1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/RecursiveASTVisitor.h"
16 #include "clang/AST/Stmt.h"
17 #include "clang/AST/TypeLoc.h"
18 #include "clang/AST/TypeLocVisitor.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/Specifiers.h"
23 #include "clang/Basic/TokenKinds.h"
24 #include "clang/Lex/Lexer.h"
25 #include "clang/Tooling/Syntax/Nodes.h"
26 #include "clang/Tooling/Syntax/Tokens.h"
27 #include "clang/Tooling/Syntax/Tree.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PointerUnion.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/FormatVariadic.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cstddef>
41 #include <map>
42 
43 using namespace clang;
44 
45 LLVM_ATTRIBUTE_UNUSED
46 static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
47 
48 namespace {
49 /// Get start location of the Declarator from the TypeLoc.
50 /// E.g.:
51 ///   loc of `(` in `int (a)`
52 ///   loc of `*` in `int *(a)`
53 ///   loc of the first `(` in `int (*a)(int)`
54 ///   loc of the `*` in `int *(a)(int)`
55 ///   loc of the first `*` in `const int *const *volatile a;`
56 ///
57 /// It is non-trivial to get the start location because TypeLocs are stored
58 /// inside out. In the example above `*volatile` is the TypeLoc returned
59 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
60 /// returns.
61 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
62   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
63     auto L = Visit(T.getInnerLoc());
64     if (L.isValid())
65       return L;
66     return T.getLParenLoc();
67   }
68 
69   // Types spelled in the prefix part of the declarator.
70   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
71     return HandlePointer(T);
72   }
73 
74   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
75     return HandlePointer(T);
76   }
77 
78   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
79     return HandlePointer(T);
80   }
81 
82   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
83     return HandlePointer(T);
84   }
85 
86   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
87     return HandlePointer(T);
88   }
89 
90   // All other cases are not important, as they are either part of declaration
91   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
92   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
93   // declarator themselves, but their underlying type can.
94   SourceLocation VisitTypeLoc(TypeLoc T) {
95     auto N = T.getNextTypeLoc();
96     if (!N)
97       return SourceLocation();
98     return Visit(N);
99   }
100 
101   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
102     if (T.getTypePtr()->hasTrailingReturn())
103       return SourceLocation(); // avoid recursing into the suffix of declarator.
104     return VisitTypeLoc(T);
105   }
106 
107 private:
108   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
109     auto L = Visit(T.getPointeeLoc());
110     if (L.isValid())
111       return L;
112     return T.getLocalSourceRange().getBegin();
113   }
114 };
115 } // namespace
116 
117 /// Gets the range of declarator as defined by the C++ grammar. E.g.
118 ///     `int a;` -> range of `a`,
119 ///     `int *a;` -> range of `*a`,
120 ///     `int a[10];` -> range of `a[10]`,
121 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
122 ///     `int *a = nullptr` -> range of `*a = nullptr`.
123 /// FIMXE: \p Name must be a source range, e.g. for `operator+`.
124 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
125                                       SourceLocation Name,
126                                       SourceRange Initializer) {
127   SourceLocation Start = GetStartLoc().Visit(T);
128   SourceLocation End = T.getSourceRange().getEnd();
129   assert(End.isValid());
130   if (Name.isValid()) {
131     if (Start.isInvalid())
132       Start = Name;
133     if (SM.isBeforeInTranslationUnit(End, Name))
134       End = Name;
135   }
136   if (Initializer.isValid()) {
137     auto InitializerEnd = Initializer.getEnd();
138     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || End == InitializerEnd);
139     End = InitializerEnd;
140   }
141   return SourceRange(Start, End);
142 }
143 
144 namespace {
145 /// All AST hierarchy roots that can be represented as pointers.
146 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
147 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
148 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
149 /// FIXME: expose this as public API.
150 class ASTToSyntaxMapping {
151 public:
152   void add(ASTPtr From, syntax::Tree *To) {
153     assert(To != nullptr);
154     assert(!From.isNull());
155 
156     bool Added = Nodes.insert({From, To}).second;
157     (void)Added;
158     assert(Added && "mapping added twice");
159   }
160 
161   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
162 
163 private:
164   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
165 };
166 } // namespace
167 
168 /// A helper class for constructing the syntax tree while traversing a clang
169 /// AST.
