1 //===-- ConvertExpr.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Lower/ConvertExpr.h"
14 #include "flang/Common/default-kinds.h"
15 #include "flang/Common/unwrap.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/real.h"
18 #include "flang/Evaluate/traverse.h"
19 #include "flang/Lower/Allocatable.h"
20 #include "flang/Lower/Bridge.h"
21 #include "flang/Lower/BuiltinModules.h"
22 #include "flang/Lower/CallInterface.h"
23 #include "flang/Lower/Coarray.h"
24 #include "flang/Lower/ComponentPath.h"
25 #include "flang/Lower/ConvertType.h"
26 #include "flang/Lower/ConvertVariable.h"
27 #include "flang/Lower/CustomIntrinsicCall.h"
28 #include "flang/Lower/DumpEvaluateExpr.h"
29 #include "flang/Lower/IntrinsicCall.h"
30 #include "flang/Lower/Mangler.h"
31 #include "flang/Lower/Runtime.h"
32 #include "flang/Lower/Support/Utils.h"
33 #include "flang/Optimizer/Builder/Character.h"
34 #include "flang/Optimizer/Builder/Complex.h"
35 #include "flang/Optimizer/Builder/Factory.h"
36 #include "flang/Optimizer/Builder/Runtime/Character.h"
37 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
38 #include "flang/Optimizer/Builder/Runtime/Ragged.h"
39 #include "flang/Optimizer/Builder/Todo.h"
40 #include "flang/Optimizer/Dialect/FIRAttr.h"
41 #include "flang/Optimizer/Dialect/FIRDialect.h"
42 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
43 #include "flang/Optimizer/Support/FatalError.h"
44 #include "flang/Semantics/expression.h"
45 #include "flang/Semantics/symbol.h"
46 #include "flang/Semantics/tools.h"
47 #include "flang/Semantics/type.h"
48 #include "mlir/Dialect/Func/IR/FuncOps.h"
49 #include "llvm/ADT/TypeSwitch.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 
56 #define DEBUG_TYPE "flang-lower-expr"
57 
58 //===----------------------------------------------------------------------===//
59 // The composition and structure of Fortran::evaluate::Expr is defined in
60 // the various header files in include/flang/Evaluate. You are referred
61 // there for more information on these data structures. Generally speaking,
62 // these data structures are a strongly typed family of abstract data types
63 // that, composed as trees, describe the syntax of Fortran expressions.
64 //
65 // This part of the bridge can traverse these tree structures and lower them
66 // to the correct FIR representation in SSA form.
67 //===----------------------------------------------------------------------===//
68 
69 static llvm::cl::opt<bool> generateArrayCoordinate(
70     "gen-array-coor",
71     llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
72     llvm::cl::init(false));
73 
74 // The default attempts to balance a modest allocation size with expected user
75 // input to minimize bounds checks and reallocations during dynamic array
76 // construction. Some user codes may have very large array constructors for
77 // which the default can be increased.
78 static llvm::cl::opt<unsigned> clInitialBufferSize(
79     "array-constructor-initial-buffer-size",
80     llvm::cl::desc(
81         "set the incremental array construction buffer size (default=32)"),
82     llvm::cl::init(32u));
83 
84 /// The various semantics of a program constituent (or a part thereof) as it may
85 /// appear in an expression.
86 ///
87 /// Given the following Fortran declarations.
88 /// ```fortran
89 ///   REAL :: v1, v2, v3
90 ///   REAL, POINTER :: vp1
91 ///   REAL :: a1(c), a2(c)
92 ///   REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
93 ///   FUNCTION f2(arg)                ! array -> array
94 ///   vp1 => v3       ! 1
95 ///   v1 = v2 * vp1   ! 2
96 ///   a1 = a1 + a2    ! 3
97 ///   a1 = f1(a2)     ! 4
98 ///   a1 = f2(a2)     ! 5
99 /// ```
100 ///
101 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
102 /// constructed from the DataAddr of `v3`.
103 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
104 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
105 /// dereference in the `vp1` case.
106 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
107 /// is CopyInCopyOut as `a1` is replaced elementally by the additions.
108 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
109 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
110 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
111 ///  In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
112 ///  `a1` on the lhs is again CopyInCopyOut.
113 enum class ConstituentSemantics {
114   // Scalar data reference semantics.
115   //
116   // For these let `v` be the location in memory of a variable with value `x`
117   DataValue, // refers to the value `x`
118   DataAddr,  // refers to the address `v`
119   BoxValue,  // refers to a box value containing `v`
120   BoxAddr,   // refers to the address of a box value containing `v`
121 
122   // Array data reference semantics.
123   //
124   // For these let `a` be the location in memory of a sequence of value `[xs]`.
125   // Let `x_i` be the `i`-th value in the sequence `[xs]`.
126 
127   // Referentially transparent. Refers to the array's value, `[xs]`.
128   RefTransparent,
129   // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
130   // note 2). (Passing a copy by reference to simulate pass-by-value.)
131   ByValueArg,
132   // Refers to the merge of array value `[xs]` with another array value `[ys]`.
133   // This merged array value will be written into memory location `a`.
134   CopyInCopyOut,
135   // Similar to CopyInCopyOut but `a` may be a transient projection (rather than
136   // a whole array).
137   ProjectedCopyInCopyOut,
138   // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
139   // automatically by the framework. Instead, and address for `[xs]` is made
140   // accessible so that custom assignments to `[xs]` can be implemented.
141   CustomCopyInCopyOut,
142   // Referentially opaque. Refers to the address of `x_i`.
143   RefOpaque
144 };
145 
146 /// Convert parser's INTEGER relational operators to MLIR.  TODO: using
147 /// unordered, but we may want to cons ordered in certain situation.
148 static mlir::arith::CmpIPredicate
149 translateRelational(Fortran::common::RelationalOperator rop) {
150   switch (rop) {
151   case Fortran::common::RelationalOperator::LT:
152     return mlir::arith::CmpIPredicate::slt;
153   case Fortran::common::RelationalOperator::LE:
154     return mlir::arith::CmpIPredicate::sle;
155   case Fortran::common::RelationalOperator::EQ:
156     return mlir::arith::CmpIPredicate::eq;
157   case Fortran::common::RelationalOperator::NE:
158     return mlir::arith::CmpIPredicate::ne;
159   case Fortran::common::RelationalOperator::GT:
160     return mlir::arith::CmpIPredicate::sgt;
161   case Fortran::common::RelationalOperator::GE:
162     return mlir::arith::CmpIPredicate::sge;
163   }
164   llvm_unreachable("unhandled INTEGER relational operator");
165 }
166 
167 /// Convert parser's REAL relational operators to MLIR.
168 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
169 /// requirements in the IEEE context (table 17.1 of F2018). This choice is
170 /// also applied in other contexts because it is easier and in line with
171 /// other Fortran compilers.
172 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
173 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
174 /// whether the comparison will signal or not in case of quiet NaN argument.
175 static mlir::arith::CmpFPredicate
176 translateFloatRelational(Fortran::common::RelationalOperator rop) {
177   switch (rop) {
178   case Fortran::common::RelationalOperator::LT:
179     return mlir::arith::CmpFPredicate::OLT;
180   case Fortran::common::RelationalOperator::LE:
181     return mlir::arith::CmpFPredicate::OLE;
182   case Fortran::common::RelationalOperator::EQ:
183     return mlir::arith::CmpFPredicate::OEQ;
184   case Fortran::common::RelationalOperator::NE:
185     return mlir::arith::CmpFPredicate::UNE;
186   case Fortran::common::RelationalOperator::GT:
187     return mlir::arith::CmpFPredicate::OGT;
188   case Fortran::common::RelationalOperator::GE:
189     return mlir::arith::CmpFPredicate::OGE;
190   }
191   llvm_unreachable("unhandled REAL relational operator");
192 }
193 
194 static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
195                                           mlir::Location loc,
196                                           fir::ExtendedValue actual) {
197   if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
198     return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
199                                                         *ptrOrAlloc);
200   // Optional case (not that optional allocatable/pointer cannot be absent
201   // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
202   // therefore possible to catch them in the `then` case above.
203   return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
204                                           fir::getBase(actual));
205 }
206 
207 /// Convert the array_load, `load`, to an extended value. If `path` is not
208 /// empty, then traverse through the components designated. The base value is
209 /// `newBase`. This does not accept an array_load with a slice operand.
210 static fir::ExtendedValue
211 arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc,
212                   fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path,
213                   mlir::Value newBase, mlir::Value newLen = {}) {
214   // Recover the extended value from the load.
215   if (load.getSlice())
216     fir::emitFatalError(loc, "array_load with slice is not allowed");
217   mlir::Type arrTy = load.getType();
218   if (!path.empty()) {
219     mlir::Type ty = fir::applyPathToType(arrTy, path);
220     if (!ty)
221       fir::emitFatalError(loc, "path does not apply to type");
222     if (!ty.isa<fir::SequenceType>()) {
223       if (fir::isa_char(ty)) {
224         mlir::Value len = newLen;
225         if (!len)
226           len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
227               load.getMemref());
228         if (!len) {
229           assert(load.getTypeparams().size() == 1 &&
230                  "length must be in array_load");
231           len = load.getTypeparams()[0];
232         }
233         return fir::CharBoxValue{newBase, len};
234       }
235       return newBase;
236     }
237     arrTy = ty.cast<fir::SequenceType>();
238   }
239 
240   auto arrayToExtendedValue =
241       [&](const llvm::SmallVector<mlir::Value> &extents,
242           const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue {
243     mlir::Type eleTy = fir::unwrapSequenceType(arrTy);
244     if (fir::isa_char(eleTy)) {
245       mlir::Value len = newLen;
246       if (!len)
247         len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
248             load.getMemref());
249       if (!len) {
250         assert(load.getTypeparams().size() == 1 &&
251                "length must be in array_load");
252         len = load.getTypeparams()[0];
253       }
254       return fir::CharArrayBoxValue(newBase, len, extents, origins);
255     }
256     return fir::ArrayBoxValue(newBase, extents, origins);
257   };
258   // Use the shape op, if there is one.
259   mlir::Value shapeVal = load.getShape();
260   if (shapeVal) {
261     if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) {
262       auto extents = fir::factory::getExtents(shapeVal);
263       auto origins = fir::factory::getOrigins(shapeVal);
264       return arrayToExtendedValue(extents, origins);
265     }
266     if (!fir::isa_box_type(load.getMemref().getType()))
267       fir::emitFatalError(loc, "shift op is invalid in this context");
268   }
269 
270   // If we're dealing with the array_load op (not a subobject) and the load does
271   // not have any type parameters, then read the extents from the original box.
272   // The origin may be either from the box or a shift operation. Create and
273   // return the array extended value.
274   if (path.empty() && load.getTypeparams().empty()) {
275     auto oldBox = load.getMemref();
276     fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox);
277     auto extents = fir::factory::getExtents(loc, builder, exv);
278     auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv);
279     if (shapeVal) {
280       // shapeVal is a ShiftOp and load.memref() is a boxed value.
281       newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox,
282                                              shapeVal, /*slice=*/mlir::Value{});
283       origins = fir::factory::getOrigins(shapeVal);
284     }
285     return fir::substBase(arrayToExtendedValue(extents, origins), newBase);
286   }
287   TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires "
288             "dereferencing; generating the type parameters is a hard "
289             "requirement for correctness.");
290 }
291 
292 /// Place \p exv in memory if it is not already a memory reference. If
293 /// \p forceValueType is provided, the value is first casted to the provided
294 /// type before being stored (this is mainly intended for logicals whose value
295 /// may be `i1` but needed to be stored as Fortran logicals).
296 static fir::ExtendedValue
297 placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
298                          const fir::ExtendedValue &exv,
299                          mlir::Type storageType) {
300   mlir::Value valBase = fir::getBase(exv);
301   if (fir::conformsWithPassByRef(valBase.getType()))
302     return exv;
303 
304   assert(!fir::hasDynamicSize(storageType) &&
305          "only expect statically sized scalars to be by value");
306 
307   // Since `a` is not itself a valid referent, determine its value and
308   // create a temporary location at the beginning of the function for
309   // referencing.
310   mlir::Value val = builder.createConvert(loc, storageType, valBase);
311   mlir::Value temp = builder.createTemporary(
312       loc, storageType,
313       llvm::ArrayRef<mlir::NamedAttribute>{
314           Fortran::lower::getAdaptToByRefAttr(builder)});
315   builder.create<fir::StoreOp>(loc, val, temp);
316   return fir::substBase(exv, temp);
317 }
318 
319 // Copy a copy of scalar \p exv in a new temporary.
320 static fir::ExtendedValue
321 createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
322                          const fir::ExtendedValue &exv) {
323   assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
324   if (exv.getCharBox() != nullptr)
325     return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
326   if (fir::isDerivedWithLenParameters(exv))
327     TODO(loc, "copy derived type with length parameters");
328   mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
329   fir::ExtendedValue temp = builder.createTemporary(loc, type);
330   fir::factory::genScalarAssignment(builder, loc, temp, exv);
331   return temp;
332 }
333 
334 // An expression with non-zero rank is an array expression.
335 template <typename A>
336 static bool isArray(const A &x) {
337   return x.Rank() != 0;
338 }
339 
340 /// Is this a variable wrapped in parentheses?
341 template <typename A>
342 static bool isParenthesizedVariable(const A &) {
343   return false;
344 }
345 template <typename T>
346 static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
347   using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
348   using Parentheses = Fortran::evaluate::Parentheses<T>;
349   if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
350     if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
351       return Fortran::evaluate::IsVariable(parentheses->left());
352     return false;
353   } else {
354     return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
355                       expr.u);
356   }
357 }
358 
359 /// Does \p expr only refer to symbols that are mapped to IR values in \p symMap
360 /// ?
361 static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr,
362                                          Fortran::lower::SymMap &symMap) {
363   for (const auto &sym : Fortran::evaluate::CollectSymbols(expr))
364     if (!symMap.lookupSymbol(sym))
365       return false;
366   return true;
367 }
368 
369 /// Generate a load of a value from an address. Beware that this will lose
370 /// any dynamic type information for polymorphic entities (note that unlimited
371 /// polymorphic cannot be loaded and must not be provided here).
372 static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
373                                   mlir::Location loc,
374                                   const fir::ExtendedValue &addr) {
375   return addr.match(
376       [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
377       [&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
378         if (fir::unwrapRefType(fir::getBase(v).getType())
379                 .isa<fir::RecordType>())
380           return v;
381         return builder.create<fir::LoadOp>(loc, fir::getBase(v));
382       },
383       [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
384         return genLoad(builder, loc,
385                        fir::factory::genMutableBoxRead(builder, loc, box));
386       },
387       [&](const fir::BoxValue &box) -> fir::ExtendedValue {
388         if (box.isUnlimitedPolymorphic())
389           fir::emitFatalError(
390               loc,
391               "lowering attempting to load an unlimited polymorphic entity");
392         return genLoad(builder, loc,
393                        fir::factory::readBoxValue(builder, loc, box));
394       },
395       [&](const auto &) -> fir::ExtendedValue {
396         fir::emitFatalError(
397             loc, "attempting to load whole array or procedure address");
398       });
399 }
400 
401 /// Create an optional dummy argument value from entity \p exv that may be
402 /// absent. This can only be called with numerical or logical scalar \p exv.
403 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
404 /// value is zero (or false), otherwise it is the value of \p exv.
405 static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
406                                            mlir::Location loc,
407                                            const fir::ExtendedValue &exv,
408                                            mlir::Value isPresent) {
409   mlir::Type eleType = fir::getBaseTypeOf(exv);
410   assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
411          "must be a numerical or logical scalar");
412   return builder
413       .genIfOp(loc, {eleType}, isPresent,
414                /*withElseRegion=*/true)
415       .genThen([&]() {
416         mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
417         builder.create<fir::ResultOp>(loc, val);
418       })
419       .genElse([&]() {
420         mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
421         builder.create<fir::ResultOp>(loc, zero);
422       })
423       .getResults()[0];
424 }
425 
426 /// Create an optional dummy argument address from entity \p exv that may be
427 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
428 /// returned value is a null pointer, otherwise it is the address of \p exv.
429 static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
430                                           mlir::Location loc,
431                                           const fir::ExtendedValue &exv,
432                                           mlir::Value isPresent) {
433   // If it is an exv pointer/allocatable, then it cannot be absent
434   // because it is passed to a non-pointer/non-allocatable.
435   if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
436     return fir::factory::genMutableBoxRead(builder, loc, *box);
437   // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
438   // address and can be passed directly.
439   return exv;
440 }
441 
442 /// Create an optional dummy argument address from entity \p exv that may be
443 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
444 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p
445 /// exv.
446 static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
447                                          mlir::Location loc,
448                                          const fir::ExtendedValue &exv,
449                                          mlir::Value isPresent) {
450   // Non allocatable/pointer optional box -> simply forward
451   if (exv.getBoxOf<fir::BoxValue>())
452     return exv;
453 
454   fir::ExtendedValue newExv = exv;
455   // Optional allocatable/pointer -> Cannot be absent, but need to translate
456   // unallocated/diassociated into absent fir.box.
457   if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
458     newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
459 
460   // createBox will not do create any invalid memory dereferences if exv is
461   // absent. The created fir.box will not be usable, but the SelectOp below
462   // ensures it won't be.
463   mlir::Value box = builder.createBox(loc, newExv);
464   mlir::Type boxType = box.getType();
465   auto absent = builder.create<fir::AbsentOp>(loc, boxType);
466   auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
467       loc, boxType, isPresent, box, absent);
468   return fir::BoxValue(boxOrAbsent);
469 }
470 
471 /// Is this a call to an elemental procedure with at least one array argument?
472 static bool
473 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
474   if (procRef.IsElemental())
475     for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
476          procRef.arguments())
477       if (arg && arg->Rank() != 0)
478         return true;
479   return false;
480 }
481 template <typename T>
482 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
483   return false;
484 }
485 template <>
486 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
487   if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
488     return isElementalProcWithArrayArgs(*procRef);
489   return false;
490 }
491 
492 /// Some auxiliary data for processing initialization in ScalarExprLowering
493 /// below. This is currently used for generating dense attributed global
494 /// arrays.
495 struct InitializerData {
496   explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {}
497   llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values
498   mlir::Type rawType; // Type of elements processed for rawVals vector.
499   bool genRawVals;    // generate the rawVals vector if set.
500 };
501 
502 /// If \p arg is the address of a function with a denoted host-association tuple
503 /// argument, then return the host-associations tuple value of the current
504 /// procedure. Otherwise, return nullptr.
505 static mlir::Value
506 argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
507                    mlir::Value arg) {
508   if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
509     auto &builder = converter.getFirOpBuilder();
510     if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
511       if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
512         return converter.hostAssocTupleValue();
513   }
514   return {};
515 }
516 
517 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
518 /// \p funcAddr argument to a boxproc value, with the host-association as
519 /// required. Call the factory function to finish creating the tuple value.
520 static mlir::Value
521 createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter,
522                        mlir::Type argTy, mlir::Value funcAddr,
523                        mlir::Value charLen) {
524   auto boxTy =
525       argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>();
526   mlir::Location loc = converter.getCurrentLocation();
527   auto &builder = converter.getFirOpBuilder();
528   auto boxProc = [&]() -> mlir::Value {
529     if (auto host = argumentHostAssocs(converter, funcAddr))
530       return builder.create<fir::EmboxProcOp>(
531           loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host});
532     return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr);
533   }();
534   return fir::factory::createCharacterProcedureTuple(builder, loc, argTy,
535                                                      boxProc, charLen);
536 }
537 
538 /// Given an optional fir.box, returns an fir.box that is the original one if
539 /// it is present and it otherwise an unallocated box.
540 /// Absent fir.box are implemented as a null pointer descriptor. Generated
541 /// code may need to unconditionally read a fir.box that can be absent.
542 /// This helper allows creating a fir.box that can be read in all cases
543 /// outside of a fir.if (isPresent) region. However, the usages of the value
544 /// read from such box should still only be done in a fir.if(isPresent).
545 static fir::ExtendedValue
546 absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
547                           const fir::ExtendedValue &exv,
548                           mlir::Value isPresent) {
549   mlir::Value box = fir::getBase(exv);
550   mlir::Type boxType = box.getType();
551   assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
552   mlir::Value emptyBox =
553       fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
554   auto safeToReadBox =
555       builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
556   return fir::substBase(exv, safeToReadBox);
557 }
558 
559 // Helper to get the ultimate first symbol. This works around the fact that
560 // symbol resolution in the front end doesn't always resolve a symbol to its
561 // ultimate symbol but may leave placeholder indirections for use and host
562 // associations.
563 template <typename A>
564 const Fortran::semantics::Symbol &getFirstSym(const A &obj) {
565   return obj.GetFirstSymbol().GetUltimate();
566 }
567 
568 // Helper to get the ultimate last symbol.
569 template <typename A>
570 const Fortran::semantics::Symbol &getLastSym(const A &obj) {
571   return obj.GetLastSymbol().GetUltimate();
572 }
573 
574 static bool
575 isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
576   const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
577   if (!symbol)
578     return false;
579   const Fortran::semantics::Symbol *module =
580       symbol->GetUltimate().owner().GetSymbol();
581   return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
582 }
583 
584 namespace {
585 
586 /// Lowering of Fortran::evaluate::Expr<T> expressions
587 class ScalarExprLowering {
588 public:
589   using ExtValue = fir::ExtendedValue;
590 
591   explicit ScalarExprLowering(mlir::Location loc,
592                               Fortran::lower::AbstractConverter &converter,
593                               Fortran::lower::SymMap &symMap,
594                               Fortran::lower::StatementContext &stmtCtx,
595                               InitializerData *initializer = nullptr)
596       : location{loc}, converter{converter},
597         builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
598         inInitializer{initializer} {}
599 
600   ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
601     return gen(expr);
602   }
603 
604   /// Lower `expr` to be passed as a fir.box argument. Do not create a temp
605   /// for the expr if it is a variable that can be described as a fir.box.
606   ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
607     bool saveUseBoxArg = useBoxArg;
608     useBoxArg = true;
609     ExtValue result = gen(expr);
610     useBoxArg = saveUseBoxArg;
611     return result;
612   }
613 
614   ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
615     return genval(expr);
616   }
617 
618   /// Lower an expression that is a pointer or an allocatable to a
619   /// MutableBoxValue.
620   fir::MutableBoxValue
621   genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
622     // Pointers and allocatables can only be:
623     //    - a simple designator "x"
624     //    - a component designator "a%b(i,j)%x"
625     //    - a function reference "foo()"
626     //    - result of NULL() or NULL(MOLD) intrinsic.
627     //    NULL() requires some context to be lowered, so it is not handled
628     //    here and must be lowered according to the context where it appears.
629     ExtValue exv = std::visit(
630         [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
631     const fir::MutableBoxValue *mutableBox =
632         exv.getBoxOf<fir::MutableBoxValue>();
633     if (!mutableBox)
634       fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
635     return *mutableBox;
636   }
637 
638   template <typename T>
639   ExtValue genMutableBoxValueImpl(const T &) {
640     // NULL() case should not be handled here.
641     fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
642   }
643 
644   /// A `NULL()` in a position where a mutable box is expected has the same
645   /// semantics as an absent optional box value.
646   ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) {
647     mlir::Location loc = getLoc();
648     auto nullConst = builder.createNullConstant(loc);
649     auto noneTy = mlir::NoneType::get(builder.getContext());
650     auto polyRefTy = fir::LLVMPointerType::get(noneTy);
651     // MutableBoxValue will dereference the box, so create a bogus temporary for
652     // the `nullptr`. The LLVM optimizer will garbage collect the temp.
653     auto temp =
654         builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{});
655     auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst);
656     builder.create<fir::StoreOp>(loc, nullPtr, temp);
657     auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy));
658     return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp),
659                                 /*lenParameters=*/mlir::ValueRange{},
660                                 /*mutableProperties=*/{});
661   }
662 
663   template <typename T>
664   ExtValue
665   genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
666     return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
667   }
668 
669   template <typename T>
670   ExtValue
671   genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
672     return std::visit(
673         Fortran::common::visitors{
674             [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
675               return symMap.lookupSymbol(*sym).toExtendedValue();
676             },
677             [&](const Fortran::evaluate::Component &comp) -> ExtValue {
678               return genComponent(comp);
679             },
680             [&](const auto &) -> ExtValue {
681               fir::emitFatalError(getLoc(),
682                                   "not an allocatable or pointer designator");
683             }},
684         designator.u);
685   }
686 
687   template <typename T>
688   ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
689     return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
690                       expr.u);
691   }
692 
693   mlir::Location getLoc() { return location; }
694 
695   template <typename A>
696   mlir::Value genunbox(const A &expr) {
697     ExtValue e = genval(expr);
698     if (const fir::UnboxedValue *r = e.getUnboxed())
699       return *r;
700     fir::emitFatalError(getLoc(), "unboxed expression expected");
701   }
702 
703   /// Generate an integral constant of `value`
704   template <int KIND>
705   mlir::Value genIntegerConstant(mlir::MLIRContext *context,
706                                  std::int64_t value) {
707     mlir::Type type =
708         converter.genType(Fortran::common::TypeCategory::Integer, KIND);
709     return builder.createIntegerConstant(getLoc(), type, value);
710   }
711 
712   /// Generate a logical/boolean constant of `value`
713   mlir::Value genBoolConstant(bool value) {
714     return builder.createBool(getLoc(), value);
715   }
716 
717   /// Generate a real constant with a value `value`.
718   template <int KIND>
719   mlir::Value genRealConstant(mlir::MLIRContext *context,
720                               const llvm::APFloat &value) {
721     mlir::Type fltTy = Fortran::lower::convertReal(context, KIND);
722     return builder.createRealConstant(getLoc(), fltTy, value);
723   }
724 
725   mlir::Type getSomeKindInteger() { return builder.getIndexType(); }
726 
727   mlir::func::FuncOp getFunction(llvm::StringRef name,
728                                  mlir::FunctionType funTy) {
729     if (mlir::func::FuncOp func = builder.getNamedFunction(name))
730       return func;
731     return builder.createFunction(getLoc(), name, funTy);
732   }
733 
734   template <typename OpTy>
735   mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
736                               const ExtValue &left, const ExtValue &right) {
737     if (const fir::UnboxedValue *lhs = left.getUnboxed())
738       if (const fir::UnboxedValue *rhs = right.getUnboxed())
739         return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
740     fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
741   }
742   template <typename OpTy, typename A>
743   mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
744     ExtValue left = genval(ex.left());
745     return createCompareOp<OpTy>(pred, left, genval(ex.right()));
746   }
747 
748   template <typename OpTy>
749   mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
750                              const ExtValue &left, const ExtValue &right) {
751     if (const fir::UnboxedValue *lhs = left.getUnboxed())
752       if (const fir::UnboxedValue *rhs = right.getUnboxed())
753         return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
754     fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
755   }
756   template <typename OpTy, typename A>
757   mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
758     ExtValue left = genval(ex.left());
759     return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
760   }
761 
762   /// Create a call to the runtime to compare two CHARACTER values.
763   /// Precondition: This assumes that the two values have `fir.boxchar` type.
764   mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred,
765                                 const ExtValue &left, const ExtValue &right) {
766     return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right);
767   }
768 
769   template <typename A>
770   mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) {
771     ExtValue left = genval(ex.left());
772     return createCharCompare(pred, left, genval(ex.right()));
773   }
774 
775   /// Returns a reference to a symbol or its box/boxChar descriptor if it has
776   /// one.
777   ExtValue gen(Fortran::semantics::SymbolRef sym) {
778     if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym))
779       return val.match(
780           [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) {
781             return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr);
782           },
783           [&val](auto &) { return val.toExtendedValue(); });
784     LLVM_DEBUG(llvm::dbgs()
785                << "unknown symbol: " << sym << "\nmap: " << symMap << '\n');
786     fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value");
787   }
788 
789   ExtValue genLoad(const ExtValue &exv) {
790     return ::genLoad(builder, getLoc(), exv);
791   }
792 
793   ExtValue genval(Fortran::semantics::SymbolRef sym) {
794     mlir::Location loc = getLoc();
795     ExtValue var = gen(sym);
796     if (const fir::UnboxedValue *s = var.getUnboxed())
797       if (fir::isa_ref_type(s->getType())) {
798         // A function with multiple entry points returning different types
799         // tags all result variables with one of the largest types to allow
800         // them to share the same storage.  A reference to a result variable
801         // of one of the other types requires conversion to the actual type.
802         fir::UnboxedValue addr = *s;
803         if (Fortran::semantics::IsFunctionResult(sym)) {
804           mlir::Type resultType = converter.genType(*sym);
805           if (addr.getType() != resultType)
806             addr = builder.createConvert(loc, builder.getRefType(resultType),
807                                          addr);
808         }
809         return genLoad(addr);
810       }
811     return var;
812   }
813 
814   ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
815     TODO(getLoc(), "BOZ");
816   }
817 
818   /// Return indirection to function designated in ProcedureDesignator.
819   /// The type of the function indirection is not guaranteed to match the one
820   /// of the ProcedureDesignator due to Fortran implicit typing rules.
821   ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
822     mlir::Location loc = getLoc();
823     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
824             proc.GetSpecificIntrinsic()) {
825       mlir::FunctionType signature =
826           Fortran::lower::translateSignature(proc, converter);
827       // Intrinsic lowering is based on the generic name, so retrieve it here in
828       // case it is different from the specific name. The type of the specific
829       // intrinsic is retained in the signature.
830       std::string genericName =
831           converter.getFoldingContext().intrinsics().GetGenericIntrinsicName(
832               intrinsic->name);
833       mlir::SymbolRefAttr symbolRefAttr =
834           Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr(
835               builder, loc, genericName, signature);
836       mlir::Value funcPtr =
837           builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr);
838       return funcPtr;
839     }
840     const Fortran::semantics::Symbol *symbol = proc.GetSymbol();
841     assert(symbol && "expected symbol in ProcedureDesignator");
842     mlir::Value funcPtr;
843     mlir::Value funcPtrResultLength;
844     if (Fortran::semantics::IsDummy(*symbol)) {
845       Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol);
846       assert(val && "Dummy procedure not in symbol map");
847       funcPtr = val.getAddr();
848       if (fir::isCharacterProcedureTuple(funcPtr.getType(),
849                                          /*acceptRawFunc=*/false))
850         std::tie(funcPtr, funcPtrResultLength) =
851             fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr);
852     } else {
853       std::string name = converter.mangleName(*symbol);
854       mlir::func::FuncOp func =
855           Fortran::lower::getOrDeclareFunction(name, proc, converter);
856       // Abstract results require later rewrite of the function type.
857       // This currently does not happen inside GloalOps, causing LLVM
858       // IR verification failure. This helper is only here to catch these
859       // cases and emit a TODOs for now.
860       if (inInitializer && fir::hasAbstractResult(func.getFunctionType()))
861         TODO(converter.genLocation(symbol->name()),
862              "static description of non trivial procedure bindings");
863       funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(),
864                                               builder.getSymbolRefAttr(name));
865     }
866     if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) {
867       // The result length, if available here, must be propagated along the
868       // procedure address so that call sites where the result length is assumed
869       // can retrieve the length.
870       Fortran::evaluate::DynamicType resultType = proc.GetType().value();
871       if (const auto &lengthExpr = resultType.GetCharLength()) {
872         // The length expression may refer to dummy argument symbols that are
873         // meaningless without any actual arguments. Leave the length as
874         // unknown in that case, it be resolved on the call site
875         // with the actual arguments.
876         if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) {
877           mlir::Value rawLen = fir::getBase(genval(*lengthExpr));
878           // F2018 7.4.4.2 point 5.
879           funcPtrResultLength =
880               fir::factory::genMaxWithZero(builder, getLoc(), rawLen);
881         }
882       }
883       if (!funcPtrResultLength)
884         funcPtrResultLength = builder.createIntegerConstant(
885             loc, builder.getCharacterLengthType(), -1);
886       return fir::CharBoxValue{funcPtr, funcPtrResultLength};
887     }
888     return funcPtr;
889   }
890   ExtValue genval(const Fortran::evaluate::NullPointer &) {
891     return builder.createNullConstant(getLoc());
892   }
893 
894   static bool
895   isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) {
896     if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
897       if (const Fortran::semantics::DerivedTypeSpec *derived =
898               declTy->AsDerived())
899         return Fortran::semantics::CountLenParameters(*derived) > 0;
900     return false;
901   }
902 
903   static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) {
904     if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType())
905       if (const Fortran::semantics::DerivedTypeSpec *derived =
906               declType->AsDerived())
907         return Fortran::semantics::IsIsoCType(derived);
908     return false;
909   }
910 
911   /// Lower structure constructor without a temporary. This can be used in
912   /// fir::GloablOp, and assumes that the structure component is a constant.
913   ExtValue genStructComponentInInitializer(
914       const Fortran::evaluate::StructureConstructor &ctor) {
915     mlir::Location loc = getLoc();
916     mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
917     auto recTy = ty.cast<fir::RecordType>();
918     auto fieldTy = fir::FieldType::get(ty.getContext());
919     mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);
920 
921     for (const auto &[sym, expr] : ctor.values()) {
922       // Parent components need more work because they do not appear in the
923       // fir.rec type.
924       if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
925         TODO(loc, "parent component in structure constructor");
926 
927       llvm::StringRef name = toStringRef(sym->name());
928       mlir::Type componentTy = recTy.getType(name);
929       // FIXME: type parameters must come from the derived-type-spec
930       auto field = builder.create<fir::FieldIndexOp>(
931           loc, fieldTy, name, ty,
932           /*typeParams=*/mlir::ValueRange{} /*TODO*/);
933 
934       if (Fortran::semantics::IsAllocatable(sym))
935         TODO(loc, "allocatable component in structure constructor");
936 
937       if (Fortran::semantics::IsPointer(sym)) {
938         mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
939             converter, loc, componentTy, expr.value());
940         res = builder.create<fir::InsertValueOp>(
941             loc, recTy, res, initialTarget,
942             builder.getArrayAttr(field.getAttributes()));
943         continue;
944       }
945 
946       if (isDerivedTypeWithLengthParameters(sym))
947         TODO(loc, "component with length parameters in structure constructor");
948 
949       if (isBuiltinCPtr(sym)) {
950         // Builtin c_ptr and c_funptr have special handling because initial
951         // value are handled for them as an extension.
952         mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
953             converter, loc, expr.value()));
954         if (addr.getType() == componentTy) {
955           // Do nothing. The Ev::Expr was returned as a value that can be
956           // inserted directly to the component without an intermediary.
957         } else {
958           // The Ev::Expr returned is an initializer that is a pointer (e.g.,
959           // null) that must be inserted into an intermediate cptr record
960           // value's address field, which ought to be an intptr_t on the target.
961           assert((fir::isa_ref_type(addr.getType()) ||
962                   addr.getType().isa<mlir::FunctionType>()) &&
963                  "expect reference type for address field");
964           assert(fir::isa_derived(componentTy) &&
965                  "expect C_PTR, C_FUNPTR to be a record");
966           auto cPtrRecTy = componentTy.cast<fir::RecordType>();
967           llvm::StringRef addrFieldName =
968               Fortran::lower::builtin::cptrFieldName;
969           mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
970           auto addrField = builder.create<fir::FieldIndexOp>(
971               loc, fieldTy, addrFieldName, componentTy,
972               /*typeParams=*/mlir::ValueRange{});
973           mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
974           auto undef = builder.create<fir::UndefOp>(loc, componentTy);
975           addr = builder.create<fir::InsertValueOp>(
976               loc, componentTy, undef, castAddr,
977               builder.getArrayAttr(addrField.getAttributes()));
978         }
979         res = builder.create<fir::InsertValueOp>(
980             loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
981         continue;
982       }
983 
984       mlir::Value val = fir::getBase(genval(expr.value()));
985       assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
986       mlir::Value castVal = builder.createConvert(loc, componentTy, val);
987       res = builder.create<fir::InsertValueOp>(
988           loc, recTy, res, castVal,
989           builder.getArrayAttr(field.getAttributes()));
990     }
991     return res;
992   }
993 
994   /// A structure constructor is lowered two ways. In an initializer context,
995   /// the entire structure must be constant, so the aggregate value is
996   /// constructed inline. This allows it to be the body of a GlobalOp.
997   /// Otherwise, the structure constructor is in an expression. In that case, a
998   /// temporary object is constructed in the stack frame of the procedure.
999   ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
1000     if (inInitializer)
1001       return genStructComponentInInitializer(ctor);
1002     mlir::Location loc = getLoc();
1003     mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
1004     auto recTy = ty.cast<fir::RecordType>();
1005     auto fieldTy = fir::FieldType::get(ty.getContext());
1006     mlir::Value res = builder.createTemporary(loc, recTy);
1007 
1008     for (const auto &value : ctor.values()) {
1009       const Fortran::semantics::Symbol &sym = *value.first;
1010       const Fortran::lower::SomeExpr &expr = value.second.value();
1011       // Parent components need more work because they do not appear in the
1012       // fir.rec type.
1013       if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp))
1014         TODO(loc, "parent component in structure constructor");
1015 
1016       if (isDerivedTypeWithLengthParameters(sym))
1017         TODO(loc, "component with length parameters in structure constructor");
1018 
1019       llvm::StringRef name = toStringRef(sym.name());
1020       // FIXME: type parameters must come from the derived-type-spec
1021       mlir::Value field = builder.create<fir::FieldIndexOp>(
1022           loc, fieldTy, name, ty,
1023           /*typeParams=*/mlir::ValueRange{} /*TODO*/);
1024       mlir::Type coorTy = builder.getRefType(recTy.getType(name));
1025       auto coor = builder.create<fir::CoordinateOp>(loc, coorTy,
1026                                                     fir::getBase(res), field);
1027       ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor);
1028       to.match(
1029           [&](const fir::UnboxedValue &toPtr) {
1030             ExtValue value = genval(expr);
1031             fir::factory::genScalarAssignment(builder, loc, to, value);
1032           },
1033           [&](const fir::CharBoxValue &) {
1034             ExtValue value = genval(expr);
1035             fir::factory::genScalarAssignment(builder, loc, to, value);
1036           },
1037           [&](const fir::ArrayBoxValue &) {
1038             Fortran::lower::createSomeArrayAssignment(converter, to, expr,
1039                                                       symMap, stmtCtx);
1040           },
1041           [&](const fir::CharArrayBoxValue &) {
1042             Fortran::lower::createSomeArrayAssignment(converter, to, expr,
1043                                                       symMap, stmtCtx);
1044           },
1045           [&](const fir::BoxValue &toBox) {
1046             fir::emitFatalError(loc, "derived type components must not be "
1047                                      "represented by fir::BoxValue");
1048           },
1049           [&](const fir::MutableBoxValue &toBox) {
1050             if (toBox.isPointer()) {
1051               Fortran::lower::associateMutableBox(
1052                   converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx);
1053               return;
1054             }
1055             // For allocatable components, a deep copy is needed.
