1 //===-- ConvertExpr.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "flang/Lower/ConvertExpr.h"
14 #include "flang/Common/default-kinds.h"
15 #include "flang/Common/unwrap.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/real.h"
18 #include "flang/Evaluate/traverse.h"
19 #include "flang/Lower/Allocatable.h"
20 #include "flang/Lower/Bridge.h"
21 #include "flang/Lower/BuiltinModules.h"
22 #include "flang/Lower/CallInterface.h"
23 #include "flang/Lower/Coarray.h"
24 #include "flang/Lower/ComponentPath.h"
25 #include "flang/Lower/ConvertType.h"
26 #include "flang/Lower/ConvertVariable.h"
27 #include "flang/Lower/CustomIntrinsicCall.h"
28 #include "flang/Lower/DumpEvaluateExpr.h"
29 #include "flang/Lower/IntrinsicCall.h"
30 #include "flang/Lower/Mangler.h"
31 #include "flang/Lower/Runtime.h"
32 #include "flang/Lower/Support/Utils.h"
33 #include "flang/Optimizer/Builder/Character.h"
34 #include "flang/Optimizer/Builder/Complex.h"
35 #include "flang/Optimizer/Builder/Factory.h"
36 #include "flang/Optimizer/Builder/Runtime/Character.h"
37 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
38 #include "flang/Optimizer/Builder/Runtime/Ragged.h"
39 #include "flang/Optimizer/Builder/Todo.h"
40 #include "flang/Optimizer/Dialect/FIRAttr.h"
41 #include "flang/Optimizer/Dialect/FIRDialect.h"
42 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
43 #include "flang/Optimizer/Support/FatalError.h"
44 #include "flang/Semantics/expression.h"
45 #include "flang/Semantics/symbol.h"
46 #include "flang/Semantics/tools.h"
47 #include "flang/Semantics/type.h"
48 #include "mlir/Dialect/Func/IR/FuncOps.h"
49 #include "llvm/ADT/TypeSwitch.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 
56 #define DEBUG_TYPE "flang-lower-expr"
57 
58 //===----------------------------------------------------------------------===//
59 // The composition and structure of Fortran::evaluate::Expr is defined in
60 // the various header files in include/flang/Evaluate. You are referred
61 // there for more information on these data structures. Generally speaking,
62 // these data structures are a strongly typed family of abstract data types
63 // that, composed as trees, describe the syntax of Fortran expressions.
64 //
65 // This part of the bridge can traverse these tree structures and lower them
66 // to the correct FIR representation in SSA form.
67 //===----------------------------------------------------------------------===//
68 
69 static llvm::cl::opt<bool> generateArrayCoordinate(
70     "gen-array-coor",
71     llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
72     llvm::cl::init(false));
73 
74 // The default attempts to balance a modest allocation size with expected user
75 // input to minimize bounds checks and reallocations during dynamic array
76 // construction. Some user codes may have very large array constructors for
77 // which the default can be increased.
78 static llvm::cl::opt<unsigned> clInitialBufferSize(
79     "array-constructor-initial-buffer-size",
80     llvm::cl::desc(
81         "set the incremental array construction buffer size (default=32)"),
82     llvm::cl::init(32u));
83 
84 /// The various semantics of a program constituent (or a part thereof) as it may
85 /// appear in an expression.
86 ///
87 /// Given the following Fortran declarations.
88 /// ```fortran
89 ///   REAL :: v1, v2, v3
90 ///   REAL, POINTER :: vp1
91 ///   REAL :: a1(c), a2(c)
92 ///   REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
93 ///   FUNCTION f2(arg)                ! array -> array
94 ///   vp1 => v3       ! 1
95 ///   v1 = v2 * vp1   ! 2
96 ///   a1 = a1 + a2    ! 3
97 ///   a1 = f1(a2)     ! 4
98 ///   a1 = f2(a2)     ! 5
99 /// ```
100 ///
101 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
102 /// constructed from the DataAddr of `v3`.
103 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
104 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
105 /// dereference in the `vp1` case.
106 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
107 /// is CopyInCopyOut as `a1` is replaced elementally by the additions.
108 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
109 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
110 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
111 ///  In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
112 ///  `a1` on the lhs is again CopyInCopyOut.
113 enum class ConstituentSemantics {
114   // Scalar data reference semantics.
115   //
116   // For these let `v` be the location in memory of a variable with value `x`
117   DataValue, // refers to the value `x`
118   DataAddr,  // refers to the address `v`
119   BoxValue,  // refers to a box value containing `v`
120   BoxAddr,   // refers to the address of a box value containing `v`
121 
122   // Array data reference semantics.
123   //
124   // For these let `a` be the location in memory of a sequence of value `[xs]`.
125   // Let `x_i` be the `i`-th value in the sequence `[xs]`.
126 
127   // Referentially transparent. Refers to the array's value, `[xs]`.
128   RefTransparent,
129   // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
130   // note 2). (Passing a copy by reference to simulate pass-by-value.)
131   ByValueArg,
132   // Refers to the merge of array value `[xs]` with another array value `[ys]`.
133   // This merged array value will be written into memory location `a`.
134   CopyInCopyOut,
135   // Similar to CopyInCopyOut but `a` may be a transient projection (rather than
136   // a whole array).
137   ProjectedCopyInCopyOut,
138   // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
139   // automatically by the framework. Instead, and address for `[xs]` is made
140   // accessible so that custom assignments to `[xs]` can be implemented.
141   CustomCopyInCopyOut,
142   // Referentially opaque. Refers to the address of `x_i`.
143   RefOpaque
144 };
145 
146 /// Convert parser's INTEGER relational operators to MLIR.  TODO: using
147 /// unordered, but we may want to cons ordered in certain situation.
148 static mlir::arith::CmpIPredicate
149 translateRelational(Fortran::common::RelationalOperator rop) {
150   switch (rop) {
151   case Fortran::common::RelationalOperator::LT:
152     return mlir::arith::CmpIPredicate::slt;
153   case Fortran::common::RelationalOperator::LE:
154     return mlir::arith::CmpIPredicate::sle;
155   case Fortran::common::RelationalOperator::EQ:
156     return mlir::arith::CmpIPredicate::eq;
157   case Fortran::common::RelationalOperator::NE:
158     return mlir::arith::CmpIPredicate::ne;
159   case Fortran::common::RelationalOperator::GT:
160     return mlir::arith::CmpIPredicate::sgt;
161   case Fortran::common::RelationalOperator::GE:
162     return mlir::arith::CmpIPredicate::sge;
163   }
164   llvm_unreachable("unhandled INTEGER relational operator");
165 }
166 
167 /// Convert parser's REAL relational operators to MLIR.
168 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
169 /// requirements in the IEEE context (table 17.1 of F2018). This choice is
170 /// also applied in other contexts because it is easier and in line with
171 /// other Fortran compilers.
172 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
173 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
174 /// whether the comparison will signal or not in case of quiet NaN argument.
175 static mlir::arith::CmpFPredicate
176 translateFloatRelational(Fortran::common::RelationalOperator rop) {
177   switch (rop) {
178   case Fortran::common::RelationalOperator::LT:
179     return mlir::arith::CmpFPredicate::OLT;
180   case Fortran::common::RelationalOperator::LE:
181     return mlir::arith::CmpFPredicate::OLE;
182   case Fortran::common::RelationalOperator::EQ:
183     return mlir::arith::CmpFPredicate::OEQ;
184   case Fortran::common::RelationalOperator::NE:
185     return mlir::arith::CmpFPredicate::UNE;
186   case Fortran::common::RelationalOperator::GT:
187     return mlir::arith::CmpFPredicate::OGT;
188   case Fortran::common::RelationalOperator::GE:
189     return mlir::arith::CmpFPredicate::OGE;
190   }
191   llvm_unreachable("unhandled REAL relational operator");
192 }
193 
194 static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
195                                           mlir::Location loc,
196                                           fir::ExtendedValue actual) {
197   if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
198     return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
199                                                         *ptrOrAlloc);
200   // Optional case (not that optional allocatable/pointer cannot be absent
201   // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
202   // therefore possible to catch them in the `then` case above.
203   return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
204                                           fir::getBase(actual));
205 }
206 
207 /// Convert the array_load, `load`, to an extended value. If `path` is not
208 /// empty, then traverse through the components designated. The base value is
209 /// `newBase`. This does not accept an array_load with a slice operand.
210 static fir::ExtendedValue
211 arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc,
212                   fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path,
213                   mlir::Value newBase, mlir::Value newLen = {}) {
214   // Recover the extended value from the load.
215   if (load.getSlice())
216     fir::emitFatalError(loc, "array_load with slice is not allowed");
217   mlir::Type arrTy = load.getType();
218   if (!path.empty()) {
219     mlir::Type ty = fir::applyPathToType(arrTy, path);
220     if (!ty)
221       fir::emitFatalError(loc, "path does not apply to type");
222     if (!ty.isa<fir::SequenceType>()) {
223       if (fir::isa_char(ty)) {
224         mlir::Value len = newLen;
225         if (!len)
226           len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
227               load.getMemref());
228         if (!len) {
229           assert(load.getTypeparams().size() == 1 &&
230                  "length must be in array_load");
231           len = load.getTypeparams()[0];
232         }
233         return fir::CharBoxValue{newBase, len};
234       }
235       return newBase;
236     }
237     arrTy = ty.cast<fir::SequenceType>();
238   }
239 
240   auto arrayToExtendedValue =
241       [&](const llvm::SmallVector<mlir::Value> &extents,
242           const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue {
243     mlir::Type eleTy = fir::unwrapSequenceType(arrTy);
244     if (fir::isa_char(eleTy)) {
245       mlir::Value len = newLen;
246       if (!len)
247         len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
248             load.getMemref());
249       if (!len) {
250         assert(load.getTypeparams().size() == 1 &&
251                "length must be in array_load");
252         len = load.getTypeparams()[0];
253       }
254       return fir::CharArrayBoxValue(newBase, len, extents, origins);
255     }
256     return fir::ArrayBoxValue(newBase, extents, origins);
257   };
258   // Use the shape op, if there is one.
259   mlir::Value shapeVal = load.getShape();
260   if (shapeVal) {
261     if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) {
262       auto extents = fir::factory::getExtents(shapeVal);
263       auto origins = fir::factory::getOrigins(shapeVal);
264       return arrayToExtendedValue(extents, origins);
265     }
266     if (!fir::isa_box_type(load.getMemref().getType()))
267       fir::emitFatalError(loc, "shift op is invalid in this context");
268   }
269 
270   // If we're dealing with the array_load op (not a subobject) and the load does
271   // not have any type parameters, then read the extents from the original box.
272   // The origin may be either from the box or a shift operation. Create and
273   // return the array extended value.
274   if (path.empty() && load.getTypeparams().empty()) {
275     auto oldBox = load.getMemref();
276     fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox);
277     auto extents = fir::factory::getExtents(loc, builder, exv);
278     auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv);
279     if (shapeVal) {
280       // shapeVal is a ShiftOp and load.memref() is a boxed value.
281       newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox,
282                                              shapeVal, /*slice=*/mlir::Value{});
283       origins = fir::factory::getOrigins(shapeVal);
284     }
285     return fir::substBase(arrayToExtendedValue(extents, origins), newBase);
286   }
287   TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires "
288             "dereferencing; generating the type parameters is a hard "
289             "requirement for correctness.");
290 }
291 
292 /// Place \p exv in memory if it is not already a memory reference. If
293 /// \p forceValueType is provided, the value is first casted to the provided
294 /// type before being stored (this is mainly intended for logicals whose value
295 /// may be `i1` but needed to be stored as Fortran logicals).
296 static fir::ExtendedValue
297 placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
298                          const fir::ExtendedValue &exv,
299                          mlir::Type storageType) {
300   mlir::Value valBase = fir::getBase(exv);
301   if (fir::conformsWithPassByRef(valBase.getType()))
302     return exv;
303 
304   assert(!fir::hasDynamicSize(storageType) &&
305          "only expect statically sized scalars to be by value");
306 
307   // Since `a` is not itself a valid referent, determine its value and
308   // create a temporary location at the beginning of the function for
309   // referencing.
310   mlir::Value val = builder.createConvert(loc, storageType, valBase);
311   mlir::Value temp = builder.createTemporary(
312       loc, storageType,
313       llvm::ArrayRef<mlir::NamedAttribute>{
314           Fortran::lower::getAdaptToByRefAttr(builder)});
315   builder.create<fir::StoreOp>(loc, val, temp);
316   return fir::substBase(exv, temp);
317 }
318 
319 // Copy a copy of scalar \p exv in a new temporary.
320 static fir::ExtendedValue
321 createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
322                          const fir::ExtendedValue &exv) {
323   assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
324   if (exv.getCharBox() != nullptr)
325     return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
326   if (fir::isDerivedWithLenParameters(exv))
327     TODO(loc, "copy derived type with length parameters");
328   mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
329   fir::ExtendedValue temp = builder.createTemporary(loc, type);
330   fir::factory::genScalarAssignment(builder, loc, temp, exv);
331   return temp;
332 }
333 
334 // An expression with non-zero rank is an array expression.
335 template <typename A>
336 static bool isArray(const A &x) {
337   return x.Rank() != 0;
338 }
339 
340 /// Is this a variable wrapped in parentheses?
341 template <typename A>
342 static bool isParenthesizedVariable(const A &) {
343   return false;
344 }
345 template <typename T>
346 static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
347   using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
348   using Parentheses = Fortran::evaluate::Parentheses<T>;
349   if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
350     if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
351       return Fortran::evaluate::IsVariable(parentheses->left());
352     return false;
353   } else {
354     return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
355                       expr.u);
356   }
357 }
358 
359 /// Does \p expr only refer to symbols that are mapped to IR values in \p symMap
360 /// ?
361 static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr,
362                                          Fortran::lower::SymMap &symMap) {
363   for (const auto &sym : Fortran::evaluate::CollectSymbols(expr))
364     if (!symMap.lookupSymbol(sym))
365       return false;
366   return true;
367 }
368 
369 /// Generate a load of a value from an address. Beware that this will lose
370 /// any dynamic type information for polymorphic entities (note that unlimited
371 /// polymorphic cannot be loaded and must not be provided here).
372 static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
373                                   mlir::Location loc,
374                                   const fir::ExtendedValue &addr) {
375   return addr.match(
376       [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
377       [&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
378         if (fir::unwrapRefType(fir::getBase(v).getType())
379                 .isa<fir::RecordType>())
380           return v;
381         return builder.create<fir::LoadOp>(loc, fir::getBase(v));
382       },
383       [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
384         return genLoad(builder, loc,
385                        fir::factory::genMutableBoxRead(builder, loc, box));
386       },
387       [&](const fir::BoxValue &box) -> fir::ExtendedValue {
388         if (box.isUnlimitedPolymorphic())
389           fir::emitFatalError(
390               loc,
391               "lowering attempting to load an unlimited polymorphic entity");
392         return genLoad(builder, loc,
393                        fir::factory::readBoxValue(builder, loc, box));
394       },
395       [&](const auto &) -> fir::ExtendedValue {
396         fir::emitFatalError(
397             loc, "attempting to load whole array or procedure address");
398       });
399 }
400 
401 /// Create an optional dummy argument value from entity \p exv that may be
402 /// absent. This can only be called with numerical or logical scalar \p exv.
403 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
404 /// value is zero (or false), otherwise it is the value of \p exv.
405 static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
406                                            mlir::Location loc,
407                                            const fir::ExtendedValue &exv,
408                                            mlir::Value isPresent) {
409   mlir::Type eleType = fir::getBaseTypeOf(exv);
410   assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
411          "must be a numerical or logical scalar");
412   return builder
413       .genIfOp(loc, {eleType}, isPresent,
414                /*withElseRegion=*/true)
415       .genThen([&]() {
416         mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
417         builder.create<fir::ResultOp>(loc, val);
418       })
419       .genElse([&]() {
420         mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
421         builder.create<fir::ResultOp>(loc, zero);
422       })
423       .getResults()[0];
424 }
425 
426 /// Create an optional dummy argument address from entity \p exv that may be
427 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
428 /// returned value is a null pointer, otherwise it is the address of \p exv.
429 static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
430                                           mlir::Location loc,
431                                           const fir::ExtendedValue &exv,
432                                           mlir::Value isPresent) {
433   // If it is an exv pointer/allocatable, then it cannot be absent
434   // because it is passed to a non-pointer/non-allocatable.
435   if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
436     return fir::factory::genMutableBoxRead(builder, loc, *box);
437   // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
438   // address and can be passed directly.
439   return exv;
440 }
441 
442 /// Create an optional dummy argument address from entity \p exv that may be
443 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
444 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p
445 /// exv.
446 static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
447                                          mlir::Location loc,
448                                          const fir::ExtendedValue &exv,
449                                          mlir::Value isPresent) {
450   // Non allocatable/pointer optional box -> simply forward
451   if (exv.getBoxOf<fir::BoxValue>())
452     return exv;
453 
454   fir::ExtendedValue newExv = exv;
455   // Optional allocatable/pointer -> Cannot be absent, but need to translate
456   // unallocated/diassociated into absent fir.box.
457   if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
458     newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
459 
460   // createBox will not do create any invalid memory dereferences if exv is
461   // absent. The created fir.box will not be usable, but the SelectOp below
462   // ensures it won't be.
463   mlir::Value box = builder.createBox(loc, newExv);
464   mlir::Type boxType = box.getType();
465   auto absent = builder.create<fir::AbsentOp>(loc, boxType);
466   auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
467       loc, boxType, isPresent, box, absent);
468   return fir::BoxValue(boxOrAbsent);
469 }
470 
471 /// Is this a call to an elemental procedure with at least one array argument?
472 static bool
473 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
474   if (procRef.IsElemental())
475     for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
476          procRef.arguments())
477       if (arg && arg->Rank() != 0)
478         return true;
479   return false;
480 }
481 template <typename T>
482 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
483   return false;
484 }
485 template <>
486 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
487   if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
488     return isElementalProcWithArrayArgs(*procRef);
489   return false;
490 }
491 
492 /// Some auxiliary data for processing initialization in ScalarExprLowering
493 /// below. This is currently used for generating dense attributed global
494 /// arrays.
495 struct InitializerData {
496   explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {}
497   llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values
498   mlir::Type rawType; // Type of elements processed for rawVals vector.
499   bool genRawVals;    // generate the rawVals vector if set.
500 };
501 
502 /// If \p arg is the address of a function with a denoted host-association tuple
503 /// argument, then return the host-associations tuple value of the current
504 /// procedure. Otherwise, return nullptr.
505 static mlir::Value
506 argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
507                    mlir::Value arg) {
508   if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
509     auto &builder = converter.getFirOpBuilder();
510     if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
511       if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
512         return converter.hostAssocTupleValue();
513   }
514   return {};
515 }
516 
517 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
518 /// \p funcAddr argument to a boxproc value, with the host-association as
519 /// required. Call the factory function to finish creating the tuple value.
520 static mlir::Value
521 createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter,
522                        mlir::Type argTy, mlir::Value funcAddr,
523                        mlir::Value charLen) {
524   auto boxTy =
525       argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>();
526   mlir::Location loc = converter.getCurrentLocation();
527   auto &builder = converter.getFirOpBuilder();
528   auto boxProc = [&]() -> mlir::Value {
529     if (auto host = argumentHostAssocs(converter, funcAddr))
530       return builder.create<fir::EmboxProcOp>(
531           loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host});
532     return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr);
533   }();
534   return fir::factory::createCharacterProcedureTuple(builder, loc, argTy,
535                                                      boxProc, charLen);
536 }
537 
538 /// Given an optional fir.box, returns an fir.box that is the original one if
539 /// it is present and it otherwise an unallocated box.
540 /// Absent fir.box are implemented as a null pointer descriptor. Generated
541 /// code may need to unconditionally read a fir.box that can be absent.
542 /// This helper allows creating a fir.box that can be read in all cases
543 /// outside of a fir.if (isPresent) region. However, the usages of the value
544 /// read from such box should still only be done in a fir.if(isPresent).
545 static fir::ExtendedValue
546 absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
547                           const fir::ExtendedValue &exv,
548                           mlir::Value isPresent) {
549   mlir::Value box = fir::getBase(exv);
550   mlir::Type boxType = box.getType();
551   assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
552   mlir::Value emptyBox =
553       fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
554   auto safeToReadBox =
555       builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
556   return fir::substBase(exv, safeToReadBox);
557 }
558 
559 // Helper to get the ultimate first symbol. This works around the fact that
560 // symbol resolution in the front end doesn't always resolve a symbol to its
561 // ultimate symbol but may leave placeholder indirections for use and host
562 // associations.
563 template <typename A>
564 const Fortran::semantics::Symbol &getFirstSym(const A &obj) {
565   return obj.GetFirstSymbol().GetUltimate();
566 }
567 
568 // Helper to get the ultimate last symbol.
569 template <typename A>
570 const Fortran::semantics::Symbol &getLastSym(const A &obj) {
571   return obj.GetLastSymbol().GetUltimate();
572 }
573 
574 static bool
575 isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
576   const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
577   if (!symbol)
578     return false;
579   const Fortran::semantics::Symbol *module =
580       symbol->GetUltimate().owner().GetSymbol();
581   return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
582 }
583 
584 namespace {
585 
586 /// Lowering of Fortran::evaluate::Expr<T> expressions
587 class ScalarExprLowering {
588 public:
589   using ExtValue = fir::ExtendedValue;
590 
591   explicit ScalarExprLowering(mlir::Location loc,
592                               Fortran::lower::AbstractConverter &converter,
593                               Fortran::lower::SymMap &symMap,
594                               Fortran::lower::StatementContext &stmtCtx,
595                               InitializerData *initializer = nullptr)
596       : location{loc}, converter{converter},
597         builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
598         inInitializer{initializer} {}
599 
600   ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
601     return gen(expr);
602   }
603 
604   /// Lower `expr` to be passed as a fir.box argument. Do not create a temp
605   /// for the expr if it is a variable that can be described as a fir.box.
606   ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
607     bool saveUseBoxArg = useBoxArg;
608     useBoxArg = true;
609     ExtValue result = gen(expr);
610     useBoxArg = saveUseBoxArg;
611     return result;
612   }
613 
614   ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
615     return genval(expr);
616   }
617 
618   /// Lower an expression that is a pointer or an allocatable to a
619   /// MutableBoxValue.
620   fir::MutableBoxValue
621   genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
622     // Pointers and allocatables can only be:
623     //    - a simple designator "x"
624     //    - a component designator "a%b(i,j)%x"
625     //    - a function reference "foo()"
626     //    - result of NULL() or NULL(MOLD) intrinsic.
627     //    NULL() requires some context to be lowered, so it is not handled
628     //    here and must be lowered according to the context where it appears.
629     ExtValue exv = std::visit(
630         [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
631     const fir::MutableBoxValue *mutableBox =
632         exv.getBoxOf<fir::MutableBoxValue>();
633     if (!mutableBox)
634       fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
635     return *mutableBox;
636   }
637 
638   template <typename T>
639   ExtValue genMutableBoxValueImpl(const T &) {
640     // NULL() case should not be handled here.
641     fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
642   }
643 
644   /// A `NULL()` in a position where a mutable box is expected has the same
645   /// semantics as an absent optional box value.
646   ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) {
647     mlir::Location loc = getLoc();
648     auto nullConst = builder.createNullConstant(loc);
649     auto noneTy = mlir::NoneType::get(builder.getContext());
650     auto polyRefTy = fir::LLVMPointerType::get(noneTy);
651     // MutableBoxValue will dereference the box, so create a bogus temporary for
652     // the `nullptr`. The LLVM optimizer will garbage collect the temp.
653     auto temp =
654         builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{});
655     auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst);
656     builder.create<fir::StoreOp>(loc, nullPtr, temp);
657     auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy));
658     return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp),
659                                 /*lenParameters=*/mlir::ValueRange{},
660                                 /*mutableProperties=*/{});
661   }
662 
663   template <typename T>
664   ExtValue
665   genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
666     return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
667   }
668 
669   template <typename T>
670   ExtValue
671   genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
672     return std::visit(
673         Fortran::common::visitors{
674             [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
675               return symMap.lookupSymbol(*sym).toExtendedValue();
676             },
677             [&](const Fortran::evaluate::Component &comp) -> ExtValue {
678               return genComponent(comp);
679             },
680             [&](const auto &) -> ExtValue {
681               fir::emitFatalError(getLoc(),
682                                   "not an allocatable or pointer designator");
683             }},
684         designator.u);
685   }
686 
687   template <typename T>
688   ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
689     return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
690                       expr.u);
691   }
692 
693   mlir::Location getLoc() { return location; }
694 
695   template <typename A>
696   mlir::Value genunbox(const A &expr) {
697     ExtValue e = genval(expr);
698     if (const fir::UnboxedValue *r = e.getUnboxed())
699       return *r;
700     fir::emitFatalError(getLoc(), "unboxed expression expected");
701   }
702 
703   /// Generate an integral constant of `value`
704   template <int KIND>
705   mlir::Value genIntegerConstant(mlir::MLIRContext *context,
706                                  std::int64_t value) {
707     mlir::Type type =
708         converter.genType(Fortran::common::TypeCategory::Integer, KIND);
709     return builder.createIntegerConstant(getLoc(), type, value);
710   }
711 
712   /// Generate a logical/boolean constant of `value`
713   mlir::Value genBoolConstant(bool value) {
714     return builder.createBool(getLoc(), value);
715   }
716 
717   /// Generate a real constant with a value `value`.
718   template <int KIND>
719   mlir::Value genRealConstant(mlir::MLIRContext *context,
720                               const llvm::APFloat &value) {
721     mlir::Type fltTy = Fortran::lower::convertReal(context, KIND);
722     return builder.createRealConstant(getLoc(), fltTy, value);
723   }
724 
725   mlir::Type getSomeKindInteger() { return builder.getIndexType(); }
726 
727   mlir::func::FuncOp getFunction(llvm::StringRef name,
728                                  mlir::FunctionType funTy) {
729     if (mlir::func::FuncOp func = builder.getNamedFunction(name))
730       return func;
731     return builder.createFunction(getLoc(), name, funTy);
732   }
733 
734   template <typename OpTy>
735   mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
736                               const ExtValue &left, const ExtValue &right) {
737     if (const fir::UnboxedValue *lhs = left.getUnboxed())
738       if (const fir::UnboxedValue *rhs = right.getUnboxed())
739         return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
740     fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
741   }
742   template <typename OpTy, typename A>
743   mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
744     ExtValue left = genval(ex.left());
745     return createCompareOp<OpTy>(pred, left, genval(ex.right()));
746   }
747 
748   template <typename OpTy>
749   mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
750                              const ExtValue &left, const ExtValue &right) {
751     if (const fir::UnboxedValue *lhs = left.getUnboxed())
752       if (const fir::UnboxedValue *rhs = right.getUnboxed())
753         return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
754     fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
755   }
756   template <typename OpTy, typename A>
757   mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
758     ExtValue left = genval(ex.left());
759     return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
760   }
761 
762   /// Create a call to the runtime to compare two CHARACTER values.
763   /// Precondition: This assumes that the two values have `fir.boxchar` type.
764   mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred,
765                                 const ExtValue &left, const ExtValue &right) {
766     return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right);
767   }
768 
769   template <typename A>
770   mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) {
771     ExtValue left = genval(ex.left());
772     return createCharCompare(pred, left, genval(ex.right()));
773   }
774 
775   /// Returns a reference to a symbol or its box/boxChar descriptor if it has
776   /// one.
777   ExtValue gen(Fortran::semantics::SymbolRef sym) {
778     if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym))
779       return val.match(
780           [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) {
781             return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr);
782           },
783           [&val](auto &) { return val.toExtendedValue(); });
784     LLVM_DEBUG(llvm::dbgs()
785                << "unknown symbol: " << sym << "\nmap: " << symMap << '\n');
786     fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value");
787   }
788 
789   ExtValue genLoad(const ExtValue &exv) {
790     return ::genLoad(builder, getLoc(), exv);
791   }
792 
793   ExtValue genval(Fortran::semantics::SymbolRef sym) {
794     mlir::Location loc = getLoc();
795     ExtValue var = gen(sym);
796     if (const fir::UnboxedValue *s = var.getUnboxed())
797       if (fir::isa_ref_type(s->getType())) {
798         // A function with multiple entry points returning different types
799         // tags all result variables with one of the largest types to allow
800         // them to share the same storage.  A reference to a result variable
801         // of one of the other types requires conversion to the actual type.
802         fir::UnboxedValue addr = *s;
803         if (Fortran::semantics::IsFunctionResult(sym)) {
804           mlir::Type resultType = converter.genType(*sym);
805           if (addr.getType() != resultType)
806             addr = builder.createConvert(loc, builder.getRefType(resultType),
807                                          addr);
808         }
809         return genLoad(addr);
810       }
811     return var;
812   }
813 
814   ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
815     TODO(getLoc(), "BOZ");
816   }
817 
818   /// Return indirection to function designated in ProcedureDesignator.
819   /// The type of the function indirection is not guaranteed to match the one
820   /// of the ProcedureDesignator due to Fortran implicit typing rules.
821   ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
822     mlir::Location loc = getLoc();
823     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
824             proc.GetSpecificIntrinsic()) {
825       mlir::FunctionType signature =
826           Fortran::lower::translateSignature(proc, converter);
827       // Intrinsic lowering is based on the generic name, so retrieve it here in
828       // case it is different from the specific name. The type of the specific
829       // intrinsic is retained in the signature.
830       std::string genericName =
831           converter.getFoldingContext().intrinsics().GetGenericIntrinsicName(
832               intrinsic->name);
833       mlir::SymbolRefAttr symbolRefAttr =
834           Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr(
835               builder, loc, genericName, signature);
836       mlir::Value funcPtr =
837           builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr);
838       return funcPtr;
839     }
840     const Fortran::semantics::Symbol *symbol = proc.GetSymbol();
841     assert(symbol && "expected symbol in ProcedureDesignator");
842     mlir::Value funcPtr;
843     mlir::Value funcPtrResultLength;
844     if (Fortran::semantics::IsDummy(*symbol)) {
845       Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol);
846       assert(val && "Dummy procedure not in symbol map");
847       funcPtr = val.getAddr();
848       if (fir::isCharacterProcedureTuple(funcPtr.getType(),
849                                          /*acceptRawFunc=*/false))
850         std::tie(funcPtr, funcPtrResultLength) =
851             fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr);
852     } else {
853       std::string name = converter.mangleName(*symbol);
854       mlir::func::FuncOp func =
855           Fortran::lower::getOrDeclareFunction(name, proc, converter);
856       // Abstract results require later rewrite of the function type.
857       // This currently does not happen inside GloalOps, causing LLVM
858       // IR verification failure. This helper is only here to catch these
859       // cases and emit a TODOs for now.
860       if (inInitializer && fir::hasAbstractResult(func.getFunctionType()))
861         TODO(converter.genLocation(symbol->name()),
862              "static description of non trivial procedure bindings");
863       funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(),
864                                               builder.getSymbolRefAttr(name));
865     }
866     if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) {
867       // The result length, if available here, must be propagated along the
868       // procedure address so that call sites where the result length is assumed
869       // can retrieve the length.
870       Fortran::evaluate::DynamicType resultType = proc.GetType().value();
871       if (const auto &lengthExpr = resultType.GetCharLength()) {
872         // The length expression may refer to dummy argument symbols that are
873         // meaningless without any actual arguments. Leave the length as
874         // unknown in that case, it be resolved on the call site
875         // with the actual arguments.
876         if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) {
877           mlir::Value rawLen = fir::getBase(genval(*lengthExpr));
878           // F2018 7.4.4.2 point 5.
879           funcPtrResultLength =
880               fir::factory::genMaxWithZero(builder, getLoc(), rawLen);
881         }
882       }
883       if (!funcPtrResultLength)
884         funcPtrResultLength = builder.createIntegerConstant(
885             loc, builder.getCharacterLengthType(), -1);
886       return fir::CharBoxValue{funcPtr, funcPtrResultLength};
887     }
888     return funcPtr;
889   }
890   ExtValue genval(const Fortran::evaluate::NullPointer &) {
891     return builder.createNullConstant(getLoc());
892   }
893 
894   static bool
895   isDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) {
896     if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
897       if (const Fortran::semantics::DerivedTypeSpec *derived =
898               declTy->AsDerived())
899         return Fortran::semantics::CountLenParameters(*derived) > 0;
900     return false;
901   }
902 
903   static bool isBuiltinCPtr(const Fortran::semantics::Symbol &sym) {
904     if (const Fortran::semantics::DeclTypeSpec *declType = sym.GetType())
905       if (const Fortran::semantics::DerivedTypeSpec *derived =
906               declType->AsDerived())
907         return Fortran::semantics::IsIsoCType(derived);
908     return false;
909   }
910 
911   /// Lower structure constructor without a temporary. This can be used in
912   /// fir::GloablOp, and assumes that the structure component is a constant.
913   ExtValue genStructComponentInInitializer(
914       const Fortran::evaluate::StructureConstructor &ctor) {
915     mlir::Location loc = getLoc();
916     mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
917     auto recTy = ty.cast<fir::RecordType>();
918     auto fieldTy = fir::FieldType::get(ty.getContext());
919     mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);
920 
921     for (const auto &[sym, expr] : ctor.values()) {
922       // Parent components need more work because they do not appear in the
923       // fir.rec type.
924       if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
925         TODO(loc, "parent component in structure constructor");
926 
927       llvm::StringRef name = toStringRef(sym->name());
928       mlir::Type componentTy = recTy.getType(name);
929       // FIXME: type parameters must come from the derived-type-spec
930       auto field = builder.create<fir::FieldIndexOp>(
931           loc, fieldTy, name, ty,
932           /*typeParams=*/mlir::ValueRange{} /*TODO*/);
933 
934       if (Fortran::semantics::IsAllocatable(sym))
935         TODO(loc, "allocatable component in structure constructor");
936 
937       if (Fortran::semantics::IsPointer(sym)) {
938         mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
939             converter, loc, componentTy, expr.value());
940         res = builder.create<fir::InsertValueOp>(
941             loc, recTy, res, initialTarget,
942             builder.getArrayAttr(field.getAttributes()));
943         continue;
944       }
945 
946       if (isDerivedTypeWithLengthParameters(sym))
947         TODO(loc, "component with length parameters in structure constructor");
948 
949       if (isBuiltinCPtr(sym)) {
950         // Builtin c_ptr and c_funptr have special handling because initial
951         // value are handled for them as an extension.
952         mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
953             converter, loc, expr.value()));
954         if (addr.getType() == componentTy) {
955           // Do nothing. The Ev::Expr was returned as a value that can be
956           // inserted directly to the component without an intermediary.
957         } else {
958           // The Ev::Expr returned is an initializer that is a pointer (e.g.,
959           // null) that must be inserted into an intermediate cptr record
960           // value's address field, which ought to be an intptr_t on the target.
961           assert((fir::isa_ref_type(addr.getType()) ||
962                   addr.getType().isa<mlir::FunctionType>()) &&
963                  "expect reference type for address field");
964           assert(fir::isa_derived(componentTy) &&
965                  "expect C_PTR, C_FUNPTR to be a record");
966           auto cPtrRecTy = componentTy.cast<fir::RecordType>();
967           llvm::StringRef addrFieldName =
968               Fortran::lower::builtin::cptrFieldName;
969           mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
970           auto addrField = builder.create<fir::FieldIndexOp>(
971               loc, fieldTy, addrFieldName, componentTy,
972               /*typeParams=*/mlir::ValueRange{});
973           mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
974           auto undef = builder.create<fir::UndefOp>(loc, componentTy);
975           addr = builder.create<fir::InsertValueOp>(
976               loc, componentTy, undef, castAddr,
977               builder.getArrayAttr(addrField.getAttributes()));
978         }
979         res = builder.create<fir::InsertValueOp>(
980             loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
981         continue;
982       }
983 
984       mlir::Value val = fir::getBase(genval(expr.value()));
985       assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
986       mlir::Value castVal = builder.createConvert(loc, componentTy, val);
987       res = builder.create<fir::InsertValueOp>(
988           loc, recTy, res, castVal,
989           builder.getArrayAttr(field.getAttributes()));
990     }
991     return res;
992   }
993 
994   /// A structure constructor is lowered two ways. In an initializer context,
995   /// the entire structure must be constant, so the aggregate value is
996   /// constructed inline. This allows it to be the body of a GlobalOp.
997   /// Otherwise, the structure constructor is in an expression. In that case, a
998   /// temporary object is constructed in the stack frame of the procedure.
999   ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
1000     if (inInitializer)
1001       return genStructComponentInInitializer(ctor);
1002     mlir::Location loc = getLoc();
1003     mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
1004     auto recTy = ty.cast<fir::RecordType>();
1005     auto fieldTy = fir::FieldType::get(ty.getContext());
1006     mlir::Value res = builder.createTemporary(loc, recTy);
1007 
1008     for (const auto &value : ctor.values()) {
1009       const Fortran::semantics::Symbol &sym = *value.first;
1010       const Fortran::lower::SomeExpr &expr = value.second.value();
1011       // Parent components need more work because they do not appear in the
1012       // fir.rec type.
1013       if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp))
1014         TODO(loc, "parent component in structure constructor");
1015 
1016       if (isDerivedTypeWithLengthParameters(sym))
1017         TODO(loc, "component with length parameters in structure constructor");
1018 
1019       llvm::StringRef name = toStringRef(sym.name());
1020       // FIXME: type parameters must come from the derived-type-spec
1021       mlir::Value field = builder.create<fir::FieldIndexOp>(
1022           loc, fieldTy, name, ty,
1023           /*typeParams=*/mlir::ValueRange{} /*TODO*/);
1024       mlir::Type coorTy = builder.getRefType(recTy.getType(name));
1025       auto coor = builder.create<fir::CoordinateOp>(loc, coorTy,
1026                                                     fir::getBase(res), field);
1027       ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor);
1028       to.match(
1029           [&](const fir::UnboxedValue &toPtr) {
1030             ExtValue value = genval(expr);
1031             fir::factory::genScalarAssignment(builder, loc, to, value);
1032           },
1033           [&](const fir::CharBoxValue &) {
1034             ExtValue value = genval(expr);
1035             fir::factory::genScalarAssignment(builder, loc, to, value);
1036           },
1037           [&](const fir::ArrayBoxValue &) {
1038             Fortran::lower::createSomeArrayAssignment(converter, to, expr,
1039                                                       symMap, stmtCtx);
1040           },
1041           [&](const fir::CharArrayBoxValue &) {
1042             Fortran::lower::createSomeArrayAssignment(converter, to, expr,
1043                                                       symMap, stmtCtx);
1044           },
1045           [&](const fir::BoxValue &toBox) {
1046             fir::emitFatalError(loc, "derived type components must not be "
1047                                      "represented by fir::BoxValue");
1048           },
1049           [&](const fir::MutableBoxValue &toBox) {
1050             if (toBox.isPointer()) {
1051               Fortran::lower::associateMutableBox(
1052                   converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx);
1053               return;
1054             }
1055             // For allocatable components, a deep copy is needed.
