran::common::TypeCategory::Logical, KIND>> &exp) { 3237 return std::visit([&](const auto &e) { return genval(e); }, exp.u); 3238 } 3239 3240 using RefSet = 3241 std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring, 3242 Fortran::evaluate::DataRef, Fortran::evaluate::Component, 3243 Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef, 3244 Fortran::semantics::SymbolRef>; 3245 template <typename A> 3246 static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>; 3247 3248 template <typename A, typename = std::enable_if_t<inRefSet<A>>> 3249 ExtValue genref(const A &a) { 3250 return gen(a); 3251 } 3252 template <typename A> 3253 ExtValue genref(const A &a) { 3254 if (inInitializer) { 3255 // Initialization expressions can never allocate memory. 3256 return genval(a); 3257 } 3258 mlir::Type storageType = converter.genType(toEvExpr(a)); 3259 return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType); 3260 } 3261 3262 template <typename A, template <typename> typename T, 3263 typename B = std::decay_t<T<A>>, 3264 std::enable_if_t< 3265 std::is_same_v<B, Fortran::evaluate::Expr<A>> || 3266 std::is_same_v<B, Fortran::evaluate::Designator<A>> || 3267 std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>, 3268 bool> = true> 3269 ExtValue genref(const T<A> &x) { 3270 return gen(x); 3271 } 3272 3273 private: 3274 mlir::Location location; 3275 Fortran::lower::AbstractConverter &converter; 3276 fir::FirOpBuilder &builder; 3277 Fortran::lower::StatementContext &stmtCtx; 3278 Fortran::lower::SymMap &symMap; 3279 InitializerData *inInitializer = nullptr; 3280 bool useBoxArg = false; // expression lowered as argument 3281 }; 3282 } // namespace 3283 3284 // Helper for changing the semantics in a given context. Preserves the current 3285 // semantics which is resumed when the "push" goes out of scope. 3286 #define PushSemantics(PushVal) \ 3287 [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ = \ 3288 Fortran::common::ScopedSet(semant, PushVal); 3289 3290 static bool isAdjustedArrayElementType(mlir::Type t) { 3291 return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>(); 3292 } 3293 static bool elementTypeWasAdjusted(mlir::Type t) { 3294 if (auto ty = t.dyn_cast<fir::ReferenceType>()) 3295 return isAdjustedArrayElementType(ty.getEleTy()); 3296 return false; 3297 } 3298 static mlir::Type adjustedArrayElementType(mlir::Type t) { 3299 return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t; 3300 } 3301 3302 /// Helper to generate calls to scalar user defined assignment procedures. 3303 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder, 3304 mlir::Location loc, 3305 mlir::func::FuncOp func, 3306 const fir::ExtendedValue &lhs, 3307 const fir::ExtendedValue &rhs) { 3308 auto prepareUserDefinedArg = 3309 [](fir::FirOpBuilder &builder, mlir::Location loc, 3310 const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value { 3311 if (argType.isa<fir::BoxCharType>()) { 3312 const fir::CharBoxValue *charBox = value.getCharBox(); 3313 assert(charBox && "argument type mismatch in elemental user assignment"); 3314 return fir::factory::CharacterExprHelper{builder, loc}.createEmbox( 3315 *charBox); 3316 } 3317 if (argType.isa<fir::BoxType>()) { 3318 mlir::Value box = builder.createBox(loc, value); 3319 return builder.createConvert(loc, argType, box); 3320 } 3321 // Simple pass by address. 3322 mlir::Type argBaseType = fir::unwrapRefType(argType); 3323 assert(!fir::hasDynamicSize(argBaseType)); 3324 mlir::Value from = fir::getBase(value); 3325 if (argBaseType != fir::unwrapRefType(from.getType())) { 3326 // With logicals, it is possible that from is i1 here. 3327 if (fir::isa_ref_type(from.getType())) 3328 from = builder.create<fir::LoadOp>(loc, from); 3329 from = builder.createConvert(loc, argBaseType, from); 3330 } 3331 if (!fir::isa_ref_type(from.getType())) { 3332 mlir::Value temp = builder.createTemporary(loc, argBaseType); 3333 builder.create<fir::StoreOp>(loc, from, temp); 3334 from = temp; 3335 } 3336 return builder.createConvert(loc, argType, from); 3337 }; 3338 assert(func.getNumArguments() == 2); 3339 mlir::Type lhsType = func.getFunctionType().getInput(0); 3340 mlir::Type rhsType = func.getFunctionType().getInput(1); 3341 mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType); 3342 mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType); 3343 builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg}); 3344 } 3345 3346 /// Convert the result of a fir.array_modify to an ExtendedValue given the 3347 /// related fir.array_load. 3348 static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder, 3349 mlir::Location loc, 3350 fir::ArrayLoadOp load, 3351 mlir::Value elementAddr) { 3352 mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType()); 3353 if (fir::isa_char(eleTy)) { 3354 auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 3355 load.getMemref()); 3356 if (!len) { 3357 assert(load.getTypeparams().size() == 1 && 3358 "length must be in array_load"); 3359 len = load.getTypeparams()[0]; 3360 } 3361 return fir::CharBoxValue{elementAddr, len}; 3362 } 3363 return elementAddr; 3364 } 3365 3366 //===----------------------------------------------------------------------===// 3367 // 3368 // Lowering of scalar expressions in an explicit iteration space context. 3369 // 3370 //===----------------------------------------------------------------------===// 3371 3372 // Shared code for creating a copy of a derived type element. This function is 3373 // called from a continuation. 3374 inline static fir::ArrayAmendOp 3375 createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad, 3376 fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc, 3377 const fir::ExtendedValue &elementExv, mlir::Type eleTy, 3378 mlir::Value innerArg) { 3379 if (destLoad.getTypeparams().empty()) { 3380 fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv); 3381 } else { 3382 auto boxTy = fir::BoxType::get(eleTy); 3383 auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(), 3384 mlir::Value{}, mlir::Value{}, 3385 destLoad.getTypeparams()); 3386 auto fromBox = builder.create<fir::EmboxOp>( 3387 loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{}, 3388 destLoad.getTypeparams()); 3389 fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox), 3390 fir::BoxValue(fromBox)); 3391 } 3392 return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg, 3393 destAcc); 3394 } 3395 3396 inline static fir::ArrayAmendOp 3397 createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder, 3398 fir::ArrayAccessOp dstOp, mlir::Value &dstLen, 3399 const fir::ExtendedValue &srcExv, mlir::Value innerArg, 3400 llvm::ArrayRef<mlir::Value> bounds) { 3401 fir::CharBoxValue dstChar(dstOp, dstLen); 3402 fir::factory::CharacterExprHelper helper{builder, loc}; 3403 if (!bounds.empty()) { 3404 dstChar = helper.createSubstring(dstChar, bounds); 3405 fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv), 3406 dstChar.getAddr(), dstChar.getLen(), builder, 3407 loc); 3408 // Update the LEN to the substring's LEN. 3409 dstLen = dstChar.getLen(); 3410 } 3411 // For a CHARACTER, we generate the element assignment loops inline. 3412 helper.createAssign(fir::ExtendedValue{dstChar}, srcExv); 3413 // Mark this array element as amended. 3414 mlir::Type ty = innerArg.getType(); 3415 auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp); 3416 return amend; 3417 } 3418 3419 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting 3420 /// the actual extents and lengths. This is only to allow their propagation as 3421 /// ExtendedValue without triggering verifier failures when propagating 3422 /// character/arrays as unboxed values. Only the base of the resulting 3423 /// ExtendedValue should be used, it is undefined to use the length or extents 3424 /// of the extended value returned, 3425 inline static fir::ExtendedValue 3426 convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder, 3427 mlir::Value val, mlir::Value len) { 3428 mlir::Type ty = fir::unwrapRefType(val.getType()); 3429 mlir::IndexType idxTy = builder.getIndexType(); 3430 auto seqTy = ty.cast<fir::SequenceType>(); 3431 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 3432 llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef); 3433 if (fir::isa_char(seqTy.getEleTy())) 3434 return fir::CharArrayBoxValue(val, len ? len : undef, extents); 3435 return fir::ArrayBoxValue(val, extents); 3436 } 3437 3438 //===----------------------------------------------------------------------===// 3439 // 3440 // Lowering of array expressions. 3441 // 3442 //===----------------------------------------------------------------------===// 3443 3444 namespace { 3445 class ArrayExprLowering { 3446 using ExtValue = fir::ExtendedValue; 3447 3448 /// Structure to keep track of lowered array operands in the 3449 /// array expression. Useful to later deduce the shape of the 3450 /// array expression. 3451 struct ArrayOperand { 3452 /// Array base (can be a fir.box). 3453 mlir::Value memref; 3454 /// ShapeOp, ShapeShiftOp or ShiftOp 3455 mlir::Value shape; 3456 /// SliceOp 3457 mlir::Value slice; 3458 /// Can this operand be absent ? 3459 bool mayBeAbsent = false; 3460 }; 3461 3462 using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts; 3463 using PathComponent = Fortran::lower::PathComponent; 3464 3465 /// Active iteration space. 3466 using IterationSpace = Fortran::lower::IterationSpace; 3467 using IterSpace = const Fortran::lower::IterationSpace &; 3468 3469 /// Current continuation. Function that will generate IR for a single 3470 /// iteration of the pending iterative loop structure. 3471 using CC = Fortran::lower::GenerateElementalArrayFunc; 3472 3473 /// Projection continuation. Function that will project one iteration space 3474 /// into another. 3475 using PC = std::function<IterationSpace(IterSpace)>; 3476 using ArrayBaseTy = 3477 std::variant<std::monostate, const Fortran::evaluate::ArrayRef *, 3478 const Fortran::evaluate::DataRef *>; 3479 using ComponentPath = Fortran::lower::ComponentPath; 3480 3481 public: 3482 //===--------------------------------------------------------------------===// 3483 // Regular array assignment 3484 //===--------------------------------------------------------------------===// 3485 3486 /// Entry point for array assignments. Both the left-hand and right-hand sides 3487 /// can either be ExtendedValue or evaluate::Expr. 3488 template <typename TL, typename TR> 3489 static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter, 3490 Fortran::lower::SymMap &symMap, 3491 Fortran::lower::StatementContext &stmtCtx, 3492 const TL &lhs, const TR &rhs) { 3493 ArrayExprLowering ael(converter, stmtCtx, symMap, 3494 ConstituentSemantics::CopyInCopyOut); 3495 ael.lowerArrayAssignment(lhs, rhs); 3496 } 3497 3498 template <typename TL, typename TR> 3499 void lowerArrayAssignment(const TL &lhs, const TR &rhs) { 3500 mlir::Location loc = getLoc(); 3501 /// Here the target subspace is not necessarily contiguous. The ArrayUpdate 3502 /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad 3503 /// in `destination`. 3504 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); 3505 ccStoreToDest = genarr(lhs); 3506 determineShapeOfDest(lhs); 3507 semant = ConstituentSemantics::RefTransparent; 3508 ExtValue exv = lowerArrayExpression(rhs); 3509 if (explicitSpaceIsActive()) { 3510 explicitSpace->finalizeContext(); 3511 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3512 } else { 3513 builder.create<fir::ArrayMergeStoreOp>( 3514 loc, destination, fir::getBase(exv), destination.getMemref(), 3515 destination.getSlice(), destination.getTypeparams()); 3516 } 3517 } 3518 3519 //===--------------------------------------------------------------------===// 3520 // WHERE array assignment, FORALL assignment, and FORALL+WHERE array 3521 // assignment 3522 //===--------------------------------------------------------------------===// 3523 3524 /// Entry point for array assignment when the iteration space is explicitly 3525 /// defined (Fortran's FORALL) with or without masks, and/or the implied 3526 /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit 3527 /// space and implicit space with masks) may be present. 3528 static void lowerAnyMaskedArrayAssignment( 3529 Fortran::lower::AbstractConverter &converter, 3530 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3531 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3532 Fortran::lower::ExplicitIterSpace &explicitSpace, 3533 Fortran::lower::ImplicitIterSpace &implicitSpace) { 3534 if (explicitSpace.isActive() && lhs.Rank() == 0) { 3535 // Scalar assignment expression in a FORALL context. 3536 ArrayExprLowering ael(converter, stmtCtx, symMap, 3537 ConstituentSemantics::RefTransparent, 3538 &explicitSpace, &implicitSpace); 3539 ael.lowerScalarAssignment(lhs, rhs); 3540 return; 3541 } 3542 // Array assignment expression in a FORALL and/or WHERE context. 3543 ArrayExprLowering ael(converter, stmtCtx, symMap, 3544 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3545 &implicitSpace); 3546 ael.lowerArrayAssignment(lhs, rhs); 3547 } 3548 3549 //===--------------------------------------------------------------------===// 3550 // Array assignment to array of pointer box values. 3551 //===--------------------------------------------------------------------===// 3552 3553 /// Entry point for assignment to pointer in an array of pointers. 3554 static void lowerArrayOfPointerAssignment( 3555 Fortran::lower::AbstractConverter &converter, 3556 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3557 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3558 Fortran::lower::ExplicitIterSpace &explicitSpace, 3559 Fortran::lower::ImplicitIterSpace &implicitSpace, 3560 const llvm::SmallVector<mlir::Value> &lbounds, 3561 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) { 3562 ArrayExprLowering ael(converter, stmtCtx, symMap, 3563 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3564 &implicitSpace); 3565 ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds); 3566 } 3567 3568 /// Scalar pointer assignment in an explicit iteration space. 3569 /// 3570 /// Pointers may be bound to targets in a FORALL context. This is a scalar 3571 /// assignment in the sense there is never an implied iteration space, even if 3572 /// the pointer is to a target with non-zero rank. Since the pointer 3573 /// assignment must appear in a FORALL construct, correctness may require that 3574 /// the array of pointers follow copy-in/copy-out semantics. The pointer 3575 /// assignment may include a bounds-spec (lower bounds), a bounds-remapping 3576 /// (lower and upper bounds), or neither. 3577 void lowerArrayOfPointerAssignment( 3578 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3579 const llvm::SmallVector<mlir::Value> &lbounds, 3580 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) { 3581 setPointerAssignmentBounds(lbounds, ubounds); 3582 if (rhs.Rank() == 0 || 3583 (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) && 3584 Fortran::evaluate::IsAllocatableOrPointerObject( 3585 rhs, converter.getFoldingContext()))) { 3586 lowerScalarAssignment(lhs, rhs); 3587 return; 3588 } 3589 TODO(getLoc(), 3590 "auto boxing of a ranked expression on RHS for pointer assignment"); 3591 } 3592 3593 //===--------------------------------------------------------------------===// 3594 // Array assignment to allocatable array 3595 //===--------------------------------------------------------------------===// 3596 3597 /// Entry point for assignment to allocatable array. 3598 static void lowerAllocatableArrayAssignment( 3599 Fortran::lower::AbstractConverter &converter, 3600 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3601 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3602 Fortran::lower::ExplicitIterSpace &explicitSpace, 3603 Fortran::lower::ImplicitIterSpace &implicitSpace) { 3604 ArrayExprLowering ael(converter, stmtCtx, symMap, 3605 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3606 &implicitSpace); 3607 ael.lowerAllocatableArrayAssignment(lhs, rhs); 3608 } 3609 3610 /// Assignment to allocatable array. 3611 /// 3612 /// The semantics are reverse that of a "regular" array assignment. The rhs 3613 /// defines the iteration space of the computation and the lhs is 3614 /// resized/reallocated to fit if necessary. 3615 void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs, 3616 const Fortran::lower::SomeExpr &rhs) { 3617 // With assignment to allocatable, we want to lower the rhs first and use 3618 // its shape to determine if we need to reallocate, etc. 3619 mlir::Location loc = getLoc(); 3620 // FIXME: If the lhs is in an explicit iteration space, the assignment may 3621 // be to an array of allocatable arrays rather than a single allocatable 3622 // array. 3623 fir::MutableBoxValue mutableBox = 3624 Fortran::lower::createMutableBox(loc, converter, lhs, symMap); 3625 mlir::Type resultTy = converter.genType(rhs); 3626 if (rhs.Rank() > 0) 3627 determineShapeOfDest(rhs); 3628 auto rhsCC = [&]() { 3629 PushSemantics(ConstituentSemantics::RefTransparent); 3630 return genarr(rhs); 3631 }(); 3632 3633 llvm::SmallVector<mlir::Value> lengthParams; 3634 // Currently no safe way to gather length from rhs (at least for 3635 // character, it cannot be taken from array_loads since it may be 3636 // changed by concatenations). 3637 if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) || 3638 mutableBox.isDerivedWithLenParameters()) 3639 TODO(loc, "gather rhs length parameters in assignment to allocatable"); 3640 3641 // The allocatable must take lower bounds from the expr if it is 3642 // reallocated and the right hand side is not a scalar. 3643 const bool takeLboundsIfRealloc = rhs.Rank() > 0; 3644 llvm::SmallVector<mlir::Value> lbounds; 3645 // When the reallocated LHS takes its lower bounds from the RHS, 3646 // they will be non default only if the RHS is a whole array 3647 // variable. Otherwise, lbounds is left empty and default lower bounds 3648 // will be used. 3649 if (takeLboundsIfRealloc && 3650 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) { 3651 assert(arrayOperands.size() == 1 && 3652 "lbounds can only come from one array"); 3653 auto lbs = fir::factory::getOrigins(arrayOperands[0].shape); 3654 lbounds.append(lbs.begin(), lbs.end()); 3655 } 3656 fir::factory::MutableBoxReallocation realloc = 3657 fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape, 3658 lengthParams); 3659 // Create ArrayLoad for the mutable box and save it into `destination`. 3660 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); 3661 ccStoreToDest = genarr(realloc.newValue); 3662 // If the rhs is scalar, get shape from the allocatable ArrayLoad. 3663 if (destShape.empty()) 3664 destShape = getShape(destination); 3665 // Finish lowering the loop nest. 3666 assert(destination && "destination must have been set"); 3667 ExtValue exv = lowerArrayExpression(rhsCC, resultTy); 3668 if (explicitSpaceIsActive()) { 3669 explicitSpace->finalizeContext(); 3670 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3671 } else { 3672 builder.create<fir::ArrayMergeStoreOp>( 3673 loc, destination, fir::getBase(exv), destination.getMemref(), 3674 destination.getSlice(), destination.getTypeparams()); 3675 } 3676 fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds, 3677 takeLboundsIfRealloc, realloc); 3678 } 3679 3680 /// Entry point for when an array expression appears in a context where the 3681 /// result must be boxed. (BoxValue semantics.) 3682 static ExtValue 3683 lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter, 3684 Fortran::lower::SymMap &symMap, 3685 Fortran::lower::StatementContext &stmtCtx, 3686 const Fortran::lower::SomeExpr &expr) { 3687 ArrayExprLowering ael{converter, stmtCtx, symMap, 3688 ConstituentSemantics::BoxValue}; 3689 return ael.lowerBoxedArrayExpr(expr); 3690 } 3691 3692 ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) { 3693 PushSemantics(ConstituentSemantics::BoxValue); 3694 return std::visit( 3695 [&](const auto &e) { 3696 auto f = genarr(e); 3697 ExtValue exv = f(IterationSpace{}); 3698 if (fir::getBase(exv).getType().template isa<fir::BoxType>()) 3699 return exv; 3700 fir::emitFatalError(getLoc(), "array must be emboxed"); 3701 }, 3702 exp.u); 3703 } 3704 3705 /// Entry point into lowering an expression with rank. This entry point is for 3706 /// lowering a rhs expression, for example. (RefTransparent semantics.) 3707 static ExtValue 3708 lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter, 3709 Fortran::lower::SymMap &symMap, 3710 Fortran::lower::StatementContext &stmtCtx, 3711 const Fortran::lower::SomeExpr &expr) { 3712 ArrayExprLowering ael{converter, stmtCtx, symMap}; 3713 ael.determineShapeOfDest(expr); 3714 ExtValue loopRes = ael.lowerArrayExpression(expr); 3715 fir::ArrayLoadOp dest = ael.destination; 3716 mlir::Value tempRes = dest.getMemref(); 3717 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 3718 mlir::Location loc = converter.getCurrentLocation(); 3719 builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes), 3720 tempRes, dest.getSlice(), 3721 dest.getTypeparams()); 3722 3723 auto arrTy = 3724 fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>(); 3725 if (auto charTy = 3726 arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) { 3727 if (fir::characterWithDynamicLen(charTy)) 3728 TODO(loc, "CHARACTER does not have constant LEN"); 3729 mlir::Value len = builder.createIntegerConstant( 3730 loc, builder.getCharacterLengthType(), charTy.getLen()); 3731 return fir::CharArrayBoxValue(tempRes, len, dest.getExtents()); 3732 } 3733 return fir::ArrayBoxValue(tempRes, dest.getExtents()); 3734 } 3735 3736 static void lowerLazyArrayExpression( 3737 Fortran::lower::AbstractConverter &converter, 3738 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3739 const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) { 3740 ArrayExprLowering ael(converter, stmtCtx, symMap); 3741 ael.lowerLazyArrayExpression(expr, raggedHeader); 3742 } 3743 3744 /// Lower the expression \p expr into a buffer that is created on demand. The 3745 /// variable containing the pointer to the buffer is \p var and the variable 3746 /// containing the shape of the buffer is \p shapeBuffer. 3747 void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr, 3748 mlir::Value header) { 3749 mlir::Location loc = getLoc(); 3750 mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder); 3751 mlir::IntegerType i32Ty = builder.getIntegerType(32); 3752 3753 // Once the loop extents have been computed, which may require being inside 3754 // some explicit loops, lazily allocate the expression on the heap. The 3755 // following continuation creates the buffer as needed. 