1 //===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of XRay, a dynamic runtime instrumentation system.
10 //
11 // Implementation of the API functions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "xray_interface_internal.h"
16 
17 #include <cinttypes>
18 #include <cstdio>
19 #include <errno.h>
20 #include <limits>
21 #include <string.h>
22 #include <sys/mman.h>
23 
24 #if SANITIZER_FUCHSIA
25 #include <zircon/process.h>
26 #include <zircon/sanitizer.h>
27 #include <zircon/status.h>
28 #include <zircon/syscalls.h>
29 #endif
30 
31 #include "sanitizer_common/sanitizer_addrhashmap.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 
34 #include "xray_defs.h"
35 #include "xray_flags.h"
36 
37 extern __sanitizer::SpinMutex XRayInstrMapMutex;
38 extern __sanitizer::atomic_uint8_t XRayInitialized;
39 extern __xray::XRaySledMap XRayInstrMap;
40 
41 namespace __xray {
42 
43 #if defined(__x86_64__)
44 static const int16_t cSledLength = 12;
45 #elif defined(__aarch64__)
46 static const int16_t cSledLength = 32;
47 #elif defined(__arm__)
48 static const int16_t cSledLength = 28;
49 #elif SANITIZER_MIPS32
50 static const int16_t cSledLength = 48;
51 #elif SANITIZER_MIPS64
52 static const int16_t cSledLength = 64;
53 #elif defined(__powerpc64__)
54 static const int16_t cSledLength = 8;
55 #else
56 #error "Unsupported CPU Architecture"
57 #endif /* CPU architecture */
58 
59 // This is the function to call when we encounter the entry or exit sleds.
60 atomic_uintptr_t XRayPatchedFunction{0};
61 
62 // This is the function to call from the arg1-enabled sleds/trampolines.
63 atomic_uintptr_t XRayArgLogger{0};
64 
65 // This is the function to call when we encounter a custom event log call.
66 atomic_uintptr_t XRayPatchedCustomEvent{0};
67 
68 // This is the function to call when we encounter a typed event log call.
69 atomic_uintptr_t XRayPatchedTypedEvent{0};
70 
71 // This is the global status to determine whether we are currently
72 // patching/unpatching.
73 atomic_uint8_t XRayPatching{0};
74 
75 struct TypeDescription {
76   uint32_t type_id;
77   std::size_t description_string_length;
78 };
79 
80 using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
81 // An address map from immutable descriptors to type ids.
82 TypeDescriptorMapType TypeDescriptorAddressMap{};
83 
84 atomic_uint32_t TypeEventDescriptorCounter{0};
85 
86 // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
87 // undo any successful mprotect(...) changes. This is used to make a page
88 // writeable and executable, and upon destruction if it was successful in
89 // doing so returns the page into a read-only and executable page.
90 //
91 // This is only used specifically for runtime-patching of the XRay
92 // instrumentation points. This assumes that the executable pages are
93 // originally read-and-execute only.
94 class MProtectHelper {
95   void *PageAlignedAddr;
96   std::size_t MProtectLen;
97   bool MustCleanup;
98 
99 public:
100   explicit MProtectHelper(void *PageAlignedAddr,
101                           std::size_t MProtectLen,
102                           std::size_t PageSize) XRAY_NEVER_INSTRUMENT
103       : PageAlignedAddr(PageAlignedAddr),
104         MProtectLen(MProtectLen),
105         MustCleanup(false) {
106 #if SANITIZER_FUCHSIA
107     MProtectLen = RoundUpTo(MProtectLen, PageSize);
108 #endif
109   }
110 
111   int MakeWriteable() XRAY_NEVER_INSTRUMENT {
112 #if SANITIZER_FUCHSIA
113     auto R = __sanitizer_change_code_protection(
114         reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
115     if (R != ZX_OK) {
116       Report("XRay: cannot change code protection: %s\n",
117              _zx_status_get_string(R));
118       return -1;
119     }
120     MustCleanup = true;
121     return 0;
122 #else
123     auto R = mprotect(PageAlignedAddr, MProtectLen,
124                       PROT_READ | PROT_WRITE | PROT_EXEC);
125     if (R != -1)
126       MustCleanup = true;
127     return R;
128 #endif
129   }
130 
131   ~MProtectHelper() XRAY_NEVER_INSTRUMENT {
132     if (MustCleanup) {
133 #if SANITIZER_FUCHSIA
134       auto R = __sanitizer_change_code_protection(