1056             TODO(loc, "allocatable components in derived type assignment");
1057           },
1058           [&](const fir::ProcBoxValue &toBox) {
1059             TODO(loc, "procedure pointer component in derived type assignment");
1060           });
1061     }
1062     return res;
1063   }
1064 
1065   /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
1066   ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
1067     return converter.impliedDoBinding(toStringRef(var.name));
1068   }
1069 
1070   ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
1071     ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base()))
1072                                           : gen(desc.base().GetComponent());
1073     mlir::IndexType idxTy = builder.getIndexType();
1074     mlir::Location loc = getLoc();
1075     auto castResult = [&](mlir::Value v) {
1076       using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
1077       return builder.createConvert(
1078           loc, converter.genType(ResTy::category, ResTy::kind), v);
1079     };
1080     switch (desc.field()) {
1081     case Fortran::evaluate::DescriptorInquiry::Field::Len:
1082       return castResult(fir::factory::readCharLen(builder, loc, exv));
1083     case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
1084       return castResult(fir::factory::readLowerBound(
1085           builder, loc, exv, desc.dimension(),
1086           builder.createIntegerConstant(loc, idxTy, 1)));
1087     case Fortran::evaluate::DescriptorInquiry::Field::Extent:
1088       return castResult(
1089           fir::factory::readExtent(builder, loc, exv, desc.dimension()));
1090     case Fortran::evaluate::DescriptorInquiry::Field::Rank:
1091       TODO(loc, "rank inquiry on assumed rank");
1092     case Fortran::evaluate::DescriptorInquiry::Field::Stride:
1093       // So far the front end does not generate this inquiry.
1094       TODO(loc, "stride inquiry");
1095     }
1096     llvm_unreachable("unknown descriptor inquiry");
1097   }
1098 
1099   ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
1100     TODO(getLoc(), "type parameter inquiry");
1101   }
1102 
1103   mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) {
1104     return fir::factory::Complex{builder, getLoc()}.extractComplexPart(
1105         cplx, isImagPart);
1106   }
1107 
1108   template <int KIND>
1109   ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
1110     return extractComplexPart(genunbox(part.left()), part.isImaginaryPart);
1111   }
1112 
1113   template <int KIND>
1114   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1115                       Fortran::common::TypeCategory::Integer, KIND>> &op) {
1116     mlir::Value input = genunbox(op.left());
1117     // Like LLVM, integer negation is the binary op "0 - value"
1118     mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
1119     return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
1120   }
1121   template <int KIND>
1122   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1123                       Fortran::common::TypeCategory::Real, KIND>> &op) {
1124     return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
1125   }
1126   template <int KIND>
1127   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1128                       Fortran::common::TypeCategory::Complex, KIND>> &op) {
1129     return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
1130   }
1131 
1132   template <typename OpTy>
1133   mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
1134     assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
1135     mlir::Value lhs = fir::getBase(left);
1136     mlir::Value rhs = fir::getBase(right);
1137     assert(lhs.getType() == rhs.getType() && "types must be the same");
1138     return builder.create<OpTy>(getLoc(), lhs, rhs);
1139   }
1140 
1141   template <typename OpTy, typename A>
1142   mlir::Value createBinaryOp(const A &ex) {
1143     ExtValue left = genval(ex.left());
1144     return createBinaryOp<OpTy>(left, genval(ex.right()));
1145   }
1146 
1147 #undef GENBIN
1148 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
1149   template <int KIND>                                                          \
1150   ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
1151                       Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
1152     return createBinaryOp<GenBinFirOp>(x);                                     \
1153   }
1154 
1155   GENBIN(Add, Integer, mlir::arith::AddIOp)
1156   GENBIN(Add, Real, mlir::arith::AddFOp)
1157   GENBIN(Add, Complex, fir::AddcOp)
1158   GENBIN(Subtract, Integer, mlir::arith::SubIOp)
1159   GENBIN(Subtract, Real, mlir::arith::SubFOp)
1160   GENBIN(Subtract, Complex, fir::SubcOp)
1161   GENBIN(Multiply, Integer, mlir::arith::MulIOp)
1162   GENBIN(Multiply, Real, mlir::arith::MulFOp)
1163   GENBIN(Multiply, Complex, fir::MulcOp)
1164   GENBIN(Divide, Integer, mlir::arith::DivSIOp)
1165   GENBIN(Divide, Real, mlir::arith::DivFOp)
1166   GENBIN(Divide, Complex, fir::DivcOp)
1167 
1168   template <Fortran::common::TypeCategory TC, int KIND>
1169   ExtValue genval(
1170       const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
1171     mlir::Type ty = converter.genType(TC, KIND);
1172     mlir::Value lhs = genunbox(op.left());
1173     mlir::Value rhs = genunbox(op.right());
1174     return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
1175   }
1176 
1177   template <Fortran::common::TypeCategory TC, int KIND>
1178   ExtValue genval(
1179       const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
1180           &op) {
1181     mlir::Type ty = converter.genType(TC, KIND);
1182     mlir::Value lhs = genunbox(op.left());
1183     mlir::Value rhs = genunbox(op.right());
1184     return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
1185   }
1186 
1187   template <int KIND>
1188   ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
1189     mlir::Value realPartValue = genunbox(op.left());
1190     return fir::factory::Complex{builder, getLoc()}.createComplex(
1191         KIND, realPartValue, genunbox(op.right()));
1192   }
1193 
1194   template <int KIND>
1195   ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
1196     ExtValue lhs = genval(op.left());
1197     ExtValue rhs = genval(op.right());
1198     const fir::CharBoxValue *lhsChar = lhs.getCharBox();
1199     const fir::CharBoxValue *rhsChar = rhs.getCharBox();
1200     if (lhsChar && rhsChar)
1201       return fir::factory::CharacterExprHelper{builder, getLoc()}
1202           .createConcatenate(*lhsChar, *rhsChar);
1203     TODO(getLoc(), "character array concatenate");
1204   }
1205 
1206   /// MIN and MAX operations
1207   template <Fortran::common::TypeCategory TC, int KIND>
1208   ExtValue
1209   genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
1210              &op) {
1211     mlir::Value lhs = genunbox(op.left());
1212     mlir::Value rhs = genunbox(op.right());
1213     switch (op.ordering) {
1214     case Fortran::evaluate::Ordering::Greater:
1215       return Fortran::lower::genMax(builder, getLoc(),
1216                                     llvm::ArrayRef<mlir::Value>{lhs, rhs});
1217     case Fortran::evaluate::Ordering::Less:
1218       return Fortran::lower::genMin(builder, getLoc(),
1219                                     llvm::ArrayRef<mlir::Value>{lhs, rhs});
1220     case Fortran::evaluate::Ordering::Equal:
1221       llvm_unreachable("Equal is not a valid ordering in this context");
1222     }
1223     llvm_unreachable("unknown ordering");
1224   }
1225 
1226   // Change the dynamic length information without actually changing the
1227   // underlying character storage.
1228   fir::ExtendedValue
1229   replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar,
1230                                mlir::Value newLenValue) {
1231     mlir::Location loc = getLoc();
1232     const fir::CharBoxValue *charBox = scalarChar.getCharBox();
1233     if (!charBox)
1234       fir::emitFatalError(loc, "expected scalar character");
1235     mlir::Value charAddr = charBox->getAddr();
1236     auto charType =
1237         fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>();
1238     if (charType.hasConstantLen()) {
1239       // Erase previous constant length from the base type.
1240       fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen();
1241       mlir::Type newCharTy = fir::CharacterType::get(
1242           builder.getContext(), charType.getFKind(), newLen);
1243       mlir::Type newType = fir::ReferenceType::get(newCharTy);
1244       charAddr = builder.createConvert(loc, newType, charAddr);
1245       return fir::CharBoxValue{charAddr, newLenValue};
1246     }
1247     return fir::CharBoxValue{charAddr, newLenValue};
1248   }
1249 
1250   template <int KIND>
1251   ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
1252     mlir::Value newLenValue = genunbox(x.right());
1253     fir::ExtendedValue lhs = gen(x.left());
1254     return replaceScalarCharacterLength(lhs, newLenValue);
1255   }
1256 
1257   template <int KIND>
1258   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1259                       Fortran::common::TypeCategory::Integer, KIND>> &op) {
1260     return createCompareOp<mlir::arith::CmpIOp>(op,
1261                                                 translateRelational(op.opr));
1262   }
1263   template <int KIND>
1264   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1265                       Fortran::common::TypeCategory::Real, KIND>> &op) {
1266     return createFltCmpOp<mlir::arith::CmpFOp>(
1267         op, translateFloatRelational(op.opr));
1268   }
1269   template <int KIND>
1270   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1271                       Fortran::common::TypeCategory::Complex, KIND>> &op) {
1272     return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr));
1273   }
1274   template <int KIND>
1275   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1276                       Fortran::common::TypeCategory::Character, KIND>> &op) {
1277     return createCharCompare(op, translateRelational(op.opr));
1278   }
1279 
1280   ExtValue
1281   genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
1282     return std::visit([&](const auto &x) { return genval(x); }, op.u);
1283   }
1284 
1285   template <Fortran::common::TypeCategory TC1, int KIND,
1286             Fortran::common::TypeCategory TC2>
1287   ExtValue
1288   genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
1289                                           TC2> &convert) {
1290     mlir::Type ty = converter.genType(TC1, KIND);
1291     auto fromExpr = genval(convert.left());
1292     auto loc = getLoc();
1293     return fromExpr.match(
1294         [&](const fir::CharBoxValue &boxchar) -> ExtValue {
1295           if constexpr (TC1 == Fortran::common::TypeCategory::Character &&
1296                         TC2 == TC1) {
1297             // Use char_convert. Each code point is translated from a
1298             // narrower/wider encoding to the target encoding. For example, 'A'
1299             // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol
1300             // for euro (0x20AC : i16) may be translated from a wide character
1301             // to "0xE2 0x82 0xAC" : UTF-8.
1302             mlir::Value bufferSize = boxchar.getLen();
1303             auto kindMap = builder.getKindMap();
1304             mlir::Value boxCharAddr = boxchar.getAddr();
1305             auto fromTy = boxCharAddr.getType();
1306             if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) {
1307               // boxchar is a value, not a variable. Turn it into a temporary.
1308               // As a value, it ought to have a constant LEN value.
1309               assert(charTy.hasConstantLen() && "must have constant length");
1310               mlir::Value tmp = builder.createTemporary(loc, charTy);
1311               builder.create<fir::StoreOp>(loc, boxCharAddr, tmp);
1312               boxCharAddr = tmp;
1313             }
1314             auto fromBits =
1315                 kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy)
1316                                                 .cast<fir::CharacterType>()
1317                                                 .getFKind());
1318             auto toBits = kindMap.getCharacterBitsize(
1319                 ty.cast<fir::CharacterType>().getFKind());
1320             if (toBits < fromBits) {
1321               // Scale by relative ratio to give a buffer of the same length.
1322               auto ratio = builder.createIntegerConstant(
1323                   loc, bufferSize.getType(), fromBits / toBits);
1324               bufferSize =
1325                   builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio);
1326             }
1327             auto dest = builder.create<fir::AllocaOp>(
1328                 loc, ty, mlir::ValueRange{bufferSize});
1329             builder.create<fir::CharConvertOp>(loc, boxCharAddr,
1330                                                boxchar.getLen(), dest);
1331             return fir::CharBoxValue{dest, boxchar.getLen()};
1332           } else {
1333             fir::emitFatalError(
1334                 loc, "unsupported evaluate::Convert between CHARACTER type "
1335                      "category and non-CHARACTER category");
1336           }
1337         },
1338         [&](const fir::UnboxedValue &value) -> ExtValue {
1339           return builder.convertWithSemantics(loc, ty, value);
1340         },
1341         [&](auto &) -> ExtValue {
1342           fir::emitFatalError(loc, "unsupported evaluate::Convert");
1343         });
1344   }
1345 
1346   template <typename A>
1347   ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
1348     ExtValue input = genval(op.left());
1349     mlir::Value base = fir::getBase(input);
1350     mlir::Value newBase =
1351         builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base);
1352     return fir::substBase(input, newBase);
1353   }
1354 
1355   template <int KIND>
1356   ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
1357     mlir::Value logical = genunbox(op.left());
1358     mlir::Value one = genBoolConstant(true);
1359     mlir::Value val =
1360         builder.createConvert(getLoc(), builder.getI1Type(), logical);
1361     return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
1362   }
1363 
1364   template <int KIND>
1365   ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
1366     mlir::IntegerType i1Type = builder.getI1Type();
1367     mlir::Value slhs = genunbox(op.left());
1368     mlir::Value srhs = genunbox(op.right());
1369     mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
1370     mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
1371     switch (op.logicalOperator) {
1372     case Fortran::evaluate::LogicalOperator::And:
1373       return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
1374     case Fortran::evaluate::LogicalOperator::Or:
1375       return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
1376     case Fortran::evaluate::LogicalOperator::Eqv:
1377       return createCompareOp<mlir::arith::CmpIOp>(
1378           mlir::arith::CmpIPredicate::eq, lhs, rhs);
1379     case Fortran::evaluate::LogicalOperator::Neqv:
1380       return createCompareOp<mlir::arith::CmpIOp>(
1381           mlir::arith::CmpIPredicate::ne, lhs, rhs);
1382     case Fortran::evaluate::LogicalOperator::Not:
1383       // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
1384       llvm_unreachable(".NOT. is not a binary operator");
1385     }
1386     llvm_unreachable("unhandled logical operation");
1387   }
1388 
1389   /// Convert a scalar literal constant to IR.
1390   template <Fortran::common::TypeCategory TC, int KIND>
1391   ExtValue genScalarLit(
1392       const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
1393           &value) {
1394     if constexpr (TC == Fortran::common::TypeCategory::Integer) {
1395       return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64());
1396     } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
1397       return genBoolConstant(value.IsTrue());
1398     } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
1399       std::string str = value.DumpHexadecimal();
1400       if constexpr (KIND == 2) {
1401         llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str};
1402         return genRealConstant<KIND>(builder.getContext(), floatVal);
1403       } else if constexpr (KIND == 3) {
1404         llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str};
1405         return genRealConstant<KIND>(builder.getContext(), floatVal);
1406       } else if constexpr (KIND == 4) {
1407         llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str};
1408         return genRealConstant<KIND>(builder.getContext(), floatVal);
1409       } else if constexpr (KIND == 10) {
1410         llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str};
1411         return genRealConstant<KIND>(builder.getContext(), floatVal);
1412       } else if constexpr (KIND == 16) {
1413         llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str};
1414         return genRealConstant<KIND>(builder.getContext(), floatVal);
1415       } else {
1416         // convert everything else to double
1417         llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str};
1418         return genRealConstant<KIND>(builder.getContext(), floatVal);
1419       }
1420     } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
1421       using TR =
1422           Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>;
1423       Fortran::evaluate::ComplexConstructor<KIND> ctor(
1424           Fortran::evaluate::Expr<TR>{
1425               Fortran::evaluate::Constant<TR>{value.REAL()}},
1426           Fortran::evaluate::Expr<TR>{
1427               Fortran::evaluate::Constant<TR>{value.AIMAG()}});
1428       return genunbox(ctor);
1429     } else /*constexpr*/ {
1430       llvm_unreachable("unhandled constant");
1431     }
1432   }
1433 
1434   /// Generate a raw literal value and store it in the rawVals vector.
1435   template <Fortran::common::TypeCategory TC, int KIND>
1436   void
1437   genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
1438                 &value) {
1439     mlir::Attribute val;
1440     assert(inInitializer != nullptr);
1441     if constexpr (TC == Fortran::common::TypeCategory::Integer) {
1442       inInitializer->rawType = converter.genType(TC, KIND);
1443       val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64());
1444     } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
1445       inInitializer->rawType =
1446           converter.genType(Fortran::common::TypeCategory::Integer, KIND);
1447       val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue());
1448     } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
1449       std::string str = value.DumpHexadecimal();
1450       inInitializer->rawType = converter.genType(TC, KIND);
1451       llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str};
1452       val = builder.getFloatAttr(inInitializer->rawType, floatVal);
1453     } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
1454       std::string strReal = value.REAL().DumpHexadecimal();
1455       std::string strImg = value.AIMAG().DumpHexadecimal();
1456       inInitializer->rawType = converter.genType(TC, KIND);
1457       llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND),
1458                             strReal};
1459       val = builder.getFloatAttr(inInitializer->rawType, realVal);
1460       inInitializer->rawVals.push_back(val);
1461       llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND),
1462                            strImg};
1463       val = builder.getFloatAttr(inInitializer->rawType, imgVal);
1464     }
1465     inInitializer->rawVals.push_back(val);
1466   }
1467 
1468   /// Convert a scalar literal CHARACTER to IR.
1469   template <int KIND>
1470   ExtValue
1471   genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
1472                    Fortran::common::TypeCategory::Character, KIND>> &value,
1473                int64_t len) {
1474     using ET = typename std::decay_t<decltype(value)>::value_type;
1475     if constexpr (KIND == 1) {
1476       assert(value.size() == static_cast<std::uint64_t>(len));
1477       // Outline character constant in ro data if it is not in an initializer.
1478       if (!inInitializer)
1479         return fir::factory::createStringLiteral(builder, getLoc(), value);
1480       // When in an initializer context, construct the literal op itself and do
1481       // not construct another constant object in rodata.
1482       fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value);
1483       mlir::Value lenp = builder.createIntegerConstant(
1484           getLoc(), builder.getCharacterLengthType(), len);
1485       return fir::CharBoxValue{stringLit.getResult(), lenp};
1486     }
1487     fir::CharacterType type =
1488         fir::CharacterType::get(builder.getContext(), KIND, len);
1489     auto consLit = [&]() -> fir::StringLitOp {
1490       mlir::MLIRContext *context = builder.getContext();
1491       std::int64_t size = static_cast<std::int64_t>(value.size());
1492       mlir::ShapedType shape = mlir::RankedTensorType::get(
1493           llvm::ArrayRef<std::int64_t>{size},
1494           mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
1495       auto denseAttr = mlir::DenseElementsAttr::get(
1496           shape, llvm::ArrayRef<ET>{value.data(), value.size()});
1497       auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
1498       mlir::NamedAttribute dataAttr(denseTag, denseAttr);
1499       auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
1500       mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
1501       llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
1502       return builder.create<fir::StringLitOp>(
1503           getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs);
1504     };
1505 
1506     mlir::Value lenp = builder.createIntegerConstant(
1507         getLoc(), builder.getCharacterLengthType(), len);
1508     // When in an initializer context, construct the literal op itself and do
1509     // not construct another constant object in rodata.
1510     if (inInitializer)
1511       return fir::CharBoxValue{consLit().getResult(), lenp};
1512 
1513     // Otherwise, the string is in a plain old expression so "outline" the value
1514     // by hashconsing it to a constant literal object.
1515 
1516     std::string globalName =
1517         fir::factory::uniqueCGIdent("cl", (const char *)value.c_str());
1518     fir::GlobalOp global = builder.getNamedGlobal(globalName);
1519     if (!global)
1520       global = builder.createGlobalConstant(
1521           getLoc(), type, globalName,
1522           [&](fir::FirOpBuilder &builder) {
1523             fir::StringLitOp str = consLit();
1524             builder.create<fir::HasValueOp>(getLoc(), str);
1525           },
1526           builder.createLinkOnceLinkage());
1527     auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
1528                                               global.getSymbol());
1529     return fir::CharBoxValue{addr, lenp};
1530   }
1531 
1532   template <Fortran::common::TypeCategory TC, int KIND>
1533   ExtValue genArrayLit(
1534       const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
1535           &con) {
1536     mlir::Location loc = getLoc();
1537     mlir::IndexType idxTy = builder.getIndexType();
1538     Fortran::evaluate::ConstantSubscript size =
1539         Fortran::evaluate::GetSize(con.shape());
1540     fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
1541     mlir::Type eleTy;
1542     if constexpr (TC == Fortran::common::TypeCategory::Character)
1543       eleTy = converter.genType(TC, KIND, {con.LEN()});
1544     else
1545       eleTy = converter.genType(TC, KIND);
1546     auto arrayTy = fir::SequenceType::get(shape, eleTy);
1547     mlir::Value array;
1548     llvm::SmallVector<mlir::Value> lbounds;
1549     llvm::SmallVector<mlir::Value> extents;
1550     if (!inInitializer || !inInitializer->genRawVals) {
1551       array = builder.create<fir::UndefOp>(loc, arrayTy);
1552       for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) {
1553         lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
1554         extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
1555       }
1556     }
1557     if (size == 0) {
1558       if constexpr (TC == Fortran::common::TypeCategory::Character) {
1559         mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
1560         return fir::CharArrayBoxValue{array, len, extents, lbounds};
1561       } else {
1562         return fir::ArrayBoxValue{array, extents, lbounds};
1563       }
1564     }
1565     Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
1566     auto createIdx = [&]() {
1567       llvm::SmallVector<mlir::Attribute> idx;
1568       for (size_t i = 0; i < subscripts.size(); ++i)
1569         idx.push_back(
1570             builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
1571       return idx;
1572     };
1573     if constexpr (TC == Fortran::common::TypeCategory::Character) {
1574       assert(array && "array must not be nullptr");
1575       do {
1576         mlir::Value elementVal =
1577             fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN()));
1578         array = builder.create<fir::InsertValueOp>(
1579             loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
1580       } while (con.IncrementSubscripts(subscripts));
1581       mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
1582       return fir::CharArrayBoxValue{array, len, extents, lbounds};
1583     } else {
1584       llvm::SmallVector<mlir::Attribute> rangeStartIdx;
1585       uint64_t rangeSize = 0;
1586       do {
1587         if (inInitializer && inInitializer->genRawVals) {
1588           genRawLit<TC, KIND>(con.At(subscripts));
1589           continue;
1590         }
1591         auto getElementVal = [&]() {
1592           return builder.createConvert(
1593               loc, eleTy,
1594               fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts))));
1595         };
1596         Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
1597         bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
1598                           con.At(subscripts) == con.At(nextSubscripts);
1599         if (!rangeSize && !nextIsSame) { // single (non-range) value
1600           array = builder.create<fir::InsertValueOp>(
1601               loc, arrayTy, array, getElementVal(),
1602               builder.getArrayAttr(createIdx()));
1603         } else if (!rangeSize) { // start a range
1604           rangeStartIdx = createIdx();
1605           rangeSize = 1;
1606         } else if (nextIsSame) { // expand a range
1607           ++rangeSize;
1608         } else { // end a range
1609           llvm::SmallVector<int64_t> rangeBounds;
1610           llvm::SmallVector<mlir::Attribute> idx = createIdx();
1611           for (size_t i = 0; i < idx.size(); ++i) {
1612             rangeBounds.push_back(rangeStartIdx[i]
1613                                       .cast<mlir::IntegerAttr>()
1614                                       .getValue()
1615                                       .getSExtValue());
1616             rangeBounds.push_back(
1617                 idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
1618           }
1619           array = builder.create<fir::InsertOnRangeOp>(
1620               loc, arrayTy, array, getElementVal(),
1621               builder.getIndexVectorAttr(rangeBounds));
1622           rangeSize = 0;
1623         }
1624       } while (con.IncrementSubscripts(subscripts));
1625       return fir::ArrayBoxValue{array, extents, lbounds};
1626     }
1627   }
1628 
1629   fir::ExtendedValue genArrayLit(
1630       const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
1631     mlir::Location loc = getLoc();
1632     mlir::IndexType idxTy = builder.getIndexType();
1633     Fortran::evaluate::ConstantSubscript size =
1634         Fortran::evaluate::GetSize(con.shape());
1635     fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
1636     mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec());
1637     auto arrayTy = fir::SequenceType::get(shape, eleTy);
1638     mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
1639     llvm::SmallVector<mlir::Value> lbounds;
1640     llvm::SmallVector<mlir::Value> extents;
1641     for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) {
1642       lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
1643       extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
1644     }
1645     if (size == 0)
1646       return fir::ArrayBoxValue{array, extents, lbounds};
1647     Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
1648     do {
1649       mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts)));
1650       llvm::SmallVector<mlir::Attribute> idx;
1651       for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds()))
1652         idx.push_back(builder.getIntegerAttr(idxTy, dim - lb));
1653       array = builder.create<fir::InsertValueOp>(
1654           loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx));
1655     } while (con.IncrementSubscripts(subscripts));
1656     return fir::ArrayBoxValue{array, extents, lbounds};
1657   }
1658 
1659   template <Fortran::common::TypeCategory TC, int KIND>
1660   ExtValue
1661   genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
1662              &con) {
1663     if (con.Rank() > 0)
1664       return genArrayLit(con);
1665     std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>>
1666         opt = con.GetScalarValue();
1667     assert(opt.has_value() && "constant has no value");
1668     if constexpr (TC == Fortran::common::TypeCategory::Character) {
1669       return genScalarLit<KIND>(opt.value(), con.LEN());
1670     } else {
1671       return genScalarLit<TC, KIND>(opt.value());
1672     }
1673   }
1674   fir::ExtendedValue genval(
1675       const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
1676     if (con.Rank() > 0)
1677       return genArrayLit(con);
1678     if (auto ctor = con.GetScalarValue())
1679       return genval(ctor.value());
1680     fir::emitFatalError(getLoc(),
1681                         "constant of derived type has no constructor");
1682   }
1683 
1684   template <typename A>
1685   ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
1686     fir::emitFatalError(getLoc(),
1687                         "array constructor: lowering should not reach here");
1688   }
1689 
1690   ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
1691     mlir::Location loc = getLoc();
1692     auto idxTy = builder.getI32Type();
1693     ExtValue exv = gen(x.complex());
1694     mlir::Value base = fir::getBase(exv);
1695     fir::factory::Complex helper{builder, loc};
1696     mlir::Type eleTy =
1697         helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType()));
1698     mlir::Value offset = builder.createIntegerConstant(
1699         loc, idxTy,
1700         x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
1701     mlir::Value result = builder.create<fir::CoordinateOp>(
1702         loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset});
1703     return {result};
1704   }
1705   ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
1706     return genLoad(gen(x));
1707   }
1708 
1709   /// Reference to a substring.
1710   ExtValue gen(const Fortran::evaluate::Substring &s) {
1711     // Get base string
1712     auto baseString = std::visit(
1713         Fortran::common::visitors{
1714             [&](const Fortran::evaluate::DataRef &x) { return gen(x); },
1715             [&](const Fortran::evaluate::StaticDataObject::Pointer &p)
1716                 -> ExtValue {
1717               if (std::optional<std::string> str = p->AsString())
1718                 return fir::factory::createStringLiteral(builder, getLoc(),
1719                                                          *str);
1720               // TODO: convert StaticDataObject to Constant<T> and use normal
1721               // constant path. Beware that StaticDataObject data() takes into
1722               // account build machine endianness.
1723               TODO(getLoc(),
1724                    "StaticDataObject::Pointer substring with kind > 1");
1725             },
1726         },
1727         s.parent());
1728     llvm::SmallVector<mlir::Value> bounds;
1729     mlir::Value lower = genunbox(s.lower());
1730     bounds.push_back(lower);
1731     if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) {
1732       mlir::Value upper = genunbox(*upperBound);
1733       bounds.push_back(upper);
1734     }
1735     fir::factory::CharacterExprHelper charHelper{builder, getLoc()};
1736     return baseString.match(
1737         [&](const fir::CharBoxValue &x) -> ExtValue {
1738           return charHelper.createSubstring(x, bounds);
1739         },
1740         [&](const fir::CharArrayBoxValue &) -> ExtValue {
1741           fir::emitFatalError(
1742               getLoc(),
1743               "array substring should be handled in array expression");
1744         },
1745         [&](const auto &) -> ExtValue {
1746           fir::emitFatalError(getLoc(), "substring base is not a CharBox");
1747         });
1748   }
1749 
1750   /// The value of a substring.
1751   ExtValue genval(const Fortran::evaluate::Substring &ss) {
1752     // FIXME: why is the value of a substring being lowered the same as the
1753     // address of a substring?
1754     return gen(ss);
1755   }
1756 
1757   ExtValue genval(const Fortran::evaluate::Subscript &subs) {
1758     if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
1759             &subs.u)) {
1760       if (s->value().Rank() > 0)
1761         fir::emitFatalError(getLoc(), "vector subscript is not scalar");
1762       return {genval(s->value())};
1763     }
1764     fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
1765   }
1766   ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
1767     return genval(subs);
1768   }
1769 
1770   ExtValue gen(const Fortran::evaluate::DataRef &dref) {
1771     return std::visit([&](const auto &x) { return gen(x); }, dref.u);
1772   }
1773   ExtValue genval(const Fortran::evaluate::DataRef &dref) {
1774     return std::visit([&](const auto &x) { return genval(x); }, dref.u);
1775   }
1776 
1777   // Helper function to turn the Component structure into a list of nested
1778   // components, ordered from largest/leftmost to smallest/rightmost:
1779   //  - where only the smallest/rightmost item may be allocatable or a pointer
1780   //    (nested allocatable/pointer components require nested coordinate_of ops)
1781   //  - that does not contain any parent components
1782   //    (the front end places parent components directly in the object)
1783   // Return the object used as the base coordinate for the component chain.
1784   static Fortran::evaluate::DataRef const *
1785   reverseComponents(const Fortran::evaluate::Component &cmpt,
1786                     std::list<const Fortran::evaluate::Component *> &list) {
1787     if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp))
1788       list.push_front(&cmpt);
1789     return std::visit(
1790         Fortran::common::visitors{
1791             [&](const Fortran::evaluate::Component &x) {
1792               if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x)))
1793                 return &cmpt.base();
1794               return reverseComponents(x, list);
1795             },
1796             [&](auto &) { return &cmpt.base(); },
1797         },
1798         cmpt.base().u);
1799   }
1800 
1801   // Return the coordinate of the component reference
1802   ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
1803     std::list<const Fortran::evaluate::Component *> list;
1804     const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
1805     llvm::SmallVector<mlir::Value> coorArgs;
1806     ExtValue obj = gen(*base);
1807     mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
1808     mlir::Location loc = getLoc();
1809     auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
1810     // FIXME: need to thread the LEN type parameters here.
1811     for (const Fortran::evaluate::Component *field : list) {
1812       auto recTy = ty.cast<fir::RecordType>();
1813       const Fortran::semantics::Symbol &sym = getLastSym(*field);
1814       llvm::StringRef name = toStringRef(sym.name());
1815       coorArgs.push_back(builder.create<fir::FieldIndexOp>(
1816           loc, fldTy, name, recTy, fir::getTypeParams(obj)));
1817       ty = recTy.getType(name);
1818     }
1819     ty = builder.getRefType(ty);
1820     return fir::factory::componentToExtendedValue(
1821         builder, loc,
1822         builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
1823                                           coorArgs));
1824   }
1825 
1826   ExtValue gen(const Fortran::evaluate::Component &cmpt) {
1827     // Components may be pointer or allocatable. In the gen() path, the mutable
1828     // aspect is lost to simplify handling on the client side. To retain the
1829     // mutable aspect, genMutableBoxValue should be used.
1830     return genComponent(cmpt).match(
1831         [&](const fir::MutableBoxValue &mutableBox) {
1832           return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox);
1833         },
1834         [](auto &box) -> ExtValue { return box; });
1835   }
1836 
1837   ExtValue genval(const Fortran::evaluate::Component &cmpt) {
1838     return genLoad(gen(cmpt));
1839   }
1840 
1841   // Determine the result type after removing `dims` dimensions from the array
1842   // type `arrTy`
1843   mlir::Type genSubType(mlir::Type arrTy, unsigned dims) {
1844     mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy);
1845     assert(unwrapTy && "must be a pointer or box type");
1846     auto seqTy = unwrapTy.cast<fir::SequenceType>();
1847     llvm::ArrayRef<int64_t> shape = seqTy.getShape();
1848     assert(shape.size() > 0 && "removing columns for sequence sans shape");
1849     assert(dims <= shape.size() && "removing more columns than exist");
1850     fir::SequenceType::Shape newBnds;
1851     // follow Fortran semantics and remove columns (from right)
1852     std::size_t e = shape.size() - dims;
1853     for (decltype(e) i = 0; i < e; ++i)
1854       newBnds.push_back(shape[i]);
1855     if (!newBnds.empty())
1856       return fir::SequenceType::get(newBnds, seqTy.getEleTy());
1857     return seqTy.getEleTy();
1858   }
1859 
1860   // Generate the code for a Bound value.
1861   ExtValue genval(const Fortran::semantics::Bound &bound) {
1862     if (bound.isExplicit()) {
1863       Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit();
1864       if (sub.has_value())
1865         return genval(*sub);
1866       return genIntegerConstant<8>(builder.getContext(), 1);
1867     }
1868     TODO(getLoc(), "non explicit semantics::Bound lowering");
1869   }
1870 
1871   static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
1872     for (const Fortran::evaluate::Subscript &sub : aref.subscript())
1873       if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
1874         return true;
1875     return false;
1876   }
1877 
1878   /// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
1879   ExtValue genCoordinateOp(const ExtValue &array,
1880                            const Fortran::evaluate::ArrayRef &aref) {
1881     mlir::Location loc = getLoc();
1882     // References to array of rank > 1 with non constant shape that are not
1883     // fir.box must be collapsed into an offset computation in lowering already.
1884     // The same is needed with dynamic length character arrays of all ranks.
1885     mlir::Type baseType =
1886         fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
1887     if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
1888         fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
1889       if (!array.getBoxOf<fir::BoxValue>())
1890         return genOffsetAndCoordinateOp(array, aref);
1891     // Generate a fir.coordinate_of with zero based array indexes.
1892     llvm::SmallVector<mlir::Value> args;
1893     for (const auto &subsc : llvm::enumerate(aref.subscript())) {
1894       ExtValue subVal = genSubscript(subsc.value());
1895       assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
1896       mlir::Value val = fir::getBase(subVal);
1897       mlir::Type ty = val.getType();
1898       mlir::Value lb = getLBound(array, subsc.index(), ty);
1899       args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
1900     }
1901 
1902     mlir::Value base = fir::getBase(array);
1903     auto seqTy =
1904         fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>();
1905     assert(args.size() == seqTy.getDimension());
1906     mlir::Type ty = builder.getRefType(seqTy.getEleTy());
1907     auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
1908     return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
1909   }
1910 
1911   /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
1912   /// of array indexes.
1913   /// This generates offset computation from the indexes and length parameters,
1914   /// and use the offset to access the element with a fir.coordinate_of. This
1915   /// must only be used if it is not possible to generate a normal
1916   /// fir.coordinate_of using array indexes (i.e. when the shape information is
1917   /// unavailable in the IR).
1918   ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
1919                                     const Fortran::evaluate::ArrayRef &aref) {
1920     mlir::Location loc = getLoc();
1921     mlir::Value addr = fir::getBase(array);
1922     mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
1923     auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
1924     mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
1925     mlir::Type refTy = builder.getRefType(eleTy);
1926     mlir::Value base = builder.createConvert(loc, seqTy, addr);
1927     mlir::IndexType idxTy = builder.getIndexType();
1928     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
1929     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
1930     auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
1931       return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
1932     };
1933     auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
1934       mlir::Value total = zero;
1935       assert(arr.getExtents().size() == aref.subscript().size());
1936       delta = builder.createConvert(loc, idxTy, delta);
1937       unsigned dim = 0;
1938       for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
1939         ExtValue subVal = genSubscript(sub);
1940         assert(fir::isUnboxedValue(subVal));
1941         mlir::Value val =
1942             builder.createConvert(loc, idxTy, fir::getBase(subVal));
1943         mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
1944         mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
1945         mlir::Value prod =
1946             builder.create<mlir::arith::MulIOp>(loc, delta, diff);
1947         total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
1948         if (ext)
1949           delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
1950         ++dim;
1951       }
1952       mlir::Type origRefTy = refTy;
1953       if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
1954         fir::CharacterType chTy =
1955             fir::factory::CharacterExprHelper::getCharacterType(refTy);
1956         if (fir::characterWithDynamicLen(chTy)) {
1957           mlir::MLIRContext *ctx = builder.getContext();
1958           fir::KindTy kind =
1959               fir::factory::CharacterExprHelper::getCharacterKind(chTy);
1960           fir::CharacterType singleTy =
1961               fir::CharacterType::getSingleton(ctx, kind);
1962           refTy = builder.getRefType(singleTy);
1963           mlir::Type seqRefTy =
1964               builder.getRefType(builder.getVarLenSeqTy(singleTy));
1965           base = builder.createConvert(loc, seqRefTy, base);
1966         }
1967       }
1968       auto coor = builder.create<fir::CoordinateOp>(
1969           loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
1970       // Convert to expected, original type after address arithmetic.
1971       return builder.createConvert(loc, origRefTy, coor);
1972     };
1973     return array.match(
1974         [&](const fir::ArrayBoxValue &arr) -> ExtValue {
1975           // FIXME: this check can be removed when slicing is implemented
1976           if (isSlice(aref))
1977             fir::emitFatalError(
1978                 getLoc(),
1979                 "slice should be handled in array expression context");
1980           return genFullDim(arr, one);
1981         },
1982         [&](const fir::CharArrayBoxValue &arr) -> ExtValue {
1983           mlir::Value delta = arr.getLen();
1984           // If the length is known in the type, fir.coordinate_of will
1985           // already take the length into account.
