1 //===-- ConvertExpr.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "flang/Lower/ConvertExpr.h" 14 #include "flang/Common/default-kinds.h" 15 #include "flang/Common/unwrap.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/real.h" 18 #include "flang/Evaluate/traverse.h" 19 #include "flang/Lower/Allocatable.h" 20 #include "flang/Lower/Bridge.h" 21 #include "flang/Lower/BuiltinModules.h" 22 #include "flang/Lower/CallInterface.h" 23 #include "flang/Lower/Coarray.h" 24 #include "flang/Lower/ComponentPath.h" 25 #include "flang/Lower/ConvertType.h" 26 #include "flang/Lower/ConvertVariable.h" 27 #include "flang/Lower/CustomIntrinsicCall.h" 28 #include "flang/Lower/DumpEvaluateExpr.h" 29 #include "flang/Lower/IntrinsicCall.h" 30 #include "flang/Lower/Mangler.h" 31 #include "flang/Lower/Runtime.h" 32 #include "flang/Lower/Support/Utils.h" 33 #include "flang/Optimizer/Builder/Character.h" 34 #include "flang/Optimizer/Builder/Complex.h" 35 #include "flang/Optimizer/Builder/Factory.h" 36 #include "flang/Optimizer/Builder/Runtime/Character.h" 37 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" 38 #include "flang/Optimizer/Builder/Runtime/Ragged.h" 39 #include "flang/Optimizer/Builder/Todo.h" 40 #include "flang/Optimizer/Dialect/FIRAttr.h" 41 #include "flang/Optimizer/Dialect/FIRDialect.h" 42 #include "flang/Optimizer/Dialect/FIROpsSupport.h" 43 #include "flang/Optimizer/Support/FatalError.h" 44 #include "flang/Semantics/expression.h" 45 #include "flang/Semantics/symbol.h" 46 #include "flang/Semantics/tools.h" 47 #include "flang/Semantics/type.h" 48 #include "mlir/Dialect/Func/IR/FuncOps.h" 49 #include "llvm/ADT/TypeSwitch.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <algorithm> 55 56 #define DEBUG_TYPE "flang-lower-expr" 57 58 //===----------------------------------------------------------------------===// 59 // The composition and structure of Fortran::evaluate::Expr is defined in 60 // the various header files in include/flang/Evaluate. You are referred 61 // there for more information on these data structures. Generally speaking, 62 // these data structures are a strongly typed family of abstract data types 63 // that, composed as trees, describe the syntax of Fortran expressions. 64 // 65 // This part of the bridge can traverse these tree structures and lower them 66 // to the correct FIR representation in SSA form. 67 //===----------------------------------------------------------------------===// 68 69 static llvm::cl::opt<bool> generateArrayCoordinate( 70 "gen-array-coor", 71 llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"), 72 llvm::cl::init(false)); 73 74 // The default attempts to balance a modest allocation size with expected user 75 // input to minimize bounds checks and reallocations during dynamic array 76 // construction. Some user codes may have very large array constructors for 77 // which the default can be increased. 78 static llvm::cl::opt<unsigned> clInitialBufferSize( 79 "array-constructor-initial-buffer-size", 80 llvm::cl::desc( 81 "set the incremental array construction buffer size (default=32)"), 82 llvm::cl::init(32u)); 83 84 /// The various semantics of a program constituent (or a part thereof) as it may 85 /// appear in an expression. 86 /// 87 /// Given the following Fortran declarations. 88 /// ```fortran 89 /// REAL :: v1, v2, v3 90 /// REAL, POINTER :: vp1 91 /// REAL :: a1(c), a2(c) 92 /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array 93 /// FUNCTION f2(arg) ! array -> array 94 /// vp1 => v3 ! 1 95 /// v1 = v2 * vp1 ! 2 96 /// a1 = a1 + a2 ! 3 97 /// a1 = f1(a2) ! 4 98 /// a1 = f2(a2) ! 5 99 /// ``` 100 /// 101 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is 102 /// constructed from the DataAddr of `v3`. 103 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed 104 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double 105 /// dereference in the `vp1` case. 106 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs 107 /// is CopyInCopyOut as `a1` is replaced elementally by the additions. 108 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if 109 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/ 110 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut. 111 /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational. 112 /// `a1` on the lhs is again CopyInCopyOut. 113 enum class ConstituentSemantics { 114 // Scalar data reference semantics. 115 // 116 // For these let `v` be the location in memory of a variable with value `x` 117 DataValue, // refers to the value `x` 118 DataAddr, // refers to the address `v` 119 BoxValue, // refers to a box value containing `v` 120 BoxAddr, // refers to the address of a box value containing `v` 121 122 // Array data reference semantics. 123 // 124 // For these let `a` be the location in memory of a sequence of value `[xs]`. 125 // Let `x_i` be the `i`-th value in the sequence `[xs]`. 126 127 // Referentially transparent. Refers to the array's value, `[xs]`. 128 RefTransparent, 129 // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7 130 // note 2). (Passing a copy by reference to simulate pass-by-value.) 131 ByValueArg, 132 // Refers to the merge of array value `[xs]` with another array value `[ys]`. 133 // This merged array value will be written into memory location `a`. 134 CopyInCopyOut, 135 // Similar to CopyInCopyOut but `a` may be a transient projection (rather than 136 // a whole array). 137 ProjectedCopyInCopyOut, 138 // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned 139 // automatically by the framework. Instead, and address for `[xs]` is made 140 // accessible so that custom assignments to `[xs]` can be implemented. 141 CustomCopyInCopyOut, 142 // Referentially opaque. Refers to the address of `x_i`. 143 RefOpaque 144 }; 145 146 /// Convert parser's INTEGER relational operators to MLIR. TODO: using 147 /// unordered, but we may want to cons ordered in certain situation. 148 static mlir::arith::CmpIPredicate 149 translateRelational(Fortran::common::RelationalOperator rop) { 150 switch (rop) { 151 case Fortran::common::RelationalOperator::LT: 152 return mlir::arith::CmpIPredicate::slt; 153 case Fortran::common::RelationalOperator::LE: 154 return mlir::arith::CmpIPredicate::sle; 155 case Fortran::common::RelationalOperator::EQ: 156 return mlir::arith::CmpIPredicate::eq; 157 case Fortran::common::RelationalOperator::NE: 158 return mlir::arith::CmpIPredicate::ne; 159 case Fortran::common::RelationalOperator::GT: 160 return mlir::arith::CmpIPredicate::sgt; 161 case Fortran::common::RelationalOperator::GE: 162 return mlir::arith::CmpIPredicate::sge; 163 } 164 llvm_unreachable("unhandled INTEGER relational operator"); 165 } 166 167 /// Convert parser's REAL relational operators to MLIR. 168 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018 169 /// requirements in the IEEE context (table 17.1 of F2018). This choice is 170 /// also applied in other contexts because it is easier and in line with 171 /// other Fortran compilers. 172 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not 173 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee 174 /// whether the comparison will signal or not in case of quiet NaN argument. 175 static mlir::arith::CmpFPredicate 176 translateFloatRelational(Fortran::common::RelationalOperator rop) { 177 switch (rop) { 178 case Fortran::common::RelationalOperator::LT: 179 return mlir::arith::CmpFPredicate::OLT; 180 case Fortran::common::RelationalOperator::LE: 181 return mlir::arith::CmpFPredicate::OLE; 182 case Fortran::common::RelationalOperator::EQ: 183 return mlir::arith::CmpFPredicate::OEQ; 184 case Fortran::common::RelationalOperator::NE: 185 return mlir::arith::CmpFPredicate::UNE; 186 case Fortran::common::RelationalOperator::GT: 187 return mlir::arith::CmpFPredicate::OGT; 188 case Fortran::common::RelationalOperator::GE: 189 return mlir::arith::CmpFPredicate::OGE; 190 } 191 llvm_unreachable("unhandled REAL relational operator"); 192 } 193 194 static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder, 195 mlir::Location loc, 196 fir::ExtendedValue actual) { 197 if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>()) 198 return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 199 *ptrOrAlloc); 200 // Optional case (not that optional allocatable/pointer cannot be absent 201 // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is 202 // therefore possible to catch them in the `then` case above. 203 return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), 204 fir::getBase(actual)); 205 } 206 207 /// Convert the array_load, `load`, to an extended value. If `path` is not 208 /// empty, then traverse through the components designated. The base value is 209 /// `newBase`. This does not accept an array_load with a slice operand. 210 static fir::ExtendedValue 211 arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc, 212 fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path, 213 mlir::Value newBase, mlir::Value newLen = {}) { 214 // Recover the extended value from the load. 215 if (load.getSlice()) 216 fir::emitFatalError(loc, "array_load with slice is not allowed"); 217 mlir::Type arrTy = load.getType(); 218 if (!path.empty()) { 219 mlir::Type ty = fir::applyPathToType(arrTy, path); 220 if (!ty) 221 fir::emitFatalError(loc, "path does not apply to type"); 222 if (!ty.isa<fir::SequenceType>()) { 223 if (fir::isa_char(ty)) { 224 mlir::Value len = newLen; 225 if (!len) 226 len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 227 load.getMemref()); 228 if (!len) { 229 assert(load.getTypeparams().size() == 1 && 230 "length must be in array_load"); 231 len = load.getTypeparams()[0]; 232 } 233 return fir::CharBoxValue{newBase, len}; 234 } 235 return newBase; 236 } 237 arrTy = ty.cast<fir::SequenceType>(); 238 } 239 240 auto arrayToExtendedValue = 241 [&](const llvm::SmallVector<mlir::Value> &extents, 242 const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue { 243 mlir::Type eleTy = fir::unwrapSequenceType(arrTy); 244 if (fir::isa_char(eleTy)) { 245 mlir::Value len = newLen; 246 if (!len) 247 len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 248 load.getMemref()); 249 if (!len) { 250 assert(load.getTypeparams().size() == 1 && 251 "length must be in array_load"); 252 len = load.getTypeparams()[0]; 253 } 254 return fir::CharArrayBoxValue(newBase, len, extents, origins); 255 } 256 return fir::ArrayBoxValue(newBase, extents, origins); 257 }; 258 // Use the shape op, if there is one. 259 mlir::Value shapeVal = load.getShape(); 260 if (shapeVal) { 261 if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) { 262 auto extents = fir::factory::getExtents(shapeVal); 263 auto origins = fir::factory::getOrigins(shapeVal); 264 return arrayToExtendedValue(extents, origins); 265 } 266 if (!fir::isa_box_type(load.getMemref().getType())) 267 fir::emitFatalError(loc, "shift op is invalid in this context"); 268 } 269 270 // If we're dealing with the array_load op (not a subobject) and the load does 271 // not have any type parameters, then read the extents from the original box. 272 // The origin may be either from the box or a shift operation. Create and 273 // return the array extended value. 274 if (path.empty() && load.getTypeparams().empty()) { 275 auto oldBox = load.getMemref(); 276 fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox); 277 auto extents = fir::factory::getExtents(loc, builder, exv); 278 auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv); 279 if (shapeVal) { 280 // shapeVal is a ShiftOp and load.memref() is a boxed value. 281 newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox, 282 shapeVal, /*slice=*/mlir::Value{}); 283 origins = fir::factory::getOrigins(shapeVal); 284 } 285 return fir::substBase(arrayToExtendedValue(extents, origins), newBase); 286 } 287 TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires " 288 "dereferencing; generating the type parameters is a hard " 289 "requirement for correctness."); 290 } 291 292 /// Place \p exv in memory if it is not already a memory reference. If 293 /// \p forceValueType is provided, the value is first casted to the provided 294 /// type before being stored (this is mainly intended for logicals whose value 295 /// may be `i1` but needed to be stored as Fortran logicals). 296 static fir::ExtendedValue 297 placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc, 298 const fir::ExtendedValue &exv, 299 mlir::Type storageType) { 300 mlir::Value valBase = fir::getBase(exv); 301 if (fir::conformsWithPassByRef(valBase.getType())) 302 return exv; 303 304 assert(!fir::hasDynamicSize(storageType) && 305 "only expect statically sized scalars to be by value"); 306 307 // Since `a` is not itself a valid referent, determine its value and 308 // create a temporary location at the beginning of the function for 309 // referencing. 310 mlir::Value val = builder.createConvert(loc, storageType, valBase); 311 mlir::Value temp = builder.createTemporary( 312 loc, storageType, 313 llvm::ArrayRef<mlir::NamedAttribute>{ 314 Fortran::lower::getAdaptToByRefAttr(builder)}); 315 builder.create<fir::StoreOp>(loc, val, temp); 316 return fir::substBase(exv, temp); 317 } 318 319 // Copy a copy of scalar \p exv in a new temporary. 320 static fir::ExtendedValue 321 createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc, 322 const fir::ExtendedValue &exv) { 323 assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar"); 324 if (exv.getCharBox() != nullptr) 325 return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv); 326 if (fir::isDerivedWithLenParameters(exv)) 327 TODO(loc, "copy derived type with length parameters"); 328 mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType()); 329 fir::ExtendedValue temp = builder.createTemporary(loc, type); 330 fir::factory::genScalarAssignment(builder, loc, temp, exv); 331 return temp; 332 } 333 334 // An expression with non-zero rank is an array expression. 335 template <typename A> 336 static bool isArray(const A &x) { 337 return x.Rank() != 0; 338 } 339 340 /// Is this a variable wrapped in parentheses? 341 template <typename A> 342 static bool isParenthesizedVariable(const A &) { 343 return false; 344 } 345 template <typename T> 346 static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) { 347 using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u); 348 using Parentheses = Fortran::evaluate::Parentheses<T>; 349 if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) { 350 if (const auto *parentheses = std::get_if<Parentheses>(&expr.u)) 351 return Fortran::evaluate::IsVariable(parentheses->left()); 352 return false; 353 } else { 354 return std::visit([&](const auto &x) { return isParenthesizedVariable(x); }, 355 expr.u); 356 } 357 } 358 359 /// Does \p expr only refer to symbols that are mapped to IR values in \p symMap 360 /// ? 361 static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr, 362 Fortran::lower::SymMap &symMap) { 363 for (const auto &sym : Fortran::evaluate::CollectSymbols(expr)) 364 if (!symMap.lookupSymbol(sym)) 365 return false; 366 return true; 367 } 368 369 /// Generate a load of a value from an address. Beware that this will lose 370 /// any dynamic type information for polymorphic entities (note that unlimited 371 /// polymorphic cannot be loaded and must not be provided here). 372 static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder, 373 mlir::Location loc, 374 const fir::ExtendedValue &addr) { 375 return addr.match( 376 [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, 377 [&](const fir::UnboxedValue &v) -> fir::ExtendedValue { 378 if (fir::unwrapRefType(fir::getBase(v).getType()) 379 .isa<fir::RecordType>()) 380 return v; 381 return builder.create<fir::LoadOp>(loc, fir::getBase(v)); 382 }, 383 [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { 384 return genLoad(builder, loc, 385 fir::factory::genMutableBoxRead(builder, loc, box)); 386 }, 387 [&](const fir::BoxValue &box) -> fir::ExtendedValue { 388 if (box.isUnlimitedPolymorphic()) 389 fir::emitFatalError( 390 loc, 391 "lowering attempting to load an unlimited polymorphic entity"); 392 return genLoad(builder, loc, 393 fir::factory::readBoxValue(builder, loc, box)); 394 }, 395 [&](const auto &) -> fir::ExtendedValue { 396 fir::emitFatalError( 397 loc, "attempting to load whole array or procedure address"); 398 }); 399 } 400 401 /// Create an optional dummy argument value from entity \p exv that may be 402 /// absent. This can only be called with numerical or logical scalar \p exv. 403 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned 404 /// value is zero (or false), otherwise it is the value of \p exv. 405 static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder, 406 mlir::Location loc, 407 const fir::ExtendedValue &exv, 408 mlir::Value isPresent) { 409 mlir::Type eleType = fir::getBaseTypeOf(exv); 410 assert(exv.rank() == 0 && fir::isa_trivial(eleType) && 411 "must be a numerical or logical scalar"); 412 return builder 413 .genIfOp(loc, {eleType}, isPresent, 414 /*withElseRegion=*/true) 415 .genThen([&]() { 416 mlir::Value val = fir::getBase(genLoad(builder, loc, exv)); 417 builder.create<fir::ResultOp>(loc, val); 418 }) 419 .genElse([&]() { 420 mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType); 421 builder.create<fir::ResultOp>(loc, zero); 422 }) 423 .getResults()[0]; 424 } 425 426 /// Create an optional dummy argument address from entity \p exv that may be 427 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the 428 /// returned value is a null pointer, otherwise it is the address of \p exv. 429 static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder, 430 mlir::Location loc, 431 const fir::ExtendedValue &exv, 432 mlir::Value isPresent) { 433 // If it is an exv pointer/allocatable, then it cannot be absent 434 // because it is passed to a non-pointer/non-allocatable. 435 if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) 436 return fir::factory::genMutableBoxRead(builder, loc, *box); 437 // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL 438 // address and can be passed directly. 439 return exv; 440 } 441 442 /// Create an optional dummy argument address from entity \p exv that may be 443 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the 444 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p 445 /// exv. 446 static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder, 447 mlir::Location loc, 448 const fir::ExtendedValue &exv, 449 mlir::Value isPresent) { 450 // Non allocatable/pointer optional box -> simply forward 451 if (exv.getBoxOf<fir::BoxValue>()) 452 return exv; 453 454 fir::ExtendedValue newExv = exv; 455 // Optional allocatable/pointer -> Cannot be absent, but need to translate 456 // unallocated/diassociated into absent fir.box. 457 if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) 458 newExv = fir::factory::genMutableBoxRead(builder, loc, *box); 459 460 // createBox will not do create any invalid memory dereferences if exv is 461 // absent. The created fir.box will not be usable, but the SelectOp below 462 // ensures it won't be. 463 mlir::Value box = builder.createBox(loc, newExv); 464 mlir::Type boxType = box.getType(); 465 auto absent = builder.create<fir::AbsentOp>(loc, boxType); 466 auto boxOrAbsent = builder.create<mlir::arith::SelectOp>( 467 loc, boxType, isPresent, box, absent); 468 return fir::BoxValue(boxOrAbsent); 469 } 470 471 /// Is this a call to an elemental procedure with at least one array argument? 472 static bool 473 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) { 474 if (procRef.IsElemental()) 475 for (const std::optional<Fortran::evaluate::ActualArgument> &arg : 476 procRef.arguments()) 477 if (arg && arg->Rank() != 0) 478 return true; 479 return false; 480 } 481 template <typename T> 482 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) { 483 return false; 484 } 485 template <> 486 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) { 487 if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u)) 488 return isElementalProcWithArrayArgs(*procRef); 489 return false; 490 } 491 492 /// Some auxiliary data for processing initialization in ScalarExprLowering 493 /// below. This is currently used for generating dense attributed global 494 /// arrays. 495 struct InitializerData { 496 explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {} 497 llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values 498 mlir::Type rawType; // Type of elements processed for rawVals vector. 499 bool genRawVals; // generate the rawVals vector if set. 500 }; 501 502 /// If \p arg is the address of a function with a denoted host-association tuple 503 /// argument, then return the host-associations tuple value of the current 504 /// procedure. Otherwise, return nullptr. 505 static mlir::Value 506 argumentHostAssocs(Fortran::lower::AbstractConverter &converter, 507 mlir::Value arg) { 508 if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) { 509 auto &builder = converter.getFirOpBuilder(); 510 if (auto funcOp = builder.getNamedFunction(addr.getSymbol())) 511 if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName())) 512 return converter.hostAssocTupleValue(); 513 } 514 return {}; 515 } 516 517 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the 518 /// \p funcAddr argument to a boxproc value, with the host-association as 519 /// required. Call the factory function to finish creating the tuple value. 520 static mlir::Value 521 createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter, 522 mlir::Type argTy, mlir::Value funcAddr, 523 mlir::Value charLen) { 524 auto boxTy = 525 argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>(); 526 mlir::Location loc = converter.getCurrentLocation(); 527 auto &builder = converter.getFirOpBuilder(); 528 auto boxProc = [&]() -> mlir::Value { 529 if (auto host = argumentHostAssocs(converter, funcAddr)) 530 return builder.create<fir::EmboxProcOp>( 531 loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host}); 532 return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr); 533 }(); 534 return fir::factory::createCharacterProcedureTuple(builder, loc, argTy, 535 boxProc, charLen); 536 } 537 538 /// Given an optional fir.box, returns an fir.box that is the original one if 539 /// it is present and it otherwise an unallocated box. 540 /// Absent fir.box are implemented as a null pointer descriptor. Generated 541 /// code may need to unconditionally read a fir.box that can be absent. 542 /// This helper allows creating a fir.box that can be read in all cases 543 /// outside of a fir.if (isPresent) region. However, the usages of the value 544 /// read from such box should still only be done in a fir.if(isPresent). 545 static fir::ExtendedValue 546 absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc, 547 const fir::ExtendedValue &exv, 548 mlir::Value isPresent) { 549 mlir::Value box = fir::getBase(exv); 550 mlir::Type boxType = box.getType(); 551 assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box"); 552 mlir::Value emptyBox = 553 fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None); 554 auto safeToReadBox = 555 builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox); 556 return fir::substBase(exv, safeToReadBox); 557 } 558 559 // Helper to get the ultimate first symbol. This works around the fact that 560 // symbol resolution in the front end doesn't always resolve a symbol to its 561 // ultimate symbol but may leave placeholder indirections for use and host 562 // associations. 563 template <typename A> 564 const Fortran::semantics::Symbol &getFirstSym(const A &obj) { 565 return obj.GetFirstSymbol().GetUltimate(); 566 } 567 568 // Helper to get the ultimate last symbol. 569 template <typename A> 570 const Fortran::semantics::Symbol &getLastSym(const A &obj) { 571 return obj.GetLastSymbol().GetUltimate(); 572 } 573 574 static bool 575 isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) { 576 const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); 577 if (!symbol) 578 return false; 579 const Fortran::semantics::Symbol *module = 580 symbol->GetUltimate().owner().GetSymbol(); 581 return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC); 582 } 583 584 namespace { 585 586 /// Lowering of Fortran::evaluate::Expr<T> expressions 587 class ScalarExprLowering { 588 public: 589 using ExtValue = fir::ExtendedValue; 590 591 explicit ScalarExprLowering(mlir::Location loc, 592 Fortran::lower::AbstractConverter &converter, 593 Fortran::lower::SymMap &symMap, 594 Fortran::lower::StatementContext &stmtCtx, 595 InitializerData *initializer = nullptr) 596 : location{loc}, converter{converter}, 597 builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap}, 598 inInitializer{initializer} {} 599 600 ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) { 601 return gen(expr); 602 } 603 604 /// Lower `expr` to be passed as a fir.box argument. Do not create a temp 605 /// for the expr if it is a variable that can be described as a fir.box. 606 ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) { 607 bool saveUseBoxArg = useBoxArg; 608 useBoxArg = true; 609 ExtValue result = gen(expr); 610 useBoxArg = saveUseBoxArg; 611 return result; 612 } 613 614 ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) { 615 return genval(expr); 616 } 617 618 /// Lower an expression that is a pointer or an allocatable to a 619 /// MutableBoxValue. 620 fir::MutableBoxValue 621 genMutableBoxValue(const Fortran::lower::SomeExpr &expr) { 622 // Pointers and allocatables can only be: 623 // - a simple designator "x" 624 // - a component designator "a%b(i,j)%x" 625 // - a function reference "foo()" 626 // - result of NULL() or NULL(MOLD) intrinsic. 627 // NULL() requires some context to be lowered, so it is not handled 628 // here and must be lowered according to the context where it appears. 629 ExtValue exv = std::visit( 630 [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); 631 const fir::MutableBoxValue *mutableBox = 632 exv.getBoxOf<fir::MutableBoxValue>(); 633 if (!mutableBox) 634 fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue"); 635 return *mutableBox; 636 } 637 638 template <typename T> 639 ExtValue genMutableBoxValueImpl(const T &) { 640 // NULL() case should not be handled here. 641 fir::emitFatalError(getLoc(), "NULL() must be lowered in its context"); 642 } 643 644 /// A `NULL()` in a position where a mutable box is expected has the same 645 /// semantics as an absent optional box value. 646 ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) { 647 mlir::Location loc = getLoc(); 648 auto nullConst = builder.createNullConstant(loc); 649 auto noneTy = mlir::NoneType::get(builder.getContext()); 650 auto polyRefTy = fir::LLVMPointerType::get(noneTy); 651 // MutableBoxValue will dereference the box, so create a bogus temporary for 652 // the `nullptr`. The LLVM optimizer will garbage collect the temp. 653 auto temp = 654 builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{}); 655 auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst); 656 builder.create<fir::StoreOp>(loc, nullPtr, temp); 657 auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy)); 658 return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp), 659 /*lenParameters=*/mlir::ValueRange{}, 660 /*mutableProperties=*/{}); 661 } 662 663 template <typename T> 664 ExtValue 665 genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) { 666 return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef))); 667 } 668 669 template <typename T> 670 ExtValue 671 genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) { 672 return std::visit( 673 Fortran::common::visitors{ 674 [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue { 675 return symMap.lookupSymbol(*sym).toExtendedValue(); 676 }, 677 [&](const Fortran::evaluate::Component &comp) -> ExtValue { 678 return genComponent(comp); 679 }, 680 [&](const auto &) -> ExtValue { 681 fir::emitFatalError(getLoc(), 682 "not an allocatable or pointer designator"); 683 }}, 684 designator.u); 685 } 686 687 template <typename T> 688 ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) { 689 return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); }, 690 expr.u); 691 } 692 693 mlir::Location getLoc() { return location; } 694 695 template <typename A> 696 mlir::Value genunbox(const A &expr) { 697 ExtValue e = genval(expr); 698 if (const fir::UnboxedValue *r = e.getUnboxed()) 699 return *r; 700 fir::emitFatalError(getLoc(), "unboxed expression expected"); 701 } 702 703 /// Generate an integral constant of `value` 704 template <int KIND> 705 mlir::Value genIntegerConstant(mlir::MLIRContext *context, 706 std::int64_t value) { 707 mlir::Type type = 708 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 709 return builder.createIntegerConstant(getLoc(), type, value); 710 } 711 712 /// Generate a logical/boolean constant of `value` 713 mlir::Value genBoolConstant(bool value) { 714 return builder.createBool(getLoc(), value); 715 } 716 717 /// Generate a real constant with a value `value`. 718 template <int KIND> 719 mlir::Value genRealConstant(mlir::MLIRContext *context, 720 const llvm::APFloat &value) { 721 mlir::Type fltTy = Fortran::lower::convertReal(context, KIND); 722 return builder.createRealConstant(getLoc(), fltTy, value); 723 } 724 725 mlir::Type getSomeKindInteger() { return builder.getIndexType(); } 726 727 mlir::func::FuncOp getFunction(llvm::StringRef name, 728 mlir::FunctionType funTy) { 729 if (mlir::func::FuncOp func = builder.getNamedFunction(name)) 730 return func; 731 return builder.createFunction(getLoc(), name, funTy); 732 } 733 734 template <typename OpTy> 735 mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred, 736 const ExtValue &left, const ExtValue &right) { 737 if (const fir::UnboxedValue *lhs = left.getUnboxed()) 738 if (const fir::UnboxedValue *rhs = right.getUnboxed()) 739 return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); 740 fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); 741 } 742 template <typename OpTy, typename A> 743 mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) { 744 ExtValue left = genval(ex.left()); 745 return createCompareOp<OpTy>(pred, left, genval(ex.right())); 746 } 747 748 template <typename OpTy> 749 mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred, 750 const ExtValue &left, const ExtValue &right) { 751 if (const fir::UnboxedValue *lhs = left.getUnboxed()) 752 if (const fir::UnboxedValue *rhs = right.getUnboxed()) 753 return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); 754 fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); 755 } 756 template <typename OpTy, typename A> 757 mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) { 758 ExtValue left = genval(ex.left()); 759 return createFltCmpOp<OpTy>(pred, left, genval(ex.right())); 760 } 761 762 /// Create a call to the runtime to compare two CHARACTER values. 763 /// Precondition: This assumes that the two values have `fir.boxchar` type. 764 mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred, 765 const ExtValue &left, const ExtValue &right) { 766 return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right); 767 } 768 769 template <typename A> 770 mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) { 771 ExtValue left = genval(ex.left()); 772 return createCharCompare(pred, left, genval(ex.right())); 773 } 774 775 /// Returns a reference to a symbol or its box/boxChar descriptor if it has 776 /// one. 777 ExtValue gen(Fortran::semantics::SymbolRef sym) { 778 if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym)) 779 return val.match( 780 [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) { 781 return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr); 782 }, 783 [&val](auto &) { return val.toExtendedValue(); }); 784 LLVM_DEBUG(llvm::dbgs() 785 << "unknown symbol: " << sym << "\nmap: " << symMap << '\n'); 786 fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value"); 787 } 788 789 ExtValue genLoad(const ExtValue &exv) { 790 return ::genLoad(builder, getLoc(), exv); 791 } 792 793 ExtValue genval(Fortran::semantics::SymbolRef sym) { 794 mlir::Location loc = getLoc(); 795 ExtValue var = gen(sym); 796 if (const fir::UnboxedValue *s = var.getUnboxed()) 797 if (fir::isa_ref_type(s->getType())) { 798 // A function with multiple entry points returning different types 799 // tags all result variables with one of the largest types to allow 800 // them to share the same storage. A reference to a result variable 801 // of one of the other types requires conversion to the actual type. 802 fir::UnboxedValue addr = *s; 803 if (Fortran::semantics::IsFunctionResult(sym)) { 804 mlir::Type resultType = converter.genType(*sym); 805 if (addr.getType() != resultType) 806 addr = builder.createConvert(loc, builder.getRefType(resultType), 807 addr); 808 } 809 return genLoad(addr); 810 } 811 return var; 812 } 813 814 ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) { 815 TODO(getLoc(), "BOZ"); 816 } 817 818 /// Return indirection to function designated in ProcedureDesignator. 819 /// The type of the function indirection is not guaranteed to match the one 820 /// of the ProcedureDesignator due to Fortran implicit typing rules. 821 ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) { 822 mlir::Location loc = getLoc(); 823 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 824 proc.GetSpecificIntrinsic()) { 825 mlir::FunctionType signature = 826 Fortran::lower::translateSignature(proc, converter); 827 // Intrinsic lowering is based on the generic name, so retrieve it here in 828 // case it is different from the specific name. The type of the specific 829 // intrinsic is retained in the signature. 830 std::string genericName = 831 converter.getFoldingContext().intrinsics().GetGenericIntrinsicName( 832 intrinsic->name); 833 mlir::SymbolRefAttr symbolRefAttr = 834 Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr( 835 builder, loc, genericName, signature); 836 mlir::Value funcPtr = 837 builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr); 838 return funcPtr; 839 } 840 const Fortran::semantics::Symbol *symbol = proc.GetSymbol(); 841 assert(symbol && "expected symbol in ProcedureDesignator"); 842 mlir::Value funcPtr; 843 mlir::Value funcPtrResultLength; 844 if (Fortran::semantics::IsDummy(*symbol)) { 845 Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol); 846 assert(val && "Dummy procedure not in symbol map"); 847 funcPtr = val.getAddr(); 848 if (fir::isCharacterProcedureTuple(funcPtr.getType(), 849 /*acceptRawFunc=*/false)) 850 std::tie(funcPtr, funcPtrResultLength) = 851 fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr); 852 } else { 853 std::string name = converter.mangleName(*symbol); 854 mlir::func::FuncOp func = 855 Fortran::lower::getOrDeclareFunction(name, proc, converter); 856 // Abstract results require later rewrite of the function type. 857 // This currently does not happen inside GloalOps, causing LLVM 858 // IR verification failure. This helper is only here to catch these 859 // cases and emit a TODOs for now. 860 if (inInitializer && fir::hasAbstractResult(func.getFunctionType())) 861 TODO(converter.genLocation(symbol->name()), 862 "static description of non trivial procedure bindings"); 863 funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(), 864 builder.getSymbolRefAttr(name)); 865 } 866 if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) { 867 // The result length, if available here, must be propagated along the 868 // procedure address so that call sites where the result length is assumed 869 // can retrieve the length. 870 Fortran::evaluate::DynamicType resultType = proc.GetType().value(); 871 if (const auto &lengthExpr = resultType.GetCharLength()) { 872 // The length expression may refer to dummy argument symbols that are 873 // meaningless without any actual arguments. Leave the length as 874 // unknown in that case, it be resolved on the call site 875 // with the actual arguments. 876 if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) { 877 mlir::Value rawLen = fir::getBase(genval(*lengthExpr)); 878 // F2018 7.4.4.2 point 5. 879 funcPtrResultLength = 880 fir::factory::genMaxWithZero(builder, getLoc(), rawLen); 881 } 882 } 883 if (!funcPtrResultLength) 884 funcPtrResultLength = builder.createIntegerConstant( 885 loc, builder.getCharacterLengthType(), -1); 886 return fir::CharBoxValue{funcPtr, funcPtrResultLength}; 887 } 888 return funcPtr; 889 } 890 ExtValue genval(const Fortran::evaluate::NullPointer &) { 891 return builder.createNullConstant(getLoc()); 892 } 893 894 static bool 895 isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) { 896 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) 897 if (const Fortran::semantics::DerivedTypeSpec *derived = 898 declTy->AsDerived()) 899 return Fortran::semantics::CountLenParameters(*derived) > 0; 900 return false; 901 } 902 903 static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) { 904 if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType()) 905 if (const Fortran::semantics::DerivedTypeSpec *derived = 906 declType->AsDerived()) 907 return Fortran::semantics::IsIsoCType(derived); 908 return false; 909 } 910 911 /// Lower structure constructor without a temporary. This can be used in 912 /// fir::GloablOp, and assumes that the structure component is a constant. 913 ExtValue genStructComponentInInitializer( 914 const Fortran::evaluate::StructureConstructor &ctor) { 915 mlir::Location loc = getLoc(); 916 mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); 917 auto recTy = ty.cast<fir::RecordType>(); 918 auto fieldTy = fir::FieldType::get(ty.getContext()); 919 mlir::Value res = builder.create<fir::UndefOp>(loc, recTy); 920 921 for (const auto &[sym, expr] : ctor.values()) { 922 // Parent components need more work because they do not appear in the 923 // fir.rec type. 924 if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp)) 925 TODO(loc, "parent component in structure constructor"); 926 927 llvm::StringRef name = toStringRef(sym->name()); 928 mlir::Type componentTy = recTy.getType(name); 929 // FIXME: type parameters must come from the derived-type-spec 930 auto field = builder.create<fir::FieldIndexOp>( 931 loc, fieldTy, name, ty, 932 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 933 934 if (Fortran::semantics::IsAllocatable(sym)) 935 TODO(loc, "allocatable component in structure constructor"); 936 937 if (Fortran::semantics::IsPointer(sym)) { 938 mlir::Value initialTarget = Fortran::lower::genInitialDataTarget( 939 converter, loc, componentTy, expr.value()); 940 res = builder.create<fir::InsertValueOp>( 941 loc, recTy, res, initialTarget, 942 builder.getArrayAttr(field.getAttributes())); 943 continue; 944 } 945 946 if (isDerivedTypeWithLengthParameters(sym)) 947 TODO(loc, "component with length parameters in structure constructor"); 948 949 if (isBuiltinCPtr(sym)) { 950 // Builtin c_ptr and c_funptr have special handling because initial 951 // value are handled for them as an extension. 952 mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer( 953 converter, loc, expr.value())); 954 if (addr.getType() == componentTy) { 955 // Do nothing. The Ev::Expr was returned as a value that can be 956 // inserted directly to the component without an intermediary. 957 } else { 958 // The Ev::Expr returned is an initializer that is a pointer (e.g., 959 // null) that must be inserted into an intermediate cptr record 960 // value's address field, which ought to be an intptr_t on the target. 