1 // RUN: %clang_cc1 -verify -fopenmp -x c++ -triple x86_64-unknown-unknown -emit-llvm %s -o - | FileCheck %s 2 // RUN: %clang_cc1 -fopenmp -x c++ -std=c++11 -triple x86_64-unknown-unknown -emit-pch -o %t %s 3 // RUN: %clang_cc1 -fopenmp -x c++ -triple x86_64-unknown-unknown -std=c++11 -include-pch %t -verify %s -emit-llvm -o - | FileCheck %s 4 // RUN: %clang_cc1 -verify -fopenmp -x c++ -std=c++11 -DLAMBDA -triple %itanium_abi_triple -emit-llvm %s -o - | FileCheck -check-prefix=LAMBDA %s 5 // RUN: %clang_cc1 -verify -fopenmp -x c++ -fblocks -DBLOCKS -triple %itanium_abi_triple -emit-llvm %s -o - | FileCheck -check-prefix=BLOCKS %s 6 // expected-no-diagnostics 7 #ifndef HEADER 8 #define HEADER 9 10 template <class T> 11 struct S { 12 T f; 13 S(T a) : f(a) {} 14 S() : f() {} 15 operator T() { return T(); } 16 ~S() {} 17 }; 18 19 volatile double g; 20 21 // CHECK: [[S_FLOAT_TY:%.+]] = type { float } 22 // CHECK: [[CAP_MAIN_TY:%.+]] = type { i8 } 23 // CHECK: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} } 24 // CHECK: [[CAP_TMAIN_TY:%.+]] = type { i8 } 25 template <typename T> 26 T tmain() { 27 S<T> test; 28 T t_var = T(); 29 T vec[] = {1, 2}; 30 S<T> s_arr[] = {1, 2}; 31 S<T> var(3); 32 #pragma omp parallel 33 #pragma omp single private(t_var, vec, s_arr, s_arr, var, var) 34 { 35 vec[0] = t_var; 36 s_arr[0] = var; 37 } 38 return T(); 39 } 40 41 int main() { 42 #ifdef LAMBDA 43 // LAMBDA: [[G:@.+]] = global double 44 // LAMBDA-LABEL: @main 45 // LAMBDA: call{{.*}} void [[OUTER_LAMBDA:@.+]]( 46 [&]() { 47 // LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]]( 48 // LAMBDA: call {{.*}}void {{.+}} @__kmpc_fork_call({{.+}}, i32 1, {{.+}}* [[OMP_REGION:@.+]] to {{.+}}, i8* %{{.+}}) 49 #pragma omp parallel 50 #pragma omp single private(g) 51 { 52 // LAMBDA: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* %{{.+}}, i32* %{{.+}}, %{{.+}}* [[ARG:%.+]]) 53 // LAMBDA: [[G_PRIVATE_ADDR:%.+]] = alloca double, 54 // LAMBDA: store %{{.+}}* [[ARG]], %{{.+}}** [[ARG_REF:%.+]], 55 g = 1; 56 // LAMBDA: call {{.*}}i32 @__kmpc_single( 57 // LAMBDA: store volatile double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]], 58 // LAMBDA: [[G_PRIVATE_ADDR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0 59 // LAMBDA: store double* [[G_PRIVATE_ADDR]], double** [[G_PRIVATE_ADDR_REF]] 60 // LAMBDA: call{{.*}} void [[INNER_LAMBDA:@.+]](%{{.+}}* [[ARG]]) 61 // LAMBDA: call {{.*}}void @__kmpc_end_single( 62 [&]() { 63 // LAMBDA: define {{.+}} void [[INNER_LAMBDA]](%{{.+}}* [[ARG_PTR:%.+]]) 64 // LAMBDA: store %{{.+}}* [[ARG_PTR]], %{{.+}}** [[ARG_PTR_REF:%.