135           reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
136       if (R != ZX_OK) {
137         Report("XRay: cannot change code protection: %s\n",
138                _zx_status_get_string(R));
139       }
140 #else
141       mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
142 #endif
143     }
144   }
145 };
146 
147 namespace {
148 
149 bool patchSled(const XRaySledEntry &Sled, bool Enable,
150                int32_t FuncId) XRAY_NEVER_INSTRUMENT {
151   bool Success = false;
152   switch (Sled.Kind) {
153   case XRayEntryType::ENTRY:
154     Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
155     break;
156   case XRayEntryType::EXIT:
157     Success = patchFunctionExit(Enable, FuncId, Sled);
158     break;
159   case XRayEntryType::TAIL:
160     Success = patchFunctionTailExit(Enable, FuncId, Sled);
161     break;
162   case XRayEntryType::LOG_ARGS_ENTRY:
163     Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
164     break;
165   case XRayEntryType::CUSTOM_EVENT:
166     Success = patchCustomEvent(Enable, FuncId, Sled);
167     break;
168   case XRayEntryType::TYPED_EVENT:
169     Success = patchTypedEvent(Enable, FuncId, Sled);
170     break;
171   default:
172     Report("Unsupported sled kind '%" PRIu64 "' @%04x\n", Sled.Address,
173            int(Sled.Kind));
174     return false;
175   }
176   return Success;
177 }
178 
179 const XRayFunctionSledIndex
180 findFunctionSleds(int32_t FuncId,
181                   const XRaySledMap &InstrMap) XRAY_NEVER_INSTRUMENT {
182   int32_t CurFn = 0;
183   uint64_t LastFnAddr = 0;
184   XRayFunctionSledIndex Index = {nullptr, nullptr};
185 
186   for (std::size_t I = 0; I < InstrMap.Entries && CurFn <= FuncId; I++) {
187     const auto &Sled = InstrMap.Sleds[I];
188     const auto Function = Sled.function();
189     if (Function != LastFnAddr) {
190       CurFn++;
191       LastFnAddr = Function;
192     }
193 
194     if (CurFn == FuncId) {
195       if (Index.Begin == nullptr)
196         Index.Begin = &Sled;
197       Index.End = &Sled;
198     }
199   }
200 
201   Index.End += 1;
202 
203   return Index;
204 }
205 
206 XRayPatchingStatus patchFunction(int32_t FuncId,
207                                  bool Enable) XRAY_NEVER_INSTRUMENT {
208   if (!atomic_load(&XRayInitialized,
209                                 memory_order_acquire))
210     return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
211 
212   uint8_t NotPatching = false;
213   if (!atomic_compare_exchange_strong(
214           &XRayPatching, &NotPatching, true, memory_order_acq_rel))
215     return XRayPatchingStatus::ONGOING; // Already patching.
216 
217   // Next, we look for the function index.
218   XRaySledMap InstrMap;
219   {
220     SpinMutexLock Guard(&XRayInstrMapMutex);
221     InstrMap = XRayInstrMap;
222   }
223 
224   // If we don't have an index, we can't patch individual functions.
225   if (InstrMap.Functions == 0)
226     return XRayPatchingStatus::NOT_INITIALIZED;
227 
228   // FuncId must be a positive number, less than the number of functions
229   // instrumented.
230   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
231     Report("Invalid function id provided: %d\n", FuncId);
232     return XRayPatchingStatus::FAILED;
233   }
234 
235   // Now we patch ths sleds for this specific function.
236   auto SledRange = InstrMap.SledsIndex ? InstrMap.SledsIndex[FuncId - 1]
237                                        : findFunctionSleds(FuncId, InstrMap);
238   auto *f = SledRange.Begin;
239   auto *e = SledRange.End;
240   bool SucceedOnce = false;
241   while (f != e)
242     SucceedOnce |= patchSled(*f++, Enable, FuncId);
243 
244   atomic_store(&XRayPatching, false,
245                             memory_order_release);
246 
247   if (!SucceedOnce) {
248     Report("Failed patching any sled for function '%d'.", FuncId);
249     return XRayPatchingStatus::FAILED;
250   }
251 
252   return XRayPatchingStatus::SUCCESS;
253 }
254 
255 // controlPatching implements the common internals of the patching/unpatching
256 // implementation. |Enable| defines whether we're enabling or disabling the
257 // runtime XRay instrumentation.