961 assert((fir::isa_ref_type(addr.getType()) || 962 addr.getType().isa<mlir::FunctionType>()) && 963 "expect reference type for address field"); 964 assert(fir::isa_derived(componentTy) && 965 "expect C_PTR, C_FUNPTR to be a record"); 966 auto cPtrRecTy = componentTy.cast<fir::RecordType>(); 967 llvm::StringRef addrFieldName = 968 Fortran::lower::builtin::cptrFieldName; 969 mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName); 970 auto addrField = builder.create<fir::FieldIndexOp>( 971 loc, fieldTy, addrFieldName, componentTy, 972 /*typeParams=*/mlir::ValueRange{}); 973 mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr); 974 auto undef = builder.create<fir::UndefOp>(loc, componentTy); 975 addr = builder.create<fir::InsertValueOp>( 976 loc, componentTy, undef, castAddr, 977 builder.getArrayAttr(addrField.getAttributes())); 978 } 979 res = builder.create<fir::InsertValueOp>( 980 loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes())); 981 continue; 982 } 983 984 mlir::Value val = fir::getBase(genval(expr.value())); 985 assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value"); 986 mlir::Value castVal = builder.createConvert(loc, componentTy, val); 987 res = builder.create<fir::InsertValueOp>( 988 loc, recTy, res, castVal, 989 builder.getArrayAttr(field.getAttributes())); 990 } 991 return res; 992 } 993 994 /// A structure constructor is lowered two ways. In an initializer context, 995 /// the entire structure must be constant, so the aggregate value is 996 /// constructed inline. This allows it to be the body of a GlobalOp. 997 /// Otherwise, the structure constructor is in an expression. In that case, a 998 /// temporary object is constructed in the stack frame of the procedure. 999 ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) { 1000 if (inInitializer) 1001 return genStructComponentInInitializer(ctor); 1002 mlir::Location loc = getLoc(); 1003 mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); 1004 auto recTy = ty.cast<fir::RecordType>(); 1005 auto fieldTy = fir::FieldType::get(ty.getContext()); 1006 mlir::Value res = builder.createTemporary(loc, recTy); 1007 1008 for (const auto &value : ctor.values()) { 1009 const Fortran::semantics::Symbol &sym = *value.first; 1010 const Fortran::lower::SomeExpr &expr = value.second.value(); 1011 // Parent components need more work because they do not appear in the 1012 // fir.rec type. 1013 if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) 1014 TODO(loc, "parent component in structure constructor"); 1015 1016 if (isDerivedTypeWithLengthParameters(sym)) 1017 TODO(loc, "component with length parameters in structure constructor"); 1018 1019 llvm::StringRef name = toStringRef(sym.name()); 1020 // FIXME: type parameters must come from the derived-type-spec 1021 mlir::Value field = builder.create<fir::FieldIndexOp>( 1022 loc, fieldTy, name, ty, 1023 /*typeParams=*/mlir::ValueRange{} /*TODO*/); 1024 mlir::Type coorTy = builder.getRefType(recTy.getType(name)); 1025 auto coor = builder.create<fir::CoordinateOp>(loc, coorTy, 1026 fir::getBase(res), field); 1027 ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor); 1028 to.match( 1029 [&](const fir::UnboxedValue &toPtr) { 1030 ExtValue value = genval(expr); 1031 fir::factory::genScalarAssignment(builder, loc, to, value); 1032 }, 1033 [&](const fir::CharBoxValue &) { 1034 ExtValue value = genval(expr); 1035 fir::factory::genScalarAssignment(builder, loc, to, value); 1036 }, 1037 [&](const fir::ArrayBoxValue &) { 1038 Fortran::lower::createSomeArrayAssignment(converter, to, expr, 1039 symMap, stmtCtx); 1040 }, 1041 [&](const fir::CharArrayBoxValue &) { 1042 Fortran::lower::createSomeArrayAssignment(converter, to, expr, 1043 symMap, stmtCtx); 1044 }, 1045 [&](const fir::BoxValue &toBox) { 1046 fir::emitFatalError(loc, "derived type components must not be " 1047 "represented by fir::BoxValue"); 1048 }, 1049 [&](const fir::MutableBoxValue &toBox) { 1050 if (toBox.isPointer()) { 1051 Fortran::lower::associateMutableBox( 1052 converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx); 1053 return; 1054 } 1055 // For allocatable components, a deep copy is needed. 1056 TODO(loc, "allocatable components in derived type assignment"); 1057 }, 1058 [&](const fir::ProcBoxValue &toBox) { 1059 TODO(loc, "procedure pointer component in derived type assignment"); 1060 }); 1061 } 1062 return res; 1063 } 1064 1065 /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol. 1066 ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) { 1067 return converter.impliedDoBinding(toStringRef(var.name)); 1068 } 1069 1070 ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) { 1071 ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base())) 1072 : gen(desc.base().GetComponent()); 1073 mlir::IndexType idxTy = builder.getIndexType(); 1074 mlir::Location loc = getLoc(); 1075 auto castResult = [&](mlir::Value v) { 1076 using ResTy = Fortran::evaluate::DescriptorInquiry::Result; 1077 return builder.createConvert( 1078 loc, converter.genType(ResTy::category, ResTy::kind), v); 1079 }; 1080 switch (desc.field()) { 1081 case Fortran::evaluate::DescriptorInquiry::Field::Len: 1082 return castResult(fir::factory::readCharLen(builder, loc, exv)); 1083 case Fortran::evaluate::DescriptorInquiry::Field::LowerBound: 1084 return castResult(fir::factory::readLowerBound( 1085 builder, loc, exv, desc.dimension(), 1086 builder.createIntegerConstant(loc, idxTy, 1))); 1087 case Fortran::evaluate::DescriptorInquiry::Field::Extent: 1088 return castResult( 1089 fir::factory::readExtent(builder, loc, exv, desc.dimension())); 1090 case Fortran::evaluate::DescriptorInquiry::Field::Rank: 1091 TODO(loc, "rank inquiry on assumed rank"); 1092 case Fortran::evaluate::DescriptorInquiry::Field::Stride: 1093 // So far the front end does not generate this inquiry. 1094 TODO(loc, "stride inquiry"); 1095 } 1096 llvm_unreachable("unknown descriptor inquiry"); 1097 } 1098 1099 ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) { 1100 TODO(getLoc(), "type parameter inquiry"); 1101 } 1102 1103 mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) { 1104 return fir::factory::Complex{builder, getLoc()}.extractComplexPart( 1105 cplx, isImagPart); 1106 } 1107 1108 template <int KIND> 1109 ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) { 1110 return extractComplexPart(genunbox(part.left()), part.isImaginaryPart); 1111 } 1112 1113 template <int KIND> 1114 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1115 Fortran::common::TypeCategory::Integer, KIND>> &op) { 1116 mlir::Value input = genunbox(op.left()); 1117 // Like LLVM, integer negation is the binary op "0 - value" 1118 mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); 1119 return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input); 1120 } 1121 template <int KIND> 1122 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1123 Fortran::common::TypeCategory::Real, KIND>> &op) { 1124 return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left())); 1125 } 1126 template <int KIND> 1127 ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 1128 Fortran::common::TypeCategory::Complex, KIND>> &op) { 1129 return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left())); 1130 } 1131 1132 template <typename OpTy> 1133 mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) { 1134 assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right)); 1135 mlir::Value lhs = fir::getBase(left); 1136 mlir::Value rhs = fir::getBase(right); 1137 assert(lhs.getType() == rhs.getType() && "types must be the same"); 1138 return builder.create<OpTy>(getLoc(), lhs, rhs); 1139 } 1140 1141 template <typename OpTy, typename A> 1142 mlir::Value createBinaryOp(const A &ex) { 1143 ExtValue left = genval(ex.left()); 1144 return createBinaryOp<OpTy>(left, genval(ex.right())); 1145 } 1146 1147 #undef GENBIN 1148 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ 1149 template <int KIND> \ 1150 ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ 1151 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ 1152 return createBinaryOp<GenBinFirOp>(x); \ 1153 } 1154 1155 GENBIN(Add, Integer, mlir::arith::AddIOp) 1156 GENBIN(Add, Real, mlir::arith::AddFOp) 1157 GENBIN(Add, Complex, fir::AddcOp) 1158 GENBIN(Subtract, Integer, mlir::arith::SubIOp) 1159 GENBIN(Subtract, Real, mlir::arith::SubFOp) 1160 GENBIN(Subtract, Complex, fir::SubcOp) 1161 GENBIN(Multiply, Integer, mlir::arith::MulIOp) 1162 GENBIN(Multiply, Real, mlir::arith::MulFOp) 1163 GENBIN(Multiply, Complex, fir::MulcOp) 1164 GENBIN(Divide, Integer, mlir::arith::DivSIOp) 1165 GENBIN(Divide, Real, mlir::arith::DivFOp) 1166 GENBIN(Divide, Complex, fir::DivcOp) 1167 1168 template <Fortran::common::TypeCategory TC, int KIND> 1169 ExtValue genval( 1170 const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) { 1171 mlir::Type ty = converter.genType(TC, KIND); 1172 mlir::Value lhs = genunbox(op.left()); 1173 mlir::Value rhs = genunbox(op.right()); 1174 return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs); 1175 } 1176 1177 template <Fortran::common::TypeCategory TC, int KIND> 1178 ExtValue genval( 1179 const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> 1180 &op) { 1181 mlir::Type ty = converter.genType(TC, KIND); 1182 mlir::Value lhs = genunbox(op.left()); 1183 mlir::Value rhs = genunbox(op.right()); 1184 return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs); 1185 } 1186 1187 template <int KIND> 1188 ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) { 1189 mlir::Value realPartValue = genunbox(op.left()); 1190 return fir::factory::Complex{builder, getLoc()}.createComplex( 1191 KIND, realPartValue, genunbox(op.right())); 1192 } 1193 1194 template <int KIND> 1195 ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) { 1196 ExtValue lhs = genval(op.left()); 1197 ExtValue rhs = genval(op.right()); 1198 const fir::CharBoxValue *lhsChar = lhs.getCharBox(); 1199 const fir::CharBoxValue *rhsChar = rhs.getCharBox(); 1200 if (lhsChar && rhsChar) 1201 return fir::factory::CharacterExprHelper{builder, getLoc()} 1202 .createConcatenate(*lhsChar, *rhsChar); 1203 TODO(getLoc(), "character array concatenate"); 1204 } 1205 1206 /// MIN and MAX operations 1207 template <Fortran::common::TypeCategory TC, int KIND> 1208 ExtValue 1209 genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> 1210 &op) { 1211 mlir::Value lhs = genunbox(op.left()); 1212 mlir::Value rhs = genunbox(op.right()); 1213 switch (op.ordering) { 1214 case Fortran::evaluate::Ordering::Greater: 1215 return Fortran::lower::genMax(builder, getLoc(), 1216 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 1217 case Fortran::evaluate::Ordering::Less: 1218 return Fortran::lower::genMin(builder, getLoc(), 1219 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 1220 case Fortran::evaluate::Ordering::Equal: 1221 llvm_unreachable("Equal is not a valid ordering in this context"); 1222 } 1223 llvm_unreachable("unknown ordering"); 1224 } 1225 1226 // Change the dynamic length information without actually changing the 1227 // underlying character storage. 1228 fir::ExtendedValue 1229 replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar, 1230 mlir::Value newLenValue) { 1231 mlir::Location loc = getLoc(); 1232 const fir::CharBoxValue *charBox = scalarChar.getCharBox(); 1233 if (!charBox) 1234 fir::emitFatalError(loc, "expected scalar character"); 1235 mlir::Value charAddr = charBox->getAddr(); 1236 auto charType = 1237 fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>(); 1238 if (charType.hasConstantLen()) { 1239 // Erase previous constant length from the base type. 1240 fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen(); 1241 mlir::Type newCharTy = fir::CharacterType::get( 1242 builder.getContext(), charType.getFKind(), newLen); 1243 mlir::Type newType = fir::ReferenceType::get(newCharTy); 1244 charAddr = builder.createConvert(loc, newType, charAddr); 1245 return fir::CharBoxValue{charAddr, newLenValue}; 1246 } 1247 return fir::CharBoxValue{charAddr, newLenValue}; 1248 } 1249 1250 template <int KIND> 1251 ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) { 1252 mlir::Value newLenValue = genunbox(x.right()); 1253 fir::ExtendedValue lhs = gen(x.left()); 1254 return replaceScalarCharacterLength(lhs, newLenValue); 1255 } 1256 1257 template <int KIND> 1258 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1259 Fortran::common::TypeCategory::Integer, KIND>> &op) { 1260 return createCompareOp<mlir::arith::CmpIOp>(op, 1261 translateRelational(op.opr)); 1262 } 1263 template <int KIND> 1264 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1265 Fortran::common::TypeCategory::Real, KIND>> &op) { 1266 return createFltCmpOp<mlir::arith::CmpFOp>( 1267 op, translateFloatRelational(op.opr)); 1268 } 1269 template <int KIND> 1270 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1271 Fortran::common::TypeCategory::Complex, KIND>> &op) { 1272 return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr)); 1273 } 1274 template <int KIND> 1275 ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 1276 Fortran::common::TypeCategory::Character, KIND>> &op) { 1277 return createCharCompare(op, translateRelational(op.opr)); 1278 } 1279 1280 ExtValue 1281 genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) { 1282 return std::visit([&](const auto &x) { return genval(x); }, op.u); 1283 } 1284 1285 template <Fortran::common::TypeCategory TC1, int KIND, 1286 Fortran::common::TypeCategory TC2> 1287 ExtValue 1288 genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, 1289 TC2> &convert) { 1290 mlir::Type ty = converter.genType(TC1, KIND); 1291 auto fromExpr = genval(convert.left()); 1292 auto loc = getLoc(); 1293 return fromExpr.match( 1294 [&](const fir::CharBoxValue &boxchar) -> ExtValue { 1295 if constexpr (TC1 == Fortran::common::TypeCategory::Character && 1296 TC2 == TC1) { 1297 // Use char_convert. Each code point is translated from a 1298 // narrower/wider encoding to the target encoding. For example, 'A' 1299 // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol 1300 // for euro (0x20AC : i16) may be translated from a wide character 1301 // to "0xE2 0x82 0xAC" : UTF-8. 1302 mlir::Value bufferSize = boxchar.getLen(); 1303 auto kindMap = builder.getKindMap(); 1304 mlir::Value boxCharAddr = boxchar.getAddr(); 1305 auto fromTy = boxCharAddr.getType(); 1306 if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) { 1307 // boxchar is a value, not a variable. Turn it into a temporary. 1308 // As a value, it ought to have a constant LEN value. 1309 assert(charTy.hasConstantLen() && "must have constant length"); 1310 mlir::Value tmp = builder.createTemporary(loc, charTy); 1311 builder.create<fir::StoreOp>(loc, boxCharAddr, tmp); 1312 boxCharAddr = tmp; 1313 } 1314 auto fromBits = 1315 kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy) 1316 .cast<fir::CharacterType>() 1317 .getFKind()); 1318 auto toBits = kindMap.getCharacterBitsize( 1319 ty.cast<fir::CharacterType>().getFKind()); 1320 if (toBits < fromBits) { 1321 // Scale by relative ratio to give a buffer of the same length. 1322 auto ratio = builder.createIntegerConstant( 1323 loc, bufferSize.getType(), fromBits / toBits); 1324 bufferSize = 1325 builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio); 1326 } 1327 auto dest = builder.create<fir::AllocaOp>( 1328 loc, ty, mlir::ValueRange{bufferSize}); 1329 builder.create<fir::CharConvertOp>(loc, boxCharAddr, 1330 boxchar.getLen(), dest); 1331 return fir::CharBoxValue{dest, boxchar.getLen()}; 1332 } else { 1333 fir::emitFatalError( 1334 loc, "unsupported evaluate::Convert between CHARACTER type " 1335 "category and non-CHARACTER category"); 1336 } 1337 }, 1338 [&](const fir::UnboxedValue &value) -> ExtValue { 1339 return builder.convertWithSemantics(loc, ty, value); 1340 }, 1341 [&](auto &) -> ExtValue { 1342 fir::emitFatalError(loc, "unsupported evaluate::Convert"); 1343 }); 1344 } 1345 1346 template <typename A> 1347 ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) { 1348 ExtValue input = genval(op.left()); 1349 mlir::Value base = fir::getBase(input); 1350 mlir::Value newBase = 1351 builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base); 1352 return fir::substBase(input, newBase); 1353 } 1354 1355 template <int KIND> 1356 ExtValue genval(const Fortran::evaluate::Not<KIND> &op) { 1357 mlir::Value logical = genunbox(op.left()); 1358 mlir::Value one = genBoolConstant(true); 1359 mlir::Value val = 1360 builder.createConvert(getLoc(), builder.getI1Type(), logical); 1361 return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one); 1362 } 1363 1364 template <int KIND> 1365 ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) { 1366 mlir::IntegerType i1Type = builder.getI1Type(); 1367 mlir::Value slhs = genunbox(op.left()); 1368 mlir::Value srhs = genunbox(op.right()); 1369 mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs); 1370 mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs); 1371 switch (op.logicalOperator) { 1372 case Fortran::evaluate::LogicalOperator::And: 1373 return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs); 1374 case Fortran::evaluate::LogicalOperator::Or: 1375 return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs); 1376 case Fortran::evaluate::LogicalOperator::Eqv: 1377 return createCompareOp<mlir::arith::CmpIOp>( 1378 mlir::arith::CmpIPredicate::eq, lhs, rhs); 1379 case Fortran::evaluate::LogicalOperator::Neqv: 1380 return createCompareOp<mlir::arith::CmpIOp>( 1381 mlir::arith::CmpIPredicate::ne, lhs, rhs); 1382 case Fortran::evaluate::LogicalOperator::Not: 1383 // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>. 1384 llvm_unreachable(".NOT. is not a binary operator"); 1385 } 1386 llvm_unreachable("unhandled logical operation"); 1387 } 1388 1389 /// Convert a scalar literal constant to IR. 1390 template <Fortran::common::TypeCategory TC, int KIND> 1391 ExtValue genScalarLit( 1392 const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> 1393 &value) { 1394 if constexpr (TC == Fortran::common::TypeCategory::Integer) { 1395 return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64()); 1396 } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { 1397 return genBoolConstant(value.IsTrue()); 1398 } else if constexpr (TC == Fortran::common::TypeCategory::Real) { 1399 std::string str = value.DumpHexadecimal(); 1400 if constexpr (KIND == 2) { 1401 llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str}; 1402 return genRealConstant<KIND>(builder.getContext(), floatVal); 1403 } else if constexpr (KIND == 3) { 1404 llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str}; 1405 return genRealConstant<KIND>(builder.getContext(), floatVal); 1406 } else if constexpr (KIND == 4) { 1407 llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str}; 1408 return genRealConstant<KIND>(builder.getContext(), floatVal); 1409 } else if constexpr (KIND == 10) { 1410 llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str}; 1411 return genRealConstant<KIND>(builder.getContext(), floatVal); 1412 } else if constexpr (KIND == 16) { 1413 llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str}; 1414 return genRealConstant<KIND>(builder.getContext(), floatVal); 1415 } else { 1416 // convert everything else to double 1417 llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str}; 1418 return genRealConstant<KIND>(builder.getContext(), floatVal); 1419 } 1420 } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { 1421 using TR = 1422 Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>; 1423 Fortran::evaluate::ComplexConstructor<KIND> ctor( 1424 Fortran::evaluate::Expr<TR>{ 1425 Fortran::evaluate::Constant<TR>{value.REAL()}}, 1426 Fortran::evaluate::Expr<TR>{ 1427 Fortran::evaluate::Constant<TR>{value.AIMAG()}}); 1428 return genunbox(ctor); 1429 } else /*constexpr*/ { 1430 llvm_unreachable("unhandled constant"); 1431 } 1432 } 1433 1434 /// Generate a raw literal value and store it in the rawVals vector. 1435 template <Fortran::common::TypeCategory TC, int KIND> 1436 void 1437 genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>> 1438 &value) { 1439 mlir::Attribute val; 1440 assert(inInitializer != nullptr); 1441 if constexpr (TC == Fortran::common::TypeCategory::Integer) { 1442 inInitializer->rawType = converter.genType(TC, KIND); 1443 val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64()); 1444 } else if constexpr (TC == Fortran::common::TypeCategory::Logical) { 1445 inInitializer->rawType = 1446 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 1447 val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue()); 1448 } else if constexpr (TC == Fortran::common::TypeCategory::Real) { 1449 std::string str = value.DumpHexadecimal(); 1450 inInitializer->rawType = converter.genType(TC, KIND); 1451 llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str}; 1452 val = builder.getFloatAttr(inInitializer->rawType, floatVal); 1453 } else if constexpr (TC == Fortran::common::TypeCategory::Complex) { 1454 std::string strReal = value.REAL().DumpHexadecimal(); 1455 std::string strImg = value.AIMAG().DumpHexadecimal(); 1456 inInitializer->rawType = converter.genType(TC, KIND); 1457 llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND), 1458 strReal}; 1459 val = builder.getFloatAttr(inInitializer->rawType, realVal); 1460 inInitializer->rawVals.push_back(val); 1461 llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND), 1462 strImg}; 1463 val = builder.getFloatAttr(inInitializer->rawType, imgVal); 1464 } 1465 inInitializer->rawVals.push_back(val); 1466 } 1467 1468 /// Convert a scalar literal CHARACTER to IR. 1469 template <int KIND> 1470 ExtValue 1471 genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type< 1472 Fortran::common::TypeCategory::Character, KIND>> &value, 1473 int64_t len) { 1474 using ET = typename std::decay_t<decltype(value)>::value_type; 1475 if constexpr (KIND == 1) { 1476 assert(value.size() == static_cast<std::uint64_t>(len)); 1477 // Outline character constant in ro data if it is not in an initializer. 1478 if (!inInitializer) 1479 return fir::factory::createStringLiteral(builder, getLoc(), value); 1480 // When in an initializer context, construct the literal op itself and do 1481 // not construct another constant object in rodata. 1482 fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value); 1483 mlir::Value lenp = builder.createIntegerConstant( 1484 getLoc(), builder.getCharacterLengthType(), len); 1485 return fir::CharBoxValue{stringLit.getResult(), lenp}; 1486 } 1487 fir::CharacterType type = 1488 fir::CharacterType::get(builder.getContext(), KIND, len); 1489 auto consLit = [&]() -> fir::StringLitOp { 1490 mlir::MLIRContext *context = builder.getContext(); 1491 std::int64_t size = static_cast<std::int64_t>(value.size()); 1492 mlir::ShapedType shape = mlir::RankedTensorType::get( 1493 llvm::ArrayRef<std::int64_t>{size}, 1494 mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8)); 1495 auto denseAttr = mlir::DenseElementsAttr::get( 1496 shape, llvm::ArrayRef<ET>{value.data(), value.size()}); 1497 auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist()); 1498 mlir::NamedAttribute dataAttr(denseTag, denseAttr); 1499 auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size()); 1500 mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len)); 1501 llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr}; 1502 return builder.create<fir::StringLitOp>( 1503 getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs); 1504 }; 1505 1506 mlir::Value lenp = builder.createIntegerConstant( 1507 getLoc(), builder.getCharacterLengthType(), len); 1508 // When in an initializer context, construct the literal op itself and do 1509 // not construct another constant object in rodata. 1510 if (inInitializer) 1511 return fir::CharBoxValue{consLit().getResult(), lenp}; 1512 1513 // Otherwise, the string is in a plain old expression so "outline" the value 1514 // by hashconsing it to a constant literal object. 1515 1516 std::string globalName = 1517 fir::factory::uniqueCGIdent("cl", (const char *)value.c_str()); 1518 fir::GlobalOp global = builder.getNamedGlobal(globalName); 1519 if (!global) 1520 global = builder.createGlobalConstant( 1521 getLoc(), type, globalName, 1522 [&](fir::FirOpBuilder &builder) { 1523 fir::StringLitOp str = consLit(); 1524 builder.create<fir::HasValueOp>(getLoc(), str); 1525 }, 1526 builder.createLinkOnceLinkage()); 1527 auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(), 1528 global.getSymbol()); 1529 return fir::CharBoxValue{addr, lenp}; 1530 } 1531 1532 template <Fortran::common::TypeCategory TC, int KIND> 1533 ExtValue genArrayLit( 1534 const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> 1535 &con) { 1536 mlir::Location loc = getLoc(); 1537 mlir::IndexType idxTy = builder.getIndexType(); 1538 Fortran::evaluate::ConstantSubscript size = 1539 Fortran::evaluate::GetSize(con.shape()); 1540 fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); 1541 mlir::Type eleTy; 1542 if constexpr (TC == Fortran::common::TypeCategory::Character) 1543 eleTy = converter.genType(TC, KIND, {con.LEN()}); 1544 else 1545 eleTy = converter.genType(TC, KIND); 1546 auto arrayTy = fir::SequenceType::get(shape, eleTy); 1547 mlir::Value array; 1548 llvm::SmallVector<mlir::Value> lbounds; 1549 llvm::SmallVector<mlir::Value> extents; 1550 if (!inInitializer || !inInitializer->genRawVals) { 1551 array = builder.create<fir::UndefOp>(loc, arrayTy); 1552 for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) { 1553 lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1)); 1554 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 1555 } 1556 } 1557 if (size == 0) { 1558 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1559 mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); 1560 return fir::CharArrayBoxValue{array, len, extents, lbounds}; 1561 } else { 1562 return fir::ArrayBoxValue{array, extents, lbounds}; 1563 } 1564 } 1565 Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); 1566 auto createIdx = [&]() { 1567 llvm::SmallVector<mlir::Attribute> idx; 1568 for (size_t i = 0; i < subscripts.size(); ++i) 1569 idx.push_back( 1570 builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i])); 1571 return idx; 1572 }; 1573 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1574 assert(array && "array must not be nullptr"); 1575 do { 1576 mlir::Value elementVal = 1577 fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN())); 1578 array = builder.create<fir::InsertValueOp>( 1579 loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx())); 1580 } while (con.IncrementSubscripts(subscripts)); 1581 mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN()); 1582 return fir::CharArrayBoxValue{array, len, extents, lbounds}; 1583 } else { 1584 llvm::SmallVector<mlir::Attribute> rangeStartIdx; 1585 uint64_t rangeSize = 0; 1586 do { 1587 if (inInitializer && inInitializer->genRawVals) { 1588 genRawLit<TC, KIND>(con.At(subscripts)); 1589 continue; 1590 } 1591 auto getElementVal = [&]() { 1592 return builder.createConvert( 1593 loc, eleTy, 1594 fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts)))); 1595 }; 1596 Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts; 1597 bool nextIsSame = con.IncrementSubscripts(nextSubscripts) && 1598 con.At(subscripts) == con.At(nextSubscripts); 1599 if (!rangeSize && !nextIsSame) { // single (non-range) value 1600 array = builder.create<fir::InsertValueOp>( 1601 loc, arrayTy, array, getElementVal(), 1602 builder.getArrayAttr(createIdx())); 1603 } else if (!rangeSize) { // start a range 1604 rangeStartIdx = createIdx(); 1605 rangeSize = 1; 1606 } else if (nextIsSame) { // expand a range 1607 ++rangeSize; 1608 } else { // end a range 1609 llvm::SmallVector<int64_t> rangeBounds; 1610 llvm::SmallVector<mlir::Attribute> idx = createIdx(); 1611 for (size_t i = 0; i < idx.size(); ++i) { 1612 rangeBounds.push_back(rangeStartIdx[i] 1613 .cast<mlir::IntegerAttr>() 1614 .getValue() 1615 .getSExtValue()); 1616 rangeBounds.push_back( 1617 idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue()); 1618 } 1619 array = builder.create<fir::InsertOnRangeOp>( 1620 loc, arrayTy, array, getElementVal(), 1621 builder.getIndexVectorAttr(rangeBounds)); 1622 rangeSize = 0; 1623 } 1624 } while (con.IncrementSubscripts(subscripts)); 1625 return fir::ArrayBoxValue{array, extents, lbounds}; 1626 } 1627 } 1628 1629 fir::ExtendedValue genArrayLit( 1630 const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { 1631 mlir::Location loc = getLoc(); 1632 mlir::IndexType idxTy = builder.getIndexType(); 1633 Fortran::evaluate::ConstantSubscript size = 1634 Fortran::evaluate::GetSize(con.shape()); 1635 fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end()); 1636 mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec()); 1637 auto arrayTy = fir::SequenceType::get(shape, eleTy); 1638 mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy); 1639 llvm::SmallVector<mlir::Value> lbounds; 1640 llvm::SmallVector<mlir::Value> extents; 1641 for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) { 1642 lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1)); 1643 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 1644 } 1645 if (size == 0) 1646 return fir::ArrayBoxValue{array, extents, lbounds}; 1647 Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds(); 1648 do { 1649 mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts))); 1650 llvm::SmallVector<mlir::Attribute> idx; 1651 for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds())) 1652 idx.push_back(builder.getIntegerAttr(idxTy, dim - lb)); 1653 array = builder.create<fir::InsertValueOp>( 1654 loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx)); 1655 } while (con.IncrementSubscripts(subscripts)); 1656 return fir::ArrayBoxValue{array, extents, lbounds}; 1657 } 1658 1659 template <Fortran::common::TypeCategory TC, int KIND> 1660 ExtValue 1661 genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> 1662 &con) { 1663 if (con.Rank() > 0) 1664 return genArrayLit(con); 1665 std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>> 1666 opt = con.GetScalarValue(); 1667 assert(opt.has_value() && "constant has no value"); 1668 if constexpr (TC == Fortran::common::TypeCategory::Character) { 1669 return genScalarLit<KIND>(opt.value(), con.LEN()); 1670 } else { 1671 return genScalarLit<TC, KIND>(opt.value()); 1672 } 1673 } 1674 fir::ExtendedValue genval( 1675 const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { 1676 if (con.Rank() > 0) 1677 return genArrayLit(con); 1678 if (auto ctor = con.GetScalarValue()) 1679 return genval(ctor.value()); 1680 fir::emitFatalError(getLoc(), 1681 "constant of derived type has no constructor"); 1682 } 1683 1684 template <typename A> 1685 ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) { 1686 fir::emitFatalError(getLoc(), 1687 "array constructor: lowering should not reach here"); 1688 } 1689 1690 ExtValue gen(const Fortran::evaluate::ComplexPart &x) { 1691 mlir::Location loc = getLoc(); 1692 auto idxTy = builder.getI32Type(); 1693 ExtValue exv = gen(x.complex()); 1694 mlir::Value base = fir::getBase(exv); 1695 fir::factory::Complex helper{builder, loc}; 1696 mlir::Type eleTy = 1697 helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType())); 1698 mlir::Value offset = builder.createIntegerConstant( 1699 loc, idxTy, 1700 x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1); 1701 mlir::Value result = builder.create<fir::CoordinateOp>( 1702 loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset}); 1703 return {result}; 1704 } 1705 ExtValue genval(const Fortran::evaluate::ComplexPart &x) { 1706 return genLoad(gen(x)); 1707 } 1708 1709 /// Reference to a substring. 1710 ExtValue gen(const Fortran::evaluate::Substring &s) { 1711 // Get base string 1712 auto baseString = std::visit( 1713 Fortran::common::visitors{ 1714 [&](const Fortran::evaluate::DataRef &x) { return gen(x); }, 1715 [&](const Fortran::evaluate::StaticDataObject::Pointer &p) 1716 -> ExtValue { 1717 if (std::optional<std::string> str = p->AsString()) 1718 return fir::factory::createStringLiteral(builder, getLoc(), 1719 *str); 1720 // TODO: convert StaticDataObject to Constant<T> and use normal 1721 // constant path. Beware that StaticDataObject data() takes into 1722 // account build machine endianness. 1723 TODO(getLoc(), 1724 "StaticDataObject::Pointer substring with kind > 1"); 1725 }, 1726 }, 1727 s.parent()); 1728 llvm::SmallVector<mlir::Value> bounds; 1729 mlir::Value lower = genunbox(s.lower()); 1730 bounds.push_back(lower); 1731 if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) { 1732 mlir::Value upper = genunbox(*upperBound); 1733 bounds.push_back(upper); 1734 } 1735 fir::factory::CharacterExprHelper charHelper{builder, getLoc()}; 1736 return baseString.match( 1737 [&](const fir::CharBoxValue &x) -> ExtValue { 1738 return charHelper.createSubstring(x, bounds); 1739 }, 1740 [&](const fir::CharArrayBoxValue &) -> ExtValue { 1741 fir::emitFatalError( 1742 getLoc(), 1743 "array substring should be handled in array expression"); 1744 }, 1745 [&](const auto &) -> ExtValue { 1746 fir::emitFatalError(getLoc(), "substring base is not a CharBox"); 1747 }); 1748 } 1749 1750 /// The value of a substring. 1751 ExtValue genval(const Fortran::evaluate::Substring &ss) { 1752 // FIXME: why is the value of a substring being lowered the same as the 1753 // address of a substring? 1754 return gen(ss); 1755 } 1756 1757 ExtValue genval(const Fortran::evaluate::Subscript &subs) { 1758 if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>( 1759 &subs.u)) { 1760 if (s->value().Rank() > 0) 1761 fir::emitFatalError(getLoc(), "vector subscript is not scalar"); 1762 return {genval(s->value())}; 1763 } 1764 fir::emitFatalError(getLoc(), "subscript triple notation is not scalar"); 1765 } 1766 ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) { 1767 return genval(subs); 1768 } 1769 1770 ExtValue gen(const Fortran::evaluate::DataRef &dref) { 1771 return std::visit([&](const auto &x) { return gen(x); }, dref.u); 1772 } 1773 ExtValue genval(const Fortran::evaluate::DataRef &dref) { 1774 return std::visit([&](const auto &x) { return genval(x); }, dref.u); 1775 } 1776 1777 // Helper function to turn the Component structure into a list of nested 1778 // components, ordered from largest/leftmost to smallest/rightmost: 1779 // - where only the smallest/rightmost item may be allocatable or a pointer 1780 // (nested allocatable/pointer components require nested coordinate_of ops) 1781 // - that does not contain any parent components 1782 // (the front end places parent components directly in the object) 1783 // Return the object used as the base coordinate for the component chain. 1784 static Fortran::evaluate::DataRef const * 1785 reverseComponents(const Fortran::evaluate::Component &cmpt, 1786 std::list<const Fortran::evaluate::Component *> &list) { 1787 if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp)) 1788 list.push_front(&cmpt); 1789 return std::visit( 1790 Fortran::common::visitors{ 1791 [&](const Fortran::evaluate::Component &x) { 1792 if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x))) 1793 return &cmpt.base(); 1794 return reverseComponents(x, list); 1795 }, 1796 [&](auto &) { return &cmpt.base(); }, 1797 }, 1798 cmpt.base().u); 1799 } 1800 1801 // Return the coordinate of the component reference 1802 ExtValue genComponent(const Fortran::evaluate::Component &cmpt) { 1803 std::list<const Fortran::evaluate::Component *> list; 1804 const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list); 1805 llvm::SmallVector<mlir::Value> coorArgs; 1806 ExtValue obj = gen(*base); 1807 mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType()); 1808 mlir::Location loc = getLoc(); 1809 auto fldTy = fir::FieldType::get(&converter.getMLIRContext()); 1810 // FIXME: need to thread the LEN type parameters here. 1811 for (const Fortran::evaluate::Component *field : list) { 1812 auto recTy = ty.cast<fir::RecordType>(); 1813 const Fortran::semantics::Symbol &sym = getLastSym(*field); 1814 llvm::StringRef name = toStringRef(sym.name()); 1815 coorArgs.push_back(builder.create<fir::FieldIndexOp>( 1816 loc, fldTy, name, recTy, fir::getTypeParams(obj))); 1817 ty = recTy.getType(name); 1818 } 1819 ty = builder.getRefType(ty); 1820 return fir::factory::componentToExtendedValue( 1821 builder, loc, 1822 builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj), 1823 coorArgs)); 1824 } 1825 1826 ExtValue gen(const Fortran::evaluate::Component &cmpt) { 1827 // Components may be pointer or allocatable. In the gen() path, the mutable 1828 // aspect is lost to simplify handling on the client side. To retain the 1829 // mutable aspect, genMutableBoxValue should be used. 1830 return genComponent(cmpt).match( 1831 [&](const fir::MutableBoxValue &mutableBox) { 1832 return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox); 1833 }, 1834 [](auto &box) -> ExtValue { return box; }); 1835 } 1836 1837 ExtValue genval(const Fortran::evaluate::Component &cmpt) { 1838 return genLoad(gen(cmpt)); 1839 } 1840 1841 // Determine the result type after removing `dims` dimensions from the array 1842 // type `arrTy` 1843 mlir::Type genSubType(mlir::Type arrTy, unsigned dims) { 1844 mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy); 1845 assert(unwrapTy && "must be a pointer or box type"); 1846 auto seqTy = unwrapTy.cast<fir::SequenceType>(); 1847 llvm::ArrayRef<int64_t> shape = seqTy.getShape(); 1848 assert(shape.size() > 0 && "removing columns for sequence sans shape"); 1849 assert(dims <= shape.size() && "removing more columns than exist"); 1850 fir::SequenceType::Shape newBnds; 1851 // follow Fortran semantics and remove columns (from right) 1852 std::size_t e = shape.size() - dims; 1853 for (decltype(e) i = 0; i < e; ++i) 1854 newBnds.push_back(shape[i]); 1855 if (!newBnds.empty()) 1856 return fir::SequenceType::get(newBnds, seqTy.getEleTy()); 1857 return seqTy.getEleTy(); 1858 } 1859 1860 // Generate the code for a Bound value. 1861 ExtValue genval(const Fortran::semantics::Bound &bound) { 1862 if (bound.isExplicit()) { 1863 Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit(); 1864 if (sub.has_value()) 1865 return genval(*sub); 1866 return genIntegerConstant<8>(builder.getContext(), 1); 1867 } 1868 TODO(getLoc(), "non explicit semantics::Bound lowering"); 1869 } 1870 1871 static bool isSlice(const Fortran::evaluate::ArrayRef &aref) { 1872 for (const Fortran::evaluate::Subscript &sub : aref.subscript()) 1873 if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u)) 1874 return true; 1875 return false; 1876 } 1877 1878 /// Lower an ArrayRef to a fir.coordinate_of given its lowered base. 1879 ExtValue genCoordinateOp(const ExtValue &array, 1880 const Fortran::evaluate::ArrayRef &aref) { 1881 mlir::Location loc = getLoc(); 1882 // References to array of rank > 1 with non constant shape that are not 1883 // fir.box must be collapsed into an offset computation in lowering already. 1884 // The same is needed with dynamic length character arrays of all ranks. 1885 mlir::Type baseType = 1886 fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType()); 1887 if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) || 1888 fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType))) 1889 if (!array.getBoxOf<fir::BoxValue>()) 1890 return genOffsetAndCoordinateOp(array, aref); 1891 // Generate a fir.coordinate_of with zero based array indexes. 1892 llvm::SmallVector<mlir::Value> args; 1893 for (const auto &subsc : llvm::enumerate(aref.subscript())) { 1894 ExtValue subVal = genSubscript(subsc.value()); 1895 assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar"); 1896 mlir::Value val = fir::getBase(subVal); 1897 mlir::Type ty = val.getType(); 1898 mlir::Value lb = getLBound(array, subsc.index(), ty); 1899 args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb)); 1900 } 1901 1902 mlir::Value base = fir::getBase(array); 1903 auto seqTy = 1904 fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>(); 1905 assert(args.size() == seqTy.getDimension()); 1906 mlir::Type ty = builder.getRefType(seqTy.getEleTy()); 1907 auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args); 1908 return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr); 1909 } 1910 1911 /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead 1912 /// of array indexes. 1913 /// This generates offset computation from the indexes and length parameters, 1914 /// and use the offset to access the element with a fir.coordinate_of. This 1915 /// must only be used if it is not possible to generate a normal 1916 /// fir.coordinate_of using array indexes (i.e. when the shape information is 1917 /// unavailable in the IR). 