1056             TODO(loc, "allocatable components in derived type assignment");
1057           },
1058           [&](const fir::ProcBoxValue &toBox) {
1059             TODO(loc, "procedure pointer component in derived type assignment");
1060           });
1061     }
1062     return res;
1063   }
1064 
1065   /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
1066   ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
1067     return converter.impliedDoBinding(toStringRef(var.name));
1068   }
1069 
1070   ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
1071     ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base()))
1072                                           : gen(desc.base().GetComponent());
1073     mlir::IndexType idxTy = builder.getIndexType();
1074     mlir::Location loc = getLoc();
1075     auto castResult = [&](mlir::Value v) {
1076       using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
1077       return builder.createConvert(
1078           loc, converter.genType(ResTy::category, ResTy::kind), v);
1079     };
1080     switch (desc.field()) {
1081     case Fortran::evaluate::DescriptorInquiry::Field::Len:
1082       return castResult(fir::factory::readCharLen(builder, loc, exv));
1083     case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
1084       return castResult(fir::factory::readLowerBound(
1085           builder, loc, exv, desc.dimension(),
1086           builder.createIntegerConstant(loc, idxTy, 1)));
1087     case Fortran::evaluate::DescriptorInquiry::Field::Extent:
1088       return castResult(
1089           fir::factory::readExtent(builder, loc, exv, desc.dimension()));
1090     case Fortran::evaluate::DescriptorInquiry::Field::Rank:
1091       TODO(loc, "rank inquiry on assumed rank");
1092     case Fortran::evaluate::DescriptorInquiry::Field::Stride:
1093       // So far the front end does not generate this inquiry.
1094       TODO(loc, "stride inquiry");
1095     }
1096     llvm_unreachable("unknown descriptor inquiry");
1097   }
1098 
1099   ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
1100     TODO(getLoc(), "type parameter inquiry");
1101   }
1102 
1103   mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) {
1104     return fir::factory::Complex{builder, getLoc()}.extractComplexPart(
1105         cplx, isImagPart);
1106   }
1107 
1108   template <int KIND>
1109   ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
1110     return extractComplexPart(genunbox(part.left()), part.isImaginaryPart);
1111   }
1112 
1113   template <int KIND>
1114   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1115                       Fortran::common::TypeCategory::Integer, KIND>> &op) {
1116     mlir::Value input = genunbox(op.left());
1117     // Like LLVM, integer negation is the binary op "0 - value"
1118     mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
1119     return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
1120   }
1121   template <int KIND>
1122   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1123                       Fortran::common::TypeCategory::Real, KIND>> &op) {
1124     return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
1125   }
1126   template <int KIND>
1127   ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
1128                       Fortran::common::TypeCategory::Complex, KIND>> &op) {
1129     return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
1130   }
1131 
1132   template <typename OpTy>
1133   mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
1134     assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
1135     mlir::Value lhs = fir::getBase(left);
1136     mlir::Value rhs = fir::getBase(right);
1137     assert(lhs.getType() == rhs.getType() && "types must be the same");
1138     return builder.create<OpTy>(getLoc(), lhs, rhs);
1139   }
1140 
1141   template <typename OpTy, typename A>
1142   mlir::Value createBinaryOp(const A &ex) {
1143     ExtValue left = genval(ex.left());
1144     return createBinaryOp<OpTy>(left, genval(ex.right()));
1145   }
1146 
1147 #undef GENBIN
1148 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
1149   template <int KIND>                                                          \
1150   ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
1151                       Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
1152     return createBinaryOp<GenBinFirOp>(x);                                     \
1153   }
1154 
1155   GENBIN(Add, Integer, mlir::arith::AddIOp)
1156   GENBIN(Add, Real, mlir::arith::AddFOp)
1157   GENBIN(Add, Complex, fir::AddcOp)
1158   GENBIN(Subtract, Integer, mlir::arith::SubIOp)
1159   GENBIN(Subtract, Real, mlir::arith::SubFOp)
1160   GENBIN(Subtract, Complex, fir::SubcOp)
1161   GENBIN(Multiply, Integer, mlir::arith::MulIOp)
1162   GENBIN(Multiply, Real, mlir::arith::MulFOp)
1163   GENBIN(Multiply, Complex, fir::MulcOp)
1164   GENBIN(Divide, Integer, mlir::arith::DivSIOp)
1165   GENBIN(Divide, Real, mlir::arith::DivFOp)
1166   GENBIN(Divide, Complex, fir::DivcOp)
1167 
1168   template <Fortran::common::TypeCategory TC, int KIND>
1169   ExtValue genval(
1170       const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
1171     mlir::Type ty = converter.genType(TC, KIND);
1172     mlir::Value lhs = genunbox(op.left());
1173     mlir::Value rhs = genunbox(op.right());
1174     return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
1175   }
1176 
1177   template <Fortran::common::TypeCategory TC, int KIND>
1178   ExtValue genval(
1179       const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
1180           &op) {
1181     mlir::Type ty = converter.genType(TC, KIND);
1182     mlir::Value lhs = genunbox(op.left());
1183     mlir::Value rhs = genunbox(op.right());
1184     return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
1185   }
1186 
1187   template <int KIND>
1188   ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
1189     mlir::Value realPartValue = genunbox(op.left());
1190     return fir::factory::Complex{builder, getLoc()}.createComplex(
1191         KIND, realPartValue, genunbox(op.right()));
1192   }
1193 
1194   template <int KIND>
1195   ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
1196     ExtValue lhs = genval(op.left());
1197     ExtValue rhs = genval(op.right());
1198     const fir::CharBoxValue *lhsChar = lhs.getCharBox();
1199     const fir::CharBoxValue *rhsChar = rhs.getCharBox();
1200     if (lhsChar && rhsChar)
1201       return fir::factory::CharacterExprHelper{builder, getLoc()}
1202           .createConcatenate(*lhsChar, *rhsChar);
1203     TODO(getLoc(), "character array concatenate");
1204   }
1205 
1206   /// MIN and MAX operations
1207   template <Fortran::common::TypeCategory TC, int KIND>
1208   ExtValue
1209   genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
1210              &op) {
1211     mlir::Value lhs = genunbox(op.left());
1212     mlir::Value rhs = genunbox(op.right());
1213     switch (op.ordering) {
1214     case Fortran::evaluate::Ordering::Greater:
1215       return Fortran::lower::genMax(builder, getLoc(),
1216                                     llvm::ArrayRef<mlir::Value>{lhs, rhs});
1217     case Fortran::evaluate::Ordering::Less:
1218       return Fortran::lower::genMin(builder, getLoc(),
1219                                     llvm::ArrayRef<mlir::Value>{lhs, rhs});
1220     case Fortran::evaluate::Ordering::Equal:
1221       llvm_unreachable("Equal is not a valid ordering in this context");
1222     }
1223     llvm_unreachable("unknown ordering");
1224   }
1225 
1226   // Change the dynamic length information without actually changing the
1227   // underlying character storage.
1228   fir::ExtendedValue
1229   replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar,
1230                                mlir::Value newLenValue) {
1231     mlir::Location loc = getLoc();
1232     const fir::CharBoxValue *charBox = scalarChar.getCharBox();
1233     if (!charBox)
1234       fir::emitFatalError(loc, "expected scalar character");
1235     mlir::Value charAddr = charBox->getAddr();
1236     auto charType =
1237         fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>();
1238     if (charType.hasConstantLen()) {
1239       // Erase previous constant length from the base type.
1240       fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen();
1241       mlir::Type newCharTy = fir::CharacterType::get(
1242           builder.getContext(), charType.getFKind(), newLen);
1243       mlir::Type newType = fir::ReferenceType::get(newCharTy);
1244       charAddr = builder.createConvert(loc, newType, charAddr);
1245       return fir::CharBoxValue{charAddr, newLenValue};
1246     }
1247     return fir::CharBoxValue{charAddr, newLenValue};
1248   }
1249 
1250   template <int KIND>
1251   ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
1252     mlir::Value newLenValue = genunbox(x.right());
1253     fir::ExtendedValue lhs = gen(x.left());
1254     return replaceScalarCharacterLength(lhs, newLenValue);
1255   }
1256 
1257   template <int KIND>
1258   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1259                       Fortran::common::TypeCategory::Integer, KIND>> &op) {
1260     return createCompareOp<mlir::arith::CmpIOp>(op,
1261                                                 translateRelational(op.opr));
1262   }
1263   template <int KIND>
1264   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1265                       Fortran::common::TypeCategory::Real, KIND>> &op) {
1266     return createFltCmpOp<mlir::arith::CmpFOp>(
1267         op, translateFloatRelational(op.opr));
1268   }
1269   template <int KIND>
1270   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1271                       Fortran::common::TypeCategory::Complex, KIND>> &op) {
1272     return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr));
1273   }
1274   template <int KIND>
1275   ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
1276                       Fortran::common::TypeCategory::Character, KIND>> &op) {
1277     return createCharCompare(op, translateRelational(op.opr));
1278   }
1279 
1280   ExtValue
1281   genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
1282     return std::visit([&](const auto &x) { return genval(x); }, op.u);
1283   }
1284 
1285   template <Fortran::common::TypeCategory TC1, int KIND,
1286             Fortran::common::TypeCategory TC2>
1287   ExtValue
1288   genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
1289                                           TC2> &convert) {
1290     mlir::Type ty = converter.genType(TC1, KIND);
1291     auto fromExpr = genval(convert.left());
1292     auto loc = getLoc();
1293     return fromExpr.match(
1294         [&](const fir::CharBoxValue &boxchar) -> ExtValue {
1295           if constexpr (TC1 == Fortran::common::TypeCategory::Character &&
1296                         TC2 == TC1) {
1297             // Use char_convert. Each code point is translated from a
1298             // narrower/wider encoding to the target encoding. For example, 'A'
1299             // may be translated from 0x41 : i8 to 0x0041 : i16. The symbol
1300             // for euro (0x20AC : i16) may be translated from a wide character
1301             // to "0xE2 0x82 0xAC" : UTF-8.
1302             mlir::Value bufferSize = boxchar.getLen();
1303             auto kindMap = builder.getKindMap();
1304             mlir::Value boxCharAddr = boxchar.getAddr();
1305             auto fromTy = boxCharAddr.getType();
1306             if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) {
1307               // boxchar is a value, not a variable. Turn it into a temporary.
1308               // As a value, it ought to have a constant LEN value.
1309               assert(charTy.hasConstantLen() && "must have constant length");
1310               mlir::Value tmp = builder.createTemporary(loc, charTy);
1311               builder.create<fir::StoreOp>(loc, boxCharAddr, tmp);
1312               boxCharAddr = tmp;
1313             }
1314             auto fromBits =
1315                 kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy)
1316                                                 .cast<fir::CharacterType>()
1317                                                 .getFKind());
1318             auto toBits = kindMap.getCharacterBitsize(
1319                 ty.cast<fir::CharacterType>().getFKind());
1320             if (toBits < fromBits) {
1321               // Scale by relative ratio to give a buffer of the same length.
1322               auto ratio = builder.createIntegerConstant(
1323                   loc, bufferSize.getType(), fromBits / toBits);
1324               bufferSize =
1325                   builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio);
1326             }
1327             auto dest = builder.create<fir::AllocaOp>(
1328                 loc, ty, mlir::ValueRange{bufferSize});
1329             builder.create<fir::CharConvertOp>(loc, boxCharAddr,
1330                                                boxchar.getLen(), dest);
1331             return fir::CharBoxValue{dest, boxchar.getLen()};
1332           } else {
1333             fir::emitFatalError(
1334                 loc, "unsupported evaluate::Convert between CHARACTER type "
1335                      "category and non-CHARACTER category");
1336           }
1337         },
1338         [&](const fir::UnboxedValue &value) -> ExtValue {
1339           return builder.convertWithSemantics(loc, ty, value);
1340         },
1341         [&](auto &) -> ExtValue {
1342           fir::emitFatalError(loc, "unsupported evaluate::Convert");
1343         });
1344   }
1345 
1346   template <typename A>
1347   ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
1348     ExtValue input = genval(op.left());
1349     mlir::Value base = fir::getBase(input);
1350     mlir::Value newBase =
1351         builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base);
1352     return fir::substBase(input, newBase);
1353   }
1354 
1355   template <int KIND>
1356   ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
1357     mlir::Value logical = genunbox(op.left());
1358     mlir::Value one = genBoolConstant(true);
1359     mlir::Value val =
1360         builder.createConvert(getLoc(), builder.getI1Type(), logical);
1361     return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
1362   }
1363 
1364   template <int KIND>
1365   ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
1366     mlir::IntegerType i1Type = builder.getI1Type();
1367     mlir::Value slhs = genunbox(op.left());
1368     mlir::Value srhs = genunbox(op.right());
1369     mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
1370     mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
1371     switch (op.logicalOperator) {
1372     case Fortran::evaluate::LogicalOperator::And:
1373       return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
1374     case Fortran::evaluate::LogicalOperator::Or:
1375       return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
1376     case Fortran::evaluate::LogicalOperator::Eqv:
1377       return createCompareOp<mlir::arith::CmpIOp>(
1378           mlir::arith::CmpIPredicate::eq, lhs, rhs);
1379     case Fortran::evaluate::LogicalOperator::Neqv:
1380       return createCompareOp<mlir::arith::CmpIOp>(
1381           mlir::arith::CmpIPredicate::ne, lhs, rhs);
1382     case Fortran::evaluate::LogicalOperator::Not:
1383       // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
1384       llvm_unreachable(".NOT. is not a binary operator");
1385     }
1386     llvm_unreachable("unhandled logical operation");
1387   }
1388 
1389   /// Convert a scalar literal constant to IR.
1390   template <Fortran::common::TypeCategory TC, int KIND>
1391   ExtValue genScalarLit(
1392       const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
1393           &value) {
1394     if constexpr (TC == Fortran::common::TypeCategory::Integer) {
1395       return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64());
1396     } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
1397       return genBoolConstant(value.IsTrue());
1398     } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
1399       std::string str = value.DumpHexadecimal();
1400       if constexpr (KIND == 2) {
1401         llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str};
1402         return genRealConstant<KIND>(builder.getContext(), floatVal);
1403       } else if constexpr (KIND == 3) {
1404         llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str};
1405         return genRealConstant<KIND>(builder.getContext(), floatVal);
1406       } else if constexpr (KIND == 4) {
1407         llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str};
1408         return genRealConstant<KIND>(builder.getContext(), floatVal);
1409       } else if constexpr (KIND == 10) {
1410         llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str};
1411         return genRealConstant<KIND>(builder.getContext(), floatVal);
1412       } else if constexpr (KIND == 16) {
1413         llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str};
1414         return genRealConstant<KIND>(builder.getContext(), floatVal);
1415       } else {
1416         // convert everything else to double
1417         llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str};
1418         return genRealConstant<KIND>(builder.getContext(), floatVal);
1419       }
1420     } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
1421       using TR =
1422           Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>;
1423       Fortran::evaluate::ComplexConstructor<KIND> ctor(
1424           Fortran::evaluate::Expr<TR>{
1425               Fortran::evaluate::Constant<TR>{value.REAL()}},
1426           Fortran::evaluate::Expr<TR>{
1427               Fortran::evaluate::Constant<TR>{value.AIMAG()}});
1428       return genunbox(ctor);
1429     } else /*constexpr*/ {
1430       llvm_unreachable("unhandled constant");
1431     }
1432   }
1433 
1434   /// Generate a raw literal value and store it in the rawVals vector.
1435   template <Fortran::common::TypeCategory TC, int KIND>
1436   void
1437   genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
1438                 &value) {
1439     mlir::Attribute val;
1440     assert(inInitializer != nullptr);
1441     if constexpr (TC == Fortran::common::TypeCategory::Integer) {
1442       inInitializer->rawType = converter.genType(TC, KIND);
1443       val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64());
1444     } else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
1445       inInitializer->rawType =
1446           converter.genType(Fortran::common::TypeCategory::Integer, KIND);
1447       val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue());
1448     } else if constexpr (TC == Fortran::common::TypeCategory::Real) {
1449       std::string str = value.DumpHexadecimal();
1450       inInitializer->rawType = converter.genType(TC, KIND);
1451       llvm::APFloat floatVal{builder.getKindMap().getFloatSemantics(KIND), str};
1452       val = builder.getFloatAttr(inInitializer->rawType, floatVal);
1453     } else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
1454       std::string strReal = value.REAL().DumpHexadecimal();
1455       std::string strImg = value.AIMAG().DumpHexadecimal();
1456       inInitializer->rawType = converter.genType(TC, KIND);
1457       llvm::APFloat realVal{builder.getKindMap().getFloatSemantics(KIND),
1458                             strReal};
1459       val = builder.getFloatAttr(inInitializer->rawType, realVal);
1460       inInitializer->rawVals.push_back(val);
1461       llvm::APFloat imgVal{builder.getKindMap().getFloatSemantics(KIND),
1462                            strImg};
1463       val = builder.getFloatAttr(inInitializer->rawType, imgVal);
1464     }
1465     inInitializer->rawVals.push_back(val);
1466   }
1467 
1468   /// Convert a scalar literal CHARACTER to IR.
1469   template <int KIND>
1470   ExtValue
1471   genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
1472                    Fortran::common::TypeCategory::Character, KIND>> &value,
1473                int64_t len) {
1474     using ET = typename std::decay_t<decltype(value)>::value_type;
1475     if constexpr (KIND == 1) {
1476       assert(value.size() == static_cast<std::uint64_t>(len));
1477       // Outline character constant in ro data if it is not in an initializer.
1478       if (!inInitializer)
1479         return fir::factory::createStringLiteral(builder, getLoc(), value);
1480       // When in an initializer context, construct the literal op itself and do
1481       // not construct another constant object in rodata.
1482       fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value);
1483       mlir::Value lenp = builder.createIntegerConstant(
1484           getLoc(), builder.getCharacterLengthType(), len);
1485       return fir::CharBoxValue{stringLit.getResult(), lenp};
1486     }
1487     fir::CharacterType type =
1488         fir::CharacterType::get(builder.getContext(), KIND, len);
1489     auto consLit = [&]() -> fir::StringLitOp {
1490       mlir::MLIRContext *context = builder.getContext();
1491       std::int64_t size = static_cast<std::int64_t>(value.size());
1492       mlir::ShapedType shape = mlir::RankedTensorType::get(
1493           llvm::ArrayRef<std::int64_t>{size},
1494           mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
1495       auto denseAttr = mlir::DenseElementsAttr::get(
1496           shape, llvm::ArrayRef<ET>{value.data(), value.size()});
1497       auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
1498       mlir::NamedAttribute dataAttr(denseTag, denseAttr);
1499       auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
1500       mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
1501       llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
1502       return builder.create<fir::StringLitOp>(
1503           getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs);
1504     };
1505 
1506     mlir::Value lenp = builder.createIntegerConstant(
1507         getLoc(), builder.getCharacterLengthType(), len);
1508     // When in an initializer context, construct the literal op itself and do
1509     // not construct another constant object in rodata.
1510     if (inInitializer)
1511       return fir::CharBoxValue{consLit().getResult(), lenp};
1512 
1513     // Otherwise, the string is in a plain old expression so "outline" the value
1514     // by hashconsing it to a constant literal object.
1515 
1516     auto size =
1517         converter.getKindMap().getCharacterBitsize(KIND) / 8 * value.size();
1518     llvm::StringRef strVal(reinterpret_cast<const char *>(value.c_str()), size);
1519     std::string globalName = fir::factory::uniqueCGIdent("cl", strVal);
1520     fir::GlobalOp global = builder.getNamedGlobal(globalName);
1521     if (!global)
1522       global = builder.createGlobalConstant(
1523           getLoc(), type, globalName,
1524           [&](fir::FirOpBuilder &builder) {
1525             fir::StringLitOp str = consLit();
1526             builder.create<fir::HasValueOp>(getLoc(), str);
1527           },
1528           builder.createLinkOnceLinkage());
1529     auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
1530                                               global.getSymbol());
1531     return fir::CharBoxValue{addr, lenp};
1532   }
1533 
1534   template <Fortran::common::TypeCategory TC, int KIND>
1535   ExtValue genArrayLit(
1536       const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
1537           &con) {
1538     mlir::Location loc = getLoc();
1539     mlir::IndexType idxTy = builder.getIndexType();
1540     Fortran::evaluate::ConstantSubscript size =
1541         Fortran::evaluate::GetSize(con.shape());
1542     fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
1543     mlir::Type eleTy;
1544     if constexpr (TC == Fortran::common::TypeCategory::Character)
1545       eleTy = converter.genType(TC, KIND, {con.LEN()});
1546     else
1547       eleTy = converter.genType(TC, KIND);
1548     auto arrayTy = fir::SequenceType::get(shape, eleTy);
1549     mlir::Value array;
1550     llvm::SmallVector<mlir::Value> lbounds;
1551     llvm::SmallVector<mlir::Value> extents;
1552     if (!inInitializer || !inInitializer->genRawVals) {
1553       array = builder.create<fir::UndefOp>(loc, arrayTy);
1554       for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) {
1555         lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
1556         extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
1557       }
1558     }
1559     if (size == 0) {
1560       if constexpr (TC == Fortran::common::TypeCategory::Character) {
1561         mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
1562         return fir::CharArrayBoxValue{array, len, extents, lbounds};
1563       } else {
1564         return fir::ArrayBoxValue{array, extents, lbounds};
1565       }
1566     }
1567     Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
1568     auto createIdx = [&]() {
1569       llvm::SmallVector<mlir::Attribute> idx;
1570       for (size_t i = 0; i < subscripts.size(); ++i)
1571         idx.push_back(
1572             builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
1573       return idx;
1574     };
1575     if constexpr (TC == Fortran::common::TypeCategory::Character) {
1576       assert(array && "array must not be nullptr");
1577       do {
1578         mlir::Value elementVal =
1579             fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN()));
1580         array = builder.create<fir::InsertValueOp>(
1581             loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
1582       } while (con.IncrementSubscripts(subscripts));
1583       mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
1584       return fir::CharArrayBoxValue{array, len, extents, lbounds};
1585     } else {
1586       llvm::SmallVector<mlir::Attribute> rangeStartIdx;
1587       uint64_t rangeSize = 0;
1588       do {
1589         if (inInitializer && inInitializer->genRawVals) {
1590           genRawLit<TC, KIND>(con.At(subscripts));
1591           continue;
1592         }
1593         auto getElementVal = [&]() {
1594           return builder.createConvert(
1595               loc, eleTy,
1596               fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts))));
1597         };
1598         Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
1599         bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
1600                           con.At(subscripts) == con.At(nextSubscripts);
1601         if (!rangeSize && !nextIsSame) { // single (non-range) value
1602           array = builder.create<fir::InsertValueOp>(
1603               loc, arrayTy, array, getElementVal(),
1604               builder.getArrayAttr(createIdx()));
1605         } else if (!rangeSize) { // start a range
1606           rangeStartIdx = createIdx();
1607           rangeSize = 1;
1608         } else if (nextIsSame) { // expand a range
1609           ++rangeSize;
1610         } else { // end a range
1611           llvm::SmallVector<int64_t> rangeBounds;
1612           llvm::SmallVector<mlir::Attribute> idx = createIdx();
1613           for (size_t i = 0; i < idx.size(); ++i) {
1614             rangeBounds.push_back(rangeStartIdx[i]
1615                                       .cast<mlir::IntegerAttr>()
1616                                       .getValue()
1617                                       .getSExtValue());
1618             rangeBounds.push_back(
1619                 idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
1620           }
1621           array = builder.create<fir::InsertOnRangeOp>(
1622               loc, arrayTy, array, getElementVal(),
1623               builder.getIndexVectorAttr(rangeBounds));
1624           rangeSize = 0;
1625         }
1626       } while (con.IncrementSubscripts(subscripts));
1627       return fir::ArrayBoxValue{array, extents, lbounds};
1628     }
1629   }
1630 
1631   fir::ExtendedValue genArrayLit(
1632       const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
1633     mlir::Location loc = getLoc();
1634     mlir::IndexType idxTy = builder.getIndexType();
1635     Fortran::evaluate::ConstantSubscript size =
1636         Fortran::evaluate::GetSize(con.shape());
1637     fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
1638     mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec());
1639     auto arrayTy = fir::SequenceType::get(shape, eleTy);
1640     mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
1641     llvm::SmallVector<mlir::Value> lbounds;
1642     llvm::SmallVector<mlir::Value> extents;
1643     for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) {
1644       lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
1645       extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
1646     }
1647     if (size == 0)
1648       return fir::ArrayBoxValue{array, extents, lbounds};
1649     Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
1650     do {
1651       mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts)));
1652       llvm::SmallVector<mlir::Attribute> idx;
1653       for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds()))
1654         idx.push_back(builder.getIntegerAttr(idxTy, dim - lb));
1655       array = builder.create<fir::InsertValueOp>(
1656           loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx));
1657     } while (con.IncrementSubscripts(subscripts));
1658     return fir::ArrayBoxValue{array, extents, lbounds};
1659   }
1660 
1661   template <Fortran::common::TypeCategory TC, int KIND>
1662   ExtValue
1663   genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
1664              &con) {
1665     if (con.Rank() > 0)
1666       return genArrayLit(con);
1667     std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>>
1668         opt = con.GetScalarValue();
1669     assert(opt.has_value() && "constant has no value");
1670     if constexpr (TC == Fortran::common::TypeCategory::Character) {
1671       return genScalarLit<KIND>(opt.value(), con.LEN());
1672     } else {
1673       return genScalarLit<TC, KIND>(opt.value());
1674     }
1675   }
1676   fir::ExtendedValue genval(
1677       const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
1678     if (con.Rank() > 0)
1679       return genArrayLit(con);
1680     if (auto ctor = con.GetScalarValue())
1681       return genval(ctor.value());
1682     fir::emitFatalError(getLoc(),
1683                         "constant of derived type has no constructor");
1684   }
1685 
1686   template <typename A>
1687   ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
1688     fir::emitFatalError(getLoc(),
1689                         "array constructor: lowering should not reach here");
1690   }
1691 
1692   ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
1693     mlir::Location loc = getLoc();
1694     auto idxTy = builder.getI32Type();
1695     ExtValue exv = gen(x.complex());
1696     mlir::Value base = fir::getBase(exv);
1697     fir::factory::Complex helper{builder, loc};
1698     mlir::Type eleTy =
1699         helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType()));
1700     mlir::Value offset = builder.createIntegerConstant(
1701         loc, idxTy,
1702         x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
1703     mlir::Value result = builder.create<fir::CoordinateOp>(
1704         loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset});
1705     return {result};
1706   }
1707   ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
1708     return genLoad(gen(x));
1709   }
1710 
1711   /// Reference to a substring.
1712   ExtValue gen(const Fortran::evaluate::Substring &s) {
1713     // Get base string
1714     auto baseString = std::visit(
1715         Fortran::common::visitors{
1716             [&](const Fortran::evaluate::DataRef &x) { return gen(x); },
1717             [&](const Fortran::evaluate::StaticDataObject::Pointer &p)
1718                 -> ExtValue {
1719               if (std::optional<std::string> str = p->AsString())
1720                 return fir::factory::createStringLiteral(builder, getLoc(),
1721                                                          *str);
1722               // TODO: convert StaticDataObject to Constant<T> and use normal
1723               // constant path. Beware that StaticDataObject data() takes into
1724               // account build machine endianness.
1725               TODO(getLoc(),
1726                    "StaticDataObject::Pointer substring with kind > 1");
1727             },
1728         },
1729         s.parent());
1730     llvm::SmallVector<mlir::Value> bounds;
1731     mlir::Value lower = genunbox(s.lower());
1732     bounds.push_back(lower);
1733     if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) {
1734       mlir::Value upper = genunbox(*upperBound);
1735       bounds.push_back(upper);
1736     }
1737     fir::factory::CharacterExprHelper charHelper{builder, getLoc()};
1738     return baseString.match(
1739         [&](const fir::CharBoxValue &x) -> ExtValue {
1740           return charHelper.createSubstring(x, bounds);
1741         },
1742         [&](const fir::CharArrayBoxValue &) -> ExtValue {
1743           fir::emitFatalError(
1744               getLoc(),
1745               "array substring should be handled in array expression");
1746         },
1747         [&](const auto &) -> ExtValue {
1748           fir::emitFatalError(getLoc(), "substring base is not a CharBox");
1749         });
1750   }
1751 
1752   /// The value of a substring.
1753   ExtValue genval(const Fortran::evaluate::Substring &ss) {
1754     // FIXME: why is the value of a substring being lowered the same as the
1755     // address of a substring?
1756     return gen(ss);
1757   }
1758 
1759   ExtValue genval(const Fortran::evaluate::Subscript &subs) {
1760     if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
1761             &subs.u)) {
1762       if (s->value().Rank() > 0)
1763         fir::emitFatalError(getLoc(), "vector subscript is not scalar");
1764       return {genval(s->value())};
1765     }
1766     fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
1767   }
1768   ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
1769     return genval(subs);
1770   }
1771 
1772   ExtValue gen(const Fortran::evaluate::DataRef &dref) {
1773     return std::visit([&](const auto &x) { return gen(x); }, dref.u);
1774   }
1775   ExtValue genval(const Fortran::evaluate::DataRef &dref) {
1776     return std::visit([&](const auto &x) { return genval(x); }, dref.u);
1777   }
1778 
1779   // Helper function to turn the Component structure into a list of nested
1780   // components, ordered from largest/leftmost to smallest/rightmost:
1781   //  - where only the smallest/rightmost item may be allocatable or a pointer
1782   //    (nested allocatable/pointer components require nested coordinate_of ops)
1783   //  - that does not contain any parent components
1784   //    (the front end places parent components directly in the object)
1785   // Return the object used as the base coordinate for the component chain.
1786   static Fortran::evaluate::DataRef const *
1787   reverseComponents(const Fortran::evaluate::Component &cmpt,
1788                     std::list<const Fortran::evaluate::Component *> &list) {
1789     if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp))
1790       list.push_front(&cmpt);
1791     return std::visit(
1792         Fortran::common::visitors{
1793             [&](const Fortran::evaluate::Component &x) {
1794               if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x)))
1795                 return &cmpt.base();
1796               return reverseComponents(x, list);
1797             },
1798             [&](auto &) { return &cmpt.base(); },
1799         },
1800         cmpt.base().u);
1801   }
1802 
1803   // Return the coordinate of the component reference
1804   ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
1805     std::list<const Fortran::evaluate::Component *> list;
1806     const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
1807     llvm::SmallVector<mlir::Value> coorArgs;
1808     ExtValue obj = gen(*base);
1809     mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
1810     mlir::Location loc = getLoc();
1811     auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
1812     // FIXME: need to thread the LEN type parameters here.
1813     for (const Fortran::evaluate::Component *field : list) {
1814       auto recTy = ty.cast<fir::RecordType>();
1815       const Fortran::semantics::Symbol &sym = getLastSym(*field);
1816       llvm::StringRef name = toStringRef(sym.name());
1817       coorArgs.push_back(builder.create<fir::FieldIndexOp>(
1818           loc, fldTy, name, recTy, fir::getTypeParams(obj)));
1819       ty = recTy.getType(name);
1820     }
1821     ty = builder.getRefType(ty);
1822     return fir::factory::componentToExtendedValue(
1823         builder, loc,
1824         builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
1825                                           coorArgs));
1826   }
1827 
1828   ExtValue gen(const Fortran::evaluate::Component &cmpt) {
1829     // Components may be pointer or allocatable. In the gen() path, the mutable
1830     // aspect is lost to simplify handling on the client side. To retain the
1831     // mutable aspect, genMutableBoxValue should be used.
1832     return genComponent(cmpt).match(
1833         [&](const fir::MutableBoxValue &mutableBox) {
1834           return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox);
1835         },
1836         [](auto &box) -> ExtValue { return box; });
1837   }
1838 
1839   ExtValue genval(const Fortran::evaluate::Component &cmpt) {
1840     return genLoad(gen(cmpt));
1841   }
1842 
1843   // Determine the result type after removing `dims` dimensions from the array
1844   // type `arrTy`
1845   mlir::Type genSubType(mlir::Type arrTy, unsigned dims) {
1846     mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy);
1847     assert(unwrapTy && "must be a pointer or box type");
1848     auto seqTy = unwrapTy.cast<fir::SequenceType>();
1849     llvm::ArrayRef<int64_t> shape = seqTy.getShape();
1850     assert(shape.size() > 0 && "removing columns for sequence sans shape");
1851     assert(dims <= shape.size() && "removing more columns than exist");
1852     fir::SequenceType::Shape newBnds;
1853     // follow Fortran semantics and remove columns (from right)
1854     std::size_t e = shape.size() - dims;
1855     for (decltype(e) i = 0; i < e; ++i)
1856       newBnds.push_back(shape[i]);
1857     if (!newBnds.empty())
1858       return fir::SequenceType::get(newBnds, seqTy.getEleTy());
1859     return seqTy.getEleTy();
1860   }
1861 
1862   // Generate the code for a Bound value.
1863   ExtValue genval(const Fortran::semantics::Bound &bound) {
1864     if (bound.isExplicit()) {
1865       Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit();
1866       if (sub.has_value())
1867         return genval(*sub);
1868       return genIntegerConstant<8>(builder.getContext(), 1);
1869     }
1870     TODO(getLoc(), "non explicit semantics::Bound lowering");
1871   }
1872 
1873   static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
1874     for (const Fortran::evaluate::Subscript &sub : aref.subscript())
1875       if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
1876         return true;
1877     return false;
1878   }
1879 
1880   /// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
1881   ExtValue genCoordinateOp(const ExtValue &array,
1882                            const Fortran::evaluate::ArrayRef &aref) {
1883     mlir::Location loc = getLoc();
1884     // References to array of rank > 1 with non constant shape that are not
1885     // fir.box must be collapsed into an offset computation in lowering already.
1886     // The same is needed with dynamic length character arrays of all ranks.
1887     mlir::Type baseType =
1888         fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
1889     if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
1890         fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
1891       if (!array.getBoxOf<fir::BoxValue>())
1892         return genOffsetAndCoordinateOp(array, aref);
1893     // Generate a fir.coordinate_of with zero based array indexes.
1894     llvm::SmallVector<mlir::Value> args;
1895     for (const auto &subsc : llvm::enumerate(aref.subscript())) {
1896       ExtValue subVal = genSubscript(subsc.value());
1897       assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
1898       mlir::Value val = fir::getBase(subVal);
1899       mlir::Type ty = val.getType();
1900       mlir::Value lb = getLBound(array, subsc.index(), ty);
1901       args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
1902     }
1903 
1904     mlir::Value base = fir::getBase(array);
1905     auto seqTy =
1906         fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>();
1907     assert(args.size() == seqTy.getDimension());
1908     mlir::Type ty = builder.getRefType(seqTy.getEleTy());
1909     auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
1910     return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
1911   }
1912 
1913   /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
1914   /// of array indexes.
1915   /// This generates offset computation from the indexes and length parameters,
1916   /// and use the offset to access the element with a fir.coordinate_of. This
1917   /// must only be used if it is not possible to generate a normal
1918   /// fir.coordinate_of using array indexes (i.e. when the shape information is
1919   /// unavailable in the IR).
1920   ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
1921                                     const Fortran::evaluate::ArrayRef &aref) {
1922     mlir::Location loc = getLoc();
1923     mlir::Value addr = fir::getBase(array);
1924     mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
1925     auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
1926     mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
1927     mlir::Type refTy = builder.getRefType(eleTy);
1928     mlir::Value base = builder.createConvert(loc, seqTy, addr);
1929     mlir::IndexType idxTy = builder.getIndexType();
1930     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
1931     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
1932     auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
1933       return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
1934     };
1935     auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
1936       mlir::Value total = zero;
1937       assert(arr.getExtents().size() == aref.subscript().size());
1938       delta = builder.createConvert(loc, idxTy, delta);
1939       unsigned dim = 0;
1940       for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
1941         ExtValue subVal = genSubscript(sub);
1942         assert(fir::isUnboxedValue(subVal));
1943         mlir::Value val =
1944             builder.createConvert(loc, idxTy, fir::getBase(subVal));
1945         mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
1946         mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
1947         mlir::Value prod =
1948             builder.create<mlir::arith::MulIOp>(loc, delta, diff);
1949         total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
1950         if (ext)
1951           delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
1952         ++dim;
1953       }
1954       mlir::Type origRefTy = refTy;
1955       if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
1956         fir::CharacterType chTy =
1957             fir::factory::CharacterExprHelper::getCharacterType(refTy);
1958         if (fir::characterWithDynamicLen(chTy)) {
1959           mlir::MLIRContext *ctx = builder.getContext();
1960           fir::KindTy kind =
1961               fir::factory::CharacterExprHelper::getCharacterKind(chTy);
1962           fir::CharacterType singleTy =
1963               fir::CharacterType::getSingleton(ctx, kind);
1964           refTy = builder.getRefType(singleTy);
1965           mlir::Type seqRefTy =
1966               builder.getRefType(builder.getVarLenSeqTy(singleTy));
1967           base = builder.createConvert(loc, seqRefTy, base);
1968         }
1969       }
1970       auto coor = builder.create<fir::CoordinateOp>(
1971           loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
1972       // Convert to expected, original type after address arithmetic.
