1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Tooling/Syntax/BuildTree.h" 9 #include "clang/AST/ASTFwd.h" 10 #include "clang/AST/Decl.h" 11 #include "clang/AST/DeclBase.h" 12 #include "clang/AST/DeclCXX.h" 13 #include "clang/AST/DeclarationName.h" 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/RecursiveASTVisitor.h" 16 #include "clang/AST/Stmt.h" 17 #include "clang/AST/TypeLoc.h" 18 #include "clang/AST/TypeLocVisitor.h" 19 #include "clang/Basic/LLVM.h" 20 #include "clang/Basic/SourceLocation.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/Specifiers.h" 23 #include "clang/Basic/TokenKinds.h" 24 #include "clang/Lex/Lexer.h" 25 #include "clang/Tooling/Syntax/Nodes.h" 26 #include "clang/Tooling/Syntax/Tokens.h" 27 #include "clang/Tooling/Syntax/Tree.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/PointerUnion.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/FormatVariadic.h" 38 #include "llvm/Support/MemoryBuffer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <cstddef> 41 #include <map> 42 43 using namespace clang; 44 45 LLVM_ATTRIBUTE_UNUSED 46 static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; } 47 48 namespace { 49 /// Get start location of the Declarator from the TypeLoc. 50 /// E.g.: 51 /// loc of `(` in `int (a)` 52 /// loc of `*` in `int *(a)` 53 /// loc of the first `(` in `int (*a)(int)` 54 /// loc of the `*` in `int *(a)(int)` 55 /// loc of the first `*` in `const int *const *volatile a;` 56 /// 57 /// It is non-trivial to get the start location because TypeLocs are stored 58 /// inside out. In the example above `*volatile` is the TypeLoc returned 59 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` 60 /// returns. 61 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { 62 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { 63 auto L = Visit(T.getInnerLoc()); 64 if (L.isValid()) 65 return L; 66 return T.getLParenLoc(); 67 } 68 69 // Types spelled in the prefix part of the declarator. 70 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { 71 return HandlePointer(T); 72 } 73 74 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { 75 return HandlePointer(T); 76 } 77 78 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { 79 return HandlePointer(T); 80 } 81 82 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { 83 return HandlePointer(T); 84 } 85 86 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { 87 return HandlePointer(T); 88 } 89 90 // All other cases are not important, as they are either part of declaration 91 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on 92 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the 93 // declarator themselves, but their underlying type can. 94 SourceLocation VisitTypeLoc(TypeLoc T) { 95 auto N = T.getNextTypeLoc(); 96 if (!N) 97 return SourceLocation(); 98 return Visit(N); 99 } 100 101 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { 102 if (T.getTypePtr()->hasTrailingReturn()) 103 return SourceLocation(); // avoid recursing into the suffix of declarator. 104 return VisitTypeLoc(T); 105 } 106 107 private: 108 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { 109 auto L = Visit(T.getPointeeLoc()); 110 if (L.isValid()) 111 return L; 112 return T.getLocalSourceRange().getBegin(); 113 } 114 }; 115 } // namespace 116 117 /// Gets the range of declarator as defined by the C++ grammar. E.g. 118 /// `int a;` -> range of `a`, 119 /// `int *a;` -> range of `*a`, 120 /// `int a[10];` -> range of `a[10]`, 121 /// `int a[1][2][3];` -> range of `a[1][2][3]`, 122 /// `int *a = nullptr` -> range of `*a = nullptr`. 123 /// FIMXE: \p Name must be a source range, e.g. for `operator+`. 124 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, 125 SourceLocation Name, 126 SourceRange Initializer) { 127 SourceLocation Start = GetStartLoc().Visit(T); 128 SourceLocation End = T.getSourceRange().getEnd(); 129 assert(End.isValid()); 130 if (Name.isValid()) { 131 if (Start.isInvalid()) 132 Start = Name; 133 if (SM.isBeforeInTranslationUnit(End, Name)) 134 End = Name; 135 } 136 if (Initializer.isValid()) { 137 auto InitializerEnd = Initializer.getEnd(); 138 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || End == InitializerEnd); 139 End = InitializerEnd; 140 } 141 return SourceRange(Start, End); 142 } 143 144 namespace { 145 /// All AST hierarchy roots that can be represented as pointers. 146 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; 147 /// Maintains a mapping from AST to syntax tree nodes. This class will get more 148 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. 