1986           if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
1987             delta = one;
1988           return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
1989         },
1990         [&](const fir::BoxValue &arr) -> ExtValue {
1991           // CoordinateOp for BoxValue is not generated here. The dimensions
1992           // must be kept in the fir.coordinate_op so that potential fir.box
1993           // strides can be applied by codegen.
1994           fir::emitFatalError(
1995               loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
1996         },
1997         [&](const auto &) -> ExtValue {
1998           fir::emitFatalError(loc, "internal: array lowering failed");
1999         });
2000   }
2001 
2002   /// Lower an ArrayRef to a fir.array_coor.
2003   ExtValue genArrayCoorOp(const ExtValue &exv,
2004                           const Fortran::evaluate::ArrayRef &aref) {
2005     mlir::Location loc = getLoc();
2006     mlir::Value addr = fir::getBase(exv);
2007     mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
2008     mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
2009     mlir::Type refTy = builder.getRefType(eleTy);
2010     mlir::IndexType idxTy = builder.getIndexType();
2011     llvm::SmallVector<mlir::Value> arrayCoorArgs;
2012     // The ArrayRef is expected to be scalar here, arrays are handled in array
2013     // expression lowering. So no vector subscript or triplet is expected here.
2014     for (const auto &sub : aref.subscript()) {
2015       ExtValue subVal = genSubscript(sub);
2016       assert(fir::isUnboxedValue(subVal));
2017       arrayCoorArgs.push_back(
2018           builder.createConvert(loc, idxTy, fir::getBase(subVal)));
2019     }
2020     mlir::Value shape = builder.createShape(loc, exv);
2021     mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>(
2022         loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs,
2023         fir::getTypeParams(exv));
2024     return fir::factory::arrayElementToExtendedValue(builder, loc, exv,
2025                                                      elementAddr);
2026   }
2027 
2028   /// Return the coordinate of the array reference.
2029   ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
2030     ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base()))
2031                                            : gen(aref.base().GetComponent());
2032     // Check for command-line override to use array_coor op.
2033     if (generateArrayCoordinate)
2034       return genArrayCoorOp(base, aref);
2035     // Otherwise, use coordinate_of op.
2036     return genCoordinateOp(base, aref);
2037   }
2038 
2039   /// Return lower bounds of \p box in dimension \p dim. The returned value
2040   /// has type \ty.
2041   mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
2042     assert(box.rank() > 0 && "must be an array");
2043     mlir::Location loc = getLoc();
2044     mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
2045     mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
2046     return builder.createConvert(loc, ty, lb);
2047   }
2048 
2049   ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
2050     return genLoad(gen(aref));
2051   }
2052 
2053   ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
2054     return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
2055         .genAddr(coref);
2056   }
2057 
2058   ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
2059     return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
2060         .genValue(coref);
2061   }
2062 
2063   template <typename A>
2064   ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
2065     return std::visit([&](const auto &x) { return gen(x); }, des.u);
2066   }
2067   template <typename A>
2068   ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
2069     return std::visit([&](const auto &x) { return genval(x); }, des.u);
2070   }
2071 
2072   mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
2073     if (dt.category() != Fortran::common::TypeCategory::Derived)
2074       return converter.genType(dt.category(), dt.kind());
2075     return converter.genType(dt.GetDerivedTypeSpec());
2076   }
2077 
2078   /// Lower a function reference
2079   template <typename A>
2080   ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
2081     if (!funcRef.GetType().has_value())
2082       fir::emitFatalError(getLoc(), "a function must have a type");
2083     mlir::Type resTy = genType(*funcRef.GetType());
2084     return genProcedureRef(funcRef, {resTy});
2085   }
2086 
2087   /// Lower function call `funcRef` and return a reference to the resultant
2088   /// value. This is required for lowering expressions such as `f1(f2(v))`.
2089   template <typename A>
2090   ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
2091     ExtValue retVal = genFunctionRef(funcRef);
2092     mlir::Type resultType = converter.genType(toEvExpr(funcRef));
2093     return placeScalarValueInMemory(builder, getLoc(), retVal, resultType);
2094   }
2095 
2096   /// Helper to lower intrinsic arguments for inquiry intrinsic.
2097   ExtValue
2098   lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
2099     if (Fortran::evaluate::IsAllocatableOrPointerObject(
2100             expr, converter.getFoldingContext()))
2101       return genMutableBoxValue(expr);
2102     /// Do not create temps for array sections whose properties only need to be
2103     /// inquired: create a descriptor that will be inquired.
2104     if (Fortran::evaluate::IsVariable(expr) && isArray(expr) &&
2105         !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr))
2106       return lowerIntrinsicArgumentAsBox(expr);
2107     return gen(expr);
2108   }
2109 
2110   /// Helper to lower intrinsic arguments to a fir::BoxValue.
2111   /// It preserves all the non default lower bounds/non deferred length
2112   /// parameter information.
2113   ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
2114     mlir::Location loc = getLoc();
2115     ExtValue exv = genBoxArg(expr);
2116     mlir::Value box = builder.createBox(loc, exv);
2117     return fir::BoxValue(
2118         box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
2119         fir::factory::getNonDeferredLengthParams(exv));
2120   }
2121 
2122   /// Generate a call to a Fortran intrinsic or intrinsic module procedure.
2123   ExtValue genIntrinsicRef(
2124       const Fortran::evaluate::ProcedureRef &procRef,
2125       llvm::Optional<mlir::Type> resultType,
2126       llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
2127           llvm::None) {
2128     llvm::SmallVector<ExtValue> operands;
2129 
2130     std::string name =
2131         intrinsic ? intrinsic->name
2132                   : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
2133     mlir::Location loc = getLoc();
2134     if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
2135                          procRef, *intrinsic, converter)) {
2136       using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>;
2137       llvm::SmallVector<ExvAndPresence, 4> operands;
2138       auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
2139         ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr);
2140         mlir::Value isPresent =
2141             genActualIsPresentTest(builder, loc, optionalArg);
2142         operands.emplace_back(optionalArg, isPresent);
2143       };
2144       auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
2145         operands.emplace_back(genval(expr), llvm::None);
2146       };
2147       Fortran::lower::prepareCustomIntrinsicArgument(
2148           procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg,
2149           converter);
2150 
2151       auto getArgument = [&](std::size_t i) -> ExtValue {
2152         if (fir::conformsWithPassByRef(
2153                 fir::getBase(operands[i].first).getType()))
2154           return genLoad(operands[i].first);
2155         return operands[i].first;
2156       };
2157       auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
2158         return operands[i].second;
2159       };
2160       return Fortran::lower::lowerCustomIntrinsic(
2161           builder, loc, name, resultType, isPresent, getArgument,
2162           operands.size(), stmtCtx);
2163     }
2164 
2165     const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
2166         Fortran::lower::getIntrinsicArgumentLowering(name);
2167     for (const auto &arg : llvm::enumerate(procRef.arguments())) {
2168       auto *expr =
2169           Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
2170       if (!expr) {
2171         // Absent optional.
2172         operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument());
2173         continue;
2174       }
2175       if (!argLowering) {
2176         // No argument lowering instruction, lower by value.
2177         operands.emplace_back(genval(*expr));
2178         continue;
2179       }
2180       // Ad-hoc argument lowering handling.
2181       Fortran::lower::ArgLoweringRule argRules =
2182           Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
2183       if (argRules.handleDynamicOptional &&
2184           Fortran::evaluate::MayBePassedAsAbsentOptional(
2185               *expr, converter.getFoldingContext())) {
2186         ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
2187         mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
2188         switch (argRules.lowerAs) {
2189         case Fortran::lower::LowerIntrinsicArgAs::Value:
2190           operands.emplace_back(
2191               genOptionalValue(builder, loc, optional, isPresent));
2192           continue;
2193         case Fortran::lower::LowerIntrinsicArgAs::Addr:
2194           operands.emplace_back(
2195               genOptionalAddr(builder, loc, optional, isPresent));
2196           continue;
2197         case Fortran::lower::LowerIntrinsicArgAs::Box:
2198           operands.emplace_back(
2199               genOptionalBox(builder, loc, optional, isPresent));
2200           continue;
2201         case Fortran::lower::LowerIntrinsicArgAs::Inquired:
2202           operands.emplace_back(optional);
2203           continue;
2204         }
2205         llvm_unreachable("bad switch");
2206       }
2207       switch (argRules.lowerAs) {
2208       case Fortran::lower::LowerIntrinsicArgAs::Value:
2209         operands.emplace_back(genval(*expr));
2210         continue;
2211       case Fortran::lower::LowerIntrinsicArgAs::Addr:
2212         operands.emplace_back(gen(*expr));
2213         continue;
2214       case Fortran::lower::LowerIntrinsicArgAs::Box:
2215         operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
2216         continue;
2217       case Fortran::lower::LowerIntrinsicArgAs::Inquired:
2218         operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
2219         continue;
2220       }
2221       llvm_unreachable("bad switch");
2222     }
2223     // Let the intrinsic library lower the intrinsic procedure call
2224     return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
2225                                             operands, stmtCtx);
2226   }
2227 
2228   /// helper to detect statement functions
2229   static bool
2230   isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
2231     if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
2232       if (const auto *details =
2233               symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
2234         return details->stmtFunction().has_value();
2235     return false;
2236   }
2237 
2238   /// Generate Statement function calls
2239   ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) {
2240     const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
2241     assert(symbol && "expected symbol in ProcedureRef of statement functions");
2242     const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
2243 
2244     // Statement functions have their own scope, we just need to associate
2245     // the dummy symbols to argument expressions. They are no
2246     // optional/alternate return arguments. Statement functions cannot be
2247     // recursive (directly or indirectly) so it is safe to add dummy symbols to
2248     // the local map here.
2249     symMap.pushScope();
2250     for (auto [arg, bind] :
2251          llvm::zip(details.dummyArgs(), procRef.arguments())) {
2252       assert(arg && "alternate return in statement function");
2253       assert(bind && "optional argument in statement function");
2254       const auto *expr = bind->UnwrapExpr();
2255       // TODO: assumed type in statement function, that surprisingly seems
2256       // allowed, probably because nobody thought of restricting this usage.
2257       // gfortran/ifort compiles this.
2258       assert(expr && "assumed type used as statement function argument");
2259       // As per Fortran 2018 C1580, statement function arguments can only be
2260       // scalars, so just pass the box with the address. The only care is to
2261       // to use the dummy character explicit length if any instead of the
2262       // actual argument length (that can be bigger).
2263       if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType())
2264         if (type->category() == Fortran::semantics::DeclTypeSpec::Character)
2265           if (const Fortran::semantics::MaybeIntExpr &lenExpr =
2266                   type->characterTypeSpec().length().GetExplicit()) {
2267             mlir::Value len = fir::getBase(genval(*lenExpr));
2268             // F2018 7.4.4.2 point 5.
2269             len = fir::factory::genMaxWithZero(builder, getLoc(), len);
2270             symMap.addSymbol(*arg,
2271                              replaceScalarCharacterLength(gen(*expr), len));
2272             continue;
2273           }
2274       symMap.addSymbol(*arg, gen(*expr));
2275     }
2276 
2277     // Explicitly map statement function host associated symbols to their
2278     // parent scope lowered symbol box.
2279     for (const Fortran::semantics::SymbolRef &sym :
2280          Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
2281       if (const auto *details =
2282               sym->detailsIf<Fortran::semantics::HostAssocDetails>())
2283         if (!symMap.lookupSymbol(*sym))
2284           symMap.addSymbol(*sym, gen(details->symbol()));
2285 
2286     ExtValue result = genval(details.stmtFunction().value());
2287     LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n');
2288     symMap.popScope();
2289     return result;
2290   }
2291 
2292   /// Helper to package a Value and its properties into an ExtendedValue.
2293   static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base,
2294                                   llvm::ArrayRef<mlir::Value> extents,
2295                                   llvm::ArrayRef<mlir::Value> lengths) {
2296     mlir::Type type = base.getType();
2297     if (type.isa<fir::BoxType>())
2298       return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
2299     type = fir::unwrapRefType(type);
2300     if (type.isa<fir::BoxType>())
2301       return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
2302     if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
2303       if (seqTy.getDimension() != extents.size())
2304         fir::emitFatalError(loc, "incorrect number of extents for array");
2305       if (seqTy.getEleTy().isa<fir::CharacterType>()) {
2306         if (lengths.empty())
2307           fir::emitFatalError(loc, "missing length for character");
2308         assert(lengths.size() == 1);
2309         return fir::CharArrayBoxValue(base, lengths[0], extents);
2310       }
2311       return fir::ArrayBoxValue(base, extents);
2312     }
2313     if (type.isa<fir::CharacterType>()) {
2314       if (lengths.empty())
2315         fir::emitFatalError(loc, "missing length for character");
2316       assert(lengths.size() == 1);
2317       return fir::CharBoxValue(base, lengths[0]);
2318     }
2319     return base;
2320   }
2321 
2322   // Find the argument that corresponds to the host associations.
2323   // Verify some assumptions about how the signature was built here.
2324   [[maybe_unused]] static unsigned
2325   findHostAssocTuplePos(mlir::func::FuncOp fn) {
2326     // Scan the argument list from last to first as the host associations are
2327     // appended for now.
2328     for (unsigned i = fn.getNumArguments(); i > 0; --i)
2329       if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
2330         // Host assoc tuple must be last argument (for now).
2331         assert(i == fn.getNumArguments() && "tuple must be last");
2332         return i - 1;
2333       }
2334     llvm_unreachable("anyFuncArgsHaveAttr failed");
2335   }
2336 
2337   /// Create a contiguous temporary array with the same shape,
2338   /// length parameters and type as mold. It is up to the caller to deallocate
2339   /// the temporary.
2340   ExtValue genArrayTempFromMold(const ExtValue &mold,
2341                                 llvm::StringRef tempName) {
2342     mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
2343     assert(type && "expected descriptor or memory type");
2344     mlir::Location loc = getLoc();
2345     llvm::SmallVector<mlir::Value> extents =
2346         fir::factory::getExtents(loc, builder, mold);
2347     llvm::SmallVector<mlir::Value> allocMemTypeParams =
2348         fir::getTypeParams(mold);
2349     mlir::Value charLen;
2350     mlir::Type elementType = fir::unwrapSequenceType(type);
2351     if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
2352       charLen = allocMemTypeParams.empty()
2353                     ? fir::factory::readCharLen(builder, loc, mold)
2354                     : allocMemTypeParams[0];
2355       if (charType.hasDynamicLen() && allocMemTypeParams.empty())
2356         allocMemTypeParams.push_back(charLen);
2357     } else if (fir::hasDynamicSize(elementType)) {
2358       TODO(loc, "creating temporary for derived type with length parameters");
2359     }
2360 
2361     mlir::Value temp = builder.create<fir::AllocMemOp>(
2362         loc, type, tempName, allocMemTypeParams, extents);
2363     if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
2364       return fir::CharArrayBoxValue{temp, charLen, extents};
2365     return fir::ArrayBoxValue{temp, extents};
2366   }
2367 
2368   /// Copy \p source array into \p dest array. Both arrays must be
2369   /// conforming, but neither array must be contiguous.
2370   void genArrayCopy(ExtValue dest, ExtValue source) {
2371     return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
2372   }
2373 
2374   /// Lower a non-elemental procedure reference and read allocatable and pointer
2375   /// results into normal values.
2376   ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
2377                            llvm::Optional<mlir::Type> resultType) {
2378     ExtValue res = genRawProcedureRef(procRef, resultType);
2379     // In most contexts, pointers and allocatable do not appear as allocatable
2380     // or pointer variable on the caller side (see 8.5.3 note 1 for
2381     // allocatables). The few context where this can happen must call
2382     // genRawProcedureRef directly.
2383     if (const auto *box = res.getBoxOf<fir::MutableBoxValue>())
2384       return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
2385     return res;
2386   }
2387 
2388   /// Given a call site for which the arguments were already lowered, generate
2389   /// the call and return the result. This function deals with explicit result
2390   /// allocation and lowering if needed. It also deals with passing the host
2391   /// link to internal procedures.
2392   ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller,
2393                               mlir::FunctionType callSiteType,
2394                               llvm::Optional<mlir::Type> resultType) {
2395     mlir::Location loc = getLoc();
2396     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
2397     // Handle cases where caller must allocate the result or a fir.box for it.
2398     bool mustPopSymMap = false;
2399     if (caller.mustMapInterfaceSymbols()) {
2400       symMap.pushScope();
2401       mustPopSymMap = true;
2402       Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
2403     }
2404     // If this is an indirect call, retrieve the function address. Also retrieve
2405     // the result length if this is a character function (note that this length
2406     // will be used only if there is no explicit length in the local interface).
2407     mlir::Value funcPointer;
2408     mlir::Value charFuncPointerLength;
2409     if (const Fortran::semantics::Symbol *sym =
2410             caller.getIfIndirectCallSymbol()) {
2411       funcPointer = symMap.lookupSymbol(*sym).getAddr();
2412       if (!funcPointer)
2413         fir::emitFatalError(loc, "failed to find indirect call symbol address");
2414       if (fir::isCharacterProcedureTuple(funcPointer.getType(),
2415                                          /*acceptRawFunc=*/false))
2416         std::tie(funcPointer, charFuncPointerLength) =
2417             fir::factory::extractCharacterProcedureTuple(builder, loc,
2418                                                          funcPointer);
2419     }
2420 
2421     mlir::IndexType idxTy = builder.getIndexType();
2422     auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
2423       return builder.createConvert(
2424           loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
2425     };
2426     llvm::SmallVector<mlir::Value> resultLengths;
2427     auto allocatedResult = [&]() -> llvm::Optional<ExtValue> {
2428       llvm::SmallVector<mlir::Value> extents;
2429       llvm::SmallVector<mlir::Value> lengths;
2430       if (!caller.callerAllocateResult())
2431         return {};
2432       mlir::Type type = caller.getResultStorageType();
2433       if (type.isa<fir::SequenceType>())
2434         caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
2435           extents.emplace_back(lowerSpecExpr(e));
2436         });
2437       caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
2438         lengths.emplace_back(lowerSpecExpr(e));
2439       });
2440 
2441       // Result length parameters should not be provided to box storage
2442       // allocation and save_results, but they are still useful information to
2443       // keep in the ExtendedValue if non-deferred.
2444       if (!type.isa<fir::BoxType>()) {
2445         if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
2446           // Calling an assumed length function. This is only possible if this
2447           // is a call to a character dummy procedure.
2448           if (!charFuncPointerLength)
2449             fir::emitFatalError(loc, "failed to retrieve character function "
2450                                      "length while calling it");
2451           lengths.push_back(charFuncPointerLength);
2452         }
2453         resultLengths = lengths;
2454       }
2455 
2456       if (!extents.empty() || !lengths.empty()) {
2457         auto *bldr = &converter.getFirOpBuilder();
2458         auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
2459         auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
2460         mlir::Value sp =
2461             bldr->create<fir::CallOp>(
2462                     loc, stackSaveFn.getFunctionType().getResults(),
2463                     stackSaveSymbol, mlir::ValueRange{})
2464                 .getResult(0);
2465         stmtCtx.attachCleanup([bldr, loc, sp]() {
2466           auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
2467           auto stackRestoreSymbol =
2468               bldr->getSymbolRefAttr(stackRestoreFn.getName());
2469           bldr->create<fir::CallOp>(
2470               loc, stackRestoreFn.getFunctionType().getResults(),
2471               stackRestoreSymbol, mlir::ValueRange{sp});
2472         });
2473       }
2474       mlir::Value temp =
2475           builder.createTemporary(loc, type, ".result", extents, resultLengths);
2476       return toExtendedValue(loc, temp, extents, lengths);
2477     }();
2478 
2479     if (mustPopSymMap)
2480       symMap.popScope();
2481 
2482     // Place allocated result or prepare the fir.save_result arguments.
2483     mlir::Value arrayResultShape;
2484     if (allocatedResult) {
2485       if (std::optional<Fortran::lower::CallInterface<
2486               Fortran::lower::CallerInterface>::PassedEntity>
2487               resultArg = caller.getPassedResult()) {
2488         if (resultArg->passBy == PassBy::AddressAndLength)
2489           caller.placeAddressAndLengthInput(*resultArg,
2490                                             fir::getBase(*allocatedResult),
2491                                             fir::getLen(*allocatedResult));
2492         else if (resultArg->passBy == PassBy::BaseAddress)
2493           caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
2494         else
2495           fir::emitFatalError(
2496               loc, "only expect character scalar result to be passed by ref");
2497       } else {
2498         assert(caller.mustSaveResult());
2499         arrayResultShape = allocatedResult->match(
2500             [&](const fir::CharArrayBoxValue &) {
2501               return builder.createShape(loc, *allocatedResult);
2502             },
2503             [&](const fir::ArrayBoxValue &) {
2504               return builder.createShape(loc, *allocatedResult);
2505             },
2506             [&](const auto &) { return mlir::Value{}; });
2507       }
2508     }
2509 
2510     // In older Fortran, procedure argument types are inferred. This may lead
2511     // different view of what the function signature is in different locations.
2512     // Casts are inserted as needed below to accommodate this.
2513 
2514     // The mlir::func::FuncOp type prevails, unless it has a different number of
2515     // arguments which can happen in legal program if it was passed as a dummy
2516     // procedure argument earlier with no further type information.
2517     mlir::SymbolRefAttr funcSymbolAttr;
2518     bool addHostAssociations = false;
2519     if (!funcPointer) {
2520       mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
2521       mlir::SymbolRefAttr symbolAttr =
2522           builder.getSymbolRefAttr(caller.getMangledName());
2523       if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
2524           callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
2525           fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
2526                                    fir::getHostAssocAttrName())) {
2527         // The number of arguments is off by one, and we're lowering a function
2528         // with host associations. Modify call to include host associations
2529         // argument by appending the value at the end of the operands.
2530         assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
2531                converter.hostAssocTupleValue().getType());
2532         addHostAssociations = true;
2533       }
2534       if (!addHostAssociations &&
2535           (callSiteType.getNumResults() != funcOpType.getNumResults() ||
2536            callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
2537         // Deal with argument number mismatch by making a function pointer so
2538         // that function type cast can be inserted. Do not emit a warning here
2539         // because this can happen in legal program if the function is not
2540         // defined here and it was first passed as an argument without any more
2541         // information.
2542         funcPointer =
2543             builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
2544       } else if (callSiteType.getResults() != funcOpType.getResults()) {
2545         // Implicit interface result type mismatch are not standard Fortran, but
2546         // some compilers are not complaining about it.  The front end is not
2547         // protecting lowering from this currently. Support this with a
2548         // discouraging warning.
2549         LLVM_DEBUG(mlir::emitWarning(
2550             loc, "a return type mismatch is not standard compliant and may "
2551                  "lead to undefined behavior."));
2552         // Cast the actual function to the current caller implicit type because
2553         // that is the behavior we would get if we could not see the definition.
2554         funcPointer =
2555             builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
2556       } else {
2557         funcSymbolAttr = symbolAttr;
2558       }
2559     }
2560 
2561     mlir::FunctionType funcType =
2562         funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
2563     llvm::SmallVector<mlir::Value> operands;
2564     // First operand of indirect call is the function pointer. Cast it to
2565     // required function type for the call to handle procedures that have a
2566     // compatible interface in Fortran, but that have different signatures in
2567     // FIR.
2568     if (funcPointer) {
2569       operands.push_back(
2570           funcPointer.getType().isa<fir::BoxProcType>()
2571               ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
2572               : builder.createConvert(loc, funcType, funcPointer));
2573     }
2574 
2575     // Deal with potential mismatches in arguments types. Passing an array to a
2576     // scalar argument should for instance be tolerated here.
2577     bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
2578     for (auto [fst, snd] :
2579          llvm::zip(caller.getInputs(), funcType.getInputs())) {
2580       // When passing arguments to a procedure that can be called an implicit
2581       // interface, allow character actual arguments to be passed to dummy
2582       // arguments of any type and vice versa
2583       mlir::Value cast;
2584       auto *context = builder.getContext();
2585       if (snd.isa<fir::BoxProcType>() &&
2586           fst.getType().isa<mlir::FunctionType>()) {
2587         auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None);
2588         auto boxProcTy = builder.getBoxProcType(funcTy);
2589         if (mlir::Value host = argumentHostAssocs(converter, fst)) {
2590           cast = builder.create<fir::EmboxProcOp>(
2591               loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
2592         } else {
2593           cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
2594         }
2595       } else {
2596         if (fir::isa_derived(snd)) {
2597           // FIXME: This seems like a serious bug elsewhere in lowering. Paper
2598           // over the problem for now.
2599           TODO(loc, "derived type argument passed by value");
2600         }
2601         assert(!fir::isa_derived(snd));
2602         cast = builder.convertWithSemantics(loc, snd, fst,
2603                                             callingImplicitInterface);
2604       }
2605       operands.push_back(cast);
2606     }
2607 
2608     // Add host associations as necessary.
2609     if (addHostAssociations)
2610       operands.push_back(converter.hostAssocTupleValue());
2611 
2612     auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
2613                                             funcSymbolAttr, operands);
2614 
2615     if (caller.mustSaveResult())
2616       builder.create<fir::SaveResultOp>(
2617           loc, call.getResult(0), fir::getBase(allocatedResult.getValue()),
2618           arrayResultShape, resultLengths);
2619 
2620     if (allocatedResult) {
2621       allocatedResult->match(
2622           [&](const fir::MutableBoxValue &box) {
2623             if (box.isAllocatable()) {
2624               // 9.7.3.2 point 4. Finalize allocatables.
2625               fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
2626               stmtCtx.attachCleanup([bldr, loc, box]() {
2627                 fir::factory::genFinalization(*bldr, loc, box);
2628               });
2629             }
2630           },
2631           [](const auto &) {});
2632       return *allocatedResult;
2633     }
2634 
2635     if (!resultType)
2636       return mlir::Value{}; // subroutine call
2637     // For now, Fortran return values are implemented with a single MLIR
2638     // function return value.
2639     assert(call.getNumResults() == 1 &&
2640            "Expected exactly one result in FUNCTION call");
2641     return call.getResult(0);
2642   }
2643 
2644   /// Like genExtAddr, but ensure the address returned is a temporary even if \p
2645   /// expr is variable inside parentheses.
2646   ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
2647     // In general, genExtAddr might not create a temp for variable inside
2648     // parentheses to avoid creating array temporary in sub-expressions. It only
2649     // ensures the sub-expression is not re-associated with other parts of the
2650     // expression. In the call semantics, there is a difference between expr and
2651     // variable (see R1524). For expressions, a variable storage must not be
2652     // argument associated since it could be modified inside the call, or the
2653     // variable could also be modified by other means during the call.
2654     if (!isParenthesizedVariable(expr))
2655       return genExtAddr(expr);
2656     if (expr.Rank() > 0)
2657       return asArray(expr);
2658     mlir::Location loc = getLoc();
2659     return genExtValue(expr).match(
2660         [&](const fir::CharBoxValue &boxChar) -> ExtValue {
2661           return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(
2662               boxChar);
2663         },
2664         [&](const fir::UnboxedValue &v) -> ExtValue {
2665           mlir::Type type = v.getType();
2666           mlir::Value value = v;
2667           if (fir::isa_ref_type(type))
2668             value = builder.create<fir::LoadOp>(loc, value);
2669           mlir::Value temp = builder.createTemporary(loc, value.getType());
2670           builder.create<fir::StoreOp>(loc, value, temp);
2671           return temp;
2672         },
2673         [&](const fir::BoxValue &x) -> ExtValue {
2674           // Derived type scalar that may be polymorphic.
2675           assert(!x.hasRank() && x.isDerived());
2676           if (x.isDerivedWithLenParameters())
2677             fir::emitFatalError(
2678                 loc, "making temps for derived type with length parameters");
2679           // TODO: polymorphic aspects should be kept but for now the temp
2680           // created always has the declared type.
2681           mlir::Value var =
2682               fir::getBase(fir::factory::readBoxValue(builder, loc, x));
2683           auto value = builder.create<fir::LoadOp>(loc, var);
2684           mlir::Value temp = builder.createTemporary(loc, value.getType());
2685           builder.create<fir::StoreOp>(loc, value, temp);
2686           return temp;
2687         },
2688         [&](const auto &) -> ExtValue {
2689           fir::emitFatalError(loc, "expr is not a scalar value");
2690         });
2691   }
2692 
2693   /// Helper structure to track potential copy-in of non contiguous variable
2694   /// argument into a contiguous temp. It is used to deallocate the temp that
2695   /// may have been created as well as to the copy-out from the temp to the
2696   /// variable after the call.
2697   struct CopyOutPair {
2698     ExtValue var;
2699     ExtValue temp;
2700     // Flag to indicate if the argument may have been modified by the
2701     // callee, in which case it must be copied-out to the variable.
2702     bool argMayBeModifiedByCall;
2703     // Optional boolean value that, if present and false, prevents
2704     // the copy-out and temp deallocation.
2705     llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime;
2706   };
2707   using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;
2708 
2709   /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
2710   /// not based on fir.box.
2711   /// This will lose any non contiguous stride information and dynamic type and
2712   /// should only be called if \p exv is known to be contiguous or if its base
2713   /// address will be replaced by a contiguous one. If \p exv is not a
2714   /// fir::BoxValue, this is a no-op.
2715   ExtValue readIfBoxValue(const ExtValue &exv) {
2716     if (const auto *box = exv.getBoxOf<fir::BoxValue>())
2717       return fir::factory::readBoxValue(builder, getLoc(), *box);
2718     return exv;
2719   }
2720 
2721   /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
2722   /// creation of the temp and copy-in can be made conditional at runtime by
2723   /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
2724   /// the temp and copy will only be made if the value is true at runtime).
2725   ExtValue genCopyIn(const ExtValue &actualArg,
2726                      const Fortran::lower::CallerInterface::PassedEntity &arg,
2727                      CopyOutPairs &copyOutPairs,
2728                      llvm::Optional<mlir::Value> restrictCopyAtRuntime,
2729                      bool byValue) {
2730     const bool doCopyOut = !byValue && arg.mayBeModifiedByCall();
2731     llvm::StringRef tempName = byValue ? ".copy" : ".copyinout";
2732     if (!restrictCopyAtRuntime) {
2733       ExtValue temp = genArrayTempFromMold(actualArg, tempName);
2734       if (arg.mayBeReadByCall())
2735         genArrayCopy(temp, actualArg);
2736       copyOutPairs.emplace_back(
2737           CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
2738       return temp;
2739     }
2740     // Otherwise, need to be careful to only copy-in if allowed at runtime.
2741     mlir::Location loc = getLoc();
2742     auto addrType = fir::HeapType::get(
2743         fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));
2744     mlir::Value addr =
2745         builder
2746             .genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
2747                      /*withElseRegion=*/true)
2748             .genThen([&]() {
2749               auto temp = genArrayTempFromMold(actualArg, tempName);
2750               if (arg.mayBeReadByCall())
2751                 genArrayCopy(temp, actualArg);
2752               builder.create<fir::ResultOp>(loc, fir::getBase(temp));
2753             })
2754             .genElse([&]() {
2755               auto nullPtr = builder.createNullConstant(loc, addrType);
2756               builder.create<fir::ResultOp>(loc, nullPtr);
2757             })
2758             .getResults()[0];
2759     // Associate the temp address with actualArg lengths and extents.
2760     fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
2761     copyOutPairs.emplace_back(
2762         CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
2763     return temp;
2764   }
2765 
2766   /// Generate copy-out if needed and free the temporary for an argument that
2767   /// has been copied-in into a contiguous temp.
2768   void genCopyOut(const CopyOutPair &copyOutPair) {
2769     mlir::Location loc = getLoc();
2770     if (!copyOutPair.restrictCopyAndFreeAtRuntime) {
2771       if (copyOutPair.argMayBeModifiedByCall)
2772         genArrayCopy(copyOutPair.var, copyOutPair.temp);
2773       builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
2774       return;
2775     }
2776     builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime)
2777         .genThen([&]() {
2778           if (copyOutPair.argMayBeModifiedByCall)
2779             genArrayCopy(copyOutPair.var, copyOutPair.temp);
2780           builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
2781         })
2782         .end();
2783   }
2784 
2785   /// Lower a designator to a variable that may be absent at runtime into an
2786   /// ExtendedValue where all the properties (base address, shape and length
2787   /// parameters) can be safely read (set to zero if not present). It also
2788   /// returns a boolean mlir::Value telling if the variable is present at
2789   /// runtime.
2790   /// This is useful to later be able to do conditional copy-in/copy-out
2791   /// or to retrieve the base address without having to deal with the case
2792   /// where the actual may be an absent fir.box.
2793   std::pair<ExtValue, mlir::Value>
2794   prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) {
2795     mlir::Location loc = getLoc();
2796     if (Fortran::evaluate::IsAllocatableOrPointerObject(
2797             expr, converter.getFoldingContext())) {
2798       // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
2799       // it is as if the argument was absent. The main care here is to
2800       // not do a copy-in/copy-out because the temp address, even though
2801       // pointing to a null size storage, would not be a nullptr and
2802       // therefore the argument would not be considered absent on the
2803       // callee side. Note: if wholeSymbol is optional, it cannot be
2804       // absent as per 15.5.2.12 point 7. and 8. We rely on this to
2805       // un-conditionally read the allocatable/pointer descriptor here.
2806       fir::MutableBoxValue mutableBox = genMutableBoxValue(expr);
2807       mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest(
2808           builder, loc, mutableBox);
2809       fir::ExtendedValue actualArg =
2810           fir::factory::genMutableBoxRead(builder, loc, mutableBox);
2811       return {actualArg, isPresent};
2812     }
2813     // Absent descriptor cannot be read. To avoid any issue in
2814     // copy-in/copy-out, and when retrieving the address/length
2815     // create an descriptor pointing to a null address here if the
2816     // fir.box is absent.
2817     ExtValue actualArg = gen(expr);
2818     mlir::Value actualArgBase = fir::getBase(actualArg);
2819     mlir::Value isPresent = builder.create<fir::IsPresentOp>(
2820         loc, builder.getI1Type(), actualArgBase);
2821     if (!actualArgBase.getType().isa<fir::BoxType>())
2822       return {actualArg, isPresent};
2823     ExtValue safeToReadBox =
2824         absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent);
2825     return {safeToReadBox, isPresent};
2826   }
2827 
2828   /// Create a temp on the stack for scalar actual arguments that may be absent
2829   /// at runtime, but must be passed via a temp if they are presents.
2830   fir::ExtendedValue
2831   createScalarTempForArgThatMayBeAbsent(ExtValue actualArg,
2832                                         mlir::Value isPresent) {
2833     mlir::Location loc = getLoc();
2834     mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType());
2835     if (fir::isDerivedWithLenParameters(actualArg))
2836       TODO(loc, "parametrized derived type optional scalar argument copy-in");
2837     if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) {
2838       mlir::Value len = charBox->getLen();
2839       mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0);
2840       len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero);
2841       mlir::Value temp = builder.createTemporary(
2842           loc, type, /*name=*/{},
2843           /*shape=*/{}, mlir::ValueRange{len},
2844           llvm::ArrayRef<mlir::NamedAttribute>{
2845               Fortran::lower::getAdaptToByRefAttr(builder)});
2846       return fir::CharBoxValue{temp, len};
2847     }
2848     assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) &&
2849            "must be simple scalar");
2850     return builder.createTemporary(
2851         loc, type,
2852         llvm::ArrayRef<mlir::NamedAttribute>{
2853             Fortran::lower::getAdaptToByRefAttr(builder)});
2854   }
2855 
2856   template <typename A>
2857   bool isCharacterType(const A &exp) {
2858     if (auto type = exp.GetType())
2859       return type->category() == Fortran::common::TypeCategory::Character;
2860     return false;
2861   }
2862 
2863   /// Lower an actual argument that must be passed via an address.
2864   /// This generates of the copy-in/copy-out if the actual is not contiguous, or
2865   /// the creation of the temp if the actual is a variable and \p byValue is
2866   /// true. It handles the cases where the actual may be absent, and all of the
2867   /// copying has to be conditional at runtime.
2868   ExtValue prepareActualToBaseAddressLike(
2869       const Fortran::lower::SomeExpr &expr,
2870       const Fortran::lower::CallerInterface::PassedEntity &arg,
2871       CopyOutPairs &copyOutPairs, bool byValue) {
2872     mlir::Location loc = getLoc();
2873     const bool isArray = expr.Rank() > 0;
2874     const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr);
2875     // It must be possible to modify VALUE arguments on the callee side, even
2876     // if the actual argument is a literal or named constant. Hence, the
2877     // address of static storage must not be passed in that case, and a copy
2878     // must be made even if this is not a variable.
2879     // Note: isArray should be used here, but genBoxArg already creates copies
2880     // for it, so do not duplicate the copy until genBoxArg behavior is changed.
2881     const bool isStaticConstantByValue =
2882         byValue && Fortran::evaluate::IsActuallyConstant(expr) &&
2883         (isCharacterType(expr));
2884     const bool variableNeedsCopy =
2885         actualArgIsVariable &&
2886         (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous(
2887                                     expr, converter.getFoldingContext())));
2888     const bool needsCopy = isStaticConstantByValue || variableNeedsCopy;
2889     auto argAddr = [&]() -> ExtValue {
2890       if (!actualArgIsVariable && !needsCopy)
2891         // Actual argument is not a variable. Make sure a variable address is
2892         // not passed.
2893         return genTempExtAddr(expr);
2894       ExtValue baseAddr;
2895       if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
2896                                   expr, converter.getFoldingContext())) {
2897         auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr);
2898         const ExtValue &actualArg = actualArgBind;
2899         if (!needsCopy)
2900           return actualArg;
2901 
2902         if (isArray)
2903           return genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue);
2904         // Scalars, create a temp, and use it conditionally at runtime if
2905         // the argument is present.
