1 //===-- memprof_allocator.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemProfiler, a memory profiler. 10 // 11 // Implementation of MemProf's memory allocator, which uses the allocator 12 // from sanitizer_common. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "memprof_allocator.h" 17 #include "memprof_mapping.h" 18 #include "memprof_meminfoblock.h" 19 #include "memprof_mibmap.h" 20 #include "memprof_rawprofile.h" 21 #include "memprof_stack.h" 22 #include "memprof_thread.h" 23 #include "sanitizer_common/sanitizer_allocator_checks.h" 24 #include "sanitizer_common/sanitizer_allocator_interface.h" 25 #include "sanitizer_common/sanitizer_allocator_report.h" 26 #include "sanitizer_common/sanitizer_errno.h" 27 #include "sanitizer_common/sanitizer_file.h" 28 #include "sanitizer_common/sanitizer_flags.h" 29 #include "sanitizer_common/sanitizer_internal_defs.h" 30 #include "sanitizer_common/sanitizer_list.h" 31 #include "sanitizer_common/sanitizer_procmaps.h" 32 #include "sanitizer_common/sanitizer_stackdepot.h" 33 #include "sanitizer_common/sanitizer_vector.h" 34 35 #include <sched.h> 36 #include <time.h> 37 38 namespace __memprof { 39 40 static int GetCpuId(void) { 41 // _memprof_preinit is called via the preinit_array, which subsequently calls 42 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 43 // will seg fault as the address of __vdso_getcpu will be null. 44 if (!memprof_init_done) 45 return -1; 46 return sched_getcpu(); 47 } 48 49 // Compute the timestamp in ms. 50 static int GetTimestamp(void) { 51 // timespec_get will segfault if called from dl_init 52 if (!memprof_timestamp_inited) { 53 // By returning 0, this will be effectively treated as being 54 // timestamped at memprof init time (when memprof_init_timestamp_s 55 // is initialized). 56 return 0; 57 } 58 timespec ts; 59 clock_gettime(CLOCK_REALTIME, &ts); 60 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 61 } 62 63 static MemprofAllocator &get_allocator(); 64 65 // The memory chunk allocated from the underlying allocator looks like this: 66 // H H U U U U U U 67 // H -- ChunkHeader (32 bytes) 68 // U -- user memory. 69 70 // If there is left padding before the ChunkHeader (due to use of memalign), 71 // we store a magic value in the first uptr word of the memory block and 72 // store the address of ChunkHeader in the next uptr. 73 // M B L L L L L L L L L H H U U U U U U 74 // | ^ 75 // ---------------------| 76 // M -- magic value kAllocBegMagic 77 // B -- address of ChunkHeader pointing to the first 'H' 78 79 constexpr uptr kMaxAllowedMallocBits = 40; 80 81 // Should be no more than 32-bytes 82 struct ChunkHeader { 83 // 1-st 4 bytes. 84 u32 alloc_context_id; 85 // 2-nd 4 bytes 86 u32 cpu_id; 87 // 3-rd 4 bytes 88 u32 timestamp_ms; 89 // 4-th 4 bytes 90 // Note only 1 bit is needed for this flag if we need space in the future for 91 // more fields. 92 u32 from_memalign; 93 // 5-th and 6-th 4 bytes 94 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 95 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 96 // more fields. 97 atomic_uint64_t user_requested_size; 98 // 23 bits available 99 // 7-th and 8-th 4 bytes 100 u64 data_type_id; // TODO: hash of type name 101 }; 102 103 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 104 COMPILER_CHECK(kChunkHeaderSize == 32); 105 106 struct MemprofChunk : ChunkHeader { 107 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 108 uptr UsedSize() { 109 return atomic_load(&user_requested_size, memory_order_relaxed); 110 } 111 void *AllocBeg() { 112 if (from_memalign) 113 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 114 return reinterpret_cast<void *>(this); 115 } 116 }; 117 118 class LargeChunkHeader { 119 static constexpr uptr kAllocBegMagic = 120 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 121 atomic_uintptr_t magic; 122 MemprofChunk *chunk_header; 123 124 public: 125 MemprofChunk *Get() const { 126 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 127 ? chunk_header 128 : nullptr; 129 } 130 131 void Set(MemprofChunk *p) { 132 if (p) { 133 chunk_header = p; 134 atomic_store(&magic, kAllocBegMagic, memory_order_release); 135 return; 136 } 137 138 uptr old = kAllocBegMagic; 139 if (!atomic_compare_exchange_strong(&magic, &old, 0, 140 memory_order_release)) { 141 CHECK_EQ(old, kAllocBegMagic); 142 } 143 } 144 }; 145 146 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 147 // Since memprof's mapping is compacting, the shadow chunk may be 148 // not page-aligned, so we only flush the page-aligned portion. 