3756 ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) { 3757 mlir::IntegerType i64Ty = builder.getIntegerType(64); 3758 mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1); 3759 fir::runtime::genRaggedArrayAllocate( 3760 loc, builder, header, /*asHeaders=*/false, byteSize, shape); 3761 }; 3762 3763 // Create a dummy array_load before the loop. We're storing to a lazy 3764 // temporary, so there will be no conflict and no copy-in. TODO: skip this 3765 // as there isn't any necessity for it. 3766 ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp { 3767 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 3768 auto var = builder.create<fir::CoordinateOp>( 3769 loc, builder.getRefType(hdrTy.getType(1)), header, one); 3770 auto load = builder.create<fir::LoadOp>(loc, var); 3771 mlir::Type eleTy = 3772 fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); 3773 auto seqTy = fir::SequenceType::get(eleTy, shape.size()); 3774 mlir::Value castTo = 3775 builder.createConvert(loc, fir::HeapType::get(seqTy), load); 3776 mlir::Value shapeOp = builder.genShape(loc, shape); 3777 return builder.create<fir::ArrayLoadOp>( 3778 loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None); 3779 }; 3780 // Custom lowering of the element store to deal with the extra indirection 3781 // to the lazy allocated buffer. 3782 ccStoreToDest = [=](IterSpace iters) { 3783 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 3784 auto var = builder.create<fir::CoordinateOp>( 3785 loc, builder.getRefType(hdrTy.getType(1)), header, one); 3786 auto load = builder.create<fir::LoadOp>(loc, var); 3787 mlir::Type eleTy = 3788 fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); 3789 auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size()); 3790 auto toTy = fir::HeapType::get(seqTy); 3791 mlir::Value castTo = builder.createConvert(loc, toTy, load); 3792 mlir::Value shape = builder.genShape(loc, genIterationShape()); 3793 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 3794 loc, builder, castTo.getType(), shape, iters.iterVec()); 3795 auto eleAddr = builder.create<fir::ArrayCoorOp>( 3796 loc, builder.getRefType(eleTy), castTo, shape, 3797 /*slice=*/mlir::Value{}, indices, destination.getTypeparams()); 3798 mlir::Value eleVal = 3799 builder.createConvert(loc, eleTy, iters.getElement()); 3800 builder.create<fir::StoreOp>(loc, eleVal, eleAddr); 3801 return iters.innerArgument(); 3802 }; 3803 3804 // Lower the array expression now. Clean-up any temps that may have 3805 // been generated when lowering `expr` right after the lowered value 3806 // was stored to the ragged array temporary. The local temps will not 3807 // be needed afterwards. 3808 stmtCtx.pushScope(); 3809 [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr); 3810 stmtCtx.finalize(/*popScope=*/true); 3811 assert(fir::getBase(loopRes)); 3812 } 3813 3814 static void 3815 lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter, 3816 Fortran::lower::SymMap &symMap, 3817 Fortran::lower::StatementContext &stmtCtx, 3818 Fortran::lower::ExplicitIterSpace &explicitSpace, 3819 Fortran::lower::ImplicitIterSpace &implicitSpace, 3820 const Fortran::evaluate::ProcedureRef &procRef) { 3821 ArrayExprLowering ael(converter, stmtCtx, symMap, 3822 ConstituentSemantics::CustomCopyInCopyOut, 3823 &explicitSpace, &implicitSpace); 3824 assert(procRef.arguments().size() == 2); 3825 const auto *lhs = procRef.arguments()[0].value().UnwrapExpr(); 3826 const auto *rhs = procRef.arguments()[1].value().UnwrapExpr(); 3827 assert(lhs && rhs && 3828 "user defined assignment arguments must be expressions"); 3829 mlir::func::FuncOp func = 3830 Fortran::lower::CallerInterface(procRef, converter).getFuncOp(); 3831 ael.lowerElementalUserAssignment(func, *lhs, *rhs); 3832 } 3833 3834 void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment, 3835 const Fortran::lower::SomeExpr &lhs, 3836 const Fortran::lower::SomeExpr &rhs) { 3837 mlir::Location loc = getLoc(); 3838 PushSemantics(ConstituentSemantics::CustomCopyInCopyOut); 3839 auto genArrayModify = genarr(lhs); 3840 ccStoreToDest = [=](IterSpace iters) -> ExtValue { 3841 auto modifiedArray = genArrayModify(iters); 3842 auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>( 3843 fir::getBase(modifiedArray).getDefiningOp()); 3844 assert(arrayModify && "must be created by ArrayModifyOp"); 3845 fir::ExtendedValue lhs = 3846 arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0)); 3847 genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs, 3848 iters.elementExv()); 3849 return modifiedArray; 3850 }; 3851 determineShapeOfDest(lhs); 3852 semant = ConstituentSemantics::RefTransparent; 3853 auto exv = lowerArrayExpression(rhs); 3854 if (explicitSpaceIsActive()) { 3855 explicitSpace->finalizeContext(); 3856 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3857 } else { 3858 builder.create<fir::ArrayMergeStoreOp>( 3859 loc, destination, fir::getBase(exv), destination.getMemref(), 3860 destination.getSlice(), destination.getTypeparams()); 3861 } 3862 } 3863 3864 /// Lower an elemental subroutine call with at least one array argument. 3865 /// An elemental subroutine is an exception and does not have copy-in/copy-out 3866 /// semantics. See 15.8.3. 3867 /// Do NOT use this for user defined assignments. 3868 static void 3869 lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter, 3870 Fortran::lower::SymMap &symMap, 3871 Fortran::lower::StatementContext &stmtCtx, 3872 const Fortran::lower::SomeExpr &call) { 3873 ArrayExprLowering ael(converter, stmtCtx, symMap, 3874 ConstituentSemantics::RefTransparent); 3875 ael.lowerElementalSubroutine(call); 3876 } 3877 3878 // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&). 3879 // This is skipping generation of copy-in/copy-out code for analysis that is 3880 // required when arguments are in parentheses. 3881 void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) { 3882 auto f = genarr(call); 3883 llvm::SmallVector<mlir::Value> shape = genIterationShape(); 3884 auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{}); 3885 f(iterSpace); 3886 finalizeElementCtx(); 3887 builder.restoreInsertionPoint(insPt); 3888 } 3889 3890 ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs, 3891 const Fortran::lower::SomeExpr &rhs) { 3892 PushSemantics(ConstituentSemantics::RefTransparent); 3893 // 1) Lower the rhs expression with array_fetch op(s). 3894 IterationSpace iters; 3895 iters.setElement(genarr(rhs)(iters)); 3896 // 2) Lower the lhs expression to an array_update. 3897 semant = ConstituentSemantics::ProjectedCopyInCopyOut; 3898 auto lexv = genarr(lhs)(iters); 3899 // 3) Finalize the inner context. 3900 explicitSpace->finalizeContext(); 3901 // 4) Thread the array value updated forward. Note: the lhs might be 3902 // ill-formed (performing scalar assignment in an array context), 3903 // in which case there is no array to thread. 3904 auto loc = getLoc(); 3905 auto createResult = [&](auto op) { 3906 mlir::Value oldInnerArg = op.getSequence(); 3907 std::size_t offset = explicitSpace->argPosition(oldInnerArg); 3908 explicitSpace->setInnerArg(offset, fir::getBase(lexv)); 3909 finalizeElementCtx(); 3910 builder.create<fir::ResultOp>(loc, fir::getBase(lexv)); 3911 }; 3912 if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) { 3913 llvm::TypeSwitch<mlir::Operation *>(defOp) 3914 .Case([&](fir::ArrayUpdateOp op) { createResult(op); }) 3915 .Case([&](fir::ArrayAmendOp op) { createResult(op); }) 3916 .Case([&](fir::ArrayModifyOp op) { createResult(op); }) 3917 .Default([&](mlir::Operation *) { finalizeElementCtx(); }); 3918 } else { 3919 // `lhs` isn't from a `fir.array_load`, so there is no array modifications 3920 // to thread through the iteration space. 3921 finalizeElementCtx(); 3922 } 3923 return lexv; 3924 } 3925 3926 static ExtValue lowerScalarUserAssignment( 3927 Fortran::lower::AbstractConverter &converter, 3928 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3929 Fortran::lower::ExplicitIterSpace &explicitIterSpace, 3930 mlir::func::FuncOp userAssignmentFunction, 3931 const Fortran::lower::SomeExpr &lhs, 3932 const Fortran::lower::SomeExpr &rhs) { 3933 Fortran::lower::ImplicitIterSpace implicit; 3934 ArrayExprLowering ael(converter, stmtCtx, symMap, 3935 ConstituentSemantics::RefTransparent, 3936 &explicitIterSpace, &implicit); 3937 return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs); 3938 } 3939 3940 ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment, 3941 const Fortran::lower::SomeExpr &lhs, 3942 const Fortran::lower::SomeExpr &rhs) { 3943 mlir::Location loc = getLoc(); 3944 if (rhs.Rank() > 0) 3945 TODO(loc, "user-defined elemental assigment from expression with rank"); 3946 // 1) Lower the rhs expression with array_fetch op(s). 3947 IterationSpace iters; 3948 iters.setElement(genarr(rhs)(iters)); 3949 fir::ExtendedValue elementalExv = iters.elementExv(); 3950 // 2) Lower the lhs expression to an array_modify. 3951 semant = ConstituentSemantics::CustomCopyInCopyOut; 3952 auto lexv = genarr(lhs)(iters); 3953 bool isIllFormedLHS = false; 3954 // 3) Insert the call 3955 if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>( 3956 fir::getBase(lexv).getDefiningOp())) { 3957 mlir::Value oldInnerArg = modifyOp.getSequence(); 3958 std::size_t offset = explicitSpace->argPosition(oldInnerArg); 3959 explicitSpace->setInnerArg(offset, fir::getBase(lexv)); 3960 fir::ExtendedValue exv = 3961 arrayModifyToExv(builder, loc, explicitSpace->getLhsLoad(0).value(), 3962 modifyOp.getResult(0)); 3963 genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv, 3964 elementalExv); 3965 } else { 3966 // LHS is ill formed, it is a scalar with no references to FORALL 3967 // subscripts, so there is actually no array assignment here. The user 3968 // code is probably bad, but still insert user assignment call since it 3969 // was not rejected by semantics (a warning was emitted). 3970 isIllFormedLHS = true; 3971 genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment, 3972 lexv, elementalExv); 3973 } 3974 // 4) Finalize the inner context. 3975 explicitSpace->finalizeContext(); 3976 // 5). Thread the array value updated forward. 3977 if (!isIllFormedLHS) { 3978 finalizeElementCtx(); 3979 builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); 3980 } 3981 return lexv; 3982 } 3983 3984 private: 3985 void determineShapeOfDest(const fir::ExtendedValue &lhs) { 3986 destShape = fir::factory::getExtents(getLoc(), builder, lhs); 3987 } 3988 3989 void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) { 3990 if (!destShape.empty()) 3991 return; 3992 if (explicitSpaceIsActive() && determineShapeWithSlice(lhs)) 3993 return; 3994 mlir::Type idxTy = builder.getIndexType(); 3995 mlir::Location loc = getLoc(); 3996 if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape = 3997 Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(), 3998 lhs)) 3999 for (Fortran::common::ConstantSubscript extent : *constantShape) 4000 destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 4001 } 4002 4003 bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) { 4004 return false; 4005 } 4006 bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) { 4007 TODO(getLoc(), "coarray ref"); 4008 return false; 4009 } 4010 bool genShapeFromDataRef(const Fortran::evaluate::Component &x) { 4011 return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false; 4012 } 4013 bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) { 4014 if (x.Rank() == 0) 4015 return false; 4016 if (x.base().Rank() > 0) 4017 if (genShapeFromDataRef(x.base())) 4018 return true; 4019 // x has rank and x.base did not produce a shape. 4020 ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base())) 4021 : asScalarRef(x.base().GetComponent()); 4022 mlir::Location loc = getLoc(); 4023 mlir::IndexType idxTy = builder.getIndexType(); 4024 llvm::SmallVector<mlir::Value> definedShape = 4025 fir::factory::getExtents(loc, builder, exv); 4026 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 4027 for (auto ss : llvm::enumerate(x.subscript())) { 4028 std::visit(Fortran::common::visitors{ 4029 [&](const Fortran::evaluate::Triplet &trip) { 4030 // For a subscript of triple notation, we compute the 4031 // range of this dimension of the iteration space. 4032 auto lo = [&]() { 4033 if (auto optLo = trip.lower()) 4034 return fir::getBase(asScalar(*optLo)); 4035 return getLBound(exv, ss.index(), one); 4036 }(); 4037 auto hi = [&]() { 4038 if (auto optHi = trip.upper()) 4039 return fir::getBase(asScalar(*optHi)); 4040 return getUBound(exv, ss.index(), one); 4041 }(); 4042 auto step = builder.createConvert( 4043 loc, idxTy, fir::getBase(asScalar(trip.stride()))); 4044 auto extent = builder.genExtentFromTriplet(loc, lo, hi, 4045 step, idxTy); 4046 destShape.push_back(extent); 4047 }, 4048 [&](auto) {}}, 4049 ss.value().u); 4050 } 4051 return true; 4052 } 4053 bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) { 4054 if (x.IsSymbol()) 4055 return genShapeFromDataRef(getFirstSym(x)); 4056 return genShapeFromDataRef(x.GetComponent()); 4057 } 4058 bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) { 4059 return std::visit([&](const auto &v) { return genShapeFromDataRef(v); }, 4060 x.u); 4061 } 4062 4063 /// When in an explicit space, the ranked component must be evaluated to 4064 /// determine the actual number of iterations when slicing triples are 4065 /// present. Lower these expressions here. 4066 bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) { 4067 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump( 4068 llvm::dbgs() << "determine shape of:\n", lhs)); 4069 // FIXME: We may not want to use ExtractDataRef here since it doesn't deal 4070 // with substrings, etc. 4071 std::optional<Fortran::evaluate::DataRef> dref = 4072 Fortran::evaluate::ExtractDataRef(lhs); 4073 return dref.has_value() ? genShapeFromDataRef(*dref) : false; 4074 } 4075 4076 /// CHARACTER and derived type elements are treated as memory references. The 4077 /// numeric types are treated as values. 4078 static mlir::Type adjustedArraySubtype(mlir::Type ty, 4079 mlir::ValueRange indices) { 4080 mlir::Type pathTy = fir::applyPathToType(ty, indices); 4081 assert(pathTy && "indices failed to apply to type"); 4082 return adjustedArrayElementType(pathTy); 4083 } 4084 4085 /// Lower rhs of an array expression. 4086 ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) { 4087 mlir::Type resTy = converter.genType(exp); 4088 return std::visit( 4089 [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); }, 4090 exp.u); 4091 } 4092 ExtValue lowerArrayExpression(const ExtValue &exv) { 4093 assert(!explicitSpace); 4094 mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType()); 4095 return lowerArrayExpression(genarr(exv), resTy); 4096 } 4097 4098 void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds, 4099 const Fortran::evaluate::Substring *substring) { 4100 if (!substring) 4101 return; 4102 bounds.push_back(fir::getBase(asScalar(substring->lower()))); 4103 if (auto upper = substring->upper()) 4104 bounds.push_back(fir::getBase(asScalar(*upper))); 4105 } 4106 4107 /// Convert the original value, \p origVal, to type \p eleTy. When in a 4108 /// pointer assignment context, generate an appropriate `fir.rebox` for 4109 /// dealing with any bounds parameters on the pointer assignment. 4110 mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy, 4111 mlir::Value origVal) { 4112 if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType())) 4113 if (origEleTy.isa<fir::BoxType>()) { 4114 // If origVal is a box variable, load it so it is in the value domain. 4115 origVal = builder.create<fir::LoadOp>(loc, origVal); 4116 } 4117 if (origVal.getType().isa<fir::BoxType>() && !eleTy.isa<fir::BoxType>()) { 4118 if (isPointerAssignment()) 4119 TODO(loc, "lhs of pointer assignment returned unexpected value"); 4120 TODO(loc, "invalid box conversion in elemental computation"); 4121 } 4122 if (isPointerAssignment() && eleTy.isa<fir::BoxType>() && 4123 !origVal.getType().isa<fir::BoxType>()) { 4124 // This is a pointer assignment and the rhs is a raw reference to a TARGET 4125 // in memory. Embox the reference so it can be stored to the boxed 4126 // POINTER variable. 4127 assert(fir::isa_ref_type(origVal.getType())); 4128 if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType()); 4129 fir::hasDynamicSize(eleTy)) 4130 TODO(loc, "TARGET of pointer assignment with runtime size/shape"); 4131 auto memrefTy = fir::boxMemRefType(eleTy.cast<fir::BoxType>()); 4132 auto castTo = builder.createConvert(loc, memrefTy, origVal); 4133 origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo); 4134 } 4135 mlir::Value val = builder.createConvert(loc, eleTy, origVal); 4136 if (isBoundsSpec()) { 4137 auto lbs = lbounds.value(); 4138 if (lbs.size() > 0) { 4139 // Rebox the value with user-specified shift. 4140 auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size()); 4141 mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs); 4142 val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp, 4143 mlir::Value{}); 4144 } 4145 } else if (isBoundsRemap()) { 4146 auto lbs = lbounds.getValue(); 4147 if (lbs.size() > 0) { 4148 // Rebox the value with user-specified shift and shape. 4149 auto shapeShiftArgs = flatZip(lbs, ubounds.getValue()); 4150 auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size()); 4151 mlir::Value shapeShift = 4152 builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs); 4153 val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift, 4154 mlir::Value{}); 4155 } 4156 } 4157 return val; 4158 } 4159 4160 /// Default store to destination implementation. 4161 /// This implements the default case, which is to assign the value in 4162 /// `iters.element` into the destination array, `iters.innerArgument`. Handles 4163 /// by value and by reference assignment. 4164 CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) { 4165 return [=](IterSpace iterSpace) -> ExtValue { 4166 mlir::Location loc = getLoc(); 4167 mlir::Value innerArg = iterSpace.innerArgument(); 4168 fir::ExtendedValue exv = iterSpace.elementExv(); 4169 mlir::Type arrTy = innerArg.getType(); 4170 mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec()); 4171 if (isAdjustedArrayElementType(eleTy)) { 4172 // The elemental update is in the memref domain. Under this semantics, 4173 // we must always copy the computed new element from its location in 4174 // memory into the destination array. 4175 mlir::Type resRefTy = builder.getRefType(eleTy); 4176 // Get a reference to the array element to be amended. 4177 auto arrayOp = builder.create<fir::ArrayAccessOp>( 4178 loc, resRefTy, innerArg, iterSpace.iterVec(), 4179 fir::factory::getTypeParams(loc, builder, destination)); 4180 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 4181 llvm::SmallVector<mlir::Value> substringBounds; 4182 populateBounds(substringBounds, substring); 4183 mlir::Value dstLen = fir::factory::genLenOfCharacter( 4184 builder, loc, destination, iterSpace.iterVec(), substringBounds); 4185 fir::ArrayAmendOp amend = createCharArrayAmend( 4186 loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds); 4187 return abstractArrayExtValue(amend, dstLen); 4188 } 4189 if (fir::isa_derived(eleTy)) { 4190 fir::ArrayAmendOp amend = createDerivedArrayAmend( 4191 loc, destination, builder, arrayOp, exv, eleTy, innerArg); 4192 return abstractArrayExtValue(amend /*FIXME: typeparams?*/); 4193 } 4194 assert(eleTy.isa<fir::SequenceType>() && "must be an array"); 4195 TODO(loc, "array (as element) assignment"); 4196 } 4197 // By value semantics. The element is being assigned by value. 4198 auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv)); 4199 auto update = builder.create<fir::ArrayUpdateOp>( 4200 loc, arrTy, innerArg, ele, iterSpace.iterVec(), 4201 destination.getTypeparams()); 4202 return abstractArrayExtValue(update); 4203 }; 4204 } 4205 4206 /// For an elemental array expression. 4207 /// 1. Lower the scalars and array loads. 4208 /// 2. Create the iteration space. 4209 /// 3. Create the element-by-element computation in the loop. 4210 /// 4. Return the resulting array value. 4211 /// If no destination was set in the array context, a temporary of 4212 /// \p resultTy will be created to hold the evaluated expression. 4213 /// Otherwise, \p resultTy is ignored and the expression is evaluated 4214 /// in the destination. \p f is a continuation built from an 4215 /// evaluate::Expr or an ExtendedValue. 4216 ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) { 4217 mlir::Location loc = getLoc(); 4218 auto [iterSpace, insPt] = genIterSpace(resultTy); 4219 auto exv = f(iterSpace); 4220 iterSpace.setElement(std::move(exv)); 4221 auto lambda = ccStoreToDest.hasValue() 4222 ? ccStoreToDest.getValue() 4223 : defaultStoreToDestination(/*substring=*/nullptr); 4224 mlir::Value updVal = fir::getBase(lambda(iterSpace)); 4225 finalizeElementCtx(); 4226 builder.create<fir::ResultOp>(loc, updVal); 4227 builder.restoreInsertionPoint(insPt); 4228 return abstractArrayExtValue(iterSpace.outerResult()); 4229 } 4230 4231 /// Compute the shape of a slice. 4232 llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) { 4233 llvm::SmallVector<mlir::Value> slicedShape; 4234 auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp()); 4235 mlir::Operation::operand_range triples = slOp.getTriples(); 4236 mlir::IndexType idxTy = builder.getIndexType(); 4237 mlir::Location loc = getLoc(); 4238 for (unsigned i = 0, end = triples.size(); i < end; i += 3) { 4239 if (!mlir::isa_and_nonnull<fir::UndefOp>( 4240 triples[i + 1].getDefiningOp())) { 4241 // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0) 4242 // See Fortran 2018 9.5.3.3.2 section for more details. 4243 mlir::Value res = builder.genExtentFromTriplet( 4244 loc, triples[i], triples[i + 1], triples[i + 2], idxTy); 4245 slicedShape.emplace_back(res); 4246 } else { 4247 // do nothing. `..., i, ...` case, so dimension is dropped. 4248 } 4249 } 4250 return slicedShape; 4251 } 4252 4253 /// Get the shape from an ArrayOperand. The shape of the array is adjusted if 4254 /// the array was sliced. 4255 llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) { 4256 if (array.slice) 4257 return computeSliceShape(array.slice); 4258 if (array.memref.getType().isa<fir::BoxType>()) 4259 return fir::factory::readExtents(builder, getLoc(), 4260 fir::BoxValue{array.memref}); 4261 return fir::factory::getExtents(array.shape); 4262 } 4263 4264 /// Get the shape from an ArrayLoad. 4265 llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) { 4266 return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(), 4267 arrayLoad.getSlice()}); 4268 } 4269 4270 /// Returns the first array operand that may not be absent. If all 4271 /// array operands may be absent, return the first one. 4272 const ArrayOperand &getInducingShapeArrayOperand() const { 4273 assert(!arrayOperands.empty()); 4274 for (const ArrayOperand &op : arrayOperands) 4275 if (!op.mayBeAbsent) 4276 return op; 4277 // If all arrays operand appears in optional position, then none of them 4278 // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the 4279 // first operands. 4280 // TODO: There is an opportunity to add a runtime check here that 4281 // this array is present as required. 