2906         ExtValue temp =
2907             createScalarTempForArgThatMayBeAbsent(actualArg, isPresent);
2908         mlir::Type tempAddrTy = fir::getBase(temp).getType();
2909         mlir::Value selectAddr =
2910             builder
2911                 .genIfOp(loc, {tempAddrTy}, isPresent,
2912                          /*withElseRegion=*/true)
2913                 .genThen([&]() {
2914                   fir::factory::genScalarAssignment(builder, loc, temp,
2915                                                     actualArg);
2916                   builder.create<fir::ResultOp>(loc, fir::getBase(temp));
2917                 })
2918                 .genElse([&]() {
2919                   mlir::Value absent =
2920                       builder.create<fir::AbsentOp>(loc, tempAddrTy);
2921                   builder.create<fir::ResultOp>(loc, absent);
2922                 })
2923                 .getResults()[0];
2924         return fir::substBase(temp, selectAddr);
2925       }
2926       // Actual cannot be absent, the actual argument can safely be
2927       // copied-in/copied-out without any care if needed.
2928       if (isArray) {
2929         ExtValue box = genBoxArg(expr);
2930         if (needsCopy)
2931           return genCopyIn(box, arg, copyOutPairs,
2932                            /*restrictCopyAtRuntime=*/llvm::None, byValue);
2933         // Contiguous: just use the box we created above!
2934         // This gets "unboxed" below, if needed.
2935         return box;
2936       }
2937       // Actual argument is a non-optional, non-pointer, non-allocatable
2938       // scalar.
2939       ExtValue actualArg = genExtAddr(expr);
2940       if (needsCopy)
2941         return createInMemoryScalarCopy(builder, loc, actualArg);
2942       return actualArg;
2943     }();
2944     // Scalar and contiguous expressions may be lowered to a fir.box,
2945     // either to account for potential polymorphism, or because lowering
2946     // did not account for some contiguity hints.
2947     // Here, polymorphism does not matter (an entity of the declared type
2948     // is passed, not one of the dynamic type), and the expr is known to
2949     // be simply contiguous, so it is safe to unbox it and pass the
2950     // address without making a copy.
2951     return readIfBoxValue(argAddr);
2952   }
2953 
2954   /// Lower a non-elemental procedure reference.
2955   ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
2956                               llvm::Optional<mlir::Type> resultType) {
2957     mlir::Location loc = getLoc();
2958     if (isElementalProcWithArrayArgs(procRef))
2959       fir::emitFatalError(loc, "trying to lower elemental procedure with array "
2960                                "arguments as normal procedure");
2961 
2962     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
2963             procRef.proc().GetSpecificIntrinsic())
2964       return genIntrinsicRef(procRef, resultType, *intrinsic);
2965 
2966     if (isIntrinsicModuleProcRef(procRef))
2967       return genIntrinsicRef(procRef, resultType);
2968 
2969     if (isStatementFunctionCall(procRef))
2970       return genStmtFunctionRef(procRef);
2971 
2972     Fortran::lower::CallerInterface caller(procRef, converter);
2973     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
2974 
2975     llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
2976     // List of <var, temp> where temp must be copied into var after the call.
2977     CopyOutPairs copyOutPairs;
2978 
2979     mlir::FunctionType callSiteType = caller.genFunctionType();
2980 
2981     // Lower the actual arguments and map the lowered values to the dummy
2982     // arguments.
2983     for (const Fortran::lower::CallInterface<
2984              Fortran::lower::CallerInterface>::PassedEntity &arg :
2985          caller.getPassedArguments()) {
2986       const auto *actual = arg.entity;
2987       mlir::Type argTy = callSiteType.getInput(arg.firArgument);
2988       if (!actual) {
2989         // Optional dummy argument for which there is no actual argument.
2990         caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
2991         continue;
2992       }
2993       const auto *expr = actual->UnwrapExpr();
2994       if (!expr)
2995         TODO(loc, "assumed type actual argument lowering");
2996 
2997       if (arg.passBy == PassBy::Value) {
2998         ExtValue argVal = genval(*expr);
2999         if (!fir::isUnboxedValue(argVal))
3000           fir::emitFatalError(
3001               loc, "internal error: passing non trivial value by value");
3002         caller.placeInput(arg, fir::getBase(argVal));
3003         continue;
3004       }
3005 
3006       if (arg.passBy == PassBy::MutableBox) {
3007         if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
3008                 *expr)) {
3009           // If expr is NULL(), the mutableBox created must be a deallocated
3010           // pointer with the dummy argument characteristics (see table 16.5
3011           // in Fortran 2018 standard).
3012           // No length parameters are set for the created box because any non
3013           // deferred type parameters of the dummy will be evaluated on the
3014           // callee side, and it is illegal to use NULL without a MOLD if any
3015           // dummy length parameters are assumed.
3016           mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
3017           assert(boxTy && boxTy.isa<fir::BoxType>() &&
3018                  "must be a fir.box type");
3019           mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
3020           mlir::Value nullBox = fir::factory::createUnallocatedBox(
3021               builder, loc, boxTy, /*nonDeferredParams=*/{});
3022           builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
3023           caller.placeInput(arg, boxStorage);
3024           continue;
3025         }
3026         if (fir::isPointerType(argTy) &&
3027             !Fortran::evaluate::IsObjectPointer(
3028                 *expr, converter.getFoldingContext())) {
3029           // Passing a non POINTER actual argument to a POINTER dummy argument.
3030           // Create a pointer of the dummy argument type and assign the actual
3031           // argument to it.
3032           mlir::Value irBox =
3033               builder.createTemporary(loc, fir::unwrapRefType(argTy));
3034           // Non deferred parameters will be evaluated on the callee side.
3035           fir::MutableBoxValue pointer(irBox,
3036                                        /*nonDeferredParams=*/mlir::ValueRange{},
3037                                        /*mutableProperties=*/{});
3038           Fortran::lower::associateMutableBox(converter, loc, pointer, *expr,
3039                                               /*lbounds=*/llvm::None, stmtCtx);
3040           caller.placeInput(arg, irBox);
3041           continue;
3042         }
3043         // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
3044         fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
3045         mlir::Value irBox =
3046             fir::factory::getMutableIRBox(builder, loc, mutableBox);
3047         caller.placeInput(arg, irBox);
3048         if (arg.mayBeModifiedByCall())
3049           mutableModifiedByCall.emplace_back(std::move(mutableBox));
3050         continue;
3051       }
3052       if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar ||
3053           arg.passBy == PassBy::BaseAddressValueAttribute ||
3054           arg.passBy == PassBy::CharBoxValueAttribute) {
3055         const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute ||
3056                              arg.passBy == PassBy::CharBoxValueAttribute;
3057         ExtValue argAddr =
3058             prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue);
3059         if (arg.passBy == PassBy::BaseAddress ||
3060             arg.passBy == PassBy::BaseAddressValueAttribute) {
3061           caller.placeInput(arg, fir::getBase(argAddr));
3062         } else {
3063           assert(arg.passBy == PassBy::BoxChar ||
3064                  arg.passBy == PassBy::CharBoxValueAttribute);
3065           auto helper = fir::factory::CharacterExprHelper{builder, loc};
3066           auto boxChar = argAddr.match(
3067               [&](const fir::CharBoxValue &x) { return helper.createEmbox(x); },
3068               [&](const fir::CharArrayBoxValue &x) {
3069                 return helper.createEmbox(x);
3070               },
3071               [&](const auto &x) -> mlir::Value {
3072                 // Fortran allows an actual argument of a completely different
3073                 // type to be passed to a procedure expecting a CHARACTER in the
3074                 // dummy argument position. When this happens, the data pointer
3075                 // argument is simply assumed to point to CHARACTER data and the
3076                 // LEN argument used is garbage. Simulate this behavior by
3077                 // free-casting the base address to be a !fir.char reference and
3078                 // setting the LEN argument to undefined. What could go wrong?
3079                 auto dataPtr = fir::getBase(x);
3080                 assert(!dataPtr.getType().template isa<fir::BoxType>());
3081                 return builder.convertWithSemantics(
3082                     loc, argTy, dataPtr,
3083                     /*allowCharacterConversion=*/true);
3084               });
3085           caller.placeInput(arg, boxChar);
3086         }
3087       } else if (arg.passBy == PassBy::Box) {
3088         // Before lowering to an address, handle the allocatable/pointer actual
3089         // argument to optional fir.box dummy. It is legal to pass
3090         // unallocated/disassociated entity to an optional. In this case, an
3091         // absent fir.box must be created instead of a fir.box with a null value
3092         // (Fortran 2018 15.5.2.12 point 1).
3093         if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject(
3094                                     *expr, converter.getFoldingContext())) {
3095           // Note that passing an absent allocatable to a non-allocatable
3096           // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
3097           // nothing has to be done to generate an absent argument in this case,
3098           // and it is OK to unconditionally read the mutable box here.
3099           fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
3100           mlir::Value isAllocated =
3101               fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
3102                                                            mutableBox);
3103           auto absent = builder.create<fir::AbsentOp>(loc, argTy);
3104           /// For now, assume it is not OK to pass the allocatable/pointer
3105           /// descriptor to a non pointer/allocatable dummy. That is a strict
3106           /// interpretation of 18.3.6 point 4 that stipulates the descriptor
3107           /// has the dummy attributes in BIND(C) contexts.
3108           mlir::Value box = builder.createBox(
3109               loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox));
3110           // Need the box types to be exactly similar for the selectOp.
3111           mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
3112           caller.placeInput(arg, builder.create<mlir::arith::SelectOp>(
3113                                      loc, isAllocated, convertedBox, absent));
3114         } else {
3115           // Make sure a variable address is only passed if the expression is
3116           // actually a variable.
3117           mlir::Value box =
3118               Fortran::evaluate::IsVariable(*expr)
3119                   ? builder.createBox(loc, genBoxArg(*expr))
3120                   : builder.createBox(getLoc(), genTempExtAddr(*expr));
3121           caller.placeInput(arg, box);
3122         }
3123       } else if (arg.passBy == PassBy::AddressAndLength) {
3124         ExtValue argRef = genExtAddr(*expr);
3125         caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
3126                                           fir::getLen(argRef));
3127       } else if (arg.passBy == PassBy::CharProcTuple) {
3128         ExtValue argRef = genExtAddr(*expr);
3129         mlir::Value tuple = createBoxProcCharTuple(
3130             converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
3131         caller.placeInput(arg, tuple);
3132       } else {
3133         TODO(loc, "pass by value in non elemental function call");
3134       }
3135     }
3136 
3137     ExtValue result = genCallOpAndResult(caller, callSiteType, resultType);
3138 
3139     // Sync pointers and allocatables that may have been modified during the
3140     // call.
3141     for (const auto &mutableBox : mutableModifiedByCall)
3142       fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox);
3143     // Handle case where result was passed as argument
3144 
3145     // Copy-out temps that were created for non contiguous variable arguments if
3146     // needed.
3147     for (const auto &copyOutPair : copyOutPairs)
3148       genCopyOut(copyOutPair);
3149 
3150     return result;
3151   }
3152 
3153   template <typename A>
3154   ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
3155     ExtValue result = genFunctionRef(funcRef);
3156     if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
3157       return genLoad(result);
3158     return result;
3159   }
3160 
3161   ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
3162     llvm::Optional<mlir::Type> resTy;
3163     if (procRef.hasAlternateReturns())
3164       resTy = builder.getIndexType();
3165     return genProcedureRef(procRef, resTy);
3166   }
3167 
3168   template <typename A>
3169   bool isScalar(const A &x) {
3170     return x.Rank() == 0;
3171   }
3172 
3173   /// Helper to detect Transformational function reference.
3174   template <typename T>
3175   bool isTransformationalRef(const T &) {
3176     return false;
3177   }
3178   template <typename T>
3179   bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
3180     return !funcRef.IsElemental() && funcRef.Rank();
3181   }
3182   template <typename T>
3183   bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
3184     return std::visit([&](const auto &e) { return isTransformationalRef(e); },
3185                       expr.u);
3186   }
3187 
3188   template <typename A>
3189   ExtValue asArray(const A &x) {
3190     return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
3191                                                     symMap, stmtCtx);
3192   }
3193 
3194   /// Lower an array value as an argument. This argument can be passed as a box
3195   /// value, so it may be possible to avoid making a temporary.
3196   template <typename A>
3197   ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) {
3198     return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u);
3199   }
3200   template <typename A, typename B>
3201   ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) {
3202     return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u);
3203   }
3204   template <typename A, typename B>
3205   ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) {
3206     // Designator is being passed as an argument to a procedure. Lower the
3207     // expression to a boxed value.
3208     auto someExpr = toEvExpr(x);
3209     return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap,
3210                                           stmtCtx);
3211   }
3212   template <typename A, typename B>
3213   ExtValue asArrayArg(const A &, const B &x) {
3214     // If the expression to pass as an argument is not a designator, then create
3215     // an array temp.
3216     return asArray(x);
3217   }
3218 
3219   template <typename A>
3220   ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
3221     // Whole array symbols or components, and results of transformational
3222     // functions already have a storage and the scalar expression lowering path
3223     // is used to not create a new temporary storage.
3224     if (isScalar(x) ||
3225         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
3226         isTransformationalRef(x))
3227       return std::visit([&](const auto &e) { return genref(e); }, x.u);
3228     if (useBoxArg)
3229       return asArrayArg(x);
3230     return asArray(x);
3231   }
3232   template <typename A>
3233   ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
3234     if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
3235         inInitializer)
3236       return std::visit([&](const auto &e) { return genval(e); }, x.u);
3237     return asArray(x);
3238   }
3239 
3240   template <int KIND>
3241   ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
3242                       Fortran::common::TypeCategory::Logical, KIND>> &exp) {
3243     return std::visit([&](const auto &e) { return genval(e); }, exp.u);
3244   }
3245 
3246   using RefSet =
3247       std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
3248                  Fortran::evaluate::DataRef, Fortran::evaluate::Component,
3249                  Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
3250                  Fortran::semantics::SymbolRef>;
3251   template <typename A>
3252   static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;
3253 
3254   template <typename A, typename = std::enable_if_t<inRefSet<A>>>
3255   ExtValue genref(const A &a) {
3256     return gen(a);
3257   }
3258   template <typename A>
3259   ExtValue genref(const A &a) {
3260     if (inInitializer) {
3261       // Initialization expressions can never allocate memory.
3262       return genval(a);
3263     }
3264     mlir::Type storageType = converter.genType(toEvExpr(a));
3265     return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
3266   }
3267 
3268   template <typename A, template <typename> typename T,
3269             typename B = std::decay_t<T<A>>,
3270             std::enable_if_t<
3271                 std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
3272                     std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
3273                     std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
3274                 bool> = true>
3275   ExtValue genref(const T<A> &x) {
3276     return gen(x);
3277   }
3278 
3279 private:
3280   mlir::Location location;
3281   Fortran::lower::AbstractConverter &converter;
3282   fir::FirOpBuilder &builder;
3283   Fortran::lower::StatementContext &stmtCtx;
3284   Fortran::lower::SymMap &symMap;
3285   InitializerData *inInitializer = nullptr;
3286   bool useBoxArg = false; // expression lowered as argument
3287 };
3288 } // namespace
3289 
3290 // Helper for changing the semantics in a given context. Preserves the current
3291 // semantics which is resumed when the "push" goes out of scope.
3292 #define PushSemantics(PushVal)                                                 \
3293   [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ =                 \
3294       Fortran::common::ScopedSet(semant, PushVal);
3295 
3296 static bool isAdjustedArrayElementType(mlir::Type t) {
3297   return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
3298 }
3299 static bool elementTypeWasAdjusted(mlir::Type t) {
3300   if (auto ty = t.dyn_cast<fir::ReferenceType>())
3301     return isAdjustedArrayElementType(ty.getEleTy());
3302   return false;
3303 }
3304 static mlir::Type adjustedArrayElementType(mlir::Type t) {
3305   return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t;
3306 }
3307 
3308 /// Helper to generate calls to scalar user defined assignment procedures.
3309 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder,
3310                                                mlir::Location loc,
3311                                                mlir::func::FuncOp func,
3312                                                const fir::ExtendedValue &lhs,
3313                                                const fir::ExtendedValue &rhs) {
3314   auto prepareUserDefinedArg =
3315       [](fir::FirOpBuilder &builder, mlir::Location loc,
3316          const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value {
3317     if (argType.isa<fir::BoxCharType>()) {
3318       const fir::CharBoxValue *charBox = value.getCharBox();
3319       assert(charBox && "argument type mismatch in elemental user assignment");
3320       return fir::factory::CharacterExprHelper{builder, loc}.createEmbox(
3321           *charBox);
3322     }
3323     if (argType.isa<fir::BoxType>()) {
3324       mlir::Value box = builder.createBox(loc, value);
3325       return builder.createConvert(loc, argType, box);
3326     }
3327     // Simple pass by address.
3328     mlir::Type argBaseType = fir::unwrapRefType(argType);
3329     assert(!fir::hasDynamicSize(argBaseType));
3330     mlir::Value from = fir::getBase(value);
3331     if (argBaseType != fir::unwrapRefType(from.getType())) {
3332       // With logicals, it is possible that from is i1 here.
3333       if (fir::isa_ref_type(from.getType()))
3334         from = builder.create<fir::LoadOp>(loc, from);
3335       from = builder.createConvert(loc, argBaseType, from);
3336     }
3337     if (!fir::isa_ref_type(from.getType())) {
3338       mlir::Value temp = builder.createTemporary(loc, argBaseType);
3339       builder.create<fir::StoreOp>(loc, from, temp);
3340       from = temp;
3341     }
3342     return builder.createConvert(loc, argType, from);
3343   };
3344   assert(func.getNumArguments() == 2);
3345   mlir::Type lhsType = func.getFunctionType().getInput(0);
3346   mlir::Type rhsType = func.getFunctionType().getInput(1);
3347   mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType);
3348   mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType);
3349   builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg});
3350 }
3351 
3352 /// Convert the result of a fir.array_modify to an ExtendedValue given the
3353 /// related fir.array_load.
3354 static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder,
3355                                            mlir::Location loc,
3356                                            fir::ArrayLoadOp load,
3357                                            mlir::Value elementAddr) {
3358   mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType());
3359   if (fir::isa_char(eleTy)) {
3360     auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
3361         load.getMemref());
3362     if (!len) {
3363       assert(load.getTypeparams().size() == 1 &&
3364              "length must be in array_load");
3365       len = load.getTypeparams()[0];
3366     }
3367     return fir::CharBoxValue{elementAddr, len};
3368   }
3369   return elementAddr;
3370 }
3371 
3372 //===----------------------------------------------------------------------===//
3373 //
3374 // Lowering of scalar expressions in an explicit iteration space context.
3375 //
3376 //===----------------------------------------------------------------------===//
3377 
3378 // Shared code for creating a copy of a derived type element. This function is
3379 // called from a continuation.
3380 inline static fir::ArrayAmendOp
3381 createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
3382                         fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
3383                         const fir::ExtendedValue &elementExv, mlir::Type eleTy,
3384                         mlir::Value innerArg) {
3385   if (destLoad.getTypeparams().empty()) {
3386     fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
3387   } else {
3388     auto boxTy = fir::BoxType::get(eleTy);
3389     auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
3390                                               mlir::Value{}, mlir::Value{},
3391                                               destLoad.getTypeparams());
3392     auto fromBox = builder.create<fir::EmboxOp>(
3393         loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
3394         destLoad.getTypeparams());
3395     fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
3396                                       fir::BoxValue(fromBox));
3397   }
3398   return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
3399                                            destAcc);
3400 }
3401 
3402 inline static fir::ArrayAmendOp
3403 createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
3404                      fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
3405                      const fir::ExtendedValue &srcExv, mlir::Value innerArg,
3406                      llvm::ArrayRef<mlir::Value> bounds) {
3407   fir::CharBoxValue dstChar(dstOp, dstLen);
3408   fir::factory::CharacterExprHelper helper{builder, loc};
3409   if (!bounds.empty()) {
3410     dstChar = helper.createSubstring(dstChar, bounds);
3411     fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
3412                                    dstChar.getAddr(), dstChar.getLen(), builder,
3413                                    loc);
3414     // Update the LEN to the substring's LEN.
3415     dstLen = dstChar.getLen();
3416   }
3417   // For a CHARACTER, we generate the element assignment loops inline.
3418   helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
3419   // Mark this array element as amended.
3420   mlir::Type ty = innerArg.getType();
3421   auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
3422   return amend;
3423 }
3424 
3425 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
3426 /// the actual extents and lengths. This is only to allow their propagation as
3427 /// ExtendedValue without triggering verifier failures when propagating
3428 /// character/arrays as unboxed values. Only the base of the resulting
3429 /// ExtendedValue should be used, it is undefined to use the length or extents
3430 /// of the extended value returned,
3431 inline static fir::ExtendedValue
3432 convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
3433                        mlir::Value val, mlir::Value len) {
3434   mlir::Type ty = fir::unwrapRefType(val.getType());
3435   mlir::IndexType idxTy = builder.getIndexType();
3436   auto seqTy = ty.cast<fir::SequenceType>();
3437   auto undef = builder.create<fir::UndefOp>(loc, idxTy);
3438   llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
3439   if (fir::isa_char(seqTy.getEleTy()))
3440     return fir::CharArrayBoxValue(val, len ? len : undef, extents);
3441   return fir::ArrayBoxValue(val, extents);
3442 }
3443 
3444 //===----------------------------------------------------------------------===//
3445 //
3446 // Lowering of array expressions.
3447 //
3448 //===----------------------------------------------------------------------===//
3449 
3450 namespace {
3451 class ArrayExprLowering {
3452   using ExtValue = fir::ExtendedValue;
3453 
3454   /// Structure to keep track of lowered array operands in the
3455   /// array expression. Useful to later deduce the shape of the
3456   /// array expression.
3457   struct ArrayOperand {
3458     /// Array base (can be a fir.box).
3459     mlir::Value memref;
3460     /// ShapeOp, ShapeShiftOp or ShiftOp
3461     mlir::Value shape;
3462     /// SliceOp
3463     mlir::Value slice;
3464     /// Can this operand be absent ?
3465     bool mayBeAbsent = false;
3466   };
3467 
3468   using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
3469   using PathComponent = Fortran::lower::PathComponent;
3470 
3471   /// Active iteration space.
3472   using IterationSpace = Fortran::lower::IterationSpace;
3473   using IterSpace = const Fortran::lower::IterationSpace &;
3474 
3475   /// Current continuation. Function that will generate IR for a single
3476   /// iteration of the pending iterative loop structure.
3477   using CC = Fortran::lower::GenerateElementalArrayFunc;
3478 
3479   /// Projection continuation. Function that will project one iteration space
3480   /// into another.
3481   using PC = std::function<IterationSpace(IterSpace)>;
3482   using ArrayBaseTy =
3483       std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
3484                    const Fortran::evaluate::DataRef *>;
3485   using ComponentPath = Fortran::lower::ComponentPath;
3486 
3487 public:
3488   //===--------------------------------------------------------------------===//
3489   // Regular array assignment
3490   //===--------------------------------------------------------------------===//
3491 
3492   /// Entry point for array assignments. Both the left-hand and right-hand sides
3493   /// can either be ExtendedValue or evaluate::Expr.
3494   template <typename TL, typename TR>
3495   static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
3496                                    Fortran::lower::SymMap &symMap,
3497                                    Fortran::lower::StatementContext &stmtCtx,
3498                                    const TL &lhs, const TR &rhs) {
3499     ArrayExprLowering ael(converter, stmtCtx, symMap,
3500                           ConstituentSemantics::CopyInCopyOut);
3501     ael.lowerArrayAssignment(lhs, rhs);
3502   }
3503 
3504   template <typename TL, typename TR>
3505   void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
3506     mlir::Location loc = getLoc();
3507     /// Here the target subspace is not necessarily contiguous. The ArrayUpdate
3508     /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
3509     /// in `destination`.
3510     PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
3511     ccStoreToDest = genarr(lhs);
3512     determineShapeOfDest(lhs);
3513     semant = ConstituentSemantics::RefTransparent;
3514     ExtValue exv = lowerArrayExpression(rhs);
3515     if (explicitSpaceIsActive()) {
3516       explicitSpace->finalizeContext();
3517       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3518     } else {
3519       builder.create<fir::ArrayMergeStoreOp>(
3520           loc, destination, fir::getBase(exv), destination.getMemref(),
3521           destination.getSlice(), destination.getTypeparams());
3522     }
3523   }
3524 
3525   //===--------------------------------------------------------------------===//
3526   // WHERE array assignment, FORALL assignment, and FORALL+WHERE array
3527   // assignment
3528   //===--------------------------------------------------------------------===//
3529 
3530   /// Entry point for array assignment when the iteration space is explicitly
3531   /// defined (Fortran's FORALL) with or without masks, and/or the implied
3532   /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
3533   /// space and implicit space with masks) may be present.
3534   static void lowerAnyMaskedArrayAssignment(
3535       Fortran::lower::AbstractConverter &converter,
3536       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3537       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3538       Fortran::lower::ExplicitIterSpace &explicitSpace,
3539       Fortran::lower::ImplicitIterSpace &implicitSpace) {
3540     if (explicitSpace.isActive() && lhs.Rank() == 0) {
3541       // Scalar assignment expression in a FORALL context.
3542       ArrayExprLowering ael(converter, stmtCtx, symMap,
3543                             ConstituentSemantics::RefTransparent,
3544                             &explicitSpace, &implicitSpace);
3545       ael.lowerScalarAssignment(lhs, rhs);
3546       return;
3547     }
3548     // Array assignment expression in a FORALL and/or WHERE context.
3549     ArrayExprLowering ael(converter, stmtCtx, symMap,
3550                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3551                           &implicitSpace);
3552     ael.lowerArrayAssignment(lhs, rhs);
3553   }
3554 
3555   //===--------------------------------------------------------------------===//
3556   // Array assignment to array of pointer box values.
3557   //===--------------------------------------------------------------------===//
3558 
3559   /// Entry point for assignment to pointer in an array of pointers.
3560   static void lowerArrayOfPointerAssignment(
3561       Fortran::lower::AbstractConverter &converter,
3562       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3563       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3564       Fortran::lower::ExplicitIterSpace &explicitSpace,
3565       Fortran::lower::ImplicitIterSpace &implicitSpace,
3566       const llvm::SmallVector<mlir::Value> &lbounds,
3567       llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
3568     ArrayExprLowering ael(converter, stmtCtx, symMap,
3569                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3570                           &implicitSpace);
3571     ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds);
3572   }
3573 
3574   /// Scalar pointer assignment in an explicit iteration space.
3575   ///
3576   /// Pointers may be bound to targets in a FORALL context. This is a scalar
3577   /// assignment in the sense there is never an implied iteration space, even if
3578   /// the pointer is to a target with non-zero rank. Since the pointer
3579   /// assignment must appear in a FORALL construct, correctness may require that
3580   /// the array of pointers follow copy-in/copy-out semantics. The pointer
3581   /// assignment may include a bounds-spec (lower bounds), a bounds-remapping
3582   /// (lower and upper bounds), or neither.
3583   void lowerArrayOfPointerAssignment(
3584       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3585       const llvm::SmallVector<mlir::Value> &lbounds,
3586       llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
3587     setPointerAssignmentBounds(lbounds, ubounds);
3588     if (rhs.Rank() == 0 ||
3589         (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) &&
3590          Fortran::evaluate::IsAllocatableOrPointerObject(
3591              rhs, converter.getFoldingContext()))) {
3592       lowerScalarAssignment(lhs, rhs);
3593       return;
3594     }
3595     TODO(getLoc(),
3596          "auto boxing of a ranked expression on RHS for pointer assignment");
3597   }
3598 
3599   //===--------------------------------------------------------------------===//
3600   // Array assignment to allocatable array
3601   //===--------------------------------------------------------------------===//
3602 
3603   /// Entry point for assignment to allocatable array.
3604   static void lowerAllocatableArrayAssignment(
3605       Fortran::lower::AbstractConverter &converter,
3606       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3607       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3608       Fortran::lower::ExplicitIterSpace &explicitSpace,
3609       Fortran::lower::ImplicitIterSpace &implicitSpace) {
3610     ArrayExprLowering ael(converter, stmtCtx, symMap,
3611                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3612                           &implicitSpace);
3613     ael.lowerAllocatableArrayAssignment(lhs, rhs);
3614   }
3615 
3616   /// Assignment to allocatable array.
3617   ///
3618   /// The semantics are reverse that of a "regular" array assignment. The rhs
3619   /// defines the iteration space of the computation and the lhs is
3620   /// resized/reallocated to fit if necessary.
3621   void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
3622                                        const Fortran::lower::SomeExpr &rhs) {
3623     // With assignment to allocatable, we want to lower the rhs first and use
3624     // its shape to determine if we need to reallocate, etc.
3625     mlir::Location loc = getLoc();
3626     // FIXME: If the lhs is in an explicit iteration space, the assignment may
3627     // be to an array of allocatable arrays rather than a single allocatable
3628     // array.
3629     fir::MutableBoxValue mutableBox =
3630         Fortran::lower::createMutableBox(loc, converter, lhs, symMap);
3631     mlir::Type resultTy = converter.genType(rhs);
3632     if (rhs.Rank() > 0)
3633       determineShapeOfDest(rhs);
3634     auto rhsCC = [&]() {
3635       PushSemantics(ConstituentSemantics::RefTransparent);
3636       return genarr(rhs);
3637     }();
3638 
3639     llvm::SmallVector<mlir::Value> lengthParams;
3640     // Currently no safe way to gather length from rhs (at least for
3641     // character, it cannot be taken from array_loads since it may be
3642     // changed by concatenations).
3643     if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
3644         mutableBox.isDerivedWithLenParameters())
3645       TODO(loc, "gather rhs length parameters in assignment to allocatable");
3646 
3647     // The allocatable must take lower bounds from the expr if it is
3648     // reallocated and the right hand side is not a scalar.
3649     const bool takeLboundsIfRealloc = rhs.Rank() > 0;
3650     llvm::SmallVector<mlir::Value> lbounds;
3651     // When the reallocated LHS takes its lower bounds from the RHS,
3652     // they will be non default only if the RHS is a whole array
3653     // variable. Otherwise, lbounds is left empty and default lower bounds
3654     // will be used.
3655     if (takeLboundsIfRealloc &&
3656         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
3657       assert(arrayOperands.size() == 1 &&
3658              "lbounds can only come from one array");
3659       auto lbs = fir::factory::getOrigins(arrayOperands[0].shape);
3660       lbounds.append(lbs.begin(), lbs.end());
3661     }
3662     fir::factory::MutableBoxReallocation realloc =
3663         fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
3664                                          lengthParams);
3665     // Create ArrayLoad for the mutable box and save it into `destination`.
3666     PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
3667     ccStoreToDest = genarr(realloc.newValue);
3668     // If the rhs is scalar, get shape from the allocatable ArrayLoad.
3669     if (destShape.empty())
3670       destShape = getShape(destination);
3671     // Finish lowering the loop nest.
3672     assert(destination && "destination must have been set");
3673     ExtValue exv = lowerArrayExpression(rhsCC, resultTy);
3674     if (explicitSpaceIsActive()) {
3675       explicitSpace->finalizeContext();
3676       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3677     } else {
3678       builder.create<fir::ArrayMergeStoreOp>(
3679           loc, destination, fir::getBase(exv), destination.getMemref(),
3680           destination.getSlice(), destination.getTypeparams());
3681     }
3682     fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
3683                                   takeLboundsIfRealloc, realloc);
3684   }
3685 
3686   /// Entry point for when an array expression appears in a context where the
3687   /// result must be boxed. (BoxValue semantics.)
3688   static ExtValue
3689   lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
3690                             Fortran::lower::SymMap &symMap,
3691                             Fortran::lower::StatementContext &stmtCtx,
3692                             const Fortran::lower::SomeExpr &expr) {
3693     ArrayExprLowering ael{converter, stmtCtx, symMap,
3694                           ConstituentSemantics::BoxValue};
3695     return ael.lowerBoxedArrayExpr(expr);
3696   }
3697 
3698   ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
3699     PushSemantics(ConstituentSemantics::BoxValue);
3700     return std::visit(
3701         [&](const auto &e) {
3702           auto f = genarr(e);
3703           ExtValue exv = f(IterationSpace{});
3704           if (fir::getBase(exv).getType().template isa<fir::BoxType>())
3705             return exv;
3706           fir::emitFatalError(getLoc(), "array must be emboxed");
3707         },
3708         exp.u);
3709   }
3710 
3711   /// Entry point into lowering an expression with rank. This entry point is for
3712   /// lowering a rhs expression, for example. (RefTransparent semantics.)
3713   static ExtValue
3714   lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
3715                           Fortran::lower::SymMap &symMap,
3716                           Fortran::lower::StatementContext &stmtCtx,
3717                           const Fortran::lower::SomeExpr &expr) {
3718     ArrayExprLowering ael{converter, stmtCtx, symMap};
3719     ael.determineShapeOfDest(expr);
3720     ExtValue loopRes = ael.lowerArrayExpression(expr);
3721     fir::ArrayLoadOp dest = ael.destination;
3722     mlir::Value tempRes = dest.getMemref();
3723     fir::FirOpBuilder &builder = converter.getFirOpBuilder();
3724     mlir::Location loc = converter.getCurrentLocation();
3725     builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
3726                                            tempRes, dest.getSlice(),
3727                                            dest.getTypeparams());
3728 
3729     auto arrTy =
3730         fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
3731     if (auto charTy =
3732             arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
3733       if (fir::characterWithDynamicLen(charTy))
3734         TODO(loc, "CHARACTER does not have constant LEN");
3735       mlir::Value len = builder.createIntegerConstant(
3736           loc, builder.getCharacterLengthType(), charTy.getLen());
3737       return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
3738     }
3739     return fir::ArrayBoxValue(tempRes, dest.getExtents());
3740   }
3741 
3742   static void lowerLazyArrayExpression(
3743       Fortran::lower::AbstractConverter &converter,
3744       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3745       const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) {
3746     ArrayExprLowering ael(converter, stmtCtx, symMap);
3747     ael.lowerLazyArrayExpression(expr, raggedHeader);
3748   }
3749 
3750   /// Lower the expression \p expr into a buffer that is created on demand. The
3751   /// variable containing the pointer to the buffer is \p var and the variable
3752   /// containing the shape of the buffer is \p shapeBuffer.
3753   void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr,
3754                                 mlir::Value header) {
3755     mlir::Location loc = getLoc();
3756     mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder);
3757     mlir::IntegerType i32Ty = builder.getIntegerType(32);
3758 
3759     // Once the loop extents have been computed, which may require being inside
3760     // some explicit loops, lazily allocate the expression on the heap. The
3761     // following continuation creates the buffer as needed.
3762     ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) {
3763       mlir::IntegerType i64Ty = builder.getIntegerType(64);
3764       mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1);
3765       fir::runtime::genRaggedArrayAllocate(
3766           loc, builder, header, /*asHeaders=*/false, byteSize, shape);
3767     };
3768 
3769     // Create a dummy array_load before the loop. We're storing to a lazy
3770     // temporary, so there will be no conflict and no copy-in. TODO: skip this
3771     // as there isn't any necessity for it.
3772     ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp {
3773       mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
3774       auto var = builder.create<fir::CoordinateOp>(
3775           loc, builder.getRefType(hdrTy.getType(1)), header, one);
3776       auto load = builder.create<fir::LoadOp>(loc, var);
3777       mlir::Type eleTy =
3778           fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
3779       auto seqTy = fir::SequenceType::get(eleTy, shape.size());
3780       mlir::Value castTo =
3781           builder.createConvert(loc, fir::HeapType::get(seqTy), load);
3782       mlir::Value shapeOp = builder.genShape(loc, shape);
3783       return builder.create<fir::ArrayLoadOp>(
3784           loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None);
3785     };
3786     // Custom lowering of the element store to deal with the extra indirection
3787     // to the lazy allocated buffer.
3788     ccStoreToDest = [=](IterSpace iters) {
3789       mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
3790       auto var = builder.create<fir::CoordinateOp>(
3791           loc, builder.getRefType(hdrTy.getType(1)), header, one);
3792       auto load = builder.create<fir::LoadOp>(loc, var);
3793       mlir::Type eleTy =
3794           fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
3795       auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size());
3796       auto toTy = fir::HeapType::get(seqTy);
3797       mlir::Value castTo = builder.createConvert(loc, toTy, load);
3798       mlir::Value shape = builder.genShape(loc, genIterationShape());
3799       llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
3800           loc, builder, castTo.getType(), shape, iters.iterVec());
3801       auto eleAddr = builder.create<fir::ArrayCoorOp>(
3802           loc, builder.getRefType(eleTy), castTo, shape,
3803           /*slice=*/mlir::Value{}, indices, destination.getTypeparams());
3804       mlir::Value eleVal =
3805           builder.createConvert(loc, eleTy, iters.getElement());
3806       builder.create<fir::StoreOp>(loc, eleVal, eleAddr);
3807       return iters.innerArgument();
3808     };
3809 
3810     // Lower the array expression now. Clean-up any temps that may have
3811     // been generated when lowering `expr` right after the lowered value
3812     // was stored to the ragged array temporary. The local temps will not
3813     // be needed afterwards.
