1 //===-- xray_interface.cpp --------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of XRay, a dynamic runtime instrumentation system. 10 // 11 // Implementation of the API functions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "xray_interface_internal.h" 16 17 #include <cstdint> 18 #include <cstdio> 19 #include <errno.h> 20 #include <limits> 21 #include <string.h> 22 #include <sys/mman.h> 23 24 #if SANITIZER_FUCHSIA 25 #include <zircon/process.h> 26 #include <zircon/sanitizer.h> 27 #include <zircon/status.h> 28 #include <zircon/syscalls.h> 29 #endif 30 31 #include "sanitizer_common/sanitizer_addrhashmap.h" 32 #include "sanitizer_common/sanitizer_common.h" 33 34 #include "xray_defs.h" 35 #include "xray_flags.h" 36 37 extern __sanitizer::SpinMutex XRayInstrMapMutex; 38 extern __sanitizer::atomic_uint8_t XRayInitialized; 39 extern __xray::XRaySledMap XRayInstrMap; 40 41 namespace __xray { 42 43 #if defined(__x86_64__) 44 static const int16_t cSledLength = 12; 45 #elif defined(__aarch64__) 46 static const int16_t cSledLength = 32; 47 #elif defined(__arm__) 48 static const int16_t cSledLength = 28; 49 #elif SANITIZER_MIPS32 50 static const int16_t cSledLength = 48; 51 #elif SANITIZER_MIPS64 52 static const int16_t cSledLength = 64; 53 #elif defined(__powerpc64__) 54 static const int16_t cSledLength = 8; 55 #else 56 #error "Unsupported CPU Architecture" 57 #endif /* CPU architecture */ 58 59 // This is the function to call when we encounter the entry or exit sleds. 60 atomic_uintptr_t XRayPatchedFunction{0}; 61 62 // This is the function to call from the arg1-enabled sleds/trampolines. 63 atomic_uintptr_t XRayArgLogger{0}; 64 65 // This is the function to call when we encounter a custom event log call. 66 atomic_uintptr_t XRayPatchedCustomEvent{0}; 67 68 // This is the function to call when we encounter a typed event log call. 69 atomic_uintptr_t XRayPatchedTypedEvent{0}; 70 71 // This is the global status to determine whether we are currently 72 // patching/unpatching. 73 atomic_uint8_t XRayPatching{0}; 74 75 struct TypeDescription { 76 uint32_t type_id; 77 std::size_t description_string_length; 78 }; 79 80 using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>; 81 // An address map from immutable descriptors to type ids. 82 TypeDescriptorMapType TypeDescriptorAddressMap{}; 83 84 atomic_uint32_t TypeEventDescriptorCounter{0}; 85 86 // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will 87 // undo any successful mprotect(...) changes. This is used to make a page 88 // writeable and executable, and upon destruction if it was successful in 89 // doing so returns the page into a read-only and executable page. 90 // 91 // This is only used specifically for runtime-patching of the XRay 92 // instrumentation points. This assumes that the executable pages are 93 // originally read-and-execute only. 94 class MProtectHelper { 95 void *PageAlignedAddr; 96 std::size_t MProtectLen; 97 bool MustCleanup; 98 99 public: 100 explicit MProtectHelper(void *PageAlignedAddr, 101 std::size_t MProtectLen, 102 std::size_t PageSize) XRAY_NEVER_INSTRUMENT 103 : PageAlignedAddr(PageAlignedAddr), 104 MProtectLen(MProtectLen), 105 MustCleanup(false) { 106 #if SANITIZER_FUCHSIA 107 MProtectLen = RoundUpTo(MProtectLen, PageSize); 108 #endif 109 } 110 111 int MakeWriteable() XRAY_NEVER_INSTRUMENT { 112 #if SANITIZER_FUCHSIA 113 auto R = __sanitizer_change_code_protection( 114 reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true); 115 if (R != ZX_OK) { 116 Report("XRay: cannot change code protection: %s\n", 117 _zx_status_get_string(R)); 118 return -1; 119 } 120 MustCleanup = true; 121 return 0; 122 #else 123 auto R = mprotect(PageAlignedAddr, MProtectLen, 124 PROT_READ | PROT_WRITE | PROT_EXEC); 125 if (R != -1) 126 MustCleanup = true; 