1973       return builder.createConvert(loc, origRefTy, coor);
1974     };
1975     return array.match(
1976         [&](const fir::ArrayBoxValue &arr) -> ExtValue {
1977           // FIXME: this check can be removed when slicing is implemented
1978           if (isSlice(aref))
1979             fir::emitFatalError(
1980                 getLoc(),
1981                 "slice should be handled in array expression context");
1982           return genFullDim(arr, one);
1983         },
1984         [&](const fir::CharArrayBoxValue &arr) -> ExtValue {
1985           mlir::Value delta = arr.getLen();
1986           // If the length is known in the type, fir.coordinate_of will
1987           // already take the length into account.
1988           if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
1989             delta = one;
1990           return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
1991         },
1992         [&](const fir::BoxValue &arr) -> ExtValue {
1993           // CoordinateOp for BoxValue is not generated here. The dimensions
1994           // must be kept in the fir.coordinate_op so that potential fir.box
1995           // strides can be applied by codegen.
1996           fir::emitFatalError(
1997               loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
1998         },
1999         [&](const auto &) -> ExtValue {
2000           fir::emitFatalError(loc, "internal: array lowering failed");
2001         });
2002   }
2003 
2004   /// Lower an ArrayRef to a fir.array_coor.
2005   ExtValue genArrayCoorOp(const ExtValue &exv,
2006                           const Fortran::evaluate::ArrayRef &aref) {
2007     mlir::Location loc = getLoc();
2008     mlir::Value addr = fir::getBase(exv);
2009     mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
2010     mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
2011     mlir::Type refTy = builder.getRefType(eleTy);
2012     mlir::IndexType idxTy = builder.getIndexType();
2013     llvm::SmallVector<mlir::Value> arrayCoorArgs;
2014     // The ArrayRef is expected to be scalar here, arrays are handled in array
2015     // expression lowering. So no vector subscript or triplet is expected here.
2016     for (const auto &sub : aref.subscript()) {
2017       ExtValue subVal = genSubscript(sub);
2018       assert(fir::isUnboxedValue(subVal));
2019       arrayCoorArgs.push_back(
2020           builder.createConvert(loc, idxTy, fir::getBase(subVal)));
2021     }
2022     mlir::Value shape = builder.createShape(loc, exv);
2023     mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>(
2024         loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs,
2025         fir::getTypeParams(exv));
2026     return fir::factory::arrayElementToExtendedValue(builder, loc, exv,
2027                                                      elementAddr);
2028   }
2029 
2030   /// Return the coordinate of the array reference.
2031   ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
2032     ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base()))
2033                                            : gen(aref.base().GetComponent());
2034     // Check for command-line override to use array_coor op.
2035     if (generateArrayCoordinate)
2036       return genArrayCoorOp(base, aref);
2037     // Otherwise, use coordinate_of op.
2038     return genCoordinateOp(base, aref);
2039   }
2040 
2041   /// Return lower bounds of \p box in dimension \p dim. The returned value
2042   /// has type \ty.
2043   mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
2044     assert(box.rank() > 0 && "must be an array");
2045     mlir::Location loc = getLoc();
2046     mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
2047     mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
2048     return builder.createConvert(loc, ty, lb);
2049   }
2050 
2051   ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
2052     return genLoad(gen(aref));
2053   }
2054 
2055   ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
2056     return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
2057         .genAddr(coref);
2058   }
2059 
2060   ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
2061     return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
2062         .genValue(coref);
2063   }
2064 
2065   template <typename A>
2066   ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
2067     return std::visit([&](const auto &x) { return gen(x); }, des.u);
2068   }
2069   template <typename A>
2070   ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
2071     return std::visit([&](const auto &x) { return genval(x); }, des.u);
2072   }
2073 
2074   mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
2075     if (dt.category() != Fortran::common::TypeCategory::Derived)
2076       return converter.genType(dt.category(), dt.kind());
2077     return converter.genType(dt.GetDerivedTypeSpec());
2078   }
2079 
2080   /// Lower a function reference
2081   template <typename A>
2082   ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
2083     if (!funcRef.GetType().has_value())
2084       fir::emitFatalError(getLoc(), "a function must have a type");
2085     mlir::Type resTy = genType(*funcRef.GetType());
2086     return genProcedureRef(funcRef, {resTy});
2087   }
2088 
2089   /// Lower function call `funcRef` and return a reference to the resultant
2090   /// value. This is required for lowering expressions such as `f1(f2(v))`.
2091   template <typename A>
2092   ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
2093     ExtValue retVal = genFunctionRef(funcRef);
2094     mlir::Type resultType = converter.genType(toEvExpr(funcRef));
2095     return placeScalarValueInMemory(builder, getLoc(), retVal, resultType);
2096   }
2097 
2098   /// Helper to lower intrinsic arguments for inquiry intrinsic.
2099   ExtValue
2100   lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
2101     if (Fortran::evaluate::IsAllocatableOrPointerObject(
2102             expr, converter.getFoldingContext()))
2103       return genMutableBoxValue(expr);
2104     /// Do not create temps for array sections whose properties only need to be
2105     /// inquired: create a descriptor that will be inquired.
2106     if (Fortran::evaluate::IsVariable(expr) && isArray(expr) &&
2107         !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr))
2108       return lowerIntrinsicArgumentAsBox(expr);
2109     return gen(expr);
2110   }
2111 
2112   /// Helper to lower intrinsic arguments to a fir::BoxValue.
2113   /// It preserves all the non default lower bounds/non deferred length
2114   /// parameter information.
2115   ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
2116     mlir::Location loc = getLoc();
2117     ExtValue exv = genBoxArg(expr);
2118     mlir::Value box = builder.createBox(loc, exv);
2119     return fir::BoxValue(
2120         box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
2121         fir::factory::getNonDeferredLengthParams(exv));
2122   }
2123 
2124   /// Generate a call to a Fortran intrinsic or intrinsic module procedure.
2125   ExtValue genIntrinsicRef(
2126       const Fortran::evaluate::ProcedureRef &procRef,
2127       llvm::Optional<mlir::Type> resultType,
2128       llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
2129           llvm::None) {
2130     llvm::SmallVector<ExtValue> operands;
2131 
2132     std::string name =
2133         intrinsic ? intrinsic->name
2134                   : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
2135     mlir::Location loc = getLoc();
2136     if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
2137                          procRef, *intrinsic, converter)) {
2138       using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>;
2139       llvm::SmallVector<ExvAndPresence, 4> operands;
2140       auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
2141         ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr);
2142         mlir::Value isPresent =
2143             genActualIsPresentTest(builder, loc, optionalArg);
2144         operands.emplace_back(optionalArg, isPresent);
2145       };
2146       auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
2147         operands.emplace_back(genval(expr), llvm::None);
2148       };
2149       Fortran::lower::prepareCustomIntrinsicArgument(
2150           procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg,
2151           converter);
2152 
2153       auto getArgument = [&](std::size_t i) -> ExtValue {
2154         if (fir::conformsWithPassByRef(
2155                 fir::getBase(operands[i].first).getType()))
2156           return genLoad(operands[i].first);
2157         return operands[i].first;
2158       };
2159       auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
2160         return operands[i].second;
2161       };
2162       return Fortran::lower::lowerCustomIntrinsic(
2163           builder, loc, name, resultType, isPresent, getArgument,
2164           operands.size(), stmtCtx);
2165     }
2166 
2167     const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
2168         Fortran::lower::getIntrinsicArgumentLowering(name);
2169     for (const auto &arg : llvm::enumerate(procRef.arguments())) {
2170       auto *expr =
2171           Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
2172       if (!expr) {
2173         // Absent optional.
2174         operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument());
2175         continue;
2176       }
2177       if (!argLowering) {
2178         // No argument lowering instruction, lower by value.
2179         operands.emplace_back(genval(*expr));
2180         continue;
2181       }
2182       // Ad-hoc argument lowering handling.
2183       Fortran::lower::ArgLoweringRule argRules =
2184           Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
2185       if (argRules.handleDynamicOptional &&
2186           Fortran::evaluate::MayBePassedAsAbsentOptional(
2187               *expr, converter.getFoldingContext())) {
2188         ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
2189         mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
2190         switch (argRules.lowerAs) {
2191         case Fortran::lower::LowerIntrinsicArgAs::Value:
2192           operands.emplace_back(
2193               genOptionalValue(builder, loc, optional, isPresent));
2194           continue;
2195         case Fortran::lower::LowerIntrinsicArgAs::Addr:
2196           operands.emplace_back(
2197               genOptionalAddr(builder, loc, optional, isPresent));
2198           continue;
2199         case Fortran::lower::LowerIntrinsicArgAs::Box:
2200           operands.emplace_back(
2201               genOptionalBox(builder, loc, optional, isPresent));
2202           continue;
2203         case Fortran::lower::LowerIntrinsicArgAs::Inquired:
2204           operands.emplace_back(optional);
2205           continue;
2206         }
2207         llvm_unreachable("bad switch");
2208       }
2209       switch (argRules.lowerAs) {
2210       case Fortran::lower::LowerIntrinsicArgAs::Value:
2211         operands.emplace_back(genval(*expr));
2212         continue;
2213       case Fortran::lower::LowerIntrinsicArgAs::Addr:
2214         operands.emplace_back(gen(*expr));
2215         continue;
2216       case Fortran::lower::LowerIntrinsicArgAs::Box:
2217         operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
2218         continue;
2219       case Fortran::lower::LowerIntrinsicArgAs::Inquired:
2220         operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
2221         continue;
2222       }
2223       llvm_unreachable("bad switch");
2224     }
2225     // Let the intrinsic library lower the intrinsic procedure call
2226     return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
2227                                             operands, stmtCtx);
2228   }
2229 
2230   /// helper to detect statement functions
2231   static bool
2232   isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
2233     if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
2234       if (const auto *details =
2235               symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
2236         return details->stmtFunction().has_value();
2237     return false;
2238   }
2239 
2240   /// Generate Statement function calls
2241   ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) {
2242     const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
2243     assert(symbol && "expected symbol in ProcedureRef of statement functions");
2244     const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
2245 
2246     // Statement functions have their own scope, we just need to associate
2247     // the dummy symbols to argument expressions. They are no
2248     // optional/alternate return arguments. Statement functions cannot be
2249     // recursive (directly or indirectly) so it is safe to add dummy symbols to
2250     // the local map here.
2251     symMap.pushScope();
2252     for (auto [arg, bind] :
2253          llvm::zip(details.dummyArgs(), procRef.arguments())) {
2254       assert(arg && "alternate return in statement function");
2255       assert(bind && "optional argument in statement function");
2256       const auto *expr = bind->UnwrapExpr();
2257       // TODO: assumed type in statement function, that surprisingly seems
2258       // allowed, probably because nobody thought of restricting this usage.
2259       // gfortran/ifort compiles this.
2260       assert(expr && "assumed type used as statement function argument");
2261       // As per Fortran 2018 C1580, statement function arguments can only be
2262       // scalars, so just pass the box with the address. The only care is to
2263       // to use the dummy character explicit length if any instead of the
2264       // actual argument length (that can be bigger).
2265       if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType())
2266         if (type->category() == Fortran::semantics::DeclTypeSpec::Character)
2267           if (const Fortran::semantics::MaybeIntExpr &lenExpr =
2268                   type->characterTypeSpec().length().GetExplicit()) {
2269             mlir::Value len = fir::getBase(genval(*lenExpr));
2270             // F2018 7.4.4.2 point 5.
2271             len = fir::factory::genMaxWithZero(builder, getLoc(), len);
2272             symMap.addSymbol(*arg,
2273                              replaceScalarCharacterLength(gen(*expr), len));
2274             continue;
2275           }
2276       symMap.addSymbol(*arg, gen(*expr));
2277     }
2278 
2279     // Explicitly map statement function host associated symbols to their
2280     // parent scope lowered symbol box.
2281     for (const Fortran::semantics::SymbolRef &sym :
2282          Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
2283       if (const auto *details =
2284               sym->detailsIf<Fortran::semantics::HostAssocDetails>())
2285         if (!symMap.lookupSymbol(*sym))
2286           symMap.addSymbol(*sym, gen(details->symbol()));
2287 
2288     ExtValue result = genval(details.stmtFunction().value());
2289     LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n');
2290     symMap.popScope();
2291     return result;
2292   }
2293 
2294   /// Helper to package a Value and its properties into an ExtendedValue.
2295   static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base,
2296                                   llvm::ArrayRef<mlir::Value> extents,
2297                                   llvm::ArrayRef<mlir::Value> lengths) {
2298     mlir::Type type = base.getType();
2299     if (type.isa<fir::BoxType>())
2300       return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
2301     type = fir::unwrapRefType(type);
2302     if (type.isa<fir::BoxType>())
2303       return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
2304     if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
2305       if (seqTy.getDimension() != extents.size())
2306         fir::emitFatalError(loc, "incorrect number of extents for array");
2307       if (seqTy.getEleTy().isa<fir::CharacterType>()) {
2308         if (lengths.empty())
2309           fir::emitFatalError(loc, "missing length for character");
2310         assert(lengths.size() == 1);
2311         return fir::CharArrayBoxValue(base, lengths[0], extents);
2312       }
2313       return fir::ArrayBoxValue(base, extents);
2314     }
2315     if (type.isa<fir::CharacterType>()) {
2316       if (lengths.empty())
2317         fir::emitFatalError(loc, "missing length for character");
2318       assert(lengths.size() == 1);
2319       return fir::CharBoxValue(base, lengths[0]);
2320     }
2321     return base;
2322   }
2323 
2324   // Find the argument that corresponds to the host associations.
2325   // Verify some assumptions about how the signature was built here.
2326   [[maybe_unused]] static unsigned
2327   findHostAssocTuplePos(mlir::func::FuncOp fn) {
2328     // Scan the argument list from last to first as the host associations are
2329     // appended for now.
2330     for (unsigned i = fn.getNumArguments(); i > 0; --i)
2331       if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
2332         // Host assoc tuple must be last argument (for now).
2333         assert(i == fn.getNumArguments() && "tuple must be last");
2334         return i - 1;
2335       }
2336     llvm_unreachable("anyFuncArgsHaveAttr failed");
2337   }
2338 
2339   /// Create a contiguous temporary array with the same shape,
2340   /// length parameters and type as mold. It is up to the caller to deallocate
2341   /// the temporary.
2342   ExtValue genArrayTempFromMold(const ExtValue &mold,
2343                                 llvm::StringRef tempName) {
2344     mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
2345     assert(type && "expected descriptor or memory type");
2346     mlir::Location loc = getLoc();
2347     llvm::SmallVector<mlir::Value> extents =
2348         fir::factory::getExtents(loc, builder, mold);
2349     llvm::SmallVector<mlir::Value> allocMemTypeParams =
2350         fir::getTypeParams(mold);
2351     mlir::Value charLen;
2352     mlir::Type elementType = fir::unwrapSequenceType(type);
2353     if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
2354       charLen = allocMemTypeParams.empty()
2355                     ? fir::factory::readCharLen(builder, loc, mold)
2356                     : allocMemTypeParams[0];
2357       if (charType.hasDynamicLen() && allocMemTypeParams.empty())
2358         allocMemTypeParams.push_back(charLen);
2359     } else if (fir::hasDynamicSize(elementType)) {
2360       TODO(loc, "creating temporary for derived type with length parameters");
2361     }
2362 
2363     mlir::Value temp = builder.create<fir::AllocMemOp>(
2364         loc, type, tempName, allocMemTypeParams, extents);
2365     if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
2366       return fir::CharArrayBoxValue{temp, charLen, extents};
2367     return fir::ArrayBoxValue{temp, extents};
2368   }
2369 
2370   /// Copy \p source array into \p dest array. Both arrays must be
2371   /// conforming, but neither array must be contiguous.
2372   void genArrayCopy(ExtValue dest, ExtValue source) {
2373     return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
2374   }
2375 
2376   /// Lower a non-elemental procedure reference and read allocatable and pointer
2377   /// results into normal values.
2378   ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
2379                            llvm::Optional<mlir::Type> resultType) {
2380     ExtValue res = genRawProcedureRef(procRef, resultType);
2381     // In most contexts, pointers and allocatable do not appear as allocatable
2382     // or pointer variable on the caller side (see 8.5.3 note 1 for
2383     // allocatables). The few context where this can happen must call
2384     // genRawProcedureRef directly.
2385     if (const auto *box = res.getBoxOf<fir::MutableBoxValue>())
2386       return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
2387     return res;
2388   }
2389 
2390   /// Given a call site for which the arguments were already lowered, generate
2391   /// the call and return the result. This function deals with explicit result
2392   /// allocation and lowering if needed. It also deals with passing the host
2393   /// link to internal procedures.
2394   ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller,
2395                               mlir::FunctionType callSiteType,
2396                               llvm::Optional<mlir::Type> resultType) {
2397     mlir::Location loc = getLoc();
2398     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
2399     // Handle cases where caller must allocate the result or a fir.box for it.
2400     bool mustPopSymMap = false;
2401     if (caller.mustMapInterfaceSymbols()) {
2402       symMap.pushScope();
2403       mustPopSymMap = true;
2404       Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
2405     }
2406     // If this is an indirect call, retrieve the function address. Also retrieve
2407     // the result length if this is a character function (note that this length
2408     // will be used only if there is no explicit length in the local interface).
2409     mlir::Value funcPointer;
2410     mlir::Value charFuncPointerLength;
2411     if (const Fortran::semantics::Symbol *sym =
2412             caller.getIfIndirectCallSymbol()) {
2413       funcPointer = symMap.lookupSymbol(*sym).getAddr();
2414       if (!funcPointer)
2415         fir::emitFatalError(loc, "failed to find indirect call symbol address");
2416       if (fir::isCharacterProcedureTuple(funcPointer.getType(),
2417                                          /*acceptRawFunc=*/false))
2418         std::tie(funcPointer, charFuncPointerLength) =
2419             fir::factory::extractCharacterProcedureTuple(builder, loc,
2420                                                          funcPointer);
2421     }
2422 
2423     mlir::IndexType idxTy = builder.getIndexType();
2424     auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
2425       return builder.createConvert(
2426           loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
2427     };
2428     llvm::SmallVector<mlir::Value> resultLengths;
2429     auto allocatedResult = [&]() -> llvm::Optional<ExtValue> {
2430       llvm::SmallVector<mlir::Value> extents;
2431       llvm::SmallVector<mlir::Value> lengths;
2432       if (!caller.callerAllocateResult())
2433         return {};
2434       mlir::Type type = caller.getResultStorageType();
2435       if (type.isa<fir::SequenceType>())
2436         caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
2437           extents.emplace_back(lowerSpecExpr(e));
2438         });
2439       caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
2440         lengths.emplace_back(lowerSpecExpr(e));
2441       });
2442 
2443       // Result length parameters should not be provided to box storage
2444       // allocation and save_results, but they are still useful information to
2445       // keep in the ExtendedValue if non-deferred.
2446       if (!type.isa<fir::BoxType>()) {
2447         if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
2448           // Calling an assumed length function. This is only possible if this
2449           // is a call to a character dummy procedure.
2450           if (!charFuncPointerLength)
2451             fir::emitFatalError(loc, "failed to retrieve character function "
2452                                      "length while calling it");
2453           lengths.push_back(charFuncPointerLength);
2454         }
2455         resultLengths = lengths;
2456       }
2457 
2458       if (!extents.empty() || !lengths.empty()) {
2459         auto *bldr = &converter.getFirOpBuilder();
2460         auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
2461         auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
2462         mlir::Value sp =
2463             bldr->create<fir::CallOp>(
2464                     loc, stackSaveFn.getFunctionType().getResults(),
2465                     stackSaveSymbol, mlir::ValueRange{})
2466                 .getResult(0);
2467         stmtCtx.attachCleanup([bldr, loc, sp]() {
2468           auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
2469           auto stackRestoreSymbol =
2470               bldr->getSymbolRefAttr(stackRestoreFn.getName());
2471           bldr->create<fir::CallOp>(
2472               loc, stackRestoreFn.getFunctionType().getResults(),
2473               stackRestoreSymbol, mlir::ValueRange{sp});
2474         });
2475       }
2476       mlir::Value temp =
2477           builder.createTemporary(loc, type, ".result", extents, resultLengths);
2478       return toExtendedValue(loc, temp, extents, lengths);
2479     }();
2480 
2481     if (mustPopSymMap)
2482       symMap.popScope();
2483 
2484     // Place allocated result or prepare the fir.save_result arguments.
2485     mlir::Value arrayResultShape;
2486     if (allocatedResult) {
2487       if (std::optional<Fortran::lower::CallInterface<
2488               Fortran::lower::CallerInterface>::PassedEntity>
2489               resultArg = caller.getPassedResult()) {
2490         if (resultArg->passBy == PassBy::AddressAndLength)
2491           caller.placeAddressAndLengthInput(*resultArg,
2492                                             fir::getBase(*allocatedResult),
2493                                             fir::getLen(*allocatedResult));
2494         else if (resultArg->passBy == PassBy::BaseAddress)
2495           caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
2496         else
2497           fir::emitFatalError(
2498               loc, "only expect character scalar result to be passed by ref");
2499       } else {
2500         assert(caller.mustSaveResult());
2501         arrayResultShape = allocatedResult->match(
2502             [&](const fir::CharArrayBoxValue &) {
2503               return builder.createShape(loc, *allocatedResult);
2504             },
2505             [&](const fir::ArrayBoxValue &) {
2506               return builder.createShape(loc, *allocatedResult);
2507             },
2508             [&](const auto &) { return mlir::Value{}; });
2509       }
2510     }
2511 
2512     // In older Fortran, procedure argument types are inferred. This may lead
2513     // different view of what the function signature is in different locations.
2514     // Casts are inserted as needed below to accommodate this.
2515 
2516     // The mlir::func::FuncOp type prevails, unless it has a different number of
2517     // arguments which can happen in legal program if it was passed as a dummy
2518     // procedure argument earlier with no further type information.
2519     mlir::SymbolRefAttr funcSymbolAttr;
2520     bool addHostAssociations = false;
2521     if (!funcPointer) {
2522       mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
2523       mlir::SymbolRefAttr symbolAttr =
2524           builder.getSymbolRefAttr(caller.getMangledName());
2525       if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
2526           callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
2527           fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
2528                                    fir::getHostAssocAttrName())) {
2529         // The number of arguments is off by one, and we're lowering a function
2530         // with host associations. Modify call to include host associations
2531         // argument by appending the value at the end of the operands.
2532         assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
2533                converter.hostAssocTupleValue().getType());
2534         addHostAssociations = true;
2535       }
2536       if (!addHostAssociations &&
2537           (callSiteType.getNumResults() != funcOpType.getNumResults() ||
2538            callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
2539         // Deal with argument number mismatch by making a function pointer so
2540         // that function type cast can be inserted. Do not emit a warning here
2541         // because this can happen in legal program if the function is not
2542         // defined here and it was first passed as an argument without any more
2543         // information.
2544         funcPointer =
2545             builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
2546       } else if (callSiteType.getResults() != funcOpType.getResults()) {
2547         // Implicit interface result type mismatch are not standard Fortran, but
2548         // some compilers are not complaining about it.  The front end is not
2549         // protecting lowering from this currently. Support this with a
2550         // discouraging warning.
2551         LLVM_DEBUG(mlir::emitWarning(
2552             loc, "a return type mismatch is not standard compliant and may "
2553                  "lead to undefined behavior."));
2554         // Cast the actual function to the current caller implicit type because
2555         // that is the behavior we would get if we could not see the definition.
2556         funcPointer =
2557             builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
2558       } else {
2559         funcSymbolAttr = symbolAttr;
2560       }
2561     }
2562 
2563     mlir::FunctionType funcType =
2564         funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
2565     llvm::SmallVector<mlir::Value> operands;
2566     // First operand of indirect call is the function pointer. Cast it to
2567     // required function type for the call to handle procedures that have a
2568     // compatible interface in Fortran, but that have different signatures in
2569     // FIR.
2570     if (funcPointer) {
2571       operands.push_back(
2572           funcPointer.getType().isa<fir::BoxProcType>()
2573               ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
2574               : builder.createConvert(loc, funcType, funcPointer));
2575     }
2576 
2577     // Deal with potential mismatches in arguments types. Passing an array to a
2578     // scalar argument should for instance be tolerated here.
2579     bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
2580     for (auto [fst, snd] :
2581          llvm::zip(caller.getInputs(), funcType.getInputs())) {
2582       // When passing arguments to a procedure that can be called an implicit
2583       // interface, allow character actual arguments to be passed to dummy
2584       // arguments of any type and vice versa
2585       mlir::Value cast;
2586       auto *context = builder.getContext();
2587       if (snd.isa<fir::BoxProcType>() &&
2588           fst.getType().isa<mlir::FunctionType>()) {
2589         auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None);
2590         auto boxProcTy = builder.getBoxProcType(funcTy);
2591         if (mlir::Value host = argumentHostAssocs(converter, fst)) {
2592           cast = builder.create<fir::EmboxProcOp>(
2593               loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
2594         } else {
2595           cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
2596         }
2597       } else {
2598         if (fir::isa_derived(snd)) {
2599           // FIXME: This seems like a serious bug elsewhere in lowering. Paper
2600           // over the problem for now.
2601           TODO(loc, "derived type argument passed by value");
2602         }
2603         assert(!fir::isa_derived(snd));
2604         cast = builder.convertWithSemantics(loc, snd, fst,
2605                                             callingImplicitInterface);
2606       }
2607       operands.push_back(cast);
2608     }
2609 
2610     // Add host associations as necessary.
2611     if (addHostAssociations)
2612       operands.push_back(converter.hostAssocTupleValue());
2613 
2614     auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
2615                                             funcSymbolAttr, operands);
2616 
2617     if (caller.mustSaveResult())
2618       builder.create<fir::SaveResultOp>(
2619           loc, call.getResult(0), fir::getBase(allocatedResult.getValue()),
2620           arrayResultShape, resultLengths);
2621 
2622     if (allocatedResult) {
2623       allocatedResult->match(
2624           [&](const fir::MutableBoxValue &box) {
2625             if (box.isAllocatable()) {
2626               // 9.7.3.2 point 4. Finalize allocatables.
2627               fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
2628               stmtCtx.attachCleanup([bldr, loc, box]() {
2629                 fir::factory::genFinalization(*bldr, loc, box);
2630               });
2631             }
2632           },
2633           [](const auto &) {});
2634       return *allocatedResult;
2635     }
2636 
2637     if (!resultType)
2638       return mlir::Value{}; // subroutine call
2639     // For now, Fortran return values are implemented with a single MLIR
2640     // function return value.
2641     assert(call.getNumResults() == 1 &&
2642            "Expected exactly one result in FUNCTION call");
2643     return call.getResult(0);
2644   }
2645 
2646   /// Like genExtAddr, but ensure the address returned is a temporary even if \p
2647   /// expr is variable inside parentheses.
2648   ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
2649     // In general, genExtAddr might not create a temp for variable inside
2650     // parentheses to avoid creating array temporary in sub-expressions. It only
2651     // ensures the sub-expression is not re-associated with other parts of the
2652     // expression. In the call semantics, there is a difference between expr and
2653     // variable (see R1524). For expressions, a variable storage must not be
2654     // argument associated since it could be modified inside the call, or the
2655     // variable could also be modified by other means during the call.
2656     if (!isParenthesizedVariable(expr))
2657       return genExtAddr(expr);
2658     if (expr.Rank() > 0)
2659       return asArray(expr);
2660     mlir::Location loc = getLoc();
2661     return genExtValue(expr).match(
2662         [&](const fir::CharBoxValue &boxChar) -> ExtValue {
2663           return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(
2664               boxChar);
2665         },
2666         [&](const fir::UnboxedValue &v) -> ExtValue {
2667           mlir::Type type = v.getType();
2668           mlir::Value value = v;
2669           if (fir::isa_ref_type(type))
2670             value = builder.create<fir::LoadOp>(loc, value);
2671           mlir::Value temp = builder.createTemporary(loc, value.getType());
2672           builder.create<fir::StoreOp>(loc, value, temp);
2673           return temp;
2674         },
2675         [&](const fir::BoxValue &x) -> ExtValue {
2676           // Derived type scalar that may be polymorphic.
2677           assert(!x.hasRank() && x.isDerived());
2678           if (x.isDerivedWithLenParameters())
2679             fir::emitFatalError(
2680                 loc, "making temps for derived type with length parameters");
2681           // TODO: polymorphic aspects should be kept but for now the temp
2682           // created always has the declared type.
2683           mlir::Value var =
2684               fir::getBase(fir::factory::readBoxValue(builder, loc, x));
2685           auto value = builder.create<fir::LoadOp>(loc, var);
2686           mlir::Value temp = builder.createTemporary(loc, value.getType());
2687           builder.create<fir::StoreOp>(loc, value, temp);
2688           return temp;
2689         },
2690         [&](const auto &) -> ExtValue {
2691           fir::emitFatalError(loc, "expr is not a scalar value");
2692         });
2693   }
2694 
2695   /// Helper structure to track potential copy-in of non contiguous variable
2696   /// argument into a contiguous temp. It is used to deallocate the temp that
2697   /// may have been created as well as to the copy-out from the temp to the
2698   /// variable after the call.
2699   struct CopyOutPair {
2700     ExtValue var;
2701     ExtValue temp;
2702     // Flag to indicate if the argument may have been modified by the
2703     // callee, in which case it must be copied-out to the variable.
2704     bool argMayBeModifiedByCall;
2705     // Optional boolean value that, if present and false, prevents
2706     // the copy-out and temp deallocation.
2707     llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime;
2708   };
2709   using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;
2710 
2711   /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
2712   /// not based on fir.box.
2713   /// This will lose any non contiguous stride information and dynamic type and
2714   /// should only be called if \p exv is known to be contiguous or if its base
2715   /// address will be replaced by a contiguous one. If \p exv is not a
2716   /// fir::BoxValue, this is a no-op.
2717   ExtValue readIfBoxValue(const ExtValue &exv) {
2718     if (const auto *box = exv.getBoxOf<fir::BoxValue>())
2719       return fir::factory::readBoxValue(builder, getLoc(), *box);
2720     return exv;
2721   }
2722 
2723   /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
2724   /// creation of the temp and copy-in can be made conditional at runtime by
2725   /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
2726   /// the temp and copy will only be made if the value is true at runtime).
2727   ExtValue genCopyIn(const ExtValue &actualArg,
2728                      const Fortran::lower::CallerInterface::PassedEntity &arg,
2729                      CopyOutPairs &copyOutPairs,
2730                      llvm::Optional<mlir::Value> restrictCopyAtRuntime,
2731                      bool byValue) {
2732     const bool doCopyOut = !byValue && arg.mayBeModifiedByCall();
2733     llvm::StringRef tempName = byValue ? ".copy" : ".copyinout";
2734     if (!restrictCopyAtRuntime) {
2735       ExtValue temp = genArrayTempFromMold(actualArg, tempName);
2736       if (arg.mayBeReadByCall())
2737         genArrayCopy(temp, actualArg);
2738       copyOutPairs.emplace_back(
2739           CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
2740       return temp;
2741     }
2742     // Otherwise, need to be careful to only copy-in if allowed at runtime.
2743     mlir::Location loc = getLoc();
2744     auto addrType = fir::HeapType::get(
2745         fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));
2746     mlir::Value addr =
2747         builder
2748             .genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
2749                      /*withElseRegion=*/true)
2750             .genThen([&]() {
2751               auto temp = genArrayTempFromMold(actualArg, tempName);
2752               if (arg.mayBeReadByCall())
2753                 genArrayCopy(temp, actualArg);
2754               builder.create<fir::ResultOp>(loc, fir::getBase(temp));
2755             })
2756             .genElse([&]() {
2757               auto nullPtr = builder.createNullConstant(loc, addrType);
2758               builder.create<fir::ResultOp>(loc, nullPtr);
2759             })
2760             .getResults()[0];
2761     // Associate the temp address with actualArg lengths and extents.
2762     fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
2763     copyOutPairs.emplace_back(
2764         CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
2765     return temp;
2766   }
2767 
2768   /// Generate copy-out if needed and free the temporary for an argument that
2769   /// has been copied-in into a contiguous temp.
2770   void genCopyOut(const CopyOutPair &copyOutPair) {
2771     mlir::Location loc = getLoc();
2772     if (!copyOutPair.restrictCopyAndFreeAtRuntime) {
2773       if (copyOutPair.argMayBeModifiedByCall)
2774         genArrayCopy(copyOutPair.var, copyOutPair.temp);
2775       builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
2776       return;
2777     }
2778     builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime)
2779         .genThen([&]() {
2780           if (copyOutPair.argMayBeModifiedByCall)
2781             genArrayCopy(copyOutPair.var, copyOutPair.temp);
2782           builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
2783         })
2784         .end();
2785   }
2786 
2787   /// Lower a designator to a variable that may be absent at runtime into an
2788   /// ExtendedValue where all the properties (base address, shape and length
2789   /// parameters) can be safely read (set to zero if not present). It also
2790   /// returns a boolean mlir::Value telling if the variable is present at
2791   /// runtime.
2792   /// This is useful to later be able to do conditional copy-in/copy-out
2793   /// or to retrieve the base address without having to deal with the case
2794   /// where the actual may be an absent fir.box.
2795   std::pair<ExtValue, mlir::Value>
2796   prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) {
2797     mlir::Location loc = getLoc();
2798     if (Fortran::evaluate::IsAllocatableOrPointerObject(
2799             expr, converter.getFoldingContext())) {
2800       // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
2801       // it is as if the argument was absent. The main care here is to
2802       // not do a copy-in/copy-out because the temp address, even though
2803       // pointing to a null size storage, would not be a nullptr and
2804       // therefore the argument would not be considered absent on the
2805       // callee side. Note: if wholeSymbol is optional, it cannot be
2806       // absent as per 15.5.2.12 point 7. and 8. We rely on this to
2807       // un-conditionally read the allocatable/pointer descriptor here.
2808       fir::MutableBoxValue mutableBox = genMutableBoxValue(expr);
2809       mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest(
2810           builder, loc, mutableBox);
2811       fir::ExtendedValue actualArg =
2812           fir::factory::genMutableBoxRead(builder, loc, mutableBox);
2813       return {actualArg, isPresent};
2814     }
2815     // Absent descriptor cannot be read. To avoid any issue in
2816     // copy-in/copy-out, and when retrieving the address/length
2817     // create an descriptor pointing to a null address here if the
2818     // fir.box is absent.
2819     ExtValue actualArg = gen(expr);
2820     mlir::Value actualArgBase = fir::getBase(actualArg);
2821     mlir::Value isPresent = builder.create<fir::IsPresentOp>(
2822         loc, builder.getI1Type(), actualArgBase);
2823     if (!actualArgBase.getType().isa<fir::BoxType>())
2824       return {actualArg, isPresent};
2825     ExtValue safeToReadBox =
2826         absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent);
2827     return {safeToReadBox, isPresent};
2828   }
2829 
2830   /// Create a temp on the stack for scalar actual arguments that may be absent
2831   /// at runtime, but must be passed via a temp if they are presents.
2832   fir::ExtendedValue
2833   createScalarTempForArgThatMayBeAbsent(ExtValue actualArg,
2834                                         mlir::Value isPresent) {
2835     mlir::Location loc = getLoc();
2836     mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType());
2837     if (fir::isDerivedWithLenParameters(actualArg))
2838       TODO(loc, "parametrized derived type optional scalar argument copy-in");
2839     if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) {
2840       mlir::Value len = charBox->getLen();
2841       mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0);
2842       len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero);
2843       mlir::Value temp = builder.createTemporary(
2844           loc, type, /*name=*/{},
2845           /*shape=*/{}, mlir::ValueRange{len},
2846           llvm::ArrayRef<mlir::NamedAttribute>{
2847               Fortran::lower::getAdaptToByRefAttr(builder)});
2848       return fir::CharBoxValue{temp, len};
2849     }
2850     assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) &&
2851            "must be simple scalar");
2852     return builder.createTemporary(
2853         loc, type,
2854         llvm::ArrayRef<mlir::NamedAttribute>{
2855             Fortran::lower::getAdaptToByRefAttr(builder)});
2856   }
2857 
2858   template <typename A>
2859   bool isCharacterType(const A &exp) {
2860     if (auto type = exp.GetType())
2861       return type->category() == Fortran::common::TypeCategory::Character;
2862     return false;
2863   }
2864 
2865   /// Lower an actual argument that must be passed via an address.
2866   /// This generates of the copy-in/copy-out if the actual is not contiguous, or
2867   /// the creation of the temp if the actual is a variable and \p byValue is
2868   /// true. It handles the cases where the actual may be absent, and all of the
2869   /// copying has to be conditional at runtime.
2870   ExtValue prepareActualToBaseAddressLike(
2871       const Fortran::lower::SomeExpr &expr,
2872       const Fortran::lower::CallerInterface::PassedEntity &arg,
2873       CopyOutPairs &copyOutPairs, bool byValue) {
2874     mlir::Location loc = getLoc();
2875     const bool isArray = expr.Rank() > 0;
2876     const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr);
2877     // It must be possible to modify VALUE arguments on the callee side, even
2878     // if the actual argument is a literal or named constant. Hence, the
2879     // address of static storage must not be passed in that case, and a copy
2880     // must be made even if this is not a variable.
2881     // Note: isArray should be used here, but genBoxArg already creates copies
2882     // for it, so do not duplicate the copy until genBoxArg behavior is changed.
2883     const bool isStaticConstantByValue =
2884         byValue && Fortran::evaluate::IsActuallyConstant(expr) &&
2885         (isCharacterType(expr));
2886     const bool variableNeedsCopy =
2887         actualArgIsVariable &&
2888         (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous(
2889                                     expr, converter.getFoldingContext())));
2890     const bool needsCopy = isStaticConstantByValue || variableNeedsCopy;
2891     auto argAddr = [&]() -> ExtValue {
2892       if (!actualArgIsVariable && !needsCopy)
2893         // Actual argument is not a variable. Make sure a variable address is
2894         // not passed.