1918 ExtValue genOffsetAndCoordinateOp(const ExtValue &array, 1919 const Fortran::evaluate::ArrayRef &aref) { 1920 mlir::Location loc = getLoc(); 1921 mlir::Value addr = fir::getBase(array); 1922 mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType()); 1923 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 1924 mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy)); 1925 mlir::Type refTy = builder.getRefType(eleTy); 1926 mlir::Value base = builder.createConvert(loc, seqTy, addr); 1927 mlir::IndexType idxTy = builder.getIndexType(); 1928 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 1929 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 1930 auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value { 1931 return arr.getLBounds().empty() ? one : arr.getLBounds()[dim]; 1932 }; 1933 auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value { 1934 mlir::Value total = zero; 1935 assert(arr.getExtents().size() == aref.subscript().size()); 1936 delta = builder.createConvert(loc, idxTy, delta); 1937 unsigned dim = 0; 1938 for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) { 1939 ExtValue subVal = genSubscript(sub); 1940 assert(fir::isUnboxedValue(subVal)); 1941 mlir::Value val = 1942 builder.createConvert(loc, idxTy, fir::getBase(subVal)); 1943 mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim)); 1944 mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb); 1945 mlir::Value prod = 1946 builder.create<mlir::arith::MulIOp>(loc, delta, diff); 1947 total = builder.create<mlir::arith::AddIOp>(loc, prod, total); 1948 if (ext) 1949 delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext); 1950 ++dim; 1951 } 1952 mlir::Type origRefTy = refTy; 1953 if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) { 1954 fir::CharacterType chTy = 1955 fir::factory::CharacterExprHelper::getCharacterType(refTy); 1956 if (fir::characterWithDynamicLen(chTy)) { 1957 mlir::MLIRContext *ctx = builder.getContext(); 1958 fir::KindTy kind = 1959 fir::factory::CharacterExprHelper::getCharacterKind(chTy); 1960 fir::CharacterType singleTy = 1961 fir::CharacterType::getSingleton(ctx, kind); 1962 refTy = builder.getRefType(singleTy); 1963 mlir::Type seqRefTy = 1964 builder.getRefType(builder.getVarLenSeqTy(singleTy)); 1965 base = builder.createConvert(loc, seqRefTy, base); 1966 } 1967 } 1968 auto coor = builder.create<fir::CoordinateOp>( 1969 loc, refTy, base, llvm::ArrayRef<mlir::Value>{total}); 1970 // Convert to expected, original type after address arithmetic. 1971 return builder.createConvert(loc, origRefTy, coor); 1972 }; 1973 return array.match( 1974 [&](const fir::ArrayBoxValue &arr) -> ExtValue { 1975 // FIXME: this check can be removed when slicing is implemented 1976 if (isSlice(aref)) 1977 fir::emitFatalError( 1978 getLoc(), 1979 "slice should be handled in array expression context"); 1980 return genFullDim(arr, one); 1981 }, 1982 [&](const fir::CharArrayBoxValue &arr) -> ExtValue { 1983 mlir::Value delta = arr.getLen(); 1984 // If the length is known in the type, fir.coordinate_of will 1985 // already take the length into account. 1986 if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr)) 1987 delta = one; 1988 return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen()); 1989 }, 1990 [&](const fir::BoxValue &arr) -> ExtValue { 1991 // CoordinateOp for BoxValue is not generated here. The dimensions 1992 // must be kept in the fir.coordinate_op so that potential fir.box 1993 // strides can be applied by codegen. 1994 fir::emitFatalError( 1995 loc, "internal: BoxValue in dim-collapsed fir.coordinate_of"); 1996 }, 1997 [&](const auto &) -> ExtValue { 1998 fir::emitFatalError(loc, "internal: array lowering failed"); 1999 }); 2000 } 2001 2002 /// Lower an ArrayRef to a fir.array_coor. 2003 ExtValue genArrayCoorOp(const ExtValue &exv, 2004 const Fortran::evaluate::ArrayRef &aref) { 2005 mlir::Location loc = getLoc(); 2006 mlir::Value addr = fir::getBase(exv); 2007 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); 2008 mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 2009 mlir::Type refTy = builder.getRefType(eleTy); 2010 mlir::IndexType idxTy = builder.getIndexType(); 2011 llvm::SmallVector<mlir::Value> arrayCoorArgs; 2012 // The ArrayRef is expected to be scalar here, arrays are handled in array 2013 // expression lowering. So no vector subscript or triplet is expected here. 2014 for (const auto &sub : aref.subscript()) { 2015 ExtValue subVal = genSubscript(sub); 2016 assert(fir::isUnboxedValue(subVal)); 2017 arrayCoorArgs.push_back( 2018 builder.createConvert(loc, idxTy, fir::getBase(subVal))); 2019 } 2020 mlir::Value shape = builder.createShape(loc, exv); 2021 mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>( 2022 loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs, 2023 fir::getTypeParams(exv)); 2024 return fir::factory::arrayElementToExtendedValue(builder, loc, exv, 2025 elementAddr); 2026 } 2027 2028 /// Return the coordinate of the array reference. 2029 ExtValue gen(const Fortran::evaluate::ArrayRef &aref) { 2030 ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base())) 2031 : gen(aref.base().GetComponent()); 2032 // Check for command-line override to use array_coor op. 2033 if (generateArrayCoordinate) 2034 return genArrayCoorOp(base, aref); 2035 // Otherwise, use coordinate_of op. 2036 return genCoordinateOp(base, aref); 2037 } 2038 2039 /// Return lower bounds of \p box in dimension \p dim. The returned value 2040 /// has type \ty. 2041 mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) { 2042 assert(box.rank() > 0 && "must be an array"); 2043 mlir::Location loc = getLoc(); 2044 mlir::Value one = builder.createIntegerConstant(loc, ty, 1); 2045 mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one); 2046 return builder.createConvert(loc, ty, lb); 2047 } 2048 2049 ExtValue genval(const Fortran::evaluate::ArrayRef &aref) { 2050 return genLoad(gen(aref)); 2051 } 2052 2053 ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) { 2054 return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} 2055 .genAddr(coref); 2056 } 2057 2058 ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) { 2059 return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} 2060 .genValue(coref); 2061 } 2062 2063 template <typename A> 2064 ExtValue gen(const Fortran::evaluate::Designator<A> &des) { 2065 return std::visit([&](const auto &x) { return gen(x); }, des.u); 2066 } 2067 template <typename A> 2068 ExtValue genval(const Fortran::evaluate::Designator<A> &des) { 2069 return std::visit([&](const auto &x) { return genval(x); }, des.u); 2070 } 2071 2072 mlir::Type genType(const Fortran::evaluate::DynamicType &dt) { 2073 if (dt.category() != Fortran::common::TypeCategory::Derived) 2074 return converter.genType(dt.category(), dt.kind()); 2075 return converter.genType(dt.GetDerivedTypeSpec()); 2076 } 2077 2078 /// Lower a function reference 2079 template <typename A> 2080 ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) { 2081 if (!funcRef.GetType().has_value()) 2082 fir::emitFatalError(getLoc(), "a function must have a type"); 2083 mlir::Type resTy = genType(*funcRef.GetType()); 2084 return genProcedureRef(funcRef, {resTy}); 2085 } 2086 2087 /// Lower function call `funcRef` and return a reference to the resultant 2088 /// value. This is required for lowering expressions such as `f1(f2(v))`. 2089 template <typename A> 2090 ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) { 2091 ExtValue retVal = genFunctionRef(funcRef); 2092 mlir::Type resultType = converter.genType(toEvExpr(funcRef)); 2093 return placeScalarValueInMemory(builder, getLoc(), retVal, resultType); 2094 } 2095 2096 /// Helper to lower intrinsic arguments for inquiry intrinsic. 2097 ExtValue 2098 lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) { 2099 if (Fortran::evaluate::IsAllocatableOrPointerObject( 2100 expr, converter.getFoldingContext())) 2101 return genMutableBoxValue(expr); 2102 /// Do not create temps for array sections whose properties only need to be 2103 /// inquired: create a descriptor that will be inquired. 2104 if (Fortran::evaluate::IsVariable(expr) && isArray(expr) && 2105 !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)) 2106 return lowerIntrinsicArgumentAsBox(expr); 2107 return gen(expr); 2108 } 2109 2110 /// Helper to lower intrinsic arguments to a fir::BoxValue. 2111 /// It preserves all the non default lower bounds/non deferred length 2112 /// parameter information. 2113 ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) { 2114 mlir::Location loc = getLoc(); 2115 ExtValue exv = genBoxArg(expr); 2116 mlir::Value box = builder.createBox(loc, exv); 2117 return fir::BoxValue( 2118 box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv), 2119 fir::factory::getNonDeferredLengthParams(exv)); 2120 } 2121 2122 /// Generate a call to a Fortran intrinsic or intrinsic module procedure. 2123 ExtValue genIntrinsicRef( 2124 const Fortran::evaluate::ProcedureRef &procRef, 2125 llvm::Optional<mlir::Type> resultType, 2126 llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = 2127 llvm::None) { 2128 llvm::SmallVector<ExtValue> operands; 2129 2130 std::string name = 2131 intrinsic ? intrinsic->name 2132 : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); 2133 mlir::Location loc = getLoc(); 2134 if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( 2135 procRef, *intrinsic, converter)) { 2136 using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>; 2137 llvm::SmallVector<ExvAndPresence, 4> operands; 2138 auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { 2139 ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr); 2140 mlir::Value isPresent = 2141 genActualIsPresentTest(builder, loc, optionalArg); 2142 operands.emplace_back(optionalArg, isPresent); 2143 }; 2144 auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) { 2145 operands.emplace_back(genval(expr), llvm::None); 2146 }; 2147 Fortran::lower::prepareCustomIntrinsicArgument( 2148 procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg, 2149 converter); 2150 2151 auto getArgument = [&](std::size_t i) -> ExtValue { 2152 if (fir::conformsWithPassByRef( 2153 fir::getBase(operands[i].first).getType())) 2154 return genLoad(operands[i].first); 2155 return operands[i].first; 2156 }; 2157 auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> { 2158 return operands[i].second; 2159 }; 2160 return Fortran::lower::lowerCustomIntrinsic( 2161 builder, loc, name, resultType, isPresent, getArgument, 2162 operands.size(), stmtCtx); 2163 } 2164 2165 const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering = 2166 Fortran::lower::getIntrinsicArgumentLowering(name); 2167 for (const auto &arg : llvm::enumerate(procRef.arguments())) { 2168 auto *expr = 2169 Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); 2170 if (!expr) { 2171 // Absent optional. 2172 operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument()); 2173 continue; 2174 } 2175 if (!argLowering) { 2176 // No argument lowering instruction, lower by value. 2177 operands.emplace_back(genval(*expr)); 2178 continue; 2179 } 2180 // Ad-hoc argument lowering handling. 2181 Fortran::lower::ArgLoweringRule argRules = 2182 Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index()); 2183 if (argRules.handleDynamicOptional && 2184 Fortran::evaluate::MayBePassedAsAbsentOptional( 2185 *expr, converter.getFoldingContext())) { 2186 ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr); 2187 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional); 2188 switch (argRules.lowerAs) { 2189 case Fortran::lower::LowerIntrinsicArgAs::Value: 2190 operands.emplace_back( 2191 genOptionalValue(builder, loc, optional, isPresent)); 2192 continue; 2193 case Fortran::lower::LowerIntrinsicArgAs::Addr: 2194 operands.emplace_back( 2195 genOptionalAddr(builder, loc, optional, isPresent)); 2196 continue; 2197 case Fortran::lower::LowerIntrinsicArgAs::Box: 2198 operands.emplace_back( 2199 genOptionalBox(builder, loc, optional, isPresent)); 2200 continue; 2201 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 2202 operands.emplace_back(optional); 2203 continue; 2204 } 2205 llvm_unreachable("bad switch"); 2206 } 2207 switch (argRules.lowerAs) { 2208 case Fortran::lower::LowerIntrinsicArgAs::Value: 2209 operands.emplace_back(genval(*expr)); 2210 continue; 2211 case Fortran::lower::LowerIntrinsicArgAs::Addr: 2212 operands.emplace_back(gen(*expr)); 2213 continue; 2214 case Fortran::lower::LowerIntrinsicArgAs::Box: 2215 operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr)); 2216 continue; 2217 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 2218 operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr)); 2219 continue; 2220 } 2221 llvm_unreachable("bad switch"); 2222 } 2223 // Let the intrinsic library lower the intrinsic procedure call 2224 return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType, 2225 operands, stmtCtx); 2226 } 2227 2228 /// helper to detect statement functions 2229 static bool 2230 isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) { 2231 if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol()) 2232 if (const auto *details = 2233 symbol->detailsIf<Fortran::semantics::SubprogramDetails>()) 2234 return details->stmtFunction().has_value(); 2235 return false; 2236 } 2237 2238 /// Generate Statement function calls 2239 ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) { 2240 const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); 2241 assert(symbol && "expected symbol in ProcedureRef of statement functions"); 2242 const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>(); 2243 2244 // Statement functions have their own scope, we just need to associate 2245 // the dummy symbols to argument expressions. They are no 2246 // optional/alternate return arguments. Statement functions cannot be 2247 // recursive (directly or indirectly) so it is safe to add dummy symbols to 2248 // the local map here. 2249 symMap.pushScope(); 2250 for (auto [arg, bind] : 2251 llvm::zip(details.dummyArgs(), procRef.arguments())) { 2252 assert(arg && "alternate return in statement function"); 2253 assert(bind && "optional argument in statement function"); 2254 const auto *expr = bind->UnwrapExpr(); 2255 // TODO: assumed type in statement function, that surprisingly seems 2256 // allowed, probably because nobody thought of restricting this usage. 2257 // gfortran/ifort compiles this. 2258 assert(expr && "assumed type used as statement function argument"); 2259 // As per Fortran 2018 C1580, statement function arguments can only be 2260 // scalars, so just pass the box with the address. The only care is to 2261 // to use the dummy character explicit length if any instead of the 2262 // actual argument length (that can be bigger). 2263 if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType()) 2264 if (type->category() == Fortran::semantics::DeclTypeSpec::Character) 2265 if (const Fortran::semantics::MaybeIntExpr &lenExpr = 2266 type->characterTypeSpec().length().GetExplicit()) { 2267 mlir::Value len = fir::getBase(genval(*lenExpr)); 2268 // F2018 7.4.4.2 point 5. 2269 len = fir::factory::genMaxWithZero(builder, getLoc(), len); 2270 symMap.addSymbol(*arg, 2271 replaceScalarCharacterLength(gen(*expr), len)); 2272 continue; 2273 } 2274 symMap.addSymbol(*arg, gen(*expr)); 2275 } 2276 2277 // Explicitly map statement function host associated symbols to their 2278 // parent scope lowered symbol box. 2279 for (const Fortran::semantics::SymbolRef &sym : 2280 Fortran::evaluate::CollectSymbols(*details.stmtFunction())) 2281 if (const auto *details = 2282 sym->detailsIf<Fortran::semantics::HostAssocDetails>()) 2283 if (!symMap.lookupSymbol(*sym)) 2284 symMap.addSymbol(*sym, gen(details->symbol())); 2285 2286 ExtValue result = genval(details.stmtFunction().value()); 2287 LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n'); 2288 symMap.popScope(); 2289 return result; 2290 } 2291 2292 /// Helper to package a Value and its properties into an ExtendedValue. 2293 static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base, 2294 llvm::ArrayRef<mlir::Value> extents, 2295 llvm::ArrayRef<mlir::Value> lengths) { 2296 mlir::Type type = base.getType(); 2297 if (type.isa<fir::BoxType>()) 2298 return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents); 2299 type = fir::unwrapRefType(type); 2300 if (type.isa<fir::BoxType>()) 2301 return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {}); 2302 if (auto seqTy = type.dyn_cast<fir::SequenceType>()) { 2303 if (seqTy.getDimension() != extents.size()) 2304 fir::emitFatalError(loc, "incorrect number of extents for array"); 2305 if (seqTy.getEleTy().isa<fir::CharacterType>()) { 2306 if (lengths.empty()) 2307 fir::emitFatalError(loc, "missing length for character"); 2308 assert(lengths.size() == 1); 2309 return fir::CharArrayBoxValue(base, lengths[0], extents); 2310 } 2311 return fir::ArrayBoxValue(base, extents); 2312 } 2313 if (type.isa<fir::CharacterType>()) { 2314 if (lengths.empty()) 2315 fir::emitFatalError(loc, "missing length for character"); 2316 assert(lengths.size() == 1); 2317 return fir::CharBoxValue(base, lengths[0]); 2318 } 2319 return base; 2320 } 2321 2322 // Find the argument that corresponds to the host associations. 2323 // Verify some assumptions about how the signature was built here. 2324 [[maybe_unused]] static unsigned 2325 findHostAssocTuplePos(mlir::func::FuncOp fn) { 2326 // Scan the argument list from last to first as the host associations are 2327 // appended for now. 2328 for (unsigned i = fn.getNumArguments(); i > 0; --i) 2329 if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) { 2330 // Host assoc tuple must be last argument (for now). 2331 assert(i == fn.getNumArguments() && "tuple must be last"); 2332 return i - 1; 2333 } 2334 llvm_unreachable("anyFuncArgsHaveAttr failed"); 2335 } 2336 2337 /// Create a contiguous temporary array with the same shape, 2338 /// length parameters and type as mold. It is up to the caller to deallocate 2339 /// the temporary. 2340 ExtValue genArrayTempFromMold(const ExtValue &mold, 2341 llvm::StringRef tempName) { 2342 mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType()); 2343 assert(type && "expected descriptor or memory type"); 2344 mlir::Location loc = getLoc(); 2345 llvm::SmallVector<mlir::Value> extents = 2346 fir::factory::getExtents(loc, builder, mold); 2347 llvm::SmallVector<mlir::Value> allocMemTypeParams = 2348 fir::getTypeParams(mold); 2349 mlir::Value charLen; 2350 mlir::Type elementType = fir::unwrapSequenceType(type); 2351 if (auto charType = elementType.dyn_cast<fir::CharacterType>()) { 2352 charLen = allocMemTypeParams.empty() 2353 ? fir::factory::readCharLen(builder, loc, mold) 2354 : allocMemTypeParams[0]; 2355 if (charType.hasDynamicLen() && allocMemTypeParams.empty()) 2356 allocMemTypeParams.push_back(charLen); 2357 } else if (fir::hasDynamicSize(elementType)) { 2358 TODO(loc, "creating temporary for derived type with length parameters"); 2359 } 2360 2361 mlir::Value temp = builder.create<fir::AllocMemOp>( 2362 loc, type, tempName, allocMemTypeParams, extents); 2363 if (fir::unwrapSequenceType(type).isa<fir::CharacterType>()) 2364 return fir::CharArrayBoxValue{temp, charLen, extents}; 2365 return fir::ArrayBoxValue{temp, extents}; 2366 } 2367 2368 /// Copy \p source array into \p dest array. Both arrays must be 2369 /// conforming, but neither array must be contiguous. 2370 void genArrayCopy(ExtValue dest, ExtValue source) { 2371 return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx); 2372 } 2373 2374 /// Lower a non-elemental procedure reference and read allocatable and pointer 2375 /// results into normal values. 2376 ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, 2377 llvm::Optional<mlir::Type> resultType) { 2378 ExtValue res = genRawProcedureRef(procRef, resultType); 2379 // In most contexts, pointers and allocatable do not appear as allocatable 2380 // or pointer variable on the caller side (see 8.5.3 note 1 for 2381 // allocatables). The few context where this can happen must call 2382 // genRawProcedureRef directly. 2383 if (const auto *box = res.getBoxOf<fir::MutableBoxValue>()) 2384 return fir::factory::genMutableBoxRead(builder, getLoc(), *box); 2385 return res; 2386 } 2387 2388 /// Given a call site for which the arguments were already lowered, generate 2389 /// the call and return the result. This function deals with explicit result 2390 /// allocation and lowering if needed. It also deals with passing the host 2391 /// link to internal procedures. 2392 ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller, 2393 mlir::FunctionType callSiteType, 2394 llvm::Optional<mlir::Type> resultType) { 2395 mlir::Location loc = getLoc(); 2396 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 2397 // Handle cases where caller must allocate the result or a fir.box for it. 2398 bool mustPopSymMap = false; 2399 if (caller.mustMapInterfaceSymbols()) { 2400 symMap.pushScope(); 2401 mustPopSymMap = true; 2402 Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap); 2403 } 2404 // If this is an indirect call, retrieve the function address. Also retrieve 2405 // the result length if this is a character function (note that this length 2406 // will be used only if there is no explicit length in the local interface). 2407 mlir::Value funcPointer; 2408 mlir::Value charFuncPointerLength; 2409 if (const Fortran::semantics::Symbol *sym = 2410 caller.getIfIndirectCallSymbol()) { 2411 funcPointer = symMap.lookupSymbol(*sym).getAddr(); 2412 if (!funcPointer) 2413 fir::emitFatalError(loc, "failed to find indirect call symbol address"); 2414 if (fir::isCharacterProcedureTuple(funcPointer.getType(), 2415 /*acceptRawFunc=*/false)) 2416 std::tie(funcPointer, charFuncPointerLength) = 2417 fir::factory::extractCharacterProcedureTuple(builder, loc, 2418 funcPointer); 2419 } 2420 2421 mlir::IndexType idxTy = builder.getIndexType(); 2422 auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value { 2423 return builder.createConvert( 2424 loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx))); 2425 }; 2426 llvm::SmallVector<mlir::Value> resultLengths; 2427 auto allocatedResult = [&]() -> llvm::Optional<ExtValue> { 2428 llvm::SmallVector<mlir::Value> extents; 2429 llvm::SmallVector<mlir::Value> lengths; 2430 if (!caller.callerAllocateResult()) 2431 return {}; 2432 mlir::Type type = caller.getResultStorageType(); 2433 if (type.isa<fir::SequenceType>()) 2434 caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) { 2435 extents.emplace_back(lowerSpecExpr(e)); 2436 }); 2437 caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) { 2438 lengths.emplace_back(lowerSpecExpr(e)); 2439 }); 2440 2441 // Result length parameters should not be provided to box storage 2442 // allocation and save_results, but they are still useful information to 2443 // keep in the ExtendedValue if non-deferred. 2444 if (!type.isa<fir::BoxType>()) { 2445 if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) { 2446 // Calling an assumed length function. This is only possible if this 2447 // is a call to a character dummy procedure. 2448 if (!charFuncPointerLength) 2449 fir::emitFatalError(loc, "failed to retrieve character function " 2450 "length while calling it"); 2451 lengths.push_back(charFuncPointerLength); 2452 } 2453 resultLengths = lengths; 2454 } 2455 2456 if (!extents.empty() || !lengths.empty()) { 2457 auto *bldr = &converter.getFirOpBuilder(); 2458 auto stackSaveFn = fir::factory::getLlvmStackSave(builder); 2459 auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName()); 2460 mlir::Value sp = 2461 bldr->create<fir::CallOp>( 2462 loc, stackSaveFn.getFunctionType().getResults(), 2463 stackSaveSymbol, mlir::ValueRange{}) 2464 .getResult(0); 2465 stmtCtx.attachCleanup([bldr, loc, sp]() { 2466 auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr); 2467 auto stackRestoreSymbol = 2468 bldr->getSymbolRefAttr(stackRestoreFn.getName()); 2469 bldr->create<fir::CallOp>( 2470 loc, stackRestoreFn.getFunctionType().getResults(), 2471 stackRestoreSymbol, mlir::ValueRange{sp}); 2472 }); 2473 } 2474 mlir::Value temp = 2475 builder.createTemporary(loc, type, ".result", extents, resultLengths); 2476 return toExtendedValue(loc, temp, extents, lengths); 2477 }(); 2478 2479 if (mustPopSymMap) 2480 symMap.popScope(); 2481 2482 // Place allocated result or prepare the fir.save_result arguments. 2483 mlir::Value arrayResultShape; 2484 if (allocatedResult) { 2485 if (std::optional<Fortran::lower::CallInterface< 2486 Fortran::lower::CallerInterface>::PassedEntity> 2487 resultArg = caller.getPassedResult()) { 2488 if (resultArg->passBy == PassBy::AddressAndLength) 2489 caller.placeAddressAndLengthInput(*resultArg, 2490 fir::getBase(*allocatedResult), 2491 fir::getLen(*allocatedResult)); 2492 else if (resultArg->passBy == PassBy::BaseAddress) 2493 caller.placeInput(*resultArg, fir::getBase(*allocatedResult)); 2494 else 2495 fir::emitFatalError( 2496 loc, "only expect character scalar result to be passed by ref"); 2497 } else { 2498 assert(caller.mustSaveResult()); 2499 arrayResultShape = allocatedResult->match( 2500 [&](const fir::CharArrayBoxValue &) { 2501 return builder.createShape(loc, *allocatedResult); 2502 }, 2503 [&](const fir::ArrayBoxValue &) { 2504 return builder.createShape(loc, *allocatedResult); 2505 }, 2506 [&](const auto &) { return mlir::Value{}; }); 2507 } 2508 } 2509 2510 // In older Fortran, procedure argument types are inferred. This may lead 2511 // different view of what the function signature is in different locations. 2512 // Casts are inserted as needed below to accommodate this. 2513 2514 // The mlir::func::FuncOp type prevails, unless it has a different number of 2515 // arguments which can happen in legal program if it was passed as a dummy 2516 // procedure argument earlier with no further type information. 2517 mlir::SymbolRefAttr funcSymbolAttr; 2518 bool addHostAssociations = false; 2519 if (!funcPointer) { 2520 mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType(); 2521 mlir::SymbolRefAttr symbolAttr = 2522 builder.getSymbolRefAttr(caller.getMangledName()); 2523 if (callSiteType.getNumResults() == funcOpType.getNumResults() && 2524 callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() && 2525 fir::anyFuncArgsHaveAttr(caller.getFuncOp(), 2526 fir::getHostAssocAttrName())) { 2527 // The number of arguments is off by one, and we're lowering a function 2528 // with host associations. Modify call to include host associations 2529 // argument by appending the value at the end of the operands. 2530 assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) == 2531 converter.hostAssocTupleValue().getType()); 2532 addHostAssociations = true; 2533 } 2534 if (!addHostAssociations && 2535 (callSiteType.getNumResults() != funcOpType.getNumResults() || 2536 callSiteType.getNumInputs() != funcOpType.getNumInputs())) { 2537 // Deal with argument number mismatch by making a function pointer so 2538 // that function type cast can be inserted. Do not emit a warning here 2539 // because this can happen in legal program if the function is not 2540 // defined here and it was first passed as an argument without any more 2541 // information. 2542 funcPointer = 2543 builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr); 2544 } else if (callSiteType.getResults() != funcOpType.getResults()) { 2545 // Implicit interface result type mismatch are not standard Fortran, but 2546 // some compilers are not complaining about it. The front end is not 2547 // protecting lowering from this currently. Support this with a 2548 // discouraging warning. 2549 LLVM_DEBUG(mlir::emitWarning( 2550 loc, "a return type mismatch is not standard compliant and may " 2551 "lead to undefined behavior.")); 2552 // Cast the actual function to the current caller implicit type because 2553 // that is the behavior we would get if we could not see the definition. 2554 funcPointer = 2555 builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr); 2556 } else { 2557 funcSymbolAttr = symbolAttr; 2558 } 2559 } 2560 2561 mlir::FunctionType funcType = 2562 funcPointer ? callSiteType : caller.getFuncOp().getFunctionType(); 2563 llvm::SmallVector<mlir::Value> operands; 2564 // First operand of indirect call is the function pointer. Cast it to 2565 // required function type for the call to handle procedures that have a 2566 // compatible interface in Fortran, but that have different signatures in 2567 // FIR. 2568 if (funcPointer) { 2569 operands.push_back( 2570 funcPointer.getType().isa<fir::BoxProcType>() 2571 ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer) 2572 : builder.createConvert(loc, funcType, funcPointer)); 2573 } 2574 2575 // Deal with potential mismatches in arguments types. Passing an array to a 2576 // scalar argument should for instance be tolerated here. 2577 bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface(); 2578 for (auto [fst, snd] : 2579 llvm::zip(caller.getInputs(), funcType.getInputs())) { 2580 // When passing arguments to a procedure that can be called an implicit 2581 // interface, allow character actual arguments to be passed to dummy 2582 // arguments of any type and vice versa 2583 mlir::Value cast; 2584 auto *context = builder.getContext(); 2585 if (snd.isa<fir::BoxProcType>() && 2586 fst.getType().isa<mlir::FunctionType>()) { 2587 auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None); 2588 auto boxProcTy = builder.getBoxProcType(funcTy); 2589 if (mlir::Value host = argumentHostAssocs(converter, fst)) { 2590 cast = builder.create<fir::EmboxProcOp>( 2591 loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host}); 2592 } else { 2593 cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst); 2594 } 2595 } else { 2596 if (fir::isa_derived(snd)) { 2597 // FIXME: This seems like a serious bug elsewhere in lowering. Paper 2598 // over the problem for now. 2599 TODO(loc, "derived type argument passed by value"); 2600 } 2601 assert(!fir::isa_derived(snd)); 2602 cast = builder.convertWithSemantics(loc, snd, fst, 2603 callingImplicitInterface); 2604 } 2605 operands.push_back(cast); 2606 } 2607 2608 // Add host associations as necessary. 2609 if (addHostAssociations) 2610 operands.push_back(converter.hostAssocTupleValue()); 2611 2612 auto call = builder.create<fir::CallOp>(loc, funcType.getResults(), 2613 funcSymbolAttr, operands); 2614 2615 if (caller.mustSaveResult()) 2616 builder.create<fir::SaveResultOp>( 2617 loc, call.getResult(0), fir::getBase(allocatedResult.getValue()), 2618 arrayResultShape, resultLengths); 2619 2620 if (allocatedResult) { 2621 allocatedResult->match( 2622 [&](const fir::MutableBoxValue &box) { 2623 if (box.isAllocatable()) { 2624 // 9.7.3.2 point 4. Finalize allocatables. 2625 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 2626 stmtCtx.attachCleanup([bldr, loc, box]() { 2627 fir::factory::genFinalization(*bldr, loc, box); 2628 }); 2629 } 2630 }, 2631 [](const auto &) {}); 2632 return *allocatedResult; 2633 } 2634 2635 if (!resultType) 2636 return mlir::Value{}; // subroutine call 2637 // For now, Fortran return values are implemented with a single MLIR 2638 // function return value. 2639 assert(call.getNumResults() == 1 && 2640 "Expected exactly one result in FUNCTION call"); 2641 return call.getResult(0); 2642 } 2643 2644 /// Like genExtAddr, but ensure the address returned is a temporary even if \p 2645 /// expr is variable inside parentheses. 2646 ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) { 2647 // In general, genExtAddr might not create a temp for variable inside 2648 // parentheses to avoid creating array temporary in sub-expressions. It only 2649 // ensures the sub-expression is not re-associated with other parts of the 2650 // expression. In the call semantics, there is a difference between expr and 2651 // variable (see R1524). For expressions, a variable storage must not be 2652 // argument associated since it could be modified inside the call, or the 2653 // variable could also be modified by other means during the call. 2654 if (!isParenthesizedVariable(expr)) 2655 return genExtAddr(expr); 2656 if (expr.Rank() > 0) 2657 return asArray(expr); 2658 mlir::Location loc = getLoc(); 2659 return genExtValue(expr).match( 2660 [&](const fir::CharBoxValue &boxChar) -> ExtValue { 2661 return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom( 2662 boxChar); 2663 }, 2664 [&](const fir::UnboxedValue &v) -> ExtValue { 2665 mlir::Type type = v.getType(); 2666 mlir::Value value = v; 2667 if (fir::isa_ref_type(type)) 2668 value = builder.create<fir::LoadOp>(loc, value); 2669 mlir::Value temp = builder.createTemporary(loc, value.getType()); 2670 builder.create<fir::StoreOp>(loc, value, temp); 2671 return temp; 2672 }, 2673 [&](const fir::BoxValue &x) -> ExtValue { 2674 // Derived type scalar that may be polymorphic. 2675 assert(!x.hasRank() && x.isDerived()); 2676 if (x.isDerivedWithLenParameters()) 2677 fir::emitFatalError( 2678 loc, "making temps for derived type with length parameters"); 2679 // TODO: polymorphic aspects should be kept but for now the temp 2680 // created always has the declared type. 2681 mlir::Value var = 2682 fir::getBase(fir::factory::readBoxValue(builder, loc, x)); 2683 auto value = builder.create<fir::LoadOp>(loc, var); 2684 mlir::Value temp = builder.createTemporary(loc, value.getType()); 2685 builder.create<fir::StoreOp>(loc, value, temp); 2686 return temp; 2687 }, 2688 [&](const auto &) -> ExtValue { 2689 fir::emitFatalError(loc, "expr is not a scalar value"); 2690 }); 2691 } 2692 2693 /// Helper structure to track potential copy-in of non contiguous variable 2694 /// argument into a contiguous temp. It is used to deallocate the temp that 2695 /// may have been created as well as to the copy-out from the temp to the 2696 /// variable after the call. 2697 struct CopyOutPair { 2698 ExtValue var; 2699 ExtValue temp; 2700 // Flag to indicate if the argument may have been modified by the 2701 // callee, in which case it must be copied-out to the variable. 2702 bool argMayBeModifiedByCall; 2703 // Optional boolean value that, if present and false, prevents 2704 // the copy-out and temp deallocation. 2705 llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime; 2706 }; 2707 using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>; 2708 2709 /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories 2710 /// not based on fir.box. 2711 /// This will lose any non contiguous stride information and dynamic type and 2712 /// should only be called if \p exv is known to be contiguous or if its base 2713 /// address will be replaced by a contiguous one. If \p exv is not a 2714 /// fir::BoxValue, this is a no-op. 2715 ExtValue readIfBoxValue(const ExtValue &exv) { 2716 if (const auto *box = exv.getBoxOf<fir::BoxValue>()) 2717 return fir::factory::readBoxValue(builder, getLoc(), *box); 2718 return exv; 2719 } 2720 2721 /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The 2722 /// creation of the temp and copy-in can be made conditional at runtime by 2723 /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case 2724 /// the temp and copy will only be made if the value is true at runtime). 2725 ExtValue genCopyIn(const ExtValue &actualArg, 2726 const Fortran::lower::CallerInterface::PassedEntity &arg, 2727 CopyOutPairs ©OutPairs, 2728 llvm::Optional<mlir::Value> restrictCopyAtRuntime, 2729 bool byValue) { 2730 const bool doCopyOut = !byValue && arg.mayBeModifiedByCall(); 2731 llvm::StringRef tempName = byValue ? ".copy" : ".copyinout"; 2732 if (!restrictCopyAtRuntime) { 2733 ExtValue temp = genArrayTempFromMold(actualArg, tempName); 2734 if (arg.mayBeReadByCall()) 2735 genArrayCopy(temp, actualArg); 2736 copyOutPairs.emplace_back( 2737 CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); 2738 return temp; 2739 } 2740 // Otherwise, need to be careful to only copy-in if allowed at runtime. 2741 mlir::Location loc = getLoc(); 2742 auto addrType = fir::HeapType::get( 2743 fir::unwrapPassByRefType(fir::getBase(actualArg).getType())); 2744 mlir::Value addr = 2745 builder 2746 .genIfOp(loc, {addrType}, *restrictCopyAtRuntime, 2747 /*withElseRegion=*/true) 2748 .genThen([&]() { 2749 auto temp = genArrayTempFromMold(actualArg, tempName); 2750 if (arg.mayBeReadByCall()) 2751 genArrayCopy(temp, actualArg); 2752 builder.create<fir::ResultOp>(loc, fir::getBase(temp)); 2753 }) 2754 .genElse([&]() { 2755 auto nullPtr = builder.createNullConstant(loc, addrType); 2756 builder.create<fir::ResultOp>(loc, nullPtr); 2757 }) 2758 .getResults()[0]; 2759 // Associate the temp address with actualArg lengths and extents. 2760 fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr); 2761 copyOutPairs.emplace_back( 2762 CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); 2763 return temp; 2764 } 2765 2766 /// Generate copy-out if needed and free the temporary for an argument that 2767 /// has been copied-in into a contiguous temp. 2768 void genCopyOut(const CopyOutPair ©OutPair) { 2769 mlir::Location loc = getLoc(); 2770 if (!copyOutPair.restrictCopyAndFreeAtRuntime) { 2771 if (copyOutPair.argMayBeModifiedByCall) 2772 genArrayCopy(copyOutPair.var, copyOutPair.temp); 2773 builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); 2774 return; 2775 } 2776 builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime) 2777 .genThen([&]() { 2778 if (copyOutPair.argMayBeModifiedByCall) 2779 genArrayCopy(copyOutPair.var, copyOutPair.temp); 2780 builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); 2781 }) 2782 .end(); 2783 } 2784 2785 /// Lower a designator to a variable that may be absent at runtime into an 2786 /// ExtendedValue where all the properties (base address, shape and length 2787 /// parameters) can be safely read (set to zero if not present). It also 2788 /// returns a boolean mlir::Value telling if the variable is present at 2789 /// runtime. 2790 /// This is useful to later be able to do conditional copy-in/copy-out 2791 /// or to retrieve the base address without having to deal with the case 2792 /// where the actual may be an absent fir.box. 2793 std::pair<ExtValue, mlir::Value> 2794 prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) { 2795 mlir::Location loc = getLoc(); 2796 if (Fortran::evaluate::IsAllocatableOrPointerObject( 2797 expr, converter.getFoldingContext())) { 2798 // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, 2799 // it is as if the argument was absent. The main care here is to 2800 // not do a copy-in/copy-out because the temp address, even though 2801 // pointing to a null size storage, would not be a nullptr and 2802 // therefore the argument would not be considered absent on the 2803 // callee side. Note: if wholeSymbol is optional, it cannot be 2804 // absent as per 15.5.2.12 point 7. and 8. We rely on this to 2805 // un-conditionally read the allocatable/pointer descriptor here. 2806 fir::MutableBoxValue mutableBox = genMutableBoxValue(expr); 2807 mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest( 2808 builder, loc, mutableBox); 2809 fir::ExtendedValue actualArg = 2810 fir::factory::genMutableBoxRead(builder, loc, mutableBox); 2811 return {actualArg, isPresent}; 2812 } 2813 // Absent descriptor cannot be read. To avoid any issue in 2814 // copy-in/copy-out, and when retrieving the address/length 2815 // create an descriptor pointing to a null address here if the 2816 // fir.box is absent. 2817 ExtValue actualArg = gen(expr); 2818 mlir::Value actualArgBase = fir::getBase(actualArg); 2819 mlir::Value isPresent = builder.create<fir::IsPresentOp>( 2820 loc, builder.getI1Type(), actualArgBase); 2821 if (!actualArgBase.getType().isa<fir::BoxType>()) 2822 return {actualArg, isPresent}; 2823 ExtValue safeToReadBox = 2824 absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent); 2825 return {safeToReadBox, isPresent}; 2826 } 2827 2828 /// Create a temp on the stack for scalar actual arguments that may be absent 2829 /// at runtime, but must be passed via a temp if they are presents. 