3814     stmtCtx.pushScope();
3815     [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr);
3816     stmtCtx.finalize(/*popScope=*/true);
3817     assert(fir::getBase(loopRes));
3818   }
3819 
3820   static void
3821   lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter,
3822                                Fortran::lower::SymMap &symMap,
3823                                Fortran::lower::StatementContext &stmtCtx,
3824                                Fortran::lower::ExplicitIterSpace &explicitSpace,
3825                                Fortran::lower::ImplicitIterSpace &implicitSpace,
3826                                const Fortran::evaluate::ProcedureRef &procRef) {
3827     ArrayExprLowering ael(converter, stmtCtx, symMap,
3828                           ConstituentSemantics::CustomCopyInCopyOut,
3829                           &explicitSpace, &implicitSpace);
3830     assert(procRef.arguments().size() == 2);
3831     const auto *lhs = procRef.arguments()[0].value().UnwrapExpr();
3832     const auto *rhs = procRef.arguments()[1].value().UnwrapExpr();
3833     assert(lhs && rhs &&
3834            "user defined assignment arguments must be expressions");
3835     mlir::func::FuncOp func =
3836         Fortran::lower::CallerInterface(procRef, converter).getFuncOp();
3837     ael.lowerElementalUserAssignment(func, *lhs, *rhs);
3838   }
3839 
3840   void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment,
3841                                     const Fortran::lower::SomeExpr &lhs,
3842                                     const Fortran::lower::SomeExpr &rhs) {
3843     mlir::Location loc = getLoc();
3844     PushSemantics(ConstituentSemantics::CustomCopyInCopyOut);
3845     auto genArrayModify = genarr(lhs);
3846     ccStoreToDest = [=](IterSpace iters) -> ExtValue {
3847       auto modifiedArray = genArrayModify(iters);
3848       auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>(
3849           fir::getBase(modifiedArray).getDefiningOp());
3850       assert(arrayModify && "must be created by ArrayModifyOp");
3851       fir::ExtendedValue lhs =
3852           arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0));
3853       genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs,
3854                                          iters.elementExv());
3855       return modifiedArray;
3856     };
3857     determineShapeOfDest(lhs);
3858     semant = ConstituentSemantics::RefTransparent;
3859     auto exv = lowerArrayExpression(rhs);
3860     if (explicitSpaceIsActive()) {
3861       explicitSpace->finalizeContext();
3862       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3863     } else {
3864       builder.create<fir::ArrayMergeStoreOp>(
3865           loc, destination, fir::getBase(exv), destination.getMemref(),
3866           destination.getSlice(), destination.getTypeparams());
3867     }
3868   }
3869 
3870   /// Lower an elemental subroutine call with at least one array argument.
3871   /// An elemental subroutine is an exception and does not have copy-in/copy-out
3872   /// semantics. See 15.8.3.
3873   /// Do NOT use this for user defined assignments.
3874   static void
3875   lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter,
3876                            Fortran::lower::SymMap &symMap,
3877                            Fortran::lower::StatementContext &stmtCtx,
3878                            const Fortran::lower::SomeExpr &call) {
3879     ArrayExprLowering ael(converter, stmtCtx, symMap,
3880                           ConstituentSemantics::RefTransparent);
3881     ael.lowerElementalSubroutine(call);
3882   }
3883 
3884   // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
3885   // This is skipping generation of copy-in/copy-out code for analysis that is
3886   // required when arguments are in parentheses.
3887   void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) {
3888     auto f = genarr(call);
3889     llvm::SmallVector<mlir::Value> shape = genIterationShape();
3890     auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{});
3891     f(iterSpace);
3892     finalizeElementCtx();
3893     builder.restoreInsertionPoint(insPt);
3894   }
3895 
3896   ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs,
3897                                  const Fortran::lower::SomeExpr &rhs) {
3898     PushSemantics(ConstituentSemantics::RefTransparent);
3899     // 1) Lower the rhs expression with array_fetch op(s).
3900     IterationSpace iters;
3901     iters.setElement(genarr(rhs)(iters));
3902     // 2) Lower the lhs expression to an array_update.
3903     semant = ConstituentSemantics::ProjectedCopyInCopyOut;
3904     auto lexv = genarr(lhs)(iters);
3905     // 3) Finalize the inner context.
3906     explicitSpace->finalizeContext();
3907     // 4) Thread the array value updated forward. Note: the lhs might be
3908     // ill-formed (performing scalar assignment in an array context),
3909     // in which case there is no array to thread.
3910     auto loc = getLoc();
3911     auto createResult = [&](auto op) {
3912       mlir::Value oldInnerArg = op.getSequence();
3913       std::size_t offset = explicitSpace->argPosition(oldInnerArg);
3914       explicitSpace->setInnerArg(offset, fir::getBase(lexv));
3915       finalizeElementCtx();
3916       builder.create<fir::ResultOp>(loc, fir::getBase(lexv));
3917     };
3918     if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) {
3919       llvm::TypeSwitch<mlir::Operation *>(defOp)
3920           .Case([&](fir::ArrayUpdateOp op) { createResult(op); })
3921           .Case([&](fir::ArrayAmendOp op) { createResult(op); })
3922           .Case([&](fir::ArrayModifyOp op) { createResult(op); })
3923           .Default([&](mlir::Operation *) { finalizeElementCtx(); });
3924     } else {
3925       // `lhs` isn't from a `fir.array_load`, so there is no array modifications
3926       // to thread through the iteration space.
3927       finalizeElementCtx();
3928     }
3929     return lexv;
3930   }
3931 
3932   static ExtValue lowerScalarUserAssignment(
3933       Fortran::lower::AbstractConverter &converter,
3934       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3935       Fortran::lower::ExplicitIterSpace &explicitIterSpace,
3936       mlir::func::FuncOp userAssignmentFunction,
3937       const Fortran::lower::SomeExpr &lhs,
3938       const Fortran::lower::SomeExpr &rhs) {
3939     Fortran::lower::ImplicitIterSpace implicit;
3940     ArrayExprLowering ael(converter, stmtCtx, symMap,
3941                           ConstituentSemantics::RefTransparent,
3942                           &explicitIterSpace, &implicit);
3943     return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs);
3944   }
3945 
3946   ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment,
3947                                      const Fortran::lower::SomeExpr &lhs,
3948                                      const Fortran::lower::SomeExpr &rhs) {
3949     mlir::Location loc = getLoc();
3950     if (rhs.Rank() > 0)
3951       TODO(loc, "user-defined elemental assigment from expression with rank");
3952     // 1) Lower the rhs expression with array_fetch op(s).
3953     IterationSpace iters;
3954     iters.setElement(genarr(rhs)(iters));
3955     fir::ExtendedValue elementalExv = iters.elementExv();
3956     // 2) Lower the lhs expression to an array_modify.
3957     semant = ConstituentSemantics::CustomCopyInCopyOut;
3958     auto lexv = genarr(lhs)(iters);
3959     bool isIllFormedLHS = false;
3960     // 3) Insert the call
3961     if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
3962             fir::getBase(lexv).getDefiningOp())) {
3963       mlir::Value oldInnerArg = modifyOp.getSequence();
3964       std::size_t offset = explicitSpace->argPosition(oldInnerArg);
3965       explicitSpace->setInnerArg(offset, fir::getBase(lexv));
3966       fir::ExtendedValue exv =
3967           arrayModifyToExv(builder, loc, explicitSpace->getLhsLoad(0).value(),
3968                            modifyOp.getResult(0));
3969       genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv,
3970                                          elementalExv);
3971     } else {
3972       // LHS is ill formed, it is a scalar with no references to FORALL
3973       // subscripts, so there is actually no array assignment here. The user
3974       // code is probably bad, but still insert user assignment call since it
3975       // was not rejected by semantics (a warning was emitted).
3976       isIllFormedLHS = true;
3977       genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment,
3978                                          lexv, elementalExv);
3979     }
3980     // 4) Finalize the inner context.
3981     explicitSpace->finalizeContext();
3982     // 5). Thread the array value updated forward.
3983     if (!isIllFormedLHS) {
3984       finalizeElementCtx();
3985       builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
3986     }
3987     return lexv;
3988   }
3989 
3990 private:
3991   void determineShapeOfDest(const fir::ExtendedValue &lhs) {
3992     destShape = fir::factory::getExtents(getLoc(), builder, lhs);
3993   }
3994 
3995   void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
3996     if (!destShape.empty())
3997       return;
3998     if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
3999       return;
4000     mlir::Type idxTy = builder.getIndexType();
4001     mlir::Location loc = getLoc();
4002     if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
4003             Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
4004                                                   lhs))
4005       for (Fortran::common::ConstantSubscript extent : *constantShape)
4006         destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
4007   }
4008 
4009   bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) {
4010     return false;
4011   }
4012   bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) {
4013     TODO(getLoc(), "coarray ref");
4014     return false;
4015   }
4016   bool genShapeFromDataRef(const Fortran::evaluate::Component &x) {
4017     return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false;
4018   }
4019   bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) {
4020     if (x.Rank() == 0)
4021       return false;
4022     if (x.base().Rank() > 0)
4023       if (genShapeFromDataRef(x.base()))
4024         return true;
4025     // x has rank and x.base did not produce a shape.
4026     ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base()))
4027                                        : asScalarRef(x.base().GetComponent());
4028     mlir::Location loc = getLoc();
4029     mlir::IndexType idxTy = builder.getIndexType();
4030     llvm::SmallVector<mlir::Value> definedShape =
4031         fir::factory::getExtents(loc, builder, exv);
4032     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
4033     for (auto ss : llvm::enumerate(x.subscript())) {
4034       std::visit(Fortran::common::visitors{
4035                      [&](const Fortran::evaluate::Triplet &trip) {
4036                        // For a subscript of triple notation, we compute the
4037                        // range of this dimension of the iteration space.
4038                        auto lo = [&]() {
4039                          if (auto optLo = trip.lower())
4040                            return fir::getBase(asScalar(*optLo));
4041                          return getLBound(exv, ss.index(), one);
4042                        }();
4043                        auto hi = [&]() {
4044                          if (auto optHi = trip.upper())
4045                            return fir::getBase(asScalar(*optHi));
4046                          return getUBound(exv, ss.index(), one);
4047                        }();
4048                        auto step = builder.createConvert(
4049                            loc, idxTy, fir::getBase(asScalar(trip.stride())));
4050                        auto extent = builder.genExtentFromTriplet(loc, lo, hi,
4051                                                                   step, idxTy);
4052                        destShape.push_back(extent);
4053                      },
4054                      [&](auto) {}},
4055                  ss.value().u);
4056     }
4057     return true;
4058   }
4059   bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) {
4060     if (x.IsSymbol())
4061       return genShapeFromDataRef(getFirstSym(x));
4062     return genShapeFromDataRef(x.GetComponent());
4063   }
4064   bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) {
4065     return std::visit([&](const auto &v) { return genShapeFromDataRef(v); },
4066                       x.u);
4067   }
4068 
4069   /// When in an explicit space, the ranked component must be evaluated to
4070   /// determine the actual number of iterations when slicing triples are
4071   /// present. Lower these expressions here.
4072   bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) {
4073     LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
4074         llvm::dbgs() << "determine shape of:\n", lhs));
4075     // FIXME: We may not want to use ExtractDataRef here since it doesn't deal
4076     // with substrings, etc.
4077     std::optional<Fortran::evaluate::DataRef> dref =
4078         Fortran::evaluate::ExtractDataRef(lhs);
4079     return dref.has_value() ? genShapeFromDataRef(*dref) : false;
4080   }
4081 
4082   /// CHARACTER and derived type elements are treated as memory references. The
4083   /// numeric types are treated as values.
4084   static mlir::Type adjustedArraySubtype(mlir::Type ty,
4085                                          mlir::ValueRange indices) {
4086     mlir::Type pathTy = fir::applyPathToType(ty, indices);
4087     assert(pathTy && "indices failed to apply to type");
4088     return adjustedArrayElementType(pathTy);
4089   }
4090 
4091   /// Lower rhs of an array expression.
4092   ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
4093     mlir::Type resTy = converter.genType(exp);
4094     return std::visit(
4095         [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
4096         exp.u);
4097   }
4098   ExtValue lowerArrayExpression(const ExtValue &exv) {
4099     assert(!explicitSpace);
4100     mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
4101     return lowerArrayExpression(genarr(exv), resTy);
4102   }
4103 
4104   void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
4105                       const Fortran::evaluate::Substring *substring) {
4106     if (!substring)
4107       return;
4108     bounds.push_back(fir::getBase(asScalar(substring->lower())));
4109     if (auto upper = substring->upper())
4110       bounds.push_back(fir::getBase(asScalar(*upper)));
4111   }
4112 
4113   /// Convert the original value, \p origVal, to type \p eleTy. When in a
4114   /// pointer assignment context, generate an appropriate `fir.rebox` for
4115   /// dealing with any bounds parameters on the pointer assignment.
4116   mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy,
4117                                       mlir::Value origVal) {
4118     if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType()))
4119       if (origEleTy.isa<fir::BoxType>()) {
4120         // If origVal is a box variable, load it so it is in the value domain.
4121         origVal = builder.create<fir::LoadOp>(loc, origVal);
4122       }
4123     if (origVal.getType().isa<fir::BoxType>() && !eleTy.isa<fir::BoxType>()) {
4124       if (isPointerAssignment())
4125         TODO(loc, "lhs of pointer assignment returned unexpected value");
4126       TODO(loc, "invalid box conversion in elemental computation");
4127     }
4128     if (isPointerAssignment() && eleTy.isa<fir::BoxType>() &&
4129         !origVal.getType().isa<fir::BoxType>()) {
4130       // This is a pointer assignment and the rhs is a raw reference to a TARGET
4131       // in memory. Embox the reference so it can be stored to the boxed
4132       // POINTER variable.
4133       assert(fir::isa_ref_type(origVal.getType()));
4134       if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType());
4135           fir::hasDynamicSize(eleTy))
4136         TODO(loc, "TARGET of pointer assignment with runtime size/shape");
4137       auto memrefTy = fir::boxMemRefType(eleTy.cast<fir::BoxType>());
4138       auto castTo = builder.createConvert(loc, memrefTy, origVal);
4139       origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo);
4140     }
4141     mlir::Value val = builder.createConvert(loc, eleTy, origVal);
4142     if (isBoundsSpec()) {
4143       auto lbs = lbounds.value();
4144       if (lbs.size() > 0) {
4145         // Rebox the value with user-specified shift.
4146         auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size());
4147         mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs);
4148         val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp,
4149                                            mlir::Value{});
4150       }
4151     } else if (isBoundsRemap()) {
4152       auto lbs = lbounds.getValue();
4153       if (lbs.size() > 0) {
4154         // Rebox the value with user-specified shift and shape.
4155         auto shapeShiftArgs = flatZip(lbs, ubounds.getValue());
4156         auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size());
4157         mlir::Value shapeShift =
4158             builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs);
4159         val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift,
4160                                            mlir::Value{});
4161       }
4162     }
4163     return val;
4164   }
4165 
4166   /// Default store to destination implementation.
4167   /// This implements the default case, which is to assign the value in
4168   /// `iters.element` into the destination array, `iters.innerArgument`. Handles
4169   /// by value and by reference assignment.
4170   CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
4171     return [=](IterSpace iterSpace) -> ExtValue {
4172       mlir::Location loc = getLoc();
4173       mlir::Value innerArg = iterSpace.innerArgument();
4174       fir::ExtendedValue exv = iterSpace.elementExv();
4175       mlir::Type arrTy = innerArg.getType();
4176       mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
4177       if (isAdjustedArrayElementType(eleTy)) {
4178         // The elemental update is in the memref domain. Under this semantics,
4179         // we must always copy the computed new element from its location in
4180         // memory into the destination array.
4181         mlir::Type resRefTy = builder.getRefType(eleTy);
4182         // Get a reference to the array element to be amended.
4183         auto arrayOp = builder.create<fir::ArrayAccessOp>(
4184             loc, resRefTy, innerArg, iterSpace.iterVec(),
4185             fir::factory::getTypeParams(loc, builder, destination));
4186         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
4187           llvm::SmallVector<mlir::Value> substringBounds;
4188           populateBounds(substringBounds, substring);
4189           mlir::Value dstLen = fir::factory::genLenOfCharacter(
4190               builder, loc, destination, iterSpace.iterVec(), substringBounds);
4191           fir::ArrayAmendOp amend = createCharArrayAmend(
4192               loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
4193           return abstractArrayExtValue(amend, dstLen);
4194         }
4195         if (fir::isa_derived(eleTy)) {
4196           fir::ArrayAmendOp amend = createDerivedArrayAmend(
4197               loc, destination, builder, arrayOp, exv, eleTy, innerArg);
4198           return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
4199         }
4200         assert(eleTy.isa<fir::SequenceType>() && "must be an array");
4201         TODO(loc, "array (as element) assignment");
4202       }
4203       // By value semantics. The element is being assigned by value.
4204       auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv));
4205       auto update = builder.create<fir::ArrayUpdateOp>(
4206           loc, arrTy, innerArg, ele, iterSpace.iterVec(),
4207           destination.getTypeparams());
4208       return abstractArrayExtValue(update);
4209     };
4210   }
4211 
4212   /// For an elemental array expression.
4213   ///   1. Lower the scalars and array loads.
4214   ///   2. Create the iteration space.
4215   ///   3. Create the element-by-element computation in the loop.
4216   ///   4. Return the resulting array value.
4217   /// If no destination was set in the array context, a temporary of
4218   /// \p resultTy will be created to hold the evaluated expression.
4219   /// Otherwise, \p resultTy is ignored and the expression is evaluated
4220   /// in the destination. \p f is a continuation built from an
4221   /// evaluate::Expr or an ExtendedValue.
4222   ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
4223     mlir::Location loc = getLoc();
4224     auto [iterSpace, insPt] = genIterSpace(resultTy);
4225     auto exv = f(iterSpace);
4226     iterSpace.setElement(std::move(exv));
4227     auto lambda = ccStoreToDest.hasValue()
4228                       ? ccStoreToDest.getValue()
4229                       : defaultStoreToDestination(/*substring=*/nullptr);
4230     mlir::Value updVal = fir::getBase(lambda(iterSpace));
4231     finalizeElementCtx();
4232     builder.create<fir::ResultOp>(loc, updVal);
4233     builder.restoreInsertionPoint(insPt);
4234     return abstractArrayExtValue(iterSpace.outerResult());
4235   }
4236 
4237   /// Compute the shape of a slice.
4238   llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) {
4239     llvm::SmallVector<mlir::Value> slicedShape;
4240     auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp());
4241     mlir::Operation::operand_range triples = slOp.getTriples();
4242     mlir::IndexType idxTy = builder.getIndexType();
4243     mlir::Location loc = getLoc();
4244     for (unsigned i = 0, end = triples.size(); i < end; i += 3) {
4245       if (!mlir::isa_and_nonnull<fir::UndefOp>(
4246               triples[i + 1].getDefiningOp())) {
4247         // (..., lb:ub:step, ...) case:  extent = max((ub-lb+step)/step, 0)
4248         // See Fortran 2018 9.5.3.3.2 section for more details.
4249         mlir::Value res = builder.genExtentFromTriplet(
4250             loc, triples[i], triples[i + 1], triples[i + 2], idxTy);
4251         slicedShape.emplace_back(res);
4252       } else {
4253         // do nothing. `..., i, ...` case, so dimension is dropped.
4254       }
4255     }
4256     return slicedShape;
4257   }
4258 
4259   /// Get the shape from an ArrayOperand. The shape of the array is adjusted if
4260   /// the array was sliced.
4261   llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
4262     if (array.slice)
4263       return computeSliceShape(array.slice);
4264     if (array.memref.getType().isa<fir::BoxType>())
4265       return fir::factory::readExtents(builder, getLoc(),
4266                                        fir::BoxValue{array.memref});
4267     return fir::factory::getExtents(array.shape);
4268   }
4269 
4270   /// Get the shape from an ArrayLoad.
4271   llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
4272     return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
4273                                  arrayLoad.getSlice()});
4274   }
4275 
4276   /// Returns the first array operand that may not be absent. If all
4277   /// array operands may be absent, return the first one.
4278   const ArrayOperand &getInducingShapeArrayOperand() const {
4279     assert(!arrayOperands.empty());
4280     for (const ArrayOperand &op : arrayOperands)
4281       if (!op.mayBeAbsent)
4282         return op;
4283     // If all arrays operand appears in optional position, then none of them
4284     // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
4285     // first operands.
4286     // TODO: There is an opportunity to add a runtime check here that
4287     // this array is present as required.
4288     return arrayOperands[0];
4289   }
4290 
4291   /// Generate the shape of the iteration space over the array expression. The
4292   /// iteration space may be implicit, explicit, or both. If it is implied it is
4293   /// based on the destination and operand array loads, or an optional
4294   /// Fortran::evaluate::Shape from the front end. If the shape is explicit,
4295   /// this returns any implicit shape component, if it exists.
4296   llvm::SmallVector<mlir::Value> genIterationShape() {
4297     // Use the precomputed destination shape.
4298     if (!destShape.empty())
4299       return destShape;
4300     // Otherwise, use the destination's shape.
4301     if (destination)
4302       return getShape(destination);
4303     // Otherwise, use the first ArrayLoad operand shape.
4304     if (!arrayOperands.empty())
4305       return getShape(getInducingShapeArrayOperand());
4306     fir::emitFatalError(getLoc(),
4307                         "failed to compute the array expression shape");
4308   }
4309 
4310   bool explicitSpaceIsActive() const {
4311     return explicitSpace && explicitSpace->isActive();
4312   }
4313 
4314   bool implicitSpaceHasMasks() const {
4315     return implicitSpace && !implicitSpace->empty();
4316   }
4317 
4318   CC genMaskAccess(mlir::Value tmp, mlir::Value shape) {
4319     mlir::Location loc = getLoc();
4320     return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) {
4321       mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType());
4322       auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
4323       mlir::Type eleRefTy = builder->getRefType(eleTy);
4324       mlir::IntegerType i1Ty = builder->getI1Type();
4325       // Adjust indices for any shift of the origin of the array.
4326       llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
4327           loc, *builder, tmp.getType(), shape, iters.iterVec());
4328       auto addr =
4329           builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape,
4330                                             /*slice=*/mlir::Value{}, indices,
4331                                             /*typeParams=*/llvm::None);
4332       auto load = builder->create<fir::LoadOp>(loc, addr);
4333       return builder->createConvert(loc, i1Ty, load);
4334     };
4335   }
4336 
4337   /// Construct the incremental instantiations of the ragged array structure.
4338   /// Rebind the lazy buffer variable, etc. as we go.
4339   template <bool withAllocation = false>
4340   mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) {
4341     assert(explicitSpaceIsActive());
4342     mlir::Location loc = getLoc();
4343     mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder);
4344     llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack =
4345         explicitSpace->getLoopStack();
4346     const std::size_t depth = loopStack.size();
4347     mlir::IntegerType i64Ty = builder.getIntegerType(64);
4348     [[maybe_unused]] mlir::Value byteSize =
4349         builder.createIntegerConstant(loc, i64Ty, 1);
4350     mlir::Value header = implicitSpace->lookupMaskHeader(expr);
4351     for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) {
4352       auto insPt = builder.saveInsertionPoint();
4353       if (i < depth - 1)
4354         builder.setInsertionPoint(loopStack[i + 1][0]);
4355 
4356       // Compute and gather the extents.
4357       llvm::SmallVector<mlir::Value> extents;
4358       for (auto doLoop : loopStack[i])
4359         extents.push_back(builder.genExtentFromTriplet(
4360             loc, doLoop.getLowerBound(), doLoop.getUpperBound(),
4361             doLoop.getStep(), i64Ty));
4362       if constexpr (withAllocation) {
4363         fir::runtime::genRaggedArrayAllocate(
4364             loc, builder, header, /*asHeader=*/true, byteSize, extents);
4365       }
4366 
4367       // Compute the dynamic position into the header.
4368       llvm::SmallVector<mlir::Value> offsets;
4369       for (auto doLoop : loopStack[i]) {
4370         auto m = builder.create<mlir::arith::SubIOp>(
4371             loc, doLoop.getInductionVar(), doLoop.getLowerBound());
4372         auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep());
4373         mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1);
4374         offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one));
4375       }
4376       mlir::IntegerType i32Ty = builder.getIntegerType(32);
4377       mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1);
4378       mlir::Type coorTy = builder.getRefType(raggedTy.getType(1));
4379       auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
4380       auto toTy = fir::SequenceType::get(raggedTy, offsets.size());
4381       mlir::Type toRefTy = builder.getRefType(toTy);
4382       auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff);
4383       mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr);
4384       auto shapeOp = builder.genShape(loc, extents);
4385       header = builder.create<fir::ArrayCoorOp>(
4386           loc, builder.getRefType(raggedTy), hdArr, shapeOp,
4387           /*slice=*/mlir::Value{}, offsets,
4388           /*typeparams=*/mlir::ValueRange{});
4389       auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
4390       auto inVar = builder.create<fir::LoadOp>(loc, hdrVar);
4391       mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
4392       mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2));
4393       auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two);
4394       auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh);
4395       // Replace the binding.
4396       implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr));
4397       if (i < depth - 1)
4398         builder.restoreInsertionPoint(insPt);
4399     }
4400     return header;
4401   }
4402 
4403   /// Lower mask expressions with implied iteration spaces from the variants of
4404   /// WHERE syntax. Since it is legal for mask expressions to have side-effects
4405   /// and modify values that will be used for the lhs, rhs, or both of
4406   /// subsequent assignments, the mask must be evaluated before the assignment
4407   /// is processed.
4408   /// Mask expressions are array expressions too.
4409   void genMasks() {
4410     // Lower the mask expressions, if any.
4411     if (implicitSpaceHasMasks()) {
4412       mlir::Location loc = getLoc();
4413       // Mask expressions are array expressions too.
4414       for (const auto *e : implicitSpace->getExprs())
4415         if (e && !implicitSpace->isLowered(e)) {
4416           if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) {
4417             // Allocate the mask buffer lazily.
4418             assert(explicitSpaceIsActive());
4419             mlir::Value header =
4420                 prepareRaggedArrays</*withAllocations=*/true>(e);
4421             Fortran::lower::createLazyArrayTempValue(converter, *e, header,
4422                                                      symMap, stmtCtx);
4423             // Close the explicit loops.
4424             builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs());
4425             builder.setInsertionPointAfter(explicitSpace->getOuterLoop());
4426             // Open a new copy of the explicit loop nest.
4427             explicitSpace->genLoopNest();
4428             continue;
4429           }
4430           fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue(
4431               converter, *e, symMap, stmtCtx);
4432           mlir::Value shape = builder.createShape(loc, tmp);
4433           implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape));
4434         }
4435 
4436       // Set buffer from the header.
4437       for (const auto *e : implicitSpace->getExprs()) {
4438         if (!e)
4439           continue;
4440         if (implicitSpace->lookupMaskVariable(e)) {
4441           // Index into the ragged buffer to retrieve cached results.
4442           const int rank = e->Rank();
4443           assert(destShape.empty() ||
4444                  static_cast<std::size_t>(rank) == destShape.size());
4445           mlir::Value header = prepareRaggedArrays(e);
4446           mlir::TupleType raggedTy =
4447               fir::factory::getRaggedArrayHeaderType(builder);
4448           mlir::IntegerType i32Ty = builder.getIntegerType(32);
4449           mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
4450           auto coor1 = builder.create<fir::CoordinateOp>(
4451               loc, builder.getRefType(raggedTy.getType(1)), header, one);
4452           auto db = builder.create<fir::LoadOp>(loc, coor1);
4453           mlir::Type eleTy =
4454               fir::unwrapSequenceType(fir::unwrapRefType(db.getType()));
4455           mlir::Type buffTy =
4456               builder.getRefType(fir::SequenceType::get(eleTy, rank));
4457           // Address of ragged buffer data.
4458           mlir::Value buff = builder.createConvert(loc, buffTy, db);
4459 
4460           mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
4461           auto coor2 = builder.create<fir::CoordinateOp>(
4462               loc, builder.getRefType(raggedTy.getType(2)), header, two);
4463           auto shBuff = builder.create<fir::LoadOp>(loc, coor2);
4464           mlir::IntegerType i64Ty = builder.getIntegerType(64);
4465           mlir::IndexType idxTy = builder.getIndexType();
4466           llvm::SmallVector<mlir::Value> extents;
4467           for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) {
4468             mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i);
4469             auto coor = builder.create<fir::CoordinateOp>(
4470                 loc, builder.getRefType(i64Ty), shBuff, off);
4471             auto ldExt = builder.create<fir::LoadOp>(loc, coor);
4472             extents.push_back(builder.createConvert(loc, idxTy, ldExt));
4473           }
4474           if (destShape.empty())
4475             destShape = extents;
4476           // Construct shape of buffer.
4477           mlir::Value shapeOp = builder.genShape(loc, extents);
4478 
4479           // Replace binding with the local result.
4480           implicitSpace->rebind(e, genMaskAccess(buff, shapeOp));
4481         }
4482       }
4483     }
4484   }
4485 
4486   // FIXME: should take multiple inner arguments.
4487   std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
4488   genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
4489     mlir::Location loc = getLoc();
4490     mlir::IndexType idxTy = builder.getIndexType();
4491     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
4492     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
4493     llvm::SmallVector<mlir::Value> loopUppers;
4494 
4495     // Convert any implied shape to closed interval form. The fir.do_loop will
4496     // run from 0 to `extent - 1` inclusive.
4497     for (auto extent : shape)
4498       loopUppers.push_back(
4499           builder.create<mlir::arith::SubIOp>(loc, extent, one));
4500 
4501     // Iteration space is created with outermost columns, innermost rows
4502     llvm::SmallVector<fir::DoLoopOp> loops;
4503 
4504     const std::size_t loopDepth = loopUppers.size();
4505     llvm::SmallVector<mlir::Value> ivars;
4506 
4507     for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
4508       if (i.index() > 0) {
4509         assert(!loops.empty());
4510         builder.setInsertionPointToStart(loops.back().getBody());
4511       }
4512       fir::DoLoopOp loop;
4513       if (innerArg) {
4514         loop = builder.create<fir::DoLoopOp>(
4515             loc, zero, i.value(), one, isUnordered(),
4516             /*finalCount=*/false, mlir::ValueRange{innerArg});
4517         innerArg = loop.getRegionIterArgs().front();
4518         if (explicitSpaceIsActive())
4519           explicitSpace->setInnerArg(0, innerArg);
4520       } else {
4521         loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
4522                                              isUnordered(),
4523                                              /*finalCount=*/false);
4524       }
4525       ivars.push_back(loop.getInductionVar());
4526       loops.push_back(loop);
4527     }
4528 
4529     if (innerArg)
4530       for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
4531            ++i) {
4532         builder.setInsertionPointToEnd(loops[i].getBody());
4533         builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
4534       }
4535 
4536     // Move insertion point to the start of the innermost loop in the nest.
4537     builder.setInsertionPointToStart(loops.back().getBody());
4538     // Set `afterLoopNest` to just after the entire loop nest.
4539     auto currPt = builder.saveInsertionPoint();
4540     builder.setInsertionPointAfter(loops[0]);
4541     auto afterLoopNest = builder.saveInsertionPoint();
4542     builder.restoreInsertionPoint(currPt);
4543 
4544     // Put the implicit loop variables in row to column order to match FIR's
4545     // Ops. (The loops were constructed from outermost column to innermost
4546     // row.)
4547     mlir::Value outerRes = loops[0].getResult(0);
4548     return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
4549             afterLoopNest};
4550   }
4551 
4552   /// Build the iteration space into which the array expression will be lowered.
4553   /// The resultType is used to create a temporary, if needed.
4554   std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
4555   genIterSpace(mlir::Type resultType) {
4556     mlir::Location loc = getLoc();
4557     llvm::SmallVector<mlir::Value> shape = genIterationShape();
4558     if (!destination) {
4559       // Allocate storage for the result if it is not already provided.
4560       destination = createAndLoadSomeArrayTemp(resultType, shape);
4561     }
4562 
4563     // Generate the lazy mask allocation, if one was given.
4564     if (ccPrelude.hasValue())
4565       ccPrelude.getValue()(shape);
4566 
4567     // Now handle the implicit loops.
4568     mlir::Value inner = explicitSpaceIsActive()
4569                             ? explicitSpace->getInnerArgs().front()
4570                             : destination.getResult();
4571     auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
4572     mlir::Value innerArg = iters.innerArgument();
4573 
4574     // Generate the mask conditional structure, if there are masks. Unlike the
4575     // explicit masks, which are interleaved, these mask expression appear in
4576     // the innermost loop.
4577     if (implicitSpaceHasMasks()) {
4578       // Recover the cached condition from the mask buffer.
4579       auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
4580         return implicitSpace->getBoundClosure(e)(iters);
4581       };
4582 
4583       // Handle the negated conditions in topological order of the WHERE
4584       // clauses. See 10.2.3.2p4 as to why this control structure is produced.
4585       for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
4586            implicitSpace->getMasks()) {
4587         const std::size_t size = maskExprs.size() - 1;
4588         auto genFalseBlock = [&](const auto *e, auto &&cond) {
4589           auto ifOp = builder.create<fir::IfOp>(
4590               loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
4591               /*withElseRegion=*/true);
4592           builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
4593           builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
4594           builder.create<fir::ResultOp>(loc, innerArg);
4595           builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
4596         };
4597         auto genTrueBlock = [&](const auto *e, auto &&cond) {
4598           auto ifOp = builder.create<fir::IfOp>(
4599               loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
4600               /*withElseRegion=*/true);
4601           builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
4602           builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
4603           builder.create<fir::ResultOp>(loc, innerArg);
4604           builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
4605         };
4606         for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
4607           if (const auto *e = maskExprs[i])
4608             genFalseBlock(e, genCond(e, iters));
4609 
4610         // The last condition is either non-negated or unconditionally negated.
4611         if (const auto *e = maskExprs[size])
4612           genTrueBlock(e, genCond(e, iters));
4613       }
4614     }
4615 
4616     // We're ready to lower the body (an assignment statement) for this context
4617     // of loop nests at this point.
4618     return {iters, afterLoopNest};
4619   }
4620 
4621   fir::ArrayLoadOp
4622   createAndLoadSomeArrayTemp(mlir::Type type,
4623                              llvm::ArrayRef<mlir::Value> shape) {
4624     if (ccLoadDest.hasValue())
4625       return ccLoadDest.getValue()(shape);
4626     auto seqTy = type.dyn_cast<fir::SequenceType>();
4627     assert(seqTy && "must be an array");
4628     mlir::Location loc = getLoc();
4629     // TODO: Need to thread the LEN parameters here. For character, they may
4630     // differ from the operands length (e.g concatenation). So the array loads
4631     // type parameters are not enough.
4632     if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
4633       if (charTy.hasDynamicLen())
4634         TODO(loc, "character array expression temp with dynamic length");
4635     if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
4636       if (recTy.getNumLenParams() > 0)
4637         TODO(loc, "derived type array expression temp with LEN parameters");
4638     if (mlir::Type eleTy = fir::unwrapSequenceType(type);
4639         fir::isRecordWithAllocatableMember(eleTy))
4640       TODO(loc, "creating an array temp where the element type has "
4641                 "allocatable members");
4642     mlir::Value temp = seqTy.hasConstantShape()
4643                            ? builder.create<fir::AllocMemOp>(loc, type)
4644                            : builder.create<fir::AllocMemOp>(
4645                                  loc, type, ".array.expr", llvm::None, shape);
4646     fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
4647     stmtCtx.attachCleanup(
4648         [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
4649     mlir::Value shapeOp = genShapeOp(shape);
4650     return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
4651                                             /*slice=*/mlir::Value{},
4652                                             llvm::None);
4653   }
4654 
4655   static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
4656                                  llvm::ArrayRef<mlir::Value> shape) {
4657     mlir::IndexType idxTy = builder.getIndexType();
4658     llvm::SmallVector<mlir::Value> idxShape;
4659     for (auto s : shape)
4660       idxShape.push_back(builder.createConvert(loc, idxTy, s));
4661     auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size());
4662     return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape);
4663   }
4664 
4665   fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
4666     return genShapeOp(getLoc(), builder, shape);
4667   }
4668 
4669   //===--------------------------------------------------------------------===//
4670   // Expression traversal and lowering.
4671   //===--------------------------------------------------------------------===//
4672 
4673   /// Lower the expression, \p x, in a scalar context.
4674   template <typename A>
4675   ExtValue asScalar(const A &x) {
4676     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
4677   }
4678 
4679   /// Lower the expression, \p x, in a scalar context. If this is an explicit
4680   /// space, the expression may be scalar and refer to an array. We want to
4681   /// raise the array access to array operations in FIR to analyze potential
4682   /// conflicts even when the result is a scalar element.
4683   template <typename A>
4684   ExtValue asScalarArray(const A &x) {
4685     return explicitSpaceIsActive() && !isPointerAssignment()
4686                ? genarr(x)(IterationSpace{})
4687                : asScalar(x);
4688   }
4689 
4690   /// Lower the expression in a scalar context to a memory reference.
4691   template <typename A>
4692   ExtValue asScalarRef(const A &x) {
4693     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
4694   }
4695 
4696   /// Lower an expression without dereferencing any indirection that may be
4697   /// a nullptr (because this is an absent optional or unallocated/disassociated
4698   /// descriptor). The returned expression cannot be addressed directly, it is
4699   /// meant to inquire about its status before addressing the related entity.
4700   template <typename A>
4701   ExtValue asInquired(const A &x) {
4702     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
4703         .lowerIntrinsicArgumentAsInquired(x);
4704   }
4705 
4706   /// Some temporaries are allocated on an element-by-element basis during the
4707   /// array expression evaluation. Collect the cleanups here so the resources
4708   /// can be freed before the next loop iteration, avoiding memory leaks. etc.
4709   Fortran::lower::StatementContext &getElementCtx() {
4710     if (!elementCtx) {
4711       stmtCtx.pushScope();
4712       elementCtx = true;
4713     }
4714     return stmtCtx;
4715   }
4716 
4717   /// If there were temporaries created for this element evaluation, finalize
4718   /// and deallocate the resources now. This should be done just prior the the
4719   /// fir::ResultOp at the end of the innermost loop.
4720   void finalizeElementCtx() {
4721     if (elementCtx) {
4722       stmtCtx.finalize(/*popScope=*/true);
4723       elementCtx = false;
4724     }
4725   }
4726 
4727   /// Lower an elemental function array argument. This ensures array
4728   /// sub-expressions that are not variables and must be passed by address
4729   /// are lowered by value and placed in memory.
4730   template <typename A>
4731   CC genElementalArgument(const A &x) {
4732     // Ensure the returned element is in memory if this is what was requested.