149 /// FIXME: expose this as public API. 150 class ASTToSyntaxMapping { 151 public: 152 void add(ASTPtr From, syntax::Tree *To) { 153 assert(To != nullptr); 154 assert(!From.isNull()); 155 156 bool Added = Nodes.insert({From, To}).second; 157 (void)Added; 158 assert(Added && "mapping added twice"); 159 } 160 161 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); } 162 163 private: 164 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; 165 }; 166 } // namespace 167 168 /// A helper class for constructing the syntax tree while traversing a clang 169 /// AST. 170 /// 171 /// At each point of the traversal we maintain a list of pending nodes. 172 /// Initially all tokens are added as pending nodes. When processing a clang AST 173 /// node, the clients need to: 174 /// - create a corresponding syntax node, 175 /// - assign roles to all pending child nodes with 'markChild' and 176 /// 'markChildToken', 177 /// - replace the child nodes with the new syntax node in the pending list 178 /// with 'foldNode'. 179 /// 180 /// Note that all children are expected to be processed when building a node. 181 /// 182 /// Call finalize() to finish building the tree and consume the root node. 183 class syntax::TreeBuilder { 184 public: 185 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) { 186 for (const auto &T : Arena.tokenBuffer().expandedTokens()) 187 LocationToToken.insert({T.location().getRawEncoding(), &T}); 188 } 189 190 llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); } 191 const SourceManager &sourceManager() const { return Arena.sourceManager(); } 192 193 /// Populate children for \p New node, assuming it covers tokens from \p 194 /// Range. 195 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 196 ASTPtr From) { 197 assert(New); 198 Pending.foldChildren(Arena, Range, New); 199 if (From) 200 Mapping.add(From, New); 201 } 202 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 203 TypeLoc L) { 204 // FIXME: add mapping for TypeLocs 205 foldNode(Range, New, nullptr); 206 } 207 208 /// Notifies that we should not consume trailing semicolon when computing 209 /// token range of \p D. 210 void noticeDeclWithoutSemicolon(Decl *D); 211 212 /// Mark the \p Child node with a corresponding \p Role. All marked children 213 /// should be consumed by foldNode. 214 /// When called on expressions (clang::Expr is derived from clang::Stmt), 215 /// wraps expressions into expression statement. 216 void markStmtChild(Stmt *Child, NodeRole Role); 217 /// Should be called for expressions in non-statement position to avoid 218 /// wrapping into expression statement. 219 void markExprChild(Expr *Child, NodeRole Role); 220 /// Set role for a token starting at \p Loc. 221 void markChildToken(SourceLocation Loc, NodeRole R); 222 /// Set role for \p T. 223 void markChildToken(const syntax::Token *T, NodeRole R); 224 225 /// Set role for \p N. 226 void markChild(syntax::Node *N, NodeRole R); 227 /// Set role for the syntax node matching \p N. 228 void markChild(ASTPtr N, NodeRole R); 229 230 /// Finish building the tree and consume the root node. 231 syntax::TranslationUnit *finalize() && { 232 auto Tokens = Arena.tokenBuffer().expandedTokens(); 233 assert(!Tokens.empty()); 234 assert(Tokens.back().kind() == tok::eof); 235 236 // Build the root of the tree, consuming all the children. 237 Pending.foldChildren(Arena, Tokens.drop_back(), 238 new (Arena.allocator()) syntax::TranslationUnit); 239 240 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); 241 TU->assertInvariantsRecursive(); 242 return TU; 243 } 244 245 /// Finds a token starting at \p L. The token must exist if \p L is valid. 246 const syntax::Token *findToken(SourceLocation L) const; 247 248 /// Finds the syntax tokens corresponding to the \p SourceRange. 249 llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const { 250 assert(Range.isValid()); 251 return getRange(Range.getBegin(), Range.getEnd()); 252 } 253 254 /// Finds the syntax tokens corresponding to the passed source locations. 255 /// \p First is the start position of the first token and \p Last is the start 256 /// position of the last token. 257 llvm::ArrayRef<syntax::Token> getRange(SourceLocation First, 258 SourceLocation Last) const { 259 assert(First.isValid()); 260 assert(Last.isValid()); 261 assert(First == Last || 262 Arena.sourceManager().isBeforeInTranslationUnit(First, Last)); 263 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last))); 264 } 265 266 llvm::ArrayRef<syntax::Token> 267 getTemplateRange(const ClassTemplateSpecializationDecl *D) const { 268 auto Tokens = getRange(D->getSourceRange()); 269 return maybeAppendSemicolon(Tokens, D); 270 } 271 272 /// Returns true if \p D is the last declarator in a chain and is thus 273 /// reponsible for creating SimpleDeclaration for the whole chain. 274 template <class T> 275 bool isResponsibleForCreatingDeclaration(const T *D) const { 276 static_assert((std::is_base_of<DeclaratorDecl, T>::value || 277 std::is_base_of<TypedefNameDecl, T>::value), 278 "only DeclaratorDecl and TypedefNameDecl are supported."); 279 280 const Decl *Next = D->getNextDeclInContext(); 281 282 // There's no next sibling, this one is responsible. 