170 ///
171 /// At each point of the traversal we maintain a list of pending nodes.
172 /// Initially all tokens are added as pending nodes. When processing a clang AST
173 /// node, the clients need to:
174 ///   - create a corresponding syntax node,
175 ///   - assign roles to all pending child nodes with 'markChild' and
176 ///     'markChildToken',
177 ///   - replace the child nodes with the new syntax node in the pending list
178 ///     with 'foldNode'.
179 ///
180 /// Note that all children are expected to be processed when building a node.
181 ///
182 /// Call finalize() to finish building the tree and consume the root node.
183 class syntax::TreeBuilder {
184 public:
185   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
186     for (const auto &T : Arena.tokenBuffer().expandedTokens())
187       LocationToToken.insert({T.location().getRawEncoding(), &T});
188   }
189 
190   llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
191   const SourceManager &sourceManager() const { return Arena.sourceManager(); }
192 
193   /// Populate children for \p New node, assuming it covers tokens from \p
194   /// Range.
195   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
196                 ASTPtr From) {
197     assert(New);
198     Pending.foldChildren(Arena, Range, New);
199     if (From)
200       Mapping.add(From, New);
201   }
202   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
203                 TypeLoc L) {
204     // FIXME: add mapping for TypeLocs
205     foldNode(Range, New, nullptr);
206   }
207 
208   /// Notifies that we should not consume trailing semicolon when computing
209   /// token range of \p D.
210   void noticeDeclWithoutSemicolon(Decl *D);
211 
212   /// Mark the \p Child node with a corresponding \p Role. All marked children
213   /// should be consumed by foldNode.
214   /// When called on expressions (clang::Expr is derived from clang::Stmt),
215   /// wraps expressions into expression statement.
216   void markStmtChild(Stmt *Child, NodeRole Role);
217   /// Should be called for expressions in non-statement position to avoid
218   /// wrapping into expression statement.
219   void markExprChild(Expr *Child, NodeRole Role);
220   /// Set role for a token starting at \p Loc.
221   void markChildToken(SourceLocation Loc, NodeRole R);
222   /// Set role for \p T.
223   void markChildToken(const syntax::Token *T, NodeRole R);
224 
225   /// Set role for \p N.
226   void markChild(syntax::Node *N, NodeRole R);
227   /// Set role for the syntax node matching \p N.
228   void markChild(ASTPtr N, NodeRole R);
229 
230   /// Finish building the tree and consume the root node.
231   syntax::TranslationUnit *finalize() && {
232     auto Tokens = Arena.tokenBuffer().expandedTokens();
233     assert(!Tokens.empty());
234     assert(Tokens.back().kind() == tok::eof);
235 
236     // Build the root of the tree, consuming all the children.
237     Pending.foldChildren(Arena, Tokens.drop_back(),
238                          new (Arena.allocator()) syntax::TranslationUnit);
239 
240     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
241     TU->assertInvariantsRecursive();
242     return TU;
243   }
244 
245   /// Finds a token starting at \p L. The token must exist if \p L is valid.
246   const syntax::Token *findToken(SourceLocation L) const;
247 
248   /// Finds the syntax tokens corresponding to the \p SourceRange.
249   llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
250     assert(Range.isValid());
251     return getRange(Range.getBegin(), Range.getEnd());
252   }
253 
254   /// Finds the syntax tokens corresponding to the passed source locations.
255   /// \p First is the start position of the first token and \p Last is the start
256   /// position of the last token.
257   llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
258                                          SourceLocation Last) const {
259     assert(First.isValid());
260     assert(Last.isValid());
261     assert(First == Last ||
262            Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
263     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
264   }
265 
266   llvm::ArrayRef<syntax::Token>
267   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
268     auto Tokens = getRange(D->getSourceRange());
269     return maybeAppendSemicolon(Tokens, D);
270   }
271 
272   /// Returns true if \p D is the last declarator in a chain and is thus
273   /// reponsible for creating SimpleDeclaration for the whole chain.
274   template <class T>
275   bool isResponsibleForCreatingDeclaration(const T *D) const {
276     static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
277                    std::is_base_of<TypedefNameDecl, T>::value),
278                   "only DeclaratorDecl and TypedefNameDecl are supported.");
279 
280     const Decl *Next = D->getNextDeclInContext();
281 
282     // There's no next sibling, this one is responsible.