4733     if ((semant == ConstituentSemantics::RefOpaque ||
4734          semant == ConstituentSemantics::DataAddr ||
4735          semant == ConstituentSemantics::ByValueArg)) {
4736       if (!Fortran::evaluate::IsVariable(x)) {
4737         PushSemantics(ConstituentSemantics::DataValue);
4738         CC cc = genarr(x);
4739         mlir::Location loc = getLoc();
4740         if (isParenthesizedVariable(x)) {
4741           // Parenthesised variables are lowered to a reference to the variable
4742           // storage. When passing it as an argument, a copy must be passed.
4743           return [=](IterSpace iters) -> ExtValue {
4744             return createInMemoryScalarCopy(builder, loc, cc(iters));
4745           };
4746         }
4747         mlir::Type storageType =
4748             fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
4749         return [=](IterSpace iters) -> ExtValue {
4750           return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
4751         };
4752       }
4753     }
4754     return genarr(x);
4755   }
4756 
4757   // A reference to a Fortran elemental intrinsic or intrinsic module procedure.
4758   CC genElementalIntrinsicProcRef(
4759       const Fortran::evaluate::ProcedureRef &procRef,
4760       llvm::Optional<mlir::Type> retTy,
4761       llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
4762           llvm::None) {
4763 
4764     llvm::SmallVector<CC> operands;
4765     std::string name =
4766         intrinsic ? intrinsic->name
4767                   : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
4768     const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
4769         Fortran::lower::getIntrinsicArgumentLowering(name);
4770     mlir::Location loc = getLoc();
4771     if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
4772                          procRef, *intrinsic, converter)) {
4773       using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>;
4774       llvm::SmallVector<CcPairT> operands;
4775       auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
4776         if (expr.Rank() == 0) {
4777           ExtValue optionalArg = this->asInquired(expr);
4778           mlir::Value isPresent =
4779               genActualIsPresentTest(builder, loc, optionalArg);
4780           operands.emplace_back(
4781               [=](IterSpace iters) -> ExtValue {
4782                 return genLoad(builder, loc, optionalArg);
4783               },
4784               isPresent);
4785         } else {
4786           auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
4787           operands.emplace_back(cc, isPresent);
4788         }
4789       };
4790       auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
4791         PushSemantics(ConstituentSemantics::RefTransparent);
4792         operands.emplace_back(genElementalArgument(expr), llvm::None);
4793       };
4794       Fortran::lower::prepareCustomIntrinsicArgument(
4795           procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
4796           converter);
4797 
4798       fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
4799       return [=](IterSpace iters) -> ExtValue {
4800         auto getArgument = [&](std::size_t i) -> ExtValue {
4801           return operands[i].first(iters);
4802         };
4803         auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
4804           return operands[i].second;
4805         };
4806         return Fortran::lower::lowerCustomIntrinsic(
4807             *bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
4808             getElementCtx());
4809       };
4810     }
4811     /// Otherwise, pre-lower arguments and use intrinsic lowering utility.
4812     for (const auto &arg : llvm::enumerate(procRef.arguments())) {
4813       const auto *expr =
4814           Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
4815       if (!expr) {
4816         // Absent optional.
4817         operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
4818       } else if (!argLowering) {
4819         // No argument lowering instruction, lower by value.
4820         PushSemantics(ConstituentSemantics::RefTransparent);
4821         operands.emplace_back(genElementalArgument(*expr));
4822       } else {
4823         // Ad-hoc argument lowering handling.
4824         Fortran::lower::ArgLoweringRule argRules =
4825             Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
4826         if (argRules.handleDynamicOptional &&
4827             Fortran::evaluate::MayBePassedAsAbsentOptional(
4828                 *expr, converter.getFoldingContext())) {
4829           // Currently, there is not elemental intrinsic that requires lowering
4830           // a potentially absent argument to something else than a value (apart
4831           // from character MAX/MIN that are handled elsewhere.)
4832           if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value)
4833             TODO(loc, "lowering non trivial optional elemental intrinsic array "
4834                       "argument");
4835           PushSemantics(ConstituentSemantics::RefTransparent);
4836           operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
4837           continue;
4838         }
4839         switch (argRules.lowerAs) {
4840         case Fortran::lower::LowerIntrinsicArgAs::Value: {
4841           PushSemantics(ConstituentSemantics::RefTransparent);
4842           operands.emplace_back(genElementalArgument(*expr));
4843         } break;
4844         case Fortran::lower::LowerIntrinsicArgAs::Addr: {
4845           // Note: assume does not have Fortran VALUE attribute semantics.
4846           PushSemantics(ConstituentSemantics::RefOpaque);
4847           operands.emplace_back(genElementalArgument(*expr));
4848         } break;
4849         case Fortran::lower::LowerIntrinsicArgAs::Box: {
4850           PushSemantics(ConstituentSemantics::RefOpaque);
4851           auto lambda = genElementalArgument(*expr);
4852           operands.emplace_back([=](IterSpace iters) {
4853             return builder.createBox(loc, lambda(iters));
4854           });
4855         } break;
4856         case Fortran::lower::LowerIntrinsicArgAs::Inquired:
4857           TODO(loc, "intrinsic function with inquired argument");
4858           break;
4859         }
4860       }
4861     }
4862 
4863     // Let the intrinsic library lower the intrinsic procedure call
4864     return [=](IterSpace iters) {
4865       llvm::SmallVector<ExtValue> args;
4866       for (const auto &cc : operands)
4867         args.push_back(cc(iters));
4868       return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
4869                                               getElementCtx());
4870     };
4871   }
4872 
4873   /// Lower a procedure reference to a user-defined elemental procedure.
4874   CC genElementalUserDefinedProcRef(
4875       const Fortran::evaluate::ProcedureRef &procRef,
4876       llvm::Optional<mlir::Type> retTy) {
4877     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
4878 
4879     // 10.1.4 p5. Impure elemental procedures must be called in element order.
4880     if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol())
4881       if (!Fortran::semantics::IsPureProcedure(*procSym))
4882         setUnordered(false);
4883 
4884     Fortran::lower::CallerInterface caller(procRef, converter);
4885     llvm::SmallVector<CC> operands;
4886     operands.reserve(caller.getPassedArguments().size());
4887     mlir::Location loc = getLoc();
4888     mlir::FunctionType callSiteType = caller.genFunctionType();
4889     for (const Fortran::lower::CallInterface<
4890              Fortran::lower::CallerInterface>::PassedEntity &arg :
4891          caller.getPassedArguments()) {
4892       // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
4893       // arguments must be called in element order.
4894       if (arg.mayBeModifiedByCall())
4895         setUnordered(false);
4896       const auto *actual = arg.entity;
4897       mlir::Type argTy = callSiteType.getInput(arg.firArgument);
4898       if (!actual) {
4899         // Optional dummy argument for which there is no actual argument.
4900         auto absent = builder.create<fir::AbsentOp>(loc, argTy);
4901         operands.emplace_back([=](IterSpace) { return absent; });
4902         continue;
4903       }
4904       const auto *expr = actual->UnwrapExpr();
4905       if (!expr)
4906         TODO(loc, "assumed type actual argument lowering");
4907 
4908       LLVM_DEBUG(expr->AsFortran(llvm::dbgs()
4909                                  << "argument: " << arg.firArgument << " = [")
4910                  << "]\n");
4911       if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
4912                                   *expr, converter.getFoldingContext()))
4913         TODO(loc,
4914              "passing dynamically optional argument to elemental procedures");
4915       switch (arg.passBy) {
4916       case PassBy::Value: {
4917         // True pass-by-value semantics.
4918         PushSemantics(ConstituentSemantics::RefTransparent);
4919         operands.emplace_back(genElementalArgument(*expr));
4920       } break;
4921       case PassBy::BaseAddressValueAttribute: {
4922         // VALUE attribute or pass-by-reference to a copy semantics. (byval*)
4923         if (isArray(*expr)) {
4924           PushSemantics(ConstituentSemantics::ByValueArg);
4925           operands.emplace_back(genElementalArgument(*expr));
4926         } else {
4927           // Store scalar value in a temp to fulfill VALUE attribute.
4928           mlir::Value val = fir::getBase(asScalar(*expr));
4929           mlir::Value temp = builder.createTemporary(
4930               loc, val.getType(),
4931               llvm::ArrayRef<mlir::NamedAttribute>{
4932                   Fortran::lower::getAdaptToByRefAttr(builder)});
4933           builder.create<fir::StoreOp>(loc, val, temp);
4934           operands.emplace_back(
4935               [=](IterSpace iters) -> ExtValue { return temp; });
4936         }
4937       } break;
4938       case PassBy::BaseAddress: {
4939         if (isArray(*expr)) {
4940           PushSemantics(ConstituentSemantics::RefOpaque);
4941           operands.emplace_back(genElementalArgument(*expr));
4942         } else {
4943           ExtValue exv = asScalarRef(*expr);
4944           operands.emplace_back([=](IterSpace iters) { return exv; });
4945         }
4946       } break;
4947       case PassBy::CharBoxValueAttribute: {
4948         if (isArray(*expr)) {
4949           PushSemantics(ConstituentSemantics::DataValue);
4950           auto lambda = genElementalArgument(*expr);
4951           operands.emplace_back([=](IterSpace iters) {
4952             return fir::factory::CharacterExprHelper{builder, loc}
4953                 .createTempFrom(lambda(iters));
4954           });
4955         } else {
4956           fir::factory::CharacterExprHelper helper(builder, loc);
4957           fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr));
4958           operands.emplace_back(
4959               [=](IterSpace iters) -> ExtValue { return argVal; });
4960         }
4961       } break;
4962       case PassBy::BoxChar: {
4963         PushSemantics(ConstituentSemantics::RefOpaque);
4964         operands.emplace_back(genElementalArgument(*expr));
4965       } break;
4966       case PassBy::AddressAndLength:
4967         // PassBy::AddressAndLength is only used for character results. Results
4968         // are not handled here.
4969         fir::emitFatalError(
4970             loc, "unexpected PassBy::AddressAndLength in elemental call");
4971         break;
4972       case PassBy::CharProcTuple: {
4973         ExtValue argRef = asScalarRef(*expr);
4974         mlir::Value tuple = createBoxProcCharTuple(
4975             converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
4976         operands.emplace_back(
4977             [=](IterSpace iters) -> ExtValue { return tuple; });
4978       } break;
4979       case PassBy::Box:
4980       case PassBy::MutableBox:
4981         // See C15100 and C15101
4982         fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE");
4983       }
4984     }
4985 
4986     if (caller.getIfIndirectCallSymbol())
4987       fir::emitFatalError(loc, "cannot be indirect call");
4988 
4989     // The lambda is mutable so that `caller` copy can be modified inside it.
4990     return
4991         [=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue {
4992           for (const auto &[cc, argIface] :
4993                llvm::zip(operands, caller.getPassedArguments())) {
4994             auto exv = cc(iters);
4995             auto arg = exv.match(
4996                 [&](const fir::CharBoxValue &cb) -> mlir::Value {
4997                   return fir::factory::CharacterExprHelper{builder, loc}
4998                       .createEmbox(cb);
4999                 },
5000                 [&](const auto &) { return fir::getBase(exv); });
5001             caller.placeInput(argIface, arg);
5002           }
5003           return ScalarExprLowering{loc, converter, symMap, getElementCtx()}
5004               .genCallOpAndResult(caller, callSiteType, retTy);
5005         };
5006   }
5007 
5008   /// Generate a procedure reference. This code is shared for both functions and
5009   /// subroutines, the difference being reflected by `retTy`.
5010   CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
5011                 llvm::Optional<mlir::Type> retTy) {
5012     mlir::Location loc = getLoc();
5013     if (procRef.IsElemental()) {
5014       if (const Fortran::evaluate::SpecificIntrinsic *intrin =
5015               procRef.proc().GetSpecificIntrinsic()) {
5016         // All elemental intrinsic functions are pure and cannot modify their
5017         // arguments. The only elemental subroutine, MVBITS has an Intent(inout)
5018         // argument. So for this last one, loops must be in element order
5019         // according to 15.8.3 p1.
5020         if (!retTy)
5021           setUnordered(false);
5022 
5023         // Elemental intrinsic call.
5024         // The intrinsic procedure is called once per element of the array.
5025         return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
5026       }
5027       if (isIntrinsicModuleProcRef(procRef))
5028         return genElementalIntrinsicProcRef(procRef, retTy);
5029       if (ScalarExprLowering::isStatementFunctionCall(procRef))
5030         fir::emitFatalError(loc, "statement function cannot be elemental");
5031 
5032       // Elemental call.
5033       // The procedure is called once per element of the array argument(s).
5034       return genElementalUserDefinedProcRef(procRef, retTy);
5035     }
5036 
5037     // Transformational call.
5038     // The procedure is called once and produces a value of rank > 0.
5039     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
5040             procRef.proc().GetSpecificIntrinsic()) {
5041       if (explicitSpaceIsActive() && procRef.Rank() == 0) {
5042         // Elide any implicit loop iters.
5043         return [=, &procRef](IterSpace) {
5044           return ScalarExprLowering{loc, converter, symMap, stmtCtx}
5045               .genIntrinsicRef(procRef, retTy, *intrinsic);
5046         };
5047       }
5048       return genarr(
5049           ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
5050               procRef, retTy, *intrinsic));
5051     }
5052 
5053     const bool isPtrAssn = isPointerAssignment();
5054     if (explicitSpaceIsActive() && procRef.Rank() == 0) {
5055       // Elide any implicit loop iters.
5056       return [=, &procRef](IterSpace) {
5057         ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
5058         return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
5059                          : sel.genProcedureRef(procRef, retTy);
5060       };
5061     }
5062     // In the default case, the call can be hoisted out of the loop nest. Apply
5063     // the iterations to the result, which may be an array value.
5064     ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
5065     auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
5066                          : sel.genProcedureRef(procRef, retTy);
5067     return genarr(exv);
5068   }
5069 
5070   CC genarr(const Fortran::evaluate::ProcedureDesignator &) {
5071     TODO(getLoc(), "procedure designator");
5072   }
5073   CC genarr(const Fortran::evaluate::ProcedureRef &x) {
5074     if (x.hasAlternateReturns())
5075       fir::emitFatalError(getLoc(),
5076                           "array procedure reference with alt-return");
5077     return genProcRef(x, llvm::None);
5078   }
5079   template <typename A>
5080   CC genScalarAndForwardValue(const A &x) {
5081     ExtValue result = asScalar(x);
5082     return [=](IterSpace) { return result; };
5083   }
5084   template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
5085                             A, Fortran::evaluate::TypelessExpression>>>
5086   CC genarr(const A &x) {
5087     return genScalarAndForwardValue(x);
5088   }
5089 
5090   template <typename A>
5091   CC genarr(const Fortran::evaluate::Expr<A> &x) {
5092     LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
5093     if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) ||
5094         isElementalProcWithArrayArgs(x))
5095       return std::visit([&](const auto &e) { return genarr(e); }, x.u);
5096     if (explicitSpaceIsActive()) {
5097       assert(!isArray(x) && !isLeftHandSide());
5098       auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u);
5099       auto result = cc(IterationSpace{});
5100       return [=](IterSpace) { return result; };
5101     }
5102     return genScalarAndForwardValue(x);
5103   }
5104 
5105   // Converting a value of memory bound type requires creating a temp and
5106   // copying the value.
5107   static ExtValue convertAdjustedType(fir::FirOpBuilder &builder,
5108                                       mlir::Location loc, mlir::Type toType,
5109                                       const ExtValue &exv) {
5110     return exv.match(
5111         [&](const fir::CharBoxValue &cb) -> ExtValue {
5112           mlir::Value len = cb.getLen();
5113           auto mem =
5114               builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len});
5115           fir::CharBoxValue result(mem, len);
5116           fir::factory::CharacterExprHelper{builder, loc}.createAssign(
5117               ExtValue{result}, exv);
5118           return result;
5119         },
5120         [&](const auto &) -> ExtValue {
5121           fir::emitFatalError(loc, "convert on adjusted extended value");
5122         });
5123   }
5124   template <Fortran::common::TypeCategory TC1, int KIND,
5125             Fortran::common::TypeCategory TC2>
5126   CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
5127                                              TC2> &x) {
5128     mlir::Location loc = getLoc();
5129     auto lambda = genarr(x.left());
5130     mlir::Type ty = converter.genType(TC1, KIND);
5131     return [=](IterSpace iters) -> ExtValue {
5132       auto exv = lambda(iters);
5133       mlir::Value val = fir::getBase(exv);
5134       auto valTy = val.getType();
5135       if (elementTypeWasAdjusted(valTy) &&
5136           !(fir::isa_ref_type(valTy) && fir::isa_integer(ty)))
5137         return convertAdjustedType(builder, loc, ty, exv);
5138       return builder.createConvert(loc, ty, val);
5139     };
5140   }
5141 
5142   template <int KIND>
5143   CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
5144     mlir::Location loc = getLoc();
5145     auto lambda = genarr(x.left());
5146     bool isImagPart = x.isImaginaryPart;
5147     return [=](IterSpace iters) -> ExtValue {
5148       mlir::Value lhs = fir::getBase(lambda(iters));
5149       return fir::factory::Complex{builder, loc}.extractComplexPart(lhs,
5150                                                                     isImagPart);
5151     };
5152   }
5153 
5154   template <typename T>
5155   CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
5156     mlir::Location loc = getLoc();
5157     if (isReferentiallyOpaque()) {
5158       // Context is a call argument in, for example, an elemental procedure
5159       // call. TODO: all array arguments should use array_load, array_access,
5160       // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
5161       // array_merge_store ops.
5162       TODO(loc, "parentheses on argument in elemental call");
5163     }
5164     auto f = genarr(x.left());
5165     return [=](IterSpace iters) -> ExtValue {
5166       auto val = f(iters);
5167       mlir::Value base = fir::getBase(val);
5168       auto newBase =
5169           builder.create<fir::NoReassocOp>(loc, base.getType(), base);
5170       return fir::substBase(val, newBase);
5171     };
5172   }
5173   template <int KIND>
5174   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5175                 Fortran::common::TypeCategory::Integer, KIND>> &x) {
5176     mlir::Location loc = getLoc();
5177     auto f = genarr(x.left());
5178     return [=](IterSpace iters) -> ExtValue {
5179       mlir::Value val = fir::getBase(f(iters));
5180       mlir::Type ty =
5181           converter.genType(Fortran::common::TypeCategory::Integer, KIND);
5182       mlir::Value zero = builder.createIntegerConstant(loc, ty, 0);
5183       return builder.create<mlir::arith::SubIOp>(loc, zero, val);
5184     };
5185   }
5186   template <int KIND>
5187   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5188                 Fortran::common::TypeCategory::Real, KIND>> &x) {
5189     mlir::Location loc = getLoc();
5190     auto f = genarr(x.left());
5191     return [=](IterSpace iters) -> ExtValue {
5192       return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters)));
5193     };
5194   }
5195   template <int KIND>
5196   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5197                 Fortran::common::TypeCategory::Complex, KIND>> &x) {
5198     mlir::Location loc = getLoc();
5199     auto f = genarr(x.left());
5200     return [=](IterSpace iters) -> ExtValue {
5201       return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters)));
5202     };
5203   }
5204 
5205   //===--------------------------------------------------------------------===//
5206   // Binary elemental ops
5207   //===--------------------------------------------------------------------===//
5208 
5209   template <typename OP, typename A>
5210   CC createBinaryOp(const A &evEx) {
5211     mlir::Location loc = getLoc();
5212     auto lambda = genarr(evEx.left());
5213     auto rf = genarr(evEx.right());
5214     return [=](IterSpace iters) -> ExtValue {
5215       mlir::Value left = fir::getBase(lambda(iters));
5216       mlir::Value right = fir::getBase(rf(iters));
5217       return builder.create<OP>(loc, left, right);
5218     };
5219   }
5220 
5221 #undef GENBIN
5222 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
5223   template <int KIND>                                                          \
5224   CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type<       \
5225                 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) {       \
5226     return createBinaryOp<GenBinFirOp>(x);                                     \
5227   }
5228 
5229   GENBIN(Add, Integer, mlir::arith::AddIOp)
5230   GENBIN(Add, Real, mlir::arith::AddFOp)
5231   GENBIN(Add, Complex, fir::AddcOp)
5232   GENBIN(Subtract, Integer, mlir::arith::SubIOp)
5233   GENBIN(Subtract, Real, mlir::arith::SubFOp)
5234   GENBIN(Subtract, Complex, fir::SubcOp)
5235   GENBIN(Multiply, Integer, mlir::arith::MulIOp)
5236   GENBIN(Multiply, Real, mlir::arith::MulFOp)
5237   GENBIN(Multiply, Complex, fir::MulcOp)
5238   GENBIN(Divide, Integer, mlir::arith::DivSIOp)
5239   GENBIN(Divide, Real, mlir::arith::DivFOp)
5240   GENBIN(Divide, Complex, fir::DivcOp)
5241 
5242   template <Fortran::common::TypeCategory TC, int KIND>
5243   CC genarr(
5244       const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
5245     mlir::Location loc = getLoc();
5246     mlir::Type ty = converter.genType(TC, KIND);
5247     auto lf = genarr(x.left());
5248     auto rf = genarr(x.right());
5249     return [=](IterSpace iters) -> ExtValue {
5250       mlir::Value lhs = fir::getBase(lf(iters));
5251       mlir::Value rhs = fir::getBase(rf(iters));
5252       return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
5253     };
5254   }
5255   template <Fortran::common::TypeCategory TC, int KIND>
5256   CC genarr(
5257       const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
5258     mlir::Location loc = getLoc();
5259     auto lf = genarr(x.left());
5260     auto rf = genarr(x.right());
5261     switch (x.ordering) {
5262     case Fortran::evaluate::Ordering::Greater:
5263       return [=](IterSpace iters) -> ExtValue {
5264         mlir::Value lhs = fir::getBase(lf(iters));
5265         mlir::Value rhs = fir::getBase(rf(iters));
5266         return Fortran::lower::genMax(builder, loc,
5267                                       llvm::ArrayRef<mlir::Value>{lhs, rhs});
5268       };
5269     case Fortran::evaluate::Ordering::Less:
5270       return [=](IterSpace iters) -> ExtValue {
5271         mlir::Value lhs = fir::getBase(lf(iters));
5272         mlir::Value rhs = fir::getBase(rf(iters));
5273         return Fortran::lower::genMin(builder, loc,
5274                                       llvm::ArrayRef<mlir::Value>{lhs, rhs});
5275       };
5276     case Fortran::evaluate::Ordering::Equal:
5277       llvm_unreachable("Equal is not a valid ordering in this context");
5278     }
5279     llvm_unreachable("unknown ordering");
5280   }
5281   template <Fortran::common::TypeCategory TC, int KIND>
5282   CC genarr(
5283       const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
5284           &x) {
5285     mlir::Location loc = getLoc();
5286     auto ty = converter.genType(TC, KIND);
5287     auto lf = genarr(x.left());
5288     auto rf = genarr(x.right());
5289     return [=](IterSpace iters) {
5290       mlir::Value lhs = fir::getBase(lf(iters));
5291       mlir::Value rhs = fir::getBase(rf(iters));
5292       return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
5293     };
5294   }
5295   template <int KIND>
5296   CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
5297     mlir::Location loc = getLoc();
5298     auto lf = genarr(x.left());
5299     auto rf = genarr(x.right());
5300     return [=](IterSpace iters) -> ExtValue {
5301       mlir::Value lhs = fir::getBase(lf(iters));
5302       mlir::Value rhs = fir::getBase(rf(iters));
5303       return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs);
5304     };
5305   }
5306 
5307   /// Fortran's concatenation operator `//`.
5308   template <int KIND>
5309   CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
5310     mlir::Location loc = getLoc();
5311     auto lf = genarr(x.left());
5312     auto rf = genarr(x.right());
5313     return [=](IterSpace iters) -> ExtValue {
5314       auto lhs = lf(iters);
5315       auto rhs = rf(iters);
5316       const fir::CharBoxValue *lchr = lhs.getCharBox();
5317       const fir::CharBoxValue *rchr = rhs.getCharBox();
5318       if (lchr && rchr) {
5319         return fir::factory::CharacterExprHelper{builder, loc}
5320             .createConcatenate(*lchr, *rchr);
5321       }
5322       TODO(loc, "concat on unexpected extended values");
5323       return mlir::Value{};
5324     };
5325   }
5326 
5327   template <int KIND>
5328   CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
5329     auto lf = genarr(x.left());
5330     mlir::Value rhs = fir::getBase(asScalar(x.right()));
5331     return [=](IterSpace iters) -> ExtValue {
5332       mlir::Value lhs = fir::getBase(lf(iters));
5333       return fir::CharBoxValue{lhs, rhs};
5334     };
5335   }
5336 
5337   template <typename A>
5338   CC genarr(const Fortran::evaluate::Constant<A> &x) {
5339     if (x.Rank() == 0)
5340       return genScalarAndForwardValue(x);
5341     mlir::Location loc = getLoc();
5342     mlir::IndexType idxTy = builder.getIndexType();
5343     mlir::Type arrTy = converter.genType(toEvExpr(x));
5344     std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x);
5345     fir::GlobalOp global = builder.getNamedGlobal(globalName);
5346     if (!global) {
5347       mlir::Type symTy = arrTy;
5348       mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
5349       // If we have a rank-1 array of integer, real, or logical, then we can
5350       // create a global array with the dense attribute.
5351       //
5352       // The mlir tensor type can only handle integer, real, or logical. It
5353       // does not currently support nested structures which is required for
5354       // complex.
5355       //
5356       // Also, we currently handle just rank-1 since tensor type assumes
5357       // row major array ordering. We will need to reorder the dimensions
5358       // in the tensor type to support Fortran's column major array ordering.
5359       // How to create this tensor type is to be determined.
5360       if (x.Rank() == 1 &&
5361           eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>())
5362         global = Fortran::lower::createDenseGlobal(
5363             loc, arrTy, globalName, builder.createInternalLinkage(), true,
5364             toEvExpr(x), converter);
5365       // Note: If call to createDenseGlobal() returns 0, then call
5366       // createGlobalConstant() below.
5367       if (!global)
5368         global = builder.createGlobalConstant(
5369             loc, arrTy, globalName,
5370             [&](fir::FirOpBuilder &builder) {
5371               Fortran::lower::StatementContext stmtCtx(
5372                   /*cleanupProhibited=*/true);
5373               fir::ExtendedValue result =
5374                   Fortran::lower::createSomeInitializerExpression(
5375                       loc, converter, toEvExpr(x), symMap, stmtCtx);
5376               mlir::Value castTo =
5377                   builder.createConvert(loc, arrTy, fir::getBase(result));
5378               builder.create<fir::HasValueOp>(loc, castTo);
5379             },
5380             builder.createInternalLinkage());
5381     }
5382     auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
5383                                               global.getSymbol());
5384     auto seqTy = global.getType().cast<fir::SequenceType>();
5385     llvm::SmallVector<mlir::Value> extents;
5386     for (auto extent : seqTy.getShape())
5387       extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
5388     if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) {
5389       mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(),
5390                                                       charTy.getLen());
5391       return genarr(fir::CharArrayBoxValue{addr, len, extents});
5392     }
5393     return genarr(fir::ArrayBoxValue{addr, extents});
5394   }
5395 
5396   //===--------------------------------------------------------------------===//
5397   // A vector subscript expression may be wrapped with a cast to INTEGER*8.
5398   // Get rid of it here so the vector can be loaded. Add it back when
5399   // generating the elemental evaluation (inside the loop nest).
5400 
5401   static Fortran::lower::SomeExpr
5402   ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
5403                       Fortran::common::TypeCategory::Integer, 8>> &x) {
5404     return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u);
5405   }
5406   template <Fortran::common::TypeCategory FROM>
5407   static Fortran::lower::SomeExpr ignoreEvConvert(
5408       const Fortran::evaluate::Convert<
5409           Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>,
5410           FROM> &x) {
5411     return toEvExpr(x.left());
5412   }
5413   template <typename A>
5414   static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) {
5415     return toEvExpr(x);
5416   }
5417 
5418   //===--------------------------------------------------------------------===//
5419   // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
5420   // be used to determine the lbound, ubound of the vector.
5421 
5422   template <typename A>
5423   static const Fortran::semantics::Symbol *
5424   extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) {
5425     return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); },
5426                       x.u);
5427   }
5428   template <typename A>
5429   static const Fortran::semantics::Symbol *
5430   extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) {
5431     return Fortran::evaluate::UnwrapWholeSymbolDataRef(x);
5432   }
5433   template <typename A>
5434   static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) {
5435     return nullptr;
5436   }
5437 
5438   //===--------------------------------------------------------------------===//
5439 
5440   /// Get the declared lower bound value of the array `x` in dimension `dim`.
5441   /// The argument `one` must be an ssa-value for the constant 1.
5442   mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) {
5443     return fir::factory::readLowerBound(builder, getLoc(), x, dim, one);
5444   }
5445 
5446   /// Get the declared upper bound value of the array `x` in dimension `dim`.
5447   /// The argument `one` must be an ssa-value for the constant 1.
5448   mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) {
5449     mlir::Location loc = getLoc();
5450     mlir::Value lb = getLBound(x, dim, one);
5451     mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim);
5452     auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent);
5453     return builder.create<mlir::arith::SubIOp>(loc, add, one);
5454   }
5455 
5456   /// Return the extent of the boxed array `x` in dimesion `dim`.
5457   mlir::Value getExtent(const ExtValue &x, unsigned dim) {
5458     return fir::factory::readExtent(builder, getLoc(), x, dim);
5459   }
5460 
5461   template <typename A>
5462   ExtValue genArrayBase(const A &base) {
5463     ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx};
5464     return base.IsSymbol() ? sel.gen(getFirstSym(base))
5465                            : sel.gen(base.GetComponent());
5466   }
5467 
5468   template <typename A>
5469   bool hasEvArrayRef(const A &x) {
5470     struct HasEvArrayRefHelper
5471         : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> {
5472       HasEvArrayRefHelper()
5473           : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {}
5474       using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator();
5475       bool operator()(const Fortran::evaluate::ArrayRef &) const {
5476         return true;
5477       }
5478     } helper;
5479     return helper(x);
5480   }
5481 
5482   CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr,
5483                                   std::size_t dim) {
5484     PushSemantics(ConstituentSemantics::RefTransparent);
5485     auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr);
5486     llvm::SmallVector<mlir::Value> savedDestShape = destShape;
5487     destShape.clear();
5488     auto result = genarr(expr);
5489     if (destShape.empty())
5490       TODO(getLoc(), "expected vector to have an extent");
5491     assert(destShape.size() == 1 && "vector has rank > 1");
5492     if (destShape[0] != savedDestShape[dim]) {
5493       // Not the same, so choose the smaller value.
5494       mlir::Location loc = getLoc();
5495       auto cmp = builder.create<mlir::arith::CmpIOp>(
5496           loc, mlir::arith::CmpIPredicate::sgt, destShape[0],
5497           savedDestShape[dim]);
5498       auto sel = builder.create<mlir::arith::SelectOp>(
5499           loc, cmp, savedDestShape[dim], destShape[0]);
5500       savedDestShape[dim] = sel;
5501       destShape = savedDestShape;
5502     }
5503     return result;
5504   }
5505 
5506   /// Generate an access by vector subscript using the index in the iteration
5507   /// vector at `dim`.
5508   mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch,
5509                                 IterSpace iters, std::size_t dim) {
5510     IterationSpace vecIters(iters,
5511                             llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)});
5512     fir::ExtendedValue fetch = genArrFetch(vecIters);
5513     mlir::IndexType idxTy = builder.getIndexType();
5514     return builder.createConvert(loc, idxTy, fir::getBase(fetch));
5515   }
5516 
5517   /// When we have an array reference, the expressions specified in each
5518   /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
5519   /// (loop-invarianet) scalar expressions. This returns the base entity, the
5520   /// resulting type, and a continuation to adjust the default iteration space.
5521   void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv,
5522                        const Fortran::evaluate::ArrayRef &x, bool atBase) {
5523     mlir::Location loc = getLoc();
5524     mlir::IndexType idxTy = builder.getIndexType();
5525     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
5526     llvm::SmallVector<mlir::Value> &trips = cmptData.trips;
5527     LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n');
5528     auto &pc = cmptData.pc;
5529     const bool useTripsForSlice = !explicitSpaceIsActive();
5530     const bool createDestShape = destShape.empty();
5531     bool useSlice = false;
5532     std::size_t shapeIndex = 0;
5533     for (auto sub : llvm::enumerate(x.subscript())) {
5534       const std::size_t subsIndex = sub.index();
5535       std::visit(
5536           Fortran::common::visitors{
5537               [&](const Fortran::evaluate::Triplet &t) {
5538                 mlir::Value lowerBound;
5539                 if (auto optLo = t.lower())
5540                   lowerBound = fir::getBase(asScalarArray(*optLo));
5541                 else
5542                   lowerBound = getLBound(arrayExv, subsIndex, one);
5543                 lowerBound = builder.createConvert(loc, idxTy, lowerBound);
5544                 mlir::Value stride = fir::getBase(asScalarArray(t.stride()));
5545                 stride = builder.createConvert(loc, idxTy, stride);
5546                 if (useTripsForSlice || createDestShape) {
5547                   // Generate a slice operation for the triplet. The first and
5548                   // second position of the triplet may be omitted, and the
5549                   // declared lbound and/or ubound expression values,
5550                   // respectively, should be used instead.
5551                   trips.push_back(lowerBound);
5552                   mlir::Value upperBound;
5553                   if (auto optUp = t.upper())
5554                     upperBound = fir::getBase(asScalarArray(*optUp));
5555                   else
5556                     upperBound = getUBound(arrayExv, subsIndex, one);
5557                   upperBound = builder.createConvert(loc, idxTy, upperBound);
5558                   trips.push_back(upperBound);
5559                   trips.push_back(stride);
5560                   if (createDestShape) {
5561                     auto extent = builder.genExtentFromTriplet(
5562                         loc, lowerBound, upperBound, stride, idxTy);
5563                     destShape.push_back(extent);
5564                   }
5565                   useSlice = true;
5566                 }
5567                 if (!useTripsForSlice) {
5568                   auto currentPC = pc;
5569                   pc = [=](IterSpace iters) {
5570                     IterationSpace newIters = currentPC(iters);
5571                     mlir::Value impliedIter = newIters.iterValue(subsIndex);
5572                     // FIXME: must use the lower bound of this component.
5573                     auto arrLowerBound =
5574                         atBase ? getLBound(arrayExv, subsIndex, one) : one;
5575                     auto initial = builder.create<mlir::arith::SubIOp>(
5576                         loc, lowerBound, arrLowerBound);
5577                     auto prod = builder.create<mlir::arith::MulIOp>(
5578                         loc, impliedIter, stride);
5579                     auto result =
5580                         builder.create<mlir::arith::AddIOp>(loc, initial, prod);
5581                     newIters.setIndexValue(subsIndex, result);
5582                     return newIters;
5583                   };
5584                 }
5585                 shapeIndex++;
5586               },
5587               [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) {
5588                 const auto &e = ie.value(); // dereference
5589                 if (isArray(e)) {
5590                   // This is a vector subscript. Use the index values as read
5591                   // from a vector to determine the temporary array value.
5592                   // Note: 9.5.3.3.3(3) specifies undefined behavior for
5593                   // multiple updates to any specific array element through a
5594                   // vector subscript with replicated values.
5595                   assert(!isBoxValue() &&
5596                          "fir.box cannot be created with vector subscripts");
5597                   // TODO: Avoid creating a new evaluate::Expr here
5598                   auto arrExpr = ignoreEvConvert(e);
5599                   if (createDestShape) {
5600                     destShape.push_back(fir::factory::getExtentAtDimension(
5601                         loc, builder, arrayExv, subsIndex));
5602                   }
5603                   auto genArrFetch =
5604                       genVectorSubscriptArrayFetch(arrExpr, shapeIndex);
5605                   auto currentPC = pc;
5606                   pc = [=](IterSpace iters) {
5607                     IterationSpace newIters = currentPC(iters);
5608                     auto val = genAccessByVector(loc, genArrFetch, newIters,
5609                                                  subsIndex);
5610                     // Value read from vector subscript array and normalized
5611                     // using the base array's lower bound value.
5612                     mlir::Value lb = fir::factory::readLowerBound(
5613                         builder, loc, arrayExv, subsIndex, one);
5614                     auto origin = builder.create<mlir::arith::SubIOp>(
5615                         loc, idxTy, val, lb);
5616                     newIters.setIndexValue(subsIndex, origin);
5617                     return newIters;
5618                   };
5619                   if (useTripsForSlice) {
5620                     LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape =
5621                         getShape(arrayOperands.back());
5622                     auto undef = builder.create<fir::UndefOp>(loc, idxTy);
5623                     trips.push_back(undef);
5624                     trips.push_back(undef);
5625                     trips.push_back(undef);
5626                   }
5627                   shapeIndex++;
5628                 } else {
5629                   // This is a regular scalar subscript.
5630                   if (useTripsForSlice) {
5631                     // A regular scalar index, which does not yield an array
5632                     // section. Use a degenerate slice operation
5633                     // `(e:undef:undef)` in this dimension as a placeholder.
5634                     // This does not necessarily change the rank of the original
5635                     // array, so the iteration space must also be extended to
5636                     // include this expression in this dimension to adjust to
5637                     // the array's declared rank.
5638                     mlir::Value v = fir::getBase(asScalarArray(e));
5639                     trips.push_back(v);
5640                     auto undef = builder.create<fir::UndefOp>(loc, idxTy);
5641                     trips.push_back(undef);
5642                     trips.push_back(undef);
5643                     auto currentPC = pc;
5644                     // Cast `e` to index type.
5645                     mlir::Value iv = builder.createConvert(loc, idxTy, v);
5646                     // Normalize `e` by subtracting the declared lbound.
5647                     mlir::Value lb = fir::factory::readLowerBound(
5648                         builder, loc, arrayExv, subsIndex, one);
5649                     mlir::Value ivAdj =
5650                         builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb);
5651                     // Add lbound adjusted value of `e` to the iteration vector
5652                     // (except when creating a box because the iteration vector
5653                     // is empty).