283 if (Next == nullptr) { 284 return true; 285 } 286 const auto *NextT = llvm::dyn_cast<T>(Next); 287 288 // Next sibling is not the same type, this one is responsible. 289 if (NextT == nullptr) { 290 return true; 291 } 292 // Next sibling doesn't begin at the same loc, it must be a different 293 // declaration, so this declarator is responsible. 294 if (NextT->getBeginLoc() != D->getBeginLoc()) { 295 return true; 296 } 297 298 // NextT is a member of the same declaration, and we need the last member to 299 // create declaration. This one is not responsible. 300 return false; 301 } 302 303 llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { 304 llvm::ArrayRef<clang::syntax::Token> Tokens; 305 // We want to drop the template parameters for specializations. 306 if (const auto *S = llvm::dyn_cast<TagDecl>(D)) 307 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); 308 else 309 Tokens = getRange(D->getSourceRange()); 310 return maybeAppendSemicolon(Tokens, D); 311 } 312 313 llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const { 314 return getRange(E->getSourceRange()); 315 } 316 317 /// Find the adjusted range for the statement, consuming the trailing 318 /// semicolon when needed. 319 llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { 320 auto Tokens = getRange(S->getSourceRange()); 321 if (isa<CompoundStmt>(S)) 322 return Tokens; 323 324 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and 325 // all statements that end with those. Consume this semicolon here. 326 if (Tokens.back().kind() == tok::semi) 327 return Tokens; 328 return withTrailingSemicolon(Tokens); 329 } 330 331 private: 332 llvm::ArrayRef<syntax::Token> 333 maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens, 334 const Decl *D) const { 335 if (llvm::isa<NamespaceDecl>(D)) 336 return Tokens; 337 if (DeclsWithoutSemicolons.count(D)) 338 return Tokens; 339 // FIXME: do not consume trailing semicolon on function definitions. 340 // Most declarations own a semicolon in syntax trees, but not in clang AST. 341 return withTrailingSemicolon(Tokens); 342 } 343 344 llvm::ArrayRef<syntax::Token> 345 withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const { 346 assert(!Tokens.empty()); 347 assert(Tokens.back().kind() != tok::eof); 348 // We never consume 'eof', so looking at the next token is ok. 349 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) 350 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1); 351 return Tokens; 352 } 353 354 void setRole(syntax::Node *N, NodeRole R) { 355 assert(N->role() == NodeRole::Detached); 356 N->setRole(R); 357 } 358 359 /// A collection of trees covering the input tokens. 360 /// When created, each tree corresponds to a single token in the file. 361 /// Clients call 'foldChildren' to attach one or more subtrees to a parent 362 /// node and update the list of trees accordingly. 363 /// 364 /// Ensures that added nodes properly nest and cover the whole token stream. 365 struct Forest { 366 Forest(syntax::Arena &A) { 367 assert(!A.tokenBuffer().expandedTokens().empty()); 368 assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof); 369 // Create all leaf nodes. 370 // Note that we do not have 'eof' in the tree. 371 for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) { 372 auto *L = new (A.allocator()) syntax::Leaf(&T); 373 L->Original = true; 374 L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue(); 375 Trees.insert(Trees.end(), {&T, L}); 376 } 377 } 378 379 void assignRole(llvm::ArrayRef<syntax::Token> Range, 380 syntax::NodeRole Role) { 381 assert(!Range.empty()); 382 auto It = Trees.lower_bound(Range.begin()); 383 assert(It != Trees.end() && "no node found"); 384 assert(It->first == Range.begin() && "no child with the specified range"); 385 assert((std::next(It) == Trees.end() || 386 std::next(It)->first == Range.end()) && 387 "no child with the specified range"); 388 assert(It->second->role() == NodeRole::Detached && 389 "re-assigning role for a child"); 390 It->second->setRole(Role); 391 } 392 393 /// Add \p Node to the forest and attach child nodes based on \p Tokens. 394 void foldChildren(const syntax::Arena &A, 395 llvm::ArrayRef<syntax::Token> Tokens, 396 syntax::Tree *Node) { 397 // Attach children to `Node`. 398 assert(Node->firstChild() == nullptr && "node already has children"); 399 400 auto *FirstToken = Tokens.begin(); 401 auto BeginChildren = Trees.lower_bound(FirstToken); 402 403 assert((BeginChildren == Trees.end() || 404 BeginChildren->first == FirstToken) && 405 "fold crosses boundaries of existing subtrees"); 406 auto EndChildren = Trees.lower_bound(Tokens.end()); 407 assert( 408 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && 409 "fold crosses boundaries of existing subtrees"); 410 411 // We need to go in reverse order, because we can only prepend. 