4282 return arrayOperands[0]; 4283 } 4284 4285 /// Generate the shape of the iteration space over the array expression. The 4286 /// iteration space may be implicit, explicit, or both. If it is implied it is 4287 /// based on the destination and operand array loads, or an optional 4288 /// Fortran::evaluate::Shape from the front end. If the shape is explicit, 4289 /// this returns any implicit shape component, if it exists. 4290 llvm::SmallVector<mlir::Value> genIterationShape() { 4291 // Use the precomputed destination shape. 4292 if (!destShape.empty()) 4293 return destShape; 4294 // Otherwise, use the destination's shape. 4295 if (destination) 4296 return getShape(destination); 4297 // Otherwise, use the first ArrayLoad operand shape. 4298 if (!arrayOperands.empty()) 4299 return getShape(getInducingShapeArrayOperand()); 4300 fir::emitFatalError(getLoc(), 4301 "failed to compute the array expression shape"); 4302 } 4303 4304 bool explicitSpaceIsActive() const { 4305 return explicitSpace && explicitSpace->isActive(); 4306 } 4307 4308 bool implicitSpaceHasMasks() const { 4309 return implicitSpace && !implicitSpace->empty(); 4310 } 4311 4312 CC genMaskAccess(mlir::Value tmp, mlir::Value shape) { 4313 mlir::Location loc = getLoc(); 4314 return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) { 4315 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType()); 4316 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 4317 mlir::Type eleRefTy = builder->getRefType(eleTy); 4318 mlir::IntegerType i1Ty = builder->getI1Type(); 4319 // Adjust indices for any shift of the origin of the array. 4320 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 4321 loc, *builder, tmp.getType(), shape, iters.iterVec()); 4322 auto addr = 4323 builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape, 4324 /*slice=*/mlir::Value{}, indices, 4325 /*typeParams=*/llvm::None); 4326 auto load = builder->create<fir::LoadOp>(loc, addr); 4327 return builder->createConvert(loc, i1Ty, load); 4328 }; 4329 } 4330 4331 /// Construct the incremental instantiations of the ragged array structure. 4332 /// Rebind the lazy buffer variable, etc. as we go. 4333 template <bool withAllocation = false> 4334 mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) { 4335 assert(explicitSpaceIsActive()); 4336 mlir::Location loc = getLoc(); 4337 mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder); 4338 llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack = 4339 explicitSpace->getLoopStack(); 4340 const std::size_t depth = loopStack.size(); 4341 mlir::IntegerType i64Ty = builder.getIntegerType(64); 4342 [[maybe_unused]] mlir::Value byteSize = 4343 builder.createIntegerConstant(loc, i64Ty, 1); 4344 mlir::Value header = implicitSpace->lookupMaskHeader(expr); 4345 for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) { 4346 auto insPt = builder.saveInsertionPoint(); 4347 if (i < depth - 1) 4348 builder.setInsertionPoint(loopStack[i + 1][0]); 4349 4350 // Compute and gather the extents. 4351 llvm::SmallVector<mlir::Value> extents; 4352 for (auto doLoop : loopStack[i]) 4353 extents.push_back(builder.genExtentFromTriplet( 4354 loc, doLoop.getLowerBound(), doLoop.getUpperBound(), 4355 doLoop.getStep(), i64Ty)); 4356 if constexpr (withAllocation) { 4357 fir::runtime::genRaggedArrayAllocate( 4358 loc, builder, header, /*asHeader=*/true, byteSize, extents); 4359 } 4360 4361 // Compute the dynamic position into the header. 4362 llvm::SmallVector<mlir::Value> offsets; 4363 for (auto doLoop : loopStack[i]) { 4364 auto m = builder.create<mlir::arith::SubIOp>( 4365 loc, doLoop.getInductionVar(), doLoop.getLowerBound()); 4366 auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep()); 4367 mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1); 4368 offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one)); 4369 } 4370 mlir::IntegerType i32Ty = builder.getIntegerType(32); 4371 mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1); 4372 mlir::Type coorTy = builder.getRefType(raggedTy.getType(1)); 4373 auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); 4374 auto toTy = fir::SequenceType::get(raggedTy, offsets.size()); 4375 mlir::Type toRefTy = builder.getRefType(toTy); 4376 auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff); 4377 mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr); 4378 auto shapeOp = builder.genShape(loc, extents); 4379 header = builder.create<fir::ArrayCoorOp>( 4380 loc, builder.getRefType(raggedTy), hdArr, shapeOp, 4381 /*slice=*/mlir::Value{}, offsets, 4382 /*typeparams=*/mlir::ValueRange{}); 4383 auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); 4384 auto inVar = builder.create<fir::LoadOp>(loc, hdrVar); 4385 mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); 4386 mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2)); 4387 auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two); 4388 auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh); 4389 // Replace the binding. 4390 implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr)); 4391 if (i < depth - 1) 4392 builder.restoreInsertionPoint(insPt); 4393 } 4394 return header; 4395 } 4396 4397 /// Lower mask expressions with implied iteration spaces from the variants of 4398 /// WHERE syntax. Since it is legal for mask expressions to have side-effects 4399 /// and modify values that will be used for the lhs, rhs, or both of 4400 /// subsequent assignments, the mask must be evaluated before the assignment 4401 /// is processed. 4402 /// Mask expressions are array expressions too. 4403 void genMasks() { 4404 // Lower the mask expressions, if any. 4405 if (implicitSpaceHasMasks()) { 4406 mlir::Location loc = getLoc(); 4407 // Mask expressions are array expressions too. 4408 for (const auto *e : implicitSpace->getExprs()) 4409 if (e && !implicitSpace->isLowered(e)) { 4410 if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) { 4411 // Allocate the mask buffer lazily. 4412 assert(explicitSpaceIsActive()); 4413 mlir::Value header = 4414 prepareRaggedArrays</*withAllocations=*/true>(e); 4415 Fortran::lower::createLazyArrayTempValue(converter, *e, header, 4416 symMap, stmtCtx); 4417 // Close the explicit loops. 4418 builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs()); 4419 builder.setInsertionPointAfter(explicitSpace->getOuterLoop()); 4420 // Open a new copy of the explicit loop nest. 4421 explicitSpace->genLoopNest(); 4422 continue; 4423 } 4424 fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue( 4425 converter, *e, symMap, stmtCtx); 4426 mlir::Value shape = builder.createShape(loc, tmp); 4427 implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape)); 4428 } 4429 4430 // Set buffer from the header. 4431 for (const auto *e : implicitSpace->getExprs()) { 4432 if (!e) 4433 continue; 4434 if (implicitSpace->lookupMaskVariable(e)) { 4435 // Index into the ragged buffer to retrieve cached results. 4436 const int rank = e->Rank(); 4437 assert(destShape.empty() || 4438 static_cast<std::size_t>(rank) == destShape.size()); 4439 mlir::Value header = prepareRaggedArrays(e); 4440 mlir::TupleType raggedTy = 4441 fir::factory::getRaggedArrayHeaderType(builder); 4442 mlir::IntegerType i32Ty = builder.getIntegerType(32); 4443 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 4444 auto coor1 = builder.create<fir::CoordinateOp>( 4445 loc, builder.getRefType(raggedTy.getType(1)), header, one); 4446 auto db = builder.create<fir::LoadOp>(loc, coor1); 4447 mlir::Type eleTy = 4448 fir::unwrapSequenceType(fir::unwrapRefType(db.getType())); 4449 mlir::Type buffTy = 4450 builder.getRefType(fir::SequenceType::get(eleTy, rank)); 4451 // Address of ragged buffer data. 4452 mlir::Value buff = builder.createConvert(loc, buffTy, db); 4453 4454 mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); 4455 auto coor2 = builder.create<fir::CoordinateOp>( 4456 loc, builder.getRefType(raggedTy.getType(2)), header, two); 4457 auto shBuff = builder.create<fir::LoadOp>(loc, coor2); 4458 mlir::IntegerType i64Ty = builder.getIntegerType(64); 4459 mlir::IndexType idxTy = builder.getIndexType(); 4460 llvm::SmallVector<mlir::Value> extents; 4461 for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) { 4462 mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i); 4463 auto coor = builder.create<fir::CoordinateOp>( 4464 loc, builder.getRefType(i64Ty), shBuff, off); 4465 auto ldExt = builder.create<fir::LoadOp>(loc, coor); 4466 extents.push_back(builder.createConvert(loc, idxTy, ldExt)); 4467 } 4468 if (destShape.empty()) 4469 destShape = extents; 4470 // Construct shape of buffer. 4471 mlir::Value shapeOp = builder.genShape(loc, extents); 4472 4473 // Replace binding with the local result. 4474 implicitSpace->rebind(e, genMaskAccess(buff, shapeOp)); 4475 } 4476 } 4477 } 4478 } 4479 4480 // FIXME: should take multiple inner arguments. 4481 std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> 4482 genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) { 4483 mlir::Location loc = getLoc(); 4484 mlir::IndexType idxTy = builder.getIndexType(); 4485 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 4486 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 4487 llvm::SmallVector<mlir::Value> loopUppers; 4488 4489 // Convert any implied shape to closed interval form. The fir.do_loop will 4490 // run from 0 to `extent - 1` inclusive. 4491 for (auto extent : shape) 4492 loopUppers.push_back( 4493 builder.create<mlir::arith::SubIOp>(loc, extent, one)); 4494 4495 // Iteration space is created with outermost columns, innermost rows 4496 llvm::SmallVector<fir::DoLoopOp> loops; 4497 4498 const std::size_t loopDepth = loopUppers.size(); 4499 llvm::SmallVector<mlir::Value> ivars; 4500 4501 for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) { 4502 if (i.index() > 0) { 4503 assert(!loops.empty()); 4504 builder.setInsertionPointToStart(loops.back().getBody()); 4505 } 4506 fir::DoLoopOp loop; 4507 if (innerArg) { 4508 loop = builder.create<fir::DoLoopOp>( 4509 loc, zero, i.value(), one, isUnordered(), 4510 /*finalCount=*/false, mlir::ValueRange{innerArg}); 4511 innerArg = loop.getRegionIterArgs().front(); 4512 if (explicitSpaceIsActive()) 4513 explicitSpace->setInnerArg(0, innerArg); 4514 } else { 4515 loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one, 4516 isUnordered(), 4517 /*finalCount=*/false); 4518 } 4519 ivars.push_back(loop.getInductionVar()); 4520 loops.push_back(loop); 4521 } 4522 4523 if (innerArg) 4524 for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth; 4525 ++i) { 4526 builder.setInsertionPointToEnd(loops[i].getBody()); 4527 builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0)); 4528 } 4529 4530 // Move insertion point to the start of the innermost loop in the nest. 4531 builder.setInsertionPointToStart(loops.back().getBody()); 4532 // Set `afterLoopNest` to just after the entire loop nest. 4533 auto currPt = builder.saveInsertionPoint(); 4534 builder.setInsertionPointAfter(loops[0]); 4535 auto afterLoopNest = builder.saveInsertionPoint(); 4536 builder.restoreInsertionPoint(currPt); 4537 4538 // Put the implicit loop variables in row to column order to match FIR's 4539 // Ops. (The loops were constructed from outermost column to innermost 4540 // row.) 4541 mlir::Value outerRes = loops[0].getResult(0); 4542 return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)), 4543 afterLoopNest}; 4544 } 4545 4546 /// Build the iteration space into which the array expression will be lowered. 4547 /// The resultType is used to create a temporary, if needed. 4548 std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> 4549 genIterSpace(mlir::Type resultType) { 4550 mlir::Location loc = getLoc(); 4551 llvm::SmallVector<mlir::Value> shape = genIterationShape(); 4552 if (!destination) { 4553 // Allocate storage for the result if it is not already provided. 4554 destination = createAndLoadSomeArrayTemp(resultType, shape); 4555 } 4556 4557 // Generate the lazy mask allocation, if one was given. 4558 if (ccPrelude.hasValue()) 4559 ccPrelude.getValue()(shape); 4560 4561 // Now handle the implicit loops. 4562 mlir::Value inner = explicitSpaceIsActive() 4563 ? explicitSpace->getInnerArgs().front() 4564 : destination.getResult(); 4565 auto [iters, afterLoopNest] = genImplicitLoops(shape, inner); 4566 mlir::Value innerArg = iters.innerArgument(); 4567 4568 // Generate the mask conditional structure, if there are masks. Unlike the 4569 // explicit masks, which are interleaved, these mask expression appear in 4570 // the innermost loop. 4571 if (implicitSpaceHasMasks()) { 4572 // Recover the cached condition from the mask buffer. 4573 auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) { 4574 return implicitSpace->getBoundClosure(e)(iters); 4575 }; 4576 4577 // Handle the negated conditions in topological order of the WHERE 4578 // clauses. See 10.2.3.2p4 as to why this control structure is produced. 4579 for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs : 4580 implicitSpace->getMasks()) { 4581 const std::size_t size = maskExprs.size() - 1; 4582 auto genFalseBlock = [&](const auto *e, auto &&cond) { 4583 auto ifOp = builder.create<fir::IfOp>( 4584 loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), 4585 /*withElseRegion=*/true); 4586 builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); 4587 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 4588 builder.create<fir::ResultOp>(loc, innerArg); 4589 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 4590 }; 4591 auto genTrueBlock = [&](const auto *e, auto &&cond) { 4592 auto ifOp = builder.create<fir::IfOp>( 4593 loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), 4594 /*withElseRegion=*/true); 4595 builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); 4596 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 4597 builder.create<fir::ResultOp>(loc, innerArg); 4598 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 4599 }; 4600 for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) 4601 if (const auto *e = maskExprs[i]) 4602 genFalseBlock(e, genCond(e, iters)); 4603 4604 // The last condition is either non-negated or unconditionally negated. 4605 if (const auto *e = maskExprs[size]) 4606 genTrueBlock(e, genCond(e, iters)); 4607 } 4608 } 4609 4610 // We're ready to lower the body (an assignment statement) for this context 4611 // of loop nests at this point. 4612 return {iters, afterLoopNest}; 4613 } 4614 4615 fir::ArrayLoadOp 4616 createAndLoadSomeArrayTemp(mlir::Type type, 4617 llvm::ArrayRef<mlir::Value> shape) { 4618 if (ccLoadDest.hasValue()) 4619 return ccLoadDest.getValue()(shape); 4620 auto seqTy = type.dyn_cast<fir::SequenceType>(); 4621 assert(seqTy && "must be an array"); 4622 mlir::Location loc = getLoc(); 4623 // TODO: Need to thread the length parameters here. For character, they may 4624 // differ from the operands length (e.g concatenation). So the array loads 4625 // type parameters are not enough. 4626 if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) 4627 if (charTy.hasDynamicLen()) 4628 TODO(loc, "character array expression temp with dynamic length"); 4629 if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>()) 4630 if (recTy.getNumLenParams() > 0) 4631 TODO(loc, "derived type array expression temp with LEN parameters"); 4632 if (mlir::Type eleTy = fir::unwrapSequenceType(type); 4633 fir::isRecordWithAllocatableMember(eleTy)) 4634 TODO(loc, "creating an array temp where the element type has " 4635 "allocatable members"); 4636 mlir::Value temp = seqTy.hasConstantShape() 4637 ? builder.create<fir::AllocMemOp>(loc, type) 4638 : builder.create<fir::AllocMemOp>( 4639 loc, type, ".array.expr", llvm::None, shape); 4640 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 4641 stmtCtx.attachCleanup( 4642 [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); }); 4643 mlir::Value shapeOp = genShapeOp(shape); 4644 return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp, 4645 /*slice=*/mlir::Value{}, 4646 llvm::None); 4647 } 4648 4649 static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder, 4650 llvm::ArrayRef<mlir::Value> shape) { 4651 mlir::IndexType idxTy = builder.getIndexType(); 4652 llvm::SmallVector<mlir::Value> idxShape; 4653 for (auto s : shape) 4654 idxShape.push_back(builder.createConvert(loc, idxTy, s)); 4655 auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size()); 4656 return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape); 4657 } 4658 4659 fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) { 4660 return genShapeOp(getLoc(), builder, shape); 4661 } 4662 4663 //===--------------------------------------------------------------------===// 4664 // Expression traversal and lowering. 4665 //===--------------------------------------------------------------------===// 4666 4667 /// Lower the expression, \p x, in a scalar context. 4668 template <typename A> 4669 ExtValue asScalar(const A &x) { 4670 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x); 4671 } 4672 4673 /// Lower the expression, \p x, in a scalar context. If this is an explicit 4674 /// space, the expression may be scalar and refer to an array. We want to 4675 /// raise the array access to array operations in FIR to analyze potential 4676 /// conflicts even when the result is a scalar element. 4677 template <typename A> 4678 ExtValue asScalarArray(const A &x) { 4679 return explicitSpaceIsActive() && !isPointerAssignment() 4680 ? genarr(x)(IterationSpace{}) 4681 : asScalar(x); 4682 } 4683 4684 /// Lower the expression in a scalar context to a memory reference. 4685 template <typename A> 4686 ExtValue asScalarRef(const A &x) { 4687 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x); 4688 } 4689 4690 /// Lower an expression without dereferencing any indirection that may be 4691 /// a nullptr (because this is an absent optional or unallocated/disassociated 4692 /// descriptor). The returned expression cannot be addressed directly, it is 4693 /// meant to inquire about its status before addressing the related entity. 4694 template <typename A> 4695 ExtValue asInquired(const A &x) { 4696 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx} 4697 .lowerIntrinsicArgumentAsInquired(x); 4698 } 4699 4700 /// Some temporaries are allocated on an element-by-element basis during the 4701 /// array expression evaluation. Collect the cleanups here so the resources 4702 /// can be freed before the next loop iteration, avoiding memory leaks. etc. 4703 Fortran::lower::StatementContext &getElementCtx() { 4704 if (!elementCtx) { 4705 stmtCtx.pushScope(); 4706 elementCtx = true; 4707 } 4708 return stmtCtx; 4709 } 4710 4711 /// If there were temporaries created for this element evaluation, finalize 4712 /// and deallocate the resources now. This should be done just prior the the 4713 /// fir::ResultOp at the end of the innermost loop. 4714 void finalizeElementCtx() { 4715 if (elementCtx) { 4716 stmtCtx.finalize(/*popScope=*/true); 4717 elementCtx = false; 4718 } 4719 } 4720 4721 /// Lower an elemental function array argument. This ensures array 4722 /// sub-expressions that are not variables and must be passed by address 4723 /// are lowered by value and placed in memory. 4724 template <typename A> 4725 CC genElementalArgument(const A &x) { 4726 // Ensure the returned element is in memory if this is what was requested. 4727 if ((semant == ConstituentSemantics::RefOpaque || 4728 semant == ConstituentSemantics::DataAddr || 4729 semant == ConstituentSemantics::ByValueArg)) { 4730 if (!Fortran::evaluate::IsVariable(x)) { 4731 PushSemantics(ConstituentSemantics::DataValue); 4732 CC cc = genarr(x); 4733 mlir::Location loc = getLoc(); 4734 if (isParenthesizedVariable(x)) { 4735 // Parenthesised variables are lowered to a reference to the variable 4736 // storage. When passing it as an argument, a copy must be passed. 4737 return [=](IterSpace iters) -> ExtValue { 4738 return createInMemoryScalarCopy(builder, loc, cc(iters)); 4739 }; 4740 } 4741 mlir::Type storageType = 4742 fir::unwrapSequenceType(converter.genType(toEvExpr(x))); 4743 return [=](IterSpace iters) -> ExtValue { 4744 return placeScalarValueInMemory(builder, loc, cc(iters), storageType); 4745 }; 4746 } 4747 } 4748 return genarr(x); 4749 } 4750 4751 // A reference to a Fortran elemental intrinsic or intrinsic module procedure. 4752 CC genElementalIntrinsicProcRef( 4753 const Fortran::evaluate::ProcedureRef &procRef, 4754 llvm::Optional<mlir::Type> retTy, 4755 llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = 4756 llvm::None) { 4757 4758 llvm::SmallVector<CC> operands; 4759 std::string name = 4760 intrinsic ? intrinsic->name 4761 : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); 4762 const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering = 4763 Fortran::lower::getIntrinsicArgumentLowering(name); 4764 mlir::Location loc = getLoc(); 4765 if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( 4766 procRef, *intrinsic, converter)) { 4767 using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>; 4768 llvm::SmallVector<CcPairT> operands; 4769 auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { 4770 if (expr.Rank() == 0) { 4771 ExtValue optionalArg = this->asInquired(expr); 4772 mlir::Value isPresent = 4773 genActualIsPresentTest(builder, loc, optionalArg); 4774 operands.emplace_back( 4775 [=](IterSpace iters) -> ExtValue { 4776 return genLoad(builder, loc, optionalArg); 4777 }, 4778 isPresent); 4779 } else { 4780 auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr); 4781 operands.emplace_back(cc, isPresent); 4782 } 4783 }; 4784 auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) { 4785 PushSemantics(ConstituentSemantics::RefTransparent); 4786 operands.emplace_back(genElementalArgument(expr), llvm::None); 4787 }; 4788 Fortran::lower::prepareCustomIntrinsicArgument( 4789 procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg, 4790 converter); 4791 4792 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 4793 return [=](IterSpace iters) -> ExtValue { 4794 auto getArgument = [&](std::size_t i) -> ExtValue { 4795 return operands[i].first(iters); 4796 }; 4797 auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> { 4798 return operands[i].second; 4799 }; 4800 return Fortran::lower::lowerCustomIntrinsic( 4801 *bldr, loc, name, retTy, isPresent, getArgument, operands.size(), 4802 getElementCtx()); 4803 }; 4804 } 4805 /// Otherwise, pre-lower arguments and use intrinsic lowering utility. 4806 for (const auto &arg : llvm::enumerate(procRef.arguments())) { 4807 const auto *expr = 4808 Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); 4809 if (!expr) { 4810 // Absent optional. 4811 operands.emplace_back([=](IterSpace) { return mlir::Value{}; }); 4812 } else if (!argLowering) { 4813 // No argument lowering instruction, lower by value. 4814 PushSemantics(ConstituentSemantics::RefTransparent); 4815 operands.emplace_back(genElementalArgument(*expr)); 4816 } else { 4817 // Ad-hoc argument lowering handling. 