149 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 150 } 151 152 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 153 // Statistics. 154 MemprofStats &thread_stats = GetCurrentThreadStats(); 155 thread_stats.mmaps++; 156 thread_stats.mmaped += size; 157 } 158 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 159 // We are about to unmap a chunk of user memory. 160 // Mark the corresponding shadow memory as not needed. 161 FlushUnneededMemProfShadowMemory(p, size); 162 // Statistics. 163 MemprofStats &thread_stats = GetCurrentThreadStats(); 164 thread_stats.munmaps++; 165 thread_stats.munmaped += size; 166 } 167 168 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 169 CHECK(ms); 170 return &ms->allocator_cache; 171 } 172 173 // Accumulates the access count from the shadow for the given pointer and size. 174 u64 GetShadowCount(uptr p, u32 size) { 175 u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 176 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 177 u64 count = 0; 178 for (; shadow <= shadow_end; shadow++) 179 count += *shadow; 180 return count; 181 } 182 183 // Clears the shadow counters (when memory is allocated). 184 void ClearShadow(uptr addr, uptr size) { 185 CHECK(AddrIsAlignedByGranularity(addr)); 186 CHECK(AddrIsInMem(addr)); 187 CHECK(AddrIsAlignedByGranularity(addr + size)); 188 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 189 CHECK(REAL(memset)); 190 uptr shadow_beg = MEM_TO_SHADOW(addr); 191 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 192 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 193 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 194 } else { 195 uptr page_size = GetPageSizeCached(); 196 uptr page_beg = RoundUpTo(shadow_beg, page_size); 197 uptr page_end = RoundDownTo(shadow_end, page_size); 198 199 if (page_beg >= page_end) { 200 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 201 } else { 202 if (page_beg != shadow_beg) { 203 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 204 } 205 if (page_end != shadow_end) { 206 REAL(memset)((void *)page_end, 0, shadow_end - page_end); 207 } 208 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 209 } 210 } 211 } 212 213 struct Allocator { 214 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 215 216 MemprofAllocator allocator; 217 StaticSpinMutex fallback_mutex; 218 AllocatorCache fallback_allocator_cache; 219 220 uptr max_user_defined_malloc_size; 221 222 // Holds the mapping of stack ids to MemInfoBlocks. 223 MIBMapTy MIBMap; 224 225 atomic_uint8_t destructing; 226 atomic_uint8_t constructed; 227 bool print_text; 228 229 // ------------------- Initialization ------------------------ 230 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 231 atomic_store_relaxed(&destructing, 0); 232 atomic_store_relaxed(&constructed, 1); 233 } 234 235 ~Allocator() { 236 atomic_store_relaxed(&destructing, 1); 237 FinishAndWrite(); 238 } 239 240 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 241 void *Arg) { 242 SpinMutexLock(&Value->mutex); 243 Value->mib.Print(Key, bool(Arg)); 244 } 245 246 void FinishAndWrite() { 247 if (print_text && common_flags()->print_module_map) 248 DumpProcessMap(); 249 250 allocator.ForceLock(); 251 252 InsertLiveBlocks(); 253 if (print_text) { 254 if (!flags()->print_terse) 255 Printf("Recorded MIBs (incl. live on exit):\n"); 256 MIBMap.ForEach(PrintCallback, 257 reinterpret_cast<void *>(flags()->print_terse)); 258 StackDepotPrintAll(); 259 } else { 260 // Serialize the contents to a raw profile. Format documented in 261 // memprof_rawprofile.h. 262 char *Buffer = nullptr; 263 264 MemoryMappingLayout Layout(/*cache_enabled=*/true); 265 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer); 266 CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 267 report_file.Write(Buffer, BytesSerialized); 268 } 269 270 allocator.ForceUnlock(); 271 } 272 273 // Inserts any blocks which have been allocated but not yet deallocated. 