1 //===-- tsan_platform_linux.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer (TSan), a race detector. 10 // 11 // Linux- and BSD-specific code. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_common/sanitizer_platform.h" 15 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD 16 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_libc.h" 19 #include "sanitizer_common/sanitizer_linux.h" 20 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h" 21 #include "sanitizer_common/sanitizer_platform_limits_posix.h" 22 #include "sanitizer_common/sanitizer_posix.h" 23 #include "sanitizer_common/sanitizer_procmaps.h" 24 #include "sanitizer_common/sanitizer_stackdepot.h" 25 #include "sanitizer_common/sanitizer_stoptheworld.h" 26 #include "tsan_flags.h" 27 #include "tsan_platform.h" 28 #include "tsan_rtl.h" 29 30 #include <fcntl.h> 31 #include <pthread.h> 32 #include <signal.h> 33 #include <stdio.h> 34 #include <stdlib.h> 35 #include <string.h> 36 #include <stdarg.h> 37 #include <sys/mman.h> 38 #if SANITIZER_LINUX 39 #include <sys/personality.h> 40 #include <setjmp.h> 41 #endif 42 #include <sys/syscall.h> 43 #include <sys/socket.h> 44 #include <sys/time.h> 45 #include <sys/types.h> 46 #include <sys/resource.h> 47 #include <sys/stat.h> 48 #include <unistd.h> 49 #include <sched.h> 50 #include <dlfcn.h> 51 #if SANITIZER_LINUX 52 #define __need_res_state 53 #include <resolv.h> 54 #endif 55 56 #ifdef sa_handler 57 # undef sa_handler 58 #endif 59 60 #ifdef sa_sigaction 61 # undef sa_sigaction 62 #endif 63 64 #if SANITIZER_FREEBSD 65 extern "C" void *__libc_stack_end; 66 void *__libc_stack_end = 0; 67 #endif 68 69 #if SANITIZER_LINUX && defined(__aarch64__) && !SANITIZER_GO 70 # define INIT_LONGJMP_XOR_KEY 1 71 #else 72 # define INIT_LONGJMP_XOR_KEY 0 73 #endif 74 75 #if INIT_LONGJMP_XOR_KEY 76 #include "interception/interception.h" 77 // Must be declared outside of other namespaces. 78 DECLARE_REAL(int, _setjmp, void *env) 79 #endif 80 81 namespace __tsan { 82 83 #if INIT_LONGJMP_XOR_KEY 84 static void InitializeLongjmpXorKey(); 85 static uptr longjmp_xor_key; 86 #endif 87 88 // Runtime detected VMA size. 89 uptr vmaSize; 90 91 enum { 92 MemTotal, 93 MemShadow, 94 MemMeta, 95 MemFile, 96 MemMmap, 97 MemTrace, 98 MemHeap, 99 MemOther, 100 MemCount, 101 }; 102 103 void FillProfileCallback(uptr p, uptr rss, bool file, 104 uptr *mem, uptr stats_size) { 105 mem[MemTotal] += rss; 106 if (p >= ShadowBeg() && p < ShadowEnd()) 107 mem[MemShadow] += rss; 108 else if (p >= MetaShadowBeg() && p < MetaShadowEnd()) 109 mem[MemMeta] += rss; 110 else if ((p >= LoAppMemBeg() && p < LoAppMemEnd()) || 111 (p >= MidAppMemBeg() && p < MidAppMemEnd()) || 112 (p >= HiAppMemBeg() && p < HiAppMemEnd())) 113 mem[file ? MemFile : MemMmap] += rss; 114 else if (p >= HeapMemBeg() && p < HeapMemEnd()) 115 mem[MemHeap] += rss; 116 else if (p >= TraceMemBeg() && p < TraceMemEnd()) 117 mem[MemTrace] += rss; 118 else 119 mem[MemOther] += rss; 120 } 121 122 void WriteMemoryProfile(char *buf, uptr buf_size, u64 uptime_ns) { 123 uptr mem[MemCount]; 124 internal_memset(mem, 0, sizeof(mem)); 125 GetMemoryProfile(FillProfileCallback, mem, MemCount); 126 auto meta = ctx->metamap.GetMemoryStats(); 127 StackDepotStats stacks = StackDepotGetStats(); 128 uptr nthread, nlive; 129 ctx->thread_registry.GetNumberOfThreads(&nthread, &nlive); 130 uptr internal_stats[AllocatorStatCount]; 131 internal_allocator()->GetStats(internal_stats); 132 // All these are allocated from the common mmap region. 