4818 Fortran::lower::ArgLoweringRule argRules = 4819 Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index()); 4820 if (argRules.handleDynamicOptional && 4821 Fortran::evaluate::MayBePassedAsAbsentOptional( 4822 *expr, converter.getFoldingContext())) { 4823 // Currently, there is not elemental intrinsic that requires lowering 4824 // a potentially absent argument to something else than a value (apart 4825 // from character MAX/MIN that are handled elsewhere.) 4826 if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value) 4827 TODO(loc, "lowering non trivial optional elemental intrinsic array " 4828 "argument"); 4829 PushSemantics(ConstituentSemantics::RefTransparent); 4830 operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr)); 4831 continue; 4832 } 4833 switch (argRules.lowerAs) { 4834 case Fortran::lower::LowerIntrinsicArgAs::Value: { 4835 PushSemantics(ConstituentSemantics::RefTransparent); 4836 operands.emplace_back(genElementalArgument(*expr)); 4837 } break; 4838 case Fortran::lower::LowerIntrinsicArgAs::Addr: { 4839 // Note: assume does not have Fortran VALUE attribute semantics. 4840 PushSemantics(ConstituentSemantics::RefOpaque); 4841 operands.emplace_back(genElementalArgument(*expr)); 4842 } break; 4843 case Fortran::lower::LowerIntrinsicArgAs::Box: { 4844 PushSemantics(ConstituentSemantics::RefOpaque); 4845 auto lambda = genElementalArgument(*expr); 4846 operands.emplace_back([=](IterSpace iters) { 4847 return builder.createBox(loc, lambda(iters)); 4848 }); 4849 } break; 4850 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 4851 TODO(loc, "intrinsic function with inquired argument"); 4852 break; 4853 } 4854 } 4855 } 4856 4857 // Let the intrinsic library lower the intrinsic procedure call 4858 return [=](IterSpace iters) { 4859 llvm::SmallVector<ExtValue> args; 4860 for (const auto &cc : operands) 4861 args.push_back(cc(iters)); 4862 return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args, 4863 getElementCtx()); 4864 }; 4865 } 4866 4867 /// Lower a procedure reference to a user-defined elemental procedure. 4868 CC genElementalUserDefinedProcRef( 4869 const Fortran::evaluate::ProcedureRef &procRef, 4870 llvm::Optional<mlir::Type> retTy) { 4871 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 4872 4873 // 10.1.4 p5. Impure elemental procedures must be called in element order. 4874 if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol()) 4875 if (!Fortran::semantics::IsPureProcedure(*procSym)) 4876 setUnordered(false); 4877 4878 Fortran::lower::CallerInterface caller(procRef, converter); 4879 llvm::SmallVector<CC> operands; 4880 operands.reserve(caller.getPassedArguments().size()); 4881 mlir::Location loc = getLoc(); 4882 mlir::FunctionType callSiteType = caller.genFunctionType(); 4883 for (const Fortran::lower::CallInterface< 4884 Fortran::lower::CallerInterface>::PassedEntity &arg : 4885 caller.getPassedArguments()) { 4886 // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout) 4887 // arguments must be called in element order. 4888 if (arg.mayBeModifiedByCall()) 4889 setUnordered(false); 4890 const auto *actual = arg.entity; 4891 mlir::Type argTy = callSiteType.getInput(arg.firArgument); 4892 if (!actual) { 4893 // Optional dummy argument for which there is no actual argument. 4894 auto absent = builder.create<fir::AbsentOp>(loc, argTy); 4895 operands.emplace_back([=](IterSpace) { return absent; }); 4896 continue; 4897 } 4898 const auto *expr = actual->UnwrapExpr(); 4899 if (!expr) 4900 TODO(loc, "assumed type actual argument lowering"); 4901 4902 LLVM_DEBUG(expr->AsFortran(llvm::dbgs() 4903 << "argument: " << arg.firArgument << " = [") 4904 << "]\n"); 4905 if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional( 4906 *expr, converter.getFoldingContext())) 4907 TODO(loc, 4908 "passing dynamically optional argument to elemental procedures"); 4909 switch (arg.passBy) { 4910 case PassBy::Value: { 4911 // True pass-by-value semantics. 4912 PushSemantics(ConstituentSemantics::RefTransparent); 4913 operands.emplace_back(genElementalArgument(*expr)); 4914 } break; 4915 case PassBy::BaseAddressValueAttribute: { 4916 // VALUE attribute or pass-by-reference to a copy semantics. (byval*) 4917 if (isArray(*expr)) { 4918 PushSemantics(ConstituentSemantics::ByValueArg); 4919 operands.emplace_back(genElementalArgument(*expr)); 4920 } else { 4921 // Store scalar value in a temp to fulfill VALUE attribute. 4922 mlir::Value val = fir::getBase(asScalar(*expr)); 4923 mlir::Value temp = builder.createTemporary( 4924 loc, val.getType(), 4925 llvm::ArrayRef<mlir::NamedAttribute>{ 4926 Fortran::lower::getAdaptToByRefAttr(builder)}); 4927 builder.create<fir::StoreOp>(loc, val, temp); 4928 operands.emplace_back( 4929 [=](IterSpace iters) -> ExtValue { return temp; }); 4930 } 4931 } break; 4932 case PassBy::BaseAddress: { 4933 if (isArray(*expr)) { 4934 PushSemantics(ConstituentSemantics::RefOpaque); 4935 operands.emplace_back(genElementalArgument(*expr)); 4936 } else { 4937 ExtValue exv = asScalarRef(*expr); 4938 operands.emplace_back([=](IterSpace iters) { return exv; }); 4939 } 4940 } break; 4941 case PassBy::CharBoxValueAttribute: { 4942 if (isArray(*expr)) { 4943 PushSemantics(ConstituentSemantics::DataValue); 4944 auto lambda = genElementalArgument(*expr); 4945 operands.emplace_back([=](IterSpace iters) { 4946 return fir::factory::CharacterExprHelper{builder, loc} 4947 .createTempFrom(lambda(iters)); 4948 }); 4949 } else { 4950 fir::factory::CharacterExprHelper helper(builder, loc); 4951 fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr)); 4952 operands.emplace_back( 4953 [=](IterSpace iters) -> ExtValue { return argVal; }); 4954 } 4955 } break; 4956 case PassBy::BoxChar: { 4957 PushSemantics(ConstituentSemantics::RefOpaque); 4958 operands.emplace_back(genElementalArgument(*expr)); 4959 } break; 4960 case PassBy::AddressAndLength: 4961 // PassBy::AddressAndLength is only used for character results. Results 4962 // are not handled here. 4963 fir::emitFatalError( 4964 loc, "unexpected PassBy::AddressAndLength in elemental call"); 4965 break; 4966 case PassBy::CharProcTuple: { 4967 ExtValue argRef = asScalarRef(*expr); 4968 mlir::Value tuple = createBoxProcCharTuple( 4969 converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); 4970 operands.emplace_back( 4971 [=](IterSpace iters) -> ExtValue { return tuple; }); 4972 } break; 4973 case PassBy::Box: 4974 case PassBy::MutableBox: 4975 // See C15100 and C15101 4976 fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE"); 4977 } 4978 } 4979 4980 if (caller.getIfIndirectCallSymbol()) 4981 fir::emitFatalError(loc, "cannot be indirect call"); 4982 4983 // The lambda is mutable so that `caller` copy can be modified inside it. 4984 return 4985 [=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue { 4986 for (const auto &[cc, argIface] : 4987 llvm::zip(operands, caller.getPassedArguments())) { 4988 auto exv = cc(iters); 4989 auto arg = exv.match( 4990 [&](const fir::CharBoxValue &cb) -> mlir::Value { 4991 return fir::factory::CharacterExprHelper{builder, loc} 4992 .createEmbox(cb); 4993 }, 4994 [&](const auto &) { return fir::getBase(exv); }); 4995 caller.placeInput(argIface, arg); 4996 } 4997 return ScalarExprLowering{loc, converter, symMap, getElementCtx()} 4998 .genCallOpAndResult(caller, callSiteType, retTy); 4999 }; 5000 } 5001 5002 /// Generate a procedure reference. This code is shared for both functions and 5003 /// subroutines, the difference being reflected by `retTy`. 5004 CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef, 5005 llvm::Optional<mlir::Type> retTy) { 5006 mlir::Location loc = getLoc(); 5007 if (procRef.IsElemental()) { 5008 if (const Fortran::evaluate::SpecificIntrinsic *intrin = 5009 procRef.proc().GetSpecificIntrinsic()) { 5010 // All elemental intrinsic functions are pure and cannot modify their 5011 // arguments. The only elemental subroutine, MVBITS has an Intent(inout) 5012 // argument. So for this last one, loops must be in element order 5013 // according to 15.8.3 p1. 5014 if (!retTy) 5015 setUnordered(false); 5016 5017 // Elemental intrinsic call. 5018 // The intrinsic procedure is called once per element of the array. 5019 return genElementalIntrinsicProcRef(procRef, retTy, *intrin); 5020 } 5021 if (isIntrinsicModuleProcRef(procRef)) 5022 return genElementalIntrinsicProcRef(procRef, retTy); 5023 if (ScalarExprLowering::isStatementFunctionCall(procRef)) 5024 fir::emitFatalError(loc, "statement function cannot be elemental"); 5025 5026 // Elemental call. 5027 // The procedure is called once per element of the array argument(s). 5028 return genElementalUserDefinedProcRef(procRef, retTy); 5029 } 5030 5031 // Transformational call. 5032 // The procedure is called once and produces a value of rank > 0. 5033 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 5034 procRef.proc().GetSpecificIntrinsic()) { 5035 if (explicitSpaceIsActive() && procRef.Rank() == 0) { 5036 // Elide any implicit loop iters. 5037 return [=, &procRef](IterSpace) { 5038 return ScalarExprLowering{loc, converter, symMap, stmtCtx} 5039 .genIntrinsicRef(procRef, retTy, *intrinsic); 5040 }; 5041 } 5042 return genarr( 5043 ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef( 5044 procRef, retTy, *intrinsic)); 5045 } 5046 5047 const bool isPtrAssn = isPointerAssignment(); 5048 if (explicitSpaceIsActive() && procRef.Rank() == 0) { 5049 // Elide any implicit loop iters. 5050 return [=, &procRef](IterSpace) { 5051 ScalarExprLowering sel(loc, converter, symMap, stmtCtx); 5052 return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) 5053 : sel.genProcedureRef(procRef, retTy); 5054 }; 5055 } 5056 // In the default case, the call can be hoisted out of the loop nest. Apply 5057 // the iterations to the result, which may be an array value. 5058 ScalarExprLowering sel(loc, converter, symMap, stmtCtx); 5059 auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) 5060 : sel.genProcedureRef(procRef, retTy); 5061 return genarr(exv); 5062 } 5063 5064 CC genarr(const Fortran::evaluate::ProcedureDesignator &) { 5065 TODO(getLoc(), "procedure designator"); 5066 } 5067 CC genarr(const Fortran::evaluate::ProcedureRef &x) { 5068 if (x.hasAlternateReturns()) 5069 fir::emitFatalError(getLoc(), 5070 "array procedure reference with alt-return"); 5071 return genProcRef(x, llvm::None); 5072 } 5073 template <typename A> 5074 CC genScalarAndForwardValue(const A &x) { 5075 ExtValue result = asScalar(x); 5076 return [=](IterSpace) { return result; }; 5077 } 5078 template <typename A, typename = std::enable_if_t<Fortran::common::HasMember< 5079 A, Fortran::evaluate::TypelessExpression>>> 5080 CC genarr(const A &x) { 5081 return genScalarAndForwardValue(x); 5082 } 5083 5084 template <typename A> 5085 CC genarr(const Fortran::evaluate::Expr<A> &x) { 5086 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x)); 5087 if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) || 5088 isElementalProcWithArrayArgs(x)) 5089 return std::visit([&](const auto &e) { return genarr(e); }, x.u); 5090 if (explicitSpaceIsActive()) { 5091 assert(!isArray(x) && !isLeftHandSide()); 5092 auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u); 5093 auto result = cc(IterationSpace{}); 5094 return [=](IterSpace) { return result; }; 5095 } 5096 return genScalarAndForwardValue(x); 5097 } 5098 5099 // Converting a value of memory bound type requires creating a temp and 5100 // copying the value. 5101 static ExtValue convertAdjustedType(fir::FirOpBuilder &builder, 5102 mlir::Location loc, mlir::Type toType, 5103 const ExtValue &exv) { 5104 return exv.match( 5105 [&](const fir::CharBoxValue &cb) -> ExtValue { 5106 mlir::Value len = cb.getLen(); 5107 auto mem = 5108 builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len}); 5109 fir::CharBoxValue result(mem, len); 5110 fir::factory::CharacterExprHelper{builder, loc}.createAssign( 5111 ExtValue{result}, exv); 5112 return result; 5113 }, 5114 [&](const auto &) -> ExtValue { 5115 fir::emitFatalError(loc, "convert on adjusted extended value"); 5116 }); 5117 } 5118 template <Fortran::common::TypeCategory TC1, int KIND, 5119 Fortran::common::TypeCategory TC2> 5120 CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, 5121 TC2> &x) { 5122 mlir::Location loc = getLoc(); 5123 auto lambda = genarr(x.left()); 5124 mlir::Type ty = converter.genType(TC1, KIND); 5125 return [=](IterSpace iters) -> ExtValue { 5126 auto exv = lambda(iters); 5127 mlir::Value val = fir::getBase(exv); 5128 auto valTy = val.getType(); 5129 if (elementTypeWasAdjusted(valTy) && 5130 !(fir::isa_ref_type(valTy) && fir::isa_integer(ty))) 5131 return convertAdjustedType(builder, loc, ty, exv); 5132 return builder.createConvert(loc, ty, val); 5133 }; 5134 } 5135 5136 template <int KIND> 5137 CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) { 5138 mlir::Location loc = getLoc(); 5139 auto lambda = genarr(x.left()); 5140 bool isImagPart = x.isImaginaryPart; 5141 return [=](IterSpace iters) -> ExtValue { 5142 mlir::Value lhs = fir::getBase(lambda(iters)); 5143 return fir::factory::Complex{builder, loc}.extractComplexPart(lhs, 5144 isImagPart); 5145 }; 5146 } 5147 5148 template <typename T> 5149 CC genarr(const Fortran::evaluate::Parentheses<T> &x) { 5150 mlir::Location loc = getLoc(); 5151 if (isReferentiallyOpaque()) { 5152 // Context is a call argument in, for example, an elemental procedure 5153 // call. TODO: all array arguments should use array_load, array_access, 5154 // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have 5155 // array_merge_store ops. 5156 TODO(loc, "parentheses on argument in elemental call"); 5157 } 5158 auto f = genarr(x.left()); 5159 return [=](IterSpace iters) -> ExtValue { 5160 auto val = f(iters); 5161 mlir::Value base = fir::getBase(val); 5162 auto newBase = 5163 builder.create<fir::NoReassocOp>(loc, base.getType(), base); 5164 return fir::substBase(val, newBase); 5165 }; 5166 } 5167 template <int KIND> 5168 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5169 Fortran::common::TypeCategory::Integer, KIND>> &x) { 5170 mlir::Location loc = getLoc(); 5171 auto f = genarr(x.left()); 5172 return [=](IterSpace iters) -> ExtValue { 5173 mlir::Value val = fir::getBase(f(iters)); 5174 mlir::Type ty = 5175 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 5176 mlir::Value zero = builder.createIntegerConstant(loc, ty, 0); 5177 return builder.create<mlir::arith::SubIOp>(loc, zero, val); 5178 }; 5179 } 5180 template <int KIND> 5181 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5182 Fortran::common::TypeCategory::Real, KIND>> &x) { 5183 mlir::Location loc = getLoc(); 5184 auto f = genarr(x.left()); 5185 return [=](IterSpace iters) -> ExtValue { 5186 return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters))); 5187 }; 5188 } 5189 template <int KIND> 5190 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5191 Fortran::common::TypeCategory::Complex, KIND>> &x) { 5192 mlir::Location loc = getLoc(); 5193 auto f = genarr(x.left()); 5194 return [=](IterSpace iters) -> ExtValue { 5195 return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters))); 5196 }; 5197 } 5198 5199 //===--------------------------------------------------------------------===// 5200 // Binary elemental ops 5201 //===--------------------------------------------------------------------===// 5202 5203 template <typename OP, typename A> 5204 CC createBinaryOp(const A &evEx) { 5205 mlir::Location loc = getLoc(); 5206 auto lambda = genarr(evEx.left()); 5207 auto rf = genarr(evEx.right()); 5208 return [=](IterSpace iters) -> ExtValue { 5209 mlir::Value left = fir::getBase(lambda(iters)); 5210 mlir::Value right = fir::getBase(rf(iters)); 5211 return builder.create<OP>(loc, left, right); 5212 }; 5213 } 5214 5215 #undef GENBIN 5216 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ 5217 template <int KIND> \ 5218 CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ 5219 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ 5220 return createBinaryOp<GenBinFirOp>(x); \ 5221 } 5222 5223 GENBIN(Add, Integer, mlir::arith::AddIOp) 5224 GENBIN(Add, Real, mlir::arith::AddFOp) 5225 GENBIN(Add, Complex, fir::AddcOp) 5226 GENBIN(Subtract, Integer, mlir::arith::SubIOp) 5227 GENBIN(Subtract, Real, mlir::arith::SubFOp) 5228 GENBIN(Subtract, Complex, fir::SubcOp) 5229 GENBIN(Multiply, Integer, mlir::arith::MulIOp) 5230 GENBIN(Multiply, Real, mlir::arith::MulFOp) 5231 GENBIN(Multiply, Complex, fir::MulcOp) 5232 GENBIN(Divide, Integer, mlir::arith::DivSIOp) 5233 GENBIN(Divide, Real, mlir::arith::DivFOp) 5234 GENBIN(Divide, Complex, fir::DivcOp) 5235 5236 template <Fortran::common::TypeCategory TC, int KIND> 5237 CC genarr( 5238 const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { 5239 mlir::Location loc = getLoc(); 5240 mlir::Type ty = converter.genType(TC, KIND); 5241 auto lf = genarr(x.left()); 5242 auto rf = genarr(x.right()); 5243 return [=](IterSpace iters) -> ExtValue { 5244 mlir::Value lhs = fir::getBase(lf(iters)); 5245 mlir::Value rhs = fir::getBase(rf(iters)); 5246 return Fortran::lower::genPow(builder, loc, ty, lhs, rhs); 5247 }; 5248 } 5249 template <Fortran::common::TypeCategory TC, int KIND> 5250 CC genarr( 5251 const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { 5252 mlir::Location loc = getLoc(); 5253 auto lf = genarr(x.left()); 5254 auto rf = genarr(x.right()); 5255 switch (x.ordering) { 5256 case Fortran::evaluate::Ordering::Greater: 5257 return [=](IterSpace iters) -> ExtValue { 5258 mlir::Value lhs = fir::getBase(lf(iters)); 5259 mlir::Value rhs = fir::getBase(rf(iters)); 5260 return Fortran::lower::genMax(builder, loc, 5261 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 5262 }; 5263 case Fortran::evaluate::Ordering::Less: 5264 return [=](IterSpace iters) -> ExtValue { 5265 mlir::Value lhs = fir::getBase(lf(iters)); 5266 mlir::Value rhs = fir::getBase(rf(iters)); 5267 return Fortran::lower::genMin(builder, loc, 5268 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 5269 }; 5270 case Fortran::evaluate::Ordering::Equal: 5271 llvm_unreachable("Equal is not a valid ordering in this context"); 5272 } 5273 llvm_unreachable("unknown ordering"); 5274 } 5275 template <Fortran::common::TypeCategory TC, int KIND> 5276 CC genarr( 5277 const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> 5278 &x) { 5279 mlir::Location loc = getLoc(); 5280 auto ty = converter.genType(TC, KIND); 5281 auto lf = genarr(x.left()); 5282 auto rf = genarr(x.right()); 5283 return [=](IterSpace iters) { 5284 mlir::Value lhs = fir::getBase(lf(iters)); 5285 mlir::Value rhs = fir::getBase(rf(iters)); 5286 return Fortran::lower::genPow(builder, loc, ty, lhs, rhs); 5287 }; 5288 } 5289 template <int KIND> 5290 CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) { 5291 mlir::Location loc = getLoc(); 5292 auto lf = genarr(x.left()); 5293 auto rf = genarr(x.right()); 5294 return [=](IterSpace iters) -> ExtValue { 5295 mlir::Value lhs = fir::getBase(lf(iters)); 5296 mlir::Value rhs = fir::getBase(rf(iters)); 5297 return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs); 5298 }; 5299 } 5300 5301 /// Fortran's concatenation operator `//`. 5302 template <int KIND> 5303 CC genarr(const Fortran::evaluate::Concat<KIND> &x) { 5304 mlir::Location loc = getLoc(); 5305 auto lf = genarr(x.left()); 5306 auto rf = genarr(x.right()); 5307 return [=](IterSpace iters) -> ExtValue { 5308 auto lhs = lf(iters); 5309 auto rhs = rf(iters); 5310 const fir::CharBoxValue *lchr = lhs.getCharBox(); 5311 const fir::CharBoxValue *rchr = rhs.getCharBox(); 5312 if (lchr && rchr) { 5313 return fir::factory::CharacterExprHelper{builder, loc} 5314 .createConcatenate(*lchr, *rchr); 5315 } 5316 TODO(loc, "concat on unexpected extended values"); 5317 return mlir::Value{}; 5318 }; 5319 } 5320 5321 template <int KIND> 5322 CC genarr(const Fortran::evaluate::SetLength<KIND> &x) { 5323 auto lf = genarr(x.left()); 5324 mlir::Value rhs = fir::getBase(asScalar(x.right())); 5325 return [=](IterSpace iters) -> ExtValue { 5326 mlir::Value lhs = fir::getBase(lf(iters)); 5327 return fir::CharBoxValue{lhs, rhs}; 5328 }; 5329 } 5330 5331 template <typename A> 5332 CC genarr(const Fortran::evaluate::Constant<A> &x) { 5333 if (x.Rank() == 0) 5334 return genScalarAndForwardValue(x); 5335 mlir::Location loc = getLoc(); 5336 mlir::IndexType idxTy = builder.getIndexType(); 5337 mlir::Type arrTy = converter.genType(toEvExpr(x)); 5338 std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x); 5339 fir::GlobalOp global = builder.getNamedGlobal(globalName); 5340 if (!global) { 5341 mlir::Type symTy = arrTy; 5342 mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy(); 5343 // If we have a rank-1 array of integer, real, or logical, then we can 5344 // create a global array with the dense attribute. 5345 // 5346 // The mlir tensor type can only handle integer, real, or logical. It 5347 // does not currently support nested structures which is required for 5348 // complex. 5349 // 5350 // Also, we currently handle just rank-1 since tensor type assumes 5351 // row major array ordering. We will need to reorder the dimensions 5352 // in the tensor type to support Fortran's column major array ordering. 5353 // How to create this tensor type is to be determined. 5354 if (x.Rank() == 1 && 5355 eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>()) 5356 global = Fortran::lower::createDenseGlobal( 5357 loc, arrTy, globalName, builder.createInternalLinkage(), true, 5358 toEvExpr(x), converter); 5359 // Note: If call to createDenseGlobal() returns 0, then call 5360 // createGlobalConstant() below. 5361 if (!global) 5362 global = builder.createGlobalConstant( 5363 loc, arrTy, globalName, 5364 [&](fir::FirOpBuilder &builder) { 5365 Fortran::lower::StatementContext stmtCtx( 5366 /*cleanupProhibited=*/true); 5367 fir::ExtendedValue result = 5368 Fortran::lower::createSomeInitializerExpression( 5369 loc, converter, toEvExpr(x), symMap, stmtCtx); 5370 mlir::Value castTo = 5371 builder.createConvert(loc, arrTy, fir::getBase(result)); 5372 builder.create<fir::HasValueOp>(loc, castTo); 5373 }, 5374 builder.createInternalLinkage()); 5375 } 5376 auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(), 5377 global.getSymbol()); 5378 auto seqTy = global.getType().cast<fir::SequenceType>(); 5379 llvm::SmallVector<mlir::Value> extents; 5380 for (auto extent : seqTy.getShape()) 5381 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 5382 if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) { 5383 mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(), 5384 charTy.getLen()); 5385 return genarr(fir::CharArrayBoxValue{addr, len, extents}); 5386 } 5387 return genarr(fir::ArrayBoxValue{addr, extents}); 5388 } 5389 5390 //===--------------------------------------------------------------------===// 5391 // A vector subscript expression may be wrapped with a cast to INTEGER*8. 5392 // Get rid of it here so the vector can be loaded. Add it back when 5393 // generating the elemental evaluation (inside the loop nest). 