5654                     if (!isBoxValue())
5655                       pc = [=](IterSpace iters) {
5656                         IterationSpace newIters = currentPC(iters);
5657                         newIters.insertIndexValue(subsIndex, ivAdj);
5658                         return newIters;
5659                       };
5660                   } else {
5661                     auto currentPC = pc;
5662                     mlir::Value newValue = fir::getBase(asScalarArray(e));
5663                     mlir::Value result =
5664                         builder.createConvert(loc, idxTy, newValue);
5665                     mlir::Value lb = fir::factory::readLowerBound(
5666                         builder, loc, arrayExv, subsIndex, one);
5667                     result = builder.create<mlir::arith::SubIOp>(loc, idxTy,
5668                                                                  result, lb);
5669                     pc = [=](IterSpace iters) {
5670                       IterationSpace newIters = currentPC(iters);
5671                       newIters.insertIndexValue(subsIndex, result);
5672                       return newIters;
5673                     };
5674                   }
5675                 }
5676               }},
5677           sub.value().u);
5678     }
5679     if (!useSlice)
5680       trips.clear();
5681   }
5682 
5683   static mlir::Type unwrapBoxEleTy(mlir::Type ty) {
5684     if (auto boxTy = ty.dyn_cast<fir::BoxType>())
5685       return fir::unwrapRefType(boxTy.getEleTy());
5686     return ty;
5687   }
5688 
5689   llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) {
5690     llvm::SmallVector<mlir::Value> result;
5691     ty = unwrapBoxEleTy(ty);
5692     mlir::Location loc = getLoc();
5693     mlir::IndexType idxTy = builder.getIndexType();
5694     for (auto extent : ty.cast<fir::SequenceType>().getShape()) {
5695       auto v = extent == fir::SequenceType::getUnknownExtent()
5696                    ? builder.create<fir::UndefOp>(loc, idxTy).getResult()
5697                    : builder.createIntegerConstant(loc, idxTy, extent);
5698       result.push_back(v);
5699     }
5700     return result;
5701   }
5702 
5703   CC genarr(const Fortran::semantics::SymbolRef &sym,
5704             ComponentPath &components) {
5705     return genarr(sym.get(), components);
5706   }
5707 
5708   ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
5709     return convertToArrayBoxValue(getLoc(), builder, val, len);
5710   }
5711 
5712   CC genarr(const ExtValue &extMemref) {
5713     ComponentPath dummy(/*isImplicit=*/true);
5714     return genarr(extMemref, dummy);
5715   }
5716 
5717   // If the slice values are given then use them. Otherwise, generate triples
5718   // that cover the entire shape specified by \p shapeVal.
5719   inline llvm::SmallVector<mlir::Value>
5720   padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) {
5721     llvm::SmallVector<mlir::Value> result;
5722     mlir::Location loc = getLoc();
5723     if (triples.size()) {
5724       result.assign(triples.begin(), triples.end());
5725     } else {
5726       auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1);
5727       if (!shapeVal) {
5728         TODO(loc, "shape must be recovered from box");
5729       } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>(
5730                      shapeVal.getDefiningOp())) {
5731         for (auto ext : shapeOp.getExtents()) {
5732           result.push_back(one);
5733           result.push_back(ext);
5734           result.push_back(one);
5735         }
5736       } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>(
5737                      shapeVal.getDefiningOp())) {
5738         for (auto [lb, ext] :
5739              llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) {
5740           result.push_back(lb);
5741           result.push_back(ext);
5742           result.push_back(one);
5743         }
5744       } else {
5745         TODO(loc, "shape must be recovered from box");
5746       }
5747     }
5748     return result;
5749   }
5750 
5751   /// Base case of generating an array reference,
5752   CC genarr(const ExtValue &extMemref, ComponentPath &components) {
5753     mlir::Location loc = getLoc();
5754     mlir::Value memref = fir::getBase(extMemref);
5755     mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
5756     assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
5757     mlir::Value shape = builder.createShape(loc, extMemref);
5758     mlir::Value slice;
5759     if (components.isSlice()) {
5760       if (isBoxValue() && components.substring) {
5761         // Append the substring operator to emboxing Op as it will become an
5762         // interior adjustment (add offset, adjust LEN) to the CHARACTER value
5763         // being referenced in the descriptor.
5764         llvm::SmallVector<mlir::Value> substringBounds;
5765         populateBounds(substringBounds, components.substring);
5766         // Convert to (offset, size)
5767         mlir::Type iTy = substringBounds[0].getType();
5768         if (substringBounds.size() != 2) {
5769           fir::CharacterType charTy =
5770               fir::factory::CharacterExprHelper::getCharType(arrTy);
5771           if (charTy.hasConstantLen()) {
5772             mlir::IndexType idxTy = builder.getIndexType();
5773             fir::CharacterType::LenType charLen = charTy.getLen();
5774             mlir::Value lenValue =
5775                 builder.createIntegerConstant(loc, idxTy, charLen);
5776             substringBounds.push_back(lenValue);
5777           } else {
5778             llvm::SmallVector<mlir::Value> typeparams =
5779                 fir::getTypeParams(extMemref);
5780             substringBounds.push_back(typeparams.back());
5781           }
5782         }
5783         // Convert the lower bound to 0-based substring.
5784         mlir::Value one =
5785             builder.createIntegerConstant(loc, substringBounds[0].getType(), 1);
5786         substringBounds[0] =
5787             builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one);
5788         // Convert the upper bound to a length.
5789         mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]);
5790         mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0);
5791         auto size =
5792             builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]);
5793         auto cmp = builder.create<mlir::arith::CmpIOp>(
5794             loc, mlir::arith::CmpIPredicate::sgt, size, zero);
5795         // size = MAX(upper - (lower - 1), 0)
5796         substringBounds[1] =
5797             builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
5798         slice = builder.create<fir::SliceOp>(
5799             loc, padSlice(components.trips, shape), components.suffixComponents,
5800             substringBounds);
5801       } else {
5802         slice = builder.createSlice(loc, extMemref, components.trips,
5803                                     components.suffixComponents);
5804       }
5805       if (components.hasComponents()) {
5806         auto seqTy = arrTy.cast<fir::SequenceType>();
5807         mlir::Type eleTy =
5808             fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents);
5809         if (!eleTy)
5810           fir::emitFatalError(loc, "slicing path is ill-formed");
5811         if (auto realTy = eleTy.dyn_cast<fir::RealType>())
5812           eleTy = Fortran::lower::convertReal(realTy.getContext(),
5813                                               realTy.getFKind());
5814 
5815         // create the type of the projected array.
5816         arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy);
5817         LLVM_DEBUG(llvm::dbgs()
5818                    << "type of array projection from component slicing: "
5819                    << eleTy << ", " << arrTy << '\n');
5820       }
5821     }
5822     arrayOperands.push_back(ArrayOperand{memref, shape, slice});
5823     if (destShape.empty())
5824       destShape = getShape(arrayOperands.back());
5825     if (isBoxValue()) {
5826       // Semantics are a reference to a boxed array.
5827       // This case just requires that an embox operation be created to box the
5828       // value. The value of the box is forwarded in the continuation.
5829       mlir::Type reduceTy = reduceRank(arrTy, slice);
5830       auto boxTy = fir::BoxType::get(reduceTy);
5831       if (components.substring) {
5832         // Adjust char length to substring size.
5833         fir::CharacterType charTy =
5834             fir::factory::CharacterExprHelper::getCharType(reduceTy);
5835         auto seqTy = reduceTy.cast<fir::SequenceType>();
5836         // TODO: Use a constant for fir.char LEN if we can compute it.
5837         boxTy = fir::BoxType::get(
5838             fir::SequenceType::get(fir::CharacterType::getUnknownLen(
5839                                        builder.getContext(), charTy.getFKind()),
5840                                    seqTy.getDimension()));
5841       }
5842       mlir::Value embox =
5843           memref.getType().isa<fir::BoxType>()
5844               ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
5845                     .getResult()
5846               : builder
5847                     .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
5848                                           fir::getTypeParams(extMemref))
5849                     .getResult();
5850       return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); };
5851     }
5852     auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
5853     if (isReferentiallyOpaque()) {
5854       // Semantics are an opaque reference to an array.
5855       // This case forwards a continuation that will generate the address
5856       // arithmetic to the array element. This does not have copy-in/copy-out
5857       // semantics. No attempt to copy the array value will be made during the
5858       // interpretation of the Fortran statement.
5859       mlir::Type refEleTy = builder.getRefType(eleTy);
5860       return [=](IterSpace iters) -> ExtValue {
5861         // ArrayCoorOp does not expect zero based indices.
5862         llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
5863             loc, builder, memref.getType(), shape, iters.iterVec());
5864         mlir::Value coor = builder.create<fir::ArrayCoorOp>(
5865             loc, refEleTy, memref, shape, slice, indices,
5866             fir::getTypeParams(extMemref));
5867         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
5868           llvm::SmallVector<mlir::Value> substringBounds;
5869           populateBounds(substringBounds, components.substring);
5870           if (!substringBounds.empty()) {
5871             mlir::Value dstLen = fir::factory::genLenOfCharacter(
5872                 builder, loc, arrTy.cast<fir::SequenceType>(), memref,
5873                 fir::getTypeParams(extMemref), iters.iterVec(),
5874                 substringBounds);
5875             fir::CharBoxValue dstChar(coor, dstLen);
5876             return fir::factory::CharacterExprHelper{builder, loc}
5877                 .createSubstring(dstChar, substringBounds);
5878           }
5879         }
5880         return fir::factory::arraySectionElementToExtendedValue(
5881             builder, loc, extMemref, coor, slice);
5882       };
5883     }
5884     auto arrLoad = builder.create<fir::ArrayLoadOp>(
5885         loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
5886     mlir::Value arrLd = arrLoad.getResult();
5887     if (isProjectedCopyInCopyOut()) {
5888       // Semantics are projected copy-in copy-out.
5889       // The backing store of the destination of an array expression may be
5890       // partially modified. These updates are recorded in FIR by forwarding a
5891       // continuation that generates an `array_update` Op. The destination is
5892       // always loaded at the beginning of the statement and merged at the
5893       // end.
5894       destination = arrLoad;
5895       auto lambda = ccStoreToDest.hasValue()
5896                         ? ccStoreToDest.getValue()
5897                         : defaultStoreToDestination(components.substring);
5898       return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
5899     }
5900     if (isCustomCopyInCopyOut()) {
5901       // Create an array_modify to get the LHS element address and indicate
5902       // the assignment, the actual assignment must be implemented in
5903       // ccStoreToDest.
5904       destination = arrLoad;
5905       return [=](IterSpace iters) -> ExtValue {
5906         mlir::Value innerArg = iters.innerArgument();
5907         mlir::Type resTy = innerArg.getType();
5908         mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec());
5909         mlir::Type refEleTy =
5910             fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
5911         auto arrModify = builder.create<fir::ArrayModifyOp>(
5912             loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(),
5913             destination.getTypeparams());
5914         return abstractArrayExtValue(arrModify.getResult(1));
5915       };
5916     }
5917     if (isCopyInCopyOut()) {
5918       // Semantics are copy-in copy-out.
5919       // The continuation simply forwards the result of the `array_load` Op,
5920       // which is the value of the array as it was when loaded. All data
5921       // references with rank > 0 in an array expression typically have
5922       // copy-in copy-out semantics.
5923       return [=](IterSpace) -> ExtValue { return arrLd; };
5924     }
5925     llvm::SmallVector<mlir::Value> arrLdTypeParams =
5926         fir::factory::getTypeParams(loc, builder, arrLoad);
5927     if (isValueAttribute()) {
5928       // Semantics are value attribute.
5929       // Here the continuation will `array_fetch` a value from an array and
5930       // then store that value in a temporary. One can thus imitate pass by
5931       // value even when the call is pass by reference.
5932       return [=](IterSpace iters) -> ExtValue {
5933         mlir::Value base;
5934         mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
5935         if (isAdjustedArrayElementType(eleTy)) {
5936           mlir::Type eleRefTy = builder.getRefType(eleTy);
5937           base = builder.create<fir::ArrayAccessOp>(
5938               loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
5939         } else {
5940           base = builder.create<fir::ArrayFetchOp>(
5941               loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
5942         }
5943         mlir::Value temp = builder.createTemporary(
5944             loc, base.getType(),
5945             llvm::ArrayRef<mlir::NamedAttribute>{
5946                 Fortran::lower::getAdaptToByRefAttr(builder)});
5947         builder.create<fir::StoreOp>(loc, base, temp);
5948         return fir::factory::arraySectionElementToExtendedValue(
5949             builder, loc, extMemref, temp, slice);
5950       };
5951     }
5952     // In the default case, the array reference forwards an `array_fetch` or
5953     // `array_access` Op in the continuation.
5954     return [=](IterSpace iters) -> ExtValue {
5955       mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
5956       if (isAdjustedArrayElementType(eleTy)) {
5957         mlir::Type eleRefTy = builder.getRefType(eleTy);
5958         mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
5959             loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
5960         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
5961           llvm::SmallVector<mlir::Value> substringBounds;
5962           populateBounds(substringBounds, components.substring);
5963           if (!substringBounds.empty()) {
5964             mlir::Value dstLen = fir::factory::genLenOfCharacter(
5965                 builder, loc, arrLoad, iters.iterVec(), substringBounds);
5966             fir::CharBoxValue dstChar(arrayOp, dstLen);
5967             return fir::factory::CharacterExprHelper{builder, loc}
5968                 .createSubstring(dstChar, substringBounds);
5969           }
5970         }
5971         return fir::factory::arraySectionElementToExtendedValue(
5972             builder, loc, extMemref, arrayOp, slice);
5973       }
5974       auto arrFetch = builder.create<fir::ArrayFetchOp>(
5975           loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
5976       return fir::factory::arraySectionElementToExtendedValue(
5977           builder, loc, extMemref, arrFetch, slice);
5978     };
5979   }
5980 
5981   std::tuple<CC, mlir::Value, mlir::Type>
5982   genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
5983     assert(expr.Rank() > 0 && "expr must be an array");
5984     mlir::Location loc = getLoc();
5985     ExtValue optionalArg = asInquired(expr);
5986     mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
5987     // Generate an array load and access to an array that may be an absent
5988     // optional or an unallocated optional.
5989     mlir::Value base = getBase(optionalArg);
5990     const bool hasOptionalAttr =
5991         fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
5992     mlir::Type baseType = fir::unwrapRefType(base.getType());
5993     const bool isBox = baseType.isa<fir::BoxType>();
5994     const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
5995         expr, converter.getFoldingContext());
5996     mlir::Type arrType = fir::unwrapPassByRefType(baseType);
5997     mlir::Type eleType = fir::unwrapSequenceType(arrType);
5998     ExtValue exv = optionalArg;
5999     if (hasOptionalAttr && isBox && !isAllocOrPtr) {
6000       // Elemental argument cannot be allocatable or pointers (C15100).
6001       // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
6002       // Pointer optional arrays cannot be absent. The only kind of entities
6003       // that can get here are optional assumed shape and polymorphic entities.
6004       exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent);
6005     }
6006     // All the properties can be read from any fir.box but the read values may
6007     // be undefined and should only be used inside a fir.if (canBeRead) region.
6008     if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
6009       exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);
6010 
6011     mlir::Value memref = fir::getBase(exv);
6012     mlir::Value shape = builder.createShape(loc, exv);
6013     mlir::Value noSlice;
6014     auto arrLoad = builder.create<fir::ArrayLoadOp>(
6015         loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
6016     mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
6017     mlir::Value arrLd = arrLoad.getResult();
6018     // Mark the load to tell later passes it is unsafe to use this array_load
6019     // shape unconditionally.
6020     arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());
6021 
6022     // Place the array as optional on the arrayOperands stack so that its
6023     // shape will only be used as a fallback to induce the implicit loop nest
6024     // (that is if there is no non optional array arguments).
6025     arrayOperands.push_back(
6026         ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});
6027 
6028     // By value semantics.
6029     auto cc = [=](IterSpace iters) -> ExtValue {
6030       auto arrFetch = builder.create<fir::ArrayFetchOp>(
6031           loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
6032       return fir::factory::arraySectionElementToExtendedValue(
6033           builder, loc, exv, arrFetch, noSlice);
6034     };
6035     return {cc, isPresent, eleType};
6036   }
6037 
6038   /// Generate a continuation to pass \p expr to an OPTIONAL argument of an
6039   /// elemental procedure. This is meant to handle the cases where \p expr might
6040   /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
6041   /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
6042   /// directly be called instead.
6043   CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
6044     mlir::Location loc = getLoc();
6045     // Only by-value numerical and logical so far.
6046     if (semant != ConstituentSemantics::RefTransparent)
6047       TODO(loc, "optional arguments in user defined elemental procedures");
6048 
6049     // Handle scalar argument case (the if-then-else is generated outside of the
6050     // implicit loop nest).
6051     if (expr.Rank() == 0) {
6052       ExtValue optionalArg = asInquired(expr);
6053       mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
6054       mlir::Value elementValue =
6055           fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
6056       return [=](IterSpace iters) -> ExtValue { return elementValue; };
6057     }
6058 
6059     CC cc;
6060     mlir::Value isPresent;
6061     mlir::Type eleType;
6062     std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
6063     return [=](IterSpace iters) -> ExtValue {
6064       mlir::Value elementValue =
6065           builder
6066               .genIfOp(loc, {eleType}, isPresent,
6067                        /*withElseRegion=*/true)
6068               .genThen([&]() {
6069                 builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
6070               })
6071               .genElse([&]() {
6072                 mlir::Value zero =
6073                     fir::factory::createZeroValue(builder, loc, eleType);
6074                 builder.create<fir::ResultOp>(loc, zero);
6075               })
6076               .getResults()[0];
6077       return elementValue;
6078     };
6079   }
6080 
6081   /// Reduce the rank of a array to be boxed based on the slice's operands.
6082   static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
6083     if (slice) {
6084       auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
6085       assert(slOp && "expected slice op");
6086       auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
6087       assert(seqTy && "expected array type");
6088       mlir::Operation::operand_range triples = slOp.getTriples();
6089       fir::SequenceType::Shape shape;
6090       // reduce the rank for each invariant dimension
6091       for (unsigned i = 1, end = triples.size(); i < end; i += 3)
6092         if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp()))
6093           shape.push_back(fir::SequenceType::getUnknownExtent());
6094       return fir::SequenceType::get(shape, seqTy.getEleTy());
6095     }
6096     // not sliced, so no change in rank
6097     return arrTy;
6098   }
6099 
6100   /// Example: <code>array%RE</code>
6101   CC genarr(const Fortran::evaluate::ComplexPart &x,
6102             ComponentPath &components) {
6103     components.reversePath.push_back(&x);
6104     return genarr(x.complex(), components);
6105   }
6106 
6107   template <typename A>
6108   CC genSlicePath(const A &x, ComponentPath &components) {
6109     return genarr(x, components);
6110   }
6111 
6112   CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
6113             ComponentPath &components) {
6114     fir::emitFatalError(getLoc(), "substring of static array object");
6115   }
6116 
6117   /// Substrings (see 9.4.1)
6118   CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
6119     components.substring = &x;
6120     return std::visit([&](const auto &v) { return genarr(v, components); },
6121                       x.parent());
6122   }
6123 
6124   template <typename T>
6125   CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
6126     // Note that it's possible that the function being called returns either an
6127     // array or a scalar.  In the first case, use the element type of the array.
6128     return genProcRef(
6129         funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
6130   }
6131 
6132   //===--------------------------------------------------------------------===//
6133   // Array construction
6134   //===--------------------------------------------------------------------===//
6135 
6136   /// Target agnostic computation of the size of an element in the array.
6137   /// Returns the size in bytes with type `index` or a null Value if the element
6138   /// size is not constant.
6139   mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
6140                                  mlir::Type resTy) {
6141     mlir::Location loc = getLoc();
6142     mlir::IndexType idxTy = builder.getIndexType();
6143     mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
6144     if (fir::hasDynamicSize(eleTy)) {
6145       if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6146         // Array of char with dynamic LEN parameter. Downcast to an array
6147         // of singleton char, and scale by the len type parameter from
6148         // `exv`.
6149         exv.match(
6150             [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
6151             [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
6152             [&](const fir::BoxValue &box) {
6153               multiplier = fir::factory::CharacterExprHelper(builder, loc)
6154                                .readLengthFromBox(box.getAddr());
6155             },
6156             [&](const fir::MutableBoxValue &box) {
6157               multiplier = fir::factory::CharacterExprHelper(builder, loc)
6158                                .readLengthFromBox(box.getAddr());
6159             },
6160             [&](const auto &) {
6161               fir::emitFatalError(loc,
6162                                   "array constructor element has unknown size");
6163             });
6164         fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
6165             eleTy.getContext(), charTy.getFKind());
6166         if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
6167           assert(eleTy == seqTy.getEleTy());
6168           resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
6169         }
6170         eleTy = newEleTy;
6171       } else {
6172         TODO(loc, "dynamic sized type");
6173       }
6174     }
6175     mlir::Type eleRefTy = builder.getRefType(eleTy);
6176     mlir::Type resRefTy = builder.getRefType(resTy);
6177     mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
6178     auto offset = builder.create<fir::CoordinateOp>(
6179         loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
6180     return builder.createConvert(loc, idxTy, offset);
6181   }
6182 
6183   /// Get the function signature of the LLVM memcpy intrinsic.
6184   mlir::FunctionType memcpyType() {
6185     return fir::factory::getLlvmMemcpy(builder).getFunctionType();
6186   }
6187 
6188   /// Create a call to the LLVM memcpy intrinsic.
6189   void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
6190     mlir::Location loc = getLoc();
6191     mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
6192     mlir::SymbolRefAttr funcSymAttr =
6193         builder.getSymbolRefAttr(memcpyFunc.getName());
6194     mlir::FunctionType funcTy = memcpyFunc.getFunctionType();
6195     builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
6196   }
6197 
6198   // Construct code to check for a buffer overrun and realloc the buffer when
6199   // space is depleted. This is done between each item in the ac-value-list.
6200   mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
6201                          mlir::Value bufferSize, mlir::Value buffSize,
6202                          mlir::Value eleSz) {
6203     mlir::Location loc = getLoc();
6204     mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder);
6205     auto cond = builder.create<mlir::arith::CmpIOp>(
6206         loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
6207     auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
6208                                           /*withElseRegion=*/true);
6209     auto insPt = builder.saveInsertionPoint();
6210     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
6211     // Not enough space, resize the buffer.
6212     mlir::IndexType idxTy = builder.getIndexType();
6213     mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
6214     auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
6215     builder.create<fir::StoreOp>(loc, newSz, buffSize);
6216     mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
6217     mlir::SymbolRefAttr funcSymAttr =
6218         builder.getSymbolRefAttr(reallocFunc.getName());
6219     mlir::FunctionType funcTy = reallocFunc.getFunctionType();
6220     auto newMem = builder.create<fir::CallOp>(
6221         loc, funcTy.getResults(), funcSymAttr,
6222         llvm::ArrayRef<mlir::Value>{
6223             builder.createConvert(loc, funcTy.getInputs()[0], mem),
6224             builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
6225     mlir::Value castNewMem =
6226         builder.createConvert(loc, mem.getType(), newMem.getResult(0));
6227     builder.create<fir::ResultOp>(loc, castNewMem);
6228     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
6229     // Otherwise, just forward the buffer.
6230     builder.create<fir::ResultOp>(loc, mem);
6231     builder.restoreInsertionPoint(insPt);
6232     return ifOp.getResult(0);
6233   }
6234 
6235   /// Copy the next value (or vector of values) into the array being
6236   /// constructed.
6237   mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
6238                                        mlir::Value buffSize, mlir::Value mem,
6239                                        mlir::Value eleSz, mlir::Type eleTy,
6240                                        mlir::Type eleRefTy, mlir::Type resTy) {
6241     mlir::Location loc = getLoc();
6242     auto off = builder.create<fir::LoadOp>(loc, buffPos);
6243     auto limit = builder.create<fir::LoadOp>(loc, buffSize);
6244     mlir::IndexType idxTy = builder.getIndexType();
6245     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
6246 
6247     if (fir::isRecordWithAllocatableMember(eleTy))
6248       TODO(loc, "deep copy on allocatable members");
6249 
6250     if (!eleSz) {
6251       // Compute the element size at runtime.
6252       assert(fir::hasDynamicSize(eleTy));
6253       if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6254         auto charBytes =
6255             builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
6256         mlir::Value bytes =
6257             builder.createIntegerConstant(loc, idxTy, charBytes);
6258         mlir::Value length = fir::getLen(exv);
6259         if (!length)
6260           fir::emitFatalError(loc, "result is not boxed character");
6261         eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
6262       } else {
6263         TODO(loc, "PDT size");
6264         // Will call the PDT's size function with the type parameters.
6265       }
6266     }
6267 
6268     // Compute the coordinate using `fir.coordinate_of`, or, if the type has
6269     // dynamic size, generating the pointer arithmetic.
6270     auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
6271       mlir::Type refTy = eleRefTy;
6272       if (fir::hasDynamicSize(eleTy)) {
6273         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6274           // Scale a simple pointer using dynamic length and offset values.
6275           auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
6276                                                        charTy.getFKind());
6277           refTy = builder.getRefType(chTy);
6278           mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
6279           buff = builder.createConvert(loc, toTy, buff);
6280           off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
6281         } else {
6282           TODO(loc, "PDT offset");
6283         }
6284       }
6285       auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
6286                                                     mlir::ValueRange{off});
6287       return builder.createConvert(loc, eleRefTy, coor);
6288     };
6289 
6290     // Lambda to lower an abstract array box value.
6291     auto doAbstractArray = [&](const auto &v) {
6292       // Compute the array size.
6293       mlir::Value arrSz = one;
6294       for (auto ext : v.getExtents())
6295         arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);
6296 
6297       // Grow the buffer as needed.
6298       auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
6299       mem = growBuffer(mem, endOff, limit, buffSize, eleSz);
6300 
6301       // Copy the elements to the buffer.
6302       mlir::Value byteSz =
6303           builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
6304       auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6305       mlir::Value buffi = computeCoordinate(buff, off);
6306       llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
6307           builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
6308           /*volatile=*/builder.createBool(loc, false));
6309       createCallMemcpy(args);
6310 
6311       // Save the incremented buffer position.
6312       builder.create<fir::StoreOp>(loc, endOff, buffPos);
6313     };
6314 
6315     // Copy a trivial scalar value into the buffer.
6316     auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
6317       // Increment the buffer position.
6318       auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
6319 
6320       // Grow the buffer as needed.
6321       mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
6322 
6323       // Store the element in the buffer.
6324       mlir::Value buff =
6325           builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6326       auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
6327                                                      mlir::ValueRange{off});
6328       fir::factory::genScalarAssignment(
6329           builder, loc,
6330           [&]() -> ExtValue {
6331             if (len)
6332               return fir::CharBoxValue(buffi, len);
6333             return buffi;
6334           }(),
6335           v);
6336       builder.create<fir::StoreOp>(loc, plusOne, buffPos);
6337     };
6338 
6339     // Copy the value.
6340     exv.match(
6341         [&](mlir::Value) { doTrivialScalar(exv); },
6342         [&](const fir::CharBoxValue &v) {
6343           auto buffer = v.getBuffer();
6344           if (fir::isa_char(buffer.getType())) {
6345             doTrivialScalar(exv, eleSz);
6346           } else {
6347             // Increment the buffer position.
6348             auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
6349 
6350             // Grow the buffer as needed.
6351             mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
6352 
6353             // Store the element in the buffer.
6354             mlir::Value buff =
6355                 builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6356             mlir::Value buffi = computeCoordinate(buff, off);
6357             llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
6358                 builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
6359                 /*volatile=*/builder.createBool(loc, false));
6360             createCallMemcpy(args);
6361 
6362             builder.create<fir::StoreOp>(loc, plusOne, buffPos);
6363           }
6364         },
6365         [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
6366         [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
6367         [&](const auto &) {
6368           TODO(loc, "unhandled array constructor expression");
6369         });
6370     return mem;
6371   }
6372 
6373   // Lower the expr cases in an ac-value-list.
6374   template <typename A>
6375   std::pair<ExtValue, bool>
6376   genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
6377                           mlir::Value, mlir::Value, mlir::Value,
6378                           Fortran::lower::StatementContext &stmtCtx) {
6379     if (isArray(x))
6380       return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
6381               /*needCopy=*/true};
6382     return {asScalar(x), /*needCopy=*/true};
6383   }
6384 
6385   // Lower an ac-implied-do in an ac-value-list.
6386   template <typename A>
6387   std::pair<ExtValue, bool>
6388   genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
6389                           mlir::Type resTy, mlir::Value mem,
6390                           mlir::Value buffPos, mlir::Value buffSize,
6391                           Fortran::lower::StatementContext &) {
6392     mlir::Location loc = getLoc();
6393     mlir::IndexType idxTy = builder.getIndexType();
6394     mlir::Value lo =
6395         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
6396     mlir::Value up =
6397         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
6398     mlir::Value step =
6399         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
6400     auto seqTy = resTy.template cast<fir::SequenceType>();
6401     mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
6402     auto loop =
6403         builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
6404                                       /*finalCount=*/false, mem);
6405     // create a new binding for x.name(), to ac-do-variable, to the iteration
6406     // value.
6407     symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
6408     auto insPt = builder.saveInsertionPoint();
6409     builder.setInsertionPointToStart(loop.getBody());
6410     // Thread mem inside the loop via loop argument.
6411     mem = loop.getRegionIterArgs()[0];
6412 
6413     mlir::Type eleRefTy = builder.getRefType(eleTy);
6414 
6415     // Any temps created in the loop body must be freed inside the loop body.
6416     stmtCtx.pushScope();
6417     llvm::Optional<mlir::Value> charLen;
6418     for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
6419       auto [exv, copyNeeded] = std::visit(
6420           [&](const auto &v) {
6421             return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
6422                                            stmtCtx);
6423           },
6424           acv.u);
6425       mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
6426       mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
6427                                                   eleSz, eleTy, eleRefTy, resTy)
6428                        : fir::getBase(exv);
6429       if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
6430         charLen = builder.createTemporary(loc, builder.getI64Type());
6431         mlir::Value castLen =
6432             builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
6433         builder.create<fir::StoreOp>(loc, castLen, charLen.value());
6434       }
6435     }
6436     stmtCtx.finalize(/*popScope=*/true);
6437 
6438     builder.create<fir::ResultOp>(loc, mem);
6439     builder.restoreInsertionPoint(insPt);
6440     mem = loop.getResult(0);
6441     symMap.popImpliedDoBinding();
6442     llvm::SmallVector<mlir::Value> extents = {
6443         builder.create<fir::LoadOp>(loc, buffPos).getResult()};
6444 
6445     // Convert to extended value.
6446     if (fir::isa_char(seqTy.getEleTy())) {
6447       auto len = builder.create<fir::LoadOp>(loc, charLen.value());
6448       return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
6449     }
6450     return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
6451   }
6452 
6453   // To simplify the handling and interaction between the various cases, array
6454   // constructors are always lowered to the incremental construction code
6455   // pattern, even if the extent of the array value is constant. After the
6456   // MemToReg pass and constant folding, the optimizer should be able to
6457   // determine that all the buffer overrun tests are false when the
6458   // incremental construction wasn't actually required.
6459   template <typename A>
6460   CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
6461     mlir::Location loc = getLoc();
6462     auto evExpr = toEvExpr(x);
6463     mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
6464     mlir::IndexType idxTy = builder.getIndexType();
6465     auto seqTy = resTy.template cast<fir::SequenceType>();
6466     mlir::Type eleTy = fir::unwrapSequenceType(resTy);
6467     mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
6468     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
6469     mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
6470     builder.create<fir::StoreOp>(loc, zero, buffPos);
6471     // Allocate space for the array to be constructed.
6472     mlir::Value mem;
6473     if (fir::hasDynamicSize(resTy)) {
6474       if (fir::hasDynamicSize(eleTy)) {
6475         // The size of each element may depend on a general expression. Defer
6476         // creating the buffer until after the expression is evaluated.
6477         mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
6478         builder.create<fir::StoreOp>(loc, zero, buffSize);
6479       } else {
6480         mlir::Value initBuffSz =
6481             builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
6482         mem = builder.create<fir::AllocMemOp>(
6483             loc, eleTy, /*typeparams=*/llvm::None, initBuffSz);
6484         builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
6485       }
6486     } else {
6487       mem = builder.create<fir::AllocMemOp>(loc, resTy);
6488       int64_t buffSz = 1;
6489       for (auto extent : seqTy.getShape())
6490         buffSz *= extent;
6491       mlir::Value initBuffSz =
6492           builder.createIntegerConstant(loc, idxTy, buffSz);
6493       builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
6494     }
6495     // Compute size of element
6496     mlir::Type eleRefTy = builder.getRefType(eleTy);
6497 
6498     // Populate the buffer with the elements, growing as necessary.
6499     llvm::Optional<mlir::Value> charLen;
6500     for (const auto &expr : x) {
6501       auto [exv, copyNeeded] = std::visit(
6502           [&](const auto &e) {
6503             return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
6504                                            stmtCtx);
6505           },
6506           expr.u);
6507       mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
6508       mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
6509                                                   eleSz, eleTy, eleRefTy, resTy)
6510                        : fir::getBase(exv);
6511       if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
6512         charLen = builder.createTemporary(loc, builder.getI64Type());
6513         mlir::Value castLen =
6514             builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
6515         builder.create<fir::StoreOp>(loc, castLen, charLen.value());
6516       }
6517     }
6518     mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6519     llvm::SmallVector<mlir::Value> extents = {
6520         builder.create<fir::LoadOp>(loc, buffPos)};
6521 
6522     // Cleanup the temporary.
6523     fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
6524     stmtCtx.attachCleanup(
6525         [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });
6526 
6527     // Return the continuation.
6528     if (fir::isa_char(seqTy.getEleTy())) {
6529       if (charLen.hasValue()) {
6530         auto len = builder.create<fir::LoadOp>(loc, charLen.getValue());
6531         return genarr(fir::CharArrayBoxValue{mem, len, extents});
6532       }
6533       return genarr(fir::CharArrayBoxValue{mem, zero, extents});
6534     }
6535     return genarr(fir::ArrayBoxValue{mem, extents});
6536   }
6537 
6538   CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
6539     fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0");
6540   }
6541   CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
6542     TODO(getLoc(), "array expr type parameter inquiry");
6543     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6544   }
6545   CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
6546     TODO(getLoc(), "array expr descriptor inquiry");
6547     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6548   }
6549   CC genarr(const Fortran::evaluate::StructureConstructor &x) {
6550     TODO(getLoc(), "structure constructor");
6551     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6552   }
6553 
6554   //===--------------------------------------------------------------------===//
6555   // LOCICAL operators (.NOT., .AND., .EQV., etc.)
6556   //===--------------------------------------------------------------------===//
6557 
6558   template <int KIND>
6559   CC genarr(const Fortran::evaluate::Not<KIND> &x) {
6560     mlir::Location loc = getLoc();
6561     mlir::IntegerType i1Ty = builder.getI1Type();
6562     auto lambda = genarr(x.left());
6563     mlir::Value truth = builder.createBool(loc, true);
6564     return [=](IterSpace iters) -> ExtValue {
6565       mlir::Value logical = fir::getBase(lambda(iters));
6566       mlir::Value val = builder.createConvert(loc, i1Ty, logical);
6567       return builder.create<mlir::arith::XOrIOp>(loc, val, truth);
6568     };
6569   }
6570   template <typename OP, typename A>
6571   CC createBinaryBoolOp(const A &x) {
6572     mlir::Location loc = getLoc();
6573     mlir::IntegerType i1Ty = builder.getI1Type();
6574     auto lf = genarr(x.left());
6575     auto rf = genarr(x.right());
6576     return [=](IterSpace iters) -> ExtValue {
6577       mlir::Value left = fir::getBase(lf(iters));
6578       mlir::Value right = fir::getBase(rf(iters));
6579       mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
6580       mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
6581       return builder.create<OP>(loc, lhs, rhs);
6582     };
6583   }
6584   template <typename OP, typename A>
6585   CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) {
6586     mlir::Location loc = getLoc();
6587     mlir::IntegerType i1Ty = builder.getI1Type();
6588     auto lf = genarr(x.left());
6589     auto rf = genarr(x.right());
6590     return [=](IterSpace iters) -> ExtValue {
6591       mlir::Value left = fir::getBase(lf(iters));
6592       mlir::Value right = fir::getBase(rf(iters));
6593       mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
6594       mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
6595       return builder.create<OP>(loc, pred, lhs, rhs);
6596     };
6597   }
6598   template <int KIND>
6599   CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
6600     switch (x.logicalOperator) {
6601     case Fortran::evaluate::LogicalOperator::And:
6602       return createBinaryBoolOp<mlir::arith::AndIOp>(x);
6603     case Fortran::evaluate::LogicalOperator::Or:
6604       return createBinaryBoolOp<mlir::arith::OrIOp>(x);
6605     case Fortran::evaluate::LogicalOperator::Eqv:
6606       return createCompareBoolOp<mlir::arith::CmpIOp>(
6607           mlir::arith::CmpIPredicate::eq, x);
6608     case Fortran::evaluate::LogicalOperator::Neqv:
6609       return createCompareBoolOp<mlir::arith::CmpIOp>(
6610           mlir::arith::CmpIPredicate::ne, x);
6611     case Fortran::evaluate::LogicalOperator::Not:
6612       llvm_unreachable(".NOT. handled elsewhere");
6613     }
6614     llvm_unreachable("unhandled case");
6615   }
6616 
6617   //===--------------------------------------------------------------------===//
6618   // Relational operators (<, <=, ==, etc.)