+]], 65 g = 2; 66 // LAMBDA: [[ARG_PTR:%.+]] = load %{{.+}}*, %{{.+}}** [[ARG_PTR_REF]] 67 // LAMBDA: [[G_PTR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG_PTR]], i{{[0-9]+}} 0, i{{[0-9]+}} 0 68 // LAMBDA: [[G_REF:%.+]] = load double*, double** [[G_PTR_REF]] 69 // LAMBDA: store volatile double 2.0{{.+}}, double* [[G_REF]] 70 }(); 71 } 72 }(); 73 return 0; 74 #elif defined(BLOCKS) 75 // BLOCKS: [[G:@.+]] = global double 76 // BLOCKS-LABEL: @main 77 // BLOCKS: call {{.*}}void {{%.+}}(i8 78 ^{ 79 // BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8* 80 // BLOCKS: call {{.*}}void {{.+}} @__kmpc_fork_call({{.+}}, i32 1, {{.+}}* [[OMP_REGION:@.+]] to {{.+}}, i8* {{.+}}) 81 #pragma omp parallel 82 #pragma omp single private(g) 83 { 84 // BLOCKS: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* %{{.+}}, i32* %{{.+}}, %{{.+}}* [[ARG:%.+]]) 85 // BLOCKS: [[G_PRIVATE_ADDR:%.+]] = alloca double, 86 // BLOCKS: store %{{.+}}* [[ARG]], %{{.+}}** [[ARG_REF:%.+]], 87 g = 1; 88 // BLOCKS: call {{.*}}i32 @__kmpc_single( 89 // BLOCKS: store volatile double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]], 90 // BLOCKS-NOT: [[G]]{{[[^:word:]]}} 91 // BLOCKS: double* [[G_PRIVATE_ADDR]] 92 // BLOCKS-NOT: [[G]]{{[[^:word:]]}} 93 // BLOCKS: call {{.*}}void {{%.+}}(i8 94 // BLOCKS: call {{.*}}void @__kmpc_end_single( 95 ^{ 96 // BLOCKS: define {{.+}} void {{@.+}}(i8* 97 g = 2; 98 // BLOCKS-NOT: [[G]]{{[[^:word:]]}} 99 // BLOCKS: store volatile double 2.0{{.+}}, double* 100 // BLOCKS-NOT: [[G]]{{[[^:word:]]}} 101 // BLOCKS: ret 102 }(); 103 } 104 }(); 105 return 0; 106 #else 107 S<float> test; 108 int t_var = 0; 109 int vec[] = {1, 2}; 110 S<float> s_arr[] = {1, 2}; 111 S<float> var(3); 112 #pragma omp parallel 113 #pragma omp single private(t_var, vec, s_arr, s_arr, var, var) 114 { 115 vec[0] = t_var; 116 s_arr[0] = var; 117 } 118 return tmain<int>(); 119 #endif 120 } 121 122 // CHECK: define i{{[0-9]+}} @main() 123 // CHECK: [[TEST:%.+]] = alloca [[S_FLOAT_TY]], 124 // CHECK: call {{.*}} [[S_FLOAT_TY_DEF_CONSTR:@.+]]([[S_FLOAT_TY]]* [[TEST]]) 125 // CHECK: %{{.+}} = bitcast [[CAP_MAIN_TY]]* 126 // CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [[CAP_MAIN_TY]]*)* [[MAIN_MICROTASK:@.+]] to void 127 // CHECK: = call i{{.+}} [[TMAIN_INT:@.+]]() 128 // CHECK: call void [[S_FLOAT_TY_DESTR:@.+]]([[S_FLOAT_TY]]* 129 // CHECK: ret 130 // 131 // CHECK: define internal void [[MAIN_MICROTASK]](i{{[0-9]+}}* [[GTID_ADDR:%.+]], i{{[0-9]+}}* %{{.+}}, [[CAP_MAIN_TY]]* %{{.+}}) 132 // CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}}, 133 // CHECK: [[VEC_PRIV:%.