127 return R; 128 #endif 129 } 130 131 ~MProtectHelper() XRAY_NEVER_INSTRUMENT { 132 if (MustCleanup) { 133 #if SANITIZER_FUCHSIA 134 auto R = __sanitizer_change_code_protection( 135 reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false); 136 if (R != ZX_OK) { 137 Report("XRay: cannot change code protection: %s\n", 138 _zx_status_get_string(R)); 139 } 140 #else 141 mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC); 142 #endif 143 } 144 } 145 }; 146 147 namespace { 148 149 bool patchSled(const XRaySledEntry &Sled, bool Enable, 150 int32_t FuncId) XRAY_NEVER_INSTRUMENT { 151 bool Success = false; 152 switch (Sled.Kind) { 153 case XRayEntryType::ENTRY: 154 Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry); 155 break; 156 case XRayEntryType::EXIT: 157 Success = patchFunctionExit(Enable, FuncId, Sled); 158 break; 159 case XRayEntryType::TAIL: 160 Success = patchFunctionTailExit(Enable, FuncId, Sled); 161 break; 162 case XRayEntryType::LOG_ARGS_ENTRY: 163 Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry); 164 break; 165 case XRayEntryType::CUSTOM_EVENT: 166 Success = patchCustomEvent(Enable, FuncId, Sled); 167 break; 168 case XRayEntryType::TYPED_EVENT: 169 Success = patchTypedEvent(Enable, FuncId, Sled); 170 break; 171 default: 172 Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind)); 173 return false; 174 } 175 return Success; 176 } 177 178 XRayPatchingStatus patchFunction(int32_t FuncId, 179 bool Enable) XRAY_NEVER_INSTRUMENT { 180 if (!atomic_load(&XRayInitialized, 181 memory_order_acquire)) 182 return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. 183 184 uint8_t NotPatching = false; 185 if (!atomic_compare_exchange_strong( 186 &XRayPatching, &NotPatching, true, memory_order_acq_rel)) 187 return XRayPatchingStatus::ONGOING; // Already patching. 188 189 // Next, we look for the function index. 190 XRaySledMap InstrMap; 191 { 192 SpinMutexLock Guard(&XRayInstrMapMutex); 193 InstrMap = XRayInstrMap; 194 } 195 196 // If we don't have an index, we can't patch individual functions. 197 if (InstrMap.Functions == 0) 198 return XRayPatchingStatus::NOT_INITIALIZED; 199 200 // FuncId must be a positive number, less than the number of functions 201 // instrumented. 202 if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) { 203 Report("Invalid function id provided: %d\n", FuncId); 204 return XRayPatchingStatus::FAILED; 205 } 206 207 // Now we patch ths sleds for this specific function. 208 auto SledRange = InstrMap.SledsIndex[FuncId - 1]; 209 auto *f = SledRange.Begin; 210 auto *e = SledRange.End; 211 212 bool SucceedOnce = false; 213 while (f != e) 214 SucceedOnce |= patchSled(*f++, Enable, FuncId); 215 216 atomic_store(&XRayPatching, false, 217 memory_order_release); 218 219 if (!SucceedOnce) { 220 Report("Failed patching any sled for function '%d'.", FuncId); 221 return XRayPatchingStatus::FAILED; 222 } 223 224 return XRayPatchingStatus::SUCCESS; 225 } 226 227 // controlPatching implements the common internals of the patching/unpatching 228 // implementation. |Enable| defines whether we're enabling or disabling the 229 // runtime XRay instrumentation. 230 XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT { 231 if (!atomic_load(&XRayInitialized, 232 memory_order_acquire)) 233 return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. 234 235 uint8_t NotPatching = false; 236 if (!atomic_compare_exchange_strong( 237 &XRayPatching, &NotPatching, true, memory_order_acq_rel)) 238 return XRayPatchingStatus::ONGOING; // Already patching. 