5394 5395 static Fortran::lower::SomeExpr 5396 ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type< 5397 Fortran::common::TypeCategory::Integer, 8>> &x) { 5398 return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u); 5399 } 5400 template <Fortran::common::TypeCategory FROM> 5401 static Fortran::lower::SomeExpr ignoreEvConvert( 5402 const Fortran::evaluate::Convert< 5403 Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>, 5404 FROM> &x) { 5405 return toEvExpr(x.left()); 5406 } 5407 template <typename A> 5408 static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) { 5409 return toEvExpr(x); 5410 } 5411 5412 //===--------------------------------------------------------------------===// 5413 // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can 5414 // be used to determine the lbound, ubound of the vector. 5415 5416 template <typename A> 5417 static const Fortran::semantics::Symbol * 5418 extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) { 5419 return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); }, 5420 x.u); 5421 } 5422 template <typename A> 5423 static const Fortran::semantics::Symbol * 5424 extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) { 5425 return Fortran::evaluate::UnwrapWholeSymbolDataRef(x); 5426 } 5427 template <typename A> 5428 static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) { 5429 return nullptr; 5430 } 5431 5432 //===--------------------------------------------------------------------===// 5433 5434 /// Get the declared lower bound value of the array `x` in dimension `dim`. 5435 /// The argument `one` must be an ssa-value for the constant 1. 5436 mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) { 5437 return fir::factory::readLowerBound(builder, getLoc(), x, dim, one); 5438 } 5439 5440 /// Get the declared upper bound value of the array `x` in dimension `dim`. 5441 /// The argument `one` must be an ssa-value for the constant 1. 5442 mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) { 5443 mlir::Location loc = getLoc(); 5444 mlir::Value lb = getLBound(x, dim, one); 5445 mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim); 5446 auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); 5447 return builder.create<mlir::arith::SubIOp>(loc, add, one); 5448 } 5449 5450 /// Return the extent of the boxed array `x` in dimesion `dim`. 5451 mlir::Value getExtent(const ExtValue &x, unsigned dim) { 5452 return fir::factory::readExtent(builder, getLoc(), x, dim); 5453 } 5454 5455 template <typename A> 5456 ExtValue genArrayBase(const A &base) { 5457 ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx}; 5458 return base.IsSymbol() ? sel.gen(getFirstSym(base)) 5459 : sel.gen(base.GetComponent()); 5460 } 5461 5462 template <typename A> 5463 bool hasEvArrayRef(const A &x) { 5464 struct HasEvArrayRefHelper 5465 : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> { 5466 HasEvArrayRefHelper() 5467 : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {} 5468 using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator(); 5469 bool operator()(const Fortran::evaluate::ArrayRef &) const { 5470 return true; 5471 } 5472 } helper; 5473 return helper(x); 5474 } 5475 5476 CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr, 5477 std::size_t dim) { 5478 PushSemantics(ConstituentSemantics::RefTransparent); 5479 auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr); 5480 llvm::SmallVector<mlir::Value> savedDestShape = destShape; 5481 destShape.clear(); 5482 auto result = genarr(expr); 5483 if (destShape.empty()) 5484 TODO(getLoc(), "expected vector to have an extent"); 5485 assert(destShape.size() == 1 && "vector has rank > 1"); 5486 if (destShape[0] != savedDestShape[dim]) { 5487 // Not the same, so choose the smaller value. 5488 mlir::Location loc = getLoc(); 5489 auto cmp = builder.create<mlir::arith::CmpIOp>( 5490 loc, mlir::arith::CmpIPredicate::sgt, destShape[0], 5491 savedDestShape[dim]); 5492 auto sel = builder.create<mlir::arith::SelectOp>( 5493 loc, cmp, savedDestShape[dim], destShape[0]); 5494 savedDestShape[dim] = sel; 5495 destShape = savedDestShape; 5496 } 5497 return result; 5498 } 5499 5500 /// Generate an access by vector subscript using the index in the iteration 5501 /// vector at `dim`. 5502 mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch, 5503 IterSpace iters, std::size_t dim) { 5504 IterationSpace vecIters(iters, 5505 llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)}); 5506 fir::ExtendedValue fetch = genArrFetch(vecIters); 5507 mlir::IndexType idxTy = builder.getIndexType(); 5508 return builder.createConvert(loc, idxTy, fir::getBase(fetch)); 5509 } 5510 5511 /// When we have an array reference, the expressions specified in each 5512 /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple 5513 /// (loop-invarianet) scalar expressions. This returns the base entity, the 5514 /// resulting type, and a continuation to adjust the default iteration space. 5515 void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv, 5516 const Fortran::evaluate::ArrayRef &x, bool atBase) { 5517 mlir::Location loc = getLoc(); 5518 mlir::IndexType idxTy = builder.getIndexType(); 5519 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 5520 llvm::SmallVector<mlir::Value> &trips = cmptData.trips; 5521 LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n'); 5522 auto &pc = cmptData.pc; 5523 const bool useTripsForSlice = !explicitSpaceIsActive(); 5524 const bool createDestShape = destShape.empty(); 5525 bool useSlice = false; 5526 std::size_t shapeIndex = 0; 5527 for (auto sub : llvm::enumerate(x.subscript())) { 5528 const std::size_t subsIndex = sub.index(); 5529 std::visit( 5530 Fortran::common::visitors{ 5531 [&](const Fortran::evaluate::Triplet &t) { 5532 mlir::Value lowerBound; 5533 if (auto optLo = t.lower()) 5534 lowerBound = fir::getBase(asScalarArray(*optLo)); 5535 else 5536 lowerBound = getLBound(arrayExv, subsIndex, one); 5537 lowerBound = builder.createConvert(loc, idxTy, lowerBound); 5538 mlir::Value stride = fir::getBase(asScalarArray(t.stride())); 5539 stride = builder.createConvert(loc, idxTy, stride); 5540 if (useTripsForSlice || createDestShape) { 5541 // Generate a slice operation for the triplet. The first and 5542 // second position of the triplet may be omitted, and the 5543 // declared lbound and/or ubound expression values, 5544 // respectively, should be used instead. 5545 trips.push_back(lowerBound); 5546 mlir::Value upperBound; 5547 if (auto optUp = t.upper()) 5548 upperBound = fir::getBase(asScalarArray(*optUp)); 5549 else 5550 upperBound = getUBound(arrayExv, subsIndex, one); 5551 upperBound = builder.createConvert(loc, idxTy, upperBound); 5552 trips.push_back(upperBound); 5553 trips.push_back(stride); 5554 if (createDestShape) { 5555 auto extent = builder.genExtentFromTriplet( 5556 loc, lowerBound, upperBound, stride, idxTy); 5557 destShape.push_back(extent); 5558 } 5559 useSlice = true; 5560 } 5561 if (!useTripsForSlice) { 5562 auto currentPC = pc; 5563 pc = [=](IterSpace iters) { 5564 IterationSpace newIters = currentPC(iters); 5565 mlir::Value impliedIter = newIters.iterValue(subsIndex); 5566 // FIXME: must use the lower bound of this component. 5567 auto arrLowerBound = 5568 atBase ? getLBound(arrayExv, subsIndex, one) : one; 5569 auto initial = builder.create<mlir::arith::SubIOp>( 5570 loc, lowerBound, arrLowerBound); 5571 auto prod = builder.create<mlir::arith::MulIOp>( 5572 loc, impliedIter, stride); 5573 auto result = 5574 builder.create<mlir::arith::AddIOp>(loc, initial, prod); 5575 newIters.setIndexValue(subsIndex, result); 5576 return newIters; 5577 }; 5578 } 5579 shapeIndex++; 5580 }, 5581 [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) { 5582 const auto &e = ie.value(); // dereference 5583 if (isArray(e)) { 5584 // This is a vector subscript. Use the index values as read 5585 // from a vector to determine the temporary array value. 5586 // Note: 9.5.3.3.3(3) specifies undefined behavior for 5587 // multiple updates to any specific array element through a 5588 // vector subscript with replicated values. 5589 assert(!isBoxValue() && 5590 "fir.box cannot be created with vector subscripts"); 5591 // TODO: Avoid creating a new evaluate::Expr here 5592 auto arrExpr = ignoreEvConvert(e); 5593 if (createDestShape) { 5594 destShape.push_back(fir::factory::getExtentAtDimension( 5595 loc, builder, arrayExv, subsIndex)); 5596 } 5597 auto genArrFetch = 5598 genVectorSubscriptArrayFetch(arrExpr, shapeIndex); 5599 auto currentPC = pc; 5600 pc = [=](IterSpace iters) { 5601 IterationSpace newIters = currentPC(iters); 5602 auto val = genAccessByVector(loc, genArrFetch, newIters, 5603 subsIndex); 5604 // Value read from vector subscript array and normalized 5605 // using the base array's lower bound value. 5606 mlir::Value lb = fir::factory::readLowerBound( 5607 builder, loc, arrayExv, subsIndex, one); 5608 auto origin = builder.create<mlir::arith::SubIOp>( 5609 loc, idxTy, val, lb); 5610 newIters.setIndexValue(subsIndex, origin); 5611 return newIters; 5612 }; 5613 if (useTripsForSlice) { 5614 LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape = 5615 getShape(arrayOperands.back()); 5616 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 5617 trips.push_back(undef); 5618 trips.push_back(undef); 5619 trips.push_back(undef); 5620 } 5621 shapeIndex++; 5622 } else { 5623 // This is a regular scalar subscript. 5624 if (useTripsForSlice) { 5625 // A regular scalar index, which does not yield an array 5626 // section. Use a degenerate slice operation 5627 // `(e:undef:undef)` in this dimension as a placeholder. 5628 // This does not necessarily change the rank of the original 5629 // array, so the iteration space must also be extended to 5630 // include this expression in this dimension to adjust to 5631 // the array's declared rank. 5632 mlir::Value v = fir::getBase(asScalarArray(e)); 5633 trips.push_back(v); 5634 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 5635 trips.push_back(undef); 5636 trips.push_back(undef); 5637 auto currentPC = pc; 5638 // Cast `e` to index type. 5639 mlir::Value iv = builder.createConvert(loc, idxTy, v); 5640 // Normalize `e` by subtracting the declared lbound. 5641 mlir::Value lb = fir::factory::readLowerBound( 5642 builder, loc, arrayExv, subsIndex, one); 5643 mlir::Value ivAdj = 5644 builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb); 5645 // Add lbound adjusted value of `e` to the iteration vector 5646 // (except when creating a box because the iteration vector 5647 // is empty). 5648 if (!isBoxValue()) 5649 pc = [=](IterSpace iters) { 5650 IterationSpace newIters = currentPC(iters); 5651 newIters.insertIndexValue(subsIndex, ivAdj); 5652 return newIters; 5653 }; 5654 } else { 5655 auto currentPC = pc; 5656 mlir::Value newValue = fir::getBase(asScalarArray(e)); 5657 mlir::Value result = 5658 builder.createConvert(loc, idxTy, newValue); 5659 mlir::Value lb = fir::factory::readLowerBound( 5660 builder, loc, arrayExv, subsIndex, one); 5661 result = builder.create<mlir::arith::SubIOp>(loc, idxTy, 5662 result, lb); 5663 pc = [=](IterSpace iters) { 5664 IterationSpace newIters = currentPC(iters); 5665 newIters.insertIndexValue(subsIndex, result); 5666 return newIters; 5667 }; 5668 } 5669 } 5670 }}, 5671 sub.value().u); 5672 } 5673 if (!useSlice) 5674 trips.clear(); 5675 } 5676 5677 static mlir::Type unwrapBoxEleTy(mlir::Type ty) { 5678 if (auto boxTy = ty.dyn_cast<fir::BoxType>()) 5679 return fir::unwrapRefType(boxTy.getEleTy()); 5680 return ty; 5681 } 5682 5683 llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) { 5684 llvm::SmallVector<mlir::Value> result; 5685 ty = unwrapBoxEleTy(ty); 5686 mlir::Location loc = getLoc(); 5687 mlir::IndexType idxTy = builder.getIndexType(); 5688 for (auto extent : ty.cast<fir::SequenceType>().getShape()) { 5689 auto v = extent == fir::SequenceType::getUnknownExtent() 5690 ? builder.create<fir::UndefOp>(loc, idxTy).getResult() 5691 : builder.createIntegerConstant(loc, idxTy, extent); 5692 result.push_back(v); 5693 } 5694 return result; 5695 } 5696 5697 CC genarr(const Fortran::semantics::SymbolRef &sym, 5698 ComponentPath &components) { 5699 return genarr(sym.get(), components); 5700 } 5701 5702 ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) { 5703 return convertToArrayBoxValue(getLoc(), builder, val, len); 5704 } 5705 5706 CC genarr(const ExtValue &extMemref) { 5707 ComponentPath dummy(/*isImplicit=*/true); 5708 return genarr(extMemref, dummy); 5709 } 5710 5711 // If the slice values are given then use them. Otherwise, generate triples 5712 // that cover the entire shape specified by \p shapeVal. 5713 inline llvm::SmallVector<mlir::Value> 5714 padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) { 5715 llvm::SmallVector<mlir::Value> result; 5716 mlir::Location loc = getLoc(); 5717 if (triples.size()) { 5718 result.assign(triples.begin(), triples.end()); 5719 } else { 5720 auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1); 5721 if (!shapeVal) { 5722 TODO(loc, "shape must be recovered from box"); 5723 } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>( 5724 shapeVal.getDefiningOp())) { 5725 for (auto ext : shapeOp.getExtents()) { 5726 result.push_back(one); 5727 result.push_back(ext); 5728 result.push_back(one); 5729 } 5730 } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>( 5731 shapeVal.getDefiningOp())) { 5732 for (auto [lb, ext] : 5733 llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) { 5734 result.push_back(lb); 5735 result.push_back(ext); 5736 result.push_back(one); 5737 } 5738 } else { 5739 TODO(loc, "shape must be recovered from box"); 5740 } 5741 } 5742 return result; 5743 } 5744 5745 /// Base case of generating an array reference, 5746 CC genarr(const ExtValue &extMemref, ComponentPath &components) { 5747 mlir::Location loc = getLoc(); 5748 mlir::Value memref = fir::getBase(extMemref); 5749 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType()); 5750 assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array"); 5751 mlir::Value shape = builder.createShape(loc, extMemref); 5752 mlir::Value slice; 5753 if (components.isSlice()) { 5754 if (isBoxValue() && components.substring) { 5755 // Append the substring operator to emboxing Op as it will become an 5756 // interior adjustment (add offset, adjust LEN) to the CHARACTER value 5757 // being referenced in the descriptor. 5758 llvm::SmallVector<mlir::Value> substringBounds; 5759 populateBounds(substringBounds, components.substring); 5760 // Convert to (offset, size) 5761 mlir::Type iTy = substringBounds[0].getType(); 5762 if (substringBounds.size() != 2) { 5763 fir::CharacterType charTy = 5764 fir::factory::CharacterExprHelper::getCharType(arrTy); 5765 if (charTy.hasConstantLen()) { 5766 mlir::IndexType idxTy = builder.getIndexType(); 5767 fir::CharacterType::LenType charLen = charTy.getLen(); 5768 mlir::Value lenValue = 5769 builder.createIntegerConstant(loc, idxTy, charLen); 5770 substringBounds.push_back(lenValue); 5771 } else { 5772 llvm::SmallVector<mlir::Value> typeparams = 5773 fir::getTypeParams(extMemref); 5774 substringBounds.push_back(typeparams.back()); 5775 } 5776 } 5777 // Convert the lower bound to 0-based substring. 5778 mlir::Value one = 5779 builder.createIntegerConstant(loc, substringBounds[0].getType(), 1); 5780 substringBounds[0] = 5781 builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one); 5782 // Convert the upper bound to a length. 5783 mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]); 5784 mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0); 5785 auto size = 5786 builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]); 5787 auto cmp = builder.create<mlir::arith::CmpIOp>( 5788 loc, mlir::arith::CmpIPredicate::sgt, size, zero); 5789 // size = MAX(upper - (lower - 1), 0) 5790 substringBounds[1] = 5791 builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero); 5792 slice = builder.create<fir::SliceOp>( 5793 loc, padSlice(components.trips, shape), components.suffixComponents, 5794 substringBounds); 5795 } else { 5796 slice = builder.createSlice(loc, extMemref, components.trips, 5797 components.suffixComponents); 5798 } 5799 if (components.hasComponents()) { 5800 auto seqTy = arrTy.cast<fir::SequenceType>(); 5801 mlir::Type eleTy = 5802 fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents); 5803 if (!eleTy) 5804 fir::emitFatalError(loc, "slicing path is ill-formed"); 5805 if (auto realTy = eleTy.dyn_cast<fir::RealType>()) 5806 eleTy = Fortran::lower::convertReal(realTy.getContext(), 5807 realTy.getFKind()); 5808 5809 // create the type of the projected array. 5810 arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy); 5811 LLVM_DEBUG(llvm::dbgs() 5812 << "type of array projection from component slicing: " 5813 << eleTy << ", " << arrTy << '\n'); 5814 } 5815 } 5816 arrayOperands.push_back(ArrayOperand{memref, shape, slice}); 5817 if (destShape.empty()) 5818 destShape = getShape(arrayOperands.back()); 5819 if (isBoxValue()) { 5820 // Semantics are a reference to a boxed array. 5821 // This case just requires that an embox operation be created to box the 5822 // value. The value of the box is forwarded in the continuation. 5823 mlir::Type reduceTy = reduceRank(arrTy, slice); 5824 auto boxTy = fir::BoxType::get(reduceTy); 5825 if (components.substring) { 5826 // Adjust char length to substring size. 5827 fir::CharacterType charTy = 5828 fir::factory::CharacterExprHelper::getCharType(reduceTy); 5829 auto seqTy = reduceTy.cast<fir::SequenceType>(); 5830 // TODO: Use a constant for fir.char LEN if we can compute it. 5831 boxTy = fir::BoxType::get( 5832 fir::SequenceType::get(fir::CharacterType::getUnknownLen( 5833 builder.getContext(), charTy.getFKind()), 5834 seqTy.getDimension())); 5835 } 5836 mlir::Value embox = 5837 memref.getType().isa<fir::BoxType>() 5838 ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice) 5839 .getResult() 5840 : builder 5841 .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice, 5842 fir::getTypeParams(extMemref)) 5843 .getResult(); 5844 return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); }; 5845 } 5846 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 5847 if (isReferentiallyOpaque()) { 5848 // Semantics are an opaque reference to an array. 5849 // This case forwards a continuation that will generate the address 5850 // arithmetic to the array element. This does not have copy-in/copy-out 5851 // semantics. No attempt to copy the array value will be made during the 5852 // interpretation of the Fortran statement. 5853 mlir::Type refEleTy = builder.getRefType(eleTy); 5854 return [=](IterSpace iters) -> ExtValue { 5855 // ArrayCoorOp does not expect zero based indices. 5856 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 5857 loc, builder, memref.getType(), shape, iters.iterVec()); 5858 mlir::Value coor = builder.create<fir::ArrayCoorOp>( 5859 loc, refEleTy, memref, shape, slice, indices, 5860 fir::getTypeParams(extMemref)); 5861 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 5862 llvm::SmallVector<mlir::Value> substringBounds; 5863 populateBounds(substringBounds, components.substring); 5864 if (!substringBounds.empty()) { 5865 mlir::Value dstLen = fir::factory::genLenOfCharacter( 5866 builder, loc, arrTy.cast<fir::SequenceType>(), memref, 5867 fir::getTypeParams(extMemref), iters.iterVec(), 5868 substringBounds); 5869 fir::CharBoxValue dstChar(coor, dstLen); 5870 return fir::factory::CharacterExprHelper{builder, loc} 5871 .createSubstring(dstChar, substringBounds); 5872 } 5873 } 5874 return fir::factory::arraySectionElementToExtendedValue( 5875 builder, loc, extMemref, coor, slice); 5876 }; 5877 } 5878 auto arrLoad = builder.create<fir::ArrayLoadOp>( 5879 loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref)); 5880 mlir::Value arrLd = arrLoad.getResult(); 5881 if (isProjectedCopyInCopyOut()) { 5882 // Semantics are projected copy-in copy-out. 5883 // The backing store of the destination of an array expression may be 5884 // partially modified. These updates are recorded in FIR by forwarding a 5885 // continuation that generates an `array_update` Op. The destination is 5886 // always loaded at the beginning of the statement and merged at the 5887 // end. 5888 destination = arrLoad; 5889 auto lambda = ccStoreToDest.hasValue() 5890 ? ccStoreToDest.getValue() 5891 : defaultStoreToDestination(components.substring); 5892 return [=](IterSpace iters) -> ExtValue { return lambda(iters); }; 5893 } 5894 if (isCustomCopyInCopyOut()) { 5895 // Create an array_modify to get the LHS element address and indicate 5896 // the assignment, the actual assignment must be implemented in 5897 // ccStoreToDest. 5898 destination = arrLoad; 5899 return [=](IterSpace iters) -> ExtValue { 5900 mlir::Value innerArg = iters.innerArgument(); 5901 mlir::Type resTy = innerArg.getType(); 5902 mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec()); 5903 mlir::Type refEleTy = 5904 fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); 5905 auto arrModify = builder.create<fir::ArrayModifyOp>( 5906 loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(), 5907 destination.getTypeparams()); 5908 return abstractArrayExtValue(arrModify.getResult(1)); 5909 }; 5910 } 5911 if (isCopyInCopyOut()) { 5912 // Semantics are copy-in copy-out. 5913 // The continuation simply forwards the result of the `array_load` Op, 5914 // which is the value of the array as it was when loaded. All data 5915 // references with rank > 0 in an array expression typically have 5916 // copy-in copy-out semantics. 5917 return [=](IterSpace) -> ExtValue { return arrLd; }; 5918 } 5919 llvm::SmallVector<mlir::Value> arrLdTypeParams = 5920 fir::factory::getTypeParams(loc, builder, arrLoad); 5921 if (isValueAttribute()) { 5922 // Semantics are value attribute. 5923 // Here the continuation will `array_fetch` a value from an array and 5924 // then store that value in a temporary. One can thus imitate pass by 5925 // value even when the call is pass by reference. 5926 return [=](IterSpace iters) -> ExtValue { 5927 mlir::Value base; 5928 mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); 5929 if (isAdjustedArrayElementType(eleTy)) { 5930 mlir::Type eleRefTy = builder.getRefType(eleTy); 5931 base = builder.create<fir::ArrayAccessOp>( 5932 loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); 5933 } else { 5934 base = builder.create<fir::ArrayFetchOp>( 5935 loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); 5936 } 5937 mlir::Value temp = builder.createTemporary( 5938 loc, base.getType(), 5939 llvm::ArrayRef<mlir::NamedAttribute>{ 5940 Fortran::lower::getAdaptToByRefAttr(builder)}); 5941 builder.create<fir::StoreOp>(loc, base, temp); 5942 return fir::factory::arraySectionElementToExtendedValue( 5943 builder, loc, extMemref, temp, slice); 5944 }; 5945 } 5946 // In the default case, the array reference forwards an `array_fetch` or 5947 // `array_access` Op in the continuation. 