283     if (Next == nullptr) {
284       return true;
285     }
286     const auto *NextT = llvm::dyn_cast<T>(Next);
287 
288     // Next sibling is not the same type, this one is responsible.
289     if (NextT == nullptr) {
290       return true;
291     }
292     // Next sibling doesn't begin at the same loc, it must be a different
293     // declaration, so this declarator is responsible.
294     if (NextT->getBeginLoc() != D->getBeginLoc()) {
295       return true;
296     }
297 
298     // NextT is a member of the same declaration, and we need the last member to
299     // create declaration. This one is not responsible.
300     return false;
301   }
302 
303   llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
304     llvm::ArrayRef<clang::syntax::Token> Tokens;
305     // We want to drop the template parameters for specializations.
306     if (const auto *S = llvm::dyn_cast<TagDecl>(D))
307       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
308     else
309       Tokens = getRange(D->getSourceRange());
310     return maybeAppendSemicolon(Tokens, D);
311   }
312 
313   llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
314     return getRange(E->getSourceRange());
315   }
316 
317   /// Find the adjusted range for the statement, consuming the trailing
318   /// semicolon when needed.
319   llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
320     auto Tokens = getRange(S->getSourceRange());
321     if (isa<CompoundStmt>(S))
322       return Tokens;
323 
324     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
325     // all statements that end with those. Consume this semicolon here.
326     if (Tokens.back().kind() == tok::semi)
327       return Tokens;
328     return withTrailingSemicolon(Tokens);
329   }
330 
331 private:
332   llvm::ArrayRef<syntax::Token>
333   maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
334                        const Decl *D) const {
335     if (llvm::isa<NamespaceDecl>(D))
336       return Tokens;
337     if (DeclsWithoutSemicolons.count(D))
338       return Tokens;
339     // FIXME: do not consume trailing semicolon on function definitions.
340     // Most declarations own a semicolon in syntax trees, but not in clang AST.
341     return withTrailingSemicolon(Tokens);
342   }
343 
344   llvm::ArrayRef<syntax::Token>
345   withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
346     assert(!Tokens.empty());
347     assert(Tokens.back().kind() != tok::eof);
348     // We never consume 'eof', so looking at the next token is ok.
349     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
350       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
351     return Tokens;
352   }
353 
354   void setRole(syntax::Node *N, NodeRole R) {
355     assert(N->role() == NodeRole::Detached);
356     N->setRole(R);
357   }
358 
359   /// A collection of trees covering the input tokens.
360   /// When created, each tree corresponds to a single token in the file.
361   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
362   /// node and update the list of trees accordingly.
363   ///
364   /// Ensures that added nodes properly nest and cover the whole token stream.
365   struct Forest {
366     Forest(syntax::Arena &A) {
367       assert(!A.tokenBuffer().expandedTokens().empty());
368       assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
369       // Create all leaf nodes.
370       // Note that we do not have 'eof' in the tree.
371       for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
372         auto *L = new (A.allocator()) syntax::Leaf(&T);
373         L->Original = true;
374         L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
375         Trees.insert(Trees.end(), {&T, L});
376       }
377     }
378 
379     void assignRole(llvm::ArrayRef<syntax::Token> Range,
380                     syntax::NodeRole Role) {
381       assert(!Range.empty());
382       auto It = Trees.lower_bound(Range.begin());
383       assert(It != Trees.end() && "no node found");
384       assert(It->first == Range.begin() && "no child with the specified range");
385       assert((std::next(It) == Trees.end() ||
386               std::next(It)->first == Range.end()) &&
387              "no child with the specified range");
388       assert(It->second->role() == NodeRole::Detached &&
389              "re-assigning role for a child");
390       It->second->setRole(Role);
391     }
392 
393     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
394     void foldChildren(const syntax::Arena &A,
395                       llvm::ArrayRef<syntax::Token> Tokens,
396                       syntax::Tree *Node) {
397       // Attach children to `Node`.
398       assert(Node->firstChild() == nullptr && "node already has children");
399 
400       auto *FirstToken = Tokens.begin();
401       auto BeginChildren = Trees.lower_bound(FirstToken);
402 
403       assert((BeginChildren == Trees.end() ||
404               BeginChildren->first == FirstToken) &&
405              "fold crosses boundaries of existing subtrees");
406       auto EndChildren = Trees.lower_bound(Tokens.end());
407       assert(
408           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
409           "fold crosses boundaries of existing subtrees");
410 
411       // We need to go in reverse order, because we can only prepend.