2830 fir::ExtendedValue 2831 createScalarTempForArgThatMayBeAbsent(ExtValue actualArg, 2832 mlir::Value isPresent) { 2833 mlir::Location loc = getLoc(); 2834 mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType()); 2835 if (fir::isDerivedWithLenParameters(actualArg)) 2836 TODO(loc, "parametrized derived type optional scalar argument copy-in"); 2837 if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) { 2838 mlir::Value len = charBox->getLen(); 2839 mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0); 2840 len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero); 2841 mlir::Value temp = builder.createTemporary( 2842 loc, type, /*name=*/{}, 2843 /*shape=*/{}, mlir::ValueRange{len}, 2844 llvm::ArrayRef<mlir::NamedAttribute>{ 2845 Fortran::lower::getAdaptToByRefAttr(builder)}); 2846 return fir::CharBoxValue{temp, len}; 2847 } 2848 assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) && 2849 "must be simple scalar"); 2850 return builder.createTemporary( 2851 loc, type, 2852 llvm::ArrayRef<mlir::NamedAttribute>{ 2853 Fortran::lower::getAdaptToByRefAttr(builder)}); 2854 } 2855 2856 template <typename A> 2857 bool isCharacterType(const A &exp) { 2858 if (auto type = exp.GetType()) 2859 return type->category() == Fortran::common::TypeCategory::Character; 2860 return false; 2861 } 2862 2863 /// Lower an actual argument that must be passed via an address. 2864 /// This generates of the copy-in/copy-out if the actual is not contiguous, or 2865 /// the creation of the temp if the actual is a variable and \p byValue is 2866 /// true. It handles the cases where the actual may be absent, and all of the 2867 /// copying has to be conditional at runtime. 2868 ExtValue prepareActualToBaseAddressLike( 2869 const Fortran::lower::SomeExpr &expr, 2870 const Fortran::lower::CallerInterface::PassedEntity &arg, 2871 CopyOutPairs ©OutPairs, bool byValue) { 2872 mlir::Location loc = getLoc(); 2873 const bool isArray = expr.Rank() > 0; 2874 const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr); 2875 // It must be possible to modify VALUE arguments on the callee side, even 2876 // if the actual argument is a literal or named constant. Hence, the 2877 // address of static storage must not be passed in that case, and a copy 2878 // must be made even if this is not a variable. 2879 // Note: isArray should be used here, but genBoxArg already creates copies 2880 // for it, so do not duplicate the copy until genBoxArg behavior is changed. 2881 const bool isStaticConstantByValue = 2882 byValue && Fortran::evaluate::IsActuallyConstant(expr) && 2883 (isCharacterType(expr)); 2884 const bool variableNeedsCopy = 2885 actualArgIsVariable && 2886 (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous( 2887 expr, converter.getFoldingContext()))); 2888 const bool needsCopy = isStaticConstantByValue || variableNeedsCopy; 2889 auto argAddr = [&]() -> ExtValue { 2890 if (!actualArgIsVariable && !needsCopy) 2891 // Actual argument is not a variable. Make sure a variable address is 2892 // not passed. 2893 return genTempExtAddr(expr); 2894 ExtValue baseAddr; 2895 if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional( 2896 expr, converter.getFoldingContext())) { 2897 auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr); 2898 const ExtValue &actualArg = actualArgBind; 2899 if (!needsCopy) 2900 return actualArg; 2901 2902 if (isArray) 2903 return genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue); 2904 // Scalars, create a temp, and use it conditionally at runtime if 2905 // the argument is present. 2906 ExtValue temp = 2907 createScalarTempForArgThatMayBeAbsent(actualArg, isPresent); 2908 mlir::Type tempAddrTy = fir::getBase(temp).getType(); 2909 mlir::Value selectAddr = 2910 builder 2911 .genIfOp(loc, {tempAddrTy}, isPresent, 2912 /*withElseRegion=*/true) 2913 .genThen([&]() { 2914 fir::factory::genScalarAssignment(builder, loc, temp, 2915 actualArg); 2916 builder.create<fir::ResultOp>(loc, fir::getBase(temp)); 2917 }) 2918 .genElse([&]() { 2919 mlir::Value absent = 2920 builder.create<fir::AbsentOp>(loc, tempAddrTy); 2921 builder.create<fir::ResultOp>(loc, absent); 2922 }) 2923 .getResults()[0]; 2924 return fir::substBase(temp, selectAddr); 2925 } 2926 // Actual cannot be absent, the actual argument can safely be 2927 // copied-in/copied-out without any care if needed. 2928 if (isArray) { 2929 ExtValue box = genBoxArg(expr); 2930 if (needsCopy) 2931 return genCopyIn(box, arg, copyOutPairs, 2932 /*restrictCopyAtRuntime=*/llvm::None, byValue); 2933 // Contiguous: just use the box we created above! 2934 // This gets "unboxed" below, if needed. 2935 return box; 2936 } 2937 // Actual argument is a non-optional, non-pointer, non-allocatable 2938 // scalar. 2939 ExtValue actualArg = genExtAddr(expr); 2940 if (needsCopy) 2941 return createInMemoryScalarCopy(builder, loc, actualArg); 2942 return actualArg; 2943 }(); 2944 // Scalar and contiguous expressions may be lowered to a fir.box, 2945 // either to account for potential polymorphism, or because lowering 2946 // did not account for some contiguity hints. 2947 // Here, polymorphism does not matter (an entity of the declared type 2948 // is passed, not one of the dynamic type), and the expr is known to 2949 // be simply contiguous, so it is safe to unbox it and pass the 2950 // address without making a copy. 2951 return readIfBoxValue(argAddr); 2952 } 2953 2954 /// Lower a non-elemental procedure reference. 2955 ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, 2956 llvm::Optional<mlir::Type> resultType) { 2957 mlir::Location loc = getLoc(); 2958 if (isElementalProcWithArrayArgs(procRef)) 2959 fir::emitFatalError(loc, "trying to lower elemental procedure with array " 2960 "arguments as normal procedure"); 2961 2962 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 2963 procRef.proc().GetSpecificIntrinsic()) 2964 return genIntrinsicRef(procRef, resultType, *intrinsic); 2965 2966 if (isIntrinsicModuleProcRef(procRef)) 2967 return genIntrinsicRef(procRef, resultType); 2968 2969 if (isStatementFunctionCall(procRef)) 2970 return genStmtFunctionRef(procRef); 2971 2972 Fortran::lower::CallerInterface caller(procRef, converter); 2973 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 2974 2975 llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall; 2976 // List of <var, temp> where temp must be copied into var after the call. 2977 CopyOutPairs copyOutPairs; 2978 2979 mlir::FunctionType callSiteType = caller.genFunctionType(); 2980 2981 // Lower the actual arguments and map the lowered values to the dummy 2982 // arguments. 2983 for (const Fortran::lower::CallInterface< 2984 Fortran::lower::CallerInterface>::PassedEntity &arg : 2985 caller.getPassedArguments()) { 2986 const auto *actual = arg.entity; 2987 mlir::Type argTy = callSiteType.getInput(arg.firArgument); 2988 if (!actual) { 2989 // Optional dummy argument for which there is no actual argument. 2990 caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy)); 2991 continue; 2992 } 2993 const auto *expr = actual->UnwrapExpr(); 2994 if (!expr) 2995 TODO(loc, "assumed type actual argument lowering"); 2996 2997 if (arg.passBy == PassBy::Value) { 2998 ExtValue argVal = genval(*expr); 2999 if (!fir::isUnboxedValue(argVal)) 3000 fir::emitFatalError( 3001 loc, "internal error: passing non trivial value by value"); 3002 caller.placeInput(arg, fir::getBase(argVal)); 3003 continue; 3004 } 3005 3006 if (arg.passBy == PassBy::MutableBox) { 3007 if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( 3008 *expr)) { 3009 // If expr is NULL(), the mutableBox created must be a deallocated 3010 // pointer with the dummy argument characteristics (see table 16.5 3011 // in Fortran 2018 standard). 3012 // No length parameters are set for the created box because any non 3013 // deferred type parameters of the dummy will be evaluated on the 3014 // callee side, and it is illegal to use NULL without a MOLD if any 3015 // dummy length parameters are assumed. 3016 mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy); 3017 assert(boxTy && boxTy.isa<fir::BoxType>() && 3018 "must be a fir.box type"); 3019 mlir::Value boxStorage = builder.createTemporary(loc, boxTy); 3020 mlir::Value nullBox = fir::factory::createUnallocatedBox( 3021 builder, loc, boxTy, /*nonDeferredParams=*/{}); 3022 builder.create<fir::StoreOp>(loc, nullBox, boxStorage); 3023 caller.placeInput(arg, boxStorage); 3024 continue; 3025 } 3026 if (fir::isPointerType(argTy) && 3027 !Fortran::evaluate::IsObjectPointer( 3028 *expr, converter.getFoldingContext())) { 3029 // Passing a non POINTER actual argument to a POINTER dummy argument. 3030 // Create a pointer of the dummy argument type and assign the actual 3031 // argument to it. 3032 mlir::Value irBox = 3033 builder.createTemporary(loc, fir::unwrapRefType(argTy)); 3034 // Non deferred parameters will be evaluated on the callee side. 3035 fir::MutableBoxValue pointer(irBox, 3036 /*nonDeferredParams=*/mlir::ValueRange{}, 3037 /*mutableProperties=*/{}); 3038 Fortran::lower::associateMutableBox(converter, loc, pointer, *expr, 3039 /*lbounds=*/llvm::None, stmtCtx); 3040 caller.placeInput(arg, irBox); 3041 continue; 3042 } 3043 // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE. 3044 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 3045 mlir::Value irBox = 3046 fir::factory::getMutableIRBox(builder, loc, mutableBox); 3047 caller.placeInput(arg, irBox); 3048 if (arg.mayBeModifiedByCall()) 3049 mutableModifiedByCall.emplace_back(std::move(mutableBox)); 3050 continue; 3051 } 3052 if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar || 3053 arg.passBy == PassBy::BaseAddressValueAttribute || 3054 arg.passBy == PassBy::CharBoxValueAttribute) { 3055 const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute || 3056 arg.passBy == PassBy::CharBoxValueAttribute; 3057 ExtValue argAddr = 3058 prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue); 3059 if (arg.passBy == PassBy::BaseAddress || 3060 arg.passBy == PassBy::BaseAddressValueAttribute) { 3061 caller.placeInput(arg, fir::getBase(argAddr)); 3062 } else { 3063 assert(arg.passBy == PassBy::BoxChar || 3064 arg.passBy == PassBy::CharBoxValueAttribute); 3065 auto helper = fir::factory::CharacterExprHelper{builder, loc}; 3066 auto boxChar = argAddr.match( 3067 [&](const fir::CharBoxValue &x) { return helper.createEmbox(x); }, 3068 [&](const fir::CharArrayBoxValue &x) { 3069 return helper.createEmbox(x); 3070 }, 3071 [&](const auto &x) -> mlir::Value { 3072 // Fortran allows an actual argument of a completely different 3073 // type to be passed to a procedure expecting a CHARACTER in the 3074 // dummy argument position. When this happens, the data pointer 3075 // argument is simply assumed to point to CHARACTER data and the 3076 // LEN argument used is garbage. Simulate this behavior by 3077 // free-casting the base address to be a !fir.char reference and 3078 // setting the LEN argument to undefined. What could go wrong? 3079 auto dataPtr = fir::getBase(x); 3080 assert(!dataPtr.getType().template isa<fir::BoxType>()); 3081 return builder.convertWithSemantics( 3082 loc, argTy, dataPtr, 3083 /*allowCharacterConversion=*/true); 3084 }); 3085 caller.placeInput(arg, boxChar); 3086 } 3087 } else if (arg.passBy == PassBy::Box) { 3088 // Before lowering to an address, handle the allocatable/pointer actual 3089 // argument to optional fir.box dummy. It is legal to pass 3090 // unallocated/disassociated entity to an optional. In this case, an 3091 // absent fir.box must be created instead of a fir.box with a null value 3092 // (Fortran 2018 15.5.2.12 point 1). 3093 if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject( 3094 *expr, converter.getFoldingContext())) { 3095 // Note that passing an absent allocatable to a non-allocatable 3096 // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So 3097 // nothing has to be done to generate an absent argument in this case, 3098 // and it is OK to unconditionally read the mutable box here. 3099 fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); 3100 mlir::Value isAllocated = 3101 fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, 3102 mutableBox); 3103 auto absent = builder.create<fir::AbsentOp>(loc, argTy); 3104 /// For now, assume it is not OK to pass the allocatable/pointer 3105 /// descriptor to a non pointer/allocatable dummy. That is a strict 3106 /// interpretation of 18.3.6 point 4 that stipulates the descriptor 3107 /// has the dummy attributes in BIND(C) contexts. 3108 mlir::Value box = builder.createBox( 3109 loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox)); 3110 // Need the box types to be exactly similar for the selectOp. 3111 mlir::Value convertedBox = builder.createConvert(loc, argTy, box); 3112 caller.placeInput(arg, builder.create<mlir::arith::SelectOp>( 3113 loc, isAllocated, convertedBox, absent)); 3114 } else { 3115 // Make sure a variable address is only passed if the expression is 3116 // actually a variable. 3117 mlir::Value box = 3118 Fortran::evaluate::IsVariable(*expr) 3119 ? builder.createBox(loc, genBoxArg(*expr)) 3120 : builder.createBox(getLoc(), genTempExtAddr(*expr)); 3121 caller.placeInput(arg, box); 3122 } 3123 } else if (arg.passBy == PassBy::AddressAndLength) { 3124 ExtValue argRef = genExtAddr(*expr); 3125 caller.placeAddressAndLengthInput(arg, fir::getBase(argRef), 3126 fir::getLen(argRef)); 3127 } else if (arg.passBy == PassBy::CharProcTuple) { 3128 ExtValue argRef = genExtAddr(*expr); 3129 mlir::Value tuple = createBoxProcCharTuple( 3130 converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); 3131 caller.placeInput(arg, tuple); 3132 } else { 3133 TODO(loc, "pass by value in non elemental function call"); 3134 } 3135 } 3136 3137 ExtValue result = genCallOpAndResult(caller, callSiteType, resultType); 3138 3139 // Sync pointers and allocatables that may have been modified during the 3140 // call. 3141 for (const auto &mutableBox : mutableModifiedByCall) 3142 fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox); 3143 // Handle case where result was passed as argument 3144 3145 // Copy-out temps that were created for non contiguous variable arguments if 3146 // needed. 3147 for (const auto ©OutPair : copyOutPairs) 3148 genCopyOut(copyOutPair); 3149 3150 return result; 3151 } 3152 3153 template <typename A> 3154 ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) { 3155 ExtValue result = genFunctionRef(funcRef); 3156 if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType())) 3157 return genLoad(result); 3158 return result; 3159 } 3160 3161 ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) { 3162 llvm::Optional<mlir::Type> resTy; 3163 if (procRef.hasAlternateReturns()) 3164 resTy = builder.getIndexType(); 3165 return genProcedureRef(procRef, resTy); 3166 } 3167 3168 template <typename A> 3169 bool isScalar(const A &x) { 3170 return x.Rank() == 0; 3171 } 3172 3173 /// Helper to detect Transformational function reference. 3174 template <typename T> 3175 bool isTransformationalRef(const T &) { 3176 return false; 3177 } 3178 template <typename T> 3179 bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) { 3180 return !funcRef.IsElemental() && funcRef.Rank(); 3181 } 3182 template <typename T> 3183 bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) { 3184 return std::visit([&](const auto &e) { return isTransformationalRef(e); }, 3185 expr.u); 3186 } 3187 3188 template <typename A> 3189 ExtValue asArray(const A &x) { 3190 return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x), 3191 symMap, stmtCtx); 3192 } 3193 3194 /// Lower an array value as an argument. This argument can be passed as a box 3195 /// value, so it may be possible to avoid making a temporary. 3196 template <typename A> 3197 ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) { 3198 return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u); 3199 } 3200 template <typename A, typename B> 3201 ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) { 3202 return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u); 3203 } 3204 template <typename A, typename B> 3205 ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) { 3206 // Designator is being passed as an argument to a procedure. Lower the 3207 // expression to a boxed value. 3208 auto someExpr = toEvExpr(x); 3209 return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap, 3210 stmtCtx); 3211 } 3212 template <typename A, typename B> 3213 ExtValue asArrayArg(const A &, const B &x) { 3214 // If the expression to pass as an argument is not a designator, then create 3215 // an array temp. 3216 return asArray(x); 3217 } 3218 3219 template <typename A> 3220 ExtValue gen(const Fortran::evaluate::Expr<A> &x) { 3221 // Whole array symbols or components, and results of transformational 3222 // functions already have a storage and the scalar expression lowering path 3223 // is used to not create a new temporary storage. 3224 if (isScalar(x) || 3225 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) || 3226 isTransformationalRef(x)) 3227 return std::visit([&](const auto &e) { return genref(e); }, x.u); 3228 if (useBoxArg) 3229 return asArrayArg(x); 3230 return asArray(x); 3231 } 3232 template <typename A> 3233 ExtValue genval(const Fortran::evaluate::Expr<A> &x) { 3234 if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) || 3235 inInitializer) 3236 return std::visit([&](const auto &e) { return genval(e); }, x.u); 3237 return asArray(x); 3238 } 3239 3240 template <int KIND> 3241 ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type< 3242 Fortran::common::TypeCategory::Logical, KIND>> &exp) { 3243 return std::visit([&](const auto &e) { return genval(e); }, exp.u); 3244 } 3245 3246 using RefSet = 3247 std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring, 3248 Fortran::evaluate::DataRef, Fortran::evaluate::Component, 3249 Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef, 3250 Fortran::semantics::SymbolRef>; 3251 template <typename A> 3252 static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>; 3253 3254 template <typename A, typename = std::enable_if_t<inRefSet<A>>> 3255 ExtValue genref(const A &a) { 3256 return gen(a); 3257 } 3258 template <typename A> 3259 ExtValue genref(const A &a) { 3260 if (inInitializer) { 3261 // Initialization expressions can never allocate memory. 3262 return genval(a); 3263 } 3264 mlir::Type storageType = converter.genType(toEvExpr(a)); 3265 return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType); 3266 } 3267 3268 template <typename A, template <typename> typename T, 3269 typename B = std::decay_t<T<A>>, 3270 std::enable_if_t< 3271 std::is_same_v<B, Fortran::evaluate::Expr<A>> || 3272 std::is_same_v<B, Fortran::evaluate::Designator<A>> || 3273 std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>, 3274 bool> = true> 3275 ExtValue genref(const T<A> &x) { 3276 return gen(x); 3277 } 3278 3279 private: 3280 mlir::Location location; 3281 Fortran::lower::AbstractConverter &converter; 3282 fir::FirOpBuilder &builder; 3283 Fortran::lower::StatementContext &stmtCtx; 3284 Fortran::lower::SymMap &symMap; 3285 InitializerData *inInitializer = nullptr; 3286 bool useBoxArg = false; // expression lowered as argument 3287 }; 3288 } // namespace 3289 3290 // Helper for changing the semantics in a given context. Preserves the current 3291 // semantics which is resumed when the "push" goes out of scope. 3292 #define PushSemantics(PushVal) \ 3293 [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ = \ 3294 Fortran::common::ScopedSet(semant, PushVal); 3295 3296 static bool isAdjustedArrayElementType(mlir::Type t) { 3297 return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>(); 3298 } 3299 static bool elementTypeWasAdjusted(mlir::Type t) { 3300 if (auto ty = t.dyn_cast<fir::ReferenceType>()) 3301 return isAdjustedArrayElementType(ty.getEleTy()); 3302 return false; 3303 } 3304 static mlir::Type adjustedArrayElementType(mlir::Type t) { 3305 return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t; 3306 } 3307 3308 /// Helper to generate calls to scalar user defined assignment procedures. 3309 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder, 3310 mlir::Location loc, 3311 mlir::func::FuncOp func, 3312 const fir::ExtendedValue &lhs, 3313 const fir::ExtendedValue &rhs) { 3314 auto prepareUserDefinedArg = 3315 [](fir::FirOpBuilder &builder, mlir::Location loc, 3316 const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value { 3317 if (argType.isa<fir::BoxCharType>()) { 3318 const fir::CharBoxValue *charBox = value.getCharBox(); 3319 assert(charBox && "argument type mismatch in elemental user assignment"); 3320 return fir::factory::CharacterExprHelper{builder, loc}.createEmbox( 3321 *charBox); 3322 } 3323 if (argType.isa<fir::BoxType>()) { 3324 mlir::Value box = builder.createBox(loc, value); 3325 return builder.createConvert(loc, argType, box); 3326 } 3327 // Simple pass by address. 3328 mlir::Type argBaseType = fir::unwrapRefType(argType); 3329 assert(!fir::hasDynamicSize(argBaseType)); 3330 mlir::Value from = fir::getBase(value); 3331 if (argBaseType != fir::unwrapRefType(from.getType())) { 3332 // With logicals, it is possible that from is i1 here. 3333 if (fir::isa_ref_type(from.getType())) 3334 from = builder.create<fir::LoadOp>(loc, from); 3335 from = builder.createConvert(loc, argBaseType, from); 3336 } 3337 if (!fir::isa_ref_type(from.getType())) { 3338 mlir::Value temp = builder.createTemporary(loc, argBaseType); 3339 builder.create<fir::StoreOp>(loc, from, temp); 3340 from = temp; 3341 } 3342 return builder.createConvert(loc, argType, from); 3343 }; 3344 assert(func.getNumArguments() == 2); 3345 mlir::Type lhsType = func.getFunctionType().getInput(0); 3346 mlir::Type rhsType = func.getFunctionType().getInput(1); 3347 mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType); 3348 mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType); 3349 builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg}); 3350 } 3351 3352 /// Convert the result of a fir.array_modify to an ExtendedValue given the 3353 /// related fir.array_load. 3354 static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder, 3355 mlir::Location loc, 3356 fir::ArrayLoadOp load, 3357 mlir::Value elementAddr) { 3358 mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType()); 3359 if (fir::isa_char(eleTy)) { 3360 auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength( 3361 load.getMemref()); 3362 if (!len) { 3363 assert(load.getTypeparams().size() == 1 && 3364 "length must be in array_load"); 3365 len = load.getTypeparams()[0]; 3366 } 3367 return fir::CharBoxValue{elementAddr, len}; 3368 } 3369 return elementAddr; 3370 } 3371 3372 //===----------------------------------------------------------------------===// 3373 // 3374 // Lowering of scalar expressions in an explicit iteration space context. 3375 // 3376 //===----------------------------------------------------------------------===// 3377 3378 // Shared code for creating a copy of a derived type element. This function is 3379 // called from a continuation. 3380 inline static fir::ArrayAmendOp 3381 createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad, 3382 fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc, 3383 const fir::ExtendedValue &elementExv, mlir::Type eleTy, 3384 mlir::Value innerArg) { 3385 if (destLoad.getTypeparams().empty()) { 3386 fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv); 3387 } else { 3388 auto boxTy = fir::BoxType::get(eleTy); 3389 auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(), 3390 mlir::Value{}, mlir::Value{}, 3391 destLoad.getTypeparams()); 3392 auto fromBox = builder.create<fir::EmboxOp>( 3393 loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{}, 3394 destLoad.getTypeparams()); 3395 fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox), 3396 fir::BoxValue(fromBox)); 3397 } 3398 return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg, 3399 destAcc); 3400 } 3401 3402 inline static fir::ArrayAmendOp 3403 createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder, 3404 fir::ArrayAccessOp dstOp, mlir::Value &dstLen, 3405 const fir::ExtendedValue &srcExv, mlir::Value innerArg, 3406 llvm::ArrayRef<mlir::Value> bounds) { 3407 fir::CharBoxValue dstChar(dstOp, dstLen); 3408 fir::factory::CharacterExprHelper helper{builder, loc}; 3409 if (!bounds.empty()) { 3410 dstChar = helper.createSubstring(dstChar, bounds); 3411 fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv), 3412 dstChar.getAddr(), dstChar.getLen(), builder, 3413 loc); 3414 // Update the LEN to the substring's LEN. 3415 dstLen = dstChar.getLen(); 3416 } 3417 // For a CHARACTER, we generate the element assignment loops inline. 3418 helper.createAssign(fir::ExtendedValue{dstChar}, srcExv); 3419 // Mark this array element as amended. 3420 mlir::Type ty = innerArg.getType(); 3421 auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp); 3422 return amend; 3423 } 3424 3425 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting 3426 /// the actual extents and lengths. This is only to allow their propagation as 3427 /// ExtendedValue without triggering verifier failures when propagating 3428 /// character/arrays as unboxed values. Only the base of the resulting 3429 /// ExtendedValue should be used, it is undefined to use the length or extents 3430 /// of the extended value returned, 3431 inline static fir::ExtendedValue 3432 convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder, 3433 mlir::Value val, mlir::Value len) { 3434 mlir::Type ty = fir::unwrapRefType(val.getType()); 3435 mlir::IndexType idxTy = builder.getIndexType(); 3436 auto seqTy = ty.cast<fir::SequenceType>(); 3437 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 3438 llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef); 3439 if (fir::isa_char(seqTy.getEleTy())) 3440 return fir::CharArrayBoxValue(val, len ? len : undef, extents); 3441 return fir::ArrayBoxValue(val, extents); 3442 } 3443 3444 //===----------------------------------------------------------------------===// 3445 // 3446 // Lowering of array expressions. 3447 // 3448 //===----------------------------------------------------------------------===// 3449 3450 namespace { 3451 class ArrayExprLowering { 3452 using ExtValue = fir::ExtendedValue; 3453 3454 /// Structure to keep track of lowered array operands in the 3455 /// array expression. Useful to later deduce the shape of the 3456 /// array expression. 3457 struct ArrayOperand { 3458 /// Array base (can be a fir.box). 3459 mlir::Value memref; 3460 /// ShapeOp, ShapeShiftOp or ShiftOp 3461 mlir::Value shape; 3462 /// SliceOp 3463 mlir::Value slice; 3464 /// Can this operand be absent ? 3465 bool mayBeAbsent = false; 3466 }; 3467 3468 using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts; 3469 using PathComponent = Fortran::lower::PathComponent; 3470 3471 /// Active iteration space. 3472 using IterationSpace = Fortran::lower::IterationSpace; 3473 using IterSpace = const Fortran::lower::IterationSpace &; 3474 3475 /// Current continuation. Function that will generate IR for a single 3476 /// iteration of the pending iterative loop structure. 3477 using CC = Fortran::lower::GenerateElementalArrayFunc; 3478 3479 /// Projection continuation. Function that will project one iteration space 3480 /// into another. 3481 using PC = std::function<IterationSpace(IterSpace)>; 3482 using ArrayBaseTy = 3483 std::variant<std::monostate, const Fortran::evaluate::ArrayRef *, 3484 const Fortran::evaluate::DataRef *>; 3485 using ComponentPath = Fortran::lower::ComponentPath; 3486 3487 public: 3488 //===--------------------------------------------------------------------===// 3489 // Regular array assignment 3490 //===--------------------------------------------------------------------===// 3491 3492 /// Entry point for array assignments. Both the left-hand and right-hand sides 3493 /// can either be ExtendedValue or evaluate::Expr. 3494 template <typename TL, typename TR> 3495 static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter, 3496 Fortran::lower::SymMap &symMap, 3497 Fortran::lower::StatementContext &stmtCtx, 3498 const TL &lhs, const TR &rhs) { 3499 ArrayExprLowering ael(converter, stmtCtx, symMap, 3500 ConstituentSemantics::CopyInCopyOut); 3501 ael.lowerArrayAssignment(lhs, rhs); 3502 } 3503 3504 template <typename TL, typename TR> 3505 void lowerArrayAssignment(const TL &lhs, const TR &rhs) { 3506 mlir::Location loc = getLoc(); 3507 /// Here the target subspace is not necessarily contiguous. The ArrayUpdate 3508 /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad 3509 /// in `destination`. 3510 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); 3511 ccStoreToDest = genarr(lhs); 3512 determineShapeOfDest(lhs); 3513 semant = ConstituentSemantics::RefTransparent; 3514 ExtValue exv = lowerArrayExpression(rhs); 3515 if (explicitSpaceIsActive()) { 3516 explicitSpace->finalizeContext(); 3517 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3518 } else { 3519 builder.create<fir::ArrayMergeStoreOp>( 3520 loc, destination, fir::getBase(exv), destination.getMemref(), 3521 destination.getSlice(), destination.getTypeparams()); 3522 } 3523 } 3524 3525 //===--------------------------------------------------------------------===// 3526 // WHERE array assignment, FORALL assignment, and FORALL+WHERE array 3527 // assignment 3528 //===--------------------------------------------------------------------===// 3529 3530 /// Entry point for array assignment when the iteration space is explicitly 3531 /// defined (Fortran's FORALL) with or without masks, and/or the implied 3532 /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit 3533 /// space and implicit space with masks) may be present. 3534 static void lowerAnyMaskedArrayAssignment( 3535 Fortran::lower::AbstractConverter &converter, 3536 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3537 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3538 Fortran::lower::ExplicitIterSpace &explicitSpace, 3539 Fortran::lower::ImplicitIterSpace &implicitSpace) { 3540 if (explicitSpace.isActive() && lhs.Rank() == 0) { 3541 // Scalar assignment expression in a FORALL context. 3542 ArrayExprLowering ael(converter, stmtCtx, symMap, 3543 ConstituentSemantics::RefTransparent, 3544 &explicitSpace, &implicitSpace); 3545 ael.lowerScalarAssignment(lhs, rhs); 3546 return; 3547 } 3548 // Array assignment expression in a FORALL and/or WHERE context. 3549 ArrayExprLowering ael(converter, stmtCtx, symMap, 3550 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3551 &implicitSpace); 3552 ael.lowerArrayAssignment(lhs, rhs); 3553 } 3554 3555 //===--------------------------------------------------------------------===// 3556 // Array assignment to array of pointer box values. 3557 //===--------------------------------------------------------------------===// 3558 3559 /// Entry point for assignment to pointer in an array of pointers. 3560 static void lowerArrayOfPointerAssignment( 3561 Fortran::lower::AbstractConverter &converter, 3562 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3563 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3564 Fortran::lower::ExplicitIterSpace &explicitSpace, 3565 Fortran::lower::ImplicitIterSpace &implicitSpace, 3566 const llvm::SmallVector<mlir::Value> &lbounds, 3567 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) { 3568 ArrayExprLowering ael(converter, stmtCtx, symMap, 3569 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3570 &implicitSpace); 3571 ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds); 3572 } 3573 3574 /// Scalar pointer assignment in an explicit iteration space. 3575 /// 3576 /// Pointers may be bound to targets in a FORALL context. This is a scalar 3577 /// assignment in the sense there is never an implied iteration space, even if 3578 /// the pointer is to a target with non-zero rank. Since the pointer 3579 /// assignment must appear in a FORALL construct, correctness may require that 3580 /// the array of pointers follow copy-in/copy-out semantics. The pointer 3581 /// assignment may include a bounds-spec (lower bounds), a bounds-remapping 3582 /// (lower and upper bounds), or neither. 3583 void lowerArrayOfPointerAssignment( 3584 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3585 const llvm::SmallVector<mlir::Value> &lbounds, 3586 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) { 3587 setPointerAssignmentBounds(lbounds, ubounds); 3588 if (rhs.Rank() == 0 || 3589 (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) && 3590 Fortran::evaluate::IsAllocatableOrPointerObject( 3591 rhs, converter.getFoldingContext()))) { 3592 lowerScalarAssignment(lhs, rhs); 3593 return; 3594 } 3595 TODO(getLoc(), 3596 "auto boxing of a ranked expression on RHS for pointer assignment"); 3597 } 3598 3599 //===--------------------------------------------------------------------===// 3600 // Array assignment to allocatable array 3601 //===--------------------------------------------------------------------===// 3602 3603 /// Entry point for assignment to allocatable array. 3604 static void lowerAllocatableArrayAssignment( 3605 Fortran::lower::AbstractConverter &converter, 3606 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3607 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 3608 Fortran::lower::ExplicitIterSpace &explicitSpace, 3609 Fortran::lower::ImplicitIterSpace &implicitSpace) { 3610 ArrayExprLowering ael(converter, stmtCtx, symMap, 3611 ConstituentSemantics::CopyInCopyOut, &explicitSpace, 3612 &implicitSpace); 3613 ael.lowerAllocatableArrayAssignment(lhs, rhs); 3614 } 3615 3616 /// Assignment to allocatable array. 3617 /// 3618 /// The semantics are reverse that of a "regular" array assignment. The rhs 3619 /// defines the iteration space of the computation and the lhs is 3620 /// resized/reallocated to fit if necessary. 3621 void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs, 3622 const Fortran::lower::SomeExpr &rhs) { 3623 // With assignment to allocatable, we want to lower the rhs first and use 3624 // its shape to determine if we need to reallocate, etc. 3625 mlir::Location loc = getLoc(); 3626 // FIXME: If the lhs is in an explicit iteration space, the assignment may 3627 // be to an array of allocatable arrays rather than a single allocatable 3628 // array. 3629 fir::MutableBoxValue mutableBox = 3630 Fortran::lower::createMutableBox(loc, converter, lhs, symMap); 3631 mlir::Type resultTy = converter.genType(rhs); 3632 if (rhs.Rank() > 0) 3633 determineShapeOfDest(rhs); 3634 auto rhsCC = [&]() { 3635 PushSemantics(ConstituentSemantics::RefTransparent); 3636 return genarr(rhs); 3637 }(); 3638 3639 llvm::SmallVector<mlir::Value> lengthParams; 3640 // Currently no safe way to gather length from rhs (at least for 3641 // character, it cannot be taken from array_loads since it may be 3642 // changed by concatenations). 3643 if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) || 3644 mutableBox.isDerivedWithLenParameters()) 3645 TODO(loc, "gather rhs length parameters in assignment to allocatable"); 3646 3647 // The allocatable must take lower bounds from the expr if it is 3648 // reallocated and the right hand side is not a scalar. 3649 const bool takeLboundsIfRealloc = rhs.Rank() > 0; 3650 llvm::SmallVector<mlir::Value> lbounds; 3651 // When the reallocated LHS takes its lower bounds from the RHS, 3652 // they will be non default only if the RHS is a whole array 3653 // variable. Otherwise, lbounds is left empty and default lower bounds 3654 // will be used. 3655 if (takeLboundsIfRealloc && 3656 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) { 3657 assert(arrayOperands.size() == 1 && 3658 "lbounds can only come from one array"); 3659 auto lbs = fir::factory::getOrigins(arrayOperands[0].shape); 3660 lbounds.append(lbs.begin(), lbs.end()); 3661 } 3662 fir::factory::MutableBoxReallocation realloc = 3663 fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape, 3664 lengthParams); 3665 // Create ArrayLoad for the mutable box and save it into `destination`. 3666 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); 3667 ccStoreToDest = genarr(realloc.newValue); 3668 // If the rhs is scalar, get shape from the allocatable ArrayLoad. 3669 if (destShape.empty()) 3670 destShape = getShape(destination); 3671 // Finish lowering the loop nest. 3672 assert(destination && "destination must have been set"); 3673 ExtValue exv = lowerArrayExpression(rhsCC, resultTy); 3674 if (explicitSpaceIsActive()) { 3675 explicitSpace->finalizeContext(); 3676 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3677 } else { 3678 builder.create<fir::ArrayMergeStoreOp>( 3679 loc, destination, fir::getBase(exv), destination.getMemref(), 3680 destination.getSlice(), destination.getTypeparams()); 3681 } 3682 fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds, 3683 takeLboundsIfRealloc, realloc); 3684 } 3685 3686 /// Entry point for when an array expression appears in a context where the 3687 /// result must be boxed. (BoxValue semantics.) 3688 static ExtValue 3689 lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter, 3690 Fortran::lower::SymMap &symMap, 3691 Fortran::lower::StatementContext &stmtCtx, 3692 const Fortran::lower::SomeExpr &expr) { 3693 ArrayExprLowering ael{converter, stmtCtx, symMap, 3694 ConstituentSemantics::BoxValue}; 3695 return ael.lowerBoxedArrayExpr(expr); 3696 } 3697 3698 ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) { 3699 PushSemantics(ConstituentSemantics::BoxValue); 3700 return std::visit( 3701 [&](const auto &e) { 3702 auto f = genarr(e); 3703 ExtValue exv = f(IterationSpace{}); 3704 if (fir::getBase(exv).getType().template isa<fir::BoxType>()) 3705 return exv; 3706 fir::emitFatalError(getLoc(), "array must be emboxed"); 3707 }, 3708 exp.u); 3709 } 3710 3711 /// Entry point into lowering an expression with rank. This entry point is for 3712 /// lowering a rhs expression, for example. (RefTransparent semantics.) 3713 static ExtValue 3714 lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter, 3715 Fortran::lower::SymMap &symMap, 3716 Fortran::lower::StatementContext &stmtCtx, 3717 const Fortran::lower::SomeExpr &expr) { 3718 ArrayExprLowering ael{converter, stmtCtx, symMap}; 3719 ael.determineShapeOfDest(expr); 3720 ExtValue loopRes = ael.lowerArrayExpression(expr); 3721 fir::ArrayLoadOp dest = ael.destination; 3722 mlir::Value tempRes = dest.getMemref(); 3723 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 3724 mlir::Location loc = converter.getCurrentLocation(); 3725 builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes), 3726 tempRes, dest.getSlice(), 3727 dest.getTypeparams()); 3728 3729 auto arrTy = 3730 fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>(); 3731 if (auto charTy = 3732 arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) { 3733 if (fir::characterWithDynamicLen(charTy)) 3734 TODO(loc, "CHARACTER does not have constant LEN"); 3735 mlir::Value len = builder.createIntegerConstant( 3736 loc, builder.getCharacterLengthType(), charTy.getLen()); 3737 return fir::CharArrayBoxValue(tempRes, len, dest.getExtents()); 3738 } 3739 return fir::ArrayBoxValue(tempRes, dest.getExtents()); 3740 } 3741 3742 static void lowerLazyArrayExpression( 3743 Fortran::lower::AbstractConverter &converter, 3744 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3745 const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) { 3746 ArrayExprLowering ael(converter, stmtCtx, symMap); 3747 ael.lowerLazyArrayExpression(expr, raggedHeader); 3748 } 3749 3750 /// Lower the expression \p expr into a buffer that is created on demand. The 3751 /// variable containing the pointer to the buffer is \p var and the variable 3752 /// containing the shape of the buffer is \p shapeBuffer. 3753 void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr, 3754 mlir::Value header) { 3755 mlir::Location loc = getLoc(); 3756 mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder); 3757 mlir::IntegerType i32Ty = builder.getIntegerType(32); 3758 3759 // Once the loop extents have been computed, which may require being inside 3760 // some explicit loops, lazily allocate the expression on the heap. The 3761 // following continuation creates the buffer as needed. 