+]] = alloca [2 x i{{[0-9]+}}], 134 // CHECK: [[S_ARR_PRIV:%.+]] = alloca [2 x [[S_FLOAT_TY]]], 135 // CHECK-NOT: alloca [2 x [[S_FLOAT_TY]]], 136 // CHECK: [[VAR_PRIV:%.+]] = alloca [[S_FLOAT_TY]], 137 // CHECK-NOT: alloca [[S_FLOAT_TY]], 138 // CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_REF:%.+]] 139 // CHECK: call i32 @__kmpc_single( 140 // CHECK-NOT: [[T_VAR_PRIV]] 141 // CHECK-NOT: [[VEC_PRIV]] 142 // CHECK: {{.+}}: 143 // CHECK: [[S_ARR_PRIV_ITEM:%.+]] = phi [[S_FLOAT_TY]]* 144 // CHECK: call {{.*}} [[S_FLOAT_TY_DEF_CONSTR]]([[S_FLOAT_TY]]* [[S_ARR_PRIV_ITEM]]) 145 // CHECK-NOT: [[T_VAR_PRIV]] 146 // CHECK-NOT: [[VEC_PRIV]] 147 // CHECK: call {{.*}} [[S_FLOAT_TY_DEF_CONSTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]]) 148 // CHECK-DAG: call void [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]]) 149 // CHECK-DAG: call void [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]* 150 // CHECK: call void @__kmpc_end_single( 151 // CHECK: ret void 152 153 // CHECK: define {{.*}} i{{[0-9]+}} [[TMAIN_INT]]() 154 // CHECK: [[TEST:%.+]] = alloca [[S_INT_TY]], 155 // CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR:@.+]]([[S_INT_TY]]* [[TEST]]) 156 // CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [[CAP_TMAIN_TY]]*)* [[TMAIN_MICROTASK:@.+]] to void 157 // CHECK: call void [[S_INT_TY_DESTR:@.+]]([[S_INT_TY]]* 158 // CHECK: ret 159 // 160 // CHECK: define internal void [[TMAIN_MICROTASK]](i{{[0-9]+}}* [[GTID_ADDR:%.+]], i{{[0-9]+}}* %{{.+}}, [[CAP_TMAIN_TY]]* %{{.+}}) 161 // CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}}, 162 // CHECK: [[VEC_PRIV:%.+]] = alloca [2 x i{{[0-9]+}}], 163 // CHECK: [[S_ARR_PRIV:%.+]] = alloca [2 x [[S_INT_TY]]], 164 // CHECK-NOT: alloca [2 x [[S_INT_TY]]], 165 // CHECK: [[VAR_PRIV:%.+]] = alloca [[S_INT_TY]], 166 // CHECK-NOT: alloca [[S_INT_TY]], 167 // CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_REF:%.+]] 168 // CHECK: call i32 @__kmpc_single( 169 // CHECK-NOT: [[T_VAR_PRIV]] 170 // CHECK-NOT: [[VEC_PRIV]] 171 // CHECK: {{.+}}: 172 // CHECK: [[S_ARR_PRIV_ITEM:%.+]] = phi [[S_INT_TY]]* 173 // CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR]]([[S_INT_TY]]* [[S_ARR_PRIV_ITEM]]) 174 // CHECK-NOT: [[T_VAR_PRIV]] 175 // CHECK-NOT: [[VEC_PRIV]] 176 // CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR]]([[S_INT_TY]]* [[VAR_PRIV]]) 177 // CHECK-DAG: call void [[S_INT_TY_DESTR]]([[S_INT_TY]]* [[VAR_PRIV]]) 178 // CHECK-DAG: call void [[S_INT_TY_DESTR]]([[S_INT_TY]]* 179 // CHECK: call void @__kmpc_end_single( 180 // CHECK: ret void 181 #endif 182 183