133 mem[MemMmap] -= meta.mem_block + meta.sync_obj + stacks.allocated + 134 internal_stats[AllocatorStatMapped]; 135 if (s64(mem[MemMmap]) < 0) 136 mem[MemMmap] = 0; 137 internal_snprintf( 138 buf, buf_size, 139 "%llus: RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd" 140 " trace:%zd heap:%zd other:%zd intalloc:%zd memblocks:%zd syncobj:%zu" 141 " stacks=%zd[%zd] nthr=%zd/%zd\n", 142 uptime_ns / (1000 * 1000 * 1000), mem[MemTotal] >> 20, 143 mem[MemShadow] >> 20, mem[MemMeta] >> 20, mem[MemFile] >> 20, 144 mem[MemMmap] >> 20, mem[MemTrace] >> 20, mem[MemHeap] >> 20, 145 mem[MemOther] >> 20, internal_stats[AllocatorStatMapped] >> 20, 146 meta.mem_block >> 20, meta.sync_obj >> 20, stacks.allocated >> 20, 147 stacks.n_uniq_ids, nlive, nthread); 148 } 149 150 # if SANITIZER_LINUX 151 void FlushShadowMemoryCallback( 152 const SuspendedThreadsList &suspended_threads_list, 153 void *argument) { 154 ReleaseMemoryPagesToOS(ShadowBeg(), ShadowEnd()); 155 } 156 #endif 157 158 void FlushShadowMemory() { 159 #if SANITIZER_LINUX 160 StopTheWorld(FlushShadowMemoryCallback, 0); 161 #endif 162 } 163 164 #if !SANITIZER_GO 165 // Mark shadow for .rodata sections with the special kShadowRodata marker. 166 // Accesses to .rodata can't race, so this saves time, memory and trace space. 167 static void MapRodata() { 168 // First create temp file. 169 const char *tmpdir = GetEnv("TMPDIR"); 170 if (tmpdir == 0) 171 tmpdir = GetEnv("TEST_TMPDIR"); 172 #ifdef P_tmpdir 173 if (tmpdir == 0) 174 tmpdir = P_tmpdir; 175 #endif 176 if (tmpdir == 0) 177 return; 178 char name[256]; 179 internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d", 180 tmpdir, (int)internal_getpid()); 181 uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600); 182 if (internal_iserror(openrv)) 183 return; 184 internal_unlink(name); // Unlink it now, so that we can reuse the buffer. 185 fd_t fd = openrv; 186 // Fill the file with kShadowRodata. 187 const uptr kMarkerSize = 512 * 1024 / sizeof(RawShadow); 188 InternalMmapVector<RawShadow> marker(kMarkerSize); 189 // volatile to prevent insertion of memset 190 for (volatile RawShadow *p = marker.data(); p < marker.data() + kMarkerSize; 191 p++) 192 *p = kShadowRodata; 193 internal_write(fd, marker.data(), marker.size() * sizeof(RawShadow)); 194 // Map the file into memory. 195 uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE, 196 MAP_PRIVATE | MAP_ANONYMOUS, fd, 0); 197 if (internal_iserror(page)) { 198 internal_close(fd); 199 return; 200 } 201 // Map the file into shadow of .rodata sections. 202 MemoryMappingLayout proc_maps(/*cache_enabled*/true); 203 // Reusing the buffer 'name'. 204 MemoryMappedSegment segment(name, ARRAY_SIZE(name)); 205 while (proc_maps.Next(&segment)) { 206 if (segment.filename[0] != 0 && segment.filename[0] != '[' && 207 segment.IsReadable() && segment.IsExecutable() && 208 !segment.IsWritable() && IsAppMem(segment.start)) { 209 // Assume it's .rodata 210 char *shadow_start = (char *)MemToShadow(segment.start); 211 char *shadow_end = (char *)MemToShadow(segment.end); 212 for (char *p = shadow_start; p < shadow_end; 213 p += marker.size() * sizeof(RawShadow)) { 214 internal_mmap( 215 p, Min<uptr>(marker.size() * sizeof(RawShadow), shadow_end - p), 216 PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0); 217 } 218 } 219 } 220 internal_close(fd); 221 } 222 223 void InitializeShadowMemoryPlatform() { 224 MapRodata(); 225 } 226 227 #endif // #if !SANITIZER_GO 228 229 