412       for (auto It = EndChildren; It != BeginChildren; --It) {
413         auto *C = std::prev(It)->second;
414         if (C->role() == NodeRole::Detached)
415           C->setRole(NodeRole::Unknown);
416         Node->prependChildLowLevel(C);
417       }
418 
419       // Mark that this node came from the AST and is backed by the source code.
420       Node->Original = true;
421       Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
422 
423       Trees.erase(BeginChildren, EndChildren);
424       Trees.insert({FirstToken, Node});
425     }
426 
427     // EXPECTS: all tokens were consumed and are owned by a single root node.
428     syntax::Node *finalize() && {
429       assert(Trees.size() == 1);
430       auto *Root = Trees.begin()->second;
431       Trees = {};
432       return Root;
433     }
434 
435     std::string str(const syntax::Arena &A) const {
436       std::string R;
437       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
438         unsigned CoveredTokens =
439             It != Trees.end()
440                 ? (std::next(It)->first - It->first)
441                 : A.tokenBuffer().expandedTokens().end() - It->first;
442 
443         R += std::string(llvm::formatv(
444             "- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
445             It->first->text(A.sourceManager()), CoveredTokens));
446         R += It->second->dump(A);
447       }
448       return R;
449     }
450 
451   private:
452     /// Maps from the start token to a subtree starting at that token.
453     /// Keys in the map are pointers into the array of expanded tokens, so
454     /// pointer order corresponds to the order of preprocessor tokens.
455     std::map<const syntax::Token *, syntax::Node *> Trees;
456   };
457 
458   /// For debugging purposes.
459   std::string str() { return Pending.str(Arena); }
460 
461   syntax::Arena &Arena;
462   /// To quickly find tokens by their start location.
463   llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
464       LocationToToken;
465   Forest Pending;
466   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
467   ASTToSyntaxMapping Mapping;
468 };
469 
470 namespace {
471 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
472 public:
473   explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
474       : Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
475 
476   bool shouldTraversePostOrder() const { return true; }
477 
478   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
479     return processDeclaratorAndDeclaration(DD);
480   }
481 
482   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
483     return processDeclaratorAndDeclaration(TD);
484   }
485 
486   bool VisitDecl(Decl *D) {
487     assert(!D->isImplicit());
488     Builder.foldNode(Builder.getDeclarationRange(D),
489                      new (allocator()) syntax::UnknownDeclaration(), D);
490     return true;
491   }
492 
493   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
494   // override Traverse.
495   // FIXME: make RAV call WalkUpFrom* instead.
496   bool
497   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
498     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
499       return false;
500     if (C->isExplicitSpecialization())
501       return true; // we are only interested in explicit instantiations.
502     auto *Declaration =
503         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
504     foldExplicitTemplateInstantiation(
505         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
506         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
507     return true;
508   }
509 
510   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
511     foldTemplateDeclaration(
512         Builder.getDeclarationRange(S),
513         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
514         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
515     return true;
516   }
517 
518   bool WalkUpFromTagDecl(TagDecl *C) {
519     // FIXME: build the ClassSpecifier node.
520     if (!C->isFreeStanding()) {
521       assert(C->getNumTemplateParameterLists() == 0);
522       return true;
523     }
524     handleFreeStandingTagDecl(C);
525     return true;
526   }
527 
528   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
529     assert(C->isFreeStanding());
530     // Class is a declaration specifier and needs a spanning declaration node.
531     auto DeclarationRange = Builder.getDeclarationRange(C);
532     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
533     Builder.foldNode(DeclarationRange, Result, nullptr);
534 
535     // Build TemplateDeclaration nodes if we had template parameters.
536     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
537       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
538       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
539       Result =
540           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
541       DeclarationRange = R;
542     };
543     if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
544       ConsumeTemplateParameters(*S->getTemplateParameters());
545     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
546       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
547     return Result;
548   }
549 
550   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
551     // We do not want to call VisitDecl(), the declaration for translation
552     // unit is built by finalize().