239 240 uint8_t PatchingSuccess = false; 241 auto XRayPatchingStatusResetter = 242 at_scope_exit([&PatchingSuccess] { 243 if (!PatchingSuccess) 244 atomic_store(&XRayPatching, false, 245 memory_order_release); 246 }); 247 248 XRaySledMap InstrMap; 249 { 250 SpinMutexLock Guard(&XRayInstrMapMutex); 251 InstrMap = XRayInstrMap; 252 } 253 if (InstrMap.Entries == 0) 254 return XRayPatchingStatus::NOT_INITIALIZED; 255 256 uint32_t FuncId = 1; 257 uint64_t CurFun = 0; 258 259 // First we want to find the bounds for which we have instrumentation points, 260 // and try to get as few calls to mprotect(...) as possible. We're assuming 261 // that all the sleds for the instrumentation map are contiguous as a single 262 // set of pages. When we do support dynamic shared object instrumentation, 263 // we'll need to do this for each set of page load offsets per DSO loaded. For 264 // now we're assuming we can mprotect the whole section of text between the 265 // minimum sled address and the maximum sled address (+ the largest sled 266 // size). 267 auto *MinSled = &InstrMap.Sleds[0]; 268 auto *MaxSled = &InstrMap.Sleds[InstrMap.Entries - 1]; 269 for (std::size_t I = 0; I < InstrMap.Entries; I++) { 270 const auto &Sled = InstrMap.Sleds[I]; 271 if (Sled.address() < MinSled->address()) 272 MinSled = &Sled; 273 if (Sled.address() > MaxSled->address()) 274 MaxSled = &Sled; 275 } 276 277 const size_t PageSize = flags()->xray_page_size_override > 0 278 ? flags()->xray_page_size_override 279 : GetPageSizeCached(); 280 if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { 281 Report("System page size is not a power of two: %lld\n", PageSize); 282 return XRayPatchingStatus::FAILED; 283 } 284 285 void *PageAlignedAddr = 286 reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1)); 287 size_t MProtectLen = 288 (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) + 289 cSledLength; 290 MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize); 291 if (Protector.MakeWriteable() == -1) { 292 Report("Failed mprotect: %d\n", errno); 293 return XRayPatchingStatus::FAILED; 294 } 295 296 for (std::size_t I = 0; I < InstrMap.Entries; ++I) { 297 auto &Sled = InstrMap.Sleds[I]; 298 auto F = Sled.function(); 299 if (CurFun == 0) 300 CurFun = F; 301 if (F != CurFun) { 302 ++FuncId; 303 CurFun = F; 304 } 305 patchSled(Sled, Enable, FuncId); 306 } 307 atomic_store(&XRayPatching, false, 308 memory_order_release); 309 PatchingSuccess = true; 310 return XRayPatchingStatus::SUCCESS; 311 } 312 313 XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId, 314 bool Enable) XRAY_NEVER_INSTRUMENT { 315 XRaySledMap InstrMap; 316 { 317 SpinMutexLock Guard(&XRayInstrMapMutex); 318 InstrMap = XRayInstrMap; 319 } 320 321 // FuncId must be a positive number, less than the number of functions 322 // instrumented. 323 if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) { 324 Report("Invalid function id provided: %d\n", FuncId); 325 return XRayPatchingStatus::FAILED; 326 } 327 328 const size_t PageSize = flags()->xray_page_size_override > 0 329 ? flags()->xray_page_size_override 330 : GetPageSizeCached(); 331 if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { 332 Report("Provided page size is not a power of two: %lld\n", PageSize); 333 return XRayPatchingStatus::FAILED; 334 } 335 336 // Here we compute the minumum sled and maximum sled associated with a 337 // particular function ID. 338 auto SledRange = InstrMap.SledsIndex[FuncId - 1]; 339 auto *f = SledRange.Begin; 340 auto *e = SledRange.End; 341 auto *MinSled = f; 342 auto *MaxSled = (SledRange.End - 1); 343 while (f != e) { 344 if (f->address() < MinSled->address()) 345 MinSled = f; 346 if (f->address() > MaxSled->address()) 347 MaxSled = f; 348 ++f; 349 } 350 351 void *PageAlignedAddr = 352 reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1)); 353 size_t MProtectLen = 354 (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) + 355 cSledLength; 356 MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize); 357 if (Protector.MakeWriteable() == -1) { 358 Report("Failed mprotect: %d\n", errno); 359 return XRayPatchingStatus::FAILED; 360 } 361 return patchFunction(FuncId, Enable); 362 } 363 364 } // namespace 365 366 } // namespace __xray 367 368 using namespace __xray; 369 370 // The following functions are declared `extern "C" {...