3762 ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) { 3763 mlir::IntegerType i64Ty = builder.getIntegerType(64); 3764 mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1); 3765 fir::runtime::genRaggedArrayAllocate( 3766 loc, builder, header, /*asHeaders=*/false, byteSize, shape); 3767 }; 3768 3769 // Create a dummy array_load before the loop. We're storing to a lazy 3770 // temporary, so there will be no conflict and no copy-in. TODO: skip this 3771 // as there isn't any necessity for it. 3772 ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp { 3773 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 3774 auto var = builder.create<fir::CoordinateOp>( 3775 loc, builder.getRefType(hdrTy.getType(1)), header, one); 3776 auto load = builder.create<fir::LoadOp>(loc, var); 3777 mlir::Type eleTy = 3778 fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); 3779 auto seqTy = fir::SequenceType::get(eleTy, shape.size()); 3780 mlir::Value castTo = 3781 builder.createConvert(loc, fir::HeapType::get(seqTy), load); 3782 mlir::Value shapeOp = builder.genShape(loc, shape); 3783 return builder.create<fir::ArrayLoadOp>( 3784 loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None); 3785 }; 3786 // Custom lowering of the element store to deal with the extra indirection 3787 // to the lazy allocated buffer. 3788 ccStoreToDest = [=](IterSpace iters) { 3789 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 3790 auto var = builder.create<fir::CoordinateOp>( 3791 loc, builder.getRefType(hdrTy.getType(1)), header, one); 3792 auto load = builder.create<fir::LoadOp>(loc, var); 3793 mlir::Type eleTy = 3794 fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); 3795 auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size()); 3796 auto toTy = fir::HeapType::get(seqTy); 3797 mlir::Value castTo = builder.createConvert(loc, toTy, load); 3798 mlir::Value shape = builder.genShape(loc, genIterationShape()); 3799 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 3800 loc, builder, castTo.getType(), shape, iters.iterVec()); 3801 auto eleAddr = builder.create<fir::ArrayCoorOp>( 3802 loc, builder.getRefType(eleTy), castTo, shape, 3803 /*slice=*/mlir::Value{}, indices, destination.getTypeparams()); 3804 mlir::Value eleVal = 3805 builder.createConvert(loc, eleTy, iters.getElement()); 3806 builder.create<fir::StoreOp>(loc, eleVal, eleAddr); 3807 return iters.innerArgument(); 3808 }; 3809 3810 // Lower the array expression now. Clean-up any temps that may have 3811 // been generated when lowering `expr` right after the lowered value 3812 // was stored to the ragged array temporary. The local temps will not 3813 // be needed afterwards. 3814 stmtCtx.pushScope(); 3815 [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr); 3816 stmtCtx.finalize(/*popScope=*/true); 3817 assert(fir::getBase(loopRes)); 3818 } 3819 3820 static void 3821 lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter, 3822 Fortran::lower::SymMap &symMap, 3823 Fortran::lower::StatementContext &stmtCtx, 3824 Fortran::lower::ExplicitIterSpace &explicitSpace, 3825 Fortran::lower::ImplicitIterSpace &implicitSpace, 3826 const Fortran::evaluate::ProcedureRef &procRef) { 3827 ArrayExprLowering ael(converter, stmtCtx, symMap, 3828 ConstituentSemantics::CustomCopyInCopyOut, 3829 &explicitSpace, &implicitSpace); 3830 assert(procRef.arguments().size() == 2); 3831 const auto *lhs = procRef.arguments()[0].value().UnwrapExpr(); 3832 const auto *rhs = procRef.arguments()[1].value().UnwrapExpr(); 3833 assert(lhs && rhs && 3834 "user defined assignment arguments must be expressions"); 3835 mlir::func::FuncOp func = 3836 Fortran::lower::CallerInterface(procRef, converter).getFuncOp(); 3837 ael.lowerElementalUserAssignment(func, *lhs, *rhs); 3838 } 3839 3840 void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment, 3841 const Fortran::lower::SomeExpr &lhs, 3842 const Fortran::lower::SomeExpr &rhs) { 3843 mlir::Location loc = getLoc(); 3844 PushSemantics(ConstituentSemantics::CustomCopyInCopyOut); 3845 auto genArrayModify = genarr(lhs); 3846 ccStoreToDest = [=](IterSpace iters) -> ExtValue { 3847 auto modifiedArray = genArrayModify(iters); 3848 auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>( 3849 fir::getBase(modifiedArray).getDefiningOp()); 3850 assert(arrayModify && "must be created by ArrayModifyOp"); 3851 fir::ExtendedValue lhs = 3852 arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0)); 3853 genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs, 3854 iters.elementExv()); 3855 return modifiedArray; 3856 }; 3857 determineShapeOfDest(lhs); 3858 semant = ConstituentSemantics::RefTransparent; 3859 auto exv = lowerArrayExpression(rhs); 3860 if (explicitSpaceIsActive()) { 3861 explicitSpace->finalizeContext(); 3862 builder.create<fir::ResultOp>(loc, fir::getBase(exv)); 3863 } else { 3864 builder.create<fir::ArrayMergeStoreOp>( 3865 loc, destination, fir::getBase(exv), destination.getMemref(), 3866 destination.getSlice(), destination.getTypeparams()); 3867 } 3868 } 3869 3870 /// Lower an elemental subroutine call with at least one array argument. 3871 /// An elemental subroutine is an exception and does not have copy-in/copy-out 3872 /// semantics. See 15.8.3. 3873 /// Do NOT use this for user defined assignments. 3874 static void 3875 lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter, 3876 Fortran::lower::SymMap &symMap, 3877 Fortran::lower::StatementContext &stmtCtx, 3878 const Fortran::lower::SomeExpr &call) { 3879 ArrayExprLowering ael(converter, stmtCtx, symMap, 3880 ConstituentSemantics::RefTransparent); 3881 ael.lowerElementalSubroutine(call); 3882 } 3883 3884 // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&). 3885 // This is skipping generation of copy-in/copy-out code for analysis that is 3886 // required when arguments are in parentheses. 3887 void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) { 3888 auto f = genarr(call); 3889 llvm::SmallVector<mlir::Value> shape = genIterationShape(); 3890 auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{}); 3891 f(iterSpace); 3892 finalizeElementCtx(); 3893 builder.restoreInsertionPoint(insPt); 3894 } 3895 3896 ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs, 3897 const Fortran::lower::SomeExpr &rhs) { 3898 PushSemantics(ConstituentSemantics::RefTransparent); 3899 // 1) Lower the rhs expression with array_fetch op(s). 3900 IterationSpace iters; 3901 iters.setElement(genarr(rhs)(iters)); 3902 // 2) Lower the lhs expression to an array_update. 3903 semant = ConstituentSemantics::ProjectedCopyInCopyOut; 3904 auto lexv = genarr(lhs)(iters); 3905 // 3) Finalize the inner context. 3906 explicitSpace->finalizeContext(); 3907 // 4) Thread the array value updated forward. Note: the lhs might be 3908 // ill-formed (performing scalar assignment in an array context), 3909 // in which case there is no array to thread. 3910 auto loc = getLoc(); 3911 auto createResult = [&](auto op) { 3912 mlir::Value oldInnerArg = op.getSequence(); 3913 std::size_t offset = explicitSpace->argPosition(oldInnerArg); 3914 explicitSpace->setInnerArg(offset, fir::getBase(lexv)); 3915 finalizeElementCtx(); 3916 builder.create<fir::ResultOp>(loc, fir::getBase(lexv)); 3917 }; 3918 if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) { 3919 llvm::TypeSwitch<mlir::Operation *>(defOp) 3920 .Case([&](fir::ArrayUpdateOp op) { createResult(op); }) 3921 .Case([&](fir::ArrayAmendOp op) { createResult(op); }) 3922 .Case([&](fir::ArrayModifyOp op) { createResult(op); }) 3923 .Default([&](mlir::Operation *) { finalizeElementCtx(); }); 3924 } else { 3925 // `lhs` isn't from a `fir.array_load`, so there is no array modifications 3926 // to thread through the iteration space. 3927 finalizeElementCtx(); 3928 } 3929 return lexv; 3930 } 3931 3932 static ExtValue lowerScalarUserAssignment( 3933 Fortran::lower::AbstractConverter &converter, 3934 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 3935 Fortran::lower::ExplicitIterSpace &explicitIterSpace, 3936 mlir::func::FuncOp userAssignmentFunction, 3937 const Fortran::lower::SomeExpr &lhs, 3938 const Fortran::lower::SomeExpr &rhs) { 3939 Fortran::lower::ImplicitIterSpace implicit; 3940 ArrayExprLowering ael(converter, stmtCtx, symMap, 3941 ConstituentSemantics::RefTransparent, 3942 &explicitIterSpace, &implicit); 3943 return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs); 3944 } 3945 3946 ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment, 3947 const Fortran::lower::SomeExpr &lhs, 3948 const Fortran::lower::SomeExpr &rhs) { 3949 mlir::Location loc = getLoc(); 3950 if (rhs.Rank() > 0) 3951 TODO(loc, "user-defined elemental assigment from expression with rank"); 3952 // 1) Lower the rhs expression with array_fetch op(s). 3953 IterationSpace iters; 3954 iters.setElement(genarr(rhs)(iters)); 3955 fir::ExtendedValue elementalExv = iters.elementExv(); 3956 // 2) Lower the lhs expression to an array_modify. 3957 semant = ConstituentSemantics::CustomCopyInCopyOut; 3958 auto lexv = genarr(lhs)(iters); 3959 bool isIllFormedLHS = false; 3960 // 3) Insert the call 3961 if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>( 3962 fir::getBase(lexv).getDefiningOp())) { 3963 mlir::Value oldInnerArg = modifyOp.getSequence(); 3964 std::size_t offset = explicitSpace->argPosition(oldInnerArg); 3965 explicitSpace->setInnerArg(offset, fir::getBase(lexv)); 3966 fir::ExtendedValue exv = 3967 arrayModifyToExv(builder, loc, explicitSpace->getLhsLoad(0).value(), 3968 modifyOp.getResult(0)); 3969 genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv, 3970 elementalExv); 3971 } else { 3972 // LHS is ill formed, it is a scalar with no references to FORALL 3973 // subscripts, so there is actually no array assignment here. The user 3974 // code is probably bad, but still insert user assignment call since it 3975 // was not rejected by semantics (a warning was emitted). 3976 isIllFormedLHS = true; 3977 genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment, 3978 lexv, elementalExv); 3979 } 3980 // 4) Finalize the inner context. 3981 explicitSpace->finalizeContext(); 3982 // 5). Thread the array value updated forward. 3983 if (!isIllFormedLHS) { 3984 finalizeElementCtx(); 3985 builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); 3986 } 3987 return lexv; 3988 } 3989 3990 private: 3991 void determineShapeOfDest(const fir::ExtendedValue &lhs) { 3992 destShape = fir::factory::getExtents(getLoc(), builder, lhs); 3993 } 3994 3995 void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) { 3996 if (!destShape.empty()) 3997 return; 3998 if (explicitSpaceIsActive() && determineShapeWithSlice(lhs)) 3999 return; 4000 mlir::Type idxTy = builder.getIndexType(); 4001 mlir::Location loc = getLoc(); 4002 if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape = 4003 Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(), 4004 lhs)) 4005 for (Fortran::common::ConstantSubscript extent : *constantShape) 4006 destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 4007 } 4008 4009 bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) { 4010 return false; 4011 } 4012 bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) { 4013 TODO(getLoc(), "coarray ref"); 4014 return false; 4015 } 4016 bool genShapeFromDataRef(const Fortran::evaluate::Component &x) { 4017 return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false; 4018 } 4019 bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) { 4020 if (x.Rank() == 0) 4021 return false; 4022 if (x.base().Rank() > 0) 4023 if (genShapeFromDataRef(x.base())) 4024 return true; 4025 // x has rank and x.base did not produce a shape. 4026 ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base())) 4027 : asScalarRef(x.base().GetComponent()); 4028 mlir::Location loc = getLoc(); 4029 mlir::IndexType idxTy = builder.getIndexType(); 4030 llvm::SmallVector<mlir::Value> definedShape = 4031 fir::factory::getExtents(loc, builder, exv); 4032 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 4033 for (auto ss : llvm::enumerate(x.subscript())) { 4034 std::visit(Fortran::common::visitors{ 4035 [&](const Fortran::evaluate::Triplet &trip) { 4036 // For a subscript of triple notation, we compute the 4037 // range of this dimension of the iteration space. 4038 auto lo = [&]() { 4039 if (auto optLo = trip.lower()) 4040 return fir::getBase(asScalar(*optLo)); 4041 return getLBound(exv, ss.index(), one); 4042 }(); 4043 auto hi = [&]() { 4044 if (auto optHi = trip.upper()) 4045 return fir::getBase(asScalar(*optHi)); 4046 return getUBound(exv, ss.index(), one); 4047 }(); 4048 auto step = builder.createConvert( 4049 loc, idxTy, fir::getBase(asScalar(trip.stride()))); 4050 auto extent = builder.genExtentFromTriplet(loc, lo, hi, 4051 step, idxTy); 4052 destShape.push_back(extent); 4053 }, 4054 [&](auto) {}}, 4055 ss.value().u); 4056 } 4057 return true; 4058 } 4059 bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) { 4060 if (x.IsSymbol()) 4061 return genShapeFromDataRef(getFirstSym(x)); 4062 return genShapeFromDataRef(x.GetComponent()); 4063 } 4064 bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) { 4065 return std::visit([&](const auto &v) { return genShapeFromDataRef(v); }, 4066 x.u); 4067 } 4068 4069 /// When in an explicit space, the ranked component must be evaluated to 4070 /// determine the actual number of iterations when slicing triples are 4071 /// present. Lower these expressions here. 4072 bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) { 4073 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump( 4074 llvm::dbgs() << "determine shape of:\n", lhs)); 4075 // FIXME: We may not want to use ExtractDataRef here since it doesn't deal 4076 // with substrings, etc. 4077 std::optional<Fortran::evaluate::DataRef> dref = 4078 Fortran::evaluate::ExtractDataRef(lhs); 4079 return dref.has_value() ? genShapeFromDataRef(*dref) : false; 4080 } 4081 4082 /// CHARACTER and derived type elements are treated as memory references. The 4083 /// numeric types are treated as values. 4084 static mlir::Type adjustedArraySubtype(mlir::Type ty, 4085 mlir::ValueRange indices) { 4086 mlir::Type pathTy = fir::applyPathToType(ty, indices); 4087 assert(pathTy && "indices failed to apply to type"); 4088 return adjustedArrayElementType(pathTy); 4089 } 4090 4091 /// Lower rhs of an array expression. 4092 ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) { 4093 mlir::Type resTy = converter.genType(exp); 4094 return std::visit( 4095 [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); }, 4096 exp.u); 4097 } 4098 ExtValue lowerArrayExpression(const ExtValue &exv) { 4099 assert(!explicitSpace); 4100 mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType()); 4101 return lowerArrayExpression(genarr(exv), resTy); 4102 } 4103 4104 void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds, 4105 const Fortran::evaluate::Substring *substring) { 4106 if (!substring) 4107 return; 4108 bounds.push_back(fir::getBase(asScalar(substring->lower()))); 4109 if (auto upper = substring->upper()) 4110 bounds.push_back(fir::getBase(asScalar(*upper))); 4111 } 4112 4113 /// Convert the original value, \p origVal, to type \p eleTy. When in a 4114 /// pointer assignment context, generate an appropriate `fir.rebox` for 4115 /// dealing with any bounds parameters on the pointer assignment. 4116 mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy, 4117 mlir::Value origVal) { 4118 if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType())) 4119 if (origEleTy.isa<fir::BoxType>()) { 4120 // If origVal is a box variable, load it so it is in the value domain. 4121 origVal = builder.create<fir::LoadOp>(loc, origVal); 4122 } 4123 if (origVal.getType().isa<fir::BoxType>() && !eleTy.isa<fir::BoxType>()) { 4124 if (isPointerAssignment()) 4125 TODO(loc, "lhs of pointer assignment returned unexpected value"); 4126 TODO(loc, "invalid box conversion in elemental computation"); 4127 } 4128 if (isPointerAssignment() && eleTy.isa<fir::BoxType>() && 4129 !origVal.getType().isa<fir::BoxType>()) { 4130 // This is a pointer assignment and the rhs is a raw reference to a TARGET 4131 // in memory. Embox the reference so it can be stored to the boxed 4132 // POINTER variable. 4133 assert(fir::isa_ref_type(origVal.getType())); 4134 if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType()); 4135 fir::hasDynamicSize(eleTy)) 4136 TODO(loc, "TARGET of pointer assignment with runtime size/shape"); 4137 auto memrefTy = fir::boxMemRefType(eleTy.cast<fir::BoxType>()); 4138 auto castTo = builder.createConvert(loc, memrefTy, origVal); 4139 origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo); 4140 } 4141 mlir::Value val = builder.createConvert(loc, eleTy, origVal); 4142 if (isBoundsSpec()) { 4143 auto lbs = lbounds.value(); 4144 if (lbs.size() > 0) { 4145 // Rebox the value with user-specified shift. 4146 auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size()); 4147 mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs); 4148 val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp, 4149 mlir::Value{}); 4150 } 4151 } else if (isBoundsRemap()) { 4152 auto lbs = lbounds.getValue(); 4153 if (lbs.size() > 0) { 4154 // Rebox the value with user-specified shift and shape. 4155 auto shapeShiftArgs = flatZip(lbs, ubounds.getValue()); 4156 auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size()); 4157 mlir::Value shapeShift = 4158 builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs); 4159 val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift, 4160 mlir::Value{}); 4161 } 4162 } 4163 return val; 4164 } 4165 4166 /// Default store to destination implementation. 4167 /// This implements the default case, which is to assign the value in 4168 /// `iters.element` into the destination array, `iters.innerArgument`. Handles 4169 /// by value and by reference assignment. 4170 CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) { 4171 return [=](IterSpace iterSpace) -> ExtValue { 4172 mlir::Location loc = getLoc(); 4173 mlir::Value innerArg = iterSpace.innerArgument(); 4174 fir::ExtendedValue exv = iterSpace.elementExv(); 4175 mlir::Type arrTy = innerArg.getType(); 4176 mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec()); 4177 if (isAdjustedArrayElementType(eleTy)) { 4178 // The elemental update is in the memref domain. Under this semantics, 4179 // we must always copy the computed new element from its location in 4180 // memory into the destination array. 4181 mlir::Type resRefTy = builder.getRefType(eleTy); 4182 // Get a reference to the array element to be amended. 4183 auto arrayOp = builder.create<fir::ArrayAccessOp>( 4184 loc, resRefTy, innerArg, iterSpace.iterVec(), 4185 fir::factory::getTypeParams(loc, builder, destination)); 4186 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 4187 llvm::SmallVector<mlir::Value> substringBounds; 4188 populateBounds(substringBounds, substring); 4189 mlir::Value dstLen = fir::factory::genLenOfCharacter( 4190 builder, loc, destination, iterSpace.iterVec(), substringBounds); 4191 fir::ArrayAmendOp amend = createCharArrayAmend( 4192 loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds); 4193 return abstractArrayExtValue(amend, dstLen); 4194 } 4195 if (fir::isa_derived(eleTy)) { 4196 fir::ArrayAmendOp amend = createDerivedArrayAmend( 4197 loc, destination, builder, arrayOp, exv, eleTy, innerArg); 4198 return abstractArrayExtValue(amend /*FIXME: typeparams?*/); 4199 } 4200 assert(eleTy.isa<fir::SequenceType>() && "must be an array"); 4201 TODO(loc, "array (as element) assignment"); 4202 } 4203 // By value semantics. The element is being assigned by value. 4204 auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv)); 4205 auto update = builder.create<fir::ArrayUpdateOp>( 4206 loc, arrTy, innerArg, ele, iterSpace.iterVec(), 4207 destination.getTypeparams()); 4208 return abstractArrayExtValue(update); 4209 }; 4210 } 4211 4212 /// For an elemental array expression. 4213 /// 1. Lower the scalars and array loads. 4214 /// 2. Create the iteration space. 4215 /// 3. Create the element-by-element computation in the loop. 4216 /// 4. Return the resulting array value. 4217 /// If no destination was set in the array context, a temporary of 4218 /// \p resultTy will be created to hold the evaluated expression. 4219 /// Otherwise, \p resultTy is ignored and the expression is evaluated 4220 /// in the destination. \p f is a continuation built from an 4221 /// evaluate::Expr or an ExtendedValue. 4222 ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) { 4223 mlir::Location loc = getLoc(); 4224 auto [iterSpace, insPt] = genIterSpace(resultTy); 4225 auto exv = f(iterSpace); 4226 iterSpace.setElement(std::move(exv)); 4227 auto lambda = ccStoreToDest.hasValue() 4228 ? ccStoreToDest.getValue() 4229 : defaultStoreToDestination(/*substring=*/nullptr); 4230 mlir::Value updVal = fir::getBase(lambda(iterSpace)); 4231 finalizeElementCtx(); 4232 builder.create<fir::ResultOp>(loc, updVal); 4233 builder.restoreInsertionPoint(insPt); 4234 return abstractArrayExtValue(iterSpace.outerResult()); 4235 } 4236 4237 /// Compute the shape of a slice. 4238 llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) { 4239 llvm::SmallVector<mlir::Value> slicedShape; 4240 auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp()); 4241 mlir::Operation::operand_range triples = slOp.getTriples(); 4242 mlir::IndexType idxTy = builder.getIndexType(); 4243 mlir::Location loc = getLoc(); 4244 for (unsigned i = 0, end = triples.size(); i < end; i += 3) { 4245 if (!mlir::isa_and_nonnull<fir::UndefOp>( 4246 triples[i + 1].getDefiningOp())) { 4247 // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0) 4248 // See Fortran 2018 9.5.3.3.2 section for more details. 4249 mlir::Value res = builder.genExtentFromTriplet( 4250 loc, triples[i], triples[i + 1], triples[i + 2], idxTy); 4251 slicedShape.emplace_back(res); 4252 } else { 4253 // do nothing. `..., i, ...` case, so dimension is dropped. 4254 } 4255 } 4256 return slicedShape; 4257 } 4258 4259 /// Get the shape from an ArrayOperand. The shape of the array is adjusted if 4260 /// the array was sliced. 4261 llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) { 4262 if (array.slice) 4263 return computeSliceShape(array.slice); 4264 if (array.memref.getType().isa<fir::BoxType>()) 4265 return fir::factory::readExtents(builder, getLoc(), 4266 fir::BoxValue{array.memref}); 4267 return fir::factory::getExtents(array.shape); 4268 } 4269 4270 /// Get the shape from an ArrayLoad. 4271 llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) { 4272 return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(), 4273 arrayLoad.getSlice()}); 4274 } 4275 4276 /// Returns the first array operand that may not be absent. If all 4277 /// array operands may be absent, return the first one. 4278 const ArrayOperand &getInducingShapeArrayOperand() const { 4279 assert(!arrayOperands.empty()); 4280 for (const ArrayOperand &op : arrayOperands) 4281 if (!op.mayBeAbsent) 4282 return op; 4283 // If all arrays operand appears in optional position, then none of them 4284 // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the 4285 // first operands. 4286 // TODO: There is an opportunity to add a runtime check here that 4287 // this array is present as required. 4288 return arrayOperands[0]; 4289 } 4290 4291 /// Generate the shape of the iteration space over the array expression. The 4292 /// iteration space may be implicit, explicit, or both. If it is implied it is 4293 /// based on the destination and operand array loads, or an optional 4294 /// Fortran::evaluate::Shape from the front end. If the shape is explicit, 4295 /// this returns any implicit shape component, if it exists. 4296 llvm::SmallVector<mlir::Value> genIterationShape() { 4297 // Use the precomputed destination shape. 4298 if (!destShape.empty()) 4299 return destShape; 4300 // Otherwise, use the destination's shape. 4301 if (destination) 4302 return getShape(destination); 4303 // Otherwise, use the first ArrayLoad operand shape. 4304 if (!arrayOperands.empty()) 4305 return getShape(getInducingShapeArrayOperand()); 4306 fir::emitFatalError(getLoc(), 4307 "failed to compute the array expression shape"); 4308 } 4309 4310 bool explicitSpaceIsActive() const { 4311 return explicitSpace && explicitSpace->isActive(); 4312 } 4313 4314 bool implicitSpaceHasMasks() const { 4315 return implicitSpace && !implicitSpace->empty(); 4316 } 4317 4318 CC genMaskAccess(mlir::Value tmp, mlir::Value shape) { 4319 mlir::Location loc = getLoc(); 4320 return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) { 4321 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType()); 4322 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 4323 mlir::Type eleRefTy = builder->getRefType(eleTy); 4324 mlir::IntegerType i1Ty = builder->getI1Type(); 4325 // Adjust indices for any shift of the origin of the array. 4326 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 4327 loc, *builder, tmp.getType(), shape, iters.iterVec()); 4328 auto addr = 4329 builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape, 4330 /*slice=*/mlir::Value{}, indices, 4331 /*typeParams=*/llvm::None); 4332 auto load = builder->create<fir::LoadOp>(loc, addr); 4333 return builder->createConvert(loc, i1Ty, load); 4334 }; 4335 } 4336 4337 /// Construct the incremental instantiations of the ragged array structure. 4338 /// Rebind the lazy buffer variable, etc. as we go. 4339 template <bool withAllocation = false> 4340 mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) { 4341 assert(explicitSpaceIsActive()); 4342 mlir::Location loc = getLoc(); 4343 mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder); 4344 llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack = 4345 explicitSpace->getLoopStack(); 4346 const std::size_t depth = loopStack.size(); 4347 mlir::IntegerType i64Ty = builder.getIntegerType(64); 4348 [[maybe_unused]] mlir::Value byteSize = 4349 builder.createIntegerConstant(loc, i64Ty, 1); 4350 mlir::Value header = implicitSpace->lookupMaskHeader(expr); 4351 for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) { 4352 auto insPt = builder.saveInsertionPoint(); 4353 if (i < depth - 1) 4354 builder.setInsertionPoint(loopStack[i + 1][0]); 4355 4356 // Compute and gather the extents. 4357 llvm::SmallVector<mlir::Value> extents; 4358 for (auto doLoop : loopStack[i]) 4359 extents.push_back(builder.genExtentFromTriplet( 4360 loc, doLoop.getLowerBound(), doLoop.getUpperBound(), 4361 doLoop.getStep(), i64Ty)); 4362 if constexpr (withAllocation) { 4363 fir::runtime::genRaggedArrayAllocate( 4364 loc, builder, header, /*asHeader=*/true, byteSize, extents); 4365 } 4366 4367 // Compute the dynamic position into the header. 4368 llvm::SmallVector<mlir::Value> offsets; 4369 for (auto doLoop : loopStack[i]) { 4370 auto m = builder.create<mlir::arith::SubIOp>( 4371 loc, doLoop.getInductionVar(), doLoop.getLowerBound()); 4372 auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep()); 4373 mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1); 4374 offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one)); 4375 } 4376 mlir::IntegerType i32Ty = builder.getIntegerType(32); 4377 mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1); 4378 mlir::Type coorTy = builder.getRefType(raggedTy.getType(1)); 4379 auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); 4380 auto toTy = fir::SequenceType::get(raggedTy, offsets.size()); 4381 mlir::Type toRefTy = builder.getRefType(toTy); 4382 auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff); 4383 mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr); 4384 auto shapeOp = builder.genShape(loc, extents); 4385 header = builder.create<fir::ArrayCoorOp>( 4386 loc, builder.getRefType(raggedTy), hdArr, shapeOp, 4387 /*slice=*/mlir::Value{}, offsets, 4388 /*typeparams=*/mlir::ValueRange{}); 4389 auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); 4390 auto inVar = builder.create<fir::LoadOp>(loc, hdrVar); 4391 mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); 4392 mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2)); 4393 auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two); 4394 auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh); 4395 // Replace the binding. 4396 implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr)); 4397 if (i < depth - 1) 4398 builder.restoreInsertionPoint(insPt); 4399 } 4400 return header; 4401 } 4402 4403 /// Lower mask expressions with implied iteration spaces from the variants of 4404 /// WHERE syntax. Since it is legal for mask expressions to have side-effects 4405 /// and modify values that will be used for the lhs, rhs, or both of 4406 /// subsequent assignments, the mask must be evaluated before the assignment 4407 /// is processed. 4408 /// Mask expressions are array expressions too. 4409 void genMasks() { 4410 // Lower the mask expressions, if any. 4411 if (implicitSpaceHasMasks()) { 4412 mlir::Location loc = getLoc(); 4413 // Mask expressions are array expressions too. 4414 for (const auto *e : implicitSpace->getExprs()) 4415 if (e && !implicitSpace->isLowered(e)) { 4416 if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) { 4417 // Allocate the mask buffer lazily. 4418 assert(explicitSpaceIsActive()); 4419 mlir::Value header = 4420 prepareRaggedArrays</*withAllocations=*/true>(e); 4421 Fortran::lower::createLazyArrayTempValue(converter, *e, header, 4422 symMap, stmtCtx); 4423 // Close the explicit loops. 4424 builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs()); 4425 builder.setInsertionPointAfter(explicitSpace->getOuterLoop()); 4426 // Open a new copy of the explicit loop nest. 4427 explicitSpace->genLoopNest(); 4428 continue; 4429 } 4430 fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue( 4431 converter, *e, symMap, stmtCtx); 4432 mlir::Value shape = builder.createShape(loc, tmp); 4433 implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape)); 4434 } 4435 4436 // Set buffer from the header. 4437 for (const auto *e : implicitSpace->getExprs()) { 4438 if (!e) 4439 continue; 4440 if (implicitSpace->lookupMaskVariable(e)) { 4441 // Index into the ragged buffer to retrieve cached results. 4442 const int rank = e->Rank(); 4443 assert(destShape.empty() || 4444 static_cast<std::size_t>(rank) == destShape.size()); 4445 mlir::Value header = prepareRaggedArrays(e); 4446 mlir::TupleType raggedTy = 4447 fir::factory::getRaggedArrayHeaderType(builder); 4448 mlir::IntegerType i32Ty = builder.getIntegerType(32); 4449 mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); 4450 auto coor1 = builder.create<fir::CoordinateOp>( 4451 loc, builder.getRefType(raggedTy.getType(1)), header, one); 4452 auto db = builder.create<fir::LoadOp>(loc, coor1); 4453 mlir::Type eleTy = 4454 fir::unwrapSequenceType(fir::unwrapRefType(db.getType())); 4455 mlir::Type buffTy = 4456 builder.getRefType(fir::SequenceType::get(eleTy, rank)); 4457 // Address of ragged buffer data. 4458 mlir::Value buff = builder.createConvert(loc, buffTy, db); 4459 4460 mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); 4461 auto coor2 = builder.create<fir::CoordinateOp>( 4462 loc, builder.getRefType(raggedTy.getType(2)), header, two); 4463 auto shBuff = builder.create<fir::LoadOp>(loc, coor2); 4464 mlir::IntegerType i64Ty = builder.getIntegerType(64); 4465 mlir::IndexType idxTy = builder.getIndexType(); 4466 llvm::SmallVector<mlir::Value> extents; 4467 for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) { 4468 mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i); 4469 auto coor = builder.create<fir::CoordinateOp>( 4470 loc, builder.getRefType(i64Ty), shBuff, off); 4471 auto ldExt = builder.create<fir::LoadOp>(loc, coor); 4472 extents.push_back(builder.createConvert(loc, idxTy, ldExt)); 4473 } 4474 if (destShape.empty()) 4475 destShape = extents; 4476 // Construct shape of buffer. 4477 mlir::Value shapeOp = builder.genShape(loc, extents); 4478 4479 // Replace binding with the local result. 4480 implicitSpace->rebind(e, genMaskAccess(buff, shapeOp)); 4481 } 4482 } 4483 } 4484 } 4485 4486 // FIXME: should take multiple inner arguments. 4487 std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> 4488 genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) { 4489 mlir::Location loc = getLoc(); 4490 mlir::IndexType idxTy = builder.getIndexType(); 4491 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 4492 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 4493 llvm::SmallVector<mlir::Value> loopUppers; 4494 4495 // Convert any implied shape to closed interval form. The fir.do_loop will 4496 // run from 0 to `extent - 1` inclusive. 4497 for (auto extent : shape) 4498 loopUppers.push_back( 4499 builder.create<mlir::arith::SubIOp>(loc, extent, one)); 4500 4501 // Iteration space is created with outermost columns, innermost rows 4502 llvm::SmallVector<fir::DoLoopOp> loops; 4503 4504 const std::size_t loopDepth = loopUppers.size(); 4505 llvm::SmallVector<mlir::Value> ivars; 4506 4507 for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) { 4508 if (i.index() > 0) { 4509 assert(!loops.empty()); 4510 builder.setInsertionPointToStart(loops.back().getBody()); 4511 } 4512 fir::DoLoopOp loop; 4513 if (innerArg) { 4514 loop = builder.create<fir::DoLoopOp>( 4515 loc, zero, i.value(), one, isUnordered(), 4516 /*finalCount=*/false, mlir::ValueRange{innerArg}); 4517 innerArg = loop.getRegionIterArgs().front(); 4518 if (explicitSpaceIsActive()) 4519 explicitSpace->setInnerArg(0, innerArg); 4520 } else { 4521 loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one, 4522 isUnordered(), 4523 /*finalCount=*/false); 4524 } 4525 ivars.push_back(loop.getInductionVar()); 4526 loops.push_back(loop); 4527 } 4528 4529 if (innerArg) 4530 for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth; 4531 ++i) { 4532 builder.setInsertionPointToEnd(loops[i].getBody()); 4533 builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0)); 4534 } 4535 4536 // Move insertion point to the start of the innermost loop in the nest. 4537 builder.setInsertionPointToStart(loops.back().getBody()); 4538 // Set `afterLoopNest` to just after the entire loop nest. 4539 auto currPt = builder.saveInsertionPoint(); 4540 builder.setInsertionPointAfter(loops[0]); 4541 auto afterLoopNest = builder.saveInsertionPoint(); 4542 builder.restoreInsertionPoint(currPt); 4543 4544 // Put the implicit loop variables in row to column order to match FIR's 4545 // Ops. (The loops were constructed from outermost column to innermost 4546 // row.) 4547 mlir::Value outerRes = loops[0].getResult(0); 4548 return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)), 4549 afterLoopNest}; 4550 } 4551 4552 /// Build the iteration space into which the array expression will be lowered. 4553 /// The resultType is used to create a temporary, if needed. 4554 std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> 4555 genIterSpace(mlir::Type resultType) { 4556 mlir::Location loc = getLoc(); 4557 llvm::SmallVector<mlir::Value> shape = genIterationShape(); 4558 if (!destination) { 4559 // Allocate storage for the result if it is not already provided. 4560 destination = createAndLoadSomeArrayTemp(resultType, shape); 4561 } 4562 4563 // Generate the lazy mask allocation, if one was given. 4564 if (ccPrelude.hasValue()) 4565 ccPrelude.getValue()(shape); 4566 4567 // Now handle the implicit loops. 4568 mlir::Value inner = explicitSpaceIsActive() 4569 ? explicitSpace->getInnerArgs().front() 4570 : destination.getResult(); 4571 auto [iters, afterLoopNest] = genImplicitLoops(shape, inner); 4572 mlir::Value innerArg = iters.innerArgument(); 4573 4574 // Generate the mask conditional structure, if there are masks. Unlike the 4575 // explicit masks, which are interleaved, these mask expression appear in 4576 // the innermost loop. 4577 if (implicitSpaceHasMasks()) { 4578 // Recover the cached condition from the mask buffer. 4579 auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) { 4580 return implicitSpace->getBoundClosure(e)(iters); 4581 }; 4582 4583 // Handle the negated conditions in topological order of the WHERE 4584 // clauses. See 10.2.3.2p4 as to why this control structure is produced. 4585 for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs : 4586 implicitSpace->getMasks()) { 4587 const std::size_t size = maskExprs.size() - 1; 4588 auto genFalseBlock = [&](const auto *e, auto &&cond) { 4589 auto ifOp = builder.create<fir::IfOp>( 4590 loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), 4591 /*withElseRegion=*/true); 4592 builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); 4593 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 4594 builder.create<fir::ResultOp>(loc, innerArg); 4595 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 4596 }; 4597 auto genTrueBlock = [&](const auto *e, auto &&cond) { 4598 auto ifOp = builder.create<fir::IfOp>( 4599 loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), 4600 /*withElseRegion=*/true); 4601 builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); 4602 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 4603 builder.create<fir::ResultOp>(loc, innerArg); 4604 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 4605 }; 4606 for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) 4607 if (const auto *e = maskExprs[i]) 4608 genFalseBlock(e, genCond(e, iters)); 4609 4610 // The last condition is either non-negated or unconditionally negated. 4611 if (const auto *e = maskExprs[size]) 4612 genTrueBlock(e, genCond(e, iters)); 4613 } 4614 } 4615 4616 // We're ready to lower the body (an assignment statement) for this context 4617 // of loop nests at this point. 4618 return {iters, afterLoopNest}; 4619 } 4620 4621 fir::ArrayLoadOp 4622 createAndLoadSomeArrayTemp(mlir::Type type, 4623 llvm::ArrayRef<mlir::Value> shape) { 4624 if (ccLoadDest.hasValue()) 4625 return ccLoadDest.getValue()(shape); 4626 auto seqTy = type.dyn_cast<fir::SequenceType>(); 4627 assert(seqTy && "must be an array"); 4628 mlir::Location loc = getLoc(); 4629 // TODO: Need to thread the LEN parameters here. For character, they may 4630 // differ from the operands length (e.g concatenation). So the array loads 4631 // type parameters are not enough. 4632 if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) 4633 if (charTy.hasDynamicLen()) 4634 TODO(loc, "character array expression temp with dynamic length"); 4635 if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>()) 4636 if (recTy.getNumLenParams() > 0) 4637 TODO(loc, "derived type array expression temp with LEN parameters"); 4638 if (mlir::Type eleTy = fir::unwrapSequenceType(type); 4639 fir::isRecordWithAllocatableMember(eleTy)) 4640 TODO(loc, "creating an array temp where the element type has " 4641 "allocatable members"); 4642 mlir::Value temp = seqTy.hasConstantShape() 4643 ? builder.create<fir::AllocMemOp>(loc, type) 4644 : builder.create<fir::AllocMemOp>( 4645 loc, type, ".array.expr", llvm::None, shape); 4646 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 4647 stmtCtx.attachCleanup( 4648 [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); }); 4649 mlir::Value shapeOp = genShapeOp(shape); 4650 return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp, 4651 /*slice=*/mlir::Value{}, 4652 llvm::None); 4653 } 4654 4655 static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder, 4656 llvm::ArrayRef<mlir::Value> shape) { 4657 mlir::IndexType idxTy = builder.getIndexType(); 4658 llvm::SmallVector<mlir::Value> idxShape; 4659 for (auto s : shape) 4660 idxShape.push_back(builder.createConvert(loc, idxTy, s)); 4661 auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size()); 4662 return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape); 4663 } 4664 4665 fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) { 4666 return genShapeOp(getLoc(), builder, shape); 4667 } 4668 4669 //===--------------------------------------------------------------------===// 4670 // Expression traversal and lowering. 4671 //===--------------------------------------------------------------------===// 4672 4673 /// Lower the expression, \p x, in a scalar context. 4674 template <typename A> 4675 ExtValue asScalar(const A &x) { 4676 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x); 4677 } 4678 4679 /// Lower the expression, \p x, in a scalar context. If this is an explicit 4680 /// space, the expression may be scalar and refer to an array. We want to 4681 /// raise the array access to array operations in FIR to analyze potential 4682 /// conflicts even when the result is a scalar element. 4683 template <typename A> 4684 ExtValue asScalarArray(const A &x) { 4685 return explicitSpaceIsActive() && !isPointerAssignment() 4686 ? genarr(x)(IterationSpace{}) 4687 : asScalar(x); 4688 } 4689 4690 /// Lower the expression in a scalar context to a memory reference. 