5948 return [=](IterSpace iters) -> ExtValue { 5949 mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); 5950 if (isAdjustedArrayElementType(eleTy)) { 5951 mlir::Type eleRefTy = builder.getRefType(eleTy); 5952 mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>( 5953 loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); 5954 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 5955 llvm::SmallVector<mlir::Value> substringBounds; 5956 populateBounds(substringBounds, components.substring); 5957 if (!substringBounds.empty()) { 5958 mlir::Value dstLen = fir::factory::genLenOfCharacter( 5959 builder, loc, arrLoad, iters.iterVec(), substringBounds); 5960 fir::CharBoxValue dstChar(arrayOp, dstLen); 5961 return fir::factory::CharacterExprHelper{builder, loc} 5962 .createSubstring(dstChar, substringBounds); 5963 } 5964 } 5965 return fir::factory::arraySectionElementToExtendedValue( 5966 builder, loc, extMemref, arrayOp, slice); 5967 } 5968 auto arrFetch = builder.create<fir::ArrayFetchOp>( 5969 loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); 5970 return fir::factory::arraySectionElementToExtendedValue( 5971 builder, loc, extMemref, arrFetch, slice); 5972 }; 5973 } 5974 5975 std::tuple<CC, mlir::Value, mlir::Type> 5976 genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) { 5977 assert(expr.Rank() > 0 && "expr must be an array"); 5978 mlir::Location loc = getLoc(); 5979 ExtValue optionalArg = asInquired(expr); 5980 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); 5981 // Generate an array load and access to an array that may be an absent 5982 // optional or an unallocated optional. 5983 mlir::Value base = getBase(optionalArg); 5984 const bool hasOptionalAttr = 5985 fir::valueHasFirAttribute(base, fir::getOptionalAttrName()); 5986 mlir::Type baseType = fir::unwrapRefType(base.getType()); 5987 const bool isBox = baseType.isa<fir::BoxType>(); 5988 const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject( 5989 expr, converter.getFoldingContext()); 5990 mlir::Type arrType = fir::unwrapPassByRefType(baseType); 5991 mlir::Type eleType = fir::unwrapSequenceType(arrType); 5992 ExtValue exv = optionalArg; 5993 if (hasOptionalAttr && isBox && !isAllocOrPtr) { 5994 // Elemental argument cannot be allocatable or pointers (C15100). 5995 // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and 5996 // Pointer optional arrays cannot be absent. The only kind of entities 5997 // that can get here are optional assumed shape and polymorphic entities. 5998 exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent); 5999 } 6000 // All the properties can be read from any fir.box but the read values may 6001 // be undefined and should only be used inside a fir.if (canBeRead) region. 6002 if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) 6003 exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); 6004 6005 mlir::Value memref = fir::getBase(exv); 6006 mlir::Value shape = builder.createShape(loc, exv); 6007 mlir::Value noSlice; 6008 auto arrLoad = builder.create<fir::ArrayLoadOp>( 6009 loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv)); 6010 mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); 6011 mlir::Value arrLd = arrLoad.getResult(); 6012 // Mark the load to tell later passes it is unsafe to use this array_load 6013 // shape unconditionally. 6014 arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr()); 6015 6016 // Place the array as optional on the arrayOperands stack so that its 6017 // shape will only be used as a fallback to induce the implicit loop nest 6018 // (that is if there is no non optional array arguments). 6019 arrayOperands.push_back( 6020 ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true}); 6021 6022 // By value semantics. 6023 auto cc = [=](IterSpace iters) -> ExtValue { 6024 auto arrFetch = builder.create<fir::ArrayFetchOp>( 6025 loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams); 6026 return fir::factory::arraySectionElementToExtendedValue( 6027 builder, loc, exv, arrFetch, noSlice); 6028 }; 6029 return {cc, isPresent, eleType}; 6030 } 6031 6032 /// Generate a continuation to pass \p expr to an OPTIONAL argument of an 6033 /// elemental procedure. This is meant to handle the cases where \p expr might 6034 /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an 6035 /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can 6036 /// directly be called instead. 6037 CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) { 6038 mlir::Location loc = getLoc(); 6039 // Only by-value numerical and logical so far. 6040 if (semant != ConstituentSemantics::RefTransparent) 6041 TODO(loc, "optional arguments in user defined elemental procedures"); 6042 6043 // Handle scalar argument case (the if-then-else is generated outside of the 6044 // implicit loop nest). 6045 if (expr.Rank() == 0) { 6046 ExtValue optionalArg = asInquired(expr); 6047 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); 6048 mlir::Value elementValue = 6049 fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent)); 6050 return [=](IterSpace iters) -> ExtValue { return elementValue; }; 6051 } 6052 6053 CC cc; 6054 mlir::Value isPresent; 6055 mlir::Type eleType; 6056 std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr); 6057 return [=](IterSpace iters) -> ExtValue { 6058 mlir::Value elementValue = 6059 builder 6060 .genIfOp(loc, {eleType}, isPresent, 6061 /*withElseRegion=*/true) 6062 .genThen([&]() { 6063 builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters))); 6064 }) 6065 .genElse([&]() { 6066 mlir::Value zero = 6067 fir::factory::createZeroValue(builder, loc, eleType); 6068 builder.create<fir::ResultOp>(loc, zero); 6069 }) 6070 .getResults()[0]; 6071 return elementValue; 6072 }; 6073 } 6074 6075 /// Reduce the rank of a array to be boxed based on the slice's operands. 6076 static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) { 6077 if (slice) { 6078 auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp()); 6079 assert(slOp && "expected slice op"); 6080 auto seqTy = arrTy.dyn_cast<fir::SequenceType>(); 6081 assert(seqTy && "expected array type"); 6082 mlir::Operation::operand_range triples = slOp.getTriples(); 6083 fir::SequenceType::Shape shape; 6084 // reduce the rank for each invariant dimension 6085 for (unsigned i = 1, end = triples.size(); i < end; i += 3) 6086 if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp())) 6087 shape.push_back(fir::SequenceType::getUnknownExtent()); 6088 return fir::SequenceType::get(shape, seqTy.getEleTy()); 6089 } 6090 // not sliced, so no change in rank 6091 return arrTy; 6092 } 6093 6094 /// Example: <code>array%RE</code> 6095 CC genarr(const Fortran::evaluate::ComplexPart &x, 6096 ComponentPath &components) { 6097 components.reversePath.push_back(&x); 6098 return genarr(x.complex(), components); 6099 } 6100 6101 template <typename A> 6102 CC genSlicePath(const A &x, ComponentPath &components) { 6103 return genarr(x, components); 6104 } 6105 6106 CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &, 6107 ComponentPath &components) { 6108 fir::emitFatalError(getLoc(), "substring of static array object"); 6109 } 6110 6111 /// Substrings (see 9.4.1) 6112 CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) { 6113 components.substring = &x; 6114 return std::visit([&](const auto &v) { return genarr(v, components); }, 6115 x.parent()); 6116 } 6117 6118 template <typename T> 6119 CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) { 6120 // Note that it's possible that the function being called returns either an 6121 // array or a scalar. In the first case, use the element type of the array. 6122 return genProcRef( 6123 funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef)))); 6124 } 6125 6126 //===--------------------------------------------------------------------===// 6127 // Array construction 6128 //===--------------------------------------------------------------------===// 6129 6130 /// Target agnostic computation of the size of an element in the array. 6131 /// Returns the size in bytes with type `index` or a null Value if the element 6132 /// size is not constant. 6133 mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy, 6134 mlir::Type resTy) { 6135 mlir::Location loc = getLoc(); 6136 mlir::IndexType idxTy = builder.getIndexType(); 6137 mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1); 6138 if (fir::hasDynamicSize(eleTy)) { 6139 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6140 // Array of char with dynamic length parameter. Downcast to an array 6141 // of singleton char, and scale by the len type parameter from 6142 // `exv`. 6143 exv.match( 6144 [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); }, 6145 [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); }, 6146 [&](const fir::BoxValue &box) { 6147 multiplier = fir::factory::CharacterExprHelper(builder, loc) 6148 .readLengthFromBox(box.getAddr()); 6149 }, 6150 [&](const fir::MutableBoxValue &box) { 6151 multiplier = fir::factory::CharacterExprHelper(builder, loc) 6152 .readLengthFromBox(box.getAddr()); 6153 }, 6154 [&](const auto &) { 6155 fir::emitFatalError(loc, 6156 "array constructor element has unknown size"); 6157 }); 6158 fir::CharacterType newEleTy = fir::CharacterType::getSingleton( 6159 eleTy.getContext(), charTy.getFKind()); 6160 if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) { 6161 assert(eleTy == seqTy.getEleTy()); 6162 resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy); 6163 } 6164 eleTy = newEleTy; 6165 } else { 6166 TODO(loc, "dynamic sized type"); 6167 } 6168 } 6169 mlir::Type eleRefTy = builder.getRefType(eleTy); 6170 mlir::Type resRefTy = builder.getRefType(resTy); 6171 mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy); 6172 auto offset = builder.create<fir::CoordinateOp>( 6173 loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier}); 6174 return builder.createConvert(loc, idxTy, offset); 6175 } 6176 6177 /// Get the function signature of the LLVM memcpy intrinsic. 6178 mlir::FunctionType memcpyType() { 6179 return fir::factory::getLlvmMemcpy(builder).getFunctionType(); 6180 } 6181 6182 /// Create a call to the LLVM memcpy intrinsic. 6183 void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) { 6184 mlir::Location loc = getLoc(); 6185 mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder); 6186 mlir::SymbolRefAttr funcSymAttr = 6187 builder.getSymbolRefAttr(memcpyFunc.getName()); 6188 mlir::FunctionType funcTy = memcpyFunc.getFunctionType(); 6189 builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args); 6190 } 6191 6192 // Construct code to check for a buffer overrun and realloc the buffer when 6193 // space is depleted. This is done between each item in the ac-value-list. 6194 mlir::Value growBuffer(mlir::Value mem, mlir::Value needed, 6195 mlir::Value bufferSize, mlir::Value buffSize, 6196 mlir::Value eleSz) { 6197 mlir::Location loc = getLoc(); 6198 mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder); 6199 auto cond = builder.create<mlir::arith::CmpIOp>( 6200 loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed); 6201 auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond, 6202 /*withElseRegion=*/true); 6203 auto insPt = builder.saveInsertionPoint(); 6204 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 6205 // Not enough space, resize the buffer. 6206 mlir::IndexType idxTy = builder.getIndexType(); 6207 mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2); 6208 auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two); 6209 builder.create<fir::StoreOp>(loc, newSz, buffSize); 6210 mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz); 6211 mlir::SymbolRefAttr funcSymAttr = 6212 builder.getSymbolRefAttr(reallocFunc.getName()); 6213 mlir::FunctionType funcTy = reallocFunc.getFunctionType(); 6214 auto newMem = builder.create<fir::CallOp>( 6215 loc, funcTy.getResults(), funcSymAttr, 6216 llvm::ArrayRef<mlir::Value>{ 6217 builder.createConvert(loc, funcTy.getInputs()[0], mem), 6218 builder.createConvert(loc, funcTy.getInputs()[1], byteSz)}); 6219 mlir::Value castNewMem = 6220 builder.createConvert(loc, mem.getType(), newMem.getResult(0)); 6221 builder.create<fir::ResultOp>(loc, castNewMem); 6222 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 6223 // Otherwise, just forward the buffer. 6224 builder.create<fir::ResultOp>(loc, mem); 6225 builder.restoreInsertionPoint(insPt); 6226 return ifOp.getResult(0); 6227 } 6228 6229 /// Copy the next value (or vector of values) into the array being 6230 /// constructed. 6231 mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos, 6232 mlir::Value buffSize, mlir::Value mem, 6233 mlir::Value eleSz, mlir::Type eleTy, 6234 mlir::Type eleRefTy, mlir::Type resTy) { 6235 mlir::Location loc = getLoc(); 6236 auto off = builder.create<fir::LoadOp>(loc, buffPos); 6237 auto limit = builder.create<fir::LoadOp>(loc, buffSize); 6238 mlir::IndexType idxTy = builder.getIndexType(); 6239 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 6240 6241 if (fir::isRecordWithAllocatableMember(eleTy)) 6242 TODO(loc, "deep copy on allocatable members"); 6243 6244 if (!eleSz) { 6245 // Compute the element size at runtime. 6246 assert(fir::hasDynamicSize(eleTy)); 6247 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6248 auto charBytes = 6249 builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8; 6250 mlir::Value bytes = 6251 builder.createIntegerConstant(loc, idxTy, charBytes); 6252 mlir::Value length = fir::getLen(exv); 6253 if (!length) 6254 fir::emitFatalError(loc, "result is not boxed character"); 6255 eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length); 6256 } else { 6257 TODO(loc, "PDT size"); 6258 // Will call the PDT's size function with the type parameters. 6259 } 6260 } 6261 6262 // Compute the coordinate using `fir.coordinate_of`, or, if the type has 6263 // dynamic size, generating the pointer arithmetic. 6264 auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) { 6265 mlir::Type refTy = eleRefTy; 6266 if (fir::hasDynamicSize(eleTy)) { 6267 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6268 // Scale a simple pointer using dynamic length and offset values. 6269 auto chTy = fir::CharacterType::getSingleton(charTy.getContext(), 6270 charTy.getFKind()); 6271 refTy = builder.getRefType(chTy); 6272 mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy)); 6273 buff = builder.createConvert(loc, toTy, buff); 6274 off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz); 6275 } else { 6276 TODO(loc, "PDT offset"); 6277 } 6278 } 6279 auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff, 6280 mlir::ValueRange{off}); 6281 return builder.createConvert(loc, eleRefTy, coor); 6282 }; 6283 6284 // Lambda to lower an abstract array box value. 6285 auto doAbstractArray = [&](const auto &v) { 6286 // Compute the array size. 6287 mlir::Value arrSz = one; 6288 for (auto ext : v.getExtents()) 6289 arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext); 6290 6291 // Grow the buffer as needed. 6292 auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz); 6293 mem = growBuffer(mem, endOff, limit, buffSize, eleSz); 6294 6295 // Copy the elements to the buffer. 6296 mlir::Value byteSz = 6297 builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz); 6298 auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6299 mlir::Value buffi = computeCoordinate(buff, off); 6300 llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( 6301 builder, loc, memcpyType(), buffi, v.getAddr(), byteSz, 6302 /*volatile=*/builder.createBool(loc, false)); 6303 createCallMemcpy(args); 6304 6305 // Save the incremented buffer position. 6306 builder.create<fir::StoreOp>(loc, endOff, buffPos); 6307 }; 6308 6309 // Copy a trivial scalar value into the buffer. 6310 auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) { 6311 // Increment the buffer position. 6312 auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); 6313 6314 // Grow the buffer as needed. 6315 mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); 6316 6317 // Store the element in the buffer. 6318 mlir::Value buff = 6319 builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6320 auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff, 6321 mlir::ValueRange{off}); 6322 fir::factory::genScalarAssignment( 6323 builder, loc, 6324 [&]() -> ExtValue { 6325 if (len) 6326 return fir::CharBoxValue(buffi, len); 6327 return buffi; 6328 }(), 6329 v); 6330 builder.create<fir::StoreOp>(loc, plusOne, buffPos); 6331 }; 6332 6333 // Copy the value. 6334 exv.match( 6335 [&](mlir::Value) { doTrivialScalar(exv); }, 6336 [&](const fir::CharBoxValue &v) { 6337 auto buffer = v.getBuffer(); 6338 if (fir::isa_char(buffer.getType())) { 6339 doTrivialScalar(exv, eleSz); 6340 } else { 6341 // Increment the buffer position. 6342 auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); 6343 6344 // Grow the buffer as needed. 6345 mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); 6346 6347 // Store the element in the buffer. 6348 mlir::Value buff = 6349 builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6350 mlir::Value buffi = computeCoordinate(buff, off); 6351 llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( 6352 builder, loc, memcpyType(), buffi, v.getAddr(), eleSz, 6353 /*volatile=*/builder.createBool(loc, false)); 6354 createCallMemcpy(args); 6355 6356 builder.create<fir::StoreOp>(loc, plusOne, buffPos); 6357 } 6358 }, 6359 [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); }, 6360 [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); }, 6361 [&](const auto &) { 6362 TODO(loc, "unhandled array constructor expression"); 6363 }); 6364 return mem; 6365 } 6366 6367 // Lower the expr cases in an ac-value-list. 6368 template <typename A> 6369 std::pair<ExtValue, bool> 6370 genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type, 6371 mlir::Value, mlir::Value, mlir::Value, 6372 Fortran::lower::StatementContext &stmtCtx) { 6373 if (isArray(x)) 6374 return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)), 6375 /*needCopy=*/true}; 6376 return {asScalar(x), /*needCopy=*/true}; 6377 } 6378 6379 // Lower an ac-implied-do in an ac-value-list. 6380 template <typename A> 6381 std::pair<ExtValue, bool> 6382 genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x, 6383 mlir::Type resTy, mlir::Value mem, 6384 mlir::Value buffPos, mlir::Value buffSize, 6385 Fortran::lower::StatementContext &) { 6386 mlir::Location loc = getLoc(); 6387 mlir::IndexType idxTy = builder.getIndexType(); 6388 mlir::Value lo = 6389 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower()))); 6390 mlir::Value up = 6391 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper()))); 6392 mlir::Value step = 6393 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride()))); 6394 auto seqTy = resTy.template cast<fir::SequenceType>(); 6395 mlir::Type eleTy = fir::unwrapSequenceType(seqTy); 6396 auto loop = 6397 builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false, 6398 /*finalCount=*/false, mem); 6399 // create a new binding for x.name(), to ac-do-variable, to the iteration 6400 // value. 6401 symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar()); 6402 auto insPt = builder.saveInsertionPoint(); 6403 builder.setInsertionPointToStart(loop.getBody()); 6404 // Thread mem inside the loop via loop argument. 6405 mem = loop.getRegionIterArgs()[0]; 6406 6407 mlir::Type eleRefTy = builder.getRefType(eleTy); 6408 6409 // Any temps created in the loop body must be freed inside the loop body. 6410 stmtCtx.pushScope(); 6411 llvm::Optional<mlir::Value> charLen; 6412 for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) { 6413 auto [exv, copyNeeded] = std::visit( 6414 [&](const auto &v) { 6415 return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize, 6416 stmtCtx); 6417 }, 6418 acv.u); 6419 mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); 6420 mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, 6421 eleSz, eleTy, eleRefTy, resTy) 6422 : fir::getBase(exv); 6423 if (fir::isa_char(seqTy.getEleTy()) && !charLen) { 6424 charLen = builder.createTemporary(loc, builder.getI64Type()); 6425 mlir::Value castLen = 6426 builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); 6427 builder.create<fir::StoreOp>(loc, castLen, charLen.value()); 6428 } 6429 } 6430 stmtCtx.finalize(/*popScope=*/true); 6431 6432 builder.create<fir::ResultOp>(loc, mem); 6433 builder.restoreInsertionPoint(insPt); 6434 mem = loop.getResult(0); 6435 symMap.popImpliedDoBinding(); 6436 llvm::SmallVector<mlir::Value> extents = { 6437 builder.create<fir::LoadOp>(loc, buffPos).getResult()}; 6438 6439 // Convert to extended value. 6440 if (fir::isa_char(seqTy.getEleTy())) { 6441 auto len = builder.create<fir::LoadOp>(loc, charLen.value()); 6442 return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false}; 6443 } 6444 return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false}; 6445 } 6446 6447 // To simplify the handling and interaction between the various cases, array 6448 // constructors are always lowered to the incremental construction code 6449 // pattern, even if the extent of the array value is constant. After the 6450 // MemToReg pass and constant folding, the optimizer should be able to 6451 // determine that all the buffer overrun tests are false when the 6452 // incremental construction wasn't actually required. 6453 template <typename A> 6454 CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) { 6455 mlir::Location loc = getLoc(); 6456 auto evExpr = toEvExpr(x); 6457 mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr); 6458 mlir::IndexType idxTy = builder.getIndexType(); 6459 auto seqTy = resTy.template cast<fir::SequenceType>(); 6460 mlir::Type eleTy = fir::unwrapSequenceType(resTy); 6461 mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size"); 6462 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 6463 mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos"); 6464 builder.create<fir::StoreOp>(loc, zero, buffPos); 6465 // Allocate space for the array to be constructed. 6466 mlir::Value mem; 6467 if (fir::hasDynamicSize(resTy)) { 6468 if (fir::hasDynamicSize(eleTy)) { 6469 // The size of each element may depend on a general expression. Defer 6470 // creating the buffer until after the expression is evaluated. 6471 mem = builder.createNullConstant(loc, builder.getRefType(eleTy)); 6472 builder.create<fir::StoreOp>(loc, zero, buffSize); 6473 } else { 6474 mlir::Value initBuffSz = 6475 builder.createIntegerConstant(loc, idxTy, clInitialBufferSize); 6476 mem = builder.create<fir::AllocMemOp>( 6477 loc, eleTy, /*typeparams=*/llvm::None, initBuffSz); 6478 builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); 6479 } 6480 } else { 6481 mem = builder.create<fir::AllocMemOp>(loc, resTy); 6482 int64_t buffSz = 1; 6483 for (auto extent : seqTy.getShape()) 6484 buffSz *= extent; 6485 mlir::Value initBuffSz = 6486 builder.createIntegerConstant(loc, idxTy, buffSz); 6487 builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); 6488 } 6489 // Compute size of element 6490 mlir::Type eleRefTy = builder.getRefType(eleTy); 6491 6492 // Populate the buffer with the elements, growing as necessary. 