2895         return genTempExtAddr(expr);
2896       ExtValue baseAddr;
2897       if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
2898                                   expr, converter.getFoldingContext())) {
2899         auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr);
2900         const ExtValue &actualArg = actualArgBind;
2901         if (!needsCopy)
2902           return actualArg;
2903 
2904         if (isArray)
2905           return genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue);
2906         // Scalars, create a temp, and use it conditionally at runtime if
2907         // the argument is present.
2908         ExtValue temp =
2909             createScalarTempForArgThatMayBeAbsent(actualArg, isPresent);
2910         mlir::Type tempAddrTy = fir::getBase(temp).getType();
2911         mlir::Value selectAddr =
2912             builder
2913                 .genIfOp(loc, {tempAddrTy}, isPresent,
2914                          /*withElseRegion=*/true)
2915                 .genThen([&]() {
2916                   fir::factory::genScalarAssignment(builder, loc, temp,
2917                                                     actualArg);
2918                   builder.create<fir::ResultOp>(loc, fir::getBase(temp));
2919                 })
2920                 .genElse([&]() {
2921                   mlir::Value absent =
2922                       builder.create<fir::AbsentOp>(loc, tempAddrTy);
2923                   builder.create<fir::ResultOp>(loc, absent);
2924                 })
2925                 .getResults()[0];
2926         return fir::substBase(temp, selectAddr);
2927       }
2928       // Actual cannot be absent, the actual argument can safely be
2929       // copied-in/copied-out without any care if needed.
2930       if (isArray) {
2931         ExtValue box = genBoxArg(expr);
2932         if (needsCopy)
2933           return genCopyIn(box, arg, copyOutPairs,
2934                            /*restrictCopyAtRuntime=*/llvm::None, byValue);
2935         // Contiguous: just use the box we created above!
2936         // This gets "unboxed" below, if needed.
2937         return box;
2938       }
2939       // Actual argument is a non-optional, non-pointer, non-allocatable
2940       // scalar.
2941       ExtValue actualArg = genExtAddr(expr);
2942       if (needsCopy)
2943         return createInMemoryScalarCopy(builder, loc, actualArg);
2944       return actualArg;
2945     }();
2946     // Scalar and contiguous expressions may be lowered to a fir.box,
2947     // either to account for potential polymorphism, or because lowering
2948     // did not account for some contiguity hints.
2949     // Here, polymorphism does not matter (an entity of the declared type
2950     // is passed, not one of the dynamic type), and the expr is known to
2951     // be simply contiguous, so it is safe to unbox it and pass the
2952     // address without making a copy.
2953     return readIfBoxValue(argAddr);
2954   }
2955 
2956   /// Lower a non-elemental procedure reference.
2957   ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
2958                               llvm::Optional<mlir::Type> resultType) {
2959     mlir::Location loc = getLoc();
2960     if (isElementalProcWithArrayArgs(procRef))
2961       fir::emitFatalError(loc, "trying to lower elemental procedure with array "
2962                                "arguments as normal procedure");
2963 
2964     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
2965             procRef.proc().GetSpecificIntrinsic())
2966       return genIntrinsicRef(procRef, resultType, *intrinsic);
2967 
2968     if (isIntrinsicModuleProcRef(procRef))
2969       return genIntrinsicRef(procRef, resultType);
2970 
2971     if (isStatementFunctionCall(procRef))
2972       return genStmtFunctionRef(procRef);
2973 
2974     Fortran::lower::CallerInterface caller(procRef, converter);
2975     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
2976 
2977     llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
2978     // List of <var, temp> where temp must be copied into var after the call.
2979     CopyOutPairs copyOutPairs;
2980 
2981     mlir::FunctionType callSiteType = caller.genFunctionType();
2982 
2983     // Lower the actual arguments and map the lowered values to the dummy
2984     // arguments.
2985     for (const Fortran::lower::CallInterface<
2986              Fortran::lower::CallerInterface>::PassedEntity &arg :
2987          caller.getPassedArguments()) {
2988       const auto *actual = arg.entity;
2989       mlir::Type argTy = callSiteType.getInput(arg.firArgument);
2990       if (!actual) {
2991         // Optional dummy argument for which there is no actual argument.
2992         caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
2993         continue;
2994       }
2995       const auto *expr = actual->UnwrapExpr();
2996       if (!expr)
2997         TODO(loc, "assumed type actual argument lowering");
2998 
2999       if (arg.passBy == PassBy::Value) {
3000         ExtValue argVal = genval(*expr);
3001         if (!fir::isUnboxedValue(argVal))
3002           fir::emitFatalError(
3003               loc, "internal error: passing non trivial value by value");
3004         caller.placeInput(arg, fir::getBase(argVal));
3005         continue;
3006       }
3007 
3008       if (arg.passBy == PassBy::MutableBox) {
3009         if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
3010                 *expr)) {
3011           // If expr is NULL(), the mutableBox created must be a deallocated
3012           // pointer with the dummy argument characteristics (see table 16.5
3013           // in Fortran 2018 standard).
3014           // No length parameters are set for the created box because any non
3015           // deferred type parameters of the dummy will be evaluated on the
3016           // callee side, and it is illegal to use NULL without a MOLD if any
3017           // dummy length parameters are assumed.
3018           mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
3019           assert(boxTy && boxTy.isa<fir::BoxType>() &&
3020                  "must be a fir.box type");
3021           mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
3022           mlir::Value nullBox = fir::factory::createUnallocatedBox(
3023               builder, loc, boxTy, /*nonDeferredParams=*/{});
3024           builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
3025           caller.placeInput(arg, boxStorage);
3026           continue;
3027         }
3028         if (fir::isPointerType(argTy) &&
3029             !Fortran::evaluate::IsObjectPointer(
3030                 *expr, converter.getFoldingContext())) {
3031           // Passing a non POINTER actual argument to a POINTER dummy argument.
3032           // Create a pointer of the dummy argument type and assign the actual
3033           // argument to it.
3034           mlir::Value irBox =
3035               builder.createTemporary(loc, fir::unwrapRefType(argTy));
3036           // Non deferred parameters will be evaluated on the callee side.
3037           fir::MutableBoxValue pointer(irBox,
3038                                        /*nonDeferredParams=*/mlir::ValueRange{},
3039                                        /*mutableProperties=*/{});
3040           Fortran::lower::associateMutableBox(converter, loc, pointer, *expr,
3041                                               /*lbounds=*/llvm::None, stmtCtx);
3042           caller.placeInput(arg, irBox);
3043           continue;
3044         }
3045         // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
3046         fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
3047         mlir::Value irBox =
3048             fir::factory::getMutableIRBox(builder, loc, mutableBox);
3049         caller.placeInput(arg, irBox);
3050         if (arg.mayBeModifiedByCall())
3051           mutableModifiedByCall.emplace_back(std::move(mutableBox));
3052         continue;
3053       }
3054       if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar ||
3055           arg.passBy == PassBy::BaseAddressValueAttribute ||
3056           arg.passBy == PassBy::CharBoxValueAttribute) {
3057         const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute ||
3058                              arg.passBy == PassBy::CharBoxValueAttribute;
3059         ExtValue argAddr =
3060             prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue);
3061         if (arg.passBy == PassBy::BaseAddress ||
3062             arg.passBy == PassBy::BaseAddressValueAttribute) {
3063           caller.placeInput(arg, fir::getBase(argAddr));
3064         } else {
3065           assert(arg.passBy == PassBy::BoxChar ||
3066                  arg.passBy == PassBy::CharBoxValueAttribute);
3067           auto helper = fir::factory::CharacterExprHelper{builder, loc};
3068           auto boxChar = argAddr.match(
3069               [&](const fir::CharBoxValue &x) { return helper.createEmbox(x); },
3070               [&](const fir::CharArrayBoxValue &x) {
3071                 return helper.createEmbox(x);
3072               },
3073               [&](const auto &x) -> mlir::Value {
3074                 // Fortran allows an actual argument of a completely different
3075                 // type to be passed to a procedure expecting a CHARACTER in the
3076                 // dummy argument position. When this happens, the data pointer
3077                 // argument is simply assumed to point to CHARACTER data and the
3078                 // LEN argument used is garbage. Simulate this behavior by
3079                 // free-casting the base address to be a !fir.char reference and
3080                 // setting the LEN argument to undefined. What could go wrong?
3081                 auto dataPtr = fir::getBase(x);
3082                 assert(!dataPtr.getType().template isa<fir::BoxType>());
3083                 return builder.convertWithSemantics(
3084                     loc, argTy, dataPtr,
3085                     /*allowCharacterConversion=*/true);
3086               });
3087           caller.placeInput(arg, boxChar);
3088         }
3089       } else if (arg.passBy == PassBy::Box) {
3090         // Before lowering to an address, handle the allocatable/pointer actual
3091         // argument to optional fir.box dummy. It is legal to pass
3092         // unallocated/disassociated entity to an optional. In this case, an
3093         // absent fir.box must be created instead of a fir.box with a null value
3094         // (Fortran 2018 15.5.2.12 point 1).
3095         if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject(
3096                                     *expr, converter.getFoldingContext())) {
3097           // Note that passing an absent allocatable to a non-allocatable
3098           // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
3099           // nothing has to be done to generate an absent argument in this case,
3100           // and it is OK to unconditionally read the mutable box here.
3101           fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
3102           mlir::Value isAllocated =
3103               fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
3104                                                            mutableBox);
3105           auto absent = builder.create<fir::AbsentOp>(loc, argTy);
3106           /// For now, assume it is not OK to pass the allocatable/pointer
3107           /// descriptor to a non pointer/allocatable dummy. That is a strict
3108           /// interpretation of 18.3.6 point 4 that stipulates the descriptor
3109           /// has the dummy attributes in BIND(C) contexts.
3110           mlir::Value box = builder.createBox(
3111               loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox));
3112           // Need the box types to be exactly similar for the selectOp.
3113           mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
3114           caller.placeInput(arg, builder.create<mlir::arith::SelectOp>(
3115                                      loc, isAllocated, convertedBox, absent));
3116         } else {
3117           // Make sure a variable address is only passed if the expression is
3118           // actually a variable.
3119           mlir::Value box =
3120               Fortran::evaluate::IsVariable(*expr)
3121                   ? builder.createBox(loc, genBoxArg(*expr))
3122                   : builder.createBox(getLoc(), genTempExtAddr(*expr));
3123           caller.placeInput(arg, box);
3124         }
3125       } else if (arg.passBy == PassBy::AddressAndLength) {
3126         ExtValue argRef = genExtAddr(*expr);
3127         caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
3128                                           fir::getLen(argRef));
3129       } else if (arg.passBy == PassBy::CharProcTuple) {
3130         ExtValue argRef = genExtAddr(*expr);
3131         mlir::Value tuple = createBoxProcCharTuple(
3132             converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
3133         caller.placeInput(arg, tuple);
3134       } else {
3135         TODO(loc, "pass by value in non elemental function call");
3136       }
3137     }
3138 
3139     ExtValue result = genCallOpAndResult(caller, callSiteType, resultType);
3140 
3141     // Sync pointers and allocatables that may have been modified during the
3142     // call.
3143     for (const auto &mutableBox : mutableModifiedByCall)
3144       fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox);
3145     // Handle case where result was passed as argument
3146 
3147     // Copy-out temps that were created for non contiguous variable arguments if
3148     // needed.
3149     for (const auto &copyOutPair : copyOutPairs)
3150       genCopyOut(copyOutPair);
3151 
3152     return result;
3153   }
3154 
3155   template <typename A>
3156   ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
3157     ExtValue result = genFunctionRef(funcRef);
3158     if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
3159       return genLoad(result);
3160     return result;
3161   }
3162 
3163   ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
3164     llvm::Optional<mlir::Type> resTy;
3165     if (procRef.hasAlternateReturns())
3166       resTy = builder.getIndexType();
3167     return genProcedureRef(procRef, resTy);
3168   }
3169 
3170   template <typename A>
3171   bool isScalar(const A &x) {
3172     return x.Rank() == 0;
3173   }
3174 
3175   /// Helper to detect Transformational function reference.
3176   template <typename T>
3177   bool isTransformationalRef(const T &) {
3178     return false;
3179   }
3180   template <typename T>
3181   bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
3182     return !funcRef.IsElemental() && funcRef.Rank();
3183   }
3184   template <typename T>
3185   bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
3186     return std::visit([&](const auto &e) { return isTransformationalRef(e); },
3187                       expr.u);
3188   }
3189 
3190   template <typename A>
3191   ExtValue asArray(const A &x) {
3192     return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
3193                                                     symMap, stmtCtx);
3194   }
3195 
3196   /// Lower an array value as an argument. This argument can be passed as a box
3197   /// value, so it may be possible to avoid making a temporary.
3198   template <typename A>
3199   ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) {
3200     return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u);
3201   }
3202   template <typename A, typename B>
3203   ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) {
3204     return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u);
3205   }
3206   template <typename A, typename B>
3207   ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) {
3208     // Designator is being passed as an argument to a procedure. Lower the
3209     // expression to a boxed value.
3210     auto someExpr = toEvExpr(x);
3211     return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap,
3212                                           stmtCtx);
3213   }
3214   template <typename A, typename B>
3215   ExtValue asArrayArg(const A &, const B &x) {
3216     // If the expression to pass as an argument is not a designator, then create
3217     // an array temp.
3218     return asArray(x);
3219   }
3220 
3221   template <typename A>
3222   ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
3223     // Whole array symbols or components, and results of transformational
3224     // functions already have a storage and the scalar expression lowering path
3225     // is used to not create a new temporary storage.
3226     if (isScalar(x) ||
3227         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
3228         isTransformationalRef(x))
3229       return std::visit([&](const auto &e) { return genref(e); }, x.u);
3230     if (useBoxArg)
3231       return asArrayArg(x);
3232     return asArray(x);
3233   }
3234   template <typename A>
3235   ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
3236     if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
3237         inInitializer)
3238       return std::visit([&](const auto &e) { return genval(e); }, x.u);
3239     return asArray(x);
3240   }
3241 
3242   template <int KIND>
3243   ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
3244                       Fortran::common::TypeCategory::Logical, KIND>> &exp) {
3245     return std::visit([&](const auto &e) { return genval(e); }, exp.u);
3246   }
3247 
3248   using RefSet =
3249       std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
3250                  Fortran::evaluate::DataRef, Fortran::evaluate::Component,
3251                  Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
3252                  Fortran::semantics::SymbolRef>;
3253   template <typename A>
3254   static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;
3255 
3256   template <typename A, typename = std::enable_if_t<inRefSet<A>>>
3257   ExtValue genref(const A &a) {
3258     return gen(a);
3259   }
3260   template <typename A>
3261   ExtValue genref(const A &a) {
3262     if (inInitializer) {
3263       // Initialization expressions can never allocate memory.
3264       return genval(a);
3265     }
3266     mlir::Type storageType = converter.genType(toEvExpr(a));
3267     return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
3268   }
3269 
3270   template <typename A, template <typename> typename T,
3271             typename B = std::decay_t<T<A>>,
3272             std::enable_if_t<
3273                 std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
3274                     std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
3275                     std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
3276                 bool> = true>
3277   ExtValue genref(const T<A> &x) {
3278     return gen(x);
3279   }
3280 
3281 private:
3282   mlir::Location location;
3283   Fortran::lower::AbstractConverter &converter;
3284   fir::FirOpBuilder &builder;
3285   Fortran::lower::StatementContext &stmtCtx;
3286   Fortran::lower::SymMap &symMap;
3287   InitializerData *inInitializer = nullptr;
3288   bool useBoxArg = false; // expression lowered as argument
3289 };
3290 } // namespace
3291 
3292 // Helper for changing the semantics in a given context. Preserves the current
3293 // semantics which is resumed when the "push" goes out of scope.
3294 #define PushSemantics(PushVal)                                                 \
3295   [[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ =                 \
3296       Fortran::common::ScopedSet(semant, PushVal);
3297 
3298 static bool isAdjustedArrayElementType(mlir::Type t) {
3299   return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
3300 }
3301 static bool elementTypeWasAdjusted(mlir::Type t) {
3302   if (auto ty = t.dyn_cast<fir::ReferenceType>())
3303     return isAdjustedArrayElementType(ty.getEleTy());
3304   return false;
3305 }
3306 static mlir::Type adjustedArrayElementType(mlir::Type t) {
3307   return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t;
3308 }
3309 
3310 /// Helper to generate calls to scalar user defined assignment procedures.
3311 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder,
3312                                                mlir::Location loc,
3313                                                mlir::func::FuncOp func,
3314                                                const fir::ExtendedValue &lhs,
3315                                                const fir::ExtendedValue &rhs) {
3316   auto prepareUserDefinedArg =
3317       [](fir::FirOpBuilder &builder, mlir::Location loc,
3318          const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value {
3319     if (argType.isa<fir::BoxCharType>()) {
3320       const fir::CharBoxValue *charBox = value.getCharBox();
3321       assert(charBox && "argument type mismatch in elemental user assignment");
3322       return fir::factory::CharacterExprHelper{builder, loc}.createEmbox(
3323           *charBox);
3324     }
3325     if (argType.isa<fir::BoxType>()) {
3326       mlir::Value box = builder.createBox(loc, value);
3327       return builder.createConvert(loc, argType, box);
3328     }
3329     // Simple pass by address.
3330     mlir::Type argBaseType = fir::unwrapRefType(argType);
3331     assert(!fir::hasDynamicSize(argBaseType));
3332     mlir::Value from = fir::getBase(value);
3333     if (argBaseType != fir::unwrapRefType(from.getType())) {
3334       // With logicals, it is possible that from is i1 here.
3335       if (fir::isa_ref_type(from.getType()))
3336         from = builder.create<fir::LoadOp>(loc, from);
3337       from = builder.createConvert(loc, argBaseType, from);
3338     }
3339     if (!fir::isa_ref_type(from.getType())) {
3340       mlir::Value temp = builder.createTemporary(loc, argBaseType);
3341       builder.create<fir::StoreOp>(loc, from, temp);
3342       from = temp;
3343     }
3344     return builder.createConvert(loc, argType, from);
3345   };
3346   assert(func.getNumArguments() == 2);
3347   mlir::Type lhsType = func.getFunctionType().getInput(0);
3348   mlir::Type rhsType = func.getFunctionType().getInput(1);
3349   mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType);
3350   mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType);
3351   builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg});
3352 }
3353 
3354 /// Convert the result of a fir.array_modify to an ExtendedValue given the
3355 /// related fir.array_load.
3356 static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder,
3357                                            mlir::Location loc,
3358                                            fir::ArrayLoadOp load,
3359                                            mlir::Value elementAddr) {
3360   mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType());
3361   if (fir::isa_char(eleTy)) {
3362     auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
3363         load.getMemref());
3364     if (!len) {
3365       assert(load.getTypeparams().size() == 1 &&
3366              "length must be in array_load");
3367       len = load.getTypeparams()[0];
3368     }
3369     return fir::CharBoxValue{elementAddr, len};
3370   }
3371   return elementAddr;
3372 }
3373 
3374 //===----------------------------------------------------------------------===//
3375 //
3376 // Lowering of scalar expressions in an explicit iteration space context.
3377 //
3378 //===----------------------------------------------------------------------===//
3379 
3380 // Shared code for creating a copy of a derived type element. This function is
3381 // called from a continuation.
3382 inline static fir::ArrayAmendOp
3383 createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
3384                         fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
3385                         const fir::ExtendedValue &elementExv, mlir::Type eleTy,
3386                         mlir::Value innerArg) {
3387   if (destLoad.getTypeparams().empty()) {
3388     fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
3389   } else {
3390     auto boxTy = fir::BoxType::get(eleTy);
3391     auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
3392                                               mlir::Value{}, mlir::Value{},
3393                                               destLoad.getTypeparams());
3394     auto fromBox = builder.create<fir::EmboxOp>(
3395         loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
3396         destLoad.getTypeparams());
3397     fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
3398                                       fir::BoxValue(fromBox));
3399   }
3400   return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
3401                                            destAcc);
3402 }
3403 
3404 inline static fir::ArrayAmendOp
3405 createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
3406                      fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
3407                      const fir::ExtendedValue &srcExv, mlir::Value innerArg,
3408                      llvm::ArrayRef<mlir::Value> bounds) {
3409   fir::CharBoxValue dstChar(dstOp, dstLen);
3410   fir::factory::CharacterExprHelper helper{builder, loc};
3411   if (!bounds.empty()) {
3412     dstChar = helper.createSubstring(dstChar, bounds);
3413     fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
3414                                    dstChar.getAddr(), dstChar.getLen(), builder,
3415                                    loc);
3416     // Update the LEN to the substring's LEN.
3417     dstLen = dstChar.getLen();
3418   }
3419   // For a CHARACTER, we generate the element assignment loops inline.
3420   helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
3421   // Mark this array element as amended.
3422   mlir::Type ty = innerArg.getType();
3423   auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
3424   return amend;
3425 }
3426 
3427 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
3428 /// the actual extents and lengths. This is only to allow their propagation as
3429 /// ExtendedValue without triggering verifier failures when propagating
3430 /// character/arrays as unboxed values. Only the base of the resulting
3431 /// ExtendedValue should be used, it is undefined to use the length or extents
3432 /// of the extended value returned,
3433 inline static fir::ExtendedValue
3434 convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
3435                        mlir::Value val, mlir::Value len) {
3436   mlir::Type ty = fir::unwrapRefType(val.getType());
3437   mlir::IndexType idxTy = builder.getIndexType();
3438   auto seqTy = ty.cast<fir::SequenceType>();
3439   auto undef = builder.create<fir::UndefOp>(loc, idxTy);
3440   llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
3441   if (fir::isa_char(seqTy.getEleTy()))
3442     return fir::CharArrayBoxValue(val, len ? len : undef, extents);
3443   return fir::ArrayBoxValue(val, extents);
3444 }
3445 
3446 //===----------------------------------------------------------------------===//
3447 //
3448 // Lowering of array expressions.
3449 //
3450 //===----------------------------------------------------------------------===//
3451 
3452 namespace {
3453 class ArrayExprLowering {
3454   using ExtValue = fir::ExtendedValue;
3455 
3456   /// Structure to keep track of lowered array operands in the
3457   /// array expression. Useful to later deduce the shape of the
3458   /// array expression.
3459   struct ArrayOperand {
3460     /// Array base (can be a fir.box).
3461     mlir::Value memref;
3462     /// ShapeOp, ShapeShiftOp or ShiftOp
3463     mlir::Value shape;
3464     /// SliceOp
3465     mlir::Value slice;
3466     /// Can this operand be absent ?
3467     bool mayBeAbsent = false;
3468   };
3469 
3470   using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
3471   using PathComponent = Fortran::lower::PathComponent;
3472 
3473   /// Active iteration space.
3474   using IterationSpace = Fortran::lower::IterationSpace;
3475   using IterSpace = const Fortran::lower::IterationSpace &;
3476 
3477   /// Current continuation. Function that will generate IR for a single
3478   /// iteration of the pending iterative loop structure.
3479   using CC = Fortran::lower::GenerateElementalArrayFunc;
3480 
3481   /// Projection continuation. Function that will project one iteration space
3482   /// into another.
3483   using PC = std::function<IterationSpace(IterSpace)>;
3484   using ArrayBaseTy =
3485       std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
3486                    const Fortran::evaluate::DataRef *>;
3487   using ComponentPath = Fortran::lower::ComponentPath;
3488 
3489 public:
3490   //===--------------------------------------------------------------------===//
3491   // Regular array assignment
3492   //===--------------------------------------------------------------------===//
3493 
3494   /// Entry point for array assignments. Both the left-hand and right-hand sides
3495   /// can either be ExtendedValue or evaluate::Expr.
3496   template <typename TL, typename TR>
3497   static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
3498                                    Fortran::lower::SymMap &symMap,
3499                                    Fortran::lower::StatementContext &stmtCtx,
3500                                    const TL &lhs, const TR &rhs) {
3501     ArrayExprLowering ael(converter, stmtCtx, symMap,
3502                           ConstituentSemantics::CopyInCopyOut);
3503     ael.lowerArrayAssignment(lhs, rhs);
3504   }
3505 
3506   template <typename TL, typename TR>
3507   void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
3508     mlir::Location loc = getLoc();
3509     /// Here the target subspace is not necessarily contiguous. The ArrayUpdate
3510     /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
3511     /// in `destination`.
3512     PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
3513     ccStoreToDest = genarr(lhs);
3514     determineShapeOfDest(lhs);
3515     semant = ConstituentSemantics::RefTransparent;
3516     ExtValue exv = lowerArrayExpression(rhs);
3517     if (explicitSpaceIsActive()) {
3518       explicitSpace->finalizeContext();
3519       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3520     } else {
3521       builder.create<fir::ArrayMergeStoreOp>(
3522           loc, destination, fir::getBase(exv), destination.getMemref(),
3523           destination.getSlice(), destination.getTypeparams());
3524     }
3525   }
3526 
3527   //===--------------------------------------------------------------------===//
3528   // WHERE array assignment, FORALL assignment, and FORALL+WHERE array
3529   // assignment
3530   //===--------------------------------------------------------------------===//
3531 
3532   /// Entry point for array assignment when the iteration space is explicitly
3533   /// defined (Fortran's FORALL) with or without masks, and/or the implied
3534   /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
3535   /// space and implicit space with masks) may be present.
3536   static void lowerAnyMaskedArrayAssignment(
3537       Fortran::lower::AbstractConverter &converter,
3538       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3539       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3540       Fortran::lower::ExplicitIterSpace &explicitSpace,
3541       Fortran::lower::ImplicitIterSpace &implicitSpace) {
3542     if (explicitSpace.isActive() && lhs.Rank() == 0) {
3543       // Scalar assignment expression in a FORALL context.
3544       ArrayExprLowering ael(converter, stmtCtx, symMap,
3545                             ConstituentSemantics::RefTransparent,
3546                             &explicitSpace, &implicitSpace);
3547       ael.lowerScalarAssignment(lhs, rhs);
3548       return;
3549     }
3550     // Array assignment expression in a FORALL and/or WHERE context.
3551     ArrayExprLowering ael(converter, stmtCtx, symMap,
3552                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3553                           &implicitSpace);
3554     ael.lowerArrayAssignment(lhs, rhs);
3555   }
3556 
3557   //===--------------------------------------------------------------------===//
3558   // Array assignment to array of pointer box values.
3559   //===--------------------------------------------------------------------===//
3560 
3561   /// Entry point for assignment to pointer in an array of pointers.
3562   static void lowerArrayOfPointerAssignment(
3563       Fortran::lower::AbstractConverter &converter,
3564       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3565       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3566       Fortran::lower::ExplicitIterSpace &explicitSpace,
3567       Fortran::lower::ImplicitIterSpace &implicitSpace,
3568       const llvm::SmallVector<mlir::Value> &lbounds,
3569       llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
3570     ArrayExprLowering ael(converter, stmtCtx, symMap,
3571                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3572                           &implicitSpace);
3573     ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds);
3574   }
3575 
3576   /// Scalar pointer assignment in an explicit iteration space.
3577   ///
3578   /// Pointers may be bound to targets in a FORALL context. This is a scalar
3579   /// assignment in the sense there is never an implied iteration space, even if
3580   /// the pointer is to a target with non-zero rank. Since the pointer
3581   /// assignment must appear in a FORALL construct, correctness may require that
3582   /// the array of pointers follow copy-in/copy-out semantics. The pointer
3583   /// assignment may include a bounds-spec (lower bounds), a bounds-remapping
3584   /// (lower and upper bounds), or neither.
3585   void lowerArrayOfPointerAssignment(
3586       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3587       const llvm::SmallVector<mlir::Value> &lbounds,
3588       llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
3589     setPointerAssignmentBounds(lbounds, ubounds);
3590     if (rhs.Rank() == 0 ||
3591         (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) &&
3592          Fortran::evaluate::IsAllocatableOrPointerObject(
3593              rhs, converter.getFoldingContext()))) {
3594       lowerScalarAssignment(lhs, rhs);
3595       return;
3596     }
3597     TODO(getLoc(),
3598          "auto boxing of a ranked expression on RHS for pointer assignment");
3599   }
3600 
3601   //===--------------------------------------------------------------------===//
3602   // Array assignment to allocatable array
3603   //===--------------------------------------------------------------------===//
3604 
3605   /// Entry point for assignment to allocatable array.
3606   static void lowerAllocatableArrayAssignment(
3607       Fortran::lower::AbstractConverter &converter,
3608       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3609       const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
3610       Fortran::lower::ExplicitIterSpace &explicitSpace,
3611       Fortran::lower::ImplicitIterSpace &implicitSpace) {
3612     ArrayExprLowering ael(converter, stmtCtx, symMap,
3613                           ConstituentSemantics::CopyInCopyOut, &explicitSpace,
3614                           &implicitSpace);
3615     ael.lowerAllocatableArrayAssignment(lhs, rhs);
3616   }
3617 
3618   /// Assignment to allocatable array.
3619   ///
3620   /// The semantics are reverse that of a "regular" array assignment. The rhs
3621   /// defines the iteration space of the computation and the lhs is
3622   /// resized/reallocated to fit if necessary.
3623   void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
3624                                        const Fortran::lower::SomeExpr &rhs) {
3625     // With assignment to allocatable, we want to lower the rhs first and use
3626     // its shape to determine if we need to reallocate, etc.
3627     mlir::Location loc = getLoc();
3628     // FIXME: If the lhs is in an explicit iteration space, the assignment may
3629     // be to an array of allocatable arrays rather than a single allocatable
3630     // array.
3631     fir::MutableBoxValue mutableBox =
3632         Fortran::lower::createMutableBox(loc, converter, lhs, symMap);
3633     mlir::Type resultTy = converter.genType(rhs);
3634     if (rhs.Rank() > 0)
3635       determineShapeOfDest(rhs);
3636     auto rhsCC = [&]() {
3637       PushSemantics(ConstituentSemantics::RefTransparent);
3638       return genarr(rhs);
3639     }();
3640 
3641     llvm::SmallVector<mlir::Value> lengthParams;
3642     // Currently no safe way to gather length from rhs (at least for
3643     // character, it cannot be taken from array_loads since it may be
3644     // changed by concatenations).
3645     if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
3646         mutableBox.isDerivedWithLenParameters())
3647       TODO(loc, "gather rhs length parameters in assignment to allocatable");
3648 
3649     // The allocatable must take lower bounds from the expr if it is
3650     // reallocated and the right hand side is not a scalar.
3651     const bool takeLboundsIfRealloc = rhs.Rank() > 0;
3652     llvm::SmallVector<mlir::Value> lbounds;
3653     // When the reallocated LHS takes its lower bounds from the RHS,
3654     // they will be non default only if the RHS is a whole array
3655     // variable. Otherwise, lbounds is left empty and default lower bounds
3656     // will be used.
3657     if (takeLboundsIfRealloc &&
3658         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
3659       assert(arrayOperands.size() == 1 &&
3660              "lbounds can only come from one array");
3661       auto lbs = fir::factory::getOrigins(arrayOperands[0].shape);
3662       lbounds.append(lbs.begin(), lbs.end());
3663     }
3664     fir::factory::MutableBoxReallocation realloc =
3665         fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
3666                                          lengthParams);
3667     // Create ArrayLoad for the mutable box and save it into `destination`.
3668     PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
3669     ccStoreToDest = genarr(realloc.newValue);
3670     // If the rhs is scalar, get shape from the allocatable ArrayLoad.
3671     if (destShape.empty())
3672       destShape = getShape(destination);
3673     // Finish lowering the loop nest.
3674     assert(destination && "destination must have been set");
3675     ExtValue exv = lowerArrayExpression(rhsCC, resultTy);
3676     if (explicitSpaceIsActive()) {
3677       explicitSpace->finalizeContext();
3678       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3679     } else {
3680       builder.create<fir::ArrayMergeStoreOp>(
3681           loc, destination, fir::getBase(exv), destination.getMemref(),
3682           destination.getSlice(), destination.getTypeparams());
3683     }
3684     fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
3685                                   takeLboundsIfRealloc, realloc);
3686   }
3687 
3688   /// Entry point for when an array expression appears in a context where the
3689   /// result must be boxed. (BoxValue semantics.)
3690   static ExtValue
3691   lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
3692                             Fortran::lower::SymMap &symMap,
3693                             Fortran::lower::StatementContext &stmtCtx,
3694                             const Fortran::lower::SomeExpr &expr) {
3695     ArrayExprLowering ael{converter, stmtCtx, symMap,
3696                           ConstituentSemantics::BoxValue};
3697     return ael.lowerBoxedArrayExpr(expr);
3698   }
3699 
3700   ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
3701     PushSemantics(ConstituentSemantics::BoxValue);
3702     return std::visit(
3703         [&](const auto &e) {
3704           auto f = genarr(e);
3705           ExtValue exv = f(IterationSpace{});
3706           if (fir::getBase(exv).getType().template isa<fir::BoxType>())
3707             return exv;
3708           fir::emitFatalError(getLoc(), "array must be emboxed");
3709         },
3710         exp.u);
3711   }
3712 
3713   /// Entry point into lowering an expression with rank. This entry point is for
3714   /// lowering a rhs expression, for example. (RefTransparent semantics.)
3715   static ExtValue
3716   lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
3717                           Fortran::lower::SymMap &symMap,
3718                           Fortran::lower::StatementContext &stmtCtx,
3719                           const Fortran::lower::SomeExpr &expr) {
3720     ArrayExprLowering ael{converter, stmtCtx, symMap};
3721     ael.determineShapeOfDest(expr);
3722     ExtValue loopRes = ael.lowerArrayExpression(expr);
3723     fir::ArrayLoadOp dest = ael.destination;
3724     mlir::Value tempRes = dest.getMemref();
3725     fir::FirOpBuilder &builder = converter.getFirOpBuilder();
3726     mlir::Location loc = converter.getCurrentLocation();
3727     builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
3728                                            tempRes, dest.getSlice(),
3729                                            dest.getTypeparams());
3730 
3731     auto arrTy =
3732         fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
3733     if (auto charTy =
3734             arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
3735       if (fir::characterWithDynamicLen(charTy))
3736         TODO(loc, "CHARACTER does not have constant LEN");
3737       mlir::Value len = builder.createIntegerConstant(
3738           loc, builder.getCharacterLengthType(), charTy.getLen());
3739       return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
3740     }
3741     return fir::ArrayBoxValue(tempRes, dest.getExtents());
3742   }
3743 
3744   static void lowerLazyArrayExpression(
3745       Fortran::lower::AbstractConverter &converter,
3746       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3747       const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) {
3748     ArrayExprLowering ael(converter, stmtCtx, symMap);
3749     ael.lowerLazyArrayExpression(expr, raggedHeader);
3750   }
3751 
3752   /// Lower the expression \p expr into a buffer that is created on demand. The
3753   /// variable containing the pointer to the buffer is \p var and the variable
3754   /// containing the shape of the buffer is \p shapeBuffer.
3755   void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr,
3756                                 mlir::Value header) {
3757     mlir::Location loc = getLoc();
3758     mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder);
3759     mlir::IntegerType i32Ty = builder.getIntegerType(32);
3760 
3761     // Once the loop extents have been computed, which may require being inside
3762     // some explicit loops, lazily allocate the expression on the heap. The
3763     // following continuation creates the buffer as needed.
3764     ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) {
3765       mlir::IntegerType i64Ty = builder.getIntegerType(64);
3766       mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1);
3767       fir::runtime::genRaggedArrayAllocate(
3768           loc, builder, header, /*asHeaders=*/false, byteSize, shape);
3769     };
3770 
3771     // Create a dummy array_load before the loop. We're storing to a lazy
3772     // temporary, so there will be no conflict and no copy-in. TODO: skip this
3773     // as there isn't any necessity for it.
3774     ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp {
3775       mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
3776       auto var = builder.create<fir::CoordinateOp>(
3777           loc, builder.getRefType(hdrTy.getType(1)), header, one);
3778       auto load = builder.create<fir::LoadOp>(loc, var);
3779       mlir::Type eleTy =
3780           fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
3781       auto seqTy = fir::SequenceType::get(eleTy, shape.size());
3782       mlir::Value castTo =
3783           builder.createConvert(loc, fir::HeapType::get(seqTy), load);
3784       mlir::Value shapeOp = builder.genShape(loc, shape);
3785       return builder.create<fir::ArrayLoadOp>(
3786           loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None);
3787     };
3788     // Custom lowering of the element store to deal with the extra indirection
3789     // to the lazy allocated buffer.
3790     ccStoreToDest = [=](IterSpace iters) {
3791       mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
3792       auto var = builder.create<fir::CoordinateOp>(
3793           loc, builder.getRefType(hdrTy.getType(1)), header, one);
3794       auto load = builder.create<fir::LoadOp>(loc, var);
3795       mlir::Type eleTy =
3796           fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
3797       auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size());
3798       auto toTy = fir::HeapType::get(seqTy);
3799       mlir::Value castTo = builder.createConvert(loc, toTy, load);
3800       mlir::Value shape = builder.genShape(loc, genIterationShape());
3801       llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
3802           loc, builder, castTo.getType(), shape, iters.iterVec());
3803       auto eleAddr = builder.create<fir::ArrayCoorOp>(
3804           loc, builder.getRefType(eleTy), castTo, shape,
3805           /*slice=*/mlir::Value{}, indices, destination.getTypeparams());
3806       mlir::Value eleVal =
3807           builder.createConvert(loc, eleTy, iters.getElement());
3808       builder.create<fir::StoreOp>(loc, eleVal, eleAddr);
3809       return iters.innerArgument();
3810     };
3811 
3812     // Lower the array expression now. Clean-up any temps that may have
3813     // been generated when lowering `expr` right after the lowered value
3814     // was stored to the ragged array temporary. The local temps will not
3815     // be needed afterwards.