4691 template <typename A> 4692 ExtValue asScalarRef(const A &x) { 4693 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x); 4694 } 4695 4696 /// Lower an expression without dereferencing any indirection that may be 4697 /// a nullptr (because this is an absent optional or unallocated/disassociated 4698 /// descriptor). The returned expression cannot be addressed directly, it is 4699 /// meant to inquire about its status before addressing the related entity. 4700 template <typename A> 4701 ExtValue asInquired(const A &x) { 4702 return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx} 4703 .lowerIntrinsicArgumentAsInquired(x); 4704 } 4705 4706 /// Some temporaries are allocated on an element-by-element basis during the 4707 /// array expression evaluation. Collect the cleanups here so the resources 4708 /// can be freed before the next loop iteration, avoiding memory leaks. etc. 4709 Fortran::lower::StatementContext &getElementCtx() { 4710 if (!elementCtx) { 4711 stmtCtx.pushScope(); 4712 elementCtx = true; 4713 } 4714 return stmtCtx; 4715 } 4716 4717 /// If there were temporaries created for this element evaluation, finalize 4718 /// and deallocate the resources now. This should be done just prior the the 4719 /// fir::ResultOp at the end of the innermost loop. 4720 void finalizeElementCtx() { 4721 if (elementCtx) { 4722 stmtCtx.finalize(/*popScope=*/true); 4723 elementCtx = false; 4724 } 4725 } 4726 4727 /// Lower an elemental function array argument. This ensures array 4728 /// sub-expressions that are not variables and must be passed by address 4729 /// are lowered by value and placed in memory. 4730 template <typename A> 4731 CC genElementalArgument(const A &x) { 4732 // Ensure the returned element is in memory if this is what was requested. 4733 if ((semant == ConstituentSemantics::RefOpaque || 4734 semant == ConstituentSemantics::DataAddr || 4735 semant == ConstituentSemantics::ByValueArg)) { 4736 if (!Fortran::evaluate::IsVariable(x)) { 4737 PushSemantics(ConstituentSemantics::DataValue); 4738 CC cc = genarr(x); 4739 mlir::Location loc = getLoc(); 4740 if (isParenthesizedVariable(x)) { 4741 // Parenthesised variables are lowered to a reference to the variable 4742 // storage. When passing it as an argument, a copy must be passed. 4743 return [=](IterSpace iters) -> ExtValue { 4744 return createInMemoryScalarCopy(builder, loc, cc(iters)); 4745 }; 4746 } 4747 mlir::Type storageType = 4748 fir::unwrapSequenceType(converter.genType(toEvExpr(x))); 4749 return [=](IterSpace iters) -> ExtValue { 4750 return placeScalarValueInMemory(builder, loc, cc(iters), storageType); 4751 }; 4752 } 4753 } 4754 return genarr(x); 4755 } 4756 4757 // A reference to a Fortran elemental intrinsic or intrinsic module procedure. 4758 CC genElementalIntrinsicProcRef( 4759 const Fortran::evaluate::ProcedureRef &procRef, 4760 llvm::Optional<mlir::Type> retTy, 4761 llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = 4762 llvm::None) { 4763 4764 llvm::SmallVector<CC> operands; 4765 std::string name = 4766 intrinsic ? intrinsic->name 4767 : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); 4768 const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering = 4769 Fortran::lower::getIntrinsicArgumentLowering(name); 4770 mlir::Location loc = getLoc(); 4771 if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( 4772 procRef, *intrinsic, converter)) { 4773 using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>; 4774 llvm::SmallVector<CcPairT> operands; 4775 auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { 4776 if (expr.Rank() == 0) { 4777 ExtValue optionalArg = this->asInquired(expr); 4778 mlir::Value isPresent = 4779 genActualIsPresentTest(builder, loc, optionalArg); 4780 operands.emplace_back( 4781 [=](IterSpace iters) -> ExtValue { 4782 return genLoad(builder, loc, optionalArg); 4783 }, 4784 isPresent); 4785 } else { 4786 auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr); 4787 operands.emplace_back(cc, isPresent); 4788 } 4789 }; 4790 auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) { 4791 PushSemantics(ConstituentSemantics::RefTransparent); 4792 operands.emplace_back(genElementalArgument(expr), llvm::None); 4793 }; 4794 Fortran::lower::prepareCustomIntrinsicArgument( 4795 procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg, 4796 converter); 4797 4798 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 4799 return [=](IterSpace iters) -> ExtValue { 4800 auto getArgument = [&](std::size_t i) -> ExtValue { 4801 return operands[i].first(iters); 4802 }; 4803 auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> { 4804 return operands[i].second; 4805 }; 4806 return Fortran::lower::lowerCustomIntrinsic( 4807 *bldr, loc, name, retTy, isPresent, getArgument, operands.size(), 4808 getElementCtx()); 4809 }; 4810 } 4811 /// Otherwise, pre-lower arguments and use intrinsic lowering utility. 4812 for (const auto &arg : llvm::enumerate(procRef.arguments())) { 4813 const auto *expr = 4814 Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); 4815 if (!expr) { 4816 // Absent optional. 4817 operands.emplace_back([=](IterSpace) { return mlir::Value{}; }); 4818 } else if (!argLowering) { 4819 // No argument lowering instruction, lower by value. 4820 PushSemantics(ConstituentSemantics::RefTransparent); 4821 operands.emplace_back(genElementalArgument(*expr)); 4822 } else { 4823 // Ad-hoc argument lowering handling. 4824 Fortran::lower::ArgLoweringRule argRules = 4825 Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index()); 4826 if (argRules.handleDynamicOptional && 4827 Fortran::evaluate::MayBePassedAsAbsentOptional( 4828 *expr, converter.getFoldingContext())) { 4829 // Currently, there is not elemental intrinsic that requires lowering 4830 // a potentially absent argument to something else than a value (apart 4831 // from character MAX/MIN that are handled elsewhere.) 4832 if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value) 4833 TODO(loc, "lowering non trivial optional elemental intrinsic array " 4834 "argument"); 4835 PushSemantics(ConstituentSemantics::RefTransparent); 4836 operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr)); 4837 continue; 4838 } 4839 switch (argRules.lowerAs) { 4840 case Fortran::lower::LowerIntrinsicArgAs::Value: { 4841 PushSemantics(ConstituentSemantics::RefTransparent); 4842 operands.emplace_back(genElementalArgument(*expr)); 4843 } break; 4844 case Fortran::lower::LowerIntrinsicArgAs::Addr: { 4845 // Note: assume does not have Fortran VALUE attribute semantics. 4846 PushSemantics(ConstituentSemantics::RefOpaque); 4847 operands.emplace_back(genElementalArgument(*expr)); 4848 } break; 4849 case Fortran::lower::LowerIntrinsicArgAs::Box: { 4850 PushSemantics(ConstituentSemantics::RefOpaque); 4851 auto lambda = genElementalArgument(*expr); 4852 operands.emplace_back([=](IterSpace iters) { 4853 return builder.createBox(loc, lambda(iters)); 4854 }); 4855 } break; 4856 case Fortran::lower::LowerIntrinsicArgAs::Inquired: 4857 TODO(loc, "intrinsic function with inquired argument"); 4858 break; 4859 } 4860 } 4861 } 4862 4863 // Let the intrinsic library lower the intrinsic procedure call 4864 return [=](IterSpace iters) { 4865 llvm::SmallVector<ExtValue> args; 4866 for (const auto &cc : operands) 4867 args.push_back(cc(iters)); 4868 return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args, 4869 getElementCtx()); 4870 }; 4871 } 4872 4873 /// Lower a procedure reference to a user-defined elemental procedure. 4874 CC genElementalUserDefinedProcRef( 4875 const Fortran::evaluate::ProcedureRef &procRef, 4876 llvm::Optional<mlir::Type> retTy) { 4877 using PassBy = Fortran::lower::CallerInterface::PassEntityBy; 4878 4879 // 10.1.4 p5. Impure elemental procedures must be called in element order. 4880 if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol()) 4881 if (!Fortran::semantics::IsPureProcedure(*procSym)) 4882 setUnordered(false); 4883 4884 Fortran::lower::CallerInterface caller(procRef, converter); 4885 llvm::SmallVector<CC> operands; 4886 operands.reserve(caller.getPassedArguments().size()); 4887 mlir::Location loc = getLoc(); 4888 mlir::FunctionType callSiteType = caller.genFunctionType(); 4889 for (const Fortran::lower::CallInterface< 4890 Fortran::lower::CallerInterface>::PassedEntity &arg : 4891 caller.getPassedArguments()) { 4892 // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout) 4893 // arguments must be called in element order. 4894 if (arg.mayBeModifiedByCall()) 4895 setUnordered(false); 4896 const auto *actual = arg.entity; 4897 mlir::Type argTy = callSiteType.getInput(arg.firArgument); 4898 if (!actual) { 4899 // Optional dummy argument for which there is no actual argument. 4900 auto absent = builder.create<fir::AbsentOp>(loc, argTy); 4901 operands.emplace_back([=](IterSpace) { return absent; }); 4902 continue; 4903 } 4904 const auto *expr = actual->UnwrapExpr(); 4905 if (!expr) 4906 TODO(loc, "assumed type actual argument lowering"); 4907 4908 LLVM_DEBUG(expr->AsFortran(llvm::dbgs() 4909 << "argument: " << arg.firArgument << " = [") 4910 << "]\n"); 4911 if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional( 4912 *expr, converter.getFoldingContext())) 4913 TODO(loc, 4914 "passing dynamically optional argument to elemental procedures"); 4915 switch (arg.passBy) { 4916 case PassBy::Value: { 4917 // True pass-by-value semantics. 4918 PushSemantics(ConstituentSemantics::RefTransparent); 4919 operands.emplace_back(genElementalArgument(*expr)); 4920 } break; 4921 case PassBy::BaseAddressValueAttribute: { 4922 // VALUE attribute or pass-by-reference to a copy semantics. (byval*) 4923 if (isArray(*expr)) { 4924 PushSemantics(ConstituentSemantics::ByValueArg); 4925 operands.emplace_back(genElementalArgument(*expr)); 4926 } else { 4927 // Store scalar value in a temp to fulfill VALUE attribute. 4928 mlir::Value val = fir::getBase(asScalar(*expr)); 4929 mlir::Value temp = builder.createTemporary( 4930 loc, val.getType(), 4931 llvm::ArrayRef<mlir::NamedAttribute>{ 4932 Fortran::lower::getAdaptToByRefAttr(builder)}); 4933 builder.create<fir::StoreOp>(loc, val, temp); 4934 operands.emplace_back( 4935 [=](IterSpace iters) -> ExtValue { return temp; }); 4936 } 4937 } break; 4938 case PassBy::BaseAddress: { 4939 if (isArray(*expr)) { 4940 PushSemantics(ConstituentSemantics::RefOpaque); 4941 operands.emplace_back(genElementalArgument(*expr)); 4942 } else { 4943 ExtValue exv = asScalarRef(*expr); 4944 operands.emplace_back([=](IterSpace iters) { return exv; }); 4945 } 4946 } break; 4947 case PassBy::CharBoxValueAttribute: { 4948 if (isArray(*expr)) { 4949 PushSemantics(ConstituentSemantics::DataValue); 4950 auto lambda = genElementalArgument(*expr); 4951 operands.emplace_back([=](IterSpace iters) { 4952 return fir::factory::CharacterExprHelper{builder, loc} 4953 .createTempFrom(lambda(iters)); 4954 }); 4955 } else { 4956 fir::factory::CharacterExprHelper helper(builder, loc); 4957 fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr)); 4958 operands.emplace_back( 4959 [=](IterSpace iters) -> ExtValue { return argVal; }); 4960 } 4961 } break; 4962 case PassBy::BoxChar: { 4963 PushSemantics(ConstituentSemantics::RefOpaque); 4964 operands.emplace_back(genElementalArgument(*expr)); 4965 } break; 4966 case PassBy::AddressAndLength: 4967 // PassBy::AddressAndLength is only used for character results. Results 4968 // are not handled here. 4969 fir::emitFatalError( 4970 loc, "unexpected PassBy::AddressAndLength in elemental call"); 4971 break; 4972 case PassBy::CharProcTuple: { 4973 ExtValue argRef = asScalarRef(*expr); 4974 mlir::Value tuple = createBoxProcCharTuple( 4975 converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); 4976 operands.emplace_back( 4977 [=](IterSpace iters) -> ExtValue { return tuple; }); 4978 } break; 4979 case PassBy::Box: 4980 case PassBy::MutableBox: 4981 // See C15100 and C15101 4982 fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE"); 4983 } 4984 } 4985 4986 if (caller.getIfIndirectCallSymbol()) 4987 fir::emitFatalError(loc, "cannot be indirect call"); 4988 4989 // The lambda is mutable so that `caller` copy can be modified inside it. 4990 return 4991 [=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue { 4992 for (const auto &[cc, argIface] : 4993 llvm::zip(operands, caller.getPassedArguments())) { 4994 auto exv = cc(iters); 4995 auto arg = exv.match( 4996 [&](const fir::CharBoxValue &cb) -> mlir::Value { 4997 return fir::factory::CharacterExprHelper{builder, loc} 4998 .createEmbox(cb); 4999 }, 5000 [&](const auto &) { return fir::getBase(exv); }); 5001 caller.placeInput(argIface, arg); 5002 } 5003 return ScalarExprLowering{loc, converter, symMap, getElementCtx()} 5004 .genCallOpAndResult(caller, callSiteType, retTy); 5005 }; 5006 } 5007 5008 /// Generate a procedure reference. This code is shared for both functions and 5009 /// subroutines, the difference being reflected by `retTy`. 5010 CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef, 5011 llvm::Optional<mlir::Type> retTy) { 5012 mlir::Location loc = getLoc(); 5013 if (procRef.IsElemental()) { 5014 if (const Fortran::evaluate::SpecificIntrinsic *intrin = 5015 procRef.proc().GetSpecificIntrinsic()) { 5016 // All elemental intrinsic functions are pure and cannot modify their 5017 // arguments. The only elemental subroutine, MVBITS has an Intent(inout) 5018 // argument. So for this last one, loops must be in element order 5019 // according to 15.8.3 p1. 5020 if (!retTy) 5021 setUnordered(false); 5022 5023 // Elemental intrinsic call. 5024 // The intrinsic procedure is called once per element of the array. 5025 return genElementalIntrinsicProcRef(procRef, retTy, *intrin); 5026 } 5027 if (isIntrinsicModuleProcRef(procRef)) 5028 return genElementalIntrinsicProcRef(procRef, retTy); 5029 if (ScalarExprLowering::isStatementFunctionCall(procRef)) 5030 fir::emitFatalError(loc, "statement function cannot be elemental"); 5031 5032 // Elemental call. 5033 // The procedure is called once per element of the array argument(s). 5034 return genElementalUserDefinedProcRef(procRef, retTy); 5035 } 5036 5037 // Transformational call. 5038 // The procedure is called once and produces a value of rank > 0. 5039 if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = 5040 procRef.proc().GetSpecificIntrinsic()) { 5041 if (explicitSpaceIsActive() && procRef.Rank() == 0) { 5042 // Elide any implicit loop iters. 5043 return [=, &procRef](IterSpace) { 5044 return ScalarExprLowering{loc, converter, symMap, stmtCtx} 5045 .genIntrinsicRef(procRef, retTy, *intrinsic); 5046 }; 5047 } 5048 return genarr( 5049 ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef( 5050 procRef, retTy, *intrinsic)); 5051 } 5052 5053 const bool isPtrAssn = isPointerAssignment(); 5054 if (explicitSpaceIsActive() && procRef.Rank() == 0) { 5055 // Elide any implicit loop iters. 5056 return [=, &procRef](IterSpace) { 5057 ScalarExprLowering sel(loc, converter, symMap, stmtCtx); 5058 return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) 5059 : sel.genProcedureRef(procRef, retTy); 5060 }; 5061 } 5062 // In the default case, the call can be hoisted out of the loop nest. Apply 5063 // the iterations to the result, which may be an array value. 5064 ScalarExprLowering sel(loc, converter, symMap, stmtCtx); 5065 auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) 5066 : sel.genProcedureRef(procRef, retTy); 5067 return genarr(exv); 5068 } 5069 5070 CC genarr(const Fortran::evaluate::ProcedureDesignator &) { 5071 TODO(getLoc(), "procedure designator"); 5072 } 5073 CC genarr(const Fortran::evaluate::ProcedureRef &x) { 5074 if (x.hasAlternateReturns()) 5075 fir::emitFatalError(getLoc(), 5076 "array procedure reference with alt-return"); 5077 return genProcRef(x, llvm::None); 5078 } 5079 template <typename A> 5080 CC genScalarAndForwardValue(const A &x) { 5081 ExtValue result = asScalar(x); 5082 return [=](IterSpace) { return result; }; 5083 } 5084 template <typename A, typename = std::enable_if_t<Fortran::common::HasMember< 5085 A, Fortran::evaluate::TypelessExpression>>> 5086 CC genarr(const A &x) { 5087 return genScalarAndForwardValue(x); 5088 } 5089 5090 template <typename A> 5091 CC genarr(const Fortran::evaluate::Expr<A> &x) { 5092 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x)); 5093 if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) || 5094 isElementalProcWithArrayArgs(x)) 5095 return std::visit([&](const auto &e) { return genarr(e); }, x.u); 5096 if (explicitSpaceIsActive()) { 5097 assert(!isArray(x) && !isLeftHandSide()); 5098 auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u); 5099 auto result = cc(IterationSpace{}); 5100 return [=](IterSpace) { return result; }; 5101 } 5102 return genScalarAndForwardValue(x); 5103 } 5104 5105 // Converting a value of memory bound type requires creating a temp and 5106 // copying the value. 5107 static ExtValue convertAdjustedType(fir::FirOpBuilder &builder, 5108 mlir::Location loc, mlir::Type toType, 5109 const ExtValue &exv) { 5110 return exv.match( 5111 [&](const fir::CharBoxValue &cb) -> ExtValue { 5112 mlir::Value len = cb.getLen(); 5113 auto mem = 5114 builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len}); 5115 fir::CharBoxValue result(mem, len); 5116 fir::factory::CharacterExprHelper{builder, loc}.createAssign( 5117 ExtValue{result}, exv); 5118 return result; 5119 }, 5120 [&](const auto &) -> ExtValue { 5121 fir::emitFatalError(loc, "convert on adjusted extended value"); 5122 }); 5123 } 5124 template <Fortran::common::TypeCategory TC1, int KIND, 5125 Fortran::common::TypeCategory TC2> 5126 CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, 5127 TC2> &x) { 5128 mlir::Location loc = getLoc(); 5129 auto lambda = genarr(x.left()); 5130 mlir::Type ty = converter.genType(TC1, KIND); 5131 return [=](IterSpace iters) -> ExtValue { 5132 auto exv = lambda(iters); 5133 mlir::Value val = fir::getBase(exv); 5134 auto valTy = val.getType(); 5135 if (elementTypeWasAdjusted(valTy) && 5136 !(fir::isa_ref_type(valTy) && fir::isa_integer(ty))) 5137 return convertAdjustedType(builder, loc, ty, exv); 5138 return builder.createConvert(loc, ty, val); 5139 }; 5140 } 5141 5142 template <int KIND> 5143 CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) { 5144 mlir::Location loc = getLoc(); 5145 auto lambda = genarr(x.left()); 5146 bool isImagPart = x.isImaginaryPart; 5147 return [=](IterSpace iters) -> ExtValue { 5148 mlir::Value lhs = fir::getBase(lambda(iters)); 5149 return fir::factory::Complex{builder, loc}.extractComplexPart(lhs, 5150 isImagPart); 5151 }; 5152 } 5153 5154 template <typename T> 5155 CC genarr(const Fortran::evaluate::Parentheses<T> &x) { 5156 mlir::Location loc = getLoc(); 5157 if (isReferentiallyOpaque()) { 5158 // Context is a call argument in, for example, an elemental procedure 5159 // call. TODO: all array arguments should use array_load, array_access, 5160 // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have 5161 // array_merge_store ops. 5162 TODO(loc, "parentheses on argument in elemental call"); 5163 } 5164 auto f = genarr(x.left()); 5165 return [=](IterSpace iters) -> ExtValue { 5166 auto val = f(iters); 5167 mlir::Value base = fir::getBase(val); 5168 auto newBase = 5169 builder.create<fir::NoReassocOp>(loc, base.getType(), base); 5170 return fir::substBase(val, newBase); 5171 }; 5172 } 5173 template <int KIND> 5174 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5175 Fortran::common::TypeCategory::Integer, KIND>> &x) { 5176 mlir::Location loc = getLoc(); 5177 auto f = genarr(x.left()); 5178 return [=](IterSpace iters) -> ExtValue { 5179 mlir::Value val = fir::getBase(f(iters)); 5180 mlir::Type ty = 5181 converter.genType(Fortran::common::TypeCategory::Integer, KIND); 5182 mlir::Value zero = builder.createIntegerConstant(loc, ty, 0); 5183 return builder.create<mlir::arith::SubIOp>(loc, zero, val); 5184 }; 5185 } 5186 template <int KIND> 5187 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5188 Fortran::common::TypeCategory::Real, KIND>> &x) { 5189 mlir::Location loc = getLoc(); 5190 auto f = genarr(x.left()); 5191 return [=](IterSpace iters) -> ExtValue { 5192 return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters))); 5193 }; 5194 } 5195 template <int KIND> 5196 CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< 5197 Fortran::common::TypeCategory::Complex, KIND>> &x) { 5198 mlir::Location loc = getLoc(); 5199 auto f = genarr(x.left()); 5200 return [=](IterSpace iters) -> ExtValue { 5201 return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters))); 5202 }; 5203 } 5204 5205 //===--------------------------------------------------------------------===// 5206 // Binary elemental ops 5207 //===--------------------------------------------------------------------===// 5208 5209 template <typename OP, typename A> 5210 CC createBinaryOp(const A &evEx) { 5211 mlir::Location loc = getLoc(); 5212 auto lambda = genarr(evEx.left()); 5213 auto rf = genarr(evEx.right()); 5214 return [=](IterSpace iters) -> ExtValue { 5215 mlir::Value left = fir::getBase(lambda(iters)); 5216 mlir::Value right = fir::getBase(rf(iters)); 5217 return builder.create<OP>(loc, left, right); 5218 }; 5219 } 5220 5221 #undef GENBIN 5222 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ 5223 template <int KIND> \ 5224 CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ 5225 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ 5226 return createBinaryOp<GenBinFirOp>(x); \ 5227 } 5228 5229 GENBIN(Add, Integer, mlir::arith::AddIOp) 5230 GENBIN(Add, Real, mlir::arith::AddFOp) 5231 GENBIN(Add, Complex, fir::AddcOp) 5232 GENBIN(Subtract, Integer, mlir::arith::SubIOp) 5233 GENBIN(Subtract, Real, mlir::arith::SubFOp) 5234 GENBIN(Subtract, Complex, fir::SubcOp) 5235 GENBIN(Multiply, Integer, mlir::arith::MulIOp) 5236 GENBIN(Multiply, Real, mlir::arith::MulFOp) 5237 GENBIN(Multiply, Complex, fir::MulcOp) 5238 GENBIN(Divide, Integer, mlir::arith::DivSIOp) 5239 GENBIN(Divide, Real, mlir::arith::DivFOp) 5240 GENBIN(Divide, Complex, fir::DivcOp) 5241 5242 template <Fortran::common::TypeCategory TC, int KIND> 5243 CC genarr( 5244 const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { 5245 mlir::Location loc = getLoc(); 5246 mlir::Type ty = converter.genType(TC, KIND); 5247 auto lf = genarr(x.left()); 5248 auto rf = genarr(x.right()); 5249 return [=](IterSpace iters) -> ExtValue { 5250 mlir::Value lhs = fir::getBase(lf(iters)); 5251 mlir::Value rhs = fir::getBase(rf(iters)); 5252 return Fortran::lower::genPow(builder, loc, ty, lhs, rhs); 5253 }; 5254 } 5255 template <Fortran::common::TypeCategory TC, int KIND> 5256 CC genarr( 5257 const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { 5258 mlir::Location loc = getLoc(); 5259 auto lf = genarr(x.left()); 5260 auto rf = genarr(x.right()); 5261 switch (x.ordering) { 5262 case Fortran::evaluate::Ordering::Greater: 5263 return [=](IterSpace iters) -> ExtValue { 5264 mlir::Value lhs = fir::getBase(lf(iters)); 5265 mlir::Value rhs = fir::getBase(rf(iters)); 5266 return Fortran::lower::genMax(builder, loc, 5267 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 5268 }; 5269 case Fortran::evaluate::Ordering::Less: 5270 return [=](IterSpace iters) -> ExtValue { 5271 mlir::Value lhs = fir::getBase(lf(iters)); 5272 mlir::Value rhs = fir::getBase(rf(iters)); 5273 return Fortran::lower::genMin(builder, loc, 5274 llvm::ArrayRef<mlir::Value>{lhs, rhs}); 5275 }; 5276 case Fortran::evaluate::Ordering::Equal: 5277 llvm_unreachable("Equal is not a valid ordering in this context"); 5278 } 5279 llvm_unreachable("unknown ordering"); 5280 } 5281 template <Fortran::common::TypeCategory TC, int KIND> 5282 CC genarr( 5283 const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> 5284 &x) { 5285 mlir::Location loc = getLoc(); 5286 auto ty = converter.genType(TC, KIND); 5287 auto lf = genarr(x.left()); 5288 auto rf = genarr(x.right()); 5289 return [=](IterSpace iters) { 5290 mlir::Value lhs = fir::getBase(lf(iters)); 5291 mlir::Value rhs = fir::getBase(rf(iters)); 5292 return Fortran::lower::genPow(builder, loc, ty, lhs, rhs); 5293 }; 5294 } 5295 template <int KIND> 5296 CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) { 5297 mlir::Location loc = getLoc(); 5298 auto lf = genarr(x.left()); 5299 auto rf = genarr(x.right()); 5300 return [=](IterSpace iters) -> ExtValue { 5301 mlir::Value lhs = fir::getBase(lf(iters)); 5302 mlir::Value rhs = fir::getBase(rf(iters)); 5303 return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs); 5304 }; 5305 } 5306 5307 /// Fortran's concatenation operator `//`. 5308 template <int KIND> 5309 CC genarr(const Fortran::evaluate::Concat<KIND> &x) { 5310 mlir::Location loc = getLoc(); 5311 auto lf = genarr(x.left()); 5312 auto rf = genarr(x.right()); 5313 return [=](IterSpace iters) -> ExtValue { 5314 auto lhs = lf(iters); 5315 auto rhs = rf(iters); 5316 const fir::CharBoxValue *lchr = lhs.getCharBox(); 5317 const fir::CharBoxValue *rchr = rhs.getCharBox(); 5318 if (lchr && rchr) { 5319 return fir::factory::CharacterExprHelper{builder, loc} 5320 .createConcatenate(*lchr, *rchr); 5321 } 5322 TODO(loc, "concat on unexpected extended values"); 5323 return mlir::Value{}; 5324 }; 5325 } 5326 5327 template <int KIND> 5328 CC genarr(const Fortran::evaluate::SetLength<KIND> &x) { 5329 auto lf = genarr(x.left()); 5330 mlir::Value rhs = fir::getBase(asScalar(x.right())); 5331 return [=](IterSpace iters) -> ExtValue { 5332 mlir::Value lhs = fir::getBase(lf(iters)); 5333 return fir::CharBoxValue{lhs, rhs}; 5334 }; 5335 } 5336 5337 template <typename A> 5338 CC genarr(const Fortran::evaluate::Constant<A> &x) { 5339 if (x.Rank() == 0) 5340 return genScalarAndForwardValue(x); 5341 mlir::Location loc = getLoc(); 5342 mlir::IndexType idxTy = builder.getIndexType(); 5343 mlir::Type arrTy = converter.genType(toEvExpr(x)); 5344 std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x); 5345 fir::GlobalOp global = builder.getNamedGlobal(globalName); 5346 if (!global) { 5347 mlir::Type symTy = arrTy; 5348 mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy(); 5349 // If we have a rank-1 array of integer, real, or logical, then we can 5350 // create a global array with the dense attribute. 5351 // 5352 // The mlir tensor type can only handle integer, real, or logical. It 5353 // does not currently support nested structures which is required for 5354 // complex. 5355 // 5356 // Also, we currently handle just rank-1 since tensor type assumes 5357 // row major array ordering. We will need to reorder the dimensions 5358 // in the tensor type to support Fortran's column major array ordering. 5359 // How to create this tensor type is to be determined. 5360 if (x.Rank() == 1 && 5361 eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>()) 5362 global = Fortran::lower::createDenseGlobal( 5363 loc, arrTy, globalName, builder.createInternalLinkage(), true, 5364 toEvExpr(x), converter); 5365 // Note: If call to createDenseGlobal() returns 0, then call 5366 // createGlobalConstant() below. 5367 if (!global) 5368 global = builder.createGlobalConstant( 5369 loc, arrTy, globalName, 5370 [&](fir::FirOpBuilder &builder) { 5371 Fortran::lower::StatementContext stmtCtx( 5372 /*cleanupProhibited=*/true); 5373 fir::ExtendedValue result = 5374 Fortran::lower::createSomeInitializerExpression( 5375 loc, converter, toEvExpr(x), symMap, stmtCtx); 5376 mlir::Value castTo = 5377 builder.createConvert(loc, arrTy, fir::getBase(result)); 5378 builder.create<fir::HasValueOp>(loc, castTo); 5379 }, 5380 builder.createInternalLinkage()); 5381 } 5382 auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(), 5383 global.getSymbol()); 5384 auto seqTy = global.getType().cast<fir::SequenceType>(); 5385 llvm::SmallVector<mlir::Value> extents; 5386 for (auto extent : seqTy.getShape()) 5387 extents.push_back(builder.createIntegerConstant(loc, idxTy, extent)); 5388 if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) { 5389 mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(), 5390 charTy.getLen()); 5391 return genarr(fir::CharArrayBoxValue{addr, len, extents}); 5392 } 5393 return genarr(fir::ArrayBoxValue{addr, extents}); 5394 } 5395 5396 //===--------------------------------------------------------------------===// 5397 // A vector subscript expression may be wrapped with a cast to INTEGER*8. 5398 // Get rid of it here so the vector can be loaded. Add it back when 5399 // generating the elemental evaluation (inside the loop nest). 5400 5401 static Fortran::lower::SomeExpr 5402 ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type< 5403 Fortran::common::TypeCategory::Integer, 8>> &x) { 5404 return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u); 5405 } 5406 template <Fortran::common::TypeCategory FROM> 5407 static Fortran::lower::SomeExpr ignoreEvConvert( 5408 const Fortran::evaluate::Convert< 5409 Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>, 5410 FROM> &x) { 5411 return toEvExpr(x.left()); 5412 } 5413 template <typename A> 5414 static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) { 5415 return toEvExpr(x); 5416 } 5417 5418 //===--------------------------------------------------------------------===// 5419 // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can 5420 // be used to determine the lbound, ubound of the vector. 5421 5422 template <typename A> 5423 static const Fortran::semantics::Symbol * 5424 extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) { 5425 return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); }, 5426 x.u); 5427 } 5428 template <typename A> 5429 static const Fortran::semantics::Symbol * 5430 extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) { 5431 return Fortran::evaluate::UnwrapWholeSymbolDataRef(x); 5432 } 5433 template <typename A> 5434 static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) { 5435 return nullptr; 5436 } 5437 5438 //===--------------------------------------------------------------------===// 5439 5440 /// Get the declared lower bound value of the array `x` in dimension `dim`. 5441 /// The argument `one` must be an ssa-value for the constant 1. 5442 mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) { 5443 return fir::factory::readLowerBound(builder, getLoc(), x, dim, one); 5444 } 5445 5446 /// Get the declared upper bound value of the array `x` in dimension `dim`. 5447 /// The argument `one` must be an ssa-value for the constant 1. 5448 mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) { 5449 mlir::Location loc = getLoc(); 5450 mlir::Value lb = getLBound(x, dim, one); 5451 mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim); 5452 auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); 5453 return builder.create<mlir::arith::SubIOp>(loc, add, one); 5454 } 5455 5456 /// Return the extent of the boxed array `x` in dimesion `dim`. 5457 mlir::Value getExtent(const ExtValue &x, unsigned dim) { 5458 return fir::factory::readExtent(builder, getLoc(), x, dim); 5459 } 5460 5461 template <typename A> 5462 ExtValue genArrayBase(const A &base) { 5463 ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx}; 5464 return base.IsSymbol() ? sel.gen(getFirstSym(base)) 5465 : sel.gen(base.GetComponent()); 5466 } 5467 5468 template <typename A> 5469 bool hasEvArrayRef(const A &x) { 5470 struct HasEvArrayRefHelper 5471 : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> { 5472 HasEvArrayRefHelper() 5473 : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {} 5474 using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator(); 5475 bool operator()(const Fortran::evaluate::ArrayRef &) const { 5476 return true; 5477 } 5478 } helper; 5479 return helper(x); 5480 } 5481 5482 CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr, 5483 std::size_t dim) { 5484 PushSemantics(ConstituentSemantics::RefTransparent); 5485 auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr); 5486 llvm::SmallVector<mlir::Value> savedDestShape = destShape; 5487 destShape.clear(); 5488 auto result = genarr(expr); 5489 if (destShape.empty()) 5490 TODO(getLoc(), "expected vector to have an extent"); 5491 assert(destShape.size() == 1 && "vector has rank > 1"); 5492 if (destShape[0] != savedDestShape[dim]) { 5493 // Not the same, so choose the smaller value. 5494 mlir::Location loc = getLoc(); 5495 auto cmp = builder.create<mlir::arith::CmpIOp>( 5496 loc, mlir::arith::CmpIPredicate::sgt, destShape[0], 5497 savedDestShape[dim]); 5498 auto sel = builder.create<mlir::arith::SelectOp>( 5499 loc, cmp, savedDestShape[dim], destShape[0]); 5500 savedDestShape[dim] = sel; 5501 destShape = savedDestShape; 5502 } 5503 return result; 5504 } 5505 5506 /// Generate an access by vector subscript using the index in the iteration 5507 /// vector at `dim`. 5508 mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch, 5509 IterSpace iters, std::size_t dim) { 5510 IterationSpace vecIters(iters, 5511 llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)}); 5512 fir::ExtendedValue fetch = genArrFetch(vecIters); 5513 mlir::IndexType idxTy = builder.getIndexType(); 5514 return builder.createConvert(loc, idxTy, fir::getBase(fetch)); 5515 } 5516 5517 /// When we have an array reference, the expressions specified in each 5518 /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple 5519 /// (loop-invarianet) scalar expressions. This returns the base entity, the 5520 /// resulting type, and a continuation to adjust the default iteration space. 5521 void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv, 5522 const Fortran::evaluate::ArrayRef &x, bool atBase) { 5523 mlir::Location loc = getLoc(); 5524 mlir::IndexType idxTy = builder.getIndexType(); 5525 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 5526 llvm::SmallVector<mlir::Value> &trips = cmptData.trips; 5527 LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n'); 5528 auto &pc = cmptData.pc; 5529 const bool useTripsForSlice = !explicitSpaceIsActive(); 5530 const bool createDestShape = destShape.empty(); 5531 bool useSlice = false; 5532 std::size_t shapeIndex = 0; 5533 for (auto sub : llvm::enumerate(x.subscript())) { 5534 const std::size_t subsIndex = sub.index(); 5535 std::visit( 5536 Fortran::common::visitors{ 5537 [&](const Fortran::evaluate::Triplet &t) { 5538 mlir::Value lowerBound; 5539 if (auto optLo = t.lower()) 5540 lowerBound = fir::getBase(asScalarArray(*optLo)); 5541 else 5542 lowerBound = getLBound(arrayExv, subsIndex, one); 5543 lowerBound = builder.createConvert(loc, idxTy, lowerBound); 5544 mlir::Value stride = fir::getBase(asScalarArray(t.stride())); 5545 stride = builder.createConvert(loc, idxTy, stride); 5546 if (useTripsForSlice || createDestShape) { 5547 // Generate a slice operation for the triplet. The first and 5548 // second position of the triplet may be omitted, and the 5549 // declared lbound and/or ubound expression values, 5550 // respectively, should be used instead. 5551 trips.push_back(lowerBound); 5552 mlir::Value upperBound; 5553 if (auto optUp = t.upper()) 5554 upperBound = fir::getBase(asScalarArray(*optUp)); 5555 else 5556 upperBound = getUBound(arrayExv, subsIndex, one); 5557 upperBound = builder.createConvert(loc, idxTy, upperBound); 5558 trips.push_back(upperBound); 5559 trips.push_back(stride); 5560 if (createDestShape) { 5561 auto extent = builder.genExtentFromTriplet( 5562 loc, lowerBound, upperBound, stride, idxTy); 5563 destShape.push_back(extent); 5564 } 5565 useSlice = true; 5566 } 5567 if (!useTripsForSlice) { 5568 auto currentPC = pc; 5569 pc = [=](IterSpace iters) { 5570 IterationSpace newIters = currentPC(iters); 5571 mlir::Value impliedIter = newIters.iterValue(subsIndex); 5572 // FIXME: must use the lower bound of this component. 5573 auto arrLowerBound = 5574 atBase ? getLBound(arrayExv, subsIndex, one) : one; 5575 auto initial = builder.create<mlir::arith::SubIOp>( 5576 loc, lowerBound, arrLowerBound); 5577 auto prod = builder.create<mlir::arith::MulIOp>( 5578 loc, impliedIter, stride); 5579 auto result = 5580 builder.create<mlir::arith::AddIOp>(loc, initial, prod); 5581 newIters.setIndexValue(subsIndex, result); 5582 return newIters; 5583 }; 5584 } 5585 shapeIndex++; 5586 }, 5587 [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) { 5588 const auto &e = ie.value(); // dereference 5589 if (isArray(e)) { 5590 // This is a vector subscript. Use the index values as read 5591 // from a vector to determine the temporary array value. 5592 // Note: 9.5.3.3.3(3) specifies undefined behavior for 5593 // multiple updates to any specific array element through a 5594 // vector subscript with replicated values. 5595 assert(!isBoxValue() && 5596 "fir.box cannot be created with vector subscripts"); 5597 // TODO: Avoid creating a new evaluate::Expr here 5598 auto arrExpr = ignoreEvConvert(e); 5599 if (createDestShape) { 5600 destShape.push_back(fir::factory::getExtentAtDimension( 5601 loc, builder, arrayExv, subsIndex)); 5602 } 5603 auto genArrFetch = 5604 genVectorSubscriptArrayFetch(arrExpr, shapeIndex); 5605 auto currentPC = pc; 5606 pc = [=](IterSpace iters) { 5607 IterationSpace newIters = currentPC(iters); 5608 auto val = genAccessByVector(loc, genArrFetch, newIters, 5609 subsIndex); 5610 // Value read from vector subscript array and normalized 5611 // using the base array's lower bound value. 5612 mlir::Value lb = fir::factory::readLowerBound( 5613 builder, loc, arrayExv, subsIndex, one); 5614 auto origin = builder.create<mlir::arith::SubIOp>( 5615 loc, idxTy, val, lb); 5616 newIters.setIndexValue(subsIndex, origin); 5617 return newIters; 5618 }; 5619 if (useTripsForSlice) { 5620 LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape = 5621 getShape(arrayOperands.back()); 5622 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 5623 trips.push_back(undef); 5624 trips.push_back(undef); 5625 trips.push_back(undef); 5626 } 5627 shapeIndex++; 5628 } else { 5629 // This is a regular scalar subscript. 5630 if (useTripsForSlice) { 5631 // A regular scalar index, which does not yield an array 5632 // section. Use a degenerate slice operation 5633 // `(e:undef:undef)` in this dimension as a placeholder. 5634 // This does not necessarily change the rank of the original 5635 // array, so the iteration space must also be extended to 5636 // include this expression in this dimension to adjust to 5637 // the array's declared rank. 5638 mlir::Value v = fir::getBase(asScalarArray(e)); 5639 trips.push_back(v); 5640 auto undef = builder.create<fir::UndefOp>(loc, idxTy); 5641 trips.push_back(undef); 5642 trips.push_back(undef); 5643 auto currentPC = pc; 5644 // Cast `e` to index type. 5645 mlir::Value iv = builder.createConvert(loc, idxTy, v); 5646 // Normalize `e` by subtracting the declared lbound. 5647 mlir::Value lb = fir::factory::readLowerBound( 5648 builder, loc, arrayExv, subsIndex, one); 5649 mlir::Value ivAdj = 5650 builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb); 5651 // Add lbound adjusted value of `e` to the iteration vector 5652 // (except when creating a box because the iteration vector 5653 // is empty). 5654 if (!isBoxValue()) 5655 pc = [=](IterSpace iters) { 5656 IterationSpace newIters = currentPC(iters); 5657 newIters.insertIndexValue(subsIndex, ivAdj); 5658 return newIters; 5659 }; 5660 } else { 5661 auto currentPC = pc; 5662 mlir::Value newValue = fir::getBase(asScalarArray(e)); 5663 mlir::Value result = 5664 builder.createConvert(loc, idxTy, newValue); 5665 mlir::Value lb = fir::factory::readLowerBound( 5666 builder, loc, arrayExv, subsIndex, one); 5667 result = builder.create<mlir::arith::SubIOp>(loc, idxTy, 5668 result, lb); 5669 pc = [=](IterSpace iters) { 5670 IterationSpace newIters = currentPC(iters); 5671 newIters.insertIndexValue(subsIndex, result); 5672 return newIters; 5673 }; 5674 } 5675 } 5676 }}, 5677 sub.value().u); 5678 } 5679 if (!useSlice) 5680 trips.clear(); 5681 } 5682 5683 static mlir::Type unwrapBoxEleTy(mlir::Type ty) { 5684 if (auto boxTy = ty.dyn_cast<fir::BoxType>()) 5685 return fir::unwrapRefType(boxTy.getEleTy()); 5686 return ty; 5687 } 5688 5689 llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) { 5690 llvm::SmallVector<mlir::Value> result; 5691 ty = unwrapBoxEleTy(ty); 5692 mlir::Location loc = getLoc(); 5693 mlir::IndexType idxTy = builder.getIndexType(); 5694 for (auto extent : ty.cast<fir::SequenceType>().getShape()) { 5695 auto v = extent == fir::SequenceType::getUnknownExtent() 5696 ? builder.create<fir::UndefOp>(loc, idxTy).getResult() 5697 : builder.createIntegerConstant(loc, idxTy, extent); 5698 result.push_back(v); 5699 } 5700 return result; 5701 } 5702 5703 CC genarr(const Fortran::semantics::SymbolRef &sym, 5704 ComponentPath &components) { 5705 return genarr(sym.get(), components); 5706 } 5707 5708 ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) { 5709 return convertToArrayBoxValue(getLoc(), builder, val, len); 5710 } 5711 5712 CC genarr(const ExtValue &extMemref) { 5713 ComponentPath dummy(/*isImplicit=*/true); 5714 return genarr(extMemref, dummy); 5715 } 5716 5717 // If the slice values are given then use them. Otherwise, generate triples 5718 // that cover the entire shape specified by \p shapeVal. 