void InitializePlatformEarly() { 230 vmaSize = 231 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); 232 #if defined(__aarch64__) 233 # if !SANITIZER_GO 234 if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) { 235 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 236 Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize); 237 Die(); 238 } 239 #else 240 if (vmaSize != 48) { 241 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 242 Printf("FATAL: Found %zd - Supported 48\n", vmaSize); 243 Die(); 244 } 245 #endif 246 #elif defined(__powerpc64__) 247 # if !SANITIZER_GO 248 if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) { 249 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 250 Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize); 251 Die(); 252 } 253 # else 254 if (vmaSize != 46 && vmaSize != 47) { 255 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 256 Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize); 257 Die(); 258 } 259 # endif 260 #elif defined(__mips64) 261 # if !SANITIZER_GO 262 if (vmaSize != 40) { 263 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 264 Printf("FATAL: Found %zd - Supported 40\n", vmaSize); 265 Die(); 266 } 267 # else 268 if (vmaSize != 47) { 269 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); 270 Printf("FATAL: Found %zd - Supported 47\n", vmaSize); 271 Die(); 272 } 273 # endif 274 #endif 275 } 276 277 void InitializePlatform() { 278 DisableCoreDumperIfNecessary(); 279 280 // Go maps shadow memory lazily and works fine with limited address space. 281 // Unlimited stack is not a problem as well, because the executable 282 // is not compiled with -pie. 283 #if !SANITIZER_GO 284 { 285 bool reexec = false; 286 // TSan doesn't play well with unlimited stack size (as stack 287 // overlaps with shadow memory). If we detect unlimited stack size, 288 // we re-exec the program with limited stack size as a best effort. 289 if (StackSizeIsUnlimited()) { 290 const uptr kMaxStackSize = 32 * 1024 * 1024; 291 VReport(1, "Program is run with unlimited stack size, which wouldn't " 292 "work with ThreadSanitizer.\n" 293 "Re-execing with stack size limited to %zd bytes.\n", 294 kMaxStackSize); 295 SetStackSizeLimitInBytes(kMaxStackSize); 296 reexec = true; 297 } 298 299 if (!AddressSpaceIsUnlimited()) { 300 Report("WARNING: Program is run with limited virtual address space," 301 " which wouldn't work with ThreadSanitizer.\n"); 302 Report("Re-execing with unlimited virtual address space.\n"); 303 SetAddressSpaceUnlimited(); 304 reexec = true; 305 } 306 #if SANITIZER_LINUX && defined(__aarch64__) 307 // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in 308 // linux kernel, the random gap between stack and mapped area is increased 309 // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover 310 // this big range, we should disable randomized virtual space on aarch64. 311 int old_personality = personality(0xffffffff); 312 if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { 313 VReport(1, "WARNING: Program is run with randomized virtual address " 314 "space, which wouldn't work with ThreadSanitizer.\n" 315 "Re-execing with fixed virtual address space.\n"); 316 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); 317 reexec = true; 318 } 319 // Initialize the xor key used in {sig}{set,long}jump. 320 InitializeLongjmpXorKey(); 321 #endif 322 if (reexec) 323 ReExec(); 324 } 325 326 CheckAndProtect(); 327 InitTlsSize(); 328 #endif // !SANITIZER_GO 329 } 330 331 #if !SANITIZER_GO 332 // Extract file descriptors passed to glibc internal __res_iclose function. 