274 void InsertLiveBlocks() { 275 allocator.ForEachChunk( 276 [](uptr chunk, void *alloc) { 277 u64 user_requested_size; 278 Allocator *A = (Allocator *)alloc; 279 MemprofChunk *m = 280 A->GetMemprofChunk((void *)chunk, user_requested_size); 281 if (!m) 282 return; 283 uptr user_beg = ((uptr)m) + kChunkHeaderSize; 284 u64 c = GetShadowCount(user_beg, user_requested_size); 285 long curtime = GetTimestamp(); 286 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 287 m->cpu_id, GetCpuId()); 288 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 289 }, 290 this); 291 } 292 293 void InitLinkerInitialized() { 294 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 295 allocator.InitLinkerInitialized( 296 common_flags()->allocator_release_to_os_interval_ms); 297 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 298 ? common_flags()->max_allocation_size_mb 299 << 20 300 : kMaxAllowedMallocSize; 301 } 302 303 // -------------------- Allocation/Deallocation routines --------------- 304 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 305 AllocType alloc_type) { 306 if (UNLIKELY(!memprof_inited)) 307 MemprofInitFromRtl(); 308 if (UNLIKELY(IsRssLimitExceeded())) { 309 if (AllocatorMayReturnNull()) 310 return nullptr; 311 ReportRssLimitExceeded(stack); 312 } 313 CHECK(stack); 314 const uptr min_alignment = MEMPROF_ALIGNMENT; 315 if (alignment < min_alignment) 316 alignment = min_alignment; 317 if (size == 0) { 318 // We'd be happy to avoid allocating memory for zero-size requests, but 319 // some programs/tests depend on this behavior and assume that malloc 320 // would not return NULL even for zero-size allocations. Moreover, it 321 // looks like operator new should never return NULL, and results of 322 // consecutive "new" calls must be different even if the allocated size 323 // is zero. 324 size = 1; 325 } 326 CHECK(IsPowerOfTwo(alignment)); 327 uptr rounded_size = RoundUpTo(size, alignment); 328 uptr needed_size = rounded_size + kChunkHeaderSize; 329 if (alignment > min_alignment) 330 needed_size += alignment; 331 CHECK(IsAligned(needed_size, min_alignment)); 332 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 333 size > max_user_defined_malloc_size) { 334 if (AllocatorMayReturnNull()) { 335 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 336 return nullptr; 337 } 338 uptr malloc_limit = 339 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 340 ReportAllocationSizeTooBig(size, malloc_limit, stack); 341 } 342 343 MemprofThread *t = GetCurrentThread(); 344 void *allocated; 345 if (t) { 346 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 347 allocated = allocator.Allocate(cache, needed_size, 8); 348 } else { 349 SpinMutexLock l(&fallback_mutex); 350 AllocatorCache *cache = &fallback_allocator_cache; 351 allocated = allocator.Allocate(cache, needed_size, 8); 352 } 353 if (UNLIKELY(!allocated)) { 354 SetAllocatorOutOfMemory(); 355 if (AllocatorMayReturnNull()) 356 return nullptr; 357 ReportOutOfMemory(size, stack); 358 } 359 360 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 361 uptr alloc_end = alloc_beg + needed_size; 362 uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 363 uptr user_beg = beg_plus_header; 364 if (!IsAligned(user_beg, alignment)) 365 user_beg = RoundUpTo(user_beg, alignment); 366 uptr user_end = user_beg + size; 367 CHECK_LE(user_end, alloc_end); 368 uptr chunk_beg = user_beg - kChunkHeaderSize; 369 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 370 m->from_memalign = alloc_beg != chunk_beg; 371 CHECK(size); 372 373 m->cpu_id = GetCpuId(); 374 m->timestamp_ms = GetTimestamp(); 375 m->alloc_context_id = StackDepotPut(*stack); 376 377 uptr size_rounded_down_to_granularity = 378 RoundDownTo(size, SHADOW_GRANULARITY); 379 if (size_rounded_down_to_granularity) 380 ClearShadow(user_beg, size_rounded_down_to_granularity); 381 382 MemprofStats &thread_stats = GetCurrentThreadStats(); 383 thread_stats.mallocs++; 384 thread_stats.malloced += size; 385 thread_stats.malloced_overhead += needed_size - size; 386 if (needed_size > SizeClassMap::kMaxSize) 387 thread_stats.malloc_large++; 388 else 389 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 390 391 void *res = reinterpret_cast<void *>(user_beg); 392 atomic_store(&m->user_requested_size, size, memory_order_release); 393 if (alloc_beg != chunk_beg) { 394 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 395 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 396 } 397 MEMPROF_MALLOC_HOOK(res, size); 398 return res; 399 } 400 401 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 402 BufferedStackTrace *stack, AllocType alloc_type) { 403 uptr p = reinterpret_cast<uptr>(ptr); 404 if (p == 0) 405 return; 406 407 MEMPROF_FREE_HOOK(ptr); 408 409 uptr chunk_beg = p - kChunkHeaderSize; 410 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 411 412 u64 user_requested_size = 413 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 414 if (memprof_inited && memprof_init_done && 415 atomic_load_relaxed(&constructed) && 416 !atomic_load_relaxed(&destructing)) { 417 u64 c = GetShadowCount(p, user_requested_size); 418 long curtime = GetTimestamp(); 419 420 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 421 m->cpu_id, GetCpuId()); 422 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 423 } 424 425 MemprofStats &thread_stats = GetCurrentThreadStats(); 426 thread_stats.frees++; 427 thread_stats.freed += user_requested_size; 428 429 void *alloc_beg = m->AllocBeg(); 430 if (alloc_beg != m) { 431 // Clear the magic value, as allocator internals may overwrite the 432 // contents of deallocated chunk, confusing GetMemprofChunk lookup. 433 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 434 } 435 436 MemprofThread *t = GetCurrentThread(); 437 if (t) { 438 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 439 allocator.Deallocate(cache, alloc_beg); 440 } else { 441 SpinMutexLock l(&fallback_mutex); 442 AllocatorCache *cache = &fallback_allocator_cache; 443 allocator.Deallocate(cache, alloc_beg); 444 } 445 } 446 447 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 448 CHECK(old_ptr && new_size); 449 uptr p = reinterpret_cast<uptr>(old_ptr); 450 uptr chunk_beg = p - kChunkHeaderSize; 451 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 452 453 MemprofStats &thread_stats = GetCurrentThreadStats(); 454 thread_stats.reallocs++; 455 thread_stats.realloced += new_size; 456 457 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 458 if (new_ptr) { 459 CHECK_NE(REAL(memcpy), nullptr); 460 uptr memcpy_size = Min(new_size, m->UsedSize()); 461 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 462 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 463 } 464 return new_ptr; 465 } 466 467 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 468 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 469 if (AllocatorMayReturnNull()) 470 return nullptr; 471 ReportCallocOverflow(nmemb, size, stack); 472 } 473 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 474 // If the memory comes from the secondary allocator no need to clear it 475 // as it comes directly from mmap. 476 if (ptr && allocator.FromPrimary(ptr)) 477 REAL(memset)(ptr, 0, nmemb * size); 478 return ptr; 479 } 480 481 void CommitBack(MemprofThreadLocalMallocStorage *ms, 482 BufferedStackTrace *stack) { 483 AllocatorCache *ac = GetAllocatorCache(ms); 484 allocator.SwallowCache(ac); 485 } 486 487 // -------------------------- Chunk lookup ---------------------- 488 489 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 490 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 491 if (!alloc_beg) 492 return nullptr; 493 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 494 if (!p) { 495 if (!allocator.FromPrimary(alloc_beg)) 496 return nullptr; 497 p = reinterpret_cast<MemprofChunk *>(alloc_beg); 498 } 499 // The size is reset to 0 on deallocation (and a min of 1 on 500 // allocation). 501 user_requested_size = 502 atomic_load(&p->user_requested_size, memory_order_acquire); 503 if (user_requested_size) 504 return p; 505 return nullptr; 506 } 507 508 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 509 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 510 return GetMemprofChunk(alloc_beg, user_requested_size); 511 } 512 513 uptr AllocationSize(uptr p) { 514 u64 user_requested_size; 515 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 516 if (!m) 517 return 0; 518 if (m->Beg() != p) 519 return 0; 520 return user_requested_size; 521 } 522 523 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); } 524 525 void PrintStats() { allocator.PrintStats(); } 526 527 void ForceLock() NO_THREAD_SAFETY_ANALYSIS { 528 allocator.ForceLock(); 529 fallback_mutex.Lock(); 530 } 531 532 void ForceUnlock() NO_THREAD_SAFETY_ANALYSIS { 533 fallback_mutex.Unlock(); 534 allocator.ForceUnlock(); 535 } 536 }; 537 538 static Allocator instance(LINKER_INITIALIZED); 539 540 static MemprofAllocator &get_allocator() { return instance.allocator; } 541 542 void InitializeAllocator() { instance.InitLinkerInitialized(); } 543 544 void MemprofThreadLocalMallocStorage::CommitBack() { 545 GET_STACK_TRACE_MALLOC; 546 instance.CommitBack(this, &stack); 