412 for (auto It = EndChildren; It != BeginChildren; --It) { 413 auto *C = std::prev(It)->second; 414 if (C->role() == NodeRole::Detached) 415 C->setRole(NodeRole::Unknown); 416 Node->prependChildLowLevel(C); 417 } 418 419 // Mark that this node came from the AST and is backed by the source code. 420 Node->Original = true; 421 Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue(); 422 423 Trees.erase(BeginChildren, EndChildren); 424 Trees.insert({FirstToken, Node}); 425 } 426 427 // EXPECTS: all tokens were consumed and are owned by a single root node. 428 syntax::Node *finalize() && { 429 assert(Trees.size() == 1); 430 auto *Root = Trees.begin()->second; 431 Trees = {}; 432 return Root; 433 } 434 435 std::string str(const syntax::Arena &A) const { 436 std::string R; 437 for (auto It = Trees.begin(); It != Trees.end(); ++It) { 438 unsigned CoveredTokens = 439 It != Trees.end() 440 ? (std::next(It)->first - It->first) 441 : A.tokenBuffer().expandedTokens().end() - It->first; 442 443 R += std::string(llvm::formatv( 444 "- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(), 445 It->first->text(A.sourceManager()), CoveredTokens)); 446 R += It->second->dump(A); 447 } 448 return R; 449 } 450 451 private: 452 /// Maps from the start token to a subtree starting at that token. 453 /// Keys in the map are pointers into the array of expanded tokens, so 454 /// pointer order corresponds to the order of preprocessor tokens. 455 std::map<const syntax::Token *, syntax::Node *> Trees; 456 }; 457 458 /// For debugging purposes. 459 std::string str() { return Pending.str(Arena); } 460 461 syntax::Arena &Arena; 462 /// To quickly find tokens by their start location. 463 llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *> 464 LocationToToken; 465 Forest Pending; 466 llvm::DenseSet<Decl *> DeclsWithoutSemicolons; 467 ASTToSyntaxMapping Mapping; 468 }; 469 470 namespace { 471 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { 472 public: 473 explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder) 474 : Builder(Builder), LangOpts(Ctx.getLangOpts()) {} 475 476 bool shouldTraversePostOrder() const { return true; } 477 478 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { 479 return processDeclaratorAndDeclaration(DD); 480 } 481 482 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { 483 return processDeclaratorAndDeclaration(TD); 484 } 485 486 bool VisitDecl(Decl *D) { 487 assert(!D->isImplicit()); 488 Builder.foldNode(Builder.getDeclarationRange(D), 489 new (allocator()) syntax::UnknownDeclaration(), D); 490 return true; 491 } 492 493 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to 494 // override Traverse. 495 // FIXME: make RAV call WalkUpFrom* instead. 496 bool 497 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { 498 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) 499 return false; 500 if (C->isExplicitSpecialization()) 501 return true; // we are only interested in explicit instantiations. 502 auto *Declaration = 503 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C)); 504 foldExplicitTemplateInstantiation( 505 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()), 506 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C); 507 return true; 508 } 509 510 bool WalkUpFromTemplateDecl(TemplateDecl *S) { 511 foldTemplateDeclaration( 512 Builder.getDeclarationRange(S), 513 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()), 514 Builder.getDeclarationRange(S->getTemplatedDecl()), S); 515 return true; 516 } 517 518 bool WalkUpFromTagDecl(TagDecl *C) { 519 // FIXME: build the ClassSpecifier node. 520 if (!C->isFreeStanding()) { 521 assert(C->getNumTemplateParameterLists() == 0); 522 return true; 523 } 524 handleFreeStandingTagDecl(C); 525 return true; 526 } 527 528 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { 529 assert(C->isFreeStanding()); 530 // Class is a declaration specifier and needs a spanning declaration node. 531 auto DeclarationRange = Builder.getDeclarationRange(C); 532 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; 533 Builder.foldNode(DeclarationRange, Result, nullptr); 534 535 // Build TemplateDeclaration nodes if we had template parameters. 536 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { 537 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc()); 538 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end()); 539 Result = 540 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr); 541 DeclarationRange = R; 542 }; 543 if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C)) 544 ConsumeTemplateParameters(*S->getTemplateParameters()); 545 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) 546 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1)); 547 return Result; 548 } 549 550 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { 551 // We do not want to call VisitDecl(), the declaration for translation 552 // unit is built by finalize(). 