5719 inline llvm::SmallVector<mlir::Value> 5720 padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) { 5721 llvm::SmallVector<mlir::Value> result; 5722 mlir::Location loc = getLoc(); 5723 if (triples.size()) { 5724 result.assign(triples.begin(), triples.end()); 5725 } else { 5726 auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1); 5727 if (!shapeVal) { 5728 TODO(loc, "shape must be recovered from box"); 5729 } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>( 5730 shapeVal.getDefiningOp())) { 5731 for (auto ext : shapeOp.getExtents()) { 5732 result.push_back(one); 5733 result.push_back(ext); 5734 result.push_back(one); 5735 } 5736 } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>( 5737 shapeVal.getDefiningOp())) { 5738 for (auto [lb, ext] : 5739 llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) { 5740 result.push_back(lb); 5741 result.push_back(ext); 5742 result.push_back(one); 5743 } 5744 } else { 5745 TODO(loc, "shape must be recovered from box"); 5746 } 5747 } 5748 return result; 5749 } 5750 5751 /// Base case of generating an array reference, 5752 CC genarr(const ExtValue &extMemref, ComponentPath &components) { 5753 mlir::Location loc = getLoc(); 5754 mlir::Value memref = fir::getBase(extMemref); 5755 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType()); 5756 assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array"); 5757 mlir::Value shape = builder.createShape(loc, extMemref); 5758 mlir::Value slice; 5759 if (components.isSlice()) { 5760 if (isBoxValue() && components.substring) { 5761 // Append the substring operator to emboxing Op as it will become an 5762 // interior adjustment (add offset, adjust LEN) to the CHARACTER value 5763 // being referenced in the descriptor. 5764 llvm::SmallVector<mlir::Value> substringBounds; 5765 populateBounds(substringBounds, components.substring); 5766 // Convert to (offset, size) 5767 mlir::Type iTy = substringBounds[0].getType(); 5768 if (substringBounds.size() != 2) { 5769 fir::CharacterType charTy = 5770 fir::factory::CharacterExprHelper::getCharType(arrTy); 5771 if (charTy.hasConstantLen()) { 5772 mlir::IndexType idxTy = builder.getIndexType(); 5773 fir::CharacterType::LenType charLen = charTy.getLen(); 5774 mlir::Value lenValue = 5775 builder.createIntegerConstant(loc, idxTy, charLen); 5776 substringBounds.push_back(lenValue); 5777 } else { 5778 llvm::SmallVector<mlir::Value> typeparams = 5779 fir::getTypeParams(extMemref); 5780 substringBounds.push_back(typeparams.back()); 5781 } 5782 } 5783 // Convert the lower bound to 0-based substring. 5784 mlir::Value one = 5785 builder.createIntegerConstant(loc, substringBounds[0].getType(), 1); 5786 substringBounds[0] = 5787 builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one); 5788 // Convert the upper bound to a length. 5789 mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]); 5790 mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0); 5791 auto size = 5792 builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]); 5793 auto cmp = builder.create<mlir::arith::CmpIOp>( 5794 loc, mlir::arith::CmpIPredicate::sgt, size, zero); 5795 // size = MAX(upper - (lower - 1), 0) 5796 substringBounds[1] = 5797 builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero); 5798 slice = builder.create<fir::SliceOp>( 5799 loc, padSlice(components.trips, shape), components.suffixComponents, 5800 substringBounds); 5801 } else { 5802 slice = builder.createSlice(loc, extMemref, components.trips, 5803 components.suffixComponents); 5804 } 5805 if (components.hasComponents()) { 5806 auto seqTy = arrTy.cast<fir::SequenceType>(); 5807 mlir::Type eleTy = 5808 fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents); 5809 if (!eleTy) 5810 fir::emitFatalError(loc, "slicing path is ill-formed"); 5811 if (auto realTy = eleTy.dyn_cast<fir::RealType>()) 5812 eleTy = Fortran::lower::convertReal(realTy.getContext(), 5813 realTy.getFKind()); 5814 5815 // create the type of the projected array. 5816 arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy); 5817 LLVM_DEBUG(llvm::dbgs() 5818 << "type of array projection from component slicing: " 5819 << eleTy << ", " << arrTy << '\n'); 5820 } 5821 } 5822 arrayOperands.push_back(ArrayOperand{memref, shape, slice}); 5823 if (destShape.empty()) 5824 destShape = getShape(arrayOperands.back()); 5825 if (isBoxValue()) { 5826 // Semantics are a reference to a boxed array. 5827 // This case just requires that an embox operation be created to box the 5828 // value. The value of the box is forwarded in the continuation. 5829 mlir::Type reduceTy = reduceRank(arrTy, slice); 5830 auto boxTy = fir::BoxType::get(reduceTy); 5831 if (components.substring) { 5832 // Adjust char length to substring size. 5833 fir::CharacterType charTy = 5834 fir::factory::CharacterExprHelper::getCharType(reduceTy); 5835 auto seqTy = reduceTy.cast<fir::SequenceType>(); 5836 // TODO: Use a constant for fir.char LEN if we can compute it. 5837 boxTy = fir::BoxType::get( 5838 fir::SequenceType::get(fir::CharacterType::getUnknownLen( 5839 builder.getContext(), charTy.getFKind()), 5840 seqTy.getDimension())); 5841 } 5842 mlir::Value embox = 5843 memref.getType().isa<fir::BoxType>() 5844 ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice) 5845 .getResult() 5846 : builder 5847 .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice, 5848 fir::getTypeParams(extMemref)) 5849 .getResult(); 5850 return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); }; 5851 } 5852 auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy(); 5853 if (isReferentiallyOpaque()) { 5854 // Semantics are an opaque reference to an array. 5855 // This case forwards a continuation that will generate the address 5856 // arithmetic to the array element. This does not have copy-in/copy-out 5857 // semantics. No attempt to copy the array value will be made during the 5858 // interpretation of the Fortran statement. 5859 mlir::Type refEleTy = builder.getRefType(eleTy); 5860 return [=](IterSpace iters) -> ExtValue { 5861 // ArrayCoorOp does not expect zero based indices. 5862 llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( 5863 loc, builder, memref.getType(), shape, iters.iterVec()); 5864 mlir::Value coor = builder.create<fir::ArrayCoorOp>( 5865 loc, refEleTy, memref, shape, slice, indices, 5866 fir::getTypeParams(extMemref)); 5867 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 5868 llvm::SmallVector<mlir::Value> substringBounds; 5869 populateBounds(substringBounds, components.substring); 5870 if (!substringBounds.empty()) { 5871 mlir::Value dstLen = fir::factory::genLenOfCharacter( 5872 builder, loc, arrTy.cast<fir::SequenceType>(), memref, 5873 fir::getTypeParams(extMemref), iters.iterVec(), 5874 substringBounds); 5875 fir::CharBoxValue dstChar(coor, dstLen); 5876 return fir::factory::CharacterExprHelper{builder, loc} 5877 .createSubstring(dstChar, substringBounds); 5878 } 5879 } 5880 return fir::factory::arraySectionElementToExtendedValue( 5881 builder, loc, extMemref, coor, slice); 5882 }; 5883 } 5884 auto arrLoad = builder.create<fir::ArrayLoadOp>( 5885 loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref)); 5886 mlir::Value arrLd = arrLoad.getResult(); 5887 if (isProjectedCopyInCopyOut()) { 5888 // Semantics are projected copy-in copy-out. 5889 // The backing store of the destination of an array expression may be 5890 // partially modified. These updates are recorded in FIR by forwarding a 5891 // continuation that generates an `array_update` Op. The destination is 5892 // always loaded at the beginning of the statement and merged at the 5893 // end. 5894 destination = arrLoad; 5895 auto lambda = ccStoreToDest.hasValue() 5896 ? ccStoreToDest.getValue() 5897 : defaultStoreToDestination(components.substring); 5898 return [=](IterSpace iters) -> ExtValue { return lambda(iters); }; 5899 } 5900 if (isCustomCopyInCopyOut()) { 5901 // Create an array_modify to get the LHS element address and indicate 5902 // the assignment, the actual assignment must be implemented in 5903 // ccStoreToDest. 5904 destination = arrLoad; 5905 return [=](IterSpace iters) -> ExtValue { 5906 mlir::Value innerArg = iters.innerArgument(); 5907 mlir::Type resTy = innerArg.getType(); 5908 mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec()); 5909 mlir::Type refEleTy = 5910 fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); 5911 auto arrModify = builder.create<fir::ArrayModifyOp>( 5912 loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(), 5913 destination.getTypeparams()); 5914 return abstractArrayExtValue(arrModify.getResult(1)); 5915 }; 5916 } 5917 if (isCopyInCopyOut()) { 5918 // Semantics are copy-in copy-out. 5919 // The continuation simply forwards the result of the `array_load` Op, 5920 // which is the value of the array as it was when loaded. All data 5921 // references with rank > 0 in an array expression typically have 5922 // copy-in copy-out semantics. 5923 return [=](IterSpace) -> ExtValue { return arrLd; }; 5924 } 5925 llvm::SmallVector<mlir::Value> arrLdTypeParams = 5926 fir::factory::getTypeParams(loc, builder, arrLoad); 5927 if (isValueAttribute()) { 5928 // Semantics are value attribute. 5929 // Here the continuation will `array_fetch` a value from an array and 5930 // then store that value in a temporary. One can thus imitate pass by 5931 // value even when the call is pass by reference. 5932 return [=](IterSpace iters) -> ExtValue { 5933 mlir::Value base; 5934 mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); 5935 if (isAdjustedArrayElementType(eleTy)) { 5936 mlir::Type eleRefTy = builder.getRefType(eleTy); 5937 base = builder.create<fir::ArrayAccessOp>( 5938 loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); 5939 } else { 5940 base = builder.create<fir::ArrayFetchOp>( 5941 loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); 5942 } 5943 mlir::Value temp = builder.createTemporary( 5944 loc, base.getType(), 5945 llvm::ArrayRef<mlir::NamedAttribute>{ 5946 Fortran::lower::getAdaptToByRefAttr(builder)}); 5947 builder.create<fir::StoreOp>(loc, base, temp); 5948 return fir::factory::arraySectionElementToExtendedValue( 5949 builder, loc, extMemref, temp, slice); 5950 }; 5951 } 5952 // In the default case, the array reference forwards an `array_fetch` or 5953 // `array_access` Op in the continuation. 5954 return [=](IterSpace iters) -> ExtValue { 5955 mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); 5956 if (isAdjustedArrayElementType(eleTy)) { 5957 mlir::Type eleRefTy = builder.getRefType(eleTy); 5958 mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>( 5959 loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); 5960 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 5961 llvm::SmallVector<mlir::Value> substringBounds; 5962 populateBounds(substringBounds, components.substring); 5963 if (!substringBounds.empty()) { 5964 mlir::Value dstLen = fir::factory::genLenOfCharacter( 5965 builder, loc, arrLoad, iters.iterVec(), substringBounds); 5966 fir::CharBoxValue dstChar(arrayOp, dstLen); 5967 return fir::factory::CharacterExprHelper{builder, loc} 5968 .createSubstring(dstChar, substringBounds); 5969 } 5970 } 5971 return fir::factory::arraySectionElementToExtendedValue( 5972 builder, loc, extMemref, arrayOp, slice); 5973 } 5974 auto arrFetch = builder.create<fir::ArrayFetchOp>( 5975 loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); 5976 return fir::factory::arraySectionElementToExtendedValue( 5977 builder, loc, extMemref, arrFetch, slice); 5978 }; 5979 } 5980 5981 std::tuple<CC, mlir::Value, mlir::Type> 5982 genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) { 5983 assert(expr.Rank() > 0 && "expr must be an array"); 5984 mlir::Location loc = getLoc(); 5985 ExtValue optionalArg = asInquired(expr); 5986 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); 5987 // Generate an array load and access to an array that may be an absent 5988 // optional or an unallocated optional. 5989 mlir::Value base = getBase(optionalArg); 5990 const bool hasOptionalAttr = 5991 fir::valueHasFirAttribute(base, fir::getOptionalAttrName()); 5992 mlir::Type baseType = fir::unwrapRefType(base.getType()); 5993 const bool isBox = baseType.isa<fir::BoxType>(); 5994 const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject( 5995 expr, converter.getFoldingContext()); 5996 mlir::Type arrType = fir::unwrapPassByRefType(baseType); 5997 mlir::Type eleType = fir::unwrapSequenceType(arrType); 5998 ExtValue exv = optionalArg; 5999 if (hasOptionalAttr && isBox && !isAllocOrPtr) { 6000 // Elemental argument cannot be allocatable or pointers (C15100). 6001 // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and 6002 // Pointer optional arrays cannot be absent. The only kind of entities 6003 // that can get here are optional assumed shape and polymorphic entities. 6004 exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent); 6005 } 6006 // All the properties can be read from any fir.box but the read values may 6007 // be undefined and should only be used inside a fir.if (canBeRead) region. 6008 if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) 6009 exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); 6010 6011 mlir::Value memref = fir::getBase(exv); 6012 mlir::Value shape = builder.createShape(loc, exv); 6013 mlir::Value noSlice; 6014 auto arrLoad = builder.create<fir::ArrayLoadOp>( 6015 loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv)); 6016 mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); 6017 mlir::Value arrLd = arrLoad.getResult(); 6018 // Mark the load to tell later passes it is unsafe to use this array_load 6019 // shape unconditionally. 6020 arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr()); 6021 6022 // Place the array as optional on the arrayOperands stack so that its 6023 // shape will only be used as a fallback to induce the implicit loop nest 6024 // (that is if there is no non optional array arguments). 6025 arrayOperands.push_back( 6026 ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true}); 6027 6028 // By value semantics. 6029 auto cc = [=](IterSpace iters) -> ExtValue { 6030 auto arrFetch = builder.create<fir::ArrayFetchOp>( 6031 loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams); 6032 return fir::factory::arraySectionElementToExtendedValue( 6033 builder, loc, exv, arrFetch, noSlice); 6034 }; 6035 return {cc, isPresent, eleType}; 6036 } 6037 6038 /// Generate a continuation to pass \p expr to an OPTIONAL argument of an 6039 /// elemental procedure. This is meant to handle the cases where \p expr might 6040 /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an 6041 /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can 6042 /// directly be called instead. 6043 CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) { 6044 mlir::Location loc = getLoc(); 6045 // Only by-value numerical and logical so far. 6046 if (semant != ConstituentSemantics::RefTransparent) 6047 TODO(loc, "optional arguments in user defined elemental procedures"); 6048 6049 // Handle scalar argument case (the if-then-else is generated outside of the 6050 // implicit loop nest). 6051 if (expr.Rank() == 0) { 6052 ExtValue optionalArg = asInquired(expr); 6053 mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); 6054 mlir::Value elementValue = 6055 fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent)); 6056 return [=](IterSpace iters) -> ExtValue { return elementValue; }; 6057 } 6058 6059 CC cc; 6060 mlir::Value isPresent; 6061 mlir::Type eleType; 6062 std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr); 6063 return [=](IterSpace iters) -> ExtValue { 6064 mlir::Value elementValue = 6065 builder 6066 .genIfOp(loc, {eleType}, isPresent, 6067 /*withElseRegion=*/true) 6068 .genThen([&]() { 6069 builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters))); 6070 }) 6071 .genElse([&]() { 6072 mlir::Value zero = 6073 fir::factory::createZeroValue(builder, loc, eleType); 6074 builder.create<fir::ResultOp>(loc, zero); 6075 }) 6076 .getResults()[0]; 6077 return elementValue; 6078 }; 6079 } 6080 6081 /// Reduce the rank of a array to be boxed based on the slice's operands. 6082 static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) { 6083 if (slice) { 6084 auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp()); 6085 assert(slOp && "expected slice op"); 6086 auto seqTy = arrTy.dyn_cast<fir::SequenceType>(); 6087 assert(seqTy && "expected array type"); 6088 mlir::Operation::operand_range triples = slOp.getTriples(); 6089 fir::SequenceType::Shape shape; 6090 // reduce the rank for each invariant dimension 6091 for (unsigned i = 1, end = triples.size(); i < end; i += 3) 6092 if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp())) 6093 shape.push_back(fir::SequenceType::getUnknownExtent()); 6094 return fir::SequenceType::get(shape, seqTy.getEleTy()); 6095 } 6096 // not sliced, so no change in rank 6097 return arrTy; 6098 } 6099 6100 /// Example: <code>array%RE</code> 6101 CC genarr(const Fortran::evaluate::ComplexPart &x, 6102 ComponentPath &components) { 6103 components.reversePath.push_back(&x); 6104 return genarr(x.complex(), components); 6105 } 6106 6107 template <typename A> 6108 CC genSlicePath(const A &x, ComponentPath &components) { 6109 return genarr(x, components); 6110 } 6111 6112 CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &, 6113 ComponentPath &components) { 6114 fir::emitFatalError(getLoc(), "substring of static array object"); 6115 } 6116 6117 /// Substrings (see 9.4.1) 6118 CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) { 6119 components.substring = &x; 6120 return std::visit([&](const auto &v) { return genarr(v, components); }, 6121 x.parent()); 6122 } 6123 6124 template <typename T> 6125 CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) { 6126 // Note that it's possible that the function being called returns either an 6127 // array or a scalar. In the first case, use the element type of the array. 6128 return genProcRef( 6129 funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef)))); 6130 } 6131 6132 //===--------------------------------------------------------------------===// 6133 // Array construction 6134 //===--------------------------------------------------------------------===// 6135 6136 /// Target agnostic computation of the size of an element in the array. 6137 /// Returns the size in bytes with type `index` or a null Value if the element 6138 /// size is not constant. 6139 mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy, 6140 mlir::Type resTy) { 6141 mlir::Location loc = getLoc(); 6142 mlir::IndexType idxTy = builder.getIndexType(); 6143 mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1); 6144 if (fir::hasDynamicSize(eleTy)) { 6145 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6146 // Array of char with dynamic LEN parameter. Downcast to an array 6147 // of singleton char, and scale by the len type parameter from 6148 // `exv`. 6149 exv.match( 6150 [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); }, 6151 [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); }, 6152 [&](const fir::BoxValue &box) { 6153 multiplier = fir::factory::CharacterExprHelper(builder, loc) 6154 .readLengthFromBox(box.getAddr()); 6155 }, 6156 [&](const fir::MutableBoxValue &box) { 6157 multiplier = fir::factory::CharacterExprHelper(builder, loc) 6158 .readLengthFromBox(box.getAddr()); 6159 }, 6160 [&](const auto &) { 6161 fir::emitFatalError(loc, 6162 "array constructor element has unknown size"); 6163 }); 6164 fir::CharacterType newEleTy = fir::CharacterType::getSingleton( 6165 eleTy.getContext(), charTy.getFKind()); 6166 if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) { 6167 assert(eleTy == seqTy.getEleTy()); 6168 resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy); 6169 } 6170 eleTy = newEleTy; 6171 } else { 6172 TODO(loc, "dynamic sized type"); 6173 } 6174 } 6175 mlir::Type eleRefTy = builder.getRefType(eleTy); 6176 mlir::Type resRefTy = builder.getRefType(resTy); 6177 mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy); 6178 auto offset = builder.create<fir::CoordinateOp>( 6179 loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier}); 6180 return builder.createConvert(loc, idxTy, offset); 6181 } 6182 6183 /// Get the function signature of the LLVM memcpy intrinsic. 6184 mlir::FunctionType memcpyType() { 6185 return fir::factory::getLlvmMemcpy(builder).getFunctionType(); 6186 } 6187 6188 /// Create a call to the LLVM memcpy intrinsic. 6189 void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) { 6190 mlir::Location loc = getLoc(); 6191 mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder); 6192 mlir::SymbolRefAttr funcSymAttr = 6193 builder.getSymbolRefAttr(memcpyFunc.getName()); 6194 mlir::FunctionType funcTy = memcpyFunc.getFunctionType(); 6195 builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args); 6196 } 6197 6198 // Construct code to check for a buffer overrun and realloc the buffer when 6199 // space is depleted. This is done between each item in the ac-value-list. 6200 mlir::Value growBuffer(mlir::Value mem, mlir::Value needed, 6201 mlir::Value bufferSize, mlir::Value buffSize, 6202 mlir::Value eleSz) { 6203 mlir::Location loc = getLoc(); 6204 mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder); 6205 auto cond = builder.create<mlir::arith::CmpIOp>( 6206 loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed); 6207 auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond, 6208 /*withElseRegion=*/true); 6209 auto insPt = builder.saveInsertionPoint(); 6210 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 6211 // Not enough space, resize the buffer. 6212 mlir::IndexType idxTy = builder.getIndexType(); 6213 mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2); 6214 auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two); 6215 builder.create<fir::StoreOp>(loc, newSz, buffSize); 6216 mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz); 6217 mlir::SymbolRefAttr funcSymAttr = 6218 builder.getSymbolRefAttr(reallocFunc.getName()); 6219 mlir::FunctionType funcTy = reallocFunc.getFunctionType(); 6220 auto newMem = builder.create<fir::CallOp>( 6221 loc, funcTy.getResults(), funcSymAttr, 6222 llvm::ArrayRef<mlir::Value>{ 6223 builder.createConvert(loc, funcTy.getInputs()[0], mem), 6224 builder.createConvert(loc, funcTy.getInputs()[1], byteSz)}); 6225 mlir::Value castNewMem = 6226 builder.createConvert(loc, mem.getType(), newMem.getResult(0)); 6227 builder.create<fir::ResultOp>(loc, castNewMem); 6228 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 6229 // Otherwise, just forward the buffer. 6230 builder.create<fir::ResultOp>(loc, mem); 6231 builder.restoreInsertionPoint(insPt); 6232 return ifOp.getResult(0); 6233 } 6234 6235 /// Copy the next value (or vector of values) into the array being 6236 /// constructed. 6237 mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos, 6238 mlir::Value buffSize, mlir::Value mem, 6239 mlir::Value eleSz, mlir::Type eleTy, 6240 mlir::Type eleRefTy, mlir::Type resTy) { 6241 mlir::Location loc = getLoc(); 6242 auto off = builder.create<fir::LoadOp>(loc, buffPos); 6243 auto limit = builder.create<fir::LoadOp>(loc, buffSize); 6244 mlir::IndexType idxTy = builder.getIndexType(); 6245 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 6246 6247 if (fir::isRecordWithAllocatableMember(eleTy)) 6248 TODO(loc, "deep copy on allocatable members"); 6249 6250 if (!eleSz) { 6251 // Compute the element size at runtime. 6252 assert(fir::hasDynamicSize(eleTy)); 6253 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6254 auto charBytes = 6255 builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8; 6256 mlir::Value bytes = 6257 builder.createIntegerConstant(loc, idxTy, charBytes); 6258 mlir::Value length = fir::getLen(exv); 6259 if (!length) 6260 fir::emitFatalError(loc, "result is not boxed character"); 6261 eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length); 6262 } else { 6263 TODO(loc, "PDT size"); 6264 // Will call the PDT's size function with the type parameters. 6265 } 6266 } 6267 6268 // Compute the coordinate using `fir.coordinate_of`, or, if the type has 6269 // dynamic size, generating the pointer arithmetic. 6270 auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) { 6271 mlir::Type refTy = eleRefTy; 6272 if (fir::hasDynamicSize(eleTy)) { 6273 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6274 // Scale a simple pointer using dynamic length and offset values. 6275 auto chTy = fir::CharacterType::getSingleton(charTy.getContext(), 6276 charTy.getFKind()); 6277 refTy = builder.getRefType(chTy); 6278 mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy)); 6279 buff = builder.createConvert(loc, toTy, buff); 6280 off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz); 6281 } else { 6282 TODO(loc, "PDT offset"); 6283 } 6284 } 6285 auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff, 6286 mlir::ValueRange{off}); 6287 return builder.createConvert(loc, eleRefTy, coor); 6288 }; 6289 6290 // Lambda to lower an abstract array box value. 6291 auto doAbstractArray = [&](const auto &v) { 6292 // Compute the array size. 6293 mlir::Value arrSz = one; 6294 for (auto ext : v.getExtents()) 6295 arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext); 6296 6297 // Grow the buffer as needed. 6298 auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz); 6299 mem = growBuffer(mem, endOff, limit, buffSize, eleSz); 6300 6301 // Copy the elements to the buffer. 6302 mlir::Value byteSz = 6303 builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz); 6304 auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6305 mlir::Value buffi = computeCoordinate(buff, off); 6306 llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( 6307 builder, loc, memcpyType(), buffi, v.getAddr(), byteSz, 6308 /*volatile=*/builder.createBool(loc, false)); 6309 createCallMemcpy(args); 6310 6311 // Save the incremented buffer position. 6312 builder.create<fir::StoreOp>(loc, endOff, buffPos); 6313 }; 6314 6315 // Copy a trivial scalar value into the buffer. 6316 auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) { 6317 // Increment the buffer position. 6318 auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); 6319 6320 // Grow the buffer as needed. 6321 mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); 6322 6323 // Store the element in the buffer. 6324 mlir::Value buff = 6325 builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6326 auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff, 6327 mlir::ValueRange{off}); 6328 fir::factory::genScalarAssignment( 6329 builder, loc, 6330 [&]() -> ExtValue { 6331 if (len) 6332 return fir::CharBoxValue(buffi, len); 6333 return buffi; 6334 }(), 6335 v); 6336 builder.create<fir::StoreOp>(loc, plusOne, buffPos); 6337 }; 6338 6339 // Copy the value. 6340 exv.match( 6341 [&](mlir::Value) { doTrivialScalar(exv); }, 6342 [&](const fir::CharBoxValue &v) { 6343 auto buffer = v.getBuffer(); 6344 if (fir::isa_char(buffer.getType())) { 6345 doTrivialScalar(exv, eleSz); 6346 } else { 6347 // Increment the buffer position. 6348 auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); 6349 6350 // Grow the buffer as needed. 6351 mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); 6352 6353 // Store the element in the buffer. 6354 mlir::Value buff = 6355 builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6356 mlir::Value buffi = computeCoordinate(buff, off); 6357 llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( 6358 builder, loc, memcpyType(), buffi, v.getAddr(), eleSz, 6359 /*volatile=*/builder.createBool(loc, false)); 6360 createCallMemcpy(args); 6361 6362 builder.create<fir::StoreOp>(loc, plusOne, buffPos); 6363 } 6364 }, 6365 [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); }, 6366 [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); }, 6367 [&](const auto &) { 6368 TODO(loc, "unhandled array constructor expression"); 6369 }); 6370 return mem; 6371 } 6372 6373 // Lower the expr cases in an ac-value-list. 6374 template <typename A> 6375 std::pair<ExtValue, bool> 6376 genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type, 6377 mlir::Value, mlir::Value, mlir::Value, 6378 Fortran::lower::StatementContext &stmtCtx) { 6379 if (isArray(x)) 6380 return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)), 6381 /*needCopy=*/true}; 6382 return {asScalar(x), /*needCopy=*/true}; 6383 } 6384 6385 // Lower an ac-implied-do in an ac-value-list. 6386 template <typename A> 6387 std::pair<ExtValue, bool> 6388 genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x, 6389 mlir::Type resTy, mlir::Value mem, 6390 mlir::Value buffPos, mlir::Value buffSize, 6391 Fortran::lower::StatementContext &) { 6392 mlir::Location loc = getLoc(); 6393 mlir::IndexType idxTy = builder.getIndexType(); 6394 mlir::Value lo = 6395 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower()))); 6396 mlir::Value up = 6397 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper()))); 6398 mlir::Value step = 6399 builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride()))); 6400 auto seqTy = resTy.template cast<fir::SequenceType>(); 6401 mlir::Type eleTy = fir::unwrapSequenceType(seqTy); 6402 auto loop = 6403 builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false, 6404 /*finalCount=*/false, mem); 6405 // create a new binding for x.name(), to ac-do-variable, to the iteration 6406 // value. 6407 symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar()); 6408 auto insPt = builder.saveInsertionPoint(); 6409 builder.setInsertionPointToStart(loop.getBody()); 6410 // Thread mem inside the loop via loop argument. 6411 mem = loop.getRegionIterArgs()[0]; 6412 6413 mlir::Type eleRefTy = builder.getRefType(eleTy); 6414 6415 // Any temps created in the loop body must be freed inside the loop body. 6416 stmtCtx.pushScope(); 6417 llvm::Optional<mlir::Value> charLen; 6418 for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) { 6419 auto [exv, copyNeeded] = std::visit( 6420 [&](const auto &v) { 6421 return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize, 6422 stmtCtx); 6423 }, 6424 acv.u); 6425 mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); 6426 mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, 6427 eleSz, eleTy, eleRefTy, resTy) 6428 : fir::getBase(exv); 6429 if (fir::isa_char(seqTy.getEleTy()) && !charLen) { 6430 charLen = builder.createTemporary(loc, builder.getI64Type()); 6431 mlir::Value castLen = 6432 builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); 6433 builder.create<fir::StoreOp>(loc, castLen, charLen.value()); 6434 } 6435 } 6436 stmtCtx.finalize(/*popScope=*/true); 6437 6438 builder.create<fir::ResultOp>(loc, mem); 6439 builder.restoreInsertionPoint(insPt); 6440 mem = loop.getResult(0); 6441 symMap.popImpliedDoBinding(); 6442 llvm::SmallVector<mlir::Value> extents = { 6443 builder.create<fir::LoadOp>(loc, buffPos).getResult()}; 6444 6445 // Convert to extended value. 6446 if (fir::isa_char(seqTy.getEleTy())) { 6447 auto len = builder.create<fir::LoadOp>(loc, charLen.value()); 6448 return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false}; 6449 } 6450 return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false}; 6451 } 6452 6453 // To simplify the handling and interaction between the various cases, array 6454 // constructors are always lowered to the incremental construction code 6455 // pattern, even if the extent of the array value is constant. After the 6456 // MemToReg pass and constant folding, the optimizer should be able to 6457 // determine that all the buffer overrun tests are false when the 6458 // incremental construction wasn't actually required. 6459 template <typename A> 6460 CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) { 6461 mlir::Location loc = getLoc(); 6462 auto evExpr = toEvExpr(x); 6463 mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr); 6464 mlir::IndexType idxTy = builder.getIndexType(); 6465 auto seqTy = resTy.template cast<fir::SequenceType>(); 6466 mlir::Type eleTy = fir::unwrapSequenceType(resTy); 6467 mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size"); 6468 mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); 6469 mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos"); 6470 builder.create<fir::StoreOp>(loc, zero, buffPos); 6471 // Allocate space for the array to be constructed. 6472 mlir::Value mem; 6473 if (fir::hasDynamicSize(resTy)) { 6474 if (fir::hasDynamicSize(eleTy)) { 6475 // The size of each element may depend on a general expression. Defer 6476 // creating the buffer until after the expression is evaluated. 6477 mem = builder.createNullConstant(loc, builder.getRefType(eleTy)); 6478 builder.create<fir::StoreOp>(loc, zero, buffSize); 6479 } else { 6480 mlir::Value initBuffSz = 6481 builder.createIntegerConstant(loc, idxTy, clInitialBufferSize); 6482 mem = builder.create<fir::AllocMemOp>( 6483 loc, eleTy, /*typeparams=*/llvm::None, initBuffSz); 6484 builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); 6485 } 6486 } else { 6487 mem = builder.create<fir::AllocMemOp>(loc, resTy); 6488 int64_t buffSz = 1; 6489 for (auto extent : seqTy.getShape()) 6490 buffSz *= extent; 6491 mlir::Value initBuffSz = 6492 builder.createIntegerConstant(loc, idxTy, buffSz); 6493 builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); 6494 } 6495 // Compute size of element 6496 mlir::Type eleRefTy = builder.getRefType(eleTy); 6497 6498 // Populate the buffer with the elements, growing as necessary. 6499 llvm::Optional<mlir::Value> charLen; 6500 for (const auto &expr : x) { 6501 auto [exv, copyNeeded] = std::visit( 6502 [&](const auto &e) { 6503 return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize, 6504 stmtCtx); 6505 }, 6506 expr.u); 6507 mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); 6508 mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, 6509 eleSz, eleTy, eleRefTy, resTy) 6510 : fir::getBase(exv); 6511 if (fir::isa_char(seqTy.getEleTy()) && !charLen) { 6512 charLen = builder.createTemporary(loc, builder.getI64Type()); 6513 mlir::Value castLen = 6514 builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); 6515 builder.create<fir::StoreOp>(loc, castLen, charLen.value()); 6516 } 6517 } 6518 mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem); 6519 llvm::SmallVector<mlir::Value> extents = { 6520 builder.create<fir::LoadOp>(loc, buffPos)}; 6521 6522 // Cleanup the temporary. 6523 fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); 6524 stmtCtx.attachCleanup( 6525 [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); }); 6526 6527 // Return the continuation. 6528 if (fir::isa_char(seqTy.getEleTy())) { 6529 if (charLen.hasValue()) { 6530 auto len = builder.create<fir::LoadOp>(loc, charLen.getValue()); 6531 return genarr(fir::CharArrayBoxValue{mem, len, extents}); 6532 } 6533 return genarr(fir::CharArrayBoxValue{mem, zero, extents}); 6534 } 6535 return genarr(fir::ArrayBoxValue{mem, extents}); 6536 } 6537 6538 CC genarr(const Fortran::evaluate::ImpliedDoIndex &) { 6539 fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0"); 6540 } 6541 CC genarr(const Fortran::evaluate::TypeParamInquiry &x) { 6542 TODO(getLoc(), "array expr type parameter inquiry"); 6543 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6544 } 6545 CC genarr(const Fortran::evaluate::DescriptorInquiry &x) { 6546 TODO(getLoc(), "array expr descriptor inquiry"); 6547 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6548 } 6549 CC genarr(const Fortran::evaluate::StructureConstructor &x) { 6550 TODO(getLoc(), "structure constructor"); 6551 return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; 6552 } 6553 6554 //===--------------------------------------------------------------------===// 6555 // LOCICAL operators (.NOT., .AND., .EQV., etc.) 6556 //===--------------------------------------------------------------------===// 6557 6558 template <int KIND> 6559 CC genarr(const Fortran::evaluate::Not<KIND> &x) { 6560 mlir::Location loc = getLoc(); 6561 mlir::IntegerType i1Ty = builder.getI1Type(); 6562 auto lambda = genarr(x.left()); 6563 mlir::Value truth = builder.createBool(loc, true); 6564 return [=](IterSpace iters) -> ExtValue { 6565 mlir::Value logical = fir::getBase(lambda(iters)); 6566 mlir::Value val = builder.createConvert(loc, i1Ty, logical); 6567 return builder.create<mlir::arith::XOrIOp>(loc, val, truth); 6568 }; 6569 } 6570 template <typename OP, typename A> 6571 CC createBinaryBoolOp(const A &x) { 6572 mlir::Location loc = getLoc(); 6573 mlir::IntegerType i1Ty = builder.getI1Type(); 6574 auto lf = genarr(x.left()); 6575 auto rf = genarr(x.right()); 6576 return [=](IterSpace iters) -> ExtValue { 6577 mlir::Value left = fir::getBase(lf(iters)); 6578 mlir::Value right = fir::getBase(rf(iters)); 6579 mlir::Value lhs = builder.createConvert(loc, i1Ty, left); 6580 mlir::Value rhs = builder.createConvert(loc, i1Ty, right); 6581 return builder.create<OP>(loc, lhs, rhs); 6582 }; 6583 } 6584 template <typename OP, typename A> 6585 CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) { 6586 mlir::Location loc = getLoc(); 6587 mlir::IntegerType i1Ty = builder.getI1Type(); 6588 auto lf = genarr(x.left()); 6589 auto rf = genarr(x.right()); 6590 return [=](IterSpace iters) -> ExtValue { 6591 mlir::Value left = fir::getBase(lf(iters)); 6592 mlir::Value right = fir::getBase(rf(iters)); 6593 mlir::Value lhs = builder.createConvert(loc, i1Ty, left); 6594 mlir::Value rhs = builder.createConvert(loc, i1Ty, right); 6595 return builder.create<OP>(loc, pred, lhs, rhs); 6596 }; 6597 } 6598 template <int KIND> 6599 CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) { 6600 switch (x.logicalOperator) { 6601 case Fortran::evaluate::LogicalOperator::And: 6602 return createBinaryBoolOp<mlir::arith::AndIOp>(x); 6603 case Fortran::evaluate::LogicalOperator::Or: 6604 return createBinaryBoolOp<mlir::arith::OrIOp>(x); 6605 case Fortran::evaluate::LogicalOperator::Eqv: 6606 return createCompareBoolOp<mlir::arith::CmpIOp>( 6607 mlir::arith::CmpIPredicate::eq, x); 6608 case Fortran::evaluate::LogicalOperator::Neqv: 6609 return createCompareBoolOp<mlir::arith::CmpIOp>( 6610 mlir::arith::CmpIPredicate::ne, x); 6611 case Fortran::evaluate::LogicalOperator::Not: 6612 llvm_unreachable(".NOT. handled elsewhere"); 6613 } 6614 llvm_unreachable("unhandled case"); 6615 } 6616 6617 //===--------------------------------------------------------------------===// 6618 // Relational operators (<, <=, ==, etc.) 6619 //===--------------------------------------------------------------------===// 6620 6621 template <typename OP, typename PRED, typename A> 6622 CC createCompareOp(PRED pred, const A &x) { 6623 mlir::Location loc = getLoc(); 6624 auto lf = genarr(x.left()); 6625 auto rf = genarr(x.right()); 6626 return [=](IterSpace iters) -> ExtValue { 6627 mlir::Value lhs = fir::getBase(lf(iters)); 6628 mlir::Value rhs = fir::getBase(rf(iters)); 6629 return builder.create<OP>(loc, pred, lhs, rhs); 6630 }; 6631 } 6632 template <typename A> 6633 CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) { 6634 mlir::Location loc = getLoc(); 6635 auto lf = genarr(x.left()); 6636 auto rf = genarr(x.right()); 6637 return [=](IterSpace iters) -> ExtValue { 6638 auto lhs = lf(iters); 6639 auto rhs = rf(iters); 6640 return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs); 6641 }; 6642 } 6643 template <int KIND> 6644 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6645 Fortran::common::TypeCategory::Integer, KIND>> &x) { 6646 return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x); 6647 } 6648 template <int KIND> 6649 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6650 Fortran::common::TypeCategory::Character, KIND>> &x) { 6651 return createCompareCharOp(translateRelational(x.opr), x); 6652 } 6653 template <int KIND> 6654 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6655 Fortran::common::TypeCategory::Real, KIND>> &x) { 6656 return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr), 6657 x); 6658 } 6659 template <int KIND> 6660 CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< 6661 Fortran::common::TypeCategory::Complex, KIND>> &x) { 6662 return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x); 6663 } 6664 CC genarr( 6665 const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) { 6666 return std::visit([&](const auto &x) { return genarr(x); }, r.u); 6667 } 6668 6669 template <typename A> 6670 CC genarr(const Fortran::evaluate::Designator<A> &des) { 6671 ComponentPath components(des.Rank() > 0); 6672 return std::visit([&](const auto &x) { return genarr(x, components); }, 6673 des.u); 6674 } 6675 6676 /// Is the path component rank > 0? 