333 // This is required to properly "close" the fds, because we do not see internal 334 // closes within glibc. The code is a pure hack. 335 int ExtractResolvFDs(void *state, int *fds, int nfd) { 336 #if SANITIZER_LINUX && !SANITIZER_ANDROID 337 int cnt = 0; 338 struct __res_state *statp = (struct __res_state*)state; 339 for (int i = 0; i < MAXNS && cnt < nfd; i++) { 340 if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) 341 fds[cnt++] = statp->_u._ext.nssocks[i]; 342 } 343 return cnt; 344 #else 345 return 0; 346 #endif 347 } 348 349 // Extract file descriptors passed via UNIX domain sockets. 350 // This is required to properly handle "open" of these fds. 351 // see 'man recvmsg' and 'man 3 cmsg'. 352 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) { 353 int res = 0; 354 msghdr *msg = (msghdr*)msgp; 355 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); 356 for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { 357 if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) 358 continue; 359 int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]); 360 for (int i = 0; i < n; i++) { 361 fds[res++] = ((int*)CMSG_DATA(cmsg))[i]; 362 if (res == nfd) 363 return res; 364 } 365 } 366 return res; 367 } 368 369 // Reverse operation of libc stack pointer mangling 370 static uptr UnmangleLongJmpSp(uptr mangled_sp) { 371 #if defined(__x86_64__) 372 # if SANITIZER_LINUX 373 // Reverse of: 374 // xor %fs:0x30, %rsi 375 // rol $0x11, %rsi 376 uptr sp; 377 asm("ror $0x11, %0 \n" 378 "xor %%fs:0x30, %0 \n" 379 : "=r" (sp) 380 : "0" (mangled_sp)); 381 return sp; 382 # else 383 return mangled_sp; 384 # endif 385 #elif defined(__aarch64__) 386 # if SANITIZER_LINUX 387 return mangled_sp ^ longjmp_xor_key; 388 # else 389 return mangled_sp; 390 # endif 391 #elif defined(__powerpc64__) 392 // Reverse of: 393 // ld r4, -28696(r13) 394 // xor r4, r3, r4 395 uptr xor_key; 396 asm("ld %0, -28696(%%r13)" : "=r" (xor_key)); 397 return mangled_sp ^ xor_key; 398 #elif defined(__mips__) 399 return mangled_sp; 400 #elif defined(__s390x__) 401 // tcbhead_t.stack_guard 402 uptr xor_key = ((uptr *)__builtin_thread_pointer())[5]; 403 return mangled_sp ^ xor_key; 404 #else 405 #error "Unknown platform" 406 #endif 407 } 408 409 #if SANITIZER_NETBSD 410 # ifdef __x86_64__ 411 # define LONG_JMP_SP_ENV_SLOT 6 412 # else 413 # error unsupported 414 # endif 415 #elif defined(__powerpc__) 416 # define LONG_JMP_SP_ENV_SLOT 0 417 #elif SANITIZER_FREEBSD 418 # define LONG_JMP_SP_ENV_SLOT 2 419 #elif SANITIZER_LINUX 420 # ifdef __aarch64__ 421 # define LONG_JMP_SP_ENV_SLOT 13 422 # elif defined(__mips64) 423 # define LONG_JMP_SP_ENV_SLOT 1 424 # elif defined(__s390x__) 425 # define LONG_JMP_SP_ENV_SLOT 9 426 # else 427 # define LONG_JMP_SP_ENV_SLOT 6 428 # endif 429 #endif 430 431 uptr ExtractLongJmpSp(uptr *env) { 432 uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT]; 433 return UnmangleLongJmpSp(mangled_sp); 434 } 435 436 #if INIT_LONGJMP_XOR_KEY 437 // GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp 438 // functions) by XORing them with a random key. For AArch64 it is a global 439 // variable rather than a TCB one (as for x86_64/powerpc). We obtain the key by 440 // issuing a setjmp and XORing the SP pointer values to derive the key. 441 static void InitializeLongjmpXorKey() { 442 // 1. Call REAL(setjmp), which stores the