553     return true;
554   }
555 
556   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
557     using NodeRole = syntax::NodeRole;
558 
559     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
560     for (auto *Child : S->body())
561       Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
562     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
563 
564     Builder.foldNode(Builder.getStmtRange(S),
565                      new (allocator()) syntax::CompoundStatement, S);
566     return true;
567   }
568 
569   // Some statements are not yet handled by syntax trees.
570   bool WalkUpFromStmt(Stmt *S) {
571     Builder.foldNode(Builder.getStmtRange(S),
572                      new (allocator()) syntax::UnknownStatement, S);
573     return true;
574   }
575 
576   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
577     // We override to traverse range initializer as VarDecl.
578     // RAV traverses it as a statement, we produce invalid node kinds in that
579     // case.
580     // FIXME: should do this in RAV instead?
581     if (S->getInit() && !TraverseStmt(S->getInit()))
582       return false;
583     if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
584       return false;
585     if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
586       return false;
587     if (S->getBody() && !TraverseStmt(S->getBody()))
588       return false;
589     return true;
590   }
591 
592   bool TraverseStmt(Stmt *S) {
593     if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
594       // We want to consume the semicolon, make sure SimpleDeclaration does not.
595       for (auto *D : DS->decls())
596         Builder.noticeDeclWithoutSemicolon(D);
597     } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
598       return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit());
599     }
600     return RecursiveASTVisitor::TraverseStmt(S);
601   }
602 
603   // Some expressions are not yet handled by syntax trees.
604   bool WalkUpFromExpr(Expr *E) {
605     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
606     Builder.foldNode(Builder.getExprRange(E),
607                      new (allocator()) syntax::UnknownExpression, E);
608     return true;
609   }
610 
611   bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
612     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
613     Builder.foldNode(Builder.getExprRange(S),
614                      new (allocator()) syntax::IntegerLiteralExpression, S);
615     return true;
616   }
617 
618   bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
619     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
620     Builder.foldNode(Builder.getExprRange(S),
621                      new (allocator()) syntax::CxxNullPtrExpression, S);
622     return true;
623   }
624 
625   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
626     Builder.markChildToken(S->getOperatorLoc(),
627                            syntax::NodeRole::OperatorExpression_operatorToken);
628     Builder.markExprChild(S->getSubExpr(),
629                           syntax::NodeRole::UnaryOperatorExpression_operand);
630 
631     if (S->isPostfix())
632       Builder.foldNode(Builder.getExprRange(S),
633                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
634                        S);
635     else
636       Builder.foldNode(Builder.getExprRange(S),
637                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
638                        S);
639 
640     return true;
641   }
642 
643   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
644     Builder.markExprChild(
645         S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
646     Builder.markChildToken(S->getOperatorLoc(),
647                            syntax::NodeRole::OperatorExpression_operatorToken);
648     Builder.markExprChild(
649         S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
650     Builder.foldNode(Builder.getExprRange(S),
651                      new (allocator()) syntax::BinaryOperatorExpression, S);
652     return true;
653   }
654 
655   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
656     if (S->isInfixBinaryOp()) {
657       Builder.markExprChild(
658           S->getArg(0),
659           syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
660       Builder.markChildToken(
661           S->getOperatorLoc(),
662           syntax::NodeRole::OperatorExpression_operatorToken);
663       Builder.markExprChild(
664           S->getArg(1),
665           syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
666       Builder.foldNode(Builder.getExprRange(S),
667                        new (allocator()) syntax::BinaryOperatorExpression, S);
668       return true;
669     }
670     return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S);
671   }
672 
673   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
674     auto Tokens = Builder.getDeclarationRange(S);
675     if (Tokens.front().kind() == tok::coloncolon) {
676       // Handle nested namespace definitions. Those start at '::' token, e.g.
677       // namespace a^::b {}
678       // FIXME: build corresponding nodes for the name of this namespace.
679       return true;
680     }
681     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
682     return true;
683   }
684 
685   bool TraverseParenTypeLoc(ParenTypeLoc L) {
686     // We reverse order of traversal to get the proper syntax structure.
687     if (!WalkUpFromParenTypeLoc(L))
688       return false;
689     return TraverseTypeLoc(L.getInnerLoc());
690   }
691 
692   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
693     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
694     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
695     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
696                      new (allocator()) syntax::ParenDeclarator, L);
697     return true;
698   }
699 
700   // Declarator chunks, they are produced by type locs and some clang::Decls.