6677 static bool ranked(const PathComponent &x) { 6678 return std::visit(Fortran::common::visitors{ 6679 [](const ImplicitSubscripts &) { return false; }, 6680 [](const auto *v) { return v->Rank() > 0; }}, 6681 x); 6682 } 6683 6684 void extendComponent(Fortran::lower::ComponentPath &component, 6685 mlir::Type coorTy, mlir::ValueRange vals) { 6686 auto *bldr = &converter.getFirOpBuilder(); 6687 llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end()); 6688 auto currentFunc = component.getExtendCoorRef(); 6689 auto loc = getLoc(); 6690 auto newCoorRef = [bldr, coorTy, offsets, currentFunc, 6691 loc](mlir::Value val) -> mlir::Value { 6692 return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy), 6693 currentFunc(val), offsets); 6694 }; 6695 component.extendCoorRef = newCoorRef; 6696 } 6697 6698 //===-------------------------------------------------------------------===// 6699 // Array data references in an explicit iteration space. 6700 // 6701 // Use the base array that was loaded before the loop nest. 6702 //===-------------------------------------------------------------------===// 6703 6704 /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or 6705 /// array_update op. \p ty is the initial type of the array 6706 /// (reference). Returns the type of the element after application of the 6707 /// path in \p components. 6708 /// 6709 /// TODO: This needs to deal with array's with initial bounds other than 1. 6710 /// TODO: Thread type parameters correctly. 6711 mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) { 6712 mlir::Location loc = getLoc(); 6713 mlir::Type ty = fir::getBase(arrayExv).getType(); 6714 auto &revPath = components.reversePath; 6715 ty = fir::unwrapPassByRefType(ty); 6716 bool prefix = true; 6717 bool deref = false; 6718 auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) { 6719 if (deref) { 6720 extendComponent(components, ty, vals); 6721 } else if (prefix) { 6722 for (auto v : vals) 6723 components.prefixComponents.push_back(v); 6724 } else { 6725 for (auto v : vals) 6726 components.suffixComponents.push_back(v); 6727 } 6728 }; 6729 mlir::IndexType idxTy = builder.getIndexType(); 6730 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 6731 bool atBase = true; 6732 auto saveSemant = semant; 6733 if (isProjectedCopyInCopyOut()) 6734 semant = ConstituentSemantics::RefTransparent; 6735 unsigned index = 0; 6736 for (const auto &v : llvm::reverse(revPath)) { 6737 std::visit( 6738 Fortran::common::visitors{ 6739 [&](const ImplicitSubscripts &) { 6740 prefix = false; 6741 ty = fir::unwrapSequenceType(ty); 6742 }, 6743 [&](const Fortran::evaluate::ComplexPart *x) { 6744 assert(!prefix && "complex part must be at end"); 6745 mlir::Value offset = builder.createIntegerConstant( 6746 loc, builder.getI32Type(), 6747 x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 6748 : 1); 6749 components.suffixComponents.push_back(offset); 6750 ty = fir::applyPathToType(ty, mlir::ValueRange{offset}); 6751 }, 6752 [&](const Fortran::evaluate::ArrayRef *x) { 6753 if (Fortran::lower::isRankedArrayAccess(*x)) { 6754 genSliceIndices(components, arrayExv, *x, atBase); 6755 ty = fir::unwrapSeqOrBoxedSeqType(ty); 6756 } else { 6757 // Array access where the expressions are scalar and cannot 6758 // depend upon the implied iteration space. 6759 unsigned ssIndex = 0u; 6760 llvm::SmallVector<mlir::Value> componentsToAdd; 6761 for (const auto &ss : x->subscript()) { 6762 std::visit( 6763 Fortran::common::visitors{ 6764 [&](const Fortran::evaluate:: 6765 IndirectSubscriptIntegerExpr &ie) { 6766 const auto &e = ie.value(); 6767 if (isArray(e)) 6768 fir::emitFatalError( 6769 loc, 6770 "multiple components along single path " 6771 "generating array subexpressions"); 6772 // Lower scalar index expression, append it to 6773 // subs. 6774 mlir::Value subscriptVal = 6775 fir::getBase(asScalarArray(e)); 6776 // arrayExv is the base array. It needs to reflect 6777 // the current array component instead. 6778 // FIXME: must use lower bound of this component, 6779 // not just the constant 1. 6780 mlir::Value lb = 6781 atBase ? fir::factory::readLowerBound( 6782 builder, loc, arrayExv, ssIndex, 6783 one) 6784 : one; 6785 mlir::Value val = builder.createConvert( 6786 loc, idxTy, subscriptVal); 6787 mlir::Value ivAdj = 6788 builder.create<mlir::arith::SubIOp>( 6789 loc, idxTy, val, lb); 6790 componentsToAdd.push_back( 6791 builder.createConvert(loc, idxTy, ivAdj)); 6792 }, 6793 [&](const auto &) { 6794 fir::emitFatalError( 6795 loc, "multiple components along single path " 6796 "generating array subexpressions"); 6797 }}, 6798 ss.u); 6799 ssIndex++; 6800 } 6801 ty = fir::unwrapSeqOrBoxedSeqType(ty); 6802 addComponentList(ty, componentsToAdd); 6803 } 6804 }, 6805 [&](const Fortran::evaluate::Component *x) { 6806 auto fieldTy = fir::FieldType::get(builder.getContext()); 6807 llvm::StringRef name = toStringRef(getLastSym(*x).name()); 6808 if (auto recTy = ty.dyn_cast<fir::RecordType>()) { 6809 ty = recTy.getType(name); 6810 auto fld = builder.create<fir::FieldIndexOp>( 6811 loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); 6812 addComponentList(ty, {fld}); 6813 if (index != revPath.size() - 1 || !isPointerAssignment()) { 6814 // Need an intermediate dereference if the boxed value 6815 // appears in the middle of the component path or if it is 6816 // on the right and this is not a pointer assignment. 6817 if (auto boxTy = ty.dyn_cast<fir::BoxType>()) { 6818 auto currentFunc = components.getExtendCoorRef(); 6819 auto loc = getLoc(); 6820 auto *bldr = &converter.getFirOpBuilder(); 6821 auto newCoorRef = [=](mlir::Value val) -> mlir::Value { 6822 return bldr->create<fir::LoadOp>(loc, currentFunc(val)); 6823 }; 6824 components.extendCoorRef = newCoorRef; 6825 deref = true; 6826 } 6827 } 6828 } else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) { 6829 ty = fir::unwrapRefType(boxTy.getEleTy()); 6830 auto recTy = ty.cast<fir::RecordType>(); 6831 ty = recTy.getType(name); 6832 auto fld = builder.create<fir::FieldIndexOp>( 6833 loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); 6834 extendComponent(components, ty, {fld}); 6835 } else { 6836 TODO(loc, "other component type"); 6837 } 6838 }}, 6839 v); 6840 atBase = false; 6841 ++index; 6842 } 6843 semant = saveSemant; 6844 ty = fir::unwrapSequenceType(ty); 6845 components.applied = true; 6846 return ty; 6847 } 6848 6849 llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) { 6850 llvm::SmallVector<mlir::Value> result; 6851 if (components.substring) 6852 populateBounds(result, components.substring); 6853 return result; 6854 } 6855 6856 CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) { 6857 mlir::Location loc = getLoc(); 6858 auto revPath = components.reversePath; 6859 fir::ExtendedValue arrayExv = 6860 arrayLoadExtValue(builder, loc, load, {}, load); 6861 mlir::Type eleTy = lowerPath(arrayExv, components); 6862 auto currentPC = components.pc; 6863 auto pc = [=, prefix = components.prefixComponents, 6864 suffix = components.suffixComponents](IterSpace iters) { 6865 // Add path prefix and suffix. 6866 return IterationSpace(currentPC(iters), prefix, suffix); 6867 }; 6868 components.resetPC(); 6869 llvm::SmallVector<mlir::Value> substringBounds = 6870 genSubstringBounds(components); 6871 if (isProjectedCopyInCopyOut()) { 6872 destination = load; 6873 auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable { 6874 mlir::Value innerArg = esp->findArgumentOfLoad(load); 6875 if (isAdjustedArrayElementType(eleTy)) { 6876 mlir::Type eleRefTy = builder.getRefType(eleTy); 6877 auto arrayOp = builder.create<fir::ArrayAccessOp>( 6878 loc, eleRefTy, innerArg, iters.iterVec(), 6879 fir::factory::getTypeParams(loc, builder, load)); 6880 if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) { 6881 mlir::Value dstLen = fir::factory::genLenOfCharacter( 6882 builder, loc, load, iters.iterVec(), substringBounds); 6883 fir::ArrayAmendOp amend = createCharArrayAmend( 6884 loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg, 6885 substringBounds); 6886 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend, 6887 dstLen); 6888 } 6889 if (fir::isa_derived(eleTy)) { 6890 fir::ArrayAmendOp amend = 6891 createDerivedArrayAmend(loc, load, builder, arrayOp, 6892 iters.elementExv(), eleTy, innerArg); 6893 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), 6894 amend); 6895 } 6896 assert(eleTy.isa<fir::SequenceType>()); 6897 TODO(loc, "array (as element) assignment"); 6898 } 6899 if (components.hasExtendCoorRef()) { 6900 auto eleBoxTy = 6901 fir::applyPathToType(innerArg.getType(), iters.iterVec()); 6902 assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>()); 6903 auto arrayOp = builder.create<fir::ArrayAccessOp>( 6904 loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(), 6905 fir::factory::getTypeParams(loc, builder, load)); 6906 mlir::Value addr = components.getExtendCoorRef()(arrayOp); 6907 components.resetExtendCoorRef(); 6908 // When the lhs is a boxed value and the context is not a pointer 6909 // assignment, then insert the dereference of the box before any 6910 // conversion and store. 6911 if (!isPointerAssignment()) { 6912 if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) { 6913 eleTy = fir::boxMemRefType(boxTy); 6914 addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr); 6915 eleTy = fir::unwrapRefType(eleTy); 6916 } 6917 } 6918 auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); 6919 builder.create<fir::StoreOp>(loc, ele, addr); 6920 auto amend = builder.create<fir::ArrayAmendOp>( 6921 loc, innerArg.getType(), innerArg, arrayOp); 6922 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend); 6923 } 6924 auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); 6925 auto update = builder.create<fir::ArrayUpdateOp>( 6926 loc, innerArg.getType(), innerArg, ele, iters.iterVec(), 6927 fir::factory::getTypeParams(loc, builder, load)); 6928 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update); 6929 }; 6930 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6931 } 6932 if (isCustomCopyInCopyOut()) { 6933 // Create an array_modify to get the LHS element address and indicate 6934 // the assignment, and create the call to the user defined assignment. 6935 destination = load; 6936 auto lambda = [=](IterSpace iters) mutable { 6937 mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load); 6938 mlir::Type refEleTy = 6939 fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); 6940 auto arrModify = builder.create<fir::ArrayModifyOp>( 6941 loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg, 6942 iters.iterVec(), load.getTypeparams()); 6943 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), 6944 arrModify.getResult(1)); 6945 }; 6946 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 6947 } 6948 auto lambda = [=, semant = this->semant](IterSpace iters) mutable { 6949 if (semant == ConstituentSemantics::RefOpaque || 6950 isAdjustedArrayElementType(eleTy)) { 6951 mlir::Type resTy = builder.getRefType(eleTy); 6952 // Use array element reference semantics. 6953 auto access = builder.create<fir::ArrayAccessOp>( 6954 loc, resTy, load, iters.iterVec(), 6955 fir::factory::getTypeParams(loc, builder, load)); 6956 mlir::Value newBase = access; 6957 if (fir::isa_char(eleTy)) { 6958 mlir::Value dstLen = fir::factory::genLenOfCharacter( 6959 builder, loc, load, iters.iterVec(), substringBounds); 6960 if (!substringBounds.empty()) { 6961 fir::CharBoxValue charDst{access, dstLen}; 6962 fir::factory::CharacterExprHelper helper{builder, loc}; 6963 charDst = helper.createSubstring(charDst, substringBounds); 6964 newBase = charDst.getAddr(); 6965 } 6966 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase, 6967 dstLen); 6968 } 6969 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase); 6970 } 6971 if (components.hasExtendCoorRef()) { 6972 auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec()); 6973 assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>()); 6974 auto access = builder.create<fir::ArrayAccessOp>( 6975 loc, builder.getRefType(eleBoxTy), load, iters.iterVec(), 6976 fir::factory::getTypeParams(loc, builder, load)); 6977 mlir::Value addr = components.getExtendCoorRef()(access); 6978 components.resetExtendCoorRef(); 6979 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr); 6980 } 6981 if (isPointerAssignment()) { 6982 auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec()); 6983 if (!eleTy.isa<fir::BoxType>()) { 6984 // Rhs is a regular expression that will need to be boxed before 6985 // assigning to the boxed variable. 6986 auto typeParams = fir::factory::getTypeParams(loc, builder, load); 6987 auto access = builder.create<fir::ArrayAccessOp>( 6988 loc, builder.getRefType(eleTy), load, iters.iterVec(), 6989 typeParams); 6990 auto addr = components.getExtendCoorRef()(access); 6991 components.resetExtendCoorRef(); 6992 auto ptrEleTy = fir::PointerType::get(eleTy); 6993 auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr); 6994 auto boxTy = fir::BoxType::get(ptrEleTy); 6995 // FIXME: The typeparams to the load may be different than those of 6996 // the subobject. 6997 if (components.hasExtendCoorRef()) 6998 TODO(loc, "need to adjust typeparameter(s) to reflect the final " 6999 "component"); 7000 mlir::Value embox = 7001 builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr, 7002 /*shape=*/mlir::Value{}, 7003 /*slice=*/mlir::Value{}, typeParams); 7004 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox); 7005 } 7006 } 7007 auto fetch = builder.create<fir::ArrayFetchOp>( 7008 loc, eleTy, load, iters.iterVec(), load.getTypeparams()); 7009 return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch); 7010 }; 7011 return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; 7012 } 7013 7014 template <typename A> 7015 CC genImplicitArrayAccess(const A &x, ComponentPath &components) { 7016 components.reversePath.push_back(ImplicitSubscripts{}); 7017 ExtValue exv = asScalarRef(x); 7018 lowerPath(exv, components); 7019 auto lambda = genarr(exv, components); 7020 return [=](IterSpace iters) { return lambda(components.pc(iters)); }; 7021 } 7022 CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x, 7023 ComponentPath &components) { 7024 if (x.IsSymbol()) 7025 return genImplicitArrayAccess(getFirstSym(x), components); 7026 return genImplicitArrayAccess(x.GetComponent(), components); 7027 } 7028 7029 template <typename A> 7030 CC genAsScalar(const A &x) { 7031 mlir::Location loc = getLoc(); 7032 if (isProjectedCopyInCopyOut()) { 7033 return [=, &x, builder = &converter.getFirOpBuilder()]( 7034 IterSpace iters) -> ExtValue { 7035 ExtValue exv = asScalarRef(x); 7036 mlir::Value addr = fir::getBase(exv); 7037 mlir::Type eleTy = fir::unwrapRefType(addr.getType()); 7038 if (isAdjustedArrayElementType(eleTy)) { 7039 if (fir::isa_char(eleTy)) { 7040 fir::factory::CharacterExprHelper{*builder, loc}.createAssign( 7041 exv, iters.elementExv()); 7042 } else if (fir::isa_derived(eleTy)) { 7043 TODO(loc, "assignment of derived type"); 7044 } else { 7045 fir::emitFatalError(loc, "array type not expected in scalar"); 7046 } 7047 } else { 7048 auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement()); 7049 builder->create<fir::StoreOp>(loc, eleVal, addr); 7050 } 7051 return exv; 7052 }; 7053 } 7054 return [=, &x](IterSpace) { return asScalar(x); }; 7055 } 7056 7057 bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x, 7058 ComponentPath &components) { 7059 return isPointerAssignment() && Fortran::semantics::IsPointer(x) && 7060 !components.hasComponents(); 7061 } 7062 bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x, 7063 ComponentPath &components) { 7064 return tailIsPointerInPointerAssignment(getLastSym(x), components); 7065 } 7066 7067 CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) { 7068 if (explicitSpaceIsActive()) { 7069 if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components)) 7070 components.reversePath.push_back(ImplicitSubscripts{}); 7071 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) 7072 return applyPathToArrayLoad(load, components); 7073 } else { 7074 return genImplicitArrayAccess(x, components); 7075 } 7076 if (pathIsEmpty(components)) 7077 return components.substring ? genAsScalar(*components.substring) 7078 : genAsScalar(x); 7079 mlir::Location loc = getLoc(); 7080 return [=](IterSpace) -> ExtValue { 7081 fir::emitFatalError(loc, "reached symbol with path"); 7082 }; 7083 } 7084 7085 /// Lower a component path with or without rank. 7086 /// Example: <code>array%baz%qux%waldo</code> 7087 CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) { 7088 if (explicitSpaceIsActive()) { 7089 if (x.base().Rank() == 0 && x.Rank() > 0 && 7090 !tailIsPointerInPointerAssignment(x, components)) 7091 components.reversePath.push_back(ImplicitSubscripts{}); 7092 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) 7093 return applyPathToArrayLoad(load, components); 7094 } else { 7095 if (x.base().Rank() == 0) 7096 return genImplicitArrayAccess(x, components); 7097 } 7098 bool atEnd = pathIsEmpty(components); 7099 if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp)) 7100 // Skip parent components; their components are placed directly in the 7101 // object. 7102 components.reversePath.push_back(&x); 7103 auto result = genarr(x.base(), components); 7104 if (components.applied) 7105 return result; 7106 if (atEnd) 7107 return genAsScalar(x); 7108 mlir::Location loc = getLoc(); 7109 return [=](IterSpace) -> ExtValue { 7110 fir::emitFatalError(loc, "reached component with path"); 7111 }; 7112 } 7113 7114 /// Array reference with subscripts. If this has rank > 0, this is a form 7115 /// of an array section (slice). 7116 /// 7117 /// There are two "slicing" primitives that may be applied on a dimension by 7118 /// dimension basis: (1) triple notation and (2) vector addressing. Since 7119 /// dimensions can be selectively sliced, some dimensions may contain 7120 /// regular scalar expressions and those dimensions do not participate in 7121 /// the array expression evaluation. 7122 CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) { 7123 if (explicitSpaceIsActive()) { 7124 if (Fortran::lower::isRankedArrayAccess(x)) 7125 components.reversePath.push_back(ImplicitSubscripts{}); 7126 if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) { 7127 components.reversePath.push_back(&x); 7128 return applyPathToArrayLoad(load, components); 7129 } 7130 } else { 7131 if (Fortran::lower::isRankedArrayAccess(x)) { 7132 components.reversePath.push_back(&x); 7133 return genImplicitArrayAccess(x.base(), components); 7134 } 7135 } 7136 bool atEnd = pathIsEmpty(components); 7137 components.reversePath.push_back(&x); 7138 auto result = genarr(x.base(), components); 7139 if (components.applied) 7140 return result; 7141 mlir::Location loc = getLoc(); 7142 if (atEnd) { 7143 if (x.Rank() == 0) 7144 return genAsScalar(x); 7145 fir::emitFatalError(loc, "expected scalar"); 7146 } 7147 return [=](IterSpace) -> ExtValue { 7148 fir::emitFatalError(loc, "reached arrayref with path"); 7149 }; 7150 } 7151 7152 CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) { 7153 TODO(getLoc(), "coarray reference"); 7154 } 7155 7156 CC genarr(const Fortran::evaluate::NamedEntity &x, 7157 ComponentPath &components) { 7158 return x.IsSymbol() ? genarr(getFirstSym(x), components) 7159 : genarr(x.GetComponent(), components); 7160 } 7161 7162 CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) { 7163 return std::visit([&](const auto &v) { return genarr(v, components); }, 7164 x.u); 7165 } 7166 7167 bool pathIsEmpty(const ComponentPath &components) { 7168 return components.reversePath.empty(); 7169 } 7170 7171 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7172 Fortran::lower::StatementContext &stmtCtx, 7173 Fortran::lower::SymMap &symMap) 7174 : converter{converter}, builder{converter.getFirOpBuilder()}, 7175 stmtCtx{stmtCtx}, symMap{symMap} {} 7176 7177 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7178 Fortran::lower::StatementContext &stmtCtx, 7179 Fortran::lower::SymMap &symMap, 7180 ConstituentSemantics sem) 7181 : converter{converter}, builder{converter.getFirOpBuilder()}, 7182 stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {} 7183 7184 explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, 7185 Fortran::lower::StatementContext &stmtCtx, 7186 Fortran::lower::SymMap &symMap, 7187 ConstituentSemantics sem, 7188 Fortran::lower::ExplicitIterSpace *expSpace, 7189 Fortran::lower::ImplicitIterSpace *impSpace) 7190 : converter{converter}, builder{converter.getFirOpBuilder()}, 7191 stmtCtx{stmtCtx}, symMap{symMap}, 7192 explicitSpace(expSpace->isActive() ? expSpace : nullptr), 7193 implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} { 7194 // Generate any mask expressions, as necessary. This is the compute step 7195 // that creates the effective masks. See 10.2.3.2 in particular. 7196 genMasks(); 7197 } 7198 7199 mlir::Location getLoc() { return converter.getCurrentLocation(); } 7200 7201 /// Array appears in a lhs context such that it is assigned after the rhs is 7202 /// fully evaluated. 7203 inline bool isCopyInCopyOut() { 7204 return semant == ConstituentSemantics::CopyInCopyOut; 7205 } 7206 7207 /// Array appears in a lhs (or temp) context such that a projected, 7208 /// discontiguous subspace of the array is assigned after the rhs is fully 7209 /// evaluated. That is, the rhs array value is merged into a section of the 7210 /// lhs array. 7211 inline bool isProjectedCopyInCopyOut() { 7212 return semant == ConstituentSemantics::ProjectedCopyInCopyOut; 7213 } 7214 7215 // ???: Do we still need this? 7216 inline bool isCustomCopyInCopyOut() { 7217 return semant == ConstituentSemantics::CustomCopyInCopyOut; 7218 } 7219 7220 /// Are we lowering in a left-hand side context? 7221 inline bool isLeftHandSide() { 7222 return isCopyInCopyOut() || isProjectedCopyInCopyOut() || 7223 isCustomCopyInCopyOut(); 7224 } 7225 7226 /// Array appears in a context where it must be boxed. 7227 inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; } 7228 7229 /// Array appears in a context where differences in the memory reference can 7230 /// be observable in the computational results. For example, an array 7231 /// element is passed to an impure procedure. 7232 inline bool isReferentiallyOpaque() { 7233 return semant == ConstituentSemantics::RefOpaque; 7234 } 7235 7236 /// Array appears in a context where it is passed as a VALUE argument. 7237 inline bool isValueAttribute() { 7238 return semant == ConstituentSemantics::ByValueArg; 7239 } 7240 7241 /// Can the loops over the expression be unordered? 7242 inline bool isUnordered() const { return unordered; } 7243 7244 void setUnordered(bool b) { unordered = b; } 7245 7246 inline bool isPointerAssignment() const { return lbounds.hasValue(); } 7247 7248 inline bool isBoundsSpec() const { 7249 return isPointerAssignment() && !ubounds.hasValue(); 7250 } 7251 7252 inline bool isBoundsRemap() const { 7253 return isPointerAssignment() && ubounds.hasValue(); 7254 } 7255 7256 void setPointerAssignmentBounds( 7257 const llvm::SmallVector<mlir::Value> &lbs, 7258 llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) { 7259 lbounds = lbs; 7260 ubounds = ubs; 7261 } 7262 7263 Fortran::lower::AbstractConverter &converter; 7264 fir::FirOpBuilder &builder; 7265 Fortran::lower::StatementContext &stmtCtx; 7266 bool elementCtx = false; 7267 Fortran::lower::SymMap &symMap; 7268 /// The continuation to generate code to update the destination. 7269 llvm::Optional<CC> ccStoreToDest; 7270 llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude; 7271 llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>> 7272 ccLoadDest; 7273 /// The destination is the loaded array into which the results will be 7274 /// merged. 7275 fir::ArrayLoadOp destination; 7276 /// The shape of the destination. 7277 llvm::SmallVector<mlir::Value> destShape; 7278 /// List of arrays in the expression that have been loaded. 7279 llvm::SmallVector<ArrayOperand> arrayOperands; 7280 /// If there is a user-defined iteration space, explicitShape will hold the 7281 /// information from the front end. 7282 Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr; 7283 Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr; 7284 ConstituentSemantics semant = ConstituentSemantics::RefTransparent; 7285 /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only 7286 /// occur in an explicit iteration space. 7287 llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds; 7288 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds; 7289 // Can the array expression be evaluated in any order? 7290 // Will be set to false if any of the expression parts prevent this. 7291 bool unordered = true; 7292 }; 7293 } // namespace 7294 7295 fir::ExtendedValue Fortran::lower::createSomeExtendedExpression( 7296 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7297 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7298 Fortran::lower::StatementContext &stmtCtx) { 7299 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); 7300 return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr); 7301 } 7302 7303 fir::GlobalOp Fortran::lower::createDenseGlobal( 7304 mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName, 7305 mlir::StringAttr linkage, bool isConst, 7306 const Fortran::lower::SomeExpr &expr, 7307 Fortran::lower::AbstractConverter &converter) { 7308 7309 Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true); 7310 Fortran::lower::SymMap emptyMap; 7311 InitializerData initData(/*genRawVals=*/true); 7312 ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx, 7313 /*initializer=*/&initData); 7314 sel.genval(expr); 7315 7316 size_t sz = initData.rawVals.size(); 7317 llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz}; 7318 7319 mlir::RankedTensorType tensorTy; 7320 auto &builder = converter.getFirOpBuilder(); 7321 mlir::Type iTy = initData.rawType; 7322 if (!iTy) 7323 return 0; // array extent is probably 0 in this case, so just return 0. 7324 tensorTy = mlir::RankedTensorType::get(sz, iTy); 7325 auto init = mlir::DenseElementsAttr::get(tensorTy, ar); 7326 return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst); 7327 } 7328 7329 fir::ExtendedValue Fortran::lower::createSomeInitializerExpression( 7330 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7331 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7332 Fortran::lower::StatementContext &stmtCtx) { 7333 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); 7334 InitializerData initData; // needed for initializations 7335 return ScalarExprLowering{loc, converter, symMap, stmtCtx, 7336 /*initializer=*/&initData} 7337 .genval(expr); 7338 } 7339 7340 fir::ExtendedValue Fortran::lower::createSomeExtendedAddress( 7341 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7342 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7343 Fortran::lower::StatementContext &stmtCtx) { 7344 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); 7345 return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr); 7346 } 7347 7348 fir::ExtendedValue Fortran::lower::createInitializerAddress( 7349 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7350 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7351 Fortran::lower::StatementContext &stmtCtx) { 7352 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); 7353 InitializerData init; 7354 return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr); 7355 } 7356 7357 void Fortran::lower::createSomeArrayAssignment( 7358 Fortran::lower::AbstractConverter &converter, 7359 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7360 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7361 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; 7362 rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); 7363 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7364 } 7365 7366 void Fortran::lower::createSomeArrayAssignment( 7367 Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, 7368 const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap, 7369 Fortran::lower::StatementContext &stmtCtx) { 7370 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; 7371 rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); 7372 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7373 } 7374 void Fortran::lower::createSomeArrayAssignment( 7375 Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, 7376 const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap, 7377 Fortran::lower::StatementContext &stmtCtx) { 7378 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; 7379 llvm::dbgs() << "assign expression: " << rhs << '\n';); 7380 ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); 7381 } 7382 7383 void Fortran::lower::createAnyMaskedArrayAssignment( 7384 Fortran::lower::AbstractConverter &converter, 7385 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7386 Fortran::lower::ExplicitIterSpace &explicitSpace, 7387 Fortran::lower::ImplicitIterSpace &implicitSpace, 7388 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7389 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; 7390 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7391 << " given the explicit iteration space:\n" 7392 << explicitSpace << "\n and implied mask conditions:\n" 7393 << implicitSpace << '\n';); 7394 ArrayExprLowering::lowerAnyMaskedArrayAssignment( 7395 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); 7396 } 7397 7398 void Fortran::lower::createAllocatableArrayAssignment( 7399 Fortran::lower::AbstractConverter &converter, 7400 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7401 Fortran::lower::ExplicitIterSpace &explicitSpace, 7402 Fortran::lower::ImplicitIterSpace &implicitSpace, 7403 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7404 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n'; 7405 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7406 << " given the explicit iteration space:\n" 7407 << explicitSpace << "\n and implied mask conditions:\n" 7408 << implicitSpace << '\n';); 7409 ArrayExprLowering::lowerAllocatableArrayAssignment( 7410 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); 7411 } 7412 7413 void Fortran::lower::createArrayOfPointerAssignment( 7414 Fortran::lower::AbstractConverter &converter, 7415 const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, 7416 Fortran::lower::ExplicitIterSpace &explicitSpace, 7417 Fortran::lower::ImplicitIterSpace &implicitSpace, 7418 const llvm::SmallVector<mlir::Value> &lbounds, 7419 llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds, 7420 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7421 LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n'; 7422 rhs.AsFortran(llvm::dbgs() << "assign expression: ") 7423 << " given the explicit iteration space:\n" 7424 << explicitSpace << "\n and implied mask conditions:\n" 7425 << implicitSpace << '\n';); 7426 assert(explicitSpace.isActive() && "must be in FORALL construct"); 7427 ArrayExprLowering::lowerArrayOfPointerAssignment( 7428 converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace, 7429 lbounds, ubounds); 7430 } 7431 7432 fir::ExtendedValue Fortran::lower::createSomeArrayTempValue( 7433 Fortran::lower::AbstractConverter &converter, 7434 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7435 Fortran::lower::StatementContext &stmtCtx) { 7436 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); 7437 return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx, 7438 expr); 7439 } 7440 7441 void Fortran::lower::createLazyArrayTempValue( 7442 Fortran::lower::AbstractConverter &converter, 7443 const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader, 7444 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 7445 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); 7446 ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr, 7447 raggedHeader); 7448 } 7449 7450 fir::ExtendedValue 7451 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter, 7452 const Fortran::lower::SomeExpr &expr, 7453 Fortran::lower::SymMap &symMap, 7454 Fortran::lower::StatementContext &stmtCtx) { 7455 LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n'); 7456 return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap, 7457 stmtCtx, expr); 7458 } 7459 7460 fir::MutableBoxValue Fortran::lower::createMutableBox( 7461 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7462 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) { 7463 // MutableBox lowering StatementContext does not need to be propagated 7464 // to the caller because the result value is a variable, not a temporary 7465 // expression. The StatementContext clean-up can occur before using the 7466 // resulting MutableBoxValue. Variables of all other types are handled in the 7467 // bridge. 7468 Fortran::lower::StatementContext dummyStmtCtx; 7469 return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx} 7470 .genMutableBoxValue(expr); 7471 } 7472 7473 fir::ExtendedValue Fortran::lower::createBoxValue( 7474 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7475 const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, 7476 Fortran::lower::StatementContext &stmtCtx) { 7477 if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) && 7478 !Fortran::evaluate::HasVectorSubscript(expr)) 7479 return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx); 7480 fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress( 7481 loc, converter, expr, symMap, stmtCtx); 7482 return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr)); 7483 } 7484 7485 mlir::Value Fortran::lower::createSubroutineCall( 7486 AbstractConverter &converter, const evaluate::ProcedureRef &call, 7487 ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace, 7488 SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) { 7489 mlir::Location loc = converter.getCurrentLocation(); 7490 7491 if (isUserDefAssignment) { 7492 assert(call.arguments().size() == 2); 7493 const auto *lhs = call.arguments()[0].value().UnwrapExpr(); 7494 const auto *rhs = call.arguments()[1].value().UnwrapExpr(); 7495 assert(lhs && rhs && 7496 "user defined assignment arguments must be expressions"); 7497 if (call.IsElemental() && lhs->Rank() > 0) { 7498 // Elemental user defined assignment has special requirements to deal with 7499 // LHS/RHS overlaps. See 10.2.1.5 p2. 7500 ArrayExprLowering::lowerElementalUserAssignment( 7501 converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace, 7502 call); 7503 } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) { 7504 // Scalar defined assignment (elemental or not) in a FORALL context. 7505 mlir::func::FuncOp func = 7506 Fortran::lower::CallerInterface(call, converter).getFuncOp(); 7507 ArrayExprLowering::lowerScalarUserAssignment( 7508 converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs); 7509 } else if (explicitIterSpace.isActive()) { 7510 // TODO: need to array fetch/modify sub-arrays? 7511 TODO(loc, "non elemental user defined array assignment inside FORALL"); 7512 } else { 7513 if (!implicitIterSpace.empty()) 7514 fir::emitFatalError( 7515 loc, 7516 "C1032: user defined assignment inside WHERE must be elemental"); 7517 // Non elemental user defined assignment outside of FORALL and WHERE. 7518 // FIXME: The non elemental user defined assignment case with array 7519 // arguments must be take into account potential overlap. So far the front 7520 // end does not add parentheses around the RHS argument in the call as it 7521 // should according to 15.4.3.4.3 p2. 7522 Fortran::lower::createSomeExtendedExpression( 7523 loc, converter, toEvExpr(call), symMap, stmtCtx); 7524 } 7525 return {}; 7526 } 7527 7528 assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() && 7529 "subroutine calls are not allowed inside WHERE and FORALL"); 7530 7531 if (isElementalProcWithArrayArgs(call)) { 7532 ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx, 7533 toEvExpr(call)); 7534 return {}; 7535 } 7536 // Simple subroutine call, with potential alternate return. 7537 auto res = Fortran::lower::createSomeExtendedExpression( 7538 loc, converter, toEvExpr(call), symMap, stmtCtx); 7539 return fir::getBase(res); 7540 } 7541 7542 template <typename A> 7543 fir::ArrayLoadOp genArrayLoad(mlir::Location loc, 7544 Fortran::lower::AbstractConverter &converter, 7545 fir::FirOpBuilder &builder, const A *x, 7546 Fortran::lower::SymMap &symMap, 7547 Fortran::lower::StatementContext &stmtCtx) { 7548 auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x); 7549 mlir::Value addr = fir::getBase(exv); 7550 mlir::Value shapeOp = builder.createShape(loc, exv); 7551 mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); 7552 return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp, 7553 /*slice=*/mlir::Value{}, 7554 fir::getTypeParams(exv)); 7555 } 7556 template <> 7557 fir::ArrayLoadOp 7558 genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter, 7559 fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x, 7560 Fortran::lower::SymMap &symMap, 7561 Fortran::lower::StatementContext &stmtCtx) { 7562 if (x->base().IsSymbol()) 7563 return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap, 7564 stmtCtx); 7565 return genArrayLoad(loc, converter, builder, &x->base().GetComponent(), 7566 symMap, stmtCtx); 7567 } 7568 7569 void Fortran::lower::createArrayLoads( 7570 Fortran::lower::AbstractConverter &converter, 7571 Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) { 7572 std::size_t counter = esp.getCounter(); 7573 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 7574 mlir::Location loc = converter.getCurrentLocation(); 7575 Fortran::lower::StatementContext &stmtCtx = esp.stmtContext(); 7576 // Gen the fir.array_load ops. 7577 auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp { 7578 return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx); 7579 }; 7580 if (esp.lhsBases[counter].hasValue()) { 7581 auto &base = esp.lhsBases[counter].getValue(); 7582 auto load = std::visit(genLoad, base); 7583 esp.initialArgs.push_back(load); 7584 esp.resetInnerArgs(); 7585 esp.bindLoad(base, load); 7586 } 7587 for (const auto &base : esp.rhsBases[counter]) 7588 esp.bindLoad(base, std::visit(genLoad, base)); 7589 } 7590 7591 void Fortran::lower::createArrayMergeStores( 7592 Fortran::lower::AbstractConverter &converter, 7593 Fortran::lower::ExplicitIterSpace &esp) { 7594 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 7595 mlir::Location loc = converter.getCurrentLocation(); 7596 builder.setInsertionPointAfter(esp.getOuterLoop()); 7597 // Gen the fir.array_merge_store ops for all LHS arrays. 7598 for (auto i : llvm::enumerate(esp.getOuterLoop().getResults())) 7599 if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) { 7600 fir::ArrayLoadOp load = ldOpt.getValue(); 7601 builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(), 7602 load.getMemref(), load.getSlice(), 7603 load.getTypeparams()); 7604 } 7605 if (esp.loopCleanup.hasValue()) { 7606 esp.loopCleanup.getValue()(builder); 7607 esp.loopCleanup = llvm::None; 7608 } 7609 esp.initialArgs.clear(); 7610 esp.innerArgs.clear(); 7611 esp.outerLoop = llvm::None; 7612 esp.resetBindings(); 7613 esp.incrementCounter(); 7614 } 7615