}` in the header, hence 371 // they're defined in the global namespace. 372 373 int __xray_set_handler(void (*entry)(int32_t, 374 XRayEntryType)) XRAY_NEVER_INSTRUMENT { 375 if (atomic_load(&XRayInitialized, 376 memory_order_acquire)) { 377 378 atomic_store(&__xray::XRayPatchedFunction, 379 reinterpret_cast<uintptr_t>(entry), 380 memory_order_release); 381 return 1; 382 } 383 return 0; 384 } 385 386 int __xray_set_customevent_handler(void (*entry)(void *, size_t)) 387 XRAY_NEVER_INSTRUMENT { 388 if (atomic_load(&XRayInitialized, 389 memory_order_acquire)) { 390 atomic_store(&__xray::XRayPatchedCustomEvent, 391 reinterpret_cast<uintptr_t>(entry), 392 memory_order_release); 393 return 1; 394 } 395 return 0; 396 } 397 398 int __xray_set_typedevent_handler(void (*entry)( 399 uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT { 400 if (atomic_load(&XRayInitialized, 401 memory_order_acquire)) { 402 atomic_store(&__xray::XRayPatchedTypedEvent, 403 reinterpret_cast<uintptr_t>(entry), 404 memory_order_release); 405 return 1; 406 } 407 return 0; 408 } 409 410 int __xray_remove_handler() XRAY_NEVER_INSTRUMENT { 411 return __xray_set_handler(nullptr); 412 } 413 414 int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT { 415 return __xray_set_customevent_handler(nullptr); 416 } 417 418 int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT { 419 return __xray_set_typedevent_handler(nullptr); 420 } 421 422 uint16_t __xray_register_event_type( 423 const char *const event_type) XRAY_NEVER_INSTRUMENT { 424 TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type); 425 if (h.created()) { 426 h->type_id = atomic_fetch_add( 427 &TypeEventDescriptorCounter, 1, memory_order_acq_rel); 428 h->description_string_length = strnlen(event_type, 1024); 429 } 430 return h->type_id; 431 } 432 433 XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT { 434 return controlPatching(true); 435 } 436 437 XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT { 438 return controlPatching(false); 439 } 440 441 XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { 442 return mprotectAndPatchFunction(FuncId, true); 443 } 444 445 XRayPatchingStatus 446 __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { 447 return mprotectAndPatchFunction(FuncId, false); 448 } 449 450 int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) { 451 if (!atomic_load(&XRayInitialized, 452 memory_order_acquire)) 453 return 0; 454 455 // A relaxed write might not be visible even if the current thread gets 456 // scheduled on a different CPU/NUMA node. We need to wait for everyone to 457 // have this handler installed for consistency of collected data across CPUs. 458 atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry), 459 memory_order_release); 460 return 1; 461 } 462 463 int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); } 464 465 uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT { 466 SpinMutexLock Guard(&XRayInstrMapMutex); 467 if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions) 468 return 0; 469 return XRayInstrMap.SledsIndex[FuncId - 1].Begin->function() 470 // On PPC, function entries are always aligned to 16 bytes. The beginning of a 471 // sled might be a local entry, which is always +8 based on the global entry. 472 // Always return the global entry. 473 #ifdef __PPC__ 474 & ~0xf 475 #endif 476 ; 477 } 478 479 size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT { 480 SpinMutexLock Guard(&XRayInstrMapMutex); 481 return XRayInstrMap.Functions; 482 } 483