3816     stmtCtx.pushScope();
3817     [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr);
3818     stmtCtx.finalizeAndPop();
3819     assert(fir::getBase(loopRes));
3820   }
3821 
3822   static void
3823   lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter,
3824                                Fortran::lower::SymMap &symMap,
3825                                Fortran::lower::StatementContext &stmtCtx,
3826                                Fortran::lower::ExplicitIterSpace &explicitSpace,
3827                                Fortran::lower::ImplicitIterSpace &implicitSpace,
3828                                const Fortran::evaluate::ProcedureRef &procRef) {
3829     ArrayExprLowering ael(converter, stmtCtx, symMap,
3830                           ConstituentSemantics::CustomCopyInCopyOut,
3831                           &explicitSpace, &implicitSpace);
3832     assert(procRef.arguments().size() == 2);
3833     const auto *lhs = procRef.arguments()[0].value().UnwrapExpr();
3834     const auto *rhs = procRef.arguments()[1].value().UnwrapExpr();
3835     assert(lhs && rhs &&
3836            "user defined assignment arguments must be expressions");
3837     mlir::func::FuncOp func =
3838         Fortran::lower::CallerInterface(procRef, converter).getFuncOp();
3839     ael.lowerElementalUserAssignment(func, *lhs, *rhs);
3840   }
3841 
3842   void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment,
3843                                     const Fortran::lower::SomeExpr &lhs,
3844                                     const Fortran::lower::SomeExpr &rhs) {
3845     mlir::Location loc = getLoc();
3846     PushSemantics(ConstituentSemantics::CustomCopyInCopyOut);
3847     auto genArrayModify = genarr(lhs);
3848     ccStoreToDest = [=](IterSpace iters) -> ExtValue {
3849       auto modifiedArray = genArrayModify(iters);
3850       auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>(
3851           fir::getBase(modifiedArray).getDefiningOp());
3852       assert(arrayModify && "must be created by ArrayModifyOp");
3853       fir::ExtendedValue lhs =
3854           arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0));
3855       genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs,
3856                                          iters.elementExv());
3857       return modifiedArray;
3858     };
3859     determineShapeOfDest(lhs);
3860     semant = ConstituentSemantics::RefTransparent;
3861     auto exv = lowerArrayExpression(rhs);
3862     if (explicitSpaceIsActive()) {
3863       explicitSpace->finalizeContext();
3864       builder.create<fir::ResultOp>(loc, fir::getBase(exv));
3865     } else {
3866       builder.create<fir::ArrayMergeStoreOp>(
3867           loc, destination, fir::getBase(exv), destination.getMemref(),
3868           destination.getSlice(), destination.getTypeparams());
3869     }
3870   }
3871 
3872   /// Lower an elemental subroutine call with at least one array argument.
3873   /// An elemental subroutine is an exception and does not have copy-in/copy-out
3874   /// semantics. See 15.8.3.
3875   /// Do NOT use this for user defined assignments.
3876   static void
3877   lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter,
3878                            Fortran::lower::SymMap &symMap,
3879                            Fortran::lower::StatementContext &stmtCtx,
3880                            const Fortran::lower::SomeExpr &call) {
3881     ArrayExprLowering ael(converter, stmtCtx, symMap,
3882                           ConstituentSemantics::RefTransparent);
3883     ael.lowerElementalSubroutine(call);
3884   }
3885 
3886   // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
3887   // This is skipping generation of copy-in/copy-out code for analysis that is
3888   // required when arguments are in parentheses.
3889   void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) {
3890     auto f = genarr(call);
3891     llvm::SmallVector<mlir::Value> shape = genIterationShape();
3892     auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{});
3893     f(iterSpace);
3894     finalizeElementCtx();
3895     builder.restoreInsertionPoint(insPt);
3896   }
3897 
3898   ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs,
3899                                  const Fortran::lower::SomeExpr &rhs) {
3900     PushSemantics(ConstituentSemantics::RefTransparent);
3901     // 1) Lower the rhs expression with array_fetch op(s).
3902     IterationSpace iters;
3903     iters.setElement(genarr(rhs)(iters));
3904     // 2) Lower the lhs expression to an array_update.
3905     semant = ConstituentSemantics::ProjectedCopyInCopyOut;
3906     auto lexv = genarr(lhs)(iters);
3907     // 3) Finalize the inner context.
3908     explicitSpace->finalizeContext();
3909     // 4) Thread the array value updated forward. Note: the lhs might be
3910     // ill-formed (performing scalar assignment in an array context),
3911     // in which case there is no array to thread.
3912     auto loc = getLoc();
3913     auto createResult = [&](auto op) {
3914       mlir::Value oldInnerArg = op.getSequence();
3915       std::size_t offset = explicitSpace->argPosition(oldInnerArg);
3916       explicitSpace->setInnerArg(offset, fir::getBase(lexv));
3917       finalizeElementCtx();
3918       builder.create<fir::ResultOp>(loc, fir::getBase(lexv));
3919     };
3920     if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) {
3921       llvm::TypeSwitch<mlir::Operation *>(defOp)
3922           .Case([&](fir::ArrayUpdateOp op) { createResult(op); })
3923           .Case([&](fir::ArrayAmendOp op) { createResult(op); })
3924           .Case([&](fir::ArrayModifyOp op) { createResult(op); })
3925           .Default([&](mlir::Operation *) { finalizeElementCtx(); });
3926     } else {
3927       // `lhs` isn't from a `fir.array_load`, so there is no array modifications
3928       // to thread through the iteration space.
3929       finalizeElementCtx();
3930     }
3931     return lexv;
3932   }
3933 
3934   static ExtValue lowerScalarUserAssignment(
3935       Fortran::lower::AbstractConverter &converter,
3936       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
3937       Fortran::lower::ExplicitIterSpace &explicitIterSpace,
3938       mlir::func::FuncOp userAssignmentFunction,
3939       const Fortran::lower::SomeExpr &lhs,
3940       const Fortran::lower::SomeExpr &rhs) {
3941     Fortran::lower::ImplicitIterSpace implicit;
3942     ArrayExprLowering ael(converter, stmtCtx, symMap,
3943                           ConstituentSemantics::RefTransparent,
3944                           &explicitIterSpace, &implicit);
3945     return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs);
3946   }
3947 
3948   ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment,
3949                                      const Fortran::lower::SomeExpr &lhs,
3950                                      const Fortran::lower::SomeExpr &rhs) {
3951     mlir::Location loc = getLoc();
3952     if (rhs.Rank() > 0)
3953       TODO(loc, "user-defined elemental assigment from expression with rank");
3954     // 1) Lower the rhs expression with array_fetch op(s).
3955     IterationSpace iters;
3956     iters.setElement(genarr(rhs)(iters));
3957     fir::ExtendedValue elementalExv = iters.elementExv();
3958     // 2) Lower the lhs expression to an array_modify.
3959     semant = ConstituentSemantics::CustomCopyInCopyOut;
3960     auto lexv = genarr(lhs)(iters);
3961     bool isIllFormedLHS = false;
3962     // 3) Insert the call
3963     if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
3964             fir::getBase(lexv).getDefiningOp())) {
3965       mlir::Value oldInnerArg = modifyOp.getSequence();
3966       std::size_t offset = explicitSpace->argPosition(oldInnerArg);
3967       explicitSpace->setInnerArg(offset, fir::getBase(lexv));
3968       fir::ExtendedValue exv =
3969           arrayModifyToExv(builder, loc, explicitSpace->getLhsLoad(0).value(),
3970                            modifyOp.getResult(0));
3971       genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv,
3972                                          elementalExv);
3973     } else {
3974       // LHS is ill formed, it is a scalar with no references to FORALL
3975       // subscripts, so there is actually no array assignment here. The user
3976       // code is probably bad, but still insert user assignment call since it
3977       // was not rejected by semantics (a warning was emitted).
3978       isIllFormedLHS = true;
3979       genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment,
3980                                          lexv, elementalExv);
3981     }
3982     // 4) Finalize the inner context.
3983     explicitSpace->finalizeContext();
3984     // 5). Thread the array value updated forward.
3985     if (!isIllFormedLHS) {
3986       finalizeElementCtx();
3987       builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
3988     }
3989     return lexv;
3990   }
3991 
3992 private:
3993   void determineShapeOfDest(const fir::ExtendedValue &lhs) {
3994     destShape = fir::factory::getExtents(getLoc(), builder, lhs);
3995   }
3996 
3997   void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
3998     if (!destShape.empty())
3999       return;
4000     if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
4001       return;
4002     mlir::Type idxTy = builder.getIndexType();
4003     mlir::Location loc = getLoc();
4004     if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
4005             Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
4006                                                   lhs))
4007       for (Fortran::common::ConstantSubscript extent : *constantShape)
4008         destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
4009   }
4010 
4011   bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) {
4012     return false;
4013   }
4014   bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) {
4015     TODO(getLoc(), "coarray ref");
4016     return false;
4017   }
4018   bool genShapeFromDataRef(const Fortran::evaluate::Component &x) {
4019     return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false;
4020   }
4021   bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) {
4022     if (x.Rank() == 0)
4023       return false;
4024     if (x.base().Rank() > 0)
4025       if (genShapeFromDataRef(x.base()))
4026         return true;
4027     // x has rank and x.base did not produce a shape.
4028     ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base()))
4029                                        : asScalarRef(x.base().GetComponent());
4030     mlir::Location loc = getLoc();
4031     mlir::IndexType idxTy = builder.getIndexType();
4032     llvm::SmallVector<mlir::Value> definedShape =
4033         fir::factory::getExtents(loc, builder, exv);
4034     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
4035     for (auto ss : llvm::enumerate(x.subscript())) {
4036       std::visit(Fortran::common::visitors{
4037                      [&](const Fortran::evaluate::Triplet &trip) {
4038                        // For a subscript of triple notation, we compute the
4039                        // range of this dimension of the iteration space.
4040                        auto lo = [&]() {
4041                          if (auto optLo = trip.lower())
4042                            return fir::getBase(asScalar(*optLo));
4043                          return getLBound(exv, ss.index(), one);
4044                        }();
4045                        auto hi = [&]() {
4046                          if (auto optHi = trip.upper())
4047                            return fir::getBase(asScalar(*optHi));
4048                          return getUBound(exv, ss.index(), one);
4049                        }();
4050                        auto step = builder.createConvert(
4051                            loc, idxTy, fir::getBase(asScalar(trip.stride())));
4052                        auto extent = builder.genExtentFromTriplet(loc, lo, hi,
4053                                                                   step, idxTy);
4054                        destShape.push_back(extent);
4055                      },
4056                      [&](auto) {}},
4057                  ss.value().u);
4058     }
4059     return true;
4060   }
4061   bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) {
4062     if (x.IsSymbol())
4063       return genShapeFromDataRef(getFirstSym(x));
4064     return genShapeFromDataRef(x.GetComponent());
4065   }
4066   bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) {
4067     return std::visit([&](const auto &v) { return genShapeFromDataRef(v); },
4068                       x.u);
4069   }
4070 
4071   /// When in an explicit space, the ranked component must be evaluated to
4072   /// determine the actual number of iterations when slicing triples are
4073   /// present. Lower these expressions here.
4074   bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) {
4075     LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
4076         llvm::dbgs() << "determine shape of:\n", lhs));
4077     // FIXME: We may not want to use ExtractDataRef here since it doesn't deal
4078     // with substrings, etc.
4079     std::optional<Fortran::evaluate::DataRef> dref =
4080         Fortran::evaluate::ExtractDataRef(lhs);
4081     return dref.has_value() ? genShapeFromDataRef(*dref) : false;
4082   }
4083 
4084   /// CHARACTER and derived type elements are treated as memory references. The
4085   /// numeric types are treated as values.
4086   static mlir::Type adjustedArraySubtype(mlir::Type ty,
4087                                          mlir::ValueRange indices) {
4088     mlir::Type pathTy = fir::applyPathToType(ty, indices);
4089     assert(pathTy && "indices failed to apply to type");
4090     return adjustedArrayElementType(pathTy);
4091   }
4092 
4093   /// Lower rhs of an array expression.
4094   ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
4095     mlir::Type resTy = converter.genType(exp);
4096     return std::visit(
4097         [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
4098         exp.u);
4099   }
4100   ExtValue lowerArrayExpression(const ExtValue &exv) {
4101     assert(!explicitSpace);
4102     mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
4103     return lowerArrayExpression(genarr(exv), resTy);
4104   }
4105 
4106   void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
4107                       const Fortran::evaluate::Substring *substring) {
4108     if (!substring)
4109       return;
4110     bounds.push_back(fir::getBase(asScalar(substring->lower())));
4111     if (auto upper = substring->upper())
4112       bounds.push_back(fir::getBase(asScalar(*upper)));
4113   }
4114 
4115   /// Convert the original value, \p origVal, to type \p eleTy. When in a
4116   /// pointer assignment context, generate an appropriate `fir.rebox` for
4117   /// dealing with any bounds parameters on the pointer assignment.
4118   mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy,
4119                                       mlir::Value origVal) {
4120     if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType()))
4121       if (origEleTy.isa<fir::BoxType>()) {
4122         // If origVal is a box variable, load it so it is in the value domain.
4123         origVal = builder.create<fir::LoadOp>(loc, origVal);
4124       }
4125     if (origVal.getType().isa<fir::BoxType>() && !eleTy.isa<fir::BoxType>()) {
4126       if (isPointerAssignment())
4127         TODO(loc, "lhs of pointer assignment returned unexpected value");
4128       TODO(loc, "invalid box conversion in elemental computation");
4129     }
4130     if (isPointerAssignment() && eleTy.isa<fir::BoxType>() &&
4131         !origVal.getType().isa<fir::BoxType>()) {
4132       // This is a pointer assignment and the rhs is a raw reference to a TARGET
4133       // in memory. Embox the reference so it can be stored to the boxed
4134       // POINTER variable.
4135       assert(fir::isa_ref_type(origVal.getType()));
4136       if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType());
4137           fir::hasDynamicSize(eleTy))
4138         TODO(loc, "TARGET of pointer assignment with runtime size/shape");
4139       auto memrefTy = fir::boxMemRefType(eleTy.cast<fir::BoxType>());
4140       auto castTo = builder.createConvert(loc, memrefTy, origVal);
4141       origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo);
4142     }
4143     mlir::Value val = builder.createConvert(loc, eleTy, origVal);
4144     if (isBoundsSpec()) {
4145       auto lbs = lbounds.value();
4146       if (lbs.size() > 0) {
4147         // Rebox the value with user-specified shift.
4148         auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size());
4149         mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs);
4150         val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp,
4151                                            mlir::Value{});
4152       }
4153     } else if (isBoundsRemap()) {
4154       auto lbs = lbounds.getValue();
4155       if (lbs.size() > 0) {
4156         // Rebox the value with user-specified shift and shape.
4157         auto shapeShiftArgs = flatZip(lbs, ubounds.getValue());
4158         auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size());
4159         mlir::Value shapeShift =
4160             builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs);
4161         val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift,
4162                                            mlir::Value{});
4163       }
4164     }
4165     return val;
4166   }
4167 
4168   /// Default store to destination implementation.
4169   /// This implements the default case, which is to assign the value in
4170   /// `iters.element` into the destination array, `iters.innerArgument`. Handles
4171   /// by value and by reference assignment.
4172   CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
4173     return [=](IterSpace iterSpace) -> ExtValue {
4174       mlir::Location loc = getLoc();
4175       mlir::Value innerArg = iterSpace.innerArgument();
4176       fir::ExtendedValue exv = iterSpace.elementExv();
4177       mlir::Type arrTy = innerArg.getType();
4178       mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
4179       if (isAdjustedArrayElementType(eleTy)) {
4180         // The elemental update is in the memref domain. Under this semantics,
4181         // we must always copy the computed new element from its location in
4182         // memory into the destination array.
4183         mlir::Type resRefTy = builder.getRefType(eleTy);
4184         // Get a reference to the array element to be amended.
4185         auto arrayOp = builder.create<fir::ArrayAccessOp>(
4186             loc, resRefTy, innerArg, iterSpace.iterVec(),
4187             fir::factory::getTypeParams(loc, builder, destination));
4188         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
4189           llvm::SmallVector<mlir::Value> substringBounds;
4190           populateBounds(substringBounds, substring);
4191           mlir::Value dstLen = fir::factory::genLenOfCharacter(
4192               builder, loc, destination, iterSpace.iterVec(), substringBounds);
4193           fir::ArrayAmendOp amend = createCharArrayAmend(
4194               loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
4195           return abstractArrayExtValue(amend, dstLen);
4196         }
4197         if (fir::isa_derived(eleTy)) {
4198           fir::ArrayAmendOp amend = createDerivedArrayAmend(
4199               loc, destination, builder, arrayOp, exv, eleTy, innerArg);
4200           return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
4201         }
4202         assert(eleTy.isa<fir::SequenceType>() && "must be an array");
4203         TODO(loc, "array (as element) assignment");
4204       }
4205       // By value semantics. The element is being assigned by value.
4206       auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv));
4207       auto update = builder.create<fir::ArrayUpdateOp>(
4208           loc, arrTy, innerArg, ele, iterSpace.iterVec(),
4209           destination.getTypeparams());
4210       return abstractArrayExtValue(update);
4211     };
4212   }
4213 
4214   /// For an elemental array expression.
4215   ///   1. Lower the scalars and array loads.
4216   ///   2. Create the iteration space.
4217   ///   3. Create the element-by-element computation in the loop.
4218   ///   4. Return the resulting array value.
4219   /// If no destination was set in the array context, a temporary of
4220   /// \p resultTy will be created to hold the evaluated expression.
4221   /// Otherwise, \p resultTy is ignored and the expression is evaluated
4222   /// in the destination. \p f is a continuation built from an
4223   /// evaluate::Expr or an ExtendedValue.
4224   ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
4225     mlir::Location loc = getLoc();
4226     auto [iterSpace, insPt] = genIterSpace(resultTy);
4227     auto exv = f(iterSpace);
4228     iterSpace.setElement(std::move(exv));
4229     auto lambda = ccStoreToDest.hasValue()
4230                       ? ccStoreToDest.getValue()
4231                       : defaultStoreToDestination(/*substring=*/nullptr);
4232     mlir::Value updVal = fir::getBase(lambda(iterSpace));
4233     finalizeElementCtx();
4234     builder.create<fir::ResultOp>(loc, updVal);
4235     builder.restoreInsertionPoint(insPt);
4236     return abstractArrayExtValue(iterSpace.outerResult());
4237   }
4238 
4239   /// Compute the shape of a slice.
4240   llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) {
4241     llvm::SmallVector<mlir::Value> slicedShape;
4242     auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp());
4243     mlir::Operation::operand_range triples = slOp.getTriples();
4244     mlir::IndexType idxTy = builder.getIndexType();
4245     mlir::Location loc = getLoc();
4246     for (unsigned i = 0, end = triples.size(); i < end; i += 3) {
4247       if (!mlir::isa_and_nonnull<fir::UndefOp>(
4248               triples[i + 1].getDefiningOp())) {
4249         // (..., lb:ub:step, ...) case:  extent = max((ub-lb+step)/step, 0)
4250         // See Fortran 2018 9.5.3.3.2 section for more details.
4251         mlir::Value res = builder.genExtentFromTriplet(
4252             loc, triples[i], triples[i + 1], triples[i + 2], idxTy);
4253         slicedShape.emplace_back(res);
4254       } else {
4255         // do nothing. `..., i, ...` case, so dimension is dropped.
4256       }
4257     }
4258     return slicedShape;
4259   }
4260 
4261   /// Get the shape from an ArrayOperand. The shape of the array is adjusted if
4262   /// the array was sliced.
4263   llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
4264     if (array.slice)
4265       return computeSliceShape(array.slice);
4266     if (array.memref.getType().isa<fir::BoxType>())
4267       return fir::factory::readExtents(builder, getLoc(),
4268                                        fir::BoxValue{array.memref});
4269     return fir::factory::getExtents(array.shape);
4270   }
4271 
4272   /// Get the shape from an ArrayLoad.
4273   llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
4274     return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
4275                                  arrayLoad.getSlice()});
4276   }
4277 
4278   /// Returns the first array operand that may not be absent. If all
4279   /// array operands may be absent, return the first one.
4280   const ArrayOperand &getInducingShapeArrayOperand() const {
4281     assert(!arrayOperands.empty());
4282     for (const ArrayOperand &op : arrayOperands)
4283       if (!op.mayBeAbsent)
4284         return op;
4285     // If all arrays operand appears in optional position, then none of them
4286     // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
4287     // first operands.
4288     // TODO: There is an opportunity to add a runtime check here that
4289     // this array is present as required.
4290     return arrayOperands[0];
4291   }
4292 
4293   /// Generate the shape of the iteration space over the array expression. The
4294   /// iteration space may be implicit, explicit, or both. If it is implied it is
4295   /// based on the destination and operand array loads, or an optional
4296   /// Fortran::evaluate::Shape from the front end. If the shape is explicit,
4297   /// this returns any implicit shape component, if it exists.
4298   llvm::SmallVector<mlir::Value> genIterationShape() {
4299     // Use the precomputed destination shape.
4300     if (!destShape.empty())
4301       return destShape;
4302     // Otherwise, use the destination's shape.
4303     if (destination)
4304       return getShape(destination);
4305     // Otherwise, use the first ArrayLoad operand shape.
4306     if (!arrayOperands.empty())
4307       return getShape(getInducingShapeArrayOperand());
4308     fir::emitFatalError(getLoc(),
4309                         "failed to compute the array expression shape");
4310   }
4311 
4312   bool explicitSpaceIsActive() const {
4313     return explicitSpace && explicitSpace->isActive();
4314   }
4315 
4316   bool implicitSpaceHasMasks() const {
4317     return implicitSpace && !implicitSpace->empty();
4318   }
4319 
4320   CC genMaskAccess(mlir::Value tmp, mlir::Value shape) {
4321     mlir::Location loc = getLoc();
4322     return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) {
4323       mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType());
4324       auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
4325       mlir::Type eleRefTy = builder->getRefType(eleTy);
4326       mlir::IntegerType i1Ty = builder->getI1Type();
4327       // Adjust indices for any shift of the origin of the array.
4328       llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
4329           loc, *builder, tmp.getType(), shape, iters.iterVec());
4330       auto addr =
4331           builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape,
4332                                             /*slice=*/mlir::Value{}, indices,
4333                                             /*typeParams=*/llvm::None);
4334       auto load = builder->create<fir::LoadOp>(loc, addr);
4335       return builder->createConvert(loc, i1Ty, load);
4336     };
4337   }
4338 
4339   /// Construct the incremental instantiations of the ragged array structure.
4340   /// Rebind the lazy buffer variable, etc. as we go.
4341   template <bool withAllocation = false>
4342   mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) {
4343     assert(explicitSpaceIsActive());
4344     mlir::Location loc = getLoc();
4345     mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder);
4346     llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack =
4347         explicitSpace->getLoopStack();
4348     const std::size_t depth = loopStack.size();
4349     mlir::IntegerType i64Ty = builder.getIntegerType(64);
4350     [[maybe_unused]] mlir::Value byteSize =
4351         builder.createIntegerConstant(loc, i64Ty, 1);
4352     mlir::Value header = implicitSpace->lookupMaskHeader(expr);
4353     for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) {
4354       auto insPt = builder.saveInsertionPoint();
4355       if (i < depth - 1)
4356         builder.setInsertionPoint(loopStack[i + 1][0]);
4357 
4358       // Compute and gather the extents.
4359       llvm::SmallVector<mlir::Value> extents;
4360       for (auto doLoop : loopStack[i])
4361         extents.push_back(builder.genExtentFromTriplet(
4362             loc, doLoop.getLowerBound(), doLoop.getUpperBound(),
4363             doLoop.getStep(), i64Ty));
4364       if constexpr (withAllocation) {
4365         fir::runtime::genRaggedArrayAllocate(
4366             loc, builder, header, /*asHeader=*/true, byteSize, extents);
4367       }
4368 
4369       // Compute the dynamic position into the header.
4370       llvm::SmallVector<mlir::Value> offsets;
4371       for (auto doLoop : loopStack[i]) {
4372         auto m = builder.create<mlir::arith::SubIOp>(
4373             loc, doLoop.getInductionVar(), doLoop.getLowerBound());
4374         auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep());
4375         mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1);
4376         offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one));
4377       }
4378       mlir::IntegerType i32Ty = builder.getIntegerType(32);
4379       mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1);
4380       mlir::Type coorTy = builder.getRefType(raggedTy.getType(1));
4381       auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
4382       auto toTy = fir::SequenceType::get(raggedTy, offsets.size());
4383       mlir::Type toRefTy = builder.getRefType(toTy);
4384       auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff);
4385       mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr);
4386       auto shapeOp = builder.genShape(loc, extents);
4387       header = builder.create<fir::ArrayCoorOp>(
4388           loc, builder.getRefType(raggedTy), hdArr, shapeOp,
4389           /*slice=*/mlir::Value{}, offsets,
4390           /*typeparams=*/mlir::ValueRange{});
4391       auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
4392       auto inVar = builder.create<fir::LoadOp>(loc, hdrVar);
4393       mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
4394       mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2));
4395       auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two);
4396       auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh);
4397       // Replace the binding.
4398       implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr));
4399       if (i < depth - 1)
4400         builder.restoreInsertionPoint(insPt);
4401     }
4402     return header;
4403   }
4404 
4405   /// Lower mask expressions with implied iteration spaces from the variants of
4406   /// WHERE syntax. Since it is legal for mask expressions to have side-effects
4407   /// and modify values that will be used for the lhs, rhs, or both of
4408   /// subsequent assignments, the mask must be evaluated before the assignment
4409   /// is processed.
4410   /// Mask expressions are array expressions too.
4411   void genMasks() {
4412     // Lower the mask expressions, if any.
4413     if (implicitSpaceHasMasks()) {
4414       mlir::Location loc = getLoc();
4415       // Mask expressions are array expressions too.
4416       for (const auto *e : implicitSpace->getExprs())
4417         if (e && !implicitSpace->isLowered(e)) {
4418           if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) {
4419             // Allocate the mask buffer lazily.
4420             assert(explicitSpaceIsActive());
4421             mlir::Value header =
4422                 prepareRaggedArrays</*withAllocations=*/true>(e);
4423             Fortran::lower::createLazyArrayTempValue(converter, *e, header,
4424                                                      symMap, stmtCtx);
4425             // Close the explicit loops.
4426             builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs());
4427             builder.setInsertionPointAfter(explicitSpace->getOuterLoop());
4428             // Open a new copy of the explicit loop nest.
4429             explicitSpace->genLoopNest();
4430             continue;
4431           }
4432           fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue(
4433               converter, *e, symMap, stmtCtx);
4434           mlir::Value shape = builder.createShape(loc, tmp);
4435           implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape));
4436         }
4437 
4438       // Set buffer from the header.
4439       for (const auto *e : implicitSpace->getExprs()) {
4440         if (!e)
4441           continue;
4442         if (implicitSpace->lookupMaskVariable(e)) {
4443           // Index into the ragged buffer to retrieve cached results.
4444           const int rank = e->Rank();
4445           assert(destShape.empty() ||
4446                  static_cast<std::size_t>(rank) == destShape.size());
4447           mlir::Value header = prepareRaggedArrays(e);
4448           mlir::TupleType raggedTy =
4449               fir::factory::getRaggedArrayHeaderType(builder);
4450           mlir::IntegerType i32Ty = builder.getIntegerType(32);
4451           mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
4452           auto coor1 = builder.create<fir::CoordinateOp>(
4453               loc, builder.getRefType(raggedTy.getType(1)), header, one);
4454           auto db = builder.create<fir::LoadOp>(loc, coor1);
4455           mlir::Type eleTy =
4456               fir::unwrapSequenceType(fir::unwrapRefType(db.getType()));
4457           mlir::Type buffTy =
4458               builder.getRefType(fir::SequenceType::get(eleTy, rank));
4459           // Address of ragged buffer data.
4460           mlir::Value buff = builder.createConvert(loc, buffTy, db);
4461 
4462           mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
4463           auto coor2 = builder.create<fir::CoordinateOp>(
4464               loc, builder.getRefType(raggedTy.getType(2)), header, two);
4465           auto shBuff = builder.create<fir::LoadOp>(loc, coor2);
4466           mlir::IntegerType i64Ty = builder.getIntegerType(64);
4467           mlir::IndexType idxTy = builder.getIndexType();
4468           llvm::SmallVector<mlir::Value> extents;
4469           for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) {
4470             mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i);
4471             auto coor = builder.create<fir::CoordinateOp>(
4472                 loc, builder.getRefType(i64Ty), shBuff, off);
4473             auto ldExt = builder.create<fir::LoadOp>(loc, coor);
4474             extents.push_back(builder.createConvert(loc, idxTy, ldExt));
4475           }
4476           if (destShape.empty())
4477             destShape = extents;
4478           // Construct shape of buffer.
4479           mlir::Value shapeOp = builder.genShape(loc, extents);
4480 
4481           // Replace binding with the local result.
4482           implicitSpace->rebind(e, genMaskAccess(buff, shapeOp));
4483         }
4484       }
4485     }
4486   }
4487 
4488   // FIXME: should take multiple inner arguments.
4489   std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
4490   genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
4491     mlir::Location loc = getLoc();
4492     mlir::IndexType idxTy = builder.getIndexType();
4493     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
4494     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
4495     llvm::SmallVector<mlir::Value> loopUppers;
4496 
4497     // Convert any implied shape to closed interval form. The fir.do_loop will
4498     // run from 0 to `extent - 1` inclusive.
4499     for (auto extent : shape)
4500       loopUppers.push_back(
4501           builder.create<mlir::arith::SubIOp>(loc, extent, one));
4502 
4503     // Iteration space is created with outermost columns, innermost rows
4504     llvm::SmallVector<fir::DoLoopOp> loops;
4505 
4506     const std::size_t loopDepth = loopUppers.size();
4507     llvm::SmallVector<mlir::Value> ivars;
4508 
4509     for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
4510       if (i.index() > 0) {
4511         assert(!loops.empty());
4512         builder.setInsertionPointToStart(loops.back().getBody());
4513       }
4514       fir::DoLoopOp loop;
4515       if (innerArg) {
4516         loop = builder.create<fir::DoLoopOp>(
4517             loc, zero, i.value(), one, isUnordered(),
4518             /*finalCount=*/false, mlir::ValueRange{innerArg});
4519         innerArg = loop.getRegionIterArgs().front();
4520         if (explicitSpaceIsActive())
4521           explicitSpace->setInnerArg(0, innerArg);
4522       } else {
4523         loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
4524                                              isUnordered(),
4525                                              /*finalCount=*/false);
4526       }
4527       ivars.push_back(loop.getInductionVar());
4528       loops.push_back(loop);
4529     }
4530 
4531     if (innerArg)
4532       for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
4533            ++i) {
4534         builder.setInsertionPointToEnd(loops[i].getBody());
4535         builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
4536       }
4537 
4538     // Move insertion point to the start of the innermost loop in the nest.
4539     builder.setInsertionPointToStart(loops.back().getBody());
4540     // Set `afterLoopNest` to just after the entire loop nest.
4541     auto currPt = builder.saveInsertionPoint();
4542     builder.setInsertionPointAfter(loops[0]);
4543     auto afterLoopNest = builder.saveInsertionPoint();
4544     builder.restoreInsertionPoint(currPt);
4545 
4546     // Put the implicit loop variables in row to column order to match FIR's
4547     // Ops. (The loops were constructed from outermost column to innermost
4548     // row.)
4549     mlir::Value outerRes = loops[0].getResult(0);
4550     return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
4551             afterLoopNest};
4552   }
4553 
4554   /// Build the iteration space into which the array expression will be lowered.
4555   /// The resultType is used to create a temporary, if needed.
4556   std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
4557   genIterSpace(mlir::Type resultType) {
4558     mlir::Location loc = getLoc();
4559     llvm::SmallVector<mlir::Value> shape = genIterationShape();
4560     if (!destination) {
4561       // Allocate storage for the result if it is not already provided.
4562       destination = createAndLoadSomeArrayTemp(resultType, shape);
4563     }
4564 
4565     // Generate the lazy mask allocation, if one was given.
4566     if (ccPrelude.hasValue())
4567       ccPrelude.getValue()(shape);
4568 
4569     // Now handle the implicit loops.
4570     mlir::Value inner = explicitSpaceIsActive()
4571                             ? explicitSpace->getInnerArgs().front()
4572                             : destination.getResult();
4573     auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
4574     mlir::Value innerArg = iters.innerArgument();
4575 
4576     // Generate the mask conditional structure, if there are masks. Unlike the
4577     // explicit masks, which are interleaved, these mask expression appear in
4578     // the innermost loop.
4579     if (implicitSpaceHasMasks()) {
4580       // Recover the cached condition from the mask buffer.
4581       auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
4582         return implicitSpace->getBoundClosure(e)(iters);
4583       };
4584 
4585       // Handle the negated conditions in topological order of the WHERE
4586       // clauses. See 10.2.3.2p4 as to why this control structure is produced.
4587       for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
4588            implicitSpace->getMasks()) {
4589         const std::size_t size = maskExprs.size() - 1;
4590         auto genFalseBlock = [&](const auto *e, auto &&cond) {
4591           auto ifOp = builder.create<fir::IfOp>(
4592               loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
4593               /*withElseRegion=*/true);
4594           builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
4595           builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
4596           builder.create<fir::ResultOp>(loc, innerArg);
4597           builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
4598         };
4599         auto genTrueBlock = [&](const auto *e, auto &&cond) {
4600           auto ifOp = builder.create<fir::IfOp>(
4601               loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
4602               /*withElseRegion=*/true);
4603           builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
4604           builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
4605           builder.create<fir::ResultOp>(loc, innerArg);
4606           builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
4607         };
4608         for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
4609           if (const auto *e = maskExprs[i])
4610             genFalseBlock(e, genCond(e, iters));
4611 
4612         // The last condition is either non-negated or unconditionally negated.
4613         if (const auto *e = maskExprs[size])
4614           genTrueBlock(e, genCond(e, iters));
4615       }
4616     }
4617 
4618     // We're ready to lower the body (an assignment statement) for this context
4619     // of loop nests at this point.
4620     return {iters, afterLoopNest};
4621   }
4622 
4623   fir::ArrayLoadOp
4624   createAndLoadSomeArrayTemp(mlir::Type type,
4625                              llvm::ArrayRef<mlir::Value> shape) {
4626     if (ccLoadDest.hasValue())
4627       return ccLoadDest.getValue()(shape);
4628     auto seqTy = type.dyn_cast<fir::SequenceType>();
4629     assert(seqTy && "must be an array");
4630     mlir::Location loc = getLoc();
4631     // TODO: Need to thread the LEN parameters here. For character, they may
4632     // differ from the operands length (e.g concatenation). So the array loads
4633     // type parameters are not enough.
4634     if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
4635       if (charTy.hasDynamicLen())
4636         TODO(loc, "character array expression temp with dynamic length");
4637     if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
4638       if (recTy.getNumLenParams() > 0)
4639         TODO(loc, "derived type array expression temp with LEN parameters");
4640     if (mlir::Type eleTy = fir::unwrapSequenceType(type);
4641         fir::isRecordWithAllocatableMember(eleTy))
4642       TODO(loc, "creating an array temp where the element type has "
4643                 "allocatable members");
4644     mlir::Value temp = seqTy.hasConstantShape()
4645                            ? builder.create<fir::AllocMemOp>(loc, type)
4646                            : builder.create<fir::AllocMemOp>(
4647                                  loc, type, ".array.expr", llvm::None, shape);
4648     fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
4649     stmtCtx.attachCleanup(
4650         [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
4651     mlir::Value shapeOp = genShapeOp(shape);
4652     return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
4653                                             /*slice=*/mlir::Value{},
4654                                             llvm::None);
4655   }
4656 
4657   static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
4658                                  llvm::ArrayRef<mlir::Value> shape) {
4659     mlir::IndexType idxTy = builder.getIndexType();
4660     llvm::SmallVector<mlir::Value> idxShape;
4661     for (auto s : shape)
4662       idxShape.push_back(builder.createConvert(loc, idxTy, s));
4663     auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size());
4664     return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape);
4665   }
4666 
4667   fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
4668     return genShapeOp(getLoc(), builder, shape);
4669   }
4670 
4671   //===--------------------------------------------------------------------===//
4672   // Expression traversal and lowering.
4673   //===--------------------------------------------------------------------===//
4674 
4675   /// Lower the expression, \p x, in a scalar context.
4676   template <typename A>
4677   ExtValue asScalar(const A &x) {
4678     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
4679   }
4680 
4681   /// Lower the expression, \p x, in a scalar context. If this is an explicit
4682   /// space, the expression may be scalar and refer to an array. We want to
4683   /// raise the array access to array operations in FIR to analyze potential
4684   /// conflicts even when the result is a scalar element.
4685   template <typename A>
4686   ExtValue asScalarArray(const A &x) {
4687     return explicitSpaceIsActive() && !isPointerAssignment()
4688                ? genarr(x)(IterationSpace{})
4689                : asScalar(x);
4690   }
4691 
4692   /// Lower the expression in a scalar context to a memory reference.
4693   template <typename A>
4694   ExtValue asScalarRef(const A &x) {
4695     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
4696   }
4697 
4698   /// Lower an expression without dereferencing any indirection that may be
4699   /// a nullptr (because this is an absent optional or unallocated/disassociated
4700   /// descriptor). The returned expression cannot be addressed directly, it is
4701   /// meant to inquire about its status before addressing the related entity.
4702   template <typename A>
4703   ExtValue asInquired(const A &x) {
4704     return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
4705         .lowerIntrinsicArgumentAsInquired(x);
4706   }
4707 
4708   /// Some temporaries are allocated on an element-by-element basis during the
4709   /// array expression evaluation. Collect the cleanups here so the resources
4710   /// can be freed before the next loop iteration, avoiding memory leaks. etc.
4711   Fortran::lower::StatementContext &getElementCtx() {
4712     if (!elementCtx) {
4713       stmtCtx.pushScope();
4714       elementCtx = true;
4715     }
4716     return stmtCtx;
4717   }
4718 
4719   /// If there were temporaries created for this element evaluation, finalize
4720   /// and deallocate the resources now. This should be done just prior the the
4721   /// fir::ResultOp at the end of the innermost loop.
4722   void finalizeElementCtx() {
4723     if (elementCtx) {
4724       stmtCtx.finalizeAndPop();
4725       elementCtx = false;
4726     }
4727   }
4728 
4729   /// Lower an elemental function array argument. This ensures array
4730   /// sub-expressions that are not variables and must be passed by address
4731   /// are lowered by value and placed in memory.