6493 llvm::Optional<mlir::Value> charLen; 6494 for (const auto &expr : x) { 6495 auto [exv, copyNeeded] = std::visit( 6496 [&](const auto &e) { 6497 return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize, 6498 stmtCtx); 6499 }, 6500 expr.u); 6501 mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); 6502 mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, 6503 eleSz, eleTy, eleRefTy, resTy) 6504 : fir::getBase(exv); 6505 if (fir::isa_char(seqTy.getEleTy()) && !charLen) { 6506 charLen = builder.createTemporary(loc, builder.getI64Type()); 6507 mlir::Value castLen = 6508 builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); 6509 builder.create<fir::StoreOp>(loc, castLen, charLen.value()); 6510 } 6511 } 6512 mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6513 llvm::SmallVector<mlir::Value> extents = { 6514 builder.create<fir::LoadOp>(loc, buffPos)}; 6515 6516 // Cleanup the temporary. 6517 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 6518 stmtCtx.attachCleanup( 6519 [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); }); 6520 6521 // Return the continuation. 6522 if (fir::isa_char(seqTy.getEleTy())) { 6523 if (charLen.hasValue()) { 6524 auto len = builder.create<fir::LoadOp>(loc, charLen.getValue()); 6525 return genarr(fir::CharArrayBoxValue{mem, len, extents}); 6526 } 6527 return genarr(fir::CharArrayBoxValue{mem, zero, extents}); 6528 } 6529 return genarr(fir::ArrayBoxValue{mem, extents}); 6530 } 6531 6532 CC genarr(const Fortran::evaluate::ImpliedDoIndex &) { 6533 fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0"); 6534 } 6535 CC genarr(const Fortran::evaluate::TypeParamInquiry &x) { 6536 TODO(getLoc(), "array expr type parameter inquiry"); 6537 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6538 } 6539 CC genarr(const Fortran::evaluate::DescriptorInquiry &x) { 6540 TODO(getLoc(), "array expr descriptor inquiry"); 6541 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6542 } 6543 CC genarr(const Fortran::evaluate::StructureConstructor &x) { 6544 TODO(getLoc(), "structure constructor"); 6545 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6546 } 6547 6548 //===--------------------------------------------------------------------===// 6549 // LOCICAL operators (.NOT., .AND., .EQV., etc.) 6550 //===--------------------------------------------------------------------===// 6551 6552 template <int KIND> 6553 CC genarr(const Fortran::evaluate::Not<KIND> &x) { 6554 mlir::Location loc = getLoc(); 6555 mlir::IntegerType i1Ty = builder.getI1Type(); 6556 auto lambda = genarr(x.left()); 6557 mlir::Value truth = builder.createBool(loc, true); 6558 return [=](IterSpace iters) -> ExtValue { 6559 mlir::Value logical = fir::getBase(lambda(iters)); 6560 mlir::Value val = builder.createConvert(loc, i1Ty, logical); 6561 return builder.create<mlir::arith::XOrIOp>(loc, val, truth); 6562 }; 6563 } 6564 template <typename OP, typename A> 6565 CC createBinaryBoolOp(const A &x) { 6566 mlir::Location loc = getLoc(); 6567 mlir::IntegerType i1Ty = builder.getI1Type(); 6568 auto lf = genarr(x.left()); 6569 auto rf = genarr(x.right()); 6570 return [=](IterSpace iters) -> ExtValue { 6571 mlir::Value left = fir::getBase(lf(iters)); 6572 mlir::Value right = fir::getBase(rf(iters)); 6573 mlir::Value lhs = builder.createConvert(loc, i1Ty, left); 6574 mlir::Value rhs = builder.createConvert(loc, i1Ty, right); 6575 return builder.create<OP>(loc, lhs, rhs); 6576 }; 6577 } 6578 template <typename OP, typename A> 6579 CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) { 6580 mlir::Location loc = getLoc(); 6581 mlir::IntegerType i1Ty = builder.getI1Type(); 6582 auto lf = genarr(x.left()); 6583 auto rf = genarr(x.right()); 6584 return [=](IterSpace iters) -> ExtValue { 6585 mlir::Value left = fir::getBase(lf(iters)); 6586 mlir::Value right = fir::getBase(rf(iters)); 6587 mlir::Value lhs = builder.createConvert(loc, i1Ty, left); 6588 mlir::Value rhs = builder.createConvert(loc, i1Ty, right); 6589 return builder.create<OP>(loc, pred, lhs, rhs); 6590 }; 6591 } 6592 template <int KIND> 6593 CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) { 6594 switch (x.logicalOperator) { 6595 case Fortran::evaluate::LogicalOperator::And: 6596 return createBinaryBoolOp<mlir::arith::AndIOp>(x); 6597 case Fortran::evaluate::LogicalOperator::Or: 6598 return createBinaryBoolOp<mlir::arith::OrIOp>(x); 6599 case Fortran::evaluate::LogicalOperator::Eqv: 6600 return createCompareBoolOp<mlir::arith::CmpIOp>( 6601 mlir::arith::CmpIPredicate::eq, x); 6602 case Fortran::evaluate::LogicalOperator::Neqv: 6603 return createCompareBoolOp<mlir::arith::CmpIOp>( 6604 mlir::arith::CmpIPredicate::ne, x); 6605 case Fortran::evaluate::LogicalOperator::Not: 6606 llvm_unreachable(".NOT. handled elsewhere"); 6607 } 6608 llvm_unreachable("unhandled case"); 6609 } 6610 6611 //===--------------------------------------------------------------------===// 6612 // Relational operators (<, <=, ==, etc.) 6613 //===--------------------------------------------------------------------===// 6614 6615 template <typename OP, typename PRED, typename A> 6616 CC createCompareOp(PRED pred, const A &x) { 6617 mlir::Location loc = getLoc(); 6618 auto lf = genarr(x.left()); 6619 auto rf = genarr(x.right()); 6620 return [=](IterSpace iters) -> ExtValue { 6621 mlir::Value lhs = fir::getBase(lf(iters)); 6622 mlir::Value rhs = fir::getBase(rf(iters)); 6623 return builder.create<OP>(loc, pred, lhs, rhs); 6624 }; 6625 } 6626 template <typename A> 6627 CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) { 6628 mlir::Location loc = getLoc(); 6629 auto lf = genarr(x.left()); 6630 auto rf = genarr(x.right()); 6631 return [=](IterSpace iters) -> ExtValue { 6632 auto lhs = lf(iters); 6633 auto rhs = rf(iters); 6634 return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs); 6635 }; 6636 } 6637 template <int KIND> 6638 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6639 Fortran::common::TypeCategory::Integer, KIND>> &x) { 6640 return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x); 6641 } 6642 template <int KIND> 6643 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6644 Fortran::common::TypeCategory::Character, KIND>> &x) { 6645 return createCompareCharOp(translateRelational(x.opr), x); 6646 } 6647 template <int KIND> 6648 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6649 Fortran::common::TypeCategory::Real, KIND>> &x) { 6650 return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr), 6651 x); 6652 } 6653 template <int KIND> 6654 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6655 Fortran::common::TypeCategory::Complex, KIND>> &x) { 6656 return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x); 6657 } 6658 CC genarr( 6659 const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) { 6660 return std::visit([&](const auto &x) { return genarr(x); }, r.u); 6661 } 6662 6663 template <typename A> 6664 CC genarr(const Fortran::evaluate::Designator<A> &des) { 6665 ComponentPath components(des.Rank() > 0); 6666 return std::visit([&](const auto &x) { return genarr(x, components); }, 6667 des.u); 6668 } 6669 6670 /// Is the path component rank > 0? 6671 static bool ranked(const PathComponent &x) { 6672 return std::visit(Fortran::common::visitors{ 6673 [](const ImplicitSubscripts &) { return false; }, 6674 [](const auto *v) { return v->Rank() > 0; }}, 6675 x); 6676 } 6677 6678 void extendComponent(Fortran::lower::ComponentPath &component, 6679 mlir::Type coorTy, mlir::ValueRange vals) { 6680 auto *bldr = &converter.getFirOpBuilder(); 6681 llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end()); 6682 auto currentFunc = component.getExtendCoorRef(); 6683 auto loc = getLoc(); 6684 auto newCoorRef = [bldr, coorTy, offsets, currentFunc, 6685 loc](mlir::Value val) -> mlir::Value { 6686 return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy), 6687 currentFunc(val), offsets); 6688 }; 6689 component.extendCoorRef = newCoorRef; 6690 } 6691 6692 //===-------------------------------------------------------------------===// 6693 // Array data references in an explicit iteration space. 6694 // 6695 // Use the base array that was loaded before the loop nest. 6696 //===-------------------------------------------------------------------===// 6697 6698 /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or 6699 /// array_update op. \p ty is the initial type of the array 6700 /// (reference). Returns the type of the element after application of the 6701 /// path in \p components. 6702 /// 6703 /// TODO: This needs to deal with array's with initial bounds other than 1. 6704 /// TODO: Thread type parameters correctly. 6705 mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) { 6706 mlir::Location loc = getLoc(); 6707 mlir::Type ty = fir::getBase(arrayExv).getType(); 6708 auto &revPath = components.reversePath; 6709 ty = fir::unwrapPassByRefType(ty); 6710 bool prefix = true; 6711 bool deref = false; 6712 auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) { 6713 if (deref) { 6714 extendComponent(components, ty, vals); 6715 } else if (prefix) { 6716 for (auto v : vals) 6717 components.prefixComponents.push_back(v); 6718 } else { 6719 for (auto v : vals) 6720 components.suffixComponents.push_back(v); 6721 } 6722 }; 6723 mlir::IndexType idxTy = builder.getIndexType(); 6724 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 6725 bool atBase = true; 6726 auto saveSemant = semant; 6727 if (isProjectedCopyInCopyOut()) 6728 semant = ConstituentSemantics::RefTransparent; 6729 unsigned index = 0; 6730 for (const auto &v : llvm::reverse(revPath)) { 6731 std::visit( 6732 Fortran::common::visitors{ 6733 [&](const ImplicitSubscripts &) { 6734 prefix = false; 6735 ty = fir::unwrapSequenceType(ty); 6736 }, 6737 [&](const Fortran::evaluate::ComplexPart *x) { 6738 assert(!prefix && "complex part must be at end"); 6739 mlir::Value offset = builder.createIntegerConstant( 6740 loc, builder.getI32Type(), 6741 x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 6742 : 1); 6743 components.suffixComponents.push_back(offset); 6744 ty = fir::applyPathToType(ty, mlir::ValueRange{offset}); 6745 }, 6746 [&](const Fortran::evaluate::ArrayRef *x) { 6747 if (Fortran::lower::isRankedArrayAccess(*x)) { 6748 genSliceIndices(components, arrayExv, *x, atBase); 6749 ty = fir::unwrapSeqOrBoxedSeqType(ty); 6750 } else { 6751 // Array access where the expressions are scalar and cannot 6752 // depend upon the implied iteration space. 6753 unsigned ssIndex = 0u; 6754 llvm::SmallVector<mlir::Value> componentsToAdd; 6755 for (const auto &ss : x->subscript()) { 6756 std::visit( 6757 Fortran::common::visitors{ 6758 [&](const Fortran::evaluate:: 6759 IndirectSubscriptIntegerExpr &ie) { 6760 const auto &e = ie.value(); 6761 if (isArray(e)) 6762 fir::emitFatalError( 6763 loc, 6764 "multiple components along single path " 6765 "generating array subexpressions"); 6766 // Lower scalar index expression, append it to 6767 // subs. 6768 mlir::Value subscriptVal = 6769 fir::getBase(asScalarArray(e)); 6770 // arrayExv is the base array. It needs to reflect 6771 // the current array component instead. 6772 // FIXME: must use lower bound of this component, 6773 // not just the constant 1. 6774 mlir::Value lb = 6775 atBase ? fir::factory::readLowerBound( 6776 builder, loc, arrayExv, ssIndex, 6777 one) 6778 : one; 6779 mlir::Value val = builder.createConvert( 6780 loc, idxTy, subscriptVal); 6781 mlir::Value ivAdj = 6782 builder.create<mlir::arith::SubIOp>( 6783 loc, idxTy, val, lb); 6784 componentsToAdd.push_back( 6785 builder.createConvert(loc, idxTy, ivAdj)); 6786 }, 6787 [&](const auto &) { 6788 fir::emitFatalError( 6789 loc, "multiple components along single path " 6790 "generating array subexpressions"); 6791 }}, 6792 ss.u); 6793 ssIndex++; 6794 } 6795 ty = fir::unwrapSeqOrBoxedSeqType(ty); 6796 addComponentList(ty, componentsToAdd); 6797 } 6798 }, 6799 [&](const Fortran::evaluate::Component *x) { 6800 auto fieldTy = fir::FieldType::get(builder.getContext()); 6801 llvm::StringRef name = toStringRef(getLastSym(*x).name()); 6802 if (auto recTy = ty.dyn_cast<fir::RecordType>()) { 6803 ty = recTy.getType(name); 6804 auto fld = builder.create<fir::FieldIndexOp>( 6805 loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); 6806 addComponentList(ty, {fld}); 6807 if (index != revPath.size() - 1 || !isPointerAssignment()) { 6808 // Need an intermediate dereference if the boxed value 6809 // appears in the middle of the component path or if it is 6810 // on the right and this is not a pointer assignment. 6811 if (auto boxTy = ty.dyn_cast<fir::BoxType>()) { 6812 auto currentFunc = components.getExtendCoorRef(); 6813 auto loc = getLoc(); 6814 auto *bldr = &converter.getFirOpBuilder(); 6815 auto newCoorRef = [=](mlir::Value val) -> mlir::Value { 6816 return bldr->create<fir::LoadOp>(loc, currentFunc(val)); 6817 }; 6818 components.extendCoorRef = newCoorRef; 6819 deref = true; 6820 } 6821 } 6822 } else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) { 6823 ty = fir::unwrapRefType(boxTy.getEleTy()); 6824 auto recTy = ty.cast<fir::RecordType>(); 6825 ty = recTy.getType(name); 6826 auto fld = builder.create<fir::FieldIndexOp>( 6827 loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); 6828 extendComponent(components, ty, {fld}); 6829 } else { 6830 TODO(loc, "other component type"); 6831 } 6832 }}, 6833 v); 6834 atBase = false; 6835 ++index; 6836 } 6837 semant = saveSemant; 6838 ty = fir::unwrapSequenceType(ty); 6839 components.applied = true; 6840 return ty; 6841 } 6842 6843 llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) { 6844 llvm::SmallVector<mlir::Value> result; 6845 if (components.substring) 6846 populateBounds(result, components.substring); 6847 return result; 6848 } 6849 6850 CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) { 6851 mlir::Location loc = getLoc(); 6852 auto revPath = components.reversePath; 6853 fir::ExtendedValue arrayExv = 6854 arrayLoadExtValue(builder, loc, load, {}, load); 6855 mlir::Type eleTy = lowerPath(arrayExv, components); 6856 auto currentPC = components.pc; 6857 auto pc = [=, prefix = components.prefixComponents, 6858 suffix = components.suffixComponents](IterSpace iters) { 6859 // Add path prefix and suffix. 6860 return IterationSpace(currentPC(iters), prefix, suffix); 6861 }; 6862 components.resetPC(); 6863 llvm::SmallVector<mlir::Value> substringBounds = 6864 genSubstringBounds(components); 6865 if (isProjectedCopyInCopyOut()) { 6866 destination = load; 6867 auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable { 6868 mlir::Value innerArg = esp->findArgumentOfLoad(load); 6869 if (isAdjustedArrayElementType(eleTy)) { 6870 mlir::Type eleRefTy = builder.getRefType(eleTy); 6871 auto arrayOp = builder.create<fir::ArrayAccessOp>( 6872 loc, eleRefTy, innerArg, iters.iterVec(), 6873 fir::factory::getTypeParams(loc, builder, load)); 6874 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6875 mlir::Value dstLen = fir::factory::genLenOfCharacter( 6876 builder, loc, load, iters.iterVec(), substringBounds); 6877 fir::ArrayAmendOp amend = createCharArrayAmend( 6878 loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg, 6879 substringBounds); 6880 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend, 6881 dstLen); 6882 } 6883 if (fir::isa_derived(eleTy)) { 6884 fir::ArrayAmendOp amend = 6885 createDerivedArrayAmend(loc, load, builder, arrayOp, 6886 iters.elementExv(), eleTy, innerArg); 6887 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), 6888 amend); 6889 } 6890 assert(eleTy.isa<fir::SequenceType>()); 6891 TODO(loc, "array (as element) assignment"); 6892 } 6893 if (components.hasExtendCoorRef()) { 6894 auto eleBoxTy = 6895 fir::applyPathToType(innerArg.getType(), iters.iterVec()); 6896 assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>()); 6897 auto arrayOp = builder.create<fir::ArrayAccessOp>( 6898 loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(), 6899 fir::factory::getTypeParams(loc, builder, load)); 6900 mlir::Value addr = components.getExtendCoorRef()(arrayOp); 6901 components.resetExtendCoorRef(); 6902 // When the lhs is a boxed value and the context is not a pointer 6903 // assignment, then insert the dereference of the box before any 6904 // conversion and store. 6905 if (!isPointerAssignment()) { 6906 if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) { 6907 eleTy = fir::boxMemRefType(boxTy); 6908 addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr); 6909 eleTy = fir::unwrapRefType(eleTy); 6910 } 6911 } 6912 auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); 6913 builder.create<fir::StoreOp>(loc, ele, addr); 6914 auto amend = builder.create<fir::ArrayAmendOp>( 6915 loc, innerArg.getType(), innerArg, arrayOp); 6916 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend); 6917 } 6918 auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); 6919 auto update = builder.create<fir::ArrayUpdateOp>( 6920 loc, innerArg.getType(), innerArg, ele, iters.iterVec(), 6921 fir::factory::getTypeParams(loc, builder, load)); 6922 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update); 6923 }; 6924 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6925 } 6926 if (isCustomCopyInCopyOut()) { 6927 // Create an array_modify to get the LHS element address and indicate 6928 // the assignment, and create the call to the user defined assignment. 6929 destination = load; 6930 auto lambda = [=](IterSpace iters) mutable { 6931 mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load); 6932 mlir::Type refEleTy = 6933 fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); 6934 auto arrModify = builder.create<fir::ArrayModifyOp>( 6935 loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg, 6936 iters.iterVec(), load.getTypeparams()); 6937 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), 6938 arrModify.getResult(1)); 6939 }; 6940 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6941 } 6942 auto lambda = [=, semant = this->semant](IterSpace iters) mutable { 6943 if (semant == ConstituentSemantics::RefOpaque || 6944 isAdjustedArrayElementType(eleTy)) { 6945 mlir::Type resTy = builder.getRefType(eleTy); 6946 // Use array element reference semantics. 6947 auto access = builder.create<fir::ArrayAccessOp>( 6948 loc, resTy, load, iters.iterVec(), 6949 fir::factory::getTypeParams(loc, builder, load)); 6950 mlir::Value newBase = access; 6951 if (fir::isa_char(eleTy)) { 6952 mlir::Value dstLen = fir::factory::genLenOfCharacter( 6953 builder, loc, load, iters.iterVec(), substringBounds); 6954 if (!substringBounds.empty()) { 6955 fir::CharBoxValue charDst{access, dstLen}; 6956 fir::factory::CharacterExprHelper helper{builder, loc}; 6957 charDst = helper.createSubstring(charDst, substringBounds); 6958 newBase = charDst.getAddr(); 6959 } 6960 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase, 6961 dstLen); 6962 } 6963 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase); 6964 } 6965 if (components.hasExtendCoorRef()) { 6966 auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec()); 6967 assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>()); 6968 auto access = builder.create<fir::ArrayAccessOp>( 6969 loc, builder.getRefType(eleBoxTy), load, iters.iterVec(), 6970 fir::factory::getTypeParams(loc, builder, load)); 6971 mlir::Value addr = components.getExtendCoorRef()(access); 6972 components.resetExtendCoorRef(); 6973 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr); 6974 } 6975 if (isPointerAssignment()) { 6976 auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec()); 6977 if (!eleTy.isa<fir::BoxType>()) { 6978 // Rhs is a regular expression that will need to be boxed before 6979 // assigning to the boxed variable. 6980 auto typeParams = fir::factory::getTypeParams(loc, builder, load); 6981 auto access = builder.create<fir::ArrayAccessOp>( 6982 loc, builder.getRefType(eleTy), load, iters.iterVec(), 6983 typeParams); 6984 auto addr = components.getExtendCoorRef()(access); 6985 components.resetExtendCoorRef(); 6986 auto ptrEleTy = fir::PointerType::get(eleTy); 6987 auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr); 6988 auto boxTy = fir::BoxType::get(ptrEleTy); 6989 // FIXME: The typeparams to the load may be different than those of 6990 // the subobject. 6991 if (components.hasExtendCoorRef()) 6992 TODO(loc, "need to adjust typeparameter(s) to reflect the final " 6993 "component"); 6994 mlir::Value embox = 6995 builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr, 6996 /*shape=*/mlir::Value{}, 6997 /*slice=*/mlir::Value{}, typeParams); 6998 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox); 6999 } 7000 } 7001 auto fetch = builder.create<fir::ArrayFetchOp>( 7002 loc, eleTy, load, iters.iterVec(), load.getTypeparams()); 7003 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch); 7004 }; 7005 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 7006 } 7007 7008 template <typename A> 7009 CC genImplicitArrayAccess(const A &x, ComponentPath &components) { 7010 components.reversePath.push_back(ImplicitSubscripts{}); 7011 ExtValue exv = asScalarRef(x); 7012 lowerPath(exv, components); 7013 auto lambda = genarr(exv, components); 7014 return [=](IterSpace iters) { return lambda(components.pc(iters)); }; 7015 } 7016 CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x, 7017 ComponentPath &components) { 7018 if (x.IsSymbol()) 7019 return genImplicitArrayAccess(getFirstSym(x), components); 7020 return genImplicitArrayAccess(x.GetComponent(), components); 7021 } 7022 7023 template <typename A> 7024 CC genAsScalar(const A &x) { 7025 mlir::Location loc = getLoc(); 7026 if (isProjectedCopyInCopyOut()) { 7027 return [=, &x, builder = &converter.getFirOpBuilder()]( 7028 IterSpace iters) -> ExtValue { 7029 ExtValue exv = asScalarRef(x); 7030 mlir::Value addr = fir::getBase(exv); 7031 mlir::Type eleTy = fir::unwrapRefType(addr.getType()); 7032 if (isAdjustedArrayElementType(eleTy)) { 7033 if (fir::isa_char(eleTy)) { 7034 fir::factory::CharacterExprHelper{*builder, loc}.createAssign( 7035 exv, iters.elementExv()); 7036 } else if (fir::isa_derived(eleTy)) { 7037 TODO(loc, "assignment of derived type"); 7038 } else { 7039 fir::emitFatalError(loc, "array type not expected in scalar"); 7040 } 7041 } else { 7042 auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement()); 7043 builder->create<fir::StoreOp>(loc, eleVal, addr); 7044 } 7045 return exv; 7046 }; 7047 } 7048 return [=, &x](IterSpace) { return asScalar(x); }; 7049 } 7050 7051 bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x, 7052 ComponentPath &components) { 7053 return isPointerAssignment() && Fortran::semantics::IsPointer(x) && 7054 !components.hasComponents(); 7055 } 7056 bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x, 7057 ComponentPath &components) { 7058 return tailIsPointerInPointerAssignment(getLastSym(x), components); 7059 } 7060 7061 CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) { 7062 if (explicitSpaceIsActive()) { 7063 if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components)) 7064 components.reversePath.push_back(ImplicitSubscripts{}); 7065 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) 7066 return applyPathToArrayLoad(load, components); 7067 } else { 7068 return genImplicitArrayAccess(x, components); 7069 } 7070 if (pathIsEmpty(components)) 7071 return components.substring ? genAsScalar(*components.substring) 7072 : genAsScalar(x); 7073 mlir::Location loc = getLoc(); 7074 return [=](IterSpace) -> ExtValue { 7075 fir::emitFatalError(loc, "reached symbol with path"); 7076 }; 7077 } 7078 7079 /// Lower a component path with or without rank. 7080 /// Example: <code>array%baz%qux%waldo</code> 7081 CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) { 7082 if (explicitSpaceIsActive()) { 7083 if (x.base().Rank() == 0 && x.Rank() > 0 && 7084 !tailIsPointerInPointerAssignment(x, components)) 7085 components.reversePath.push_back(ImplicitSubscripts{}); 7086 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) 7087 return applyPathToArrayLoad(load, components); 7088 } else { 7089 if (x.base().Rank() == 0) 7090 return genImplicitArrayAccess(x, components); 7091 } 7092 bool atEnd = pathIsEmpty(components); 7093 if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp)) 7094 // Skip parent components; their components are placed directly in the 7095 // object. 