553 return true; 554 } 555 556 bool WalkUpFromCompoundStmt(CompoundStmt *S) { 557 using NodeRole = syntax::NodeRole; 558 559 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen); 560 for (auto *Child : S->body()) 561 Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement); 562 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen); 563 564 Builder.foldNode(Builder.getStmtRange(S), 565 new (allocator()) syntax::CompoundStatement, S); 566 return true; 567 } 568 569 // Some statements are not yet handled by syntax trees. 570 bool WalkUpFromStmt(Stmt *S) { 571 Builder.foldNode(Builder.getStmtRange(S), 572 new (allocator()) syntax::UnknownStatement, S); 573 return true; 574 } 575 576 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { 577 // We override to traverse range initializer as VarDecl. 578 // RAV traverses it as a statement, we produce invalid node kinds in that 579 // case. 580 // FIXME: should do this in RAV instead? 581 if (S->getInit() && !TraverseStmt(S->getInit())) 582 return false; 583 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) 584 return false; 585 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) 586 return false; 587 if (S->getBody() && !TraverseStmt(S->getBody())) 588 return false; 589 return true; 590 } 591 592 bool TraverseStmt(Stmt *S) { 593 if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) { 594 // We want to consume the semicolon, make sure SimpleDeclaration does not. 595 for (auto *D : DS->decls()) 596 Builder.noticeDeclWithoutSemicolon(D); 597 } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) { 598 return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit()); 599 } 600 return RecursiveASTVisitor::TraverseStmt(S); 601 } 602 603 // Some expressions are not yet handled by syntax trees. 604 bool WalkUpFromExpr(Expr *E) { 605 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); 606 Builder.foldNode(Builder.getExprRange(E), 607 new (allocator()) syntax::UnknownExpression, E); 608 return true; 609 } 610 611 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { 612 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 613 Builder.foldNode(Builder.getExprRange(S), 614 new (allocator()) syntax::IntegerLiteralExpression, S); 615 return true; 616 } 617 618 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { 619 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 620 Builder.foldNode(Builder.getExprRange(S), 621 new (allocator()) syntax::CxxNullPtrExpression, S); 622 return true; 623 } 624 625 bool WalkUpFromUnaryOperator(UnaryOperator *S) { 626 Builder.markChildToken(S->getOperatorLoc(), 627 syntax::NodeRole::OperatorExpression_operatorToken); 628 Builder.markExprChild(S->getSubExpr(), 629 syntax::NodeRole::UnaryOperatorExpression_operand); 630 631 if (S->isPostfix()) 632 Builder.foldNode(Builder.getExprRange(S), 633 new (allocator()) syntax::PostfixUnaryOperatorExpression, 634 S); 635 else 636 Builder.foldNode(Builder.getExprRange(S), 637 new (allocator()) syntax::PrefixUnaryOperatorExpression, 638 S); 639 640 return true; 641 } 642 643 bool WalkUpFromBinaryOperator(BinaryOperator *S) { 644 Builder.markExprChild( 645 S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide); 646 Builder.markChildToken(S->getOperatorLoc(), 647 syntax::NodeRole::OperatorExpression_operatorToken); 648 Builder.markExprChild( 649 S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide); 650 Builder.foldNode(Builder.getExprRange(S), 651 new (allocator()) syntax::BinaryOperatorExpression, S); 652 return true; 653 } 654 655 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 656 if (S->isInfixBinaryOp()) { 657 Builder.markExprChild( 658 S->getArg(0), 659 syntax::NodeRole::BinaryOperatorExpression_leftHandSide); 660 Builder.markChildToken( 661 S->getOperatorLoc(), 662 syntax::NodeRole::OperatorExpression_operatorToken); 663 Builder.markExprChild( 664 S->getArg(1), 665 syntax::NodeRole::BinaryOperatorExpression_rightHandSide); 666 Builder.foldNode(Builder.getExprRange(S), 667 new (allocator()) syntax::BinaryOperatorExpression, S); 668 return true; 669 } 670 return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S); 671 } 672 673 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { 674 auto Tokens = Builder.getDeclarationRange(S); 675 if (Tokens.front().kind() == tok::coloncolon) { 676 // Handle nested namespace definitions. Those start at '::' token, e.g. 677 // namespace a^::b {} 678 // FIXME: build corresponding nodes for the name of this namespace. 