4732   template <typename A>
4733   CC genElementalArgument(const A &x) {
4734     // Ensure the returned element is in memory if this is what was requested.
4735     if ((semant == ConstituentSemantics::RefOpaque ||
4736          semant == ConstituentSemantics::DataAddr ||
4737          semant == ConstituentSemantics::ByValueArg)) {
4738       if (!Fortran::evaluate::IsVariable(x)) {
4739         PushSemantics(ConstituentSemantics::DataValue);
4740         CC cc = genarr(x);
4741         mlir::Location loc = getLoc();
4742         if (isParenthesizedVariable(x)) {
4743           // Parenthesised variables are lowered to a reference to the variable
4744           // storage. When passing it as an argument, a copy must be passed.
4745           return [=](IterSpace iters) -> ExtValue {
4746             return createInMemoryScalarCopy(builder, loc, cc(iters));
4747           };
4748         }
4749         mlir::Type storageType =
4750             fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
4751         return [=](IterSpace iters) -> ExtValue {
4752           return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
4753         };
4754       }
4755     }
4756     return genarr(x);
4757   }
4758 
4759   // A reference to a Fortran elemental intrinsic or intrinsic module procedure.
4760   CC genElementalIntrinsicProcRef(
4761       const Fortran::evaluate::ProcedureRef &procRef,
4762       llvm::Optional<mlir::Type> retTy,
4763       llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
4764           llvm::None) {
4765 
4766     llvm::SmallVector<CC> operands;
4767     std::string name =
4768         intrinsic ? intrinsic->name
4769                   : procRef.proc().GetSymbol()->GetUltimate().name().ToString();
4770     const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
4771         Fortran::lower::getIntrinsicArgumentLowering(name);
4772     mlir::Location loc = getLoc();
4773     if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
4774                          procRef, *intrinsic, converter)) {
4775       using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>;
4776       llvm::SmallVector<CcPairT> operands;
4777       auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
4778         if (expr.Rank() == 0) {
4779           ExtValue optionalArg = this->asInquired(expr);
4780           mlir::Value isPresent =
4781               genActualIsPresentTest(builder, loc, optionalArg);
4782           operands.emplace_back(
4783               [=](IterSpace iters) -> ExtValue {
4784                 return genLoad(builder, loc, optionalArg);
4785               },
4786               isPresent);
4787         } else {
4788           auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
4789           operands.emplace_back(cc, isPresent);
4790         }
4791       };
4792       auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
4793         PushSemantics(ConstituentSemantics::RefTransparent);
4794         operands.emplace_back(genElementalArgument(expr), llvm::None);
4795       };
4796       Fortran::lower::prepareCustomIntrinsicArgument(
4797           procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
4798           converter);
4799 
4800       fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
4801       return [=](IterSpace iters) -> ExtValue {
4802         auto getArgument = [&](std::size_t i) -> ExtValue {
4803           return operands[i].first(iters);
4804         };
4805         auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
4806           return operands[i].second;
4807         };
4808         return Fortran::lower::lowerCustomIntrinsic(
4809             *bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
4810             getElementCtx());
4811       };
4812     }
4813     /// Otherwise, pre-lower arguments and use intrinsic lowering utility.
4814     for (const auto &arg : llvm::enumerate(procRef.arguments())) {
4815       const auto *expr =
4816           Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
4817       if (!expr) {
4818         // Absent optional.
4819         operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
4820       } else if (!argLowering) {
4821         // No argument lowering instruction, lower by value.
4822         PushSemantics(ConstituentSemantics::RefTransparent);
4823         operands.emplace_back(genElementalArgument(*expr));
4824       } else {
4825         // Ad-hoc argument lowering handling.
4826         Fortran::lower::ArgLoweringRule argRules =
4827             Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
4828         if (argRules.handleDynamicOptional &&
4829             Fortran::evaluate::MayBePassedAsAbsentOptional(
4830                 *expr, converter.getFoldingContext())) {
4831           // Currently, there is not elemental intrinsic that requires lowering
4832           // a potentially absent argument to something else than a value (apart
4833           // from character MAX/MIN that are handled elsewhere.)
4834           if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value)
4835             TODO(loc, "lowering non trivial optional elemental intrinsic array "
4836                       "argument");
4837           PushSemantics(ConstituentSemantics::RefTransparent);
4838           operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
4839           continue;
4840         }
4841         switch (argRules.lowerAs) {
4842         case Fortran::lower::LowerIntrinsicArgAs::Value: {
4843           PushSemantics(ConstituentSemantics::RefTransparent);
4844           operands.emplace_back(genElementalArgument(*expr));
4845         } break;
4846         case Fortran::lower::LowerIntrinsicArgAs::Addr: {
4847           // Note: assume does not have Fortran VALUE attribute semantics.
4848           PushSemantics(ConstituentSemantics::RefOpaque);
4849           operands.emplace_back(genElementalArgument(*expr));
4850         } break;
4851         case Fortran::lower::LowerIntrinsicArgAs::Box: {
4852           PushSemantics(ConstituentSemantics::RefOpaque);
4853           auto lambda = genElementalArgument(*expr);
4854           operands.emplace_back([=](IterSpace iters) {
4855             return builder.createBox(loc, lambda(iters));
4856           });
4857         } break;
4858         case Fortran::lower::LowerIntrinsicArgAs::Inquired:
4859           TODO(loc, "intrinsic function with inquired argument");
4860           break;
4861         }
4862       }
4863     }
4864 
4865     // Let the intrinsic library lower the intrinsic procedure call
4866     return [=](IterSpace iters) {
4867       llvm::SmallVector<ExtValue> args;
4868       for (const auto &cc : operands)
4869         args.push_back(cc(iters));
4870       return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
4871                                               getElementCtx());
4872     };
4873   }
4874 
4875   /// Lower a procedure reference to a user-defined elemental procedure.
4876   CC genElementalUserDefinedProcRef(
4877       const Fortran::evaluate::ProcedureRef &procRef,
4878       llvm::Optional<mlir::Type> retTy) {
4879     using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
4880 
4881     // 10.1.4 p5. Impure elemental procedures must be called in element order.
4882     if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol())
4883       if (!Fortran::semantics::IsPureProcedure(*procSym))
4884         setUnordered(false);
4885 
4886     Fortran::lower::CallerInterface caller(procRef, converter);
4887     llvm::SmallVector<CC> operands;
4888     operands.reserve(caller.getPassedArguments().size());
4889     mlir::Location loc = getLoc();
4890     mlir::FunctionType callSiteType = caller.genFunctionType();
4891     for (const Fortran::lower::CallInterface<
4892              Fortran::lower::CallerInterface>::PassedEntity &arg :
4893          caller.getPassedArguments()) {
4894       // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
4895       // arguments must be called in element order.
4896       if (arg.mayBeModifiedByCall())
4897         setUnordered(false);
4898       const auto *actual = arg.entity;
4899       mlir::Type argTy = callSiteType.getInput(arg.firArgument);
4900       if (!actual) {
4901         // Optional dummy argument for which there is no actual argument.
4902         auto absent = builder.create<fir::AbsentOp>(loc, argTy);
4903         operands.emplace_back([=](IterSpace) { return absent; });
4904         continue;
4905       }
4906       const auto *expr = actual->UnwrapExpr();
4907       if (!expr)
4908         TODO(loc, "assumed type actual argument lowering");
4909 
4910       LLVM_DEBUG(expr->AsFortran(llvm::dbgs()
4911                                  << "argument: " << arg.firArgument << " = [")
4912                  << "]\n");
4913       if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
4914                                   *expr, converter.getFoldingContext()))
4915         TODO(loc,
4916              "passing dynamically optional argument to elemental procedures");
4917       switch (arg.passBy) {
4918       case PassBy::Value: {
4919         // True pass-by-value semantics.
4920         PushSemantics(ConstituentSemantics::RefTransparent);
4921         operands.emplace_back(genElementalArgument(*expr));
4922       } break;
4923       case PassBy::BaseAddressValueAttribute: {
4924         // VALUE attribute or pass-by-reference to a copy semantics. (byval*)
4925         if (isArray(*expr)) {
4926           PushSemantics(ConstituentSemantics::ByValueArg);
4927           operands.emplace_back(genElementalArgument(*expr));
4928         } else {
4929           // Store scalar value in a temp to fulfill VALUE attribute.
4930           mlir::Value val = fir::getBase(asScalar(*expr));
4931           mlir::Value temp = builder.createTemporary(
4932               loc, val.getType(),
4933               llvm::ArrayRef<mlir::NamedAttribute>{
4934                   Fortran::lower::getAdaptToByRefAttr(builder)});
4935           builder.create<fir::StoreOp>(loc, val, temp);
4936           operands.emplace_back(
4937               [=](IterSpace iters) -> ExtValue { return temp; });
4938         }
4939       } break;
4940       case PassBy::BaseAddress: {
4941         if (isArray(*expr)) {
4942           PushSemantics(ConstituentSemantics::RefOpaque);
4943           operands.emplace_back(genElementalArgument(*expr));
4944         } else {
4945           ExtValue exv = asScalarRef(*expr);
4946           operands.emplace_back([=](IterSpace iters) { return exv; });
4947         }
4948       } break;
4949       case PassBy::CharBoxValueAttribute: {
4950         if (isArray(*expr)) {
4951           PushSemantics(ConstituentSemantics::DataValue);
4952           auto lambda = genElementalArgument(*expr);
4953           operands.emplace_back([=](IterSpace iters) {
4954             return fir::factory::CharacterExprHelper{builder, loc}
4955                 .createTempFrom(lambda(iters));
4956           });
4957         } else {
4958           fir::factory::CharacterExprHelper helper(builder, loc);
4959           fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr));
4960           operands.emplace_back(
4961               [=](IterSpace iters) -> ExtValue { return argVal; });
4962         }
4963       } break;
4964       case PassBy::BoxChar: {
4965         PushSemantics(ConstituentSemantics::RefOpaque);
4966         operands.emplace_back(genElementalArgument(*expr));
4967       } break;
4968       case PassBy::AddressAndLength:
4969         // PassBy::AddressAndLength is only used for character results. Results
4970         // are not handled here.
4971         fir::emitFatalError(
4972             loc, "unexpected PassBy::AddressAndLength in elemental call");
4973         break;
4974       case PassBy::CharProcTuple: {
4975         ExtValue argRef = asScalarRef(*expr);
4976         mlir::Value tuple = createBoxProcCharTuple(
4977             converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
4978         operands.emplace_back(
4979             [=](IterSpace iters) -> ExtValue { return tuple; });
4980       } break;
4981       case PassBy::Box:
4982       case PassBy::MutableBox:
4983         // See C15100 and C15101
4984         fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE");
4985       }
4986     }
4987 
4988     if (caller.getIfIndirectCallSymbol())
4989       fir::emitFatalError(loc, "cannot be indirect call");
4990 
4991     // The lambda is mutable so that `caller` copy can be modified inside it.
4992     return
4993         [=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue {
4994           for (const auto &[cc, argIface] :
4995                llvm::zip(operands, caller.getPassedArguments())) {
4996             auto exv = cc(iters);
4997             auto arg = exv.match(
4998                 [&](const fir::CharBoxValue &cb) -> mlir::Value {
4999                   return fir::factory::CharacterExprHelper{builder, loc}
5000                       .createEmbox(cb);
5001                 },
5002                 [&](const auto &) { return fir::getBase(exv); });
5003             caller.placeInput(argIface, arg);
5004           }
5005           return ScalarExprLowering{loc, converter, symMap, getElementCtx()}
5006               .genCallOpAndResult(caller, callSiteType, retTy);
5007         };
5008   }
5009 
5010   /// Generate a procedure reference. This code is shared for both functions and
5011   /// subroutines, the difference being reflected by `retTy`.
5012   CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
5013                 llvm::Optional<mlir::Type> retTy) {
5014     mlir::Location loc = getLoc();
5015     if (procRef.IsElemental()) {
5016       if (const Fortran::evaluate::SpecificIntrinsic *intrin =
5017               procRef.proc().GetSpecificIntrinsic()) {
5018         // All elemental intrinsic functions are pure and cannot modify their
5019         // arguments. The only elemental subroutine, MVBITS has an Intent(inout)
5020         // argument. So for this last one, loops must be in element order
5021         // according to 15.8.3 p1.
5022         if (!retTy)
5023           setUnordered(false);
5024 
5025         // Elemental intrinsic call.
5026         // The intrinsic procedure is called once per element of the array.
5027         return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
5028       }
5029       if (isIntrinsicModuleProcRef(procRef))
5030         return genElementalIntrinsicProcRef(procRef, retTy);
5031       if (ScalarExprLowering::isStatementFunctionCall(procRef))
5032         fir::emitFatalError(loc, "statement function cannot be elemental");
5033 
5034       // Elemental call.
5035       // The procedure is called once per element of the array argument(s).
5036       return genElementalUserDefinedProcRef(procRef, retTy);
5037     }
5038 
5039     // Transformational call.
5040     // The procedure is called once and produces a value of rank > 0.
5041     if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
5042             procRef.proc().GetSpecificIntrinsic()) {
5043       if (explicitSpaceIsActive() && procRef.Rank() == 0) {
5044         // Elide any implicit loop iters.
5045         return [=, &procRef](IterSpace) {
5046           return ScalarExprLowering{loc, converter, symMap, stmtCtx}
5047               .genIntrinsicRef(procRef, retTy, *intrinsic);
5048         };
5049       }
5050       return genarr(
5051           ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
5052               procRef, retTy, *intrinsic));
5053     }
5054 
5055     const bool isPtrAssn = isPointerAssignment();
5056     if (explicitSpaceIsActive() && procRef.Rank() == 0) {
5057       // Elide any implicit loop iters.
5058       return [=, &procRef](IterSpace) {
5059         ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
5060         return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
5061                          : sel.genProcedureRef(procRef, retTy);
5062       };
5063     }
5064     // In the default case, the call can be hoisted out of the loop nest. Apply
5065     // the iterations to the result, which may be an array value.
5066     ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
5067     auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
5068                          : sel.genProcedureRef(procRef, retTy);
5069     return genarr(exv);
5070   }
5071 
5072   CC genarr(const Fortran::evaluate::ProcedureDesignator &) {
5073     TODO(getLoc(), "procedure designator");
5074   }
5075   CC genarr(const Fortran::evaluate::ProcedureRef &x) {
5076     if (x.hasAlternateReturns())
5077       fir::emitFatalError(getLoc(),
5078                           "array procedure reference with alt-return");
5079     return genProcRef(x, llvm::None);
5080   }
5081   template <typename A>
5082   CC genScalarAndForwardValue(const A &x) {
5083     ExtValue result = asScalar(x);
5084     return [=](IterSpace) { return result; };
5085   }
5086   template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
5087                             A, Fortran::evaluate::TypelessExpression>>>
5088   CC genarr(const A &x) {
5089     return genScalarAndForwardValue(x);
5090   }
5091 
5092   template <typename A>
5093   CC genarr(const Fortran::evaluate::Expr<A> &x) {
5094     LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
5095     if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) ||
5096         isElementalProcWithArrayArgs(x))
5097       return std::visit([&](const auto &e) { return genarr(e); }, x.u);
5098     if (explicitSpaceIsActive()) {
5099       assert(!isArray(x) && !isLeftHandSide());
5100       auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u);
5101       auto result = cc(IterationSpace{});
5102       return [=](IterSpace) { return result; };
5103     }
5104     return genScalarAndForwardValue(x);
5105   }
5106 
5107   // Converting a value of memory bound type requires creating a temp and
5108   // copying the value.
5109   static ExtValue convertAdjustedType(fir::FirOpBuilder &builder,
5110                                       mlir::Location loc, mlir::Type toType,
5111                                       const ExtValue &exv) {
5112     return exv.match(
5113         [&](const fir::CharBoxValue &cb) -> ExtValue {
5114           mlir::Value len = cb.getLen();
5115           auto mem =
5116               builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len});
5117           fir::CharBoxValue result(mem, len);
5118           fir::factory::CharacterExprHelper{builder, loc}.createAssign(
5119               ExtValue{result}, exv);
5120           return result;
5121         },
5122         [&](const auto &) -> ExtValue {
5123           fir::emitFatalError(loc, "convert on adjusted extended value");
5124         });
5125   }
5126   template <Fortran::common::TypeCategory TC1, int KIND,
5127             Fortran::common::TypeCategory TC2>
5128   CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
5129                                              TC2> &x) {
5130     mlir::Location loc = getLoc();
5131     auto lambda = genarr(x.left());
5132     mlir::Type ty = converter.genType(TC1, KIND);
5133     return [=](IterSpace iters) -> ExtValue {
5134       auto exv = lambda(iters);
5135       mlir::Value val = fir::getBase(exv);
5136       auto valTy = val.getType();
5137       if (elementTypeWasAdjusted(valTy) &&
5138           !(fir::isa_ref_type(valTy) && fir::isa_integer(ty)))
5139         return convertAdjustedType(builder, loc, ty, exv);
5140       return builder.createConvert(loc, ty, val);
5141     };
5142   }
5143 
5144   template <int KIND>
5145   CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
5146     mlir::Location loc = getLoc();
5147     auto lambda = genarr(x.left());
5148     bool isImagPart = x.isImaginaryPart;
5149     return [=](IterSpace iters) -> ExtValue {
5150       mlir::Value lhs = fir::getBase(lambda(iters));
5151       return fir::factory::Complex{builder, loc}.extractComplexPart(lhs,
5152                                                                     isImagPart);
5153     };
5154   }
5155 
5156   template <typename T>
5157   CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
5158     mlir::Location loc = getLoc();
5159     if (isReferentiallyOpaque()) {
5160       // Context is a call argument in, for example, an elemental procedure
5161       // call. TODO: all array arguments should use array_load, array_access,
5162       // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
5163       // array_merge_store ops.
5164       TODO(loc, "parentheses on argument in elemental call");
5165     }
5166     auto f = genarr(x.left());
5167     return [=](IterSpace iters) -> ExtValue {
5168       auto val = f(iters);
5169       mlir::Value base = fir::getBase(val);
5170       auto newBase =
5171           builder.create<fir::NoReassocOp>(loc, base.getType(), base);
5172       return fir::substBase(val, newBase);
5173     };
5174   }
5175   template <int KIND>
5176   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5177                 Fortran::common::TypeCategory::Integer, KIND>> &x) {
5178     mlir::Location loc = getLoc();
5179     auto f = genarr(x.left());
5180     return [=](IterSpace iters) -> ExtValue {
5181       mlir::Value val = fir::getBase(f(iters));
5182       mlir::Type ty =
5183           converter.genType(Fortran::common::TypeCategory::Integer, KIND);
5184       mlir::Value zero = builder.createIntegerConstant(loc, ty, 0);
5185       return builder.create<mlir::arith::SubIOp>(loc, zero, val);
5186     };
5187   }
5188   template <int KIND>
5189   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5190                 Fortran::common::TypeCategory::Real, KIND>> &x) {
5191     mlir::Location loc = getLoc();
5192     auto f = genarr(x.left());
5193     return [=](IterSpace iters) -> ExtValue {
5194       return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters)));
5195     };
5196   }
5197   template <int KIND>
5198   CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
5199                 Fortran::common::TypeCategory::Complex, KIND>> &x) {
5200     mlir::Location loc = getLoc();
5201     auto f = genarr(x.left());
5202     return [=](IterSpace iters) -> ExtValue {
5203       return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters)));
5204     };
5205   }
5206 
5207   //===--------------------------------------------------------------------===//
5208   // Binary elemental ops
5209   //===--------------------------------------------------------------------===//
5210 
5211   template <typename OP, typename A>
5212   CC createBinaryOp(const A &evEx) {
5213     mlir::Location loc = getLoc();
5214     auto lambda = genarr(evEx.left());
5215     auto rf = genarr(evEx.right());
5216     return [=](IterSpace iters) -> ExtValue {
5217       mlir::Value left = fir::getBase(lambda(iters));
5218       mlir::Value right = fir::getBase(rf(iters));
5219       return builder.create<OP>(loc, left, right);
5220     };
5221   }
5222 
5223 #undef GENBIN
5224 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp)                           \
5225   template <int KIND>                                                          \
5226   CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type<       \
5227                 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) {       \
5228     return createBinaryOp<GenBinFirOp>(x);                                     \
5229   }
5230 
5231   GENBIN(Add, Integer, mlir::arith::AddIOp)
5232   GENBIN(Add, Real, mlir::arith::AddFOp)
5233   GENBIN(Add, Complex, fir::AddcOp)
5234   GENBIN(Subtract, Integer, mlir::arith::SubIOp)
5235   GENBIN(Subtract, Real, mlir::arith::SubFOp)
5236   GENBIN(Subtract, Complex, fir::SubcOp)
5237   GENBIN(Multiply, Integer, mlir::arith::MulIOp)
5238   GENBIN(Multiply, Real, mlir::arith::MulFOp)
5239   GENBIN(Multiply, Complex, fir::MulcOp)
5240   GENBIN(Divide, Integer, mlir::arith::DivSIOp)
5241   GENBIN(Divide, Real, mlir::arith::DivFOp)
5242   GENBIN(Divide, Complex, fir::DivcOp)
5243 
5244   template <Fortran::common::TypeCategory TC, int KIND>
5245   CC genarr(
5246       const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
5247     mlir::Location loc = getLoc();
5248     mlir::Type ty = converter.genType(TC, KIND);
5249     auto lf = genarr(x.left());
5250     auto rf = genarr(x.right());
5251     return [=](IterSpace iters) -> ExtValue {
5252       mlir::Value lhs = fir::getBase(lf(iters));
5253       mlir::Value rhs = fir::getBase(rf(iters));
5254       return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
5255     };
5256   }
5257   template <Fortran::common::TypeCategory TC, int KIND>
5258   CC genarr(
5259       const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
5260     mlir::Location loc = getLoc();
5261     auto lf = genarr(x.left());
5262     auto rf = genarr(x.right());
5263     switch (x.ordering) {
5264     case Fortran::evaluate::Ordering::Greater:
5265       return [=](IterSpace iters) -> ExtValue {
5266         mlir::Value lhs = fir::getBase(lf(iters));
5267         mlir::Value rhs = fir::getBase(rf(iters));
5268         return Fortran::lower::genMax(builder, loc,
5269                                       llvm::ArrayRef<mlir::Value>{lhs, rhs});
5270       };
5271     case Fortran::evaluate::Ordering::Less:
5272       return [=](IterSpace iters) -> ExtValue {
5273         mlir::Value lhs = fir::getBase(lf(iters));
5274         mlir::Value rhs = fir::getBase(rf(iters));
5275         return Fortran::lower::genMin(builder, loc,
5276                                       llvm::ArrayRef<mlir::Value>{lhs, rhs});
5277       };
5278     case Fortran::evaluate::Ordering::Equal:
5279       llvm_unreachable("Equal is not a valid ordering in this context");
5280     }
5281     llvm_unreachable("unknown ordering");
5282   }
5283   template <Fortran::common::TypeCategory TC, int KIND>
5284   CC genarr(
5285       const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
5286           &x) {
5287     mlir::Location loc = getLoc();
5288     auto ty = converter.genType(TC, KIND);
5289     auto lf = genarr(x.left());
5290     auto rf = genarr(x.right());
5291     return [=](IterSpace iters) {
5292       mlir::Value lhs = fir::getBase(lf(iters));
5293       mlir::Value rhs = fir::getBase(rf(iters));
5294       return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
5295     };
5296   }
5297   template <int KIND>
5298   CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
5299     mlir::Location loc = getLoc();
5300     auto lf = genarr(x.left());
5301     auto rf = genarr(x.right());
5302     return [=](IterSpace iters) -> ExtValue {
5303       mlir::Value lhs = fir::getBase(lf(iters));
5304       mlir::Value rhs = fir::getBase(rf(iters));
5305       return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs);
5306     };
5307   }
5308 
5309   /// Fortran's concatenation operator `//`.
5310   template <int KIND>
5311   CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
5312     mlir::Location loc = getLoc();
5313     auto lf = genarr(x.left());
5314     auto rf = genarr(x.right());
5315     return [=](IterSpace iters) -> ExtValue {
5316       auto lhs = lf(iters);
5317       auto rhs = rf(iters);
5318       const fir::CharBoxValue *lchr = lhs.getCharBox();
5319       const fir::CharBoxValue *rchr = rhs.getCharBox();
5320       if (lchr && rchr) {
5321         return fir::factory::CharacterExprHelper{builder, loc}
5322             .createConcatenate(*lchr, *rchr);
5323       }
5324       TODO(loc, "concat on unexpected extended values");
5325       return mlir::Value{};
5326     };
5327   }
5328 
5329   template <int KIND>
5330   CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
5331     auto lf = genarr(x.left());
5332     mlir::Value rhs = fir::getBase(asScalar(x.right()));
5333     return [=](IterSpace iters) -> ExtValue {
5334       mlir::Value lhs = fir::getBase(lf(iters));
5335       return fir::CharBoxValue{lhs, rhs};
5336     };
5337   }
5338 
5339   template <typename A>
5340   CC genarr(const Fortran::evaluate::Constant<A> &x) {
5341     if (x.Rank() == 0)
5342       return genScalarAndForwardValue(x);
5343     mlir::Location loc = getLoc();
5344     mlir::IndexType idxTy = builder.getIndexType();
5345     mlir::Type arrTy = converter.genType(toEvExpr(x));
5346     std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x);
5347     fir::GlobalOp global = builder.getNamedGlobal(globalName);
5348     if (!global) {
5349       mlir::Type symTy = arrTy;
5350       mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
5351       // If we have a rank-1 array of integer, real, or logical, then we can
5352       // create a global array with the dense attribute.
5353       //
5354       // The mlir tensor type can only handle integer, real, or logical. It
5355       // does not currently support nested structures which is required for
5356       // complex.
5357       //
5358       // Also, we currently handle just rank-1 since tensor type assumes
5359       // row major array ordering. We will need to reorder the dimensions
5360       // in the tensor type to support Fortran's column major array ordering.
5361       // How to create this tensor type is to be determined.
5362       if (x.Rank() == 1 &&
5363           eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>())
5364         global = Fortran::lower::createDenseGlobal(
5365             loc, arrTy, globalName, builder.createInternalLinkage(), true,
5366             toEvExpr(x), converter);
5367       // Note: If call to createDenseGlobal() returns 0, then call
5368       // createGlobalConstant() below.
5369       if (!global)
5370         global = builder.createGlobalConstant(
5371             loc, arrTy, globalName,
5372             [&](fir::FirOpBuilder &builder) {
5373               Fortran::lower::StatementContext stmtCtx(
5374                   /*cleanupProhibited=*/true);
5375               fir::ExtendedValue result =
5376                   Fortran::lower::createSomeInitializerExpression(
5377                       loc, converter, toEvExpr(x), symMap, stmtCtx);
5378               mlir::Value castTo =
5379                   builder.createConvert(loc, arrTy, fir::getBase(result));
5380               builder.create<fir::HasValueOp>(loc, castTo);
5381             },
5382             builder.createInternalLinkage());
5383     }
5384     auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
5385                                               global.getSymbol());
5386     auto seqTy = global.getType().cast<fir::SequenceType>();
5387     llvm::SmallVector<mlir::Value> extents;
5388     for (auto extent : seqTy.getShape())
5389       extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
5390     if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) {
5391       mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(),
5392                                                       charTy.getLen());
5393       return genarr(fir::CharArrayBoxValue{addr, len, extents});
5394     }
5395     return genarr(fir::ArrayBoxValue{addr, extents});
5396   }
5397 
5398   //===--------------------------------------------------------------------===//
5399   // A vector subscript expression may be wrapped with a cast to INTEGER*8.
5400   // Get rid of it here so the vector can be loaded. Add it back when
5401   // generating the elemental evaluation (inside the loop nest).
5402 
5403   static Fortran::lower::SomeExpr
5404   ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
5405                       Fortran::common::TypeCategory::Integer, 8>> &x) {
5406     return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u);
5407   }
5408   template <Fortran::common::TypeCategory FROM>
5409   static Fortran::lower::SomeExpr ignoreEvConvert(
5410       const Fortran::evaluate::Convert<
5411           Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>,
5412           FROM> &x) {
5413     return toEvExpr(x.left());
5414   }
5415   template <typename A>
5416   static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) {
5417     return toEvExpr(x);
5418   }
5419 
5420   //===--------------------------------------------------------------------===//
5421   // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
5422   // be used to determine the lbound, ubound of the vector.
5423 
5424   template <typename A>
5425   static const Fortran::semantics::Symbol *
5426   extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) {
5427     return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); },
5428                       x.u);
5429   }
5430   template <typename A>
5431   static const Fortran::semantics::Symbol *
5432   extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) {
5433     return Fortran::evaluate::UnwrapWholeSymbolDataRef(x);
5434   }
5435   template <typename A>
5436   static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) {
5437     return nullptr;
5438   }
5439 
5440   //===--------------------------------------------------------------------===//
5441 
5442   /// Get the declared lower bound value of the array `x` in dimension `dim`.
5443   /// The argument `one` must be an ssa-value for the constant 1.
5444   mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) {
5445     return fir::factory::readLowerBound(builder, getLoc(), x, dim, one);
5446   }
5447 
5448   /// Get the declared upper bound value of the array `x` in dimension `dim`.
5449   /// The argument `one` must be an ssa-value for the constant 1.
5450   mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) {
5451     mlir::Location loc = getLoc();
5452     mlir::Value lb = getLBound(x, dim, one);
5453     mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim);
5454     auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent);
5455     return builder.create<mlir::arith::SubIOp>(loc, add, one);
5456   }
5457 
5458   /// Return the extent of the boxed array `x` in dimesion `dim`.
5459   mlir::Value getExtent(const ExtValue &x, unsigned dim) {
5460     return fir::factory::readExtent(builder, getLoc(), x, dim);
5461   }
5462 
5463   template <typename A>
5464   ExtValue genArrayBase(const A &base) {
5465     ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx};
5466     return base.IsSymbol() ? sel.gen(getFirstSym(base))
5467                            : sel.gen(base.GetComponent());
5468   }
5469 
5470   template <typename A>
5471   bool hasEvArrayRef(const A &x) {
5472     struct HasEvArrayRefHelper
5473         : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> {
5474       HasEvArrayRefHelper()
5475           : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {}
5476       using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator();
5477       bool operator()(const Fortran::evaluate::ArrayRef &) const {
5478         return true;
5479       }
5480     } helper;
5481     return helper(x);
5482   }
5483 
5484   CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr,
5485                                   std::size_t dim) {
5486     PushSemantics(ConstituentSemantics::RefTransparent);
5487     auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr);
5488     llvm::SmallVector<mlir::Value> savedDestShape = destShape;
5489     destShape.clear();
5490     auto result = genarr(expr);
5491     if (destShape.empty())
5492       TODO(getLoc(), "expected vector to have an extent");
5493     assert(destShape.size() == 1 && "vector has rank > 1");
5494     if (destShape[0] != savedDestShape[dim]) {
5495       // Not the same, so choose the smaller value.
5496       mlir::Location loc = getLoc();
5497       auto cmp = builder.create<mlir::arith::CmpIOp>(
5498           loc, mlir::arith::CmpIPredicate::sgt, destShape[0],
5499           savedDestShape[dim]);
5500       auto sel = builder.create<mlir::arith::SelectOp>(
5501           loc, cmp, savedDestShape[dim], destShape[0]);
5502       savedDestShape[dim] = sel;
5503       destShape = savedDestShape;
5504     }
5505     return result;
5506   }
5507 
5508   /// Generate an access by vector subscript using the index in the iteration
5509   /// vector at `dim`.
5510   mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch,
5511                                 IterSpace iters, std::size_t dim) {
5512     IterationSpace vecIters(iters,
5513                             llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)});
5514     fir::ExtendedValue fetch = genArrFetch(vecIters);
5515     mlir::IndexType idxTy = builder.getIndexType();
5516     return builder.createConvert(loc, idxTy, fir::getBase(fetch));
5517   }
5518 
5519   /// When we have an array reference, the expressions specified in each
5520   /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
5521   /// (loop-invarianet) scalar expressions. This returns the base entity, the
5522   /// resulting type, and a continuation to adjust the default iteration space.
5523   void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv,
5524                        const Fortran::evaluate::ArrayRef &x, bool atBase) {
5525     mlir::Location loc = getLoc();
5526     mlir::IndexType idxTy = builder.getIndexType();
5527     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
5528     llvm::SmallVector<mlir::Value> &trips = cmptData.trips;
5529     LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n');
5530     auto &pc = cmptData.pc;
5531     const bool useTripsForSlice = !explicitSpaceIsActive();
5532     const bool createDestShape = destShape.empty();
5533     bool useSlice = false;
5534     std::size_t shapeIndex = 0;
5535     for (auto sub : llvm::enumerate(x.subscript())) {
5536       const std::size_t subsIndex = sub.index();
5537       std::visit(
5538           Fortran::common::visitors{
5539               [&](const Fortran::evaluate::Triplet &t) {
5540                 mlir::Value lowerBound;
5541                 if (auto optLo = t.lower())
5542                   lowerBound = fir::getBase(asScalarArray(*optLo));
5543                 else
5544                   lowerBound = getLBound(arrayExv, subsIndex, one);
5545                 lowerBound = builder.createConvert(loc, idxTy, lowerBound);
5546                 mlir::Value stride = fir::getBase(asScalarArray(t.stride()));
5547                 stride = builder.createConvert(loc, idxTy, stride);
5548                 if (useTripsForSlice || createDestShape) {
5549                   // Generate a slice operation for the triplet. The first and
5550                   // second position of the triplet may be omitted, and the
5551                   // declared lbound and/or ubound expression values,
5552                   // respectively, should be used instead.
5553                   trips.push_back(lowerBound);
5554                   mlir::Value upperBound;
5555                   if (auto optUp = t.upper())
5556                     upperBound = fir::getBase(asScalarArray(*optUp));
5557                   else
5558                     upperBound = getUBound(arrayExv, subsIndex, one);
5559                   upperBound = builder.createConvert(loc, idxTy, upperBound);
5560                   trips.push_back(upperBound);
5561                   trips.push_back(stride);
5562                   if (createDestShape) {
5563                     auto extent = builder.genExtentFromTriplet(
5564                         loc, lowerBound, upperBound, stride, idxTy);
5565                     destShape.push_back(extent);
5566                   }
5567                   useSlice = true;
5568                 }
5569                 if (!useTripsForSlice) {
5570                   auto currentPC = pc;
5571                   pc = [=](IterSpace iters) {
5572                     IterationSpace newIters = currentPC(iters);
5573                     mlir::Value impliedIter = newIters.iterValue(subsIndex);
5574                     // FIXME: must use the lower bound of this component.
5575                     auto arrLowerBound =
5576                         atBase ? getLBound(arrayExv, subsIndex, one) : one;
5577                     auto initial = builder.create<mlir::arith::SubIOp>(
5578                         loc, lowerBound, arrLowerBound);
5579                     auto prod = builder.create<mlir::arith::MulIOp>(
5580                         loc, impliedIter, stride);
5581                     auto result =
5582                         builder.create<mlir::arith::AddIOp>(loc, initial, prod);
5583                     newIters.setIndexValue(subsIndex, result);
5584                     return newIters;
5585                   };
5586                 }
5587                 shapeIndex++;
5588               },
5589               [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) {
5590                 const auto &e = ie.value(); // dereference
5591                 if (isArray(e)) {
5592                   // This is a vector subscript. Use the index values as read
5593                   // from a vector to determine the temporary array value.
5594                   // Note: 9.5.3.3.3(3) specifies undefined behavior for
5595                   // multiple updates to any specific array element through a
5596                   // vector subscript with replicated values.
5597                   assert(!isBoxValue() &&
5598                          "fir.box cannot be created with vector subscripts");
5599                   // TODO: Avoid creating a new evaluate::Expr here
5600                   auto arrExpr = ignoreEvConvert(e);
5601                   if (createDestShape) {
5602                     destShape.push_back(fir::factory::getExtentAtDimension(
5603                         loc, builder, arrayExv, subsIndex));
5604                   }
5605                   auto genArrFetch =
5606                       genVectorSubscriptArrayFetch(arrExpr, shapeIndex);
5607                   auto currentPC = pc;
5608                   pc = [=](IterSpace iters) {
5609                     IterationSpace newIters = currentPC(iters);
5610                     auto val = genAccessByVector(loc, genArrFetch, newIters,
5611                                                  subsIndex);
5612                     // Value read from vector subscript array and normalized
5613                     // using the base array's lower bound value.
5614                     mlir::Value lb = fir::factory::readLowerBound(
5615                         builder, loc, arrayExv, subsIndex, one);
5616                     auto origin = builder.create<mlir::arith::SubIOp>(
5617                         loc, idxTy, val, lb);
5618                     newIters.setIndexValue(subsIndex, origin);
5619                     return newIters;
5620                   };
5621                   if (useTripsForSlice) {
5622                     LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape =
5623                         getShape(arrayOperands.back());
5624                     auto undef = builder.create<fir::UndefOp>(loc, idxTy);
5625                     trips.push_back(undef);
5626                     trips.push_back(undef);
5627                     trips.push_back(undef);
5628                   }
5629                   shapeIndex++;
5630                 } else {
5631                   // This is a regular scalar subscript.
5632                   if (useTripsForSlice) {
5633                     // A regular scalar index, which does not yield an array
5634                     // section. Use a degenerate slice operation
5635                     // `(e:undef:undef)` in this dimension as a placeholder.
5636                     // This does not necessarily change the rank of the original
5637                     // array, so the iteration space must also be extended to
5638                     // include this expression in this dimension to adjust to
5639                     // the array's declared rank.
5640                     mlir::Value v = fir::getBase(asScalarArray(e));
5641                     trips.push_back(v);
5642                     auto undef = builder.create<fir::UndefOp>(loc, idxTy);
5643                     trips.push_back(undef);
5644                     trips.push_back(undef);
5645                     auto currentPC = pc;
5646                     // Cast `e` to index type.
5647                     mlir::Value iv = builder.createConvert(loc, idxTy, v);
5648                     // Normalize `e` by subtracting the declared lbound.