7096 components.reversePath.push_back(&x); 7097 auto result = genarr(x.base(), components); 7098 if (components.applied) 7099 return result; 7100 if (atEnd) 7101 return genAsScalar(x); 7102 mlir::Location loc = getLoc(); 7103 return [=](IterSpace) -> ExtValue { 7104 fir::emitFatalError(loc, "reached component with path"); 7105 }; 7106 } 7107 7108 /// Array reference with subscripts. If this has rank > 0, this is a form 7109 /// of an array section (slice). 7110 /// 7111 /// There are two "slicing" primitives that may be applied on a dimension by 7112 /// dimension basis: (1) triple notation and (2) vector addressing. Since 7113 /// dimensions can be selectively sliced, some dimensions may contain 7114 /// regular scalar expressions and those dimensions do not participate in 7115 /// the array expression evaluation. 7116 CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) { 7117 if (explicitSpaceIsActive()) { 7118 if (Fortran::lower::isRankedArrayAccess(x)) 7119 components.reversePath.push_back(ImplicitSubscripts{}); 7120 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) { 7121 components.reversePath.push_back(&x); 7122 return applyPathToArrayLoad(load, components); 7123 } 7124 } else { 7125 if (Fortran::lower::isRankedArrayAccess(x)) { 7126 components.reversePath.push_back(&x); 7127 return genImplicitArrayAccess(x.base(), components); 7128 } 7129 } 7130 bool atEnd = pathIsEmpty(components); 7131 components.reversePath.push_back(&x); 7132 auto result = genarr(x.base(), components); 7133 if (components.applied) 7134 return result; 7135 mlir::Location loc = getLoc(); 7136 if (atEnd) { 7137 if (x.Rank() == 0) 7138 return genAsScalar(x); 7139 fir::emitFatalError(loc, "expected scalar"); 7140 } 7141 return [=](IterSpace) -> ExtValue { 7142 fir::emitFatalError(loc, "reached arrayref with path"); 7143 }; 7144 } 7145 7146 CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) { 7147 TODO(getLoc(), "coarray reference"); 7148 } 7149 7150 CC genarr(const Fortran::evaluate::NamedEntity &x, 7151 ComponentPath &components) { 7152 return x.IsSymbol() ? genarr(getFirstSym(x), components) 7153 : genarr(x.GetComponent(), components); 7154 } 7155 7156 CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) { 7157 return std::visit([&](const auto &v) { return genarr(v, components); }, 7158 x.u); 7159 } 7160 7161 bool pathIsEmpty(const ComponentPath &components) { 7162 return components.reversePath.empty(); 7163 } 7164 7165 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7166 Fortran::lower::StatementContext &stmtCtx, 7167 Fortran::lower::SymMap &symMap) 7168 : converter{converter}, builder{converter.getFirOpBuilder()}, 7169 stmtCtx{stmtCtx}, symMap{symMap} {} 7170 7171 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7172 Fortran::lower::StatementContext &stmtCtx, 7173 Fortran::lower::SymMap &symMap, 7174 ConstituentSemantics sem) 7175 : converter{converter}, builder{converter.getFirOpBuilder()}, 7176 stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {} 7177 7178 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7179 Fortran::lower::StatementContext &stmtCtx, 7180 Fortran::lower::SymMap &symMap, 7181 ConstituentSemantics sem, 7182 Fortran::lower::ExplicitIterSpace *expSpace, 7183 Fortran::lower::ImplicitIterSpace *impSpace) 7184 : converter{converter}, builder{converter.getFirOpBuilder()}, 7185 stmtCtx{stmtCtx}, symMap{symMap}, 7186 explicitSpace(expSpace->isActive() ? expSpace : nullptr), 7187 implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} { 7188 // Generate any mask expressions, as necessary. This is the compute step 7189 // that creates the effective masks. See 10.2.3.2 in particular. 7190 genMasks(); 7191 } 7192 7193 mlir::Location getLoc() { return converter.getCurrentLocation(); } 7194 7195 /// Array appears in a lhs context such that it is assigned after the rhs is 7196 /// fully evaluated. 7197 inline bool isCopyInCopyOut() { 7198 return semant == ConstituentSemantics::CopyInCopyOut; 7199 } 7200 7201 /// Array appears in a lhs (or temp) context such that a projected, 7202 /// discontiguous subspace of the array is assigned after the rhs is fully 7203 /// evaluated. That is, the rhs array value is merged into a section of the 7204 /// lhs array. 7205 inline bool isProjectedCopyInCopyOut() { 7206 return semant == ConstituentSemantics::ProjectedCopyInCopyOut; 7207 } 7208 7209 // ???: Do we still need this? 7210 inline bool isCustomCopyInCopyOut() { 7211 return semant == ConstituentSemantics::CustomCopyInCopyOut; 7212 } 7213 7214 /// Are we lowering in a left-hand side context? 7215 inline bool isLeftHandSide() { 7216 return isCopyInCopyOut() || isProjectedCopyInCopyOut() || 7217 isCustomCopyInCopyOut(); 7218 } 7219 7220 /// Array appears in a context where it must be boxed. 7221 inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; } 7222 7223 /// Array appears in a context where differences in the memory reference can 7224 /// be observable in the computational results. For example, an array 7225 /// element is passed to an impure procedure. 7226 inline bool isReferentiallyOpaque() { 7227 return semant == ConstituentSemantics::RefOpaque; 7228 } 7229 7230 /// Array appears in a context where it is passed as a VALUE argument. 7231 inline bool isValueAttribute() { 7232 return semant == ConstituentSemantics::ByValueArg; 7233 } 7234 7235 /// Can the loops over the expression be unordered? 7236 inline bool isUnordered() const { return unordered; } 7237 7238 void setUnordered(bool b) { unordered = b; } 7239 7240 inline bool isPointerAssignment() const { return lbounds.hasValue(); } 7241 7242 inline bool isBoundsSpec() const { 7243 return isPointerAssignment() && !ubounds.hasValue(); 7244 } 7245 7246 inline bool isBoundsRemap() const { 7247 return isPointerAssignment() && ubounds.hasValue(); 7248 } 7249 7250 void setPointerAssignmentBounds( 7251 const llvm::SmallVector<mlir::Value> &lbs, 7252 llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) { 7253 lbounds = lbs; 7254 ubounds = ubs; 7255 } 7256 7257 Fortran::lower::AbstractConverter &converter; 7258 fir::FirOpBuilder &builder; 7259 Fortran::lower::StatementContext &stmtCtx; 7260 bool elementCtx = false; 7261 Fortran::lower::SymMap &symMap; 7262 /// The continuation to generate code to update the destination. 7263 llvm::Optional<CC> ccStoreToDest; 7264 llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude; 7265 llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>> 7266 ccLoadDest; 7267 /// The destination is the loaded array into which the results will be 7268 /// merged. 7269 fir::ArrayLoadOp destination; 7270 /// The shape of the destination. 7271 llvm::SmallVector<mlir::Value> destShape; 7272 /// List of arrays in the expression that have been loaded. 7273 llvm::SmallVector<ArrayOperand> arrayOperands; 7274 /// If there is a user-defined iteration space, explicitShape will hold the 7275 /// information from the front end. 7276 Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr; 7277 Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr; 7278 ConstituentSemantics semant = ConstituentSemantics::RefTransparent; 7279 /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only 7280 /// occur in an explicit iteration space. 7281 llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds; 7282 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds; 7283 // Can the array expression be evaluated in any order? 7284 // Will be set to false if any of the expression parts prevent this. 7285 bool unordered = true; 7286 }; 7287 } // namespace 7288 7289 fir::ExtendedValue Fortran::lower::createSomeExtendedExpression( 7290 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7291 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7292 Fortran::lower::StatementContext &stmtCtx) { 7293 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); 7294 return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr); 7295 } 7296 7297 fir::GlobalOp Fortran::lower::createDenseGlobal( 7298 mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName, 7299 mlir::StringAttr linkage, bool isConst, 7300 const Fortran::lower::SomeExpr &expr, 7301 Fortran::lower::AbstractConverter &converter) { 7302 7303 Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true); 7304 Fortran::lower::SymMap emptyMap; 7305 InitializerData initData(/*genRawVals=*/true); 7306 ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx, 7307 /*initializer=*/&initData); 7308 sel.genval(expr); 7309 7310 size_t sz = initData.rawVals.size(); 7311 llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz}; 7312 7313 mlir::RankedTensorType tensorTy; 7314 auto &builder = converter.getFirOpBuilder(); 7315 mlir::Type iTy = initData.rawType; 7316 if (!iTy) 7317 return 0; // array extent is probably 0 in this case, so just return 0. 7318 tensorTy = mlir::RankedTensorType::get(sz, iTy); 7319 auto init = mlir::DenseElementsAttr::get(tensorTy, ar); 7320 return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst); 7321 } 7322 7323 fir::ExtendedValue Fortran::lower::createSomeInitializerExpression( 7324 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7325 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7326 Fortran::lower::StatementContext &stmtCtx) { 7327 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); 7328 InitializerData initData; // needed for initializations 7329 return ScalarExprLowering{loc, converter, symMap, stmtCtx, 7330 /*initializer=*/&initData} 7331 .genval(expr); 7332 } 7333 7334 fir::ExtendedValue Fortran::lower::createSomeExtendedAddress( 7335 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7336 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7337 Fortran::lower::StatementContext &stmtCtx) { 7338 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); 7339 return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr); 7340 } 7341 7342 fir::ExtendedValue Fortran::lower::createInitializerAddress( 7343 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7344 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7345 Fortran::lower::StatementContext &stmtCtx) { 7346 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); 7347 InitializerData init; 7348 return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr); 7349 } 7350 7351 void Fortran::lower::createSomeArrayAssignment( 7352 Fortran::lower::AbstractConverter &converter, 7353 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7354 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7355 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; 7356 rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); 7357 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7358 } 7359 7360 void Fortran::lower::createSomeArrayAssignment( 7361 Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, 7362 const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap, 7363 Fortran::lower::StatementContext &stmtCtx) { 7364 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; 7365 rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); 7366 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7367 } 7368 void Fortran::lower::createSomeArrayAssignment( 7369 Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, 7370 const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap, 7371 Fortran::lower::StatementContext &stmtCtx) { 7372 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; 7373 llvm::dbgs() << "assign expression: " << rhs << '\n';); 7374 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7375 } 7376 7377 void Fortran::lower::createAnyMaskedArrayAssignment( 7378 Fortran::lower::AbstractConverter &converter, 7379 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7380 Fortran::lower::ExplicitIterSpace &explicitSpace, 7381 Fortran::lower::ImplicitIterSpace &implicitSpace, 7382 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7383 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; 7384 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7385 << " given the explicit iteration space:\n" 7386 << explicitSpace << "\n and implied mask conditions:\n" 7387 << implicitSpace << '\n';); 7388 ArrayExprLowering::lowerAnyMaskedArrayAssignment( 7389 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); 7390 } 7391 7392 void Fortran::lower::createAllocatableArrayAssignment( 7393 Fortran::lower::AbstractConverter &converter, 7394 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7395 Fortran::lower::ExplicitIterSpace &explicitSpace, 7396 Fortran::lower::ImplicitIterSpace &implicitSpace, 7397 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7398 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n'; 7399 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7400 << " given the explicit iteration space:\n" 7401 << explicitSpace << "\n and implied mask conditions:\n" 7402 << implicitSpace << '\n';); 7403 ArrayExprLowering::lowerAllocatableArrayAssignment( 7404 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); 7405 } 7406 7407 void Fortran::lower::createArrayOfPointerAssignment( 7408 Fortran::lower::AbstractConverter &converter, 7409 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7410 Fortran::lower::ExplicitIterSpace &explicitSpace, 7411 Fortran::lower::ImplicitIterSpace &implicitSpace, 7412 const llvm::SmallVector<mlir::Value> &lbounds, 7413 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds, 7414 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7415 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n'; 7416 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7417 << " given the explicit iteration space:\n" 7418 << explicitSpace << "\n and implied mask conditions:\n" 7419 << implicitSpace << '\n';); 7420 assert(explicitSpace.isActive() && "must be in FORALL construct"); 7421 ArrayExprLowering::lowerArrayOfPointerAssignment( 7422 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace, 7423 lbounds, ubounds); 7424 } 7425 7426 fir::ExtendedValue Fortran::lower::createSomeArrayTempValue( 7427 Fortran::lower::AbstractConverter &converter, 7428 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7429 Fortran::lower::StatementContext &stmtCtx) { 7430 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); 7431 return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx, 7432 expr); 7433 } 7434 7435 void Fortran::lower::createLazyArrayTempValue( 7436 Fortran::lower::AbstractConverter &converter, 7437 const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader, 7438 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7439 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); 7440 ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr, 7441 raggedHeader); 7442 } 7443 7444 fir::ExtendedValue 7445 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter, 7446 const Fortran::lower::SomeExpr &expr, 7447 Fortran::lower::SymMap &symMap, 7448 Fortran::lower::StatementContext &stmtCtx) { 7449 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n'); 7450 return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap, 7451 stmtCtx, expr); 7452 } 7453 7454 fir::MutableBoxValue Fortran::lower::createMutableBox( 7455 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7456 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) { 7457 // MutableBox lowering StatementContext does not need to be propagated 7458 // to the caller because the result value is a variable, not a temporary 7459 // expression. The StatementContext clean-up can occur before using the 7460 // resulting MutableBoxValue. Variables of all other types are handled in the 7461 // bridge. 7462 Fortran::lower::StatementContext dummyStmtCtx; 7463 return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx} 7464 .genMutableBoxValue(expr); 7465 } 7466 7467 fir::ExtendedValue Fortran::lower::createBoxValue( 7468 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7469 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7470 Fortran::lower::StatementContext &stmtCtx) { 7471 if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) && 7472 !Fortran::evaluate::HasVectorSubscript(expr)) 7473 return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx); 7474 fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress( 7475 loc, converter, expr, symMap, stmtCtx); 7476 return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr)); 7477 } 7478 7479 mlir::Value Fortran::lower::createSubroutineCall( 7480 AbstractConverter &converter, const evaluate::ProcedureRef &call, 7481 ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace, 7482 SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) { 7483 mlir::Location loc = converter.getCurrentLocation(); 7484 7485 if (isUserDefAssignment) { 7486 assert(call.arguments().size() == 2); 7487 const auto *lhs = call.arguments()[0].value().UnwrapExpr(); 7488 const auto *rhs = call.arguments()[1].value().UnwrapExpr(); 7489 assert(lhs && rhs && 7490 "user defined assignment arguments must be expressions"); 7491 if (call.IsElemental() && lhs->Rank() > 0) { 7492 // Elemental user defined assignment has special requirements to deal with 7493 // LHS/RHS overlaps. See 10.2.1.5 p2. 7494 ArrayExprLowering::lowerElementalUserAssignment( 7495 converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace, 7496 call); 7497 } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) { 7498 // Scalar defined assignment (elemental or not) in a FORALL context. 7499 mlir::func::FuncOp func = 7500 Fortran::lower::CallerInterface(call, converter).getFuncOp(); 7501 ArrayExprLowering::lowerScalarUserAssignment( 7502 converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs); 7503 } else if (explicitIterSpace.isActive()) { 7504 // TODO: need to array fetch/modify sub-arrays? 7505 TODO(loc, "non elemental user defined array assignment inside FORALL"); 7506 } else { 7507 if (!implicitIterSpace.empty()) 7508 fir::emitFatalError( 7509 loc, 7510 "C1032: user defined assignment inside WHERE must be elemental"); 7511 // Non elemental user defined assignment outside of FORALL and WHERE. 7512 // FIXME: The non elemental user defined assignment case with array 7513 // arguments must be take into account potential overlap. So far the front 7514 // end does not add parentheses around the RHS argument in the call as it 7515 // should according to 15.4.3.4.3 p2. 7516 Fortran::lower::createSomeExtendedExpression( 7517 loc, converter, toEvExpr(call), symMap, stmtCtx); 7518 } 7519 return {}; 7520 } 7521 7522 assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() && 7523 "subroutine calls are not allowed inside WHERE and FORALL"); 7524 7525 if (isElementalProcWithArrayArgs(call)) { 7526 ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx, 7527 toEvExpr(call)); 7528 return {}; 7529 } 7530 // Simple subroutine call, with potential alternate return. 7531 auto res = Fortran::lower::createSomeExtendedExpression( 7532 loc, converter, toEvExpr(call), symMap, stmtCtx); 7533 return fir::getBase(res); 7534 } 7535 7536 template <typename A> 7537 fir::ArrayLoadOp genArrayLoad(mlir::Location loc, 7538 Fortran::lower::AbstractConverter &converter, 7539 fir::FirOpBuilder &builder, const A *x, 7540 Fortran::lower::SymMap &symMap, 7541 Fortran::lower::StatementContext &stmtCtx) { 7542 auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x); 7543 mlir::Value addr = fir::getBase(exv); 7544 mlir::Value shapeOp = builder.createShape(loc, exv); 7545 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); 7546 return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp, 7547 /*slice=*/mlir::Value{}, 7548 fir::getTypeParams(exv)); 7549 } 7550 template <> 7551 fir::ArrayLoadOp 7552 genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7553 fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x, 7554 Fortran::lower::SymMap &symMap, 7555 Fortran::lower::StatementContext &stmtCtx) { 7556 if (x->base().IsSymbol()) 7557 return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap, 7558 stmtCtx); 7559 return genArrayLoad(loc, converter, builder, &x->base().GetComponent(), 7560 symMap, stmtCtx); 7561 } 7562 7563 void Fortran::lower::createArrayLoads( 7564 Fortran::lower::AbstractConverter &converter, 7565 Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) { 7566 std::size_t counter = esp.getCounter(); 7567 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 7568 mlir::Location loc = converter.getCurrentLocation(); 7569 Fortran::lower::StatementContext &stmtCtx = esp.stmtContext(); 7570 // Gen the fir.array_load ops. 7571 auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp { 7572 return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx); 7573 }; 7574 if (esp.lhsBases[counter].hasValue()) { 7575 auto &base = esp.lhsBases[counter].getValue(); 7576 auto load = std::visit(genLoad, base); 7577 esp.initialArgs.push_back(load); 7578 esp.resetInnerArgs(); 7579 esp.bindLoad(base, load); 7580 } 7581 for (const auto &base : esp.rhsBases[counter]) 7582 esp.bindLoad(base, std::visit(genLoad, base)); 7583 } 7584 7585 void Fortran::lower::createArrayMergeStores( 7586 Fortran::lower::AbstractConverter &converter, 7587 Fortran::lower::ExplicitIterSpace &esp) { 7588 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 7589 mlir::Location loc = converter.getCurrentLocation(); 7590 builder.setInsertionPointAfter(esp.getOuterLoop()); 7591 // Gen the fir.array_merge_store ops for all LHS arrays. 7592 for (auto i : llvm::enumerate(esp.getOuterLoop().getResults())) 7593 if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) { 7594 fir::ArrayLoadOp load = ldOpt.getValue(); 7595 builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(), 7596 load.getMemref(), load.getSlice(), 7597 load.getTypeparams()); 7598 } 7599 if (esp.loopCleanup.hasValue()) { 7600 esp.loopCleanup.getValue()(builder); 7601 esp.loopCleanup = llvm::None; 7602 } 7603 esp.initialArgs.clear(); 7604 esp.innerArgs.clear(); 7605 esp.outerLoop = llvm::None; 7606 esp.resetBindings(); 7607 esp.incrementCounter(); 7608 } 7609