679 return true; 680 } 681 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); 682 return true; 683 } 684 685 bool TraverseParenTypeLoc(ParenTypeLoc L) { 686 // We reverse order of traversal to get the proper syntax structure. 687 if (!WalkUpFromParenTypeLoc(L)) 688 return false; 689 return TraverseTypeLoc(L.getInnerLoc()); 690 } 691 692 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { 693 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 694 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 695 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()), 696 new (allocator()) syntax::ParenDeclarator, L); 697 return true; 698 } 699 700 // Declarator chunks, they are produced by type locs and some clang::Decls. 701 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { 702 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen); 703 Builder.markExprChild(L.getSizeExpr(), 704 syntax::NodeRole::ArraySubscript_sizeExpression); 705 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen); 706 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()), 707 new (allocator()) syntax::ArraySubscript, L); 708 return true; 709 } 710 711 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { 712 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 713 for (auto *P : L.getParams()) { 714 Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter); 715 } 716 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 717 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), 718 new (allocator()) syntax::ParametersAndQualifiers, L); 719 return true; 720 } 721 722 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { 723 if (!L.getTypePtr()->hasTrailingReturn()) 724 return WalkUpFromFunctionTypeLoc(L); 725 726 auto *TrailingReturnTokens = BuildTrailingReturn(L); 727 // Finish building the node for parameters. 728 Builder.markChild(TrailingReturnTokens, 729 syntax::NodeRole::ParametersAndQualifiers_trailingReturn); 730 return WalkUpFromFunctionTypeLoc(L); 731 } 732 733 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { 734 auto SR = L.getLocalSourceRange(); 735 Builder.foldNode(Builder.getRange(SR), 736 new (allocator()) syntax::MemberPointer, L); 737 return true; 738 } 739 740 // The code below is very regular, it could even be generated with some 741 // preprocessor magic. We merely assign roles to the corresponding children 742 // and fold resulting nodes. 743 bool WalkUpFromDeclStmt(DeclStmt *S) { 744 Builder.foldNode(Builder.getStmtRange(S), 745 new (allocator()) syntax::DeclarationStatement, S); 746 return true; 747 } 748 749 bool WalkUpFromNullStmt(NullStmt *S) { 750 Builder.foldNode(Builder.getStmtRange(S), 751 new (allocator()) syntax::EmptyStatement, S); 752 return true; 753 } 754 755 bool WalkUpFromSwitchStmt(SwitchStmt *S) { 756 Builder.markChildToken(S->getSwitchLoc(), 757 syntax::NodeRole::IntroducerKeyword); 758 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 759 Builder.foldNode(Builder.getStmtRange(S), 760 new (allocator()) syntax::SwitchStatement, S); 761 return true; 762 } 763 764 bool WalkUpFromCaseStmt(CaseStmt *S) { 765 Builder.markChildToken(S->getKeywordLoc(), 766 syntax::NodeRole::IntroducerKeyword); 767 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value); 768 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 769 Builder.foldNode(Builder.getStmtRange(S), 770 new (allocator()) syntax::CaseStatement, S); 771 return true; 772 } 773 774 bool WalkUpFromDefaultStmt(DefaultStmt *S) { 775 Builder.markChildToken(S->getKeywordLoc(), 776 syntax::NodeRole::IntroducerKeyword); 777 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 778 Builder.foldNode(Builder.getStmtRange(S), 779 new (allocator()) syntax::DefaultStatement, S); 780 return true; 781 } 782 783 bool WalkUpFromIfStmt(IfStmt *S) { 784 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword); 785 Builder.markStmtChild(S->getThen(), 786 syntax::NodeRole::IfStatement_thenStatement); 787 Builder.markChildToken(S->getElseLoc(), 788 syntax::NodeRole::IfStatement_elseKeyword); 789 Builder.markStmtChild(S->getElse(), 790 syntax::NodeRole::IfStatement_elseStatement); 791 Builder.foldNode(Builder.getStmtRange(S), 792 new (allocator()) syntax::IfStatement, S); 793 return true; 794 } 795 796 bool WalkUpFromForStmt(ForStmt *S) { 797 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 798 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 799 Builder.foldNode(Builder.getStmtRange(S), 800 new (allocator()) syntax::ForStatement, S); 801 return true; 802 } 803 804 bool WalkUpFromWhileStmt(WhileStmt *S) { 805 Builder.markChildToken(S->getWhileLoc(), 806 syntax::NodeRole::IntroducerKeyword); 807 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 808 Builder.foldNode(Builder.getStmtRange(S), 809 new (allocator()) syntax::WhileStatement, S); 810 return true; 811 } 812 813 bool WalkUpFromContinueStmt(ContinueStmt *S) { 814 Builder.markChildToken(S->getContinueLoc(), 