701   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
702     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
703     Builder.markExprChild(L.getSizeExpr(),
704                           syntax::NodeRole::ArraySubscript_sizeExpression);
705     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
706     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
707                      new (allocator()) syntax::ArraySubscript, L);
708     return true;
709   }
710 
711   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
712     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
713     for (auto *P : L.getParams()) {
714       Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
715     }
716     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
717     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
718                      new (allocator()) syntax::ParametersAndQualifiers, L);
719     return true;
720   }
721 
722   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
723     if (!L.getTypePtr()->hasTrailingReturn())
724       return WalkUpFromFunctionTypeLoc(L);
725 
726     auto *TrailingReturnTokens = BuildTrailingReturn(L);
727     // Finish building the node for parameters.
728     Builder.markChild(TrailingReturnTokens,
729                       syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
730     return WalkUpFromFunctionTypeLoc(L);
731   }
732 
733   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
734     auto SR = L.getLocalSourceRange();
735     Builder.foldNode(Builder.getRange(SR),
736                      new (allocator()) syntax::MemberPointer, L);
737     return true;
738   }
739 
740   // The code below is very regular, it could even be generated with some
741   // preprocessor magic. We merely assign roles to the corresponding children
742   // and fold resulting nodes.
743   bool WalkUpFromDeclStmt(DeclStmt *S) {
744     Builder.foldNode(Builder.getStmtRange(S),
745                      new (allocator()) syntax::DeclarationStatement, S);
746     return true;
747   }
748 
749   bool WalkUpFromNullStmt(NullStmt *S) {
750     Builder.foldNode(Builder.getStmtRange(S),
751                      new (allocator()) syntax::EmptyStatement, S);
752     return true;
753   }
754 
755   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
756     Builder.markChildToken(S->getSwitchLoc(),
757                            syntax::NodeRole::IntroducerKeyword);
758     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
759     Builder.foldNode(Builder.getStmtRange(S),
760                      new (allocator()) syntax::SwitchStatement, S);
761     return true;
762   }
763 
764   bool WalkUpFromCaseStmt(CaseStmt *S) {
765     Builder.markChildToken(S->getKeywordLoc(),
766                            syntax::NodeRole::IntroducerKeyword);
767     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
768     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
769     Builder.foldNode(Builder.getStmtRange(S),
770                      new (allocator()) syntax::CaseStatement, S);
771     return true;
772   }
773 
774   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
775     Builder.markChildToken(S->getKeywordLoc(),
776                            syntax::NodeRole::IntroducerKeyword);
777     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
778     Builder.foldNode(Builder.getStmtRange(S),
779                      new (allocator()) syntax::DefaultStatement, S);
780     return true;
781   }
782 
783   bool WalkUpFromIfStmt(IfStmt *S) {
784     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
785     Builder.markStmtChild(S->getThen(),
786                           syntax::NodeRole::IfStatement_thenStatement);
787     Builder.markChildToken(S->getElseLoc(),
788                            syntax::NodeRole::IfStatement_elseKeyword);
789     Builder.markStmtChild(S->getElse(),
790                           syntax::NodeRole::IfStatement_elseStatement);
791     Builder.foldNode(Builder.getStmtRange(S),
792                      new (allocator()) syntax::IfStatement, S);
793     return true;
794   }
795 
796   bool WalkUpFromForStmt(ForStmt *S) {
797     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
798     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
799     Builder.foldNode(Builder.getStmtRange(S),
800                      new (allocator()) syntax::ForStatement, S);
801     return true;
802   }
803 
804   bool WalkUpFromWhileStmt(WhileStmt *S) {
805     Builder.markChildToken(S->getWhileLoc(),
806                            syntax::NodeRole::IntroducerKeyword);
807     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
808     Builder.foldNode(Builder.getStmtRange(S),
809                      new (allocator()) syntax::WhileStatement, S);
810     return true;
811   }
812 
813   bool WalkUpFromContinueStmt(ContinueStmt *S) {
814     Builder.markChildToken(S->getContinueLoc(),
815                            syntax::NodeRole::IntroducerKeyword);
816     Builder.foldNode(Builder.getStmtRange(S),
817                      new (allocator()) syntax::ContinueStatement, S);
818     return true;