258 XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
259   if (!atomic_load(&XRayInitialized,
260                                 memory_order_acquire))
261     return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
262 
263   uint8_t NotPatching = false;
264   if (!atomic_compare_exchange_strong(
265           &XRayPatching, &NotPatching, true, memory_order_acq_rel))
266     return XRayPatchingStatus::ONGOING; // Already patching.
267 
268   uint8_t PatchingSuccess = false;
269   auto XRayPatchingStatusResetter =
270       at_scope_exit([&PatchingSuccess] {
271         if (!PatchingSuccess)
272           atomic_store(&XRayPatching, false,
273                                     memory_order_release);
274       });
275 
276   XRaySledMap InstrMap;
277   {
278     SpinMutexLock Guard(&XRayInstrMapMutex);
279     InstrMap = XRayInstrMap;
280   }
281   if (InstrMap.Entries == 0)
282     return XRayPatchingStatus::NOT_INITIALIZED;
283 
284   uint32_t FuncId = 1;
285   uint64_t CurFun = 0;
286 
287   // First we want to find the bounds for which we have instrumentation points,
288   // and try to get as few calls to mprotect(...) as possible. We're assuming
289   // that all the sleds for the instrumentation map are contiguous as a single
290   // set of pages. When we do support dynamic shared object instrumentation,
291   // we'll need to do this for each set of page load offsets per DSO loaded. For
292   // now we're assuming we can mprotect the whole section of text between the
293   // minimum sled address and the maximum sled address (+ the largest sled
294   // size).
295   auto *MinSled = &InstrMap.Sleds[0];
296   auto *MaxSled = &InstrMap.Sleds[InstrMap.Entries - 1];
297   for (std::size_t I = 0; I < InstrMap.Entries; I++) {
298     const auto &Sled = InstrMap.Sleds[I];
299     if (Sled.address() < MinSled->address())
300       MinSled = &Sled;
301     if (Sled.address() > MaxSled->address())
302       MaxSled = &Sled;
303   }
304 
305   const size_t PageSize = flags()->xray_page_size_override > 0
306                               ? flags()->xray_page_size_override
307                               : GetPageSizeCached();
308   if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
309     Report("System page size is not a power of two: %zu\n", PageSize);
310     return XRayPatchingStatus::FAILED;
311   }
312 
313   void *PageAlignedAddr =
314       reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
315   size_t MProtectLen =
316       (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
317       cSledLength;
318   MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
319   if (Protector.MakeWriteable() == -1) {
320     Report("Failed mprotect: %d\n", errno);
321     return XRayPatchingStatus::FAILED;
322   }
323 
324   for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
325     auto &Sled = InstrMap.Sleds[I];
326     auto F = Sled.function();
327     if (CurFun == 0)
328       CurFun = F;
329     if (F != CurFun) {
330       ++FuncId;
331       CurFun = F;
332     }
333     patchSled(Sled, Enable, FuncId);
334   }
335   atomic_store(&XRayPatching, false,
336                             memory_order_release);
337   PatchingSuccess = true;
338   return XRayPatchingStatus::SUCCESS;
339 }
340 
341 XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
342                                             bool Enable) XRAY_NEVER_INSTRUMENT {
343   XRaySledMap InstrMap;
344   {
345     SpinMutexLock Guard(&XRayInstrMapMutex);
346     InstrMap = XRayInstrMap;
347   }
348 
349   // FuncId must be a positive number, less than the number of functions
350   // instrumented.
351   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
352     Report("Invalid function id provided: %d\n", FuncId);
353     return XRayPatchingStatus::FAILED;
354   }
355 
356   const size_t PageSize = flags()->xray_page_size_override > 0
357                               ? flags()->xray_page_size_override
358                               : GetPageSizeCached();
359   if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
360     Report("Provided page size is not a power of two: %zu\n", PageSize);
361     return XRayPatchingStatus::FAILED;
362   }
363 
364   // Here we compute the minimum sled and maximum sled associated with a
365   // particular function ID.