815 syntax::NodeRole::IntroducerKeyword); 816 Builder.foldNode(Builder.getStmtRange(S), 817 new (allocator()) syntax::ContinueStatement, S); 818 return true; 819 } 820 821 bool WalkUpFromBreakStmt(BreakStmt *S) { 822 Builder.markChildToken(S->getBreakLoc(), 823 syntax::NodeRole::IntroducerKeyword); 824 Builder.foldNode(Builder.getStmtRange(S), 825 new (allocator()) syntax::BreakStatement, S); 826 return true; 827 } 828 829 bool WalkUpFromReturnStmt(ReturnStmt *S) { 830 Builder.markChildToken(S->getReturnLoc(), 831 syntax::NodeRole::IntroducerKeyword); 832 Builder.markExprChild(S->getRetValue(), 833 syntax::NodeRole::ReturnStatement_value); 834 Builder.foldNode(Builder.getStmtRange(S), 835 new (allocator()) syntax::ReturnStatement, S); 836 return true; 837 } 838 839 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { 840 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 841 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 842 Builder.foldNode(Builder.getStmtRange(S), 843 new (allocator()) syntax::RangeBasedForStatement, S); 844 return true; 845 } 846 847 bool WalkUpFromEmptyDecl(EmptyDecl *S) { 848 Builder.foldNode(Builder.getDeclarationRange(S), 849 new (allocator()) syntax::EmptyDeclaration, S); 850 return true; 851 } 852 853 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { 854 Builder.markExprChild(S->getAssertExpr(), 855 syntax::NodeRole::StaticAssertDeclaration_condition); 856 Builder.markExprChild(S->getMessage(), 857 syntax::NodeRole::StaticAssertDeclaration_message); 858 Builder.foldNode(Builder.getDeclarationRange(S), 859 new (allocator()) syntax::StaticAssertDeclaration, S); 860 return true; 861 } 862 863 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { 864 Builder.foldNode(Builder.getDeclarationRange(S), 865 new (allocator()) syntax::LinkageSpecificationDeclaration, 866 S); 867 return true; 868 } 869 870 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { 871 Builder.foldNode(Builder.getDeclarationRange(S), 872 new (allocator()) syntax::NamespaceAliasDefinition, S); 873 return true; 874 } 875 876 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { 877 Builder.foldNode(Builder.getDeclarationRange(S), 878 new (allocator()) syntax::UsingNamespaceDirective, S); 879 return true; 880 } 881 882 bool WalkUpFromUsingDecl(UsingDecl *S) { 883 Builder.foldNode(Builder.getDeclarationRange(S), 884 new (allocator()) syntax::UsingDeclaration, S); 885 return true; 886 } 887 888 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { 889 Builder.foldNode(Builder.getDeclarationRange(S), 890 new (allocator()) syntax::UsingDeclaration, S); 891 return true; 892 } 893 894 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { 895 Builder.foldNode(Builder.getDeclarationRange(S), 896 new (allocator()) syntax::UsingDeclaration, S); 897 return true; 898 } 899 900 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { 901 Builder.foldNode(Builder.getDeclarationRange(S), 902 new (allocator()) syntax::TypeAliasDeclaration, S); 903 return true; 904 } 905 906 private: 907 template <class T> SourceLocation getQualifiedNameStart(T *D) { 908 static_assert((std::is_base_of<DeclaratorDecl, T>::value || 909 std::is_base_of<TypedefNameDecl, T>::value), 910 "only DeclaratorDecl and TypedefNameDecl are supported."); 911 912 auto DN = D->getDeclName(); 913 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); 914 if (IsAnonymous) 915 return SourceLocation(); 916 917 if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) { 918 if (DD->getQualifierLoc()) { 919 return DD->getQualifierLoc().getBeginLoc(); 920 } 921 } 922 923 return D->getLocation(); 924 } 925 926 SourceRange getInitializerRange(Decl *D) { 927 if (auto *V = llvm::dyn_cast<VarDecl>(D)) { 928 auto *I = V->getInit(); 929 // Initializers in range-based-for are not part of the declarator 930 if (I && !V->isCXXForRangeDecl()) 931 return I->getSourceRange(); 932 } 933 934 return SourceRange(); 935 } 936 937 /// Folds SimpleDeclarator node (if present) and in case this is the last 938 /// declarator in the chain it also folds SimpleDeclaration node. 939 template <class T> bool processDeclaratorAndDeclaration(T *D) { 940 SourceRange Initializer = getInitializerRange(D); 941 auto Range = getDeclaratorRange(Builder.sourceManager(), 942 D->getTypeSourceInfo()->getTypeLoc(), 943 getQualifiedNameStart(D), Initializer); 944 945 // There doesn't have to be a declarator (e.g. `void foo(int)` only has 946 // declaration, but no declarator). 