5649                     mlir::Value lb = fir::factory::readLowerBound(
5650                         builder, loc, arrayExv, subsIndex, one);
5651                     mlir::Value ivAdj =
5652                         builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb);
5653                     // Add lbound adjusted value of `e` to the iteration vector
5654                     // (except when creating a box because the iteration vector
5655                     // is empty).
5656                     if (!isBoxValue())
5657                       pc = [=](IterSpace iters) {
5658                         IterationSpace newIters = currentPC(iters);
5659                         newIters.insertIndexValue(subsIndex, ivAdj);
5660                         return newIters;
5661                       };
5662                   } else {
5663                     auto currentPC = pc;
5664                     mlir::Value newValue = fir::getBase(asScalarArray(e));
5665                     mlir::Value result =
5666                         builder.createConvert(loc, idxTy, newValue);
5667                     mlir::Value lb = fir::factory::readLowerBound(
5668                         builder, loc, arrayExv, subsIndex, one);
5669                     result = builder.create<mlir::arith::SubIOp>(loc, idxTy,
5670                                                                  result, lb);
5671                     pc = [=](IterSpace iters) {
5672                       IterationSpace newIters = currentPC(iters);
5673                       newIters.insertIndexValue(subsIndex, result);
5674                       return newIters;
5675                     };
5676                   }
5677                 }
5678               }},
5679           sub.value().u);
5680     }
5681     if (!useSlice)
5682       trips.clear();
5683   }
5684 
5685   static mlir::Type unwrapBoxEleTy(mlir::Type ty) {
5686     if (auto boxTy = ty.dyn_cast<fir::BoxType>())
5687       return fir::unwrapRefType(boxTy.getEleTy());
5688     return ty;
5689   }
5690 
5691   llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) {
5692     llvm::SmallVector<mlir::Value> result;
5693     ty = unwrapBoxEleTy(ty);
5694     mlir::Location loc = getLoc();
5695     mlir::IndexType idxTy = builder.getIndexType();
5696     for (auto extent : ty.cast<fir::SequenceType>().getShape()) {
5697       auto v = extent == fir::SequenceType::getUnknownExtent()
5698                    ? builder.create<fir::UndefOp>(loc, idxTy).getResult()
5699                    : builder.createIntegerConstant(loc, idxTy, extent);
5700       result.push_back(v);
5701     }
5702     return result;
5703   }
5704 
5705   CC genarr(const Fortran::semantics::SymbolRef &sym,
5706             ComponentPath &components) {
5707     return genarr(sym.get(), components);
5708   }
5709 
5710   ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
5711     return convertToArrayBoxValue(getLoc(), builder, val, len);
5712   }
5713 
5714   CC genarr(const ExtValue &extMemref) {
5715     ComponentPath dummy(/*isImplicit=*/true);
5716     return genarr(extMemref, dummy);
5717   }
5718 
5719   // If the slice values are given then use them. Otherwise, generate triples
5720   // that cover the entire shape specified by \p shapeVal.
5721   inline llvm::SmallVector<mlir::Value>
5722   padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) {
5723     llvm::SmallVector<mlir::Value> result;
5724     mlir::Location loc = getLoc();
5725     if (triples.size()) {
5726       result.assign(triples.begin(), triples.end());
5727     } else {
5728       auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1);
5729       if (!shapeVal) {
5730         TODO(loc, "shape must be recovered from box");
5731       } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>(
5732                      shapeVal.getDefiningOp())) {
5733         for (auto ext : shapeOp.getExtents()) {
5734           result.push_back(one);
5735           result.push_back(ext);
5736           result.push_back(one);
5737         }
5738       } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>(
5739                      shapeVal.getDefiningOp())) {
5740         for (auto [lb, ext] :
5741              llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) {
5742           result.push_back(lb);
5743           result.push_back(ext);
5744           result.push_back(one);
5745         }
5746       } else {
5747         TODO(loc, "shape must be recovered from box");
5748       }
5749     }
5750     return result;
5751   }
5752 
5753   /// Base case of generating an array reference,
5754   CC genarr(const ExtValue &extMemref, ComponentPath &components) {
5755     mlir::Location loc = getLoc();
5756     mlir::Value memref = fir::getBase(extMemref);
5757     mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
5758     assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
5759     mlir::Value shape = builder.createShape(loc, extMemref);
5760     mlir::Value slice;
5761     if (components.isSlice()) {
5762       if (isBoxValue() && components.substring) {
5763         // Append the substring operator to emboxing Op as it will become an
5764         // interior adjustment (add offset, adjust LEN) to the CHARACTER value
5765         // being referenced in the descriptor.
5766         llvm::SmallVector<mlir::Value> substringBounds;
5767         populateBounds(substringBounds, components.substring);
5768         // Convert to (offset, size)
5769         mlir::Type iTy = substringBounds[0].getType();
5770         if (substringBounds.size() != 2) {
5771           fir::CharacterType charTy =
5772               fir::factory::CharacterExprHelper::getCharType(arrTy);
5773           if (charTy.hasConstantLen()) {
5774             mlir::IndexType idxTy = builder.getIndexType();
5775             fir::CharacterType::LenType charLen = charTy.getLen();
5776             mlir::Value lenValue =
5777                 builder.createIntegerConstant(loc, idxTy, charLen);
5778             substringBounds.push_back(lenValue);
5779           } else {
5780             llvm::SmallVector<mlir::Value> typeparams =
5781                 fir::getTypeParams(extMemref);
5782             substringBounds.push_back(typeparams.back());
5783           }
5784         }
5785         // Convert the lower bound to 0-based substring.
5786         mlir::Value one =
5787             builder.createIntegerConstant(loc, substringBounds[0].getType(), 1);
5788         substringBounds[0] =
5789             builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one);
5790         // Convert the upper bound to a length.
5791         mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]);
5792         mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0);
5793         auto size =
5794             builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]);
5795         auto cmp = builder.create<mlir::arith::CmpIOp>(
5796             loc, mlir::arith::CmpIPredicate::sgt, size, zero);
5797         // size = MAX(upper - (lower - 1), 0)
5798         substringBounds[1] =
5799             builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
5800         slice = builder.create<fir::SliceOp>(
5801             loc, padSlice(components.trips, shape), components.suffixComponents,
5802             substringBounds);
5803       } else {
5804         slice = builder.createSlice(loc, extMemref, components.trips,
5805                                     components.suffixComponents);
5806       }
5807       if (components.hasComponents()) {
5808         auto seqTy = arrTy.cast<fir::SequenceType>();
5809         mlir::Type eleTy =
5810             fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents);
5811         if (!eleTy)
5812           fir::emitFatalError(loc, "slicing path is ill-formed");
5813         if (auto realTy = eleTy.dyn_cast<fir::RealType>())
5814           eleTy = Fortran::lower::convertReal(realTy.getContext(),
5815                                               realTy.getFKind());
5816 
5817         // create the type of the projected array.
5818         arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy);
5819         LLVM_DEBUG(llvm::dbgs()
5820                    << "type of array projection from component slicing: "
5821                    << eleTy << ", " << arrTy << '\n');
5822       }
5823     }
5824     arrayOperands.push_back(ArrayOperand{memref, shape, slice});
5825     if (destShape.empty())
5826       destShape = getShape(arrayOperands.back());
5827     if (isBoxValue()) {
5828       // Semantics are a reference to a boxed array.
5829       // This case just requires that an embox operation be created to box the
5830       // value. The value of the box is forwarded in the continuation.
5831       mlir::Type reduceTy = reduceRank(arrTy, slice);
5832       auto boxTy = fir::BoxType::get(reduceTy);
5833       if (components.substring) {
5834         // Adjust char length to substring size.
5835         fir::CharacterType charTy =
5836             fir::factory::CharacterExprHelper::getCharType(reduceTy);
5837         auto seqTy = reduceTy.cast<fir::SequenceType>();
5838         // TODO: Use a constant for fir.char LEN if we can compute it.
5839         boxTy = fir::BoxType::get(
5840             fir::SequenceType::get(fir::CharacterType::getUnknownLen(
5841                                        builder.getContext(), charTy.getFKind()),
5842                                    seqTy.getDimension()));
5843       }
5844       mlir::Value embox =
5845           memref.getType().isa<fir::BoxType>()
5846               ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
5847                     .getResult()
5848               : builder
5849                     .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
5850                                           fir::getTypeParams(extMemref))
5851                     .getResult();
5852       return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); };
5853     }
5854     auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
5855     if (isReferentiallyOpaque()) {
5856       // Semantics are an opaque reference to an array.
5857       // This case forwards a continuation that will generate the address
5858       // arithmetic to the array element. This does not have copy-in/copy-out
5859       // semantics. No attempt to copy the array value will be made during the
5860       // interpretation of the Fortran statement.
5861       mlir::Type refEleTy = builder.getRefType(eleTy);
5862       return [=](IterSpace iters) -> ExtValue {
5863         // ArrayCoorOp does not expect zero based indices.
5864         llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
5865             loc, builder, memref.getType(), shape, iters.iterVec());
5866         mlir::Value coor = builder.create<fir::ArrayCoorOp>(
5867             loc, refEleTy, memref, shape, slice, indices,
5868             fir::getTypeParams(extMemref));
5869         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
5870           llvm::SmallVector<mlir::Value> substringBounds;
5871           populateBounds(substringBounds, components.substring);
5872           if (!substringBounds.empty()) {
5873             mlir::Value dstLen = fir::factory::genLenOfCharacter(
5874                 builder, loc, arrTy.cast<fir::SequenceType>(), memref,
5875                 fir::getTypeParams(extMemref), iters.iterVec(),
5876                 substringBounds);
5877             fir::CharBoxValue dstChar(coor, dstLen);
5878             return fir::factory::CharacterExprHelper{builder, loc}
5879                 .createSubstring(dstChar, substringBounds);
5880           }
5881         }
5882         return fir::factory::arraySectionElementToExtendedValue(
5883             builder, loc, extMemref, coor, slice);
5884       };
5885     }
5886     auto arrLoad = builder.create<fir::ArrayLoadOp>(
5887         loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
5888     mlir::Value arrLd = arrLoad.getResult();
5889     if (isProjectedCopyInCopyOut()) {
5890       // Semantics are projected copy-in copy-out.
5891       // The backing store of the destination of an array expression may be
5892       // partially modified. These updates are recorded in FIR by forwarding a
5893       // continuation that generates an `array_update` Op. The destination is
5894       // always loaded at the beginning of the statement and merged at the
5895       // end.
5896       destination = arrLoad;
5897       auto lambda = ccStoreToDest.hasValue()
5898                         ? ccStoreToDest.getValue()
5899                         : defaultStoreToDestination(components.substring);
5900       return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
5901     }
5902     if (isCustomCopyInCopyOut()) {
5903       // Create an array_modify to get the LHS element address and indicate
5904       // the assignment, the actual assignment must be implemented in
5905       // ccStoreToDest.
5906       destination = arrLoad;
5907       return [=](IterSpace iters) -> ExtValue {
5908         mlir::Value innerArg = iters.innerArgument();
5909         mlir::Type resTy = innerArg.getType();
5910         mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec());
5911         mlir::Type refEleTy =
5912             fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
5913         auto arrModify = builder.create<fir::ArrayModifyOp>(
5914             loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(),
5915             destination.getTypeparams());
5916         return abstractArrayExtValue(arrModify.getResult(1));
5917       };
5918     }
5919     if (isCopyInCopyOut()) {
5920       // Semantics are copy-in copy-out.
5921       // The continuation simply forwards the result of the `array_load` Op,
5922       // which is the value of the array as it was when loaded. All data
5923       // references with rank > 0 in an array expression typically have
5924       // copy-in copy-out semantics.
5925       return [=](IterSpace) -> ExtValue { return arrLd; };
5926     }
5927     llvm::SmallVector<mlir::Value> arrLdTypeParams =
5928         fir::factory::getTypeParams(loc, builder, arrLoad);
5929     if (isValueAttribute()) {
5930       // Semantics are value attribute.
5931       // Here the continuation will `array_fetch` a value from an array and
5932       // then store that value in a temporary. One can thus imitate pass by
5933       // value even when the call is pass by reference.
5934       return [=](IterSpace iters) -> ExtValue {
5935         mlir::Value base;
5936         mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
5937         if (isAdjustedArrayElementType(eleTy)) {
5938           mlir::Type eleRefTy = builder.getRefType(eleTy);
5939           base = builder.create<fir::ArrayAccessOp>(
5940               loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
5941         } else {
5942           base = builder.create<fir::ArrayFetchOp>(
5943               loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
5944         }
5945         mlir::Value temp = builder.createTemporary(
5946             loc, base.getType(),
5947             llvm::ArrayRef<mlir::NamedAttribute>{
5948                 Fortran::lower::getAdaptToByRefAttr(builder)});
5949         builder.create<fir::StoreOp>(loc, base, temp);
5950         return fir::factory::arraySectionElementToExtendedValue(
5951             builder, loc, extMemref, temp, slice);
5952       };
5953     }
5954     // In the default case, the array reference forwards an `array_fetch` or
5955     // `array_access` Op in the continuation.
5956     return [=](IterSpace iters) -> ExtValue {
5957       mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
5958       if (isAdjustedArrayElementType(eleTy)) {
5959         mlir::Type eleRefTy = builder.getRefType(eleTy);
5960         mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
5961             loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
5962         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
5963           llvm::SmallVector<mlir::Value> substringBounds;
5964           populateBounds(substringBounds, components.substring);
5965           if (!substringBounds.empty()) {
5966             mlir::Value dstLen = fir::factory::genLenOfCharacter(
5967                 builder, loc, arrLoad, iters.iterVec(), substringBounds);
5968             fir::CharBoxValue dstChar(arrayOp, dstLen);
5969             return fir::factory::CharacterExprHelper{builder, loc}
5970                 .createSubstring(dstChar, substringBounds);
5971           }
5972         }
5973         return fir::factory::arraySectionElementToExtendedValue(
5974             builder, loc, extMemref, arrayOp, slice);
5975       }
5976       auto arrFetch = builder.create<fir::ArrayFetchOp>(
5977           loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
5978       return fir::factory::arraySectionElementToExtendedValue(
5979           builder, loc, extMemref, arrFetch, slice);
5980     };
5981   }
5982 
5983   std::tuple<CC, mlir::Value, mlir::Type>
5984   genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
5985     assert(expr.Rank() > 0 && "expr must be an array");
5986     mlir::Location loc = getLoc();
5987     ExtValue optionalArg = asInquired(expr);
5988     mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
5989     // Generate an array load and access to an array that may be an absent
5990     // optional or an unallocated optional.
5991     mlir::Value base = getBase(optionalArg);
5992     const bool hasOptionalAttr =
5993         fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
5994     mlir::Type baseType = fir::unwrapRefType(base.getType());
5995     const bool isBox = baseType.isa<fir::BoxType>();
5996     const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
5997         expr, converter.getFoldingContext());
5998     mlir::Type arrType = fir::unwrapPassByRefType(baseType);
5999     mlir::Type eleType = fir::unwrapSequenceType(arrType);
6000     ExtValue exv = optionalArg;
6001     if (hasOptionalAttr && isBox && !isAllocOrPtr) {
6002       // Elemental argument cannot be allocatable or pointers (C15100).
6003       // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
6004       // Pointer optional arrays cannot be absent. The only kind of entities
6005       // that can get here are optional assumed shape and polymorphic entities.
6006       exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent);
6007     }
6008     // All the properties can be read from any fir.box but the read values may
6009     // be undefined and should only be used inside a fir.if (canBeRead) region.
6010     if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
6011       exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);
6012 
6013     mlir::Value memref = fir::getBase(exv);
6014     mlir::Value shape = builder.createShape(loc, exv);
6015     mlir::Value noSlice;
6016     auto arrLoad = builder.create<fir::ArrayLoadOp>(
6017         loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
6018     mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
6019     mlir::Value arrLd = arrLoad.getResult();
6020     // Mark the load to tell later passes it is unsafe to use this array_load
6021     // shape unconditionally.
6022     arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());
6023 
6024     // Place the array as optional on the arrayOperands stack so that its
6025     // shape will only be used as a fallback to induce the implicit loop nest
6026     // (that is if there is no non optional array arguments).
6027     arrayOperands.push_back(
6028         ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});
6029 
6030     // By value semantics.
6031     auto cc = [=](IterSpace iters) -> ExtValue {
6032       auto arrFetch = builder.create<fir::ArrayFetchOp>(
6033           loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
6034       return fir::factory::arraySectionElementToExtendedValue(
6035           builder, loc, exv, arrFetch, noSlice);
6036     };
6037     return {cc, isPresent, eleType};
6038   }
6039 
6040   /// Generate a continuation to pass \p expr to an OPTIONAL argument of an
6041   /// elemental procedure. This is meant to handle the cases where \p expr might
6042   /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
6043   /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
6044   /// directly be called instead.
6045   CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
6046     mlir::Location loc = getLoc();
6047     // Only by-value numerical and logical so far.
6048     if (semant != ConstituentSemantics::RefTransparent)
6049       TODO(loc, "optional arguments in user defined elemental procedures");
6050 
6051     // Handle scalar argument case (the if-then-else is generated outside of the
6052     // implicit loop nest).
6053     if (expr.Rank() == 0) {
6054       ExtValue optionalArg = asInquired(expr);
6055       mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
6056       mlir::Value elementValue =
6057           fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
6058       return [=](IterSpace iters) -> ExtValue { return elementValue; };
6059     }
6060 
6061     CC cc;
6062     mlir::Value isPresent;
6063     mlir::Type eleType;
6064     std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
6065     return [=](IterSpace iters) -> ExtValue {
6066       mlir::Value elementValue =
6067           builder
6068               .genIfOp(loc, {eleType}, isPresent,
6069                        /*withElseRegion=*/true)
6070               .genThen([&]() {
6071                 builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
6072               })
6073               .genElse([&]() {
6074                 mlir::Value zero =
6075                     fir::factory::createZeroValue(builder, loc, eleType);
6076                 builder.create<fir::ResultOp>(loc, zero);
6077               })
6078               .getResults()[0];
6079       return elementValue;
6080     };
6081   }
6082 
6083   /// Reduce the rank of a array to be boxed based on the slice's operands.
6084   static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
6085     if (slice) {
6086       auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
6087       assert(slOp && "expected slice op");
6088       auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
6089       assert(seqTy && "expected array type");
6090       mlir::Operation::operand_range triples = slOp.getTriples();
6091       fir::SequenceType::Shape shape;
6092       // reduce the rank for each invariant dimension
6093       for (unsigned i = 1, end = triples.size(); i < end; i += 3)
6094         if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp()))
6095           shape.push_back(fir::SequenceType::getUnknownExtent());
6096       return fir::SequenceType::get(shape, seqTy.getEleTy());
6097     }
6098     // not sliced, so no change in rank
6099     return arrTy;
6100   }
6101 
6102   /// Example: <code>array%RE</code>
6103   CC genarr(const Fortran::evaluate::ComplexPart &x,
6104             ComponentPath &components) {
6105     components.reversePath.push_back(&x);
6106     return genarr(x.complex(), components);
6107   }
6108 
6109   template <typename A>
6110   CC genSlicePath(const A &x, ComponentPath &components) {
6111     return genarr(x, components);
6112   }
6113 
6114   CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
6115             ComponentPath &components) {
6116     fir::emitFatalError(getLoc(), "substring of static array object");
6117   }
6118 
6119   /// Substrings (see 9.4.1)
6120   CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
6121     components.substring = &x;
6122     return std::visit([&](const auto &v) { return genarr(v, components); },
6123                       x.parent());
6124   }
6125 
6126   template <typename T>
6127   CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
6128     // Note that it's possible that the function being called returns either an
6129     // array or a scalar.  In the first case, use the element type of the array.
6130     return genProcRef(
6131         funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
6132   }
6133 
6134   //===--------------------------------------------------------------------===//
6135   // Array construction
6136   //===--------------------------------------------------------------------===//
6137 
6138   /// Target agnostic computation of the size of an element in the array.
6139   /// Returns the size in bytes with type `index` or a null Value if the element
6140   /// size is not constant.
6141   mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
6142                                  mlir::Type resTy) {
6143     mlir::Location loc = getLoc();
6144     mlir::IndexType idxTy = builder.getIndexType();
6145     mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
6146     if (fir::hasDynamicSize(eleTy)) {
6147       if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6148         // Array of char with dynamic LEN parameter. Downcast to an array
6149         // of singleton char, and scale by the len type parameter from
6150         // `exv`.
6151         exv.match(
6152             [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
6153             [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
6154             [&](const fir::BoxValue &box) {
6155               multiplier = fir::factory::CharacterExprHelper(builder, loc)
6156                                .readLengthFromBox(box.getAddr());
6157             },
6158             [&](const fir::MutableBoxValue &box) {
6159               multiplier = fir::factory::CharacterExprHelper(builder, loc)
6160                                .readLengthFromBox(box.getAddr());
6161             },
6162             [&](const auto &) {
6163               fir::emitFatalError(loc,
6164                                   "array constructor element has unknown size");
6165             });
6166         fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
6167             eleTy.getContext(), charTy.getFKind());
6168         if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
6169           assert(eleTy == seqTy.getEleTy());
6170           resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
6171         }
6172         eleTy = newEleTy;
6173       } else {
6174         TODO(loc, "dynamic sized type");
6175       }
6176     }
6177     mlir::Type eleRefTy = builder.getRefType(eleTy);
6178     mlir::Type resRefTy = builder.getRefType(resTy);
6179     mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
6180     auto offset = builder.create<fir::CoordinateOp>(
6181         loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
6182     return builder.createConvert(loc, idxTy, offset);
6183   }
6184 
6185   /// Get the function signature of the LLVM memcpy intrinsic.
6186   mlir::FunctionType memcpyType() {
6187     return fir::factory::getLlvmMemcpy(builder).getFunctionType();
6188   }
6189 
6190   /// Create a call to the LLVM memcpy intrinsic.
6191   void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
6192     mlir::Location loc = getLoc();
6193     mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
6194     mlir::SymbolRefAttr funcSymAttr =
6195         builder.getSymbolRefAttr(memcpyFunc.getName());
6196     mlir::FunctionType funcTy = memcpyFunc.getFunctionType();
6197     builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
6198   }
6199 
6200   // Construct code to check for a buffer overrun and realloc the buffer when
6201   // space is depleted. This is done between each item in the ac-value-list.
6202   mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
6203                          mlir::Value bufferSize, mlir::Value buffSize,
6204                          mlir::Value eleSz) {
6205     mlir::Location loc = getLoc();
6206     mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder);
6207     auto cond = builder.create<mlir::arith::CmpIOp>(
6208         loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
6209     auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
6210                                           /*withElseRegion=*/true);
6211     auto insPt = builder.saveInsertionPoint();
6212     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
6213     // Not enough space, resize the buffer.
6214     mlir::IndexType idxTy = builder.getIndexType();
6215     mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
6216     auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
6217     builder.create<fir::StoreOp>(loc, newSz, buffSize);
6218     mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
6219     mlir::SymbolRefAttr funcSymAttr =
6220         builder.getSymbolRefAttr(reallocFunc.getName());
6221     mlir::FunctionType funcTy = reallocFunc.getFunctionType();
6222     auto newMem = builder.create<fir::CallOp>(
6223         loc, funcTy.getResults(), funcSymAttr,
6224         llvm::ArrayRef<mlir::Value>{
6225             builder.createConvert(loc, funcTy.getInputs()[0], mem),
6226             builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
6227     mlir::Value castNewMem =
6228         builder.createConvert(loc, mem.getType(), newMem.getResult(0));
6229     builder.create<fir::ResultOp>(loc, castNewMem);
6230     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
6231     // Otherwise, just forward the buffer.
6232     builder.create<fir::ResultOp>(loc, mem);
6233     builder.restoreInsertionPoint(insPt);
6234     return ifOp.getResult(0);
6235   }
6236 
6237   /// Copy the next value (or vector of values) into the array being
6238   /// constructed.
6239   mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
6240                                        mlir::Value buffSize, mlir::Value mem,
6241                                        mlir::Value eleSz, mlir::Type eleTy,
6242                                        mlir::Type eleRefTy, mlir::Type resTy) {
6243     mlir::Location loc = getLoc();
6244     auto off = builder.create<fir::LoadOp>(loc, buffPos);
6245     auto limit = builder.create<fir::LoadOp>(loc, buffSize);
6246     mlir::IndexType idxTy = builder.getIndexType();
6247     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
6248 
6249     if (fir::isRecordWithAllocatableMember(eleTy))
6250       TODO(loc, "deep copy on allocatable members");
6251 
6252     if (!eleSz) {
6253       // Compute the element size at runtime.
6254       assert(fir::hasDynamicSize(eleTy));
6255       if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6256         auto charBytes =
6257             builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
6258         mlir::Value bytes =
6259             builder.createIntegerConstant(loc, idxTy, charBytes);
6260         mlir::Value length = fir::getLen(exv);
6261         if (!length)
6262           fir::emitFatalError(loc, "result is not boxed character");
6263         eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
6264       } else {
6265         TODO(loc, "PDT size");
6266         // Will call the PDT's size function with the type parameters.
6267       }
6268     }
6269 
6270     // Compute the coordinate using `fir.coordinate_of`, or, if the type has
6271     // dynamic size, generating the pointer arithmetic.
6272     auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
6273       mlir::Type refTy = eleRefTy;
6274       if (fir::hasDynamicSize(eleTy)) {
6275         if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6276           // Scale a simple pointer using dynamic length and offset values.
6277           auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
6278                                                        charTy.getFKind());
6279           refTy = builder.getRefType(chTy);
6280           mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
6281           buff = builder.createConvert(loc, toTy, buff);
6282           off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
6283         } else {
6284           TODO(loc, "PDT offset");
6285         }
6286       }
6287       auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
6288                                                     mlir::ValueRange{off});
6289       return builder.createConvert(loc, eleRefTy, coor);
6290     };
6291 
6292     // Lambda to lower an abstract array box value.
6293     auto doAbstractArray = [&](const auto &v) {
6294       // Compute the array size.
6295       mlir::Value arrSz = one;
6296       for (auto ext : v.getExtents())
6297         arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);
6298 
6299       // Grow the buffer as needed.
6300       auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
6301       mem = growBuffer(mem, endOff, limit, buffSize, eleSz);
6302 
6303       // Copy the elements to the buffer.
6304       mlir::Value byteSz =
6305           builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
6306       auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6307       mlir::Value buffi = computeCoordinate(buff, off);
6308       llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
6309           builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
6310           /*volatile=*/builder.createBool(loc, false));
6311       createCallMemcpy(args);
6312 
6313       // Save the incremented buffer position.
6314       builder.create<fir::StoreOp>(loc, endOff, buffPos);
6315     };
6316 
6317     // Copy a trivial scalar value into the buffer.
6318     auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
6319       // Increment the buffer position.
6320       auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
6321 
6322       // Grow the buffer as needed.
6323       mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
6324 
6325       // Store the element in the buffer.
6326       mlir::Value buff =
6327           builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6328       auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
6329                                                      mlir::ValueRange{off});
6330       fir::factory::genScalarAssignment(
6331           builder, loc,
6332           [&]() -> ExtValue {
6333             if (len)
6334               return fir::CharBoxValue(buffi, len);
6335             return buffi;
6336           }(),
6337           v);
6338       builder.create<fir::StoreOp>(loc, plusOne, buffPos);
6339     };
6340 
6341     // Copy the value.
6342     exv.match(
6343         [&](mlir::Value) { doTrivialScalar(exv); },
6344         [&](const fir::CharBoxValue &v) {
6345           auto buffer = v.getBuffer();
6346           if (fir::isa_char(buffer.getType())) {
6347             doTrivialScalar(exv, eleSz);
6348           } else {
6349             // Increment the buffer position.
6350             auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
6351 
6352             // Grow the buffer as needed.
6353             mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
6354 
6355             // Store the element in the buffer.
6356             mlir::Value buff =
6357                 builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6358             mlir::Value buffi = computeCoordinate(buff, off);
6359             llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
6360                 builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
6361                 /*volatile=*/builder.createBool(loc, false));
6362             createCallMemcpy(args);
6363 
6364             builder.create<fir::StoreOp>(loc, plusOne, buffPos);
6365           }
6366         },
6367         [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
6368         [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
6369         [&](const auto &) {
6370           TODO(loc, "unhandled array constructor expression");
6371         });
6372     return mem;
6373   }
6374 
6375   // Lower the expr cases in an ac-value-list.
6376   template <typename A>
6377   std::pair<ExtValue, bool>
6378   genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
6379                           mlir::Value, mlir::Value, mlir::Value,
6380                           Fortran::lower::StatementContext &stmtCtx) {
6381     if (isArray(x))
6382       return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
6383               /*needCopy=*/true};
6384     return {asScalar(x), /*needCopy=*/true};
6385   }
6386 
6387   // Lower an ac-implied-do in an ac-value-list.
6388   template <typename A>
6389   std::pair<ExtValue, bool>
6390   genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
6391                           mlir::Type resTy, mlir::Value mem,
6392                           mlir::Value buffPos, mlir::Value buffSize,
6393                           Fortran::lower::StatementContext &) {
6394     mlir::Location loc = getLoc();
6395     mlir::IndexType idxTy = builder.getIndexType();
6396     mlir::Value lo =
6397         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
6398     mlir::Value up =
6399         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
6400     mlir::Value step =
6401         builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
6402     auto seqTy = resTy.template cast<fir::SequenceType>();
6403     mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
6404     auto loop =
6405         builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
6406                                       /*finalCount=*/false, mem);
6407     // create a new binding for x.name(), to ac-do-variable, to the iteration
6408     // value.
6409     symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
6410     auto insPt = builder.saveInsertionPoint();
6411     builder.setInsertionPointToStart(loop.getBody());
6412     // Thread mem inside the loop via loop argument.
6413     mem = loop.getRegionIterArgs()[0];
6414 
6415     mlir::Type eleRefTy = builder.getRefType(eleTy);
6416 
6417     // Any temps created in the loop body must be freed inside the loop body.
6418     stmtCtx.pushScope();
6419     llvm::Optional<mlir::Value> charLen;
6420     for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
6421       auto [exv, copyNeeded] = std::visit(
6422           [&](const auto &v) {
6423             return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
6424                                            stmtCtx);
6425           },
6426           acv.u);
6427       mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
6428       mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
6429                                                   eleSz, eleTy, eleRefTy, resTy)
6430                        : fir::getBase(exv);
6431       if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
6432         charLen = builder.createTemporary(loc, builder.getI64Type());
6433         mlir::Value castLen =
6434             builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
6435         builder.create<fir::StoreOp>(loc, castLen, charLen.value());
6436       }
6437     }
6438     stmtCtx.finalizeAndPop();
6439 
6440     builder.create<fir::ResultOp>(loc, mem);
6441     builder.restoreInsertionPoint(insPt);
6442     mem = loop.getResult(0);
6443     symMap.popImpliedDoBinding();
6444     llvm::SmallVector<mlir::Value> extents = {
6445         builder.create<fir::LoadOp>(loc, buffPos).getResult()};
6446 
6447     // Convert to extended value.
6448     if (fir::isa_char(seqTy.getEleTy())) {
6449       auto len = builder.create<fir::LoadOp>(loc, charLen.value());
6450       return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
6451     }
6452     return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
6453   }
6454 
6455   // To simplify the handling and interaction between the various cases, array
6456   // constructors are always lowered to the incremental construction code
6457   // pattern, even if the extent of the array value is constant. After the
6458   // MemToReg pass and constant folding, the optimizer should be able to
6459   // determine that all the buffer overrun tests are false when the
6460   // incremental construction wasn't actually required.
6461   template <typename A>
6462   CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
6463     mlir::Location loc = getLoc();
6464     auto evExpr = toEvExpr(x);
6465     mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
6466     mlir::IndexType idxTy = builder.getIndexType();
6467     auto seqTy = resTy.template cast<fir::SequenceType>();
6468     mlir::Type eleTy = fir::unwrapSequenceType(resTy);
6469     mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
6470     mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
6471     mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
6472     builder.create<fir::StoreOp>(loc, zero, buffPos);
6473     // Allocate space for the array to be constructed.
6474     mlir::Value mem;
6475     if (fir::hasDynamicSize(resTy)) {
6476       if (fir::hasDynamicSize(eleTy)) {
6477         // The size of each element may depend on a general expression. Defer
6478         // creating the buffer until after the expression is evaluated.
6479         mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
6480         builder.create<fir::StoreOp>(loc, zero, buffSize);
6481       } else {
6482         mlir::Value initBuffSz =
6483             builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
6484         mem = builder.create<fir::AllocMemOp>(
6485             loc, eleTy, /*typeparams=*/llvm::None, initBuffSz);
6486         builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
6487       }
6488     } else {
6489       mem = builder.create<fir::AllocMemOp>(loc, resTy);
6490       int64_t buffSz = 1;
6491       for (auto extent : seqTy.getShape())
6492         buffSz *= extent;
6493       mlir::Value initBuffSz =
6494           builder.createIntegerConstant(loc, idxTy, buffSz);
6495       builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
6496     }
6497     // Compute size of element
6498     mlir::Type eleRefTy = builder.getRefType(eleTy);
6499 
6500     // Populate the buffer with the elements, growing as necessary.
6501     llvm::Optional<mlir::Value> charLen;
6502     for (const auto &expr : x) {
6503       auto [exv, copyNeeded] = std::visit(
6504           [&](const auto &e) {
6505             return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
6506                                            stmtCtx);
6507           },
6508           expr.u);
6509       mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
6510       mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
6511                                                   eleSz, eleTy, eleRefTy, resTy)
6512                        : fir::getBase(exv);
6513       if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
6514         charLen = builder.createTemporary(loc, builder.getI64Type());
6515         mlir::Value castLen =
6516             builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
6517         builder.create<fir::StoreOp>(loc, castLen, charLen.value());
6518       }
6519     }
6520     mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
6521     llvm::SmallVector<mlir::Value> extents = {
6522         builder.create<fir::LoadOp>(loc, buffPos)};
6523 
6524     // Cleanup the temporary.
6525     fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
6526     stmtCtx.attachCleanup(
6527         [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });
6528 
6529     // Return the continuation.
6530     if (fir::isa_char(seqTy.getEleTy())) {
6531       if (charLen.hasValue()) {
6532         auto len = builder.create<fir::LoadOp>(loc, charLen.getValue());
6533         return genarr(fir::CharArrayBoxValue{mem, len, extents});
6534       }
6535       return genarr(fir::CharArrayBoxValue{mem, zero, extents});
6536     }
6537     return genarr(fir::ArrayBoxValue{mem, extents});
6538   }
6539 
6540   CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
6541     fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0");
6542   }
6543   CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
6544     TODO(getLoc(), "array expr type parameter inquiry");
6545     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6546   }
6547   CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
6548     TODO(getLoc(), "array expr descriptor inquiry");
6549     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6550   }
6551   CC genarr(const Fortran::evaluate::StructureConstructor &x) {
6552     TODO(getLoc(), "structure constructor");
6553     return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
6554   }
6555 
6556   //===--------------------------------------------------------------------===//
6557   // LOCICAL operators (.NOT., .AND., .EQV., etc.)
6558   //===--------------------------------------------------------------------===//
6559 
6560   template <int KIND>
6561   CC genarr(const Fortran::evaluate::Not<KIND> &x) {
6562     mlir::Location loc = getLoc();
6563     mlir::IntegerType i1Ty = builder.getI1Type();
6564     auto lambda = genarr(x.left());
6565     mlir::Value truth = builder.createBool(loc, true);
6566     return [=](IterSpace iters) -> ExtValue {
6567       mlir::Value logical = fir::getBase(lambda(iters));
6568       mlir::Value val = builder.createConvert(loc, i1Ty, logical);
6569       return builder.create<mlir::arith::XOrIOp>(loc, val, truth);
6570     };
6571   }
6572   template <typename OP, typename A>
6573   CC createBinaryBoolOp(const A &x) {
6574     mlir::Location loc = getLoc();
6575     mlir::IntegerType i1Ty = builder.getI1Type();
6576     auto lf = genarr(x.left());
6577     auto rf = genarr(x.right());
6578     return [=](IterSpace iters) -> ExtValue {
6579       mlir::Value left = fir::getBase(lf(iters));
6580       mlir::Value right = fir::getBase(rf(iters));
6581       mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
6582       mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
6583       return builder.create<OP>(loc, lhs, rhs);
6584     };
6585   }
6586   template <typename OP, typename A>
6587   CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) {
6588     mlir::Location loc = getLoc();
6589     mlir::IntegerType i1Ty = builder.getI1Type();
6590     auto lf = genarr(x.left());
6591     auto rf = genarr(x.right());
6592     return [=](IterSpace iters) -> ExtValue {
6593       mlir::Value left = fir::getBase(lf(iters));
6594       mlir::Value right = fir::getBase(rf(iters));
6595       mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
6596       mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
6597       return builder.create<OP>(loc, pred, lhs, rhs);
6598     };
6599   }
6600   template <int KIND>
6601   CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
6602     switch (x.logicalOperator) {
6603     case Fortran::evaluate::LogicalOperator::And:
6604       return createBinaryBoolOp<mlir::arith::AndIOp>(x);
6605     case Fortran::evaluate::LogicalOperator::Or:
6606       return createBinaryBoolOp<mlir::arith::OrIOp>(x);
6607     case Fortran::evaluate::LogicalOperator::Eqv:
6608       return createCompareBoolOp<mlir::arith::CmpIOp>(
6609           mlir::arith::CmpIPredicate::eq, x);
6610     case Fortran::evaluate::LogicalOperator::Neqv:
6611       return createCompareBoolOp<mlir::arith::CmpIOp>(
6612           mlir::arith::CmpIPredicate::ne, x);
6613     case Fortran::evaluate::LogicalOperator::Not:
6614       llvm_unreachable(".NOT. handled elsewhere");
6615     }
6616     llvm_unreachable("unhandled case");
6617   }
6618 
6619   //===--------------------------------------------------------------------===//
6620   // Relational operators (<, <=, ==, etc.)
