1 // RUN: %clang_cc1 -verify -fopenmp -x c++ -triple x86_64-unknown-unknown -emit-llvm %s -o - | FileCheck %s
2 // RUN: %clang_cc1 -fopenmp -x c++ -std=c++11 -triple x86_64-unknown-unknown -emit-pch -o %t %s
3 // RUN: %clang_cc1 -fopenmp -x c++ -triple x86_64-unknown-unknown -std=c++11 -include-pch %t -verify %s -emit-llvm -o - | FileCheck %s
4 // RUN: %clang_cc1 -verify -fopenmp -x c++ -std=c++11 -DLAMBDA -triple %itanium_abi_triple -emit-llvm %s -o - | FileCheck -check-prefix=LAMBDA %s
5 // RUN: %clang_cc1 -verify -fopenmp -x c++ -fblocks -DBLOCKS -triple %itanium_abi_triple -emit-llvm %s -o - | FileCheck -check-prefix=BLOCKS %s
6 // expected-no-diagnostics
7 // REQUIRES: x86-registered-target
8 #ifndef HEADER
9 #define HEADER
10 
11 template <class T>
12 struct S {
13   T f;
14   S(T a) : f(a) {}
15   S() : f() {}
16   operator T() { return T(); }
17   ~S() {}
18 };
19 
20 volatile double g;
21 
22 // CHECK: [[S_FLOAT_TY:%.+]] = type { float }
23 // CHECK: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
24 template <typename T>
25 T tmain() {
26   S<T> test;
27   T t_var = T();
28   T vec[] = {1, 2};
29   S<T> s_arr[] = {1, 2};
30   S<T> var(3);
31 #pragma omp parallel
32 #pragma omp single private(t_var, vec, s_arr, s_arr, var, var)
33   {
34     vec[0] = t_var;
35     s_arr[0] = var;
36   }
37   return T();
38 }
39 
40 int main() {
41 #ifdef LAMBDA
42   // LAMBDA: [[G:@.+]] = global double
43   // LAMBDA-LABEL: @main
44   // LAMBDA: call{{.*}} void [[OUTER_LAMBDA:@.+]](
45   [&]() {
46   // LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]](
47   // LAMBDA: call {{.*}}void {{.+}} @__kmpc_fork_call({{.+}}, i32 0, {{.+}}* [[OMP_REGION:@.+]] to {{.+}})
48 #pragma omp parallel
49 #pragma omp single private(g)
50   {
51     // LAMBDA: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* noalias %{{.+}}, i32* noalias %{{.+}})
52     // LAMBDA: [[G_PRIVATE_ADDR:%.+]] = alloca double,
53     g = 1;
54     // LAMBDA: call {{.*}}i32 @__kmpc_single(
55     // LAMBDA: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
56     // LAMBDA: [[G_PRIVATE_ADDR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
57     // LAMBDA: store double* [[G_PRIVATE_ADDR]], double** [[G_PRIVATE_ADDR_REF]]
58     // LAMBDA: call{{.*}} void [[INNER_LAMBDA:@.+]](%{{.+}}* [[ARG]])
59     // LAMBDA: call {{.*}}void @__kmpc_end_single(
60     [&]() {
61       // LAMBDA: define {{.+}} void [[INNER_LAMBDA]](%{{.+}}* [[ARG_PTR:%.+]])
62       // LAMBDA: store %{{.+}}* [[ARG_PTR]], %{{.+}}** [[ARG_PTR_REF:%.+]],
63       g = 2;
64       // LAMBDA: [[ARG_PTR:%.+]] = load %{{.+}}*, %{{.+}}** [[ARG_PTR_REF]]
65       // LAMBDA: [[G_PTR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG_PTR]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
66       // LAMBDA: [[G_REF:%.+]] = load double*, double** [[G_PTR_REF]]
67       // LAMBDA: store double 2.0{{.+}}, double* [[G_REF]]
68     }();
69   }
70   }();
71   return 0;
72 #elif defined(BLOCKS)
73   // BLOCKS: [[G:@.+]] = global double
74   // BLOCKS-LABEL: @main
75   // BLOCKS: call {{.*}}void {{%.+}}(i8
76   ^{
77   // BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8*
78   // BLOCKS: call {{.*}}void {{.+}} @__kmpc_fork_call({{.+}}, i32 0, {{.+}}* [[OMP_REGION:@.+]] to {{.+}})
79 #pragma omp parallel
80 #pragma omp single private(g)
81   {
82     // BLOCKS: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* noalias %{{.+}}, i32* noalias %{{.+}})
83     // BLOCKS: [[G_PRIVATE_ADDR:%.+]] = alloca double,
84     g = 1;
85     // BLOCKS: call {{.*}}i32 @__kmpc_single(
86     // BLOCKS: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
87     // BLOCKS-NOT: [[G]]{{[[^:word:]]}}
88     // BLOCKS: double* [[G_PRIVATE_ADDR]]
89     // BLOCKS-NOT: [[G]]{{[[^:word:]]}}
90     // BLOCKS: call {{.*}}void {{%.+}}(i8
91     // BLOCKS: call {{.*}}void @__kmpc_end_single(
92     ^{