547 } 548 549 void PrintInternalAllocatorStats() { instance.PrintStats(); } 550 551 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 552 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 553 } 554 555 void memprof_delete(void *ptr, uptr size, uptr alignment, 556 BufferedStackTrace *stack, AllocType alloc_type) { 557 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 558 } 559 560 void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 561 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 562 } 563 564 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 565 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 566 } 567 568 void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 569 BufferedStackTrace *stack) { 570 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 571 errno = errno_ENOMEM; 572 if (AllocatorMayReturnNull()) 573 return nullptr; 574 ReportReallocArrayOverflow(nmemb, size, stack); 575 } 576 return memprof_realloc(p, nmemb * size, stack); 577 } 578 579 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 580 if (!p) 581 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 582 if (size == 0) { 583 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 584 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 585 return nullptr; 586 } 587 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 588 size = 1; 589 } 590 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 591 } 592 593 void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 594 return SetErrnoOnNull( 595 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 596 } 597 598 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 599 uptr PageSize = GetPageSizeCached(); 600 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 601 errno = errno_ENOMEM; 602 if (AllocatorMayReturnNull()) 603 return nullptr; 604 ReportPvallocOverflow(size, stack); 605 } 606 // pvalloc(0) should allocate one page. 607 size = size ? RoundUpTo(size, PageSize) : PageSize; 608 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 609 } 610 611 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 612 AllocType alloc_type) { 613 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 614 errno = errno_EINVAL; 615 if (AllocatorMayReturnNull()) 616 return nullptr; 617 ReportInvalidAllocationAlignment(alignment, stack); 618 } 619 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 620 } 621 622 void *memprof_aligned_alloc(uptr alignment, uptr size, 623 BufferedStackTrace *stack) { 624 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 625 errno = errno_EINVAL; 626 if (AllocatorMayReturnNull()) 627 return nullptr; 628 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 629 } 630 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 631 } 632 633 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 634 BufferedStackTrace *stack) { 635 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 636 if (AllocatorMayReturnNull()) 637 return errno_EINVAL; 638 ReportInvalidPosixMemalignAlignment(alignment, stack); 639 } 640 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 641 if (UNLIKELY(!ptr)) 642 // OOM error is already taken care of by Allocate. 643 return errno_ENOMEM; 644 CHECK(IsAligned((uptr)ptr, alignment)); 645 *memptr = ptr; 646 return 0; 647 } 648 649 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 650 if (!ptr) 651 return 0; 652 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 653 return usable_size; 654 } 655 656 } // namespace __memprof 657 658 // ---------------------- Interface ---------------- {{{1 659 using namespace __memprof; 660 661 #if !SANITIZER_SUPPORTS_WEAK_HOOKS 662 // Provide default (no-op) implementation of malloc hooks. 663 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, void *ptr, 664 uptr size) { 665 (void)ptr; 666 (void)size; 667 } 668 669 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) { 670 (void)ptr; 671 } 672 #endif 673 674 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 675 676 int __sanitizer_get_ownership(const void *p) { 677 return memprof_malloc_usable_size(p, 0, 0) != 0; 678 } 679 680 uptr __sanitizer_get_allocated_size(const void *p) { 681 return memprof_malloc_usable_size(p, 0, 0); 682 } 683 684 int __memprof_profile_dump() { 685 instance.FinishAndWrite(); 686 // In the future we may want to return non-zero if there are any errors 687 // detected during the dumping process. 688 return 0; 689 } 690