819   }
820 
821   bool WalkUpFromBreakStmt(BreakStmt *S) {
822     Builder.markChildToken(S->getBreakLoc(),
823                            syntax::NodeRole::IntroducerKeyword);
824     Builder.foldNode(Builder.getStmtRange(S),
825                      new (allocator()) syntax::BreakStatement, S);
826     return true;
827   }
828 
829   bool WalkUpFromReturnStmt(ReturnStmt *S) {
830     Builder.markChildToken(S->getReturnLoc(),
831                            syntax::NodeRole::IntroducerKeyword);
832     Builder.markExprChild(S->getRetValue(),
833                           syntax::NodeRole::ReturnStatement_value);
834     Builder.foldNode(Builder.getStmtRange(S),
835                      new (allocator()) syntax::ReturnStatement, S);
836     return true;
837   }
838 
839   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
840     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
841     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
842     Builder.foldNode(Builder.getStmtRange(S),
843                      new (allocator()) syntax::RangeBasedForStatement, S);
844     return true;
845   }
846 
847   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
848     Builder.foldNode(Builder.getDeclarationRange(S),
849                      new (allocator()) syntax::EmptyDeclaration, S);
850     return true;
851   }
852 
853   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
854     Builder.markExprChild(S->getAssertExpr(),
855                           syntax::NodeRole::StaticAssertDeclaration_condition);
856     Builder.markExprChild(S->getMessage(),
857                           syntax::NodeRole::StaticAssertDeclaration_message);
858     Builder.foldNode(Builder.getDeclarationRange(S),
859                      new (allocator()) syntax::StaticAssertDeclaration, S);
860     return true;
861   }
862 
863   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
864     Builder.foldNode(Builder.getDeclarationRange(S),
865                      new (allocator()) syntax::LinkageSpecificationDeclaration,
866                      S);
867     return true;
868   }
869 
870   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
871     Builder.foldNode(Builder.getDeclarationRange(S),
872                      new (allocator()) syntax::NamespaceAliasDefinition, S);
873     return true;
874   }
875 
876   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
877     Builder.foldNode(Builder.getDeclarationRange(S),
878                      new (allocator()) syntax::UsingNamespaceDirective, S);
879     return true;
880   }
881 
882   bool WalkUpFromUsingDecl(UsingDecl *S) {
883     Builder.foldNode(Builder.getDeclarationRange(S),
884                      new (allocator()) syntax::UsingDeclaration, S);
885     return true;
886   }
887 
888   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
889     Builder.foldNode(Builder.getDeclarationRange(S),
890                      new (allocator()) syntax::UsingDeclaration, S);
891     return true;
892   }
893 
894   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
895     Builder.foldNode(Builder.getDeclarationRange(S),
896                      new (allocator()) syntax::UsingDeclaration, S);
897     return true;
898   }
899 
900   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
901     Builder.foldNode(Builder.getDeclarationRange(S),
902                      new (allocator()) syntax::TypeAliasDeclaration, S);
903     return true;
904   }
905 
906 private:
907   template <class T> SourceLocation getQualifiedNameStart(T *D) {
908     static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
909                    std::is_base_of<TypedefNameDecl, T>::value),
910                   "only DeclaratorDecl and TypedefNameDecl are supported.");
911 
912     auto DN = D->getDeclName();
913     bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
914     if (IsAnonymous)
915       return SourceLocation();
916 
917     if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
918       if (DD->getQualifierLoc()) {
919         return DD->getQualifierLoc().getBeginLoc();
920       }
921     }
922 
923     return D->getLocation();
924   }
925 
926   SourceRange getInitializerRange(Decl *D) {
927     if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
928       auto *I = V->getInit();
929       // Initializers in range-based-for are not part of the declarator
930       if (I && !V->isCXXForRangeDecl())
931         return I->getSourceRange();
932     }
933 
934     return SourceRange();
935   }
936 
937   /// Folds SimpleDeclarator node (if present) and in case this is the last
938   /// declarator in the chain it also folds SimpleDeclaration node.
939   template <class T> bool processDeclaratorAndDeclaration(T *D) {
940     SourceRange Initializer = getInitializerRange(D);
941     auto Range = getDeclaratorRange(Builder.sourceManager(),
942                                     D->getTypeSourceInfo()->getTypeLoc(),
943                                     getQualifiedNameStart(D), Initializer);
944 
945     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
946     // declaration, but no declarator).