93       // BLOCKS: define {{.+}} void {{@.+}}(i8*
94       g = 2;
95       // BLOCKS-NOT: [[G]]{{[[^:word:]]}}
96       // BLOCKS: store double 2.0{{.+}}, double*
97       // BLOCKS-NOT: [[G]]{{[[^:word:]]}}
98       // BLOCKS: ret
99     }();
100   }
101   }();
102   return 0;
103 #else
104   S<float> test;
105   int t_var = 0;
106   int vec[] = {1, 2};
107   S<float> s_arr[] = {1, 2};
108   S<float> var(3);
109 #pragma omp parallel
110 #pragma omp single private(t_var, vec, s_arr, s_arr, var, var)
111   {
112     vec[0] = t_var;
113     s_arr[0] = var;
114   }
115   return tmain<int>();
116 #endif
117 }
118 
119 // CHECK: define i{{[0-9]+}} @main()
120 // CHECK: [[TEST:%.+]] = alloca [[S_FLOAT_TY]],
121 // CHECK: call {{.*}} [[S_FLOAT_TY_DEF_CONSTR:@.+]]([[S_FLOAT_TY]]* [[TEST]])
122 // CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 0, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*)* [[MAIN_MICROTASK:@.+]] to void
123 // CHECK: = call i{{.+}} [[TMAIN_INT:@.+]]()
124 // CHECK: call void [[S_FLOAT_TY_DESTR:@.+]]([[S_FLOAT_TY]]*
125 // CHECK: ret
126 //
127 // CHECK: define internal void [[MAIN_MICROTASK]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}})
128 // CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}},
129 // CHECK: [[VEC_PRIV:%.+]] = alloca [2 x i{{[0-9]+}}],
130 // CHECK: [[S_ARR_PRIV:%.+]] = alloca [2 x [[S_FLOAT_TY]]],
131 // CHECK-NOT: alloca [2 x [[S_FLOAT_TY]]],
132 // CHECK: [[VAR_PRIV:%.+]] = alloca [[S_FLOAT_TY]],
133 // CHECK-NOT: alloca [[S_FLOAT_TY]],
134 // CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_REF:%.+]]
135 // CHECK: call i32 @__kmpc_single(
136 // CHECK-NOT: [[T_VAR_PRIV]]
137 // CHECK-NOT: [[VEC_PRIV]]
138 // CHECK: {{.+}}:
139 // CHECK: [[S_ARR_PRIV_ITEM:%.+]] = phi [[S_FLOAT_TY]]*
140 // CHECK: call {{.*}} [[S_FLOAT_TY_DEF_CONSTR]]([[S_FLOAT_TY]]* [[S_ARR_PRIV_ITEM]])
141 // CHECK-NOT: [[T_VAR_PRIV]]
142 // CHECK-NOT: [[VEC_PRIV]]
143 // CHECK: call {{.*}} [[S_FLOAT_TY_DEF_CONSTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]])
144 // CHECK-DAG: call void [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]])
145 // CHECK-DAG: call void [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]*
146 // CHECK: call void @__kmpc_end_single(
147 // CHECK: ret void
148 
149 // CHECK: define {{.*}} i{{[0-9]+}} [[TMAIN_INT]]()
150 // CHECK: [[TEST:%.+]] = alloca [[S_INT_TY]],
151 // CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR:@.+]]([[S_INT_TY]]* [[TEST]])
152 // CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 0, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*)* [[TMAIN_MICROTASK:@.+]] to void
153 // CHECK: call void [[S_INT_TY_DESTR:@.+]]([[S_INT_TY]]*
154 // CHECK: ret
155 //
156 // CHECK: define internal void [[TMAIN_MICROTASK]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}})
157 // CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}},
158 // CHECK: [[VEC_PRIV:%.+]] = alloca [2 x i{{[0-9]+}}],
159 // CHECK: [[S_ARR_PRIV:%.+]] = alloca [2 x [[S_INT_TY]]],
160 // CHECK-NOT: alloca [2 x [[S_INT_TY]]],
161 // CHECK: [[VAR_PRIV:%.+]] = alloca [[S_INT_TY]],
162 // CHECK-NOT: alloca [[S_INT_TY]],
163 // CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_REF:%.+]]
164 // CHECK: call i32 @__kmpc_single(
165 // CHECK-NOT: [[T_VAR_PRIV]]
166 // CHECK-NOT: [[VEC_PRIV]]
167 // CHECK: {{.+}}:
168 // CHECK: [[S_ARR_PRIV_ITEM:%.+]] = phi [[S_INT_TY]]*
169 // CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR]]([[S_INT_TY]]* [[S_ARR_PRIV_ITEM]])
170 // CHECK-NOT: [[T_VAR_PRIV]]
171 // CHECK-NOT: [[VEC_PRIV]]
172 // CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR]]([[S_INT_TY]]* [[VAR_PRIV]])
173 // CHECK-DAG: call void [[S_INT_TY_DESTR]]([[S_INT_TY]]* [[VAR_PRIV]])
174 // CHECK-DAG: call void [[S_INT_TY_DESTR]]([[S_INT_TY]]*
175 // CHECK: call void @__kmpc_end_single(
176 // CHECK: ret void
177 #endif
178 
179