366   auto SledRange = InstrMap.SledsIndex ? InstrMap.SledsIndex[FuncId - 1]
367                                        : findFunctionSleds(FuncId, InstrMap);
368   auto *f = SledRange.Begin;
369   auto *e = SledRange.End;
370   auto *MinSled = f;
371   auto *MaxSled = (SledRange.End - 1);
372   while (f != e) {
373     if (f->address() < MinSled->address())
374       MinSled = f;
375     if (f->address() > MaxSled->address())
376       MaxSled = f;
377     ++f;
378   }
379 
380   void *PageAlignedAddr =
381       reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
382   size_t MProtectLen =
383       (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
384       cSledLength;
385   MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
386   if (Protector.MakeWriteable() == -1) {
387     Report("Failed mprotect: %d\n", errno);
388     return XRayPatchingStatus::FAILED;
389   }
390   return patchFunction(FuncId, Enable);
391 }
392 
393 } // namespace
394 
395 } // namespace __xray
396 
397 using namespace __xray;
398 
399 // The following functions are declared `extern "C" {...}` in the header, hence
400 // they're defined in the global namespace.
401 
402 int __xray_set_handler(void (*entry)(int32_t,
403                                      XRayEntryType)) XRAY_NEVER_INSTRUMENT {
404   if (atomic_load(&XRayInitialized,
405                                memory_order_acquire)) {
406 
407     atomic_store(&__xray::XRayPatchedFunction,
408                               reinterpret_cast<uintptr_t>(entry),
409                               memory_order_release);
410     return 1;
411   }
412   return 0;
413 }
414 
415 int __xray_set_customevent_handler(void (*entry)(void *, size_t))
416     XRAY_NEVER_INSTRUMENT {
417   if (atomic_load(&XRayInitialized,
418                                memory_order_acquire)) {
419     atomic_store(&__xray::XRayPatchedCustomEvent,
420                               reinterpret_cast<uintptr_t>(entry),
421                               memory_order_release);
422     return 1;
423   }
424   return 0;
425 }
426 
427 int __xray_set_typedevent_handler(void (*entry)(
428     uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT {
429   if (atomic_load(&XRayInitialized,
430                                memory_order_acquire)) {
431     atomic_store(&__xray::XRayPatchedTypedEvent,
432                               reinterpret_cast<uintptr_t>(entry),
433                               memory_order_release);
434     return 1;
435   }
436   return 0;
437 }
438 
439 int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
440   return __xray_set_handler(nullptr);
441 }
442 
443 int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
444   return __xray_set_customevent_handler(nullptr);
445 }
446 
447 int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
448   return __xray_set_typedevent_handler(nullptr);
449 }
450 
451 uint16_t __xray_register_event_type(
452     const char *const event_type) XRAY_NEVER_INSTRUMENT {
453   TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
454   if (h.created()) {
455     h->type_id = atomic_fetch_add(
456         &TypeEventDescriptorCounter, 1, memory_order_acq_rel);
457     h->description_string_length = strnlen(event_type, 1024);
458   }
459   return h->type_id;
460 }
461 
462 XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
463   return controlPatching(true);
464 }
465 
466 XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
467   return controlPatching(false);
468 }
469 
470 XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
471   return mprotectAndPatchFunction(FuncId, true);
472 }
473 
474 XRayPatchingStatus
475 __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
476   return mprotectAndPatchFunction(FuncId, false);
477 }
478 
479 int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
480   if (!atomic_load(&XRayInitialized,
481                                 memory_order_acquire))
482     return 0;
483 
484   // A relaxed write might not be visible even if the current thread gets
485   // scheduled on a different CPU/NUMA node.  We need to wait for everyone to
486   // have this handler installed for consistency of collected data across CPUs.
487   atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
488                             memory_order_release);
489   return 1;
490 }
491 
492 int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
493 
494 uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
495   XRaySledMap InstrMap;
496   {
497     SpinMutexLock Guard(&XRayInstrMapMutex);
498     InstrMap = XRayInstrMap;
499   }
500 
501   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions)
502     return 0;
503   const XRaySledEntry *Sled = InstrMap.SledsIndex
504                                   ? InstrMap.SledsIndex[FuncId - 1].Begin
505                                   : findFunctionSleds(FuncId, InstrMap).Begin;
506   return Sled->function()
507 // On PPC, function entries are always aligned to 16 bytes. The beginning of a
508 // sled might be a local entry, which is always +8 based on the global entry.
509 // Always return the global entry.
510 #ifdef __PPC__
511          & ~0xf
512 #endif
513       ;
514 }
515 
516 size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
517   SpinMutexLock Guard(&XRayInstrMapMutex);
518   return XRayInstrMap.Functions;
519 }
520