947     if (Range.getBegin().isValid()) {
948       auto *N = new (allocator()) syntax::SimpleDeclarator;
949       Builder.foldNode(Builder.getRange(Range), N, nullptr);
950       Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
951     }
952 
953     if (Builder.isResponsibleForCreatingDeclaration(D)) {
954       Builder.foldNode(Builder.getDeclarationRange(D),
955                        new (allocator()) syntax::SimpleDeclaration, D);
956     }
957     return true;
958   }
959 
960   /// Returns the range of the built node.
961   syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
962     assert(L.getTypePtr()->hasTrailingReturn());
963 
964     auto ReturnedType = L.getReturnLoc();
965     // Build node for the declarator, if any.
966     auto ReturnDeclaratorRange =
967         getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
968                            /*Name=*/SourceLocation(),
969                            /*Initializer=*/SourceLocation());
970     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
971     if (ReturnDeclaratorRange.isValid()) {
972       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
973       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
974                        ReturnDeclarator, nullptr);
975     }
976 
977     // Build node for trailing return type.
978     auto Return = Builder.getRange(ReturnedType.getSourceRange());
979     const auto *Arrow = Return.begin() - 1;
980     assert(Arrow->kind() == tok::arrow);
981     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
982     Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
983     if (ReturnDeclarator)
984       Builder.markChild(ReturnDeclarator,
985                         syntax::NodeRole::TrailingReturnType_declarator);
986     auto *R = new (allocator()) syntax::TrailingReturnType;
987     Builder.foldNode(Tokens, R, L);
988     return R;
989   }
990 
991   void foldExplicitTemplateInstantiation(
992       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
993       const syntax::Token *TemplateKW,
994       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
995     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
996     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
997     Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
998     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
999     Builder.markChild(
1000         InnerDeclaration,
1001         syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
1002     Builder.foldNode(
1003         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1004   }
1005 
1006   syntax::TemplateDeclaration *foldTemplateDeclaration(
1007       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1008       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1009     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1010     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1011 
1012     auto *N = new (allocator()) syntax::TemplateDeclaration;
1013     Builder.foldNode(Range, N, From);
1014     Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
1015     return N;
1016   }
1017 
1018   /// A small helper to save some typing.
1019   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1020 
1021   syntax::TreeBuilder &Builder;
1022   const LangOptions &LangOpts;
1023 };
1024 } // namespace
1025 
1026 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1027   DeclsWithoutSemicolons.insert(D);
1028 }
1029 
1030 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1031   if (Loc.isInvalid())
1032     return;
1033   Pending.assignRole(*findToken(Loc), Role);
1034 }
1035 
1036 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1037   if (!T)
1038     return;
1039   Pending.assignRole(*T, R);
1040 }
1041 
1042 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1043   assert(N);
1044   setRole(N, R);
1045 }
1046 
1047 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1048   auto *SN = Mapping.find(N);
1049   assert(SN != nullptr);
1050   setRole(SN, R);
1051 }
1052 
1053 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1054   if (!Child)
1055     return;
1056 
1057   syntax::Tree *ChildNode;
1058   if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1059     // This is an expression in a statement position, consume the trailing
1060     // semicolon and form an 'ExpressionStatement' node.
1061     markExprChild(ChildExpr, NodeRole::ExpressionStatement_expression);
1062     ChildNode = new (allocator()) syntax::ExpressionStatement;
1063     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1064     Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1065   } else {
1066     ChildNode = Mapping.find(Child);
1067   }
1068   assert(ChildNode != nullptr);
1069   setRole(ChildNode, Role);
1070 }
1071 
1072 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1073   if (!Child)
1074     return;
1075   Child = Child->IgnoreImplicit();
1076 
1077   syntax::Tree *ChildNode = Mapping.find(Child);
1078   assert(ChildNode != nullptr);
1079   setRole(ChildNode, Role);
1080 }
1081 
1082 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1083   if (L.isInvalid())
1084     return nullptr;
1085   auto It = LocationToToken.find(L.getRawEncoding());
1086   assert(It != LocationToToken.end());
1087   return It->second;
1088 }
1089 
1090 syntax::TranslationUnit *
1091 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
1092   TreeBuilder Builder(A);
1093   BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
1094   return std::move(Builder).finalize();
1095 }
1096