mangled SP in env. 443 jmp_buf env; 444 REAL(_setjmp)(env); 445 446 // 2. Retrieve vanilla/mangled SP. 447 uptr sp; 448 asm("mov %0, sp" : "=r" (sp)); 449 uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT]; 450 451 // 3. xor SPs to obtain key. 452 longjmp_xor_key = mangled_sp ^ sp; 453 } 454 #endif 455 456 void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) { 457 // Check that the thr object is in tls; 458 const uptr thr_beg = (uptr)thr; 459 const uptr thr_end = (uptr)thr + sizeof(*thr); 460 CHECK_GE(thr_beg, tls_addr); 461 CHECK_LE(thr_beg, tls_addr + tls_size); 462 CHECK_GE(thr_end, tls_addr); 463 CHECK_LE(thr_end, tls_addr + tls_size); 464 // Since the thr object is huge, skip it. 465 MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, thr_beg - tls_addr); 466 MemoryRangeImitateWrite(thr, /*pc=*/2, thr_end, 467 tls_addr + tls_size - thr_end); 468 } 469 470 // Note: this function runs with async signals enabled, 471 // so it must not touch any tsan state. 472 int call_pthread_cancel_with_cleanup(int (*fn)(void *arg), 473 void (*cleanup)(void *arg), void *arg) { 474 // pthread_cleanup_push/pop are hardcore macros mess. 475 // We can't intercept nor call them w/o including pthread.h. 476 int res; 477 pthread_cleanup_push(cleanup, arg); 478 res = fn(arg); 479 pthread_cleanup_pop(0); 480 return res; 481 } 482 #endif // !SANITIZER_GO 483 484 #if !SANITIZER_GO 485 void ReplaceSystemMalloc() { } 486 #endif 487 488 #if !SANITIZER_GO 489 #if SANITIZER_ANDROID 490 // On Android, one thread can call intercepted functions after 491 // DestroyThreadState(), so add a fake thread state for "dead" threads. 492 static ThreadState *dead_thread_state = nullptr; 493 494 ThreadState *cur_thread() { 495 ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); 496 if (thr == nullptr) { 497 __sanitizer_sigset_t emptyset; 498 internal_sigfillset(&emptyset); 499 __sanitizer_sigset_t oldset; 500 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); 501 thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); 502 if (thr == nullptr) { 503 thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState), 504 "ThreadState")); 505 *get_android_tls_ptr() = reinterpret_cast<uptr>(thr); 506 if (dead_thread_state == nullptr) { 507 dead_thread_state = reinterpret_cast<ThreadState*>( 508 MmapOrDie(sizeof(ThreadState), "ThreadState")); 509 dead_thread_state->fast_state.SetIgnoreBit(); 510 dead_thread_state->ignore_interceptors = 1; 511 dead_thread_state->is_dead = true; 512 *const_cast<u32*>(&dead_thread_state->tid) = -1; 513 CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState), 514 PROT_READ)); 515 } 516 } 517 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); 518 } 519 return thr; 520 } 521 522 void set_cur_thread(ThreadState *thr) { 523 *get_android_tls_ptr() = reinterpret_cast<uptr>(thr); 524 } 525 526 void cur_thread_finalize() { 527 __sanitizer_sigset_t emptyset; 528 internal_sigfillset(&emptyset); 529 __sanitizer_sigset_t oldset; 530 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); 531 ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); 532 if (thr != dead_thread_state) { 533 *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state); 534 UnmapOrDie(thr, sizeof(ThreadState)); 535 } 536 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); 537 } 538 #endif // SANITIZER_ANDROID 539 #endif // if !SANITIZER_GO 540 541 } // namespace __tsan 542 543 #endif // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD 544