947 if (Range.getBegin().isValid()) { 948 auto *N = new (allocator()) syntax::SimpleDeclarator; 949 Builder.foldNode(Builder.getRange(Range), N, nullptr); 950 Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator); 951 } 952 953 if (Builder.isResponsibleForCreatingDeclaration(D)) { 954 Builder.foldNode(Builder.getDeclarationRange(D), 955 new (allocator()) syntax::SimpleDeclaration, D); 956 } 957 return true; 958 } 959 960 /// Returns the range of the built node. 961 syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) { 962 assert(L.getTypePtr()->hasTrailingReturn()); 963 964 auto ReturnedType = L.getReturnLoc(); 965 // Build node for the declarator, if any. 966 auto ReturnDeclaratorRange = 967 getDeclaratorRange(this->Builder.sourceManager(), ReturnedType, 968 /*Name=*/SourceLocation(), 969 /*Initializer=*/SourceLocation()); 970 syntax::SimpleDeclarator *ReturnDeclarator = nullptr; 971 if (ReturnDeclaratorRange.isValid()) { 972 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; 973 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), 974 ReturnDeclarator, nullptr); 975 } 976 977 // Build node for trailing return type. 978 auto Return = Builder.getRange(ReturnedType.getSourceRange()); 979 const auto *Arrow = Return.begin() - 1; 980 assert(Arrow->kind() == tok::arrow); 981 auto Tokens = llvm::makeArrayRef(Arrow, Return.end()); 982 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); 983 if (ReturnDeclarator) 984 Builder.markChild(ReturnDeclarator, 985 syntax::NodeRole::TrailingReturnType_declarator); 986 auto *R = new (allocator()) syntax::TrailingReturnType; 987 Builder.foldNode(Tokens, R, L); 988 return R; 989 } 990 991 void foldExplicitTemplateInstantiation( 992 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, 993 const syntax::Token *TemplateKW, 994 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { 995 assert(!ExternKW || ExternKW->kind() == tok::kw_extern); 996 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 997 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword); 998 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 999 Builder.markChild( 1000 InnerDeclaration, 1001 syntax::NodeRole::ExplicitTemplateInstantiation_declaration); 1002 Builder.foldNode( 1003 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From); 1004 } 1005 1006 syntax::TemplateDeclaration *foldTemplateDeclaration( 1007 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, 1008 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { 1009 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1010 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1011 1012 auto *N = new (allocator()) syntax::TemplateDeclaration; 1013 Builder.foldNode(Range, N, From); 1014 Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration); 1015 return N; 1016 } 1017 1018 /// A small helper to save some typing. 1019 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } 1020 1021 syntax::TreeBuilder &Builder; 1022 const LangOptions &LangOpts; 1023 }; 1024 } // namespace 1025 1026 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { 1027 DeclsWithoutSemicolons.insert(D); 1028 } 1029 1030 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { 1031 if (Loc.isInvalid()) 1032 return; 1033 Pending.assignRole(*findToken(Loc), Role); 1034 } 1035 1036 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { 1037 if (!T) 1038 return; 1039 Pending.assignRole(*T, R); 1040 } 1041 1042 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { 1043 assert(N); 1044 setRole(N, R); 1045 } 1046 1047 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { 1048 auto *SN = Mapping.find(N); 1049 assert(SN != nullptr); 1050 setRole(SN, R); 1051 } 1052 1053 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { 1054 if (!Child) 1055 return; 1056 1057 syntax::Tree *ChildNode; 1058 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) { 1059 // This is an expression in a statement position, consume the trailing 1060 // semicolon and form an 'ExpressionStatement' node. 1061 markExprChild(ChildExpr, NodeRole::ExpressionStatement_expression); 1062 ChildNode = new (allocator()) syntax::ExpressionStatement; 1063 // (!) 'getStmtRange()' ensures this covers a trailing semicolon. 1064 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode); 1065 } else { 1066 ChildNode = Mapping.find(Child); 1067 } 1068 assert(ChildNode != nullptr); 1069 setRole(ChildNode, Role); 1070 } 1071 1072 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { 1073 if (!Child) 1074 return; 1075 Child = Child->IgnoreImplicit(); 1076 1077 syntax::Tree *ChildNode = Mapping.find(Child); 1078 assert(ChildNode != nullptr); 1079 setRole(ChildNode, Role); 1080 } 1081 1082 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { 1083 if (L.isInvalid()) 1084 return nullptr; 1085 auto It = LocationToToken.find(L.getRawEncoding()); 1086 assert(It != LocationToToken.end()); 1087 return It->second; 1088 } 1089 1090 syntax::TranslationUnit * 1091 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) { 1092 TreeBuilder Builder(A); 1093 BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext()); 1094 return std::move(Builder).finalize(); 1095 } 1096