6619   //===--------------------------------------------------------------------===//
6620 
6621   template <typename OP, typename PRED, typename A>
6622   CC createCompareOp(PRED pred, const A &x) {
6623     mlir::Location loc = getLoc();
6624     auto lf = genarr(x.left());
6625     auto rf = genarr(x.right());
6626     return [=](IterSpace iters) -> ExtValue {
6627       mlir::Value lhs = fir::getBase(lf(iters));
6628       mlir::Value rhs = fir::getBase(rf(iters));
6629       return builder.create<OP>(loc, pred, lhs, rhs);
6630     };
6631   }
6632   template <typename A>
6633   CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) {
6634     mlir::Location loc = getLoc();
6635     auto lf = genarr(x.left());
6636     auto rf = genarr(x.right());
6637     return [=](IterSpace iters) -> ExtValue {
6638       auto lhs = lf(iters);
6639       auto rhs = rf(iters);
6640       return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs);
6641     };
6642   }
6643   template <int KIND>
6644   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6645                 Fortran::common::TypeCategory::Integer, KIND>> &x) {
6646     return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x);
6647   }
6648   template <int KIND>
6649   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6650                 Fortran::common::TypeCategory::Character, KIND>> &x) {
6651     return createCompareCharOp(translateRelational(x.opr), x);
6652   }
6653   template <int KIND>
6654   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6655                 Fortran::common::TypeCategory::Real, KIND>> &x) {
6656     return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr),
6657                                                 x);
6658   }
6659   template <int KIND>
6660   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6661                 Fortran::common::TypeCategory::Complex, KIND>> &x) {
6662     return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x);
6663   }
6664   CC genarr(
6665       const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
6666     return std::visit([&](const auto &x) { return genarr(x); }, r.u);
6667   }
6668 
6669   template <typename A>
6670   CC genarr(const Fortran::evaluate::Designator<A> &des) {
6671     ComponentPath components(des.Rank() > 0);
6672     return std::visit([&](const auto &x) { return genarr(x, components); },
6673                       des.u);
6674   }
6675 
6676   /// Is the path component rank > 0?
6677   static bool ranked(const PathComponent &x) {
6678     return std::visit(Fortran::common::visitors{
6679                           [](const ImplicitSubscripts &) { return false; },
6680                           [](const auto *v) { return v->Rank() > 0; }},
6681                       x);
6682   }
6683 
6684   void extendComponent(Fortran::lower::ComponentPath &component,
6685                        mlir::Type coorTy, mlir::ValueRange vals) {
6686     auto *bldr = &converter.getFirOpBuilder();
6687     llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end());
6688     auto currentFunc = component.getExtendCoorRef();
6689     auto loc = getLoc();
6690     auto newCoorRef = [bldr, coorTy, offsets, currentFunc,
6691                        loc](mlir::Value val) -> mlir::Value {
6692       return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy),
6693                                              currentFunc(val), offsets);
6694     };
6695     component.extendCoorRef = newCoorRef;
6696   }
6697 
6698   //===-------------------------------------------------------------------===//
6699   // Array data references in an explicit iteration space.
6700   //
6701   // Use the base array that was loaded before the loop nest.
6702   //===-------------------------------------------------------------------===//
6703 
6704   /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
6705   /// array_update op. \p ty is the initial type of the array
6706   /// (reference). Returns the type of the element after application of the
6707   /// path in \p components.
6708   ///
6709   /// TODO: This needs to deal with array's with initial bounds other than 1.
6710   /// TODO: Thread type parameters correctly.
6711   mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) {
6712     mlir::Location loc = getLoc();
6713     mlir::Type ty = fir::getBase(arrayExv).getType();
6714     auto &revPath = components.reversePath;
6715     ty = fir::unwrapPassByRefType(ty);
6716     bool prefix = true;
6717     bool deref = false;
6718     auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) {
6719       if (deref) {
6720         extendComponent(components, ty, vals);
6721       } else if (prefix) {
6722         for (auto v : vals)
6723           components.prefixComponents.push_back(v);
6724       } else {
6725         for (auto v : vals)
6726           components.suffixComponents.push_back(v);
6727       }
6728     };
6729     mlir::IndexType idxTy = builder.getIndexType();
6730     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
6731     bool atBase = true;
6732     auto saveSemant = semant;
6733     if (isProjectedCopyInCopyOut())
6734       semant = ConstituentSemantics::RefTransparent;
6735     unsigned index = 0;
6736     for (const auto &v : llvm::reverse(revPath)) {
6737       std::visit(
6738           Fortran::common::visitors{
6739               [&](const ImplicitSubscripts &) {
6740                 prefix = false;
6741                 ty = fir::unwrapSequenceType(ty);
6742               },
6743               [&](const Fortran::evaluate::ComplexPart *x) {
6744                 assert(!prefix && "complex part must be at end");
6745                 mlir::Value offset = builder.createIntegerConstant(
6746                     loc, builder.getI32Type(),
6747                     x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0
6748                                                                           : 1);
6749                 components.suffixComponents.push_back(offset);
6750                 ty = fir::applyPathToType(ty, mlir::ValueRange{offset});
6751               },
6752               [&](const Fortran::evaluate::ArrayRef *x) {
6753                 if (Fortran::lower::isRankedArrayAccess(*x)) {
6754                   genSliceIndices(components, arrayExv, *x, atBase);
6755                   ty = fir::unwrapSeqOrBoxedSeqType(ty);
6756                 } else {
6757                   // Array access where the expressions are scalar and cannot
6758                   // depend upon the implied iteration space.
6759                   unsigned ssIndex = 0u;
6760                   llvm::SmallVector<mlir::Value> componentsToAdd;
6761                   for (const auto &ss : x->subscript()) {
6762                     std::visit(
6763                         Fortran::common::visitors{
6764                             [&](const Fortran::evaluate::
6765                                     IndirectSubscriptIntegerExpr &ie) {
6766                               const auto &e = ie.value();
6767                               if (isArray(e))
6768                                 fir::emitFatalError(
6769                                     loc,
6770                                     "multiple components along single path "
6771                                     "generating array subexpressions");
6772                               // Lower scalar index expression, append it to
6773                               // subs.
6774                               mlir::Value subscriptVal =
6775                                   fir::getBase(asScalarArray(e));
6776                               // arrayExv is the base array. It needs to reflect
6777                               // the current array component instead.
6778                               // FIXME: must use lower bound of this component,
6779                               // not just the constant 1.
6780                               mlir::Value lb =
6781                                   atBase ? fir::factory::readLowerBound(
6782                                                builder, loc, arrayExv, ssIndex,
6783                                                one)
6784                                          : one;
6785                               mlir::Value val = builder.createConvert(
6786                                   loc, idxTy, subscriptVal);
6787                               mlir::Value ivAdj =
6788                                   builder.create<mlir::arith::SubIOp>(
6789                                       loc, idxTy, val, lb);
6790                               componentsToAdd.push_back(
6791                                   builder.createConvert(loc, idxTy, ivAdj));
6792                             },
6793                             [&](const auto &) {
6794                               fir::emitFatalError(
6795                                   loc, "multiple components along single path "
6796                                        "generating array subexpressions");
6797                             }},
6798                         ss.u);
6799                     ssIndex++;
6800                   }
6801                   ty = fir::unwrapSeqOrBoxedSeqType(ty);
6802                   addComponentList(ty, componentsToAdd);
6803                 }
6804               },
6805               [&](const Fortran::evaluate::Component *x) {
6806                 auto fieldTy = fir::FieldType::get(builder.getContext());
6807                 llvm::StringRef name = toStringRef(getLastSym(*x).name());
6808                 if (auto recTy = ty.dyn_cast<fir::RecordType>()) {
6809                   ty = recTy.getType(name);
6810                   auto fld = builder.create<fir::FieldIndexOp>(
6811                       loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
6812                   addComponentList(ty, {fld});
6813                   if (index != revPath.size() - 1 || !isPointerAssignment()) {
6814                     // Need an intermediate  dereference if the boxed value
6815                     // appears in the middle of the component path or if it is
6816                     // on the right and this is not a pointer assignment.
6817                     if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
6818                       auto currentFunc = components.getExtendCoorRef();
6819                       auto loc = getLoc();
6820                       auto *bldr = &converter.getFirOpBuilder();
6821                       auto newCoorRef = [=](mlir::Value val) -> mlir::Value {
6822                         return bldr->create<fir::LoadOp>(loc, currentFunc(val));
6823                       };
6824                       components.extendCoorRef = newCoorRef;
6825                       deref = true;
6826                     }
6827                   }
6828                 } else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
6829                   ty = fir::unwrapRefType(boxTy.getEleTy());
6830                   auto recTy = ty.cast<fir::RecordType>();
6831                   ty = recTy.getType(name);
6832                   auto fld = builder.create<fir::FieldIndexOp>(
6833                       loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
6834                   extendComponent(components, ty, {fld});
6835                 } else {
6836                   TODO(loc, "other component type");
6837                 }
6838               }},
6839           v);
6840       atBase = false;
6841       ++index;
6842     }
6843     semant = saveSemant;
6844     ty = fir::unwrapSequenceType(ty);
6845     components.applied = true;
6846     return ty;
6847   }
6848 
6849   llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) {
6850     llvm::SmallVector<mlir::Value> result;
6851     if (components.substring)
6852       populateBounds(result, components.substring);
6853     return result;
6854   }
6855 
6856   CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) {
6857     mlir::Location loc = getLoc();
6858     auto revPath = components.reversePath;
6859     fir::ExtendedValue arrayExv =
6860         arrayLoadExtValue(builder, loc, load, {}, load);
6861     mlir::Type eleTy = lowerPath(arrayExv, components);
6862     auto currentPC = components.pc;
6863     auto pc = [=, prefix = components.prefixComponents,
6864                suffix = components.suffixComponents](IterSpace iters) {
6865       // Add path prefix and suffix.
6866       return IterationSpace(currentPC(iters), prefix, suffix);
6867     };
6868     components.resetPC();
6869     llvm::SmallVector<mlir::Value> substringBounds =
6870         genSubstringBounds(components);
6871     if (isProjectedCopyInCopyOut()) {
6872       destination = load;
6873       auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable {
6874         mlir::Value innerArg = esp->findArgumentOfLoad(load);
6875         if (isAdjustedArrayElementType(eleTy)) {
6876           mlir::Type eleRefTy = builder.getRefType(eleTy);
6877           auto arrayOp = builder.create<fir::ArrayAccessOp>(
6878               loc, eleRefTy, innerArg, iters.iterVec(),
6879               fir::factory::getTypeParams(loc, builder, load));
6880           if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6881             mlir::Value dstLen = fir::factory::genLenOfCharacter(
6882                 builder, loc, load, iters.iterVec(), substringBounds);
6883             fir::ArrayAmendOp amend = createCharArrayAmend(
6884                 loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg,
6885                 substringBounds);
6886             return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend,
6887                                      dstLen);
6888           }
6889           if (fir::isa_derived(eleTy)) {
6890             fir::ArrayAmendOp amend =
6891                 createDerivedArrayAmend(loc, load, builder, arrayOp,
6892                                         iters.elementExv(), eleTy, innerArg);
6893             return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
6894                                      amend);
6895           }
6896           assert(eleTy.isa<fir::SequenceType>());
6897           TODO(loc, "array (as element) assignment");
6898         }
6899         if (components.hasExtendCoorRef()) {
6900           auto eleBoxTy =
6901               fir::applyPathToType(innerArg.getType(), iters.iterVec());
6902           assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
6903           auto arrayOp = builder.create<fir::ArrayAccessOp>(
6904               loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(),
6905               fir::factory::getTypeParams(loc, builder, load));
6906           mlir::Value addr = components.getExtendCoorRef()(arrayOp);
6907           components.resetExtendCoorRef();
6908           // When the lhs is a boxed value and the context is not a pointer
6909           // assignment, then insert the dereference of the box before any
6910           // conversion and store.
6911           if (!isPointerAssignment()) {
6912             if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) {
6913               eleTy = fir::boxMemRefType(boxTy);
6914               addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr);
6915               eleTy = fir::unwrapRefType(eleTy);
6916             }
6917           }
6918           auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
6919           builder.create<fir::StoreOp>(loc, ele, addr);
6920           auto amend = builder.create<fir::ArrayAmendOp>(
6921               loc, innerArg.getType(), innerArg, arrayOp);
6922           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend);
6923         }
6924         auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
6925         auto update = builder.create<fir::ArrayUpdateOp>(
6926             loc, innerArg.getType(), innerArg, ele, iters.iterVec(),
6927             fir::factory::getTypeParams(loc, builder, load));
6928         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update);
6929       };
6930       return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6931     }
6932     if (isCustomCopyInCopyOut()) {
6933       // Create an array_modify to get the LHS element address and indicate
6934       // the assignment, and create the call to the user defined assignment.
6935       destination = load;
6936       auto lambda = [=](IterSpace iters) mutable {
6937         mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load);
6938         mlir::Type refEleTy =
6939             fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
6940         auto arrModify = builder.create<fir::ArrayModifyOp>(
6941             loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg,
6942             iters.iterVec(), load.getTypeparams());
6943         return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
6944                                  arrModify.getResult(1));
6945       };
6946       return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6947     }
6948     auto lambda = [=, semant = this->semant](IterSpace iters) mutable {
6949       if (semant == ConstituentSemantics::RefOpaque ||
6950           isAdjustedArrayElementType(eleTy)) {
6951         mlir::Type resTy = builder.getRefType(eleTy);
6952         // Use array element reference semantics.
6953         auto access = builder.create<fir::ArrayAccessOp>(
6954             loc, resTy, load, iters.iterVec(),
6955             fir::factory::getTypeParams(loc, builder, load));
6956         mlir::Value newBase = access;
6957         if (fir::isa_char(eleTy)) {
6958           mlir::Value dstLen = fir::factory::genLenOfCharacter(
6959               builder, loc, load, iters.iterVec(), substringBounds);
6960           if (!substringBounds.empty()) {
6961             fir::CharBoxValue charDst{access, dstLen};
6962             fir::factory::CharacterExprHelper helper{builder, loc};
6963             charDst = helper.createSubstring(charDst, substringBounds);
6964             newBase = charDst.getAddr();
6965           }
6966           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase,
6967                                    dstLen);
6968         }
6969         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase);
6970       }
6971       if (components.hasExtendCoorRef()) {
6972         auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec());
6973         assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
6974         auto access = builder.create<fir::ArrayAccessOp>(
6975             loc, builder.getRefType(eleBoxTy), load, iters.iterVec(),
6976             fir::factory::getTypeParams(loc, builder, load));
6977         mlir::Value addr = components.getExtendCoorRef()(access);
6978         components.resetExtendCoorRef();
6979         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr);
6980       }
6981       if (isPointerAssignment()) {
6982         auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec());
6983         if (!eleTy.isa<fir::BoxType>()) {
6984           // Rhs is a regular expression that will need to be boxed before
6985           // assigning to the boxed variable.
6986           auto typeParams = fir::factory::getTypeParams(loc, builder, load);
6987           auto access = builder.create<fir::ArrayAccessOp>(
6988               loc, builder.getRefType(eleTy), load, iters.iterVec(),
6989               typeParams);
6990           auto addr = components.getExtendCoorRef()(access);
6991           components.resetExtendCoorRef();
6992           auto ptrEleTy = fir::PointerType::get(eleTy);
6993           auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr);
6994           auto boxTy = fir::BoxType::get(ptrEleTy);
6995           // FIXME: The typeparams to the load may be different than those of
6996           // the subobject.
6997           if (components.hasExtendCoorRef())
6998             TODO(loc, "need to adjust typeparameter(s) to reflect the final "
6999                       "component");
7000           mlir::Value embox =
7001               builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr,
7002                                            /*shape=*/mlir::Value{},
7003                                            /*slice=*/mlir::Value{}, typeParams);
7004           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox);
7005         }
7006       }
7007       auto fetch = builder.create<fir::ArrayFetchOp>(
7008           loc, eleTy, load, iters.iterVec(), load.getTypeparams());
7009       return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch);
7010     };
7011     return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
7012   }
7013 
7014   template <typename A>
7015   CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
7016     components.reversePath.push_back(ImplicitSubscripts{});
7017     ExtValue exv = asScalarRef(x);
7018     lowerPath(exv, components);
7019     auto lambda = genarr(exv, components);
7020     return [=](IterSpace iters) { return lambda(components.pc(iters)); };
7021   }
7022   CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
7023                             ComponentPath &components) {
7024     if (x.IsSymbol())
7025       return genImplicitArrayAccess(getFirstSym(x), components);
7026     return genImplicitArrayAccess(x.GetComponent(), components);
7027   }
7028 
7029   template <typename A>
7030   CC genAsScalar(const A &x) {
7031     mlir::Location loc = getLoc();
7032     if (isProjectedCopyInCopyOut()) {
7033       return [=, &x, builder = &converter.getFirOpBuilder()](
7034                  IterSpace iters) -> ExtValue {
7035         ExtValue exv = asScalarRef(x);
7036         mlir::Value addr = fir::getBase(exv);
7037         mlir::Type eleTy = fir::unwrapRefType(addr.getType());
7038         if (isAdjustedArrayElementType(eleTy)) {
7039           if (fir::isa_char(eleTy)) {
7040             fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
7041                 exv, iters.elementExv());
7042           } else if (fir::isa_derived(eleTy)) {
7043             TODO(loc, "assignment of derived type");
7044           } else {
7045             fir::emitFatalError(loc, "array type not expected in scalar");
7046           }
7047         } else {
7048           auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement());
7049           builder->create<fir::StoreOp>(loc, eleVal, addr);
7050         }
7051         return exv;
7052       };
7053     }
7054     return [=, &x](IterSpace) { return asScalar(x); };
7055   }
7056 
7057   bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x,
7058                                         ComponentPath &components) {
7059     return isPointerAssignment() && Fortran::semantics::IsPointer(x) &&
7060            !components.hasComponents();
7061   }
7062   bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x,
7063                                         ComponentPath &components) {
7064     return tailIsPointerInPointerAssignment(getLastSym(x), components);
7065   }
7066 
7067   CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
7068     if (explicitSpaceIsActive()) {
7069       if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components))
7070         components.reversePath.push_back(ImplicitSubscripts{});
7071       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
7072         return applyPathToArrayLoad(load, components);
7073     } else {
7074       return genImplicitArrayAccess(x, components);
7075     }
7076     if (pathIsEmpty(components))
7077       return components.substring ? genAsScalar(*components.substring)
7078                                   : genAsScalar(x);
7079     mlir::Location loc = getLoc();
7080     return [=](IterSpace) -> ExtValue {
7081       fir::emitFatalError(loc, "reached symbol with path");
7082     };
7083   }
7084 
7085   /// Lower a component path with or without rank.
7086   /// Example: <code>array%baz%qux%waldo</code>
7087   CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
7088     if (explicitSpaceIsActive()) {
7089       if (x.base().Rank() == 0 && x.Rank() > 0 &&
7090           !tailIsPointerInPointerAssignment(x, components))
7091         components.reversePath.push_back(ImplicitSubscripts{});
7092       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
7093         return applyPathToArrayLoad(load, components);
7094     } else {
7095       if (x.base().Rank() == 0)
7096         return genImplicitArrayAccess(x, components);
7097     }
7098     bool atEnd = pathIsEmpty(components);
7099     if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp))
7100       // Skip parent components; their components are placed directly in the
7101       // object.
7102       components.reversePath.push_back(&x);
7103     auto result = genarr(x.base(), components);
7104     if (components.applied)
7105       return result;
7106     if (atEnd)
7107       return genAsScalar(x);
7108     mlir::Location loc = getLoc();
7109     return [=](IterSpace) -> ExtValue {
7110       fir::emitFatalError(loc, "reached component with path");
7111     };
7112   }
7113 
7114   /// Array reference with subscripts. If this has rank > 0, this is a form
7115   /// of an array section (slice).
7116   ///
7117   /// There are two "slicing" primitives that may be applied on a dimension by
7118   /// dimension basis: (1) triple notation and (2) vector addressing. Since
7119   /// dimensions can be selectively sliced, some dimensions may contain
7120   /// regular scalar expressions and those dimensions do not participate in
7121   /// the array expression evaluation.
7122   CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
7123     if (explicitSpaceIsActive()) {
7124       if (Fortran::lower::isRankedArrayAccess(x))
7125         components.reversePath.push_back(ImplicitSubscripts{});
7126       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) {
7127         components.reversePath.push_back(&x);
7128         return applyPathToArrayLoad(load, components);
7129       }
7130     } else {
7131       if (Fortran::lower::isRankedArrayAccess(x)) {
7132         components.reversePath.push_back(&x);
7133         return genImplicitArrayAccess(x.base(), components);
7134       }
7135     }
7136     bool atEnd = pathIsEmpty(components);
7137     components.reversePath.push_back(&x);
7138     auto result = genarr(x.base(), components);
7139     if (components.applied)
7140       return result;
7141     mlir::Location loc = getLoc();
7142     if (atEnd) {
7143       if (x.Rank() == 0)
7144         return genAsScalar(x);
7145       fir::emitFatalError(loc, "expected scalar");
7146     }
7147     return [=](IterSpace) -> ExtValue {
7148       fir::emitFatalError(loc, "reached arrayref with path");
7149     };
7150   }
7151 
7152   CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
7153     TODO(getLoc(), "coarray reference");
7154   }
7155 
7156   CC genarr(const Fortran::evaluate::NamedEntity &x,
7157             ComponentPath &components) {
7158     return x.IsSymbol() ? genarr(getFirstSym(x), components)
7159                         : genarr(x.GetComponent(), components);
7160   }
7161 
7162   CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
7163     return std::visit([&](const auto &v) { return genarr(v, components); },
7164                       x.u);
7165   }
7166 
7167   bool pathIsEmpty(const ComponentPath &components) {
7168     return components.reversePath.empty();
7169   }
7170 
7171   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7172                              Fortran::lower::StatementContext &stmtCtx,
7173                              Fortran::lower::SymMap &symMap)
7174       : converter{converter}, builder{converter.getFirOpBuilder()},
7175         stmtCtx{stmtCtx}, symMap{symMap} {}
7176 
7177   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7178                              Fortran::lower::StatementContext &stmtCtx,
7179                              Fortran::lower::SymMap &symMap,
7180                              ConstituentSemantics sem)
7181       : converter{converter}, builder{converter.getFirOpBuilder()},
7182         stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}
7183 
7184   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7185                              Fortran::lower::StatementContext &stmtCtx,
7186                              Fortran::lower::SymMap &symMap,
7187                              ConstituentSemantics sem,
7188                              Fortran::lower::ExplicitIterSpace *expSpace,
7189                              Fortran::lower::ImplicitIterSpace *impSpace)
7190       : converter{converter}, builder{converter.getFirOpBuilder()},
7191         stmtCtx{stmtCtx}, symMap{symMap},
7192         explicitSpace(expSpace->isActive() ? expSpace : nullptr),
7193         implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} {
7194     // Generate any mask expressions, as necessary. This is the compute step
7195     // that creates the effective masks. See 10.2.3.2 in particular.
7196     genMasks();
7197   }
7198 
7199   mlir::Location getLoc() { return converter.getCurrentLocation(); }
7200 
7201   /// Array appears in a lhs context such that it is assigned after the rhs is
7202   /// fully evaluated.
7203   inline bool isCopyInCopyOut() {
7204     return semant == ConstituentSemantics::CopyInCopyOut;
7205   }
7206 
7207   /// Array appears in a lhs (or temp) context such that a projected,
7208   /// discontiguous subspace of the array is assigned after the rhs is fully
7209   /// evaluated. That is, the rhs array value is merged into a section of the
7210   /// lhs array.
7211   inline bool isProjectedCopyInCopyOut() {
7212     return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
7213   }
7214 
7215   // ???: Do we still need this?
7216   inline bool isCustomCopyInCopyOut() {
7217     return semant == ConstituentSemantics::CustomCopyInCopyOut;
7218   }
7219 
7220   /// Are we lowering in a left-hand side context?
7221   inline bool isLeftHandSide() {
7222     return isCopyInCopyOut() || isProjectedCopyInCopyOut() ||
7223            isCustomCopyInCopyOut();
7224   }
7225 
7226   /// Array appears in a context where it must be boxed.
7227   inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }
7228 
7229   /// Array appears in a context where differences in the memory reference can
7230   /// be observable in the computational results. For example, an array
7231   /// element is passed to an impure procedure.
7232   inline bool isReferentiallyOpaque() {
7233     return semant == ConstituentSemantics::RefOpaque;
7234   }
7235 
7236   /// Array appears in a context where it is passed as a VALUE argument.
7237   inline bool isValueAttribute() {
7238     return semant == ConstituentSemantics::ByValueArg;
7239   }
7240 
7241   /// Can the loops over the expression be unordered?
7242   inline bool isUnordered() const { return unordered; }
7243 
7244   void setUnordered(bool b) { unordered = b; }
7245 
7246   inline bool isPointerAssignment() const { return lbounds.hasValue(); }
7247 
7248   inline bool isBoundsSpec() const {
7249     return isPointerAssignment() && !ubounds.hasValue();
7250   }
7251 
7252   inline bool isBoundsRemap() const {
7253     return isPointerAssignment() && ubounds.hasValue();
7254   }
7255 
7256   void setPointerAssignmentBounds(
7257       const llvm::SmallVector<mlir::Value> &lbs,
7258       llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) {
7259     lbounds = lbs;
7260     ubounds = ubs;
7261   }
7262 
7263   Fortran::lower::AbstractConverter &converter;
7264   fir::FirOpBuilder &builder;
7265   Fortran::lower::StatementContext &stmtCtx;
7266   bool elementCtx = false;
7267   Fortran::lower::SymMap &symMap;
7268   /// The continuation to generate code to update the destination.
7269   llvm::Optional<CC> ccStoreToDest;
7270   llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
7271   llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
7272       ccLoadDest;
7273   /// The destination is the loaded array into which the results will be
7274   /// merged.
7275   fir::ArrayLoadOp destination;
7276   /// The shape of the destination.
7277   llvm::SmallVector<mlir::Value> destShape;
7278   /// List of arrays in the expression that have been loaded.
7279   llvm::SmallVector<ArrayOperand> arrayOperands;
7280   /// If there is a user-defined iteration space, explicitShape will hold the
7281   /// information from the front end.
7282   Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
7283   Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
7284   ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
7285   /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only
7286   /// occur in an explicit iteration space.
7287   llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds;
7288   llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds;
7289   // Can the array expression be evaluated in any order?
7290   // Will be set to false if any of the expression parts prevent this.
7291   bool unordered = true;
7292 };
7293 } // namespace
7294 
7295 fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
7296     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7297     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7298     Fortran::lower::StatementContext &stmtCtx) {
7299   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7300   return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
7301 }
7302 
7303 fir::GlobalOp Fortran::lower::createDenseGlobal(
7304     mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName,
7305     mlir::StringAttr linkage, bool isConst,
7306     const Fortran::lower::SomeExpr &expr,
7307     Fortran::lower::AbstractConverter &converter) {
7308 
7309   Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true);
7310   Fortran::lower::SymMap emptyMap;
7311   InitializerData initData(/*genRawVals=*/true);
7312   ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx,
7313                          /*initializer=*/&initData);
7314   sel.genval(expr);
7315 
7316   size_t sz = initData.rawVals.size();
7317   llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz};
7318 
7319   mlir::RankedTensorType tensorTy;
7320   auto &builder = converter.getFirOpBuilder();
7321   mlir::Type iTy = initData.rawType;
7322   if (!iTy)
7323     return 0; // array extent is probably 0 in this case, so just return 0.
7324   tensorTy = mlir::RankedTensorType::get(sz, iTy);
7325   auto init = mlir::DenseElementsAttr::get(tensorTy, ar);
7326   return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
7327 }
7328 
7329 fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
7330     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7331     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7332     Fortran::lower::StatementContext &stmtCtx) {
7333   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7334   InitializerData initData; // needed for initializations
7335   return ScalarExprLowering{loc, converter, symMap, stmtCtx,
7336                             /*initializer=*/&initData}
7337       .genval(expr);
7338 }
7339 
7340 fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
7341     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7342     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7343     Fortran::lower::StatementContext &stmtCtx) {
7344   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
7345   return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr);
7346 }
7347 
7348 fir::ExtendedValue Fortran::lower::createInitializerAddress(
7349     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7350     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7351     Fortran::lower::StatementContext &stmtCtx) {
7352   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
7353   InitializerData init;
7354   return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr);
7355 }
7356 
7357 void Fortran::lower::createSomeArrayAssignment(
7358     Fortran::lower::AbstractConverter &converter,
7359     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7360     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7361   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7362              rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7363   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7364 }
7365 
7366 void Fortran::lower::createSomeArrayAssignment(
7367     Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
7368     const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap,
7369     Fortran::lower::StatementContext &stmtCtx) {
7370   LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
7371              rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7372   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7373 }
7374 void Fortran::lower::createSomeArrayAssignment(
7375     Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
7376     const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
7377     Fortran::lower::StatementContext &stmtCtx) {
7378   LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
7379              llvm::dbgs() << "assign expression: " << rhs << '\n';);
7380   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7381 }
7382 
7383 void Fortran::lower::createAnyMaskedArrayAssignment(
7384     Fortran::lower::AbstractConverter &converter,
7385     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7386     Fortran::lower::ExplicitIterSpace &explicitSpace,
7387     Fortran::lower::ImplicitIterSpace &implicitSpace,
7388     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7389   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7390              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7391              << " given the explicit iteration space:\n"
7392              << explicitSpace << "\n and implied mask conditions:\n"
7393              << implicitSpace << '\n';);
7394   ArrayExprLowering::lowerAnyMaskedArrayAssignment(
7395       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
7396 }
7397 
7398 void Fortran::lower::createAllocatableArrayAssignment(
7399     Fortran::lower::AbstractConverter &converter,
7400     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7401     Fortran::lower::ExplicitIterSpace &explicitSpace,
7402     Fortran::lower::ImplicitIterSpace &implicitSpace,
7403     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7404   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
7405              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7406              << " given the explicit iteration space:\n"
7407              << explicitSpace << "\n and implied mask conditions:\n"
7408              << implicitSpace << '\n';);
7409   ArrayExprLowering::lowerAllocatableArrayAssignment(
7410       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
7411 }
7412 
7413 void Fortran::lower::createArrayOfPointerAssignment(
7414     Fortran::lower::AbstractConverter &converter,
7415     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7416     Fortran::lower::ExplicitIterSpace &explicitSpace,
7417     Fortran::lower::ImplicitIterSpace &implicitSpace,
7418     const llvm::SmallVector<mlir::Value> &lbounds,
7419     llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds,
7420     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7421   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n';
7422              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7423              << " given the explicit iteration space:\n"
7424              << explicitSpace << "\n and implied mask conditions:\n"
7425              << implicitSpace << '\n';);
7426   assert(explicitSpace.isActive() && "must be in FORALL construct");
7427   ArrayExprLowering::lowerArrayOfPointerAssignment(
7428       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace,
7429       lbounds, ubounds);
7430 }
7431 
7432 fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
7433     Fortran::lower::AbstractConverter &converter,
7434     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7435     Fortran::lower::StatementContext &stmtCtx) {
7436   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7437   return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
7438                                                     expr);
7439 }
7440 
7441 void Fortran::lower::createLazyArrayTempValue(
7442     Fortran::lower::AbstractConverter &converter,
7443     const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader,
7444     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7445   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7446   ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr,
7447                                               raggedHeader);
7448 }
7449 
7450 fir::ExtendedValue
7451 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
7452                                    const Fortran::lower::SomeExpr &expr,
7453                                    Fortran::lower::SymMap &symMap,
7454                                    Fortran::lower::StatementContext &stmtCtx) {
7455   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
7456   return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
7457                                                       stmtCtx, expr);
7458 }
7459 
7460 fir::MutableBoxValue Fortran::lower::createMutableBox(
7461     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7462     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
7463   // MutableBox lowering StatementContext does not need to be propagated
7464   // to the caller because the result value is a variable, not a temporary
7465   // expression. The StatementContext clean-up can occur before using the
7466   // resulting MutableBoxValue. Variables of all other types are handled in the
7467   // bridge.
7468   Fortran::lower::StatementContext dummyStmtCtx;
7469   return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
7470       .genMutableBoxValue(expr);
7471 }
7472 
7473 fir::ExtendedValue Fortran::lower::createBoxValue(
7474     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7475     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7476     Fortran::lower::StatementContext &stmtCtx) {
7477   if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) &&
7478       !Fortran::evaluate::HasVectorSubscript(expr))
7479     return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx);
7480   fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress(
7481       loc, converter, expr, symMap, stmtCtx);
7482   return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr));
7483 }
7484 
7485 mlir::Value Fortran::lower::createSubroutineCall(
7486     AbstractConverter &converter, const evaluate::ProcedureRef &call,
7487     ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace,
7488     SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) {
7489   mlir::Location loc = converter.getCurrentLocation();
7490 
7491   if (isUserDefAssignment) {
7492     assert(call.arguments().size() == 2);
7493     const auto *lhs = call.arguments()[0].value().UnwrapExpr();
7494     const auto *rhs = call.arguments()[1].value().UnwrapExpr();
7495     assert(lhs && rhs &&
7496            "user defined assignment arguments must be expressions");
7497     if (call.IsElemental() && lhs->Rank() > 0) {
7498       // Elemental user defined assignment has special requirements to deal with
7499       // LHS/RHS overlaps. See 10.2.1.5 p2.
7500       ArrayExprLowering::lowerElementalUserAssignment(
7501           converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace,
7502           call);
7503     } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) {
7504       // Scalar defined assignment (elemental or not) in a FORALL context.
7505       mlir::func::FuncOp func =
7506           Fortran::lower::CallerInterface(call, converter).getFuncOp();
7507       ArrayExprLowering::lowerScalarUserAssignment(
7508           converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs);
7509     } else if (explicitIterSpace.isActive()) {
7510       // TODO: need to array fetch/modify sub-arrays?
7511       TODO(loc, "non elemental user defined array assignment inside FORALL");
7512     } else {
7513       if (!implicitIterSpace.empty())
7514         fir::emitFatalError(
7515             loc,
7516             "C1032: user defined assignment inside WHERE must be elemental");
7517       // Non elemental user defined assignment outside of FORALL and WHERE.
7518       // FIXME: The non elemental user defined assignment case with array
7519       // arguments must be take into account potential overlap. So far the front
7520       // end does not add parentheses around the RHS argument in the call as it
7521       // should according to 15.4.3.4.3 p2.
7522       Fortran::lower::createSomeExtendedExpression(
7523           loc, converter, toEvExpr(call), symMap, stmtCtx);
7524     }
7525     return {};
7526   }
7527 
7528   assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() &&
7529          "subroutine calls are not allowed inside WHERE and FORALL");
7530 
7531   if (isElementalProcWithArrayArgs(call)) {
7532     ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx,
7533                                                 toEvExpr(call));
7534     return {};
7535   }
7536   // Simple subroutine call, with potential alternate return.
7537   auto res = Fortran::lower::createSomeExtendedExpression(
7538       loc, converter, toEvExpr(call), symMap, stmtCtx);
7539   return fir::getBase(res);
7540 }
7541 
7542 template <typename A>
7543 fir::ArrayLoadOp genArrayLoad(mlir::Location loc,
7544                               Fortran::lower::AbstractConverter &converter,
7545                               fir::FirOpBuilder &builder, const A *x,
7546                               Fortran::lower::SymMap &symMap,
7547                               Fortran::lower::StatementContext &stmtCtx) {
7548   auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x);
7549   mlir::Value addr = fir::getBase(exv);
7550   mlir::Value shapeOp = builder.createShape(loc, exv);
7551   mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
7552   return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp,
7553                                           /*slice=*/mlir::Value{},
7554                                           fir::getTypeParams(exv));
7555 }
7556 template <>
7557 fir::ArrayLoadOp
7558 genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7559              fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x,
7560              Fortran::lower::SymMap &symMap,
7561              Fortran::lower::StatementContext &stmtCtx) {
7562   if (x->base().IsSymbol())
7563     return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap,
7564                         stmtCtx);
7565   return genArrayLoad(loc, converter, builder, &x->base().GetComponent(),
7566                       symMap, stmtCtx);
7567 }
7568 
7569 void Fortran::lower::createArrayLoads(
7570     Fortran::lower::AbstractConverter &converter,
7571     Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) {
7572   std::size_t counter = esp.getCounter();
7573   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
7574   mlir::Location loc = converter.getCurrentLocation();
7575   Fortran::lower::StatementContext &stmtCtx = esp.stmtContext();
7576   // Gen the fir.array_load ops.
7577   auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp {
7578     return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx);
7579   };
7580   if (esp.lhsBases[counter].hasValue()) {
7581     auto &base = esp.lhsBases[counter].getValue();
7582     auto load = std::visit(genLoad, base);
7583     esp.initialArgs.push_back(load);
7584     esp.resetInnerArgs();
7585     esp.bindLoad(base, load);
7586   }
7587   for (const auto &base : esp.rhsBases[counter])
7588     esp.bindLoad(base, std::visit(genLoad, base));
7589 }
7590 
7591 void Fortran::lower::createArrayMergeStores(
7592     Fortran::lower::AbstractConverter &converter,
7593     Fortran::lower::ExplicitIterSpace &esp) {
7594   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
7595   mlir::Location loc = converter.getCurrentLocation();
7596   builder.setInsertionPointAfter(esp.getOuterLoop());
7597   // Gen the fir.array_merge_store ops for all LHS arrays.
7598   for (auto i : llvm::enumerate(esp.getOuterLoop().getResults()))
7599     if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) {
7600       fir::ArrayLoadOp load = ldOpt.getValue();
7601       builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(),
7602                                              load.getMemref(), load.getSlice(),
7603                                              load.getTypeparams());
7604     }
7605   if (esp.loopCleanup.hasValue()) {
7606     esp.loopCleanup.getValue()(builder);
7607     esp.loopCleanup = llvm::None;
7608   }
7609   esp.initialArgs.clear();
7610   esp.innerArgs.clear();
7611   esp.outerLoop = llvm::None;
7612   esp.resetBindings();
7613   esp.incrementCounter();
7614 }
7615