6621   //===--------------------------------------------------------------------===//
6622 
6623   template <typename OP, typename PRED, typename A>
6624   CC createCompareOp(PRED pred, const A &x) {
6625     mlir::Location loc = getLoc();
6626     auto lf = genarr(x.left());
6627     auto rf = genarr(x.right());
6628     return [=](IterSpace iters) -> ExtValue {
6629       mlir::Value lhs = fir::getBase(lf(iters));
6630       mlir::Value rhs = fir::getBase(rf(iters));
6631       return builder.create<OP>(loc, pred, lhs, rhs);
6632     };
6633   }
6634   template <typename A>
6635   CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) {
6636     mlir::Location loc = getLoc();
6637     auto lf = genarr(x.left());
6638     auto rf = genarr(x.right());
6639     return [=](IterSpace iters) -> ExtValue {
6640       auto lhs = lf(iters);
6641       auto rhs = rf(iters);
6642       return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs);
6643     };
6644   }
6645   template <int KIND>
6646   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6647                 Fortran::common::TypeCategory::Integer, KIND>> &x) {
6648     return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x);
6649   }
6650   template <int KIND>
6651   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6652                 Fortran::common::TypeCategory::Character, KIND>> &x) {
6653     return createCompareCharOp(translateRelational(x.opr), x);
6654   }
6655   template <int KIND>
6656   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6657                 Fortran::common::TypeCategory::Real, KIND>> &x) {
6658     return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr),
6659                                                 x);
6660   }
6661   template <int KIND>
6662   CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
6663                 Fortran::common::TypeCategory::Complex, KIND>> &x) {
6664     return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x);
6665   }
6666   CC genarr(
6667       const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
6668     return std::visit([&](const auto &x) { return genarr(x); }, r.u);
6669   }
6670 
6671   template <typename A>
6672   CC genarr(const Fortran::evaluate::Designator<A> &des) {
6673     ComponentPath components(des.Rank() > 0);
6674     return std::visit([&](const auto &x) { return genarr(x, components); },
6675                       des.u);
6676   }
6677 
6678   /// Is the path component rank > 0?
6679   static bool ranked(const PathComponent &x) {
6680     return std::visit(Fortran::common::visitors{
6681                           [](const ImplicitSubscripts &) { return false; },
6682                           [](const auto *v) { return v->Rank() > 0; }},
6683                       x);
6684   }
6685 
6686   void extendComponent(Fortran::lower::ComponentPath &component,
6687                        mlir::Type coorTy, mlir::ValueRange vals) {
6688     auto *bldr = &converter.getFirOpBuilder();
6689     llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end());
6690     auto currentFunc = component.getExtendCoorRef();
6691     auto loc = getLoc();
6692     auto newCoorRef = [bldr, coorTy, offsets, currentFunc,
6693                        loc](mlir::Value val) -> mlir::Value {
6694       return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy),
6695                                              currentFunc(val), offsets);
6696     };
6697     component.extendCoorRef = newCoorRef;
6698   }
6699 
6700   //===-------------------------------------------------------------------===//
6701   // Array data references in an explicit iteration space.
6702   //
6703   // Use the base array that was loaded before the loop nest.
6704   //===-------------------------------------------------------------------===//
6705 
6706   /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
6707   /// array_update op. \p ty is the initial type of the array
6708   /// (reference). Returns the type of the element after application of the
6709   /// path in \p components.
6710   ///
6711   /// TODO: This needs to deal with array's with initial bounds other than 1.
6712   /// TODO: Thread type parameters correctly.
6713   mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) {
6714     mlir::Location loc = getLoc();
6715     mlir::Type ty = fir::getBase(arrayExv).getType();
6716     auto &revPath = components.reversePath;
6717     ty = fir::unwrapPassByRefType(ty);
6718     bool prefix = true;
6719     bool deref = false;
6720     auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) {
6721       if (deref) {
6722         extendComponent(components, ty, vals);
6723       } else if (prefix) {
6724         for (auto v : vals)
6725           components.prefixComponents.push_back(v);
6726       } else {
6727         for (auto v : vals)
6728           components.suffixComponents.push_back(v);
6729       }
6730     };
6731     mlir::IndexType idxTy = builder.getIndexType();
6732     mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
6733     bool atBase = true;
6734     auto saveSemant = semant;
6735     if (isProjectedCopyInCopyOut())
6736       semant = ConstituentSemantics::RefTransparent;
6737     unsigned index = 0;
6738     for (const auto &v : llvm::reverse(revPath)) {
6739       std::visit(
6740           Fortran::common::visitors{
6741               [&](const ImplicitSubscripts &) {
6742                 prefix = false;
6743                 ty = fir::unwrapSequenceType(ty);
6744               },
6745               [&](const Fortran::evaluate::ComplexPart *x) {
6746                 assert(!prefix && "complex part must be at end");
6747                 mlir::Value offset = builder.createIntegerConstant(
6748                     loc, builder.getI32Type(),
6749                     x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0
6750                                                                           : 1);
6751                 components.suffixComponents.push_back(offset);
6752                 ty = fir::applyPathToType(ty, mlir::ValueRange{offset});
6753               },
6754               [&](const Fortran::evaluate::ArrayRef *x) {
6755                 if (Fortran::lower::isRankedArrayAccess(*x)) {
6756                   genSliceIndices(components, arrayExv, *x, atBase);
6757                   ty = fir::unwrapSeqOrBoxedSeqType(ty);
6758                 } else {
6759                   // Array access where the expressions are scalar and cannot
6760                   // depend upon the implied iteration space.
6761                   unsigned ssIndex = 0u;
6762                   llvm::SmallVector<mlir::Value> componentsToAdd;
6763                   for (const auto &ss : x->subscript()) {
6764                     std::visit(
6765                         Fortran::common::visitors{
6766                             [&](const Fortran::evaluate::
6767                                     IndirectSubscriptIntegerExpr &ie) {
6768                               const auto &e = ie.value();
6769                               if (isArray(e))
6770                                 fir::emitFatalError(
6771                                     loc,
6772                                     "multiple components along single path "
6773                                     "generating array subexpressions");
6774                               // Lower scalar index expression, append it to
6775                               // subs.
6776                               mlir::Value subscriptVal =
6777                                   fir::getBase(asScalarArray(e));
6778                               // arrayExv is the base array. It needs to reflect
6779                               // the current array component instead.
6780                               // FIXME: must use lower bound of this component,
6781                               // not just the constant 1.
6782                               mlir::Value lb =
6783                                   atBase ? fir::factory::readLowerBound(
6784                                                builder, loc, arrayExv, ssIndex,
6785                                                one)
6786                                          : one;
6787                               mlir::Value val = builder.createConvert(
6788                                   loc, idxTy, subscriptVal);
6789                               mlir::Value ivAdj =
6790                                   builder.create<mlir::arith::SubIOp>(
6791                                       loc, idxTy, val, lb);
6792                               componentsToAdd.push_back(
6793                                   builder.createConvert(loc, idxTy, ivAdj));
6794                             },
6795                             [&](const auto &) {
6796                               fir::emitFatalError(
6797                                   loc, "multiple components along single path "
6798                                        "generating array subexpressions");
6799                             }},
6800                         ss.u);
6801                     ssIndex++;
6802                   }
6803                   ty = fir::unwrapSeqOrBoxedSeqType(ty);
6804                   addComponentList(ty, componentsToAdd);
6805                 }
6806               },
6807               [&](const Fortran::evaluate::Component *x) {
6808                 auto fieldTy = fir::FieldType::get(builder.getContext());
6809                 llvm::StringRef name = toStringRef(getLastSym(*x).name());
6810                 if (auto recTy = ty.dyn_cast<fir::RecordType>()) {
6811                   ty = recTy.getType(name);
6812                   auto fld = builder.create<fir::FieldIndexOp>(
6813                       loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
6814                   addComponentList(ty, {fld});
6815                   if (index != revPath.size() - 1 || !isPointerAssignment()) {
6816                     // Need an intermediate  dereference if the boxed value
6817                     // appears in the middle of the component path or if it is
6818                     // on the right and this is not a pointer assignment.
6819                     if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
6820                       auto currentFunc = components.getExtendCoorRef();
6821                       auto loc = getLoc();
6822                       auto *bldr = &converter.getFirOpBuilder();
6823                       auto newCoorRef = [=](mlir::Value val) -> mlir::Value {
6824                         return bldr->create<fir::LoadOp>(loc, currentFunc(val));
6825                       };
6826                       components.extendCoorRef = newCoorRef;
6827                       deref = true;
6828                     }
6829                   }
6830                 } else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
6831                   ty = fir::unwrapRefType(boxTy.getEleTy());
6832                   auto recTy = ty.cast<fir::RecordType>();
6833                   ty = recTy.getType(name);
6834                   auto fld = builder.create<fir::FieldIndexOp>(
6835                       loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
6836                   extendComponent(components, ty, {fld});
6837                 } else {
6838                   TODO(loc, "other component type");
6839                 }
6840               }},
6841           v);
6842       atBase = false;
6843       ++index;
6844     }
6845     semant = saveSemant;
6846     ty = fir::unwrapSequenceType(ty);
6847     components.applied = true;
6848     return ty;
6849   }
6850 
6851   llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) {
6852     llvm::SmallVector<mlir::Value> result;
6853     if (components.substring)
6854       populateBounds(result, components.substring);
6855     return result;
6856   }
6857 
6858   CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) {
6859     mlir::Location loc = getLoc();
6860     auto revPath = components.reversePath;
6861     fir::ExtendedValue arrayExv =
6862         arrayLoadExtValue(builder, loc, load, {}, load);
6863     mlir::Type eleTy = lowerPath(arrayExv, components);
6864     auto currentPC = components.pc;
6865     auto pc = [=, prefix = components.prefixComponents,
6866                suffix = components.suffixComponents](IterSpace iters) {
6867       // Add path prefix and suffix.
6868       return IterationSpace(currentPC(iters), prefix, suffix);
6869     };
6870     components.resetPC();
6871     llvm::SmallVector<mlir::Value> substringBounds =
6872         genSubstringBounds(components);
6873     if (isProjectedCopyInCopyOut()) {
6874       destination = load;
6875       auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable {
6876         mlir::Value innerArg = esp->findArgumentOfLoad(load);
6877         if (isAdjustedArrayElementType(eleTy)) {
6878           mlir::Type eleRefTy = builder.getRefType(eleTy);
6879           auto arrayOp = builder.create<fir::ArrayAccessOp>(
6880               loc, eleRefTy, innerArg, iters.iterVec(),
6881               fir::factory::getTypeParams(loc, builder, load));
6882           if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
6883             mlir::Value dstLen = fir::factory::genLenOfCharacter(
6884                 builder, loc, load, iters.iterVec(), substringBounds);
6885             fir::ArrayAmendOp amend = createCharArrayAmend(
6886                 loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg,
6887                 substringBounds);
6888             return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend,
6889                                      dstLen);
6890           }
6891           if (fir::isa_derived(eleTy)) {
6892             fir::ArrayAmendOp amend =
6893                 createDerivedArrayAmend(loc, load, builder, arrayOp,
6894                                         iters.elementExv(), eleTy, innerArg);
6895             return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
6896                                      amend);
6897           }
6898           assert(eleTy.isa<fir::SequenceType>());
6899           TODO(loc, "array (as element) assignment");
6900         }
6901         if (components.hasExtendCoorRef()) {
6902           auto eleBoxTy =
6903               fir::applyPathToType(innerArg.getType(), iters.iterVec());
6904           assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
6905           auto arrayOp = builder.create<fir::ArrayAccessOp>(
6906               loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(),
6907               fir::factory::getTypeParams(loc, builder, load));
6908           mlir::Value addr = components.getExtendCoorRef()(arrayOp);
6909           components.resetExtendCoorRef();
6910           // When the lhs is a boxed value and the context is not a pointer
6911           // assignment, then insert the dereference of the box before any
6912           // conversion and store.
6913           if (!isPointerAssignment()) {
6914             if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) {
6915               eleTy = fir::boxMemRefType(boxTy);
6916               addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr);
6917               eleTy = fir::unwrapRefType(eleTy);
6918             }
6919           }
6920           auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
6921           builder.create<fir::StoreOp>(loc, ele, addr);
6922           auto amend = builder.create<fir::ArrayAmendOp>(
6923               loc, innerArg.getType(), innerArg, arrayOp);
6924           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend);
6925         }
6926         auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
6927         auto update = builder.create<fir::ArrayUpdateOp>(
6928             loc, innerArg.getType(), innerArg, ele, iters.iterVec(),
6929             fir::factory::getTypeParams(loc, builder, load));
6930         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update);
6931       };
6932       return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6933     }
6934     if (isCustomCopyInCopyOut()) {
6935       // Create an array_modify to get the LHS element address and indicate
6936       // the assignment, and create the call to the user defined assignment.
6937       destination = load;
6938       auto lambda = [=](IterSpace iters) mutable {
6939         mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load);
6940         mlir::Type refEleTy =
6941             fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
6942         auto arrModify = builder.create<fir::ArrayModifyOp>(
6943             loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg,
6944             iters.iterVec(), load.getTypeparams());
6945         return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
6946                                  arrModify.getResult(1));
6947       };
6948       return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
6949     }
6950     auto lambda = [=, semant = this->semant](IterSpace iters) mutable {
6951       if (semant == ConstituentSemantics::RefOpaque ||
6952           isAdjustedArrayElementType(eleTy)) {
6953         mlir::Type resTy = builder.getRefType(eleTy);
6954         // Use array element reference semantics.
6955         auto access = builder.create<fir::ArrayAccessOp>(
6956             loc, resTy, load, iters.iterVec(),
6957             fir::factory::getTypeParams(loc, builder, load));
6958         mlir::Value newBase = access;
6959         if (fir::isa_char(eleTy)) {
6960           mlir::Value dstLen = fir::factory::genLenOfCharacter(
6961               builder, loc, load, iters.iterVec(), substringBounds);
6962           if (!substringBounds.empty()) {
6963             fir::CharBoxValue charDst{access, dstLen};
6964             fir::factory::CharacterExprHelper helper{builder, loc};
6965             charDst = helper.createSubstring(charDst, substringBounds);
6966             newBase = charDst.getAddr();
6967           }
6968           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase,
6969                                    dstLen);
6970         }
6971         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase);
6972       }
6973       if (components.hasExtendCoorRef()) {
6974         auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec());
6975         assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
6976         auto access = builder.create<fir::ArrayAccessOp>(
6977             loc, builder.getRefType(eleBoxTy), load, iters.iterVec(),
6978             fir::factory::getTypeParams(loc, builder, load));
6979         mlir::Value addr = components.getExtendCoorRef()(access);
6980         components.resetExtendCoorRef();
6981         return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr);
6982       }
6983       if (isPointerAssignment()) {
6984         auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec());
6985         if (!eleTy.isa<fir::BoxType>()) {
6986           // Rhs is a regular expression that will need to be boxed before
6987           // assigning to the boxed variable.
6988           auto typeParams = fir::factory::getTypeParams(loc, builder, load);
6989           auto access = builder.create<fir::ArrayAccessOp>(
6990               loc, builder.getRefType(eleTy), load, iters.iterVec(),
6991               typeParams);
6992           auto addr = components.getExtendCoorRef()(access);
6993           components.resetExtendCoorRef();
6994           auto ptrEleTy = fir::PointerType::get(eleTy);
6995           auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr);
6996           auto boxTy = fir::BoxType::get(ptrEleTy);
6997           // FIXME: The typeparams to the load may be different than those of
6998           // the subobject.
6999           if (components.hasExtendCoorRef())
7000             TODO(loc, "need to adjust typeparameter(s) to reflect the final "
7001                       "component");
7002           mlir::Value embox =
7003               builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr,
7004                                            /*shape=*/mlir::Value{},
7005                                            /*slice=*/mlir::Value{}, typeParams);
7006           return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox);
7007         }
7008       }
7009       auto fetch = builder.create<fir::ArrayFetchOp>(
7010           loc, eleTy, load, iters.iterVec(), load.getTypeparams());
7011       return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch);
7012     };
7013     return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
7014   }
7015 
7016   template <typename A>
7017   CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
7018     components.reversePath.push_back(ImplicitSubscripts{});
7019     ExtValue exv = asScalarRef(x);
7020     lowerPath(exv, components);
7021     auto lambda = genarr(exv, components);
7022     return [=](IterSpace iters) { return lambda(components.pc(iters)); };
7023   }
7024   CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
7025                             ComponentPath &components) {
7026     if (x.IsSymbol())
7027       return genImplicitArrayAccess(getFirstSym(x), components);
7028     return genImplicitArrayAccess(x.GetComponent(), components);
7029   }
7030 
7031   template <typename A>
7032   CC genAsScalar(const A &x) {
7033     mlir::Location loc = getLoc();
7034     if (isProjectedCopyInCopyOut()) {
7035       return [=, &x, builder = &converter.getFirOpBuilder()](
7036                  IterSpace iters) -> ExtValue {
7037         ExtValue exv = asScalarRef(x);
7038         mlir::Value addr = fir::getBase(exv);
7039         mlir::Type eleTy = fir::unwrapRefType(addr.getType());
7040         if (isAdjustedArrayElementType(eleTy)) {
7041           if (fir::isa_char(eleTy)) {
7042             fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
7043                 exv, iters.elementExv());
7044           } else if (fir::isa_derived(eleTy)) {
7045             TODO(loc, "assignment of derived type");
7046           } else {
7047             fir::emitFatalError(loc, "array type not expected in scalar");
7048           }
7049         } else {
7050           auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement());
7051           builder->create<fir::StoreOp>(loc, eleVal, addr);
7052         }
7053         return exv;
7054       };
7055     }
7056     return [=, &x](IterSpace) { return asScalar(x); };
7057   }
7058 
7059   bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x,
7060                                         ComponentPath &components) {
7061     return isPointerAssignment() && Fortran::semantics::IsPointer(x) &&
7062            !components.hasComponents();
7063   }
7064   bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x,
7065                                         ComponentPath &components) {
7066     return tailIsPointerInPointerAssignment(getLastSym(x), components);
7067   }
7068 
7069   CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
7070     if (explicitSpaceIsActive()) {
7071       if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components))
7072         components.reversePath.push_back(ImplicitSubscripts{});
7073       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
7074         return applyPathToArrayLoad(load, components);
7075     } else {
7076       return genImplicitArrayAccess(x, components);
7077     }
7078     if (pathIsEmpty(components))
7079       return components.substring ? genAsScalar(*components.substring)
7080                                   : genAsScalar(x);
7081     mlir::Location loc = getLoc();
7082     return [=](IterSpace) -> ExtValue {
7083       fir::emitFatalError(loc, "reached symbol with path");
7084     };
7085   }
7086 
7087   /// Lower a component path with or without rank.
7088   /// Example: <code>array%baz%qux%waldo</code>
7089   CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
7090     if (explicitSpaceIsActive()) {
7091       if (x.base().Rank() == 0 && x.Rank() > 0 &&
7092           !tailIsPointerInPointerAssignment(x, components))
7093         components.reversePath.push_back(ImplicitSubscripts{});
7094       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
7095         return applyPathToArrayLoad(load, components);
7096     } else {
7097       if (x.base().Rank() == 0)
7098         return genImplicitArrayAccess(x, components);
7099     }
7100     bool atEnd = pathIsEmpty(components);
7101     if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp))
7102       // Skip parent components; their components are placed directly in the
7103       // object.
7104       components.reversePath.push_back(&x);
7105     auto result = genarr(x.base(), components);
7106     if (components.applied)
7107       return result;
7108     if (atEnd)
7109       return genAsScalar(x);
7110     mlir::Location loc = getLoc();
7111     return [=](IterSpace) -> ExtValue {
7112       fir::emitFatalError(loc, "reached component with path");
7113     };
7114   }
7115 
7116   /// Array reference with subscripts. If this has rank > 0, this is a form
7117   /// of an array section (slice).
7118   ///
7119   /// There are two "slicing" primitives that may be applied on a dimension by
7120   /// dimension basis: (1) triple notation and (2) vector addressing. Since
7121   /// dimensions can be selectively sliced, some dimensions may contain
7122   /// regular scalar expressions and those dimensions do not participate in
7123   /// the array expression evaluation.
7124   CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
7125     if (explicitSpaceIsActive()) {
7126       if (Fortran::lower::isRankedArrayAccess(x))
7127         components.reversePath.push_back(ImplicitSubscripts{});
7128       if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) {
7129         components.reversePath.push_back(&x);
7130         return applyPathToArrayLoad(load, components);
7131       }
7132     } else {
7133       if (Fortran::lower::isRankedArrayAccess(x)) {
7134         components.reversePath.push_back(&x);
7135         return genImplicitArrayAccess(x.base(), components);
7136       }
7137     }
7138     bool atEnd = pathIsEmpty(components);
7139     components.reversePath.push_back(&x);
7140     auto result = genarr(x.base(), components);
7141     if (components.applied)
7142       return result;
7143     mlir::Location loc = getLoc();
7144     if (atEnd) {
7145       if (x.Rank() == 0)
7146         return genAsScalar(x);
7147       fir::emitFatalError(loc, "expected scalar");
7148     }
7149     return [=](IterSpace) -> ExtValue {
7150       fir::emitFatalError(loc, "reached arrayref with path");
7151     };
7152   }
7153 
7154   CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
7155     TODO(getLoc(), "coarray reference");
7156   }
7157 
7158   CC genarr(const Fortran::evaluate::NamedEntity &x,
7159             ComponentPath &components) {
7160     return x.IsSymbol() ? genarr(getFirstSym(x), components)
7161                         : genarr(x.GetComponent(), components);
7162   }
7163 
7164   CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
7165     return std::visit([&](const auto &v) { return genarr(v, components); },
7166                       x.u);
7167   }
7168 
7169   bool pathIsEmpty(const ComponentPath &components) {
7170     return components.reversePath.empty();
7171   }
7172 
7173   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7174                              Fortran::lower::StatementContext &stmtCtx,
7175                              Fortran::lower::SymMap &symMap)
7176       : converter{converter}, builder{converter.getFirOpBuilder()},
7177         stmtCtx{stmtCtx}, symMap{symMap} {}
7178 
7179   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7180                              Fortran::lower::StatementContext &stmtCtx,
7181                              Fortran::lower::SymMap &symMap,
7182                              ConstituentSemantics sem)
7183       : converter{converter}, builder{converter.getFirOpBuilder()},
7184         stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}
7185 
7186   explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
7187                              Fortran::lower::StatementContext &stmtCtx,
7188                              Fortran::lower::SymMap &symMap,
7189                              ConstituentSemantics sem,
7190                              Fortran::lower::ExplicitIterSpace *expSpace,
7191                              Fortran::lower::ImplicitIterSpace *impSpace)
7192       : converter{converter}, builder{converter.getFirOpBuilder()},
7193         stmtCtx{stmtCtx}, symMap{symMap},
7194         explicitSpace(expSpace->isActive() ? expSpace : nullptr),
7195         implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} {
7196     // Generate any mask expressions, as necessary. This is the compute step
7197     // that creates the effective masks. See 10.2.3.2 in particular.
7198     genMasks();
7199   }
7200 
7201   mlir::Location getLoc() { return converter.getCurrentLocation(); }
7202 
7203   /// Array appears in a lhs context such that it is assigned after the rhs is
7204   /// fully evaluated.
7205   inline bool isCopyInCopyOut() {
7206     return semant == ConstituentSemantics::CopyInCopyOut;
7207   }
7208 
7209   /// Array appears in a lhs (or temp) context such that a projected,
7210   /// discontiguous subspace of the array is assigned after the rhs is fully
7211   /// evaluated. That is, the rhs array value is merged into a section of the
7212   /// lhs array.
7213   inline bool isProjectedCopyInCopyOut() {
7214     return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
7215   }
7216 
7217   // ???: Do we still need this?
7218   inline bool isCustomCopyInCopyOut() {
7219     return semant == ConstituentSemantics::CustomCopyInCopyOut;
7220   }
7221 
7222   /// Are we lowering in a left-hand side context?
7223   inline bool isLeftHandSide() {
7224     return isCopyInCopyOut() || isProjectedCopyInCopyOut() ||
7225            isCustomCopyInCopyOut();
7226   }
7227 
7228   /// Array appears in a context where it must be boxed.
7229   inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }
7230 
7231   /// Array appears in a context where differences in the memory reference can
7232   /// be observable in the computational results. For example, an array
7233   /// element is passed to an impure procedure.
7234   inline bool isReferentiallyOpaque() {
7235     return semant == ConstituentSemantics::RefOpaque;
7236   }
7237 
7238   /// Array appears in a context where it is passed as a VALUE argument.
7239   inline bool isValueAttribute() {
7240     return semant == ConstituentSemantics::ByValueArg;
7241   }
7242 
7243   /// Can the loops over the expression be unordered?
7244   inline bool isUnordered() const { return unordered; }
7245 
7246   void setUnordered(bool b) { unordered = b; }
7247 
7248   inline bool isPointerAssignment() const { return lbounds.hasValue(); }
7249 
7250   inline bool isBoundsSpec() const {
7251     return isPointerAssignment() && !ubounds.hasValue();
7252   }
7253 
7254   inline bool isBoundsRemap() const {
7255     return isPointerAssignment() && ubounds.hasValue();
7256   }
7257 
7258   void setPointerAssignmentBounds(
7259       const llvm::SmallVector<mlir::Value> &lbs,
7260       llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) {
7261     lbounds = lbs;
7262     ubounds = ubs;
7263   }
7264 
7265   Fortran::lower::AbstractConverter &converter;
7266   fir::FirOpBuilder &builder;
7267   Fortran::lower::StatementContext &stmtCtx;
7268   bool elementCtx = false;
7269   Fortran::lower::SymMap &symMap;
7270   /// The continuation to generate code to update the destination.
7271   llvm::Optional<CC> ccStoreToDest;
7272   llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
7273   llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
7274       ccLoadDest;
7275   /// The destination is the loaded array into which the results will be
7276   /// merged.
7277   fir::ArrayLoadOp destination;
7278   /// The shape of the destination.
7279   llvm::SmallVector<mlir::Value> destShape;
7280   /// List of arrays in the expression that have been loaded.
7281   llvm::SmallVector<ArrayOperand> arrayOperands;
7282   /// If there is a user-defined iteration space, explicitShape will hold the
7283   /// information from the front end.
7284   Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
7285   Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
7286   ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
7287   /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only
7288   /// occur in an explicit iteration space.
7289   llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds;
7290   llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds;
7291   // Can the array expression be evaluated in any order?
7292   // Will be set to false if any of the expression parts prevent this.
7293   bool unordered = true;
7294 };
7295 } // namespace
7296 
7297 fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
7298     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7299     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7300     Fortran::lower::StatementContext &stmtCtx) {
7301   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7302   return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
7303 }
7304 
7305 fir::GlobalOp Fortran::lower::createDenseGlobal(
7306     mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName,
7307     mlir::StringAttr linkage, bool isConst,
7308     const Fortran::lower::SomeExpr &expr,
7309     Fortran::lower::AbstractConverter &converter) {
7310 
7311   Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true);
7312   Fortran::lower::SymMap emptyMap;
7313   InitializerData initData(/*genRawVals=*/true);
7314   ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx,
7315                          /*initializer=*/&initData);
7316   sel.genval(expr);
7317 
7318   size_t sz = initData.rawVals.size();
7319   llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz};
7320 
7321   mlir::RankedTensorType tensorTy;
7322   auto &builder = converter.getFirOpBuilder();
7323   mlir::Type iTy = initData.rawType;
7324   if (!iTy)
7325     return 0; // array extent is probably 0 in this case, so just return 0.
7326   tensorTy = mlir::RankedTensorType::get(sz, iTy);
7327   auto init = mlir::DenseElementsAttr::get(tensorTy, ar);
7328   return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
7329 }
7330 
7331 fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
7332     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7333     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7334     Fortran::lower::StatementContext &stmtCtx) {
7335   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7336   InitializerData initData; // needed for initializations
7337   return ScalarExprLowering{loc, converter, symMap, stmtCtx,
7338                             /*initializer=*/&initData}
7339       .genval(expr);
7340 }
7341 
7342 fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
7343     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7344     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7345     Fortran::lower::StatementContext &stmtCtx) {
7346   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
7347   return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr);
7348 }
7349 
7350 fir::ExtendedValue Fortran::lower::createInitializerAddress(
7351     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7352     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7353     Fortran::lower::StatementContext &stmtCtx) {
7354   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
7355   InitializerData init;
7356   return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr);
7357 }
7358 
7359 void Fortran::lower::createSomeArrayAssignment(
7360     Fortran::lower::AbstractConverter &converter,
7361     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7362     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7363   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7364              rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7365   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7366 }
7367 
7368 void Fortran::lower::createSomeArrayAssignment(
7369     Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
7370     const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap,
7371     Fortran::lower::StatementContext &stmtCtx) {
7372   LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
7373              rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7374   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7375 }
7376 void Fortran::lower::createSomeArrayAssignment(
7377     Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
7378     const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
7379     Fortran::lower::StatementContext &stmtCtx) {
7380   LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
7381              llvm::dbgs() << "assign expression: " << rhs << '\n';);
7382   ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
7383 }
7384 
7385 void Fortran::lower::createAnyMaskedArrayAssignment(
7386     Fortran::lower::AbstractConverter &converter,
7387     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7388     Fortran::lower::ExplicitIterSpace &explicitSpace,
7389     Fortran::lower::ImplicitIterSpace &implicitSpace,
7390     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7391   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7392              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7393              << " given the explicit iteration space:\n"
7394              << explicitSpace << "\n and implied mask conditions:\n"
7395              << implicitSpace << '\n';);
7396   ArrayExprLowering::lowerAnyMaskedArrayAssignment(
7397       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
7398 }
7399 
7400 void Fortran::lower::createAllocatableArrayAssignment(
7401     Fortran::lower::AbstractConverter &converter,
7402     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7403     Fortran::lower::ExplicitIterSpace &explicitSpace,
7404     Fortran::lower::ImplicitIterSpace &implicitSpace,
7405     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7406   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
7407              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7408              << " given the explicit iteration space:\n"
7409              << explicitSpace << "\n and implied mask conditions:\n"
7410              << implicitSpace << '\n';);
7411   ArrayExprLowering::lowerAllocatableArrayAssignment(
7412       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
7413 }
7414 
7415 void Fortran::lower::createArrayOfPointerAssignment(
7416     Fortran::lower::AbstractConverter &converter,
7417     const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
7418     Fortran::lower::ExplicitIterSpace &explicitSpace,
7419     Fortran::lower::ImplicitIterSpace &implicitSpace,
7420     const llvm::SmallVector<mlir::Value> &lbounds,
7421     llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds,
7422     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7423   LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n';
7424              rhs.AsFortran(llvm::dbgs() << "assign expression: ")
7425              << " given the explicit iteration space:\n"
7426              << explicitSpace << "\n and implied mask conditions:\n"
7427              << implicitSpace << '\n';);
7428   assert(explicitSpace.isActive() && "must be in FORALL construct");
7429   ArrayExprLowering::lowerArrayOfPointerAssignment(
7430       converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace,
7431       lbounds, ubounds);
7432 }
7433 
7434 fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
7435     Fortran::lower::AbstractConverter &converter,
7436     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7437     Fortran::lower::StatementContext &stmtCtx) {
7438   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7439   return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
7440                                                     expr);
7441 }
7442 
7443 void Fortran::lower::createLazyArrayTempValue(
7444     Fortran::lower::AbstractConverter &converter,
7445     const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader,
7446     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
7447   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7448   ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr,
7449                                               raggedHeader);
7450 }
7451 
7452 fir::ExtendedValue
7453 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
7454                                    const Fortran::lower::SomeExpr &expr,
7455                                    Fortran::lower::SymMap &symMap,
7456                                    Fortran::lower::StatementContext &stmtCtx) {
7457   LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
7458   return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
7459                                                       stmtCtx, expr);
7460 }
7461 
7462 fir::MutableBoxValue Fortran::lower::createMutableBox(
7463     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7464     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
7465   // MutableBox lowering StatementContext does not need to be propagated
7466   // to the caller because the result value is a variable, not a temporary
7467   // expression. The StatementContext clean-up can occur before using the
7468   // resulting MutableBoxValue. Variables of all other types are handled in the
7469   // bridge.
7470   Fortran::lower::StatementContext dummyStmtCtx;
7471   return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
7472       .genMutableBoxValue(expr);
7473 }
7474 
7475 fir::ExtendedValue Fortran::lower::createBoxValue(
7476     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7477     const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
7478     Fortran::lower::StatementContext &stmtCtx) {
7479   if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) &&
7480       !Fortran::evaluate::HasVectorSubscript(expr))
7481     return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx);
7482   fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress(
7483       loc, converter, expr, symMap, stmtCtx);
7484   return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr));
7485 }
7486 
7487 mlir::Value Fortran::lower::createSubroutineCall(
7488     AbstractConverter &converter, const evaluate::ProcedureRef &call,
7489     ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace,
7490     SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) {
7491   mlir::Location loc = converter.getCurrentLocation();
7492 
7493   if (isUserDefAssignment) {
7494     assert(call.arguments().size() == 2);
7495     const auto *lhs = call.arguments()[0].value().UnwrapExpr();
7496     const auto *rhs = call.arguments()[1].value().UnwrapExpr();
7497     assert(lhs && rhs &&
7498            "user defined assignment arguments must be expressions");
7499     if (call.IsElemental() && lhs->Rank() > 0) {
7500       // Elemental user defined assignment has special requirements to deal with
7501       // LHS/RHS overlaps. See 10.2.1.5 p2.
7502       ArrayExprLowering::lowerElementalUserAssignment(
7503           converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace,
7504           call);
7505     } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) {
7506       // Scalar defined assignment (elemental or not) in a FORALL context.
7507       mlir::func::FuncOp func =
7508           Fortran::lower::CallerInterface(call, converter).getFuncOp();
7509       ArrayExprLowering::lowerScalarUserAssignment(
7510           converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs);
7511     } else if (explicitIterSpace.isActive()) {
7512       // TODO: need to array fetch/modify sub-arrays?
7513       TODO(loc, "non elemental user defined array assignment inside FORALL");
7514     } else {
7515       if (!implicitIterSpace.empty())
7516         fir::emitFatalError(
7517             loc,
7518             "C1032: user defined assignment inside WHERE must be elemental");
7519       // Non elemental user defined assignment outside of FORALL and WHERE.
7520       // FIXME: The non elemental user defined assignment case with array
7521       // arguments must be take into account potential overlap. So far the front
7522       // end does not add parentheses around the RHS argument in the call as it
7523       // should according to 15.4.3.4.3 p2.
7524       Fortran::lower::createSomeExtendedExpression(
7525           loc, converter, toEvExpr(call), symMap, stmtCtx);
7526     }
7527     return {};
7528   }
7529 
7530   assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() &&
7531          "subroutine calls are not allowed inside WHERE and FORALL");
7532 
7533   if (isElementalProcWithArrayArgs(call)) {
7534     ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx,
7535                                                 toEvExpr(call));
7536     return {};
7537   }
7538   // Simple subroutine call, with potential alternate return.
7539   auto res = Fortran::lower::createSomeExtendedExpression(
7540       loc, converter, toEvExpr(call), symMap, stmtCtx);
7541   return fir::getBase(res);
7542 }
7543 
7544 template <typename A>
7545 fir::ArrayLoadOp genArrayLoad(mlir::Location loc,
7546                               Fortran::lower::AbstractConverter &converter,
7547                               fir::FirOpBuilder &builder, const A *x,
7548                               Fortran::lower::SymMap &symMap,
7549                               Fortran::lower::StatementContext &stmtCtx) {
7550   auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x);
7551   mlir::Value addr = fir::getBase(exv);
7552   mlir::Value shapeOp = builder.createShape(loc, exv);
7553   mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
7554   return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp,
7555                                           /*slice=*/mlir::Value{},
7556                                           fir::getTypeParams(exv));
7557 }
7558 template <>
7559 fir::ArrayLoadOp
7560 genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
7561              fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x,
7562              Fortran::lower::SymMap &symMap,
7563              Fortran::lower::StatementContext &stmtCtx) {
7564   if (x->base().IsSymbol())
7565     return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap,
7566                         stmtCtx);
7567   return genArrayLoad(loc, converter, builder, &x->base().GetComponent(),
7568                       symMap, stmtCtx);
7569 }
7570 
7571 void Fortran::lower::createArrayLoads(
7572     Fortran::lower::AbstractConverter &converter,
7573     Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) {
7574   std::size_t counter = esp.getCounter();
7575   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
7576   mlir::Location loc = converter.getCurrentLocation();
7577   Fortran::lower::StatementContext &stmtCtx = esp.stmtContext();
7578   // Gen the fir.array_load ops.
7579   auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp {
7580     return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx);
7581   };
7582   if (esp.lhsBases[counter].hasValue()) {
7583     auto &base = esp.lhsBases[counter].getValue();
7584     auto load = std::visit(genLoad, base);
7585     esp.initialArgs.push_back(load);
7586     esp.resetInnerArgs();
7587     esp.bindLoad(base, load);
7588   }
7589   for (const auto &base : esp.rhsBases[counter])
7590     esp.bindLoad(base, std::visit(genLoad, base));
7591 }
7592 
7593 void Fortran::lower::createArrayMergeStores(
7594     Fortran::lower::AbstractConverter &converter,
7595     Fortran::lower::ExplicitIterSpace &esp) {
7596   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
7597   mlir::Location loc = converter.getCurrentLocation();
7598   builder.setInsertionPointAfter(esp.getOuterLoop());
7599   // Gen the fir.array_merge_store ops for all LHS arrays.
7600   for (auto i : llvm::enumerate(esp.getOuterLoop().getResults()))
7601     if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) {
7602       fir::ArrayLoadOp load = ldOpt.getValue();
7603       builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(),
7604                                              load.getMemref(), load.getSlice(),
7605                                              load.getTypeparams());
7606     }
7607   if (esp.loopCleanup.hasValue()) {
7608     esp.loopCleanup.getValue()(builder);
7609     esp.loopCleanup = llvm::None;
7610   }
7611   esp.initialArgs.clear();
7612   esp.innerArgs.clear();
7613   esp.outerLoop = llvm::None;
7614   esp.resetBindings();
7615   esp.incrementCounter();
7616 }
7617