1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/RecursiveASTVisitor.h"
16 #include "clang/AST/Stmt.h"
17 #include "clang/AST/TypeLoc.h"
18 #include "clang/AST/TypeLocVisitor.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/Specifiers.h"
23 #include "clang/Basic/TokenKinds.h"
24 #include "clang/Lex/Lexer.h"
25 #include "clang/Tooling/Syntax/Nodes.h"
26 #include "clang/Tooling/Syntax/Tokens.h"
27 #include "clang/Tooling/Syntax/Tree.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PointerUnion.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/FormatVariadic.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cstddef>
41 #include <map>
42 
43 using namespace clang;
44 
45 LLVM_ATTRIBUTE_UNUSED
46 static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
47 
48 namespace {
49 /// Get start location of the Declarator from the TypeLoc.
50 /// E.g.:
51 ///   loc of `(` in `int (a)`
52 ///   loc of `*` in `int *(a)`
53 ///   loc of the first `(` in `int (*a)(int)`
54 ///   loc of the `*` in `int *(a)(int)`
55 ///   loc of the first `*` in `const int *const *volatile a;`
56 ///
57 /// It is non-trivial to get the start location because TypeLocs are stored
58 /// inside out. In the example above `*volatile` is the TypeLoc returned
59 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
60 /// returns.
61 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
62   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
63     auto L = Visit(T.getInnerLoc());
64     if (L.isValid())
65       return L;
66     return T.getLParenLoc();
67   }
68 
69   // Types spelled in the prefix part of the declarator.
70   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
71     return HandlePointer(T);
72   }
73 
74   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
75     return HandlePointer(T);
76   }
77 
78   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
79     return HandlePointer(T);
80   }
81 
82   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
83     return HandlePointer(T);
84   }
85 
86   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
87     return HandlePointer(T);
88   }
89 
90   // All other cases are not important, as they are either part of declaration
91   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
92   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
93   // declarator themselves, but their underlying type can.
94   SourceLocation VisitTypeLoc(TypeLoc T) {
95     auto N = T.getNextTypeLoc();
96     if (!N)
97       return SourceLocation();
98     return Visit(N);
99   }
100 
101   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
102     if (T.getTypePtr()->hasTrailingReturn())
103       return SourceLocation(); // avoid recursing into the suffix of declarator.
104     return VisitTypeLoc(T);
105   }
106 
107 private:
108   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
109     auto L = Visit(T.getPointeeLoc());
110     if (L.isValid())
111       return L;
112     return T.getLocalSourceRange().getBegin();
113   }
114 };
115 } // namespace
116 
117 /// Gets the range of declarator as defined by the C++ grammar. E.g.
118 ///     `int a;` -> range of `a`,
119 ///     `int *a;` -> range of `*a`,
120 ///     `int a[10];` -> range of `a[10]`,
121 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
122 ///     `int *a = nullptr` -> range of `*a = nullptr`.
123 /// FIMXE: \p Name must be a source range, e.g. for `operator+`.
124 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
125                                       SourceLocation Name,
126                                       SourceRange Initializer) {
127   SourceLocation Start = GetStartLoc().Visit(T);
128   SourceLocation End = T.getSourceRange().getEnd();
129   assert(End.isValid());
130   if (Name.isValid()) {
131     if (Start.isInvalid())
132       Start = Name;
133     if (SM.isBeforeInTranslationUnit(End, Name))
134       End = Name;
135   }
136   if (Initializer.isValid()) {
137     auto InitializerEnd = Initializer.getEnd();
138     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || End == InitializerEnd);
139     End = InitializerEnd;
140   }
141   return SourceRange(Start, End);
142 }
143 
144 namespace {
145 /// All AST hierarchy roots that can be represented as pointers.
146 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
147 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
148 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
149 /// FIXME: expose this as public API.
150 class ASTToSyntaxMapping {
151 public:
152   void add(ASTPtr From, syntax::Tree *To) {
153     assert(To != nullptr);
154     assert(!From.isNull());
155 
156     bool Added = Nodes.insert({From, To}).second;
157     (void)Added;
158     assert(Added && "mapping added twice");
159   }
160 
161   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
162 
163 private:
164   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
165 };
166 } // namespace
167 
168 /// A helper class for constructing the syntax tree while traversing a clang
169 /// AST.
170 ///
171 /// At each point of the traversal we maintain a list of pending nodes.
172 /// Initially all tokens are added as pending nodes. When processing a clang AST
173 /// node, the clients need to:
174 ///   - create a corresponding syntax node,
175 ///   - assign roles to all pending child nodes with 'markChild' and
176 ///     'markChildToken',
177 ///   - replace the child nodes with the new syntax node in the pending list
178 ///     with 'foldNode'.
179 ///
180 /// Note that all children are expected to be processed when building a node.
181 ///
182 /// Call finalize() to finish building the tree and consume the root node.
183 class syntax::TreeBuilder {
184 public:
185   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
186     for (const auto &T : Arena.tokenBuffer().expandedTokens())
187       LocationToToken.insert({T.location().getRawEncoding(), &T});
188   }
189 
190   llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
191   const SourceManager &sourceManager() const { return Arena.sourceManager(); }
192 
193   /// Populate children for \p New node, assuming it covers tokens from \p
194   /// Range.
195   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
196                 ASTPtr From) {
197     assert(New);
198     Pending.foldChildren(Arena, Range, New);
199     if (From)
200       Mapping.add(From, New);
201   }
202   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
203                 TypeLoc L) {
204     // FIXME: add mapping for TypeLocs
205     foldNode(Range, New, nullptr);
206   }
207 
208   /// Notifies that we should not consume trailing semicolon when computing
209   /// token range of \p D.
210   void noticeDeclWithoutSemicolon(Decl *D);
211 
212   /// Mark the \p Child node with a corresponding \p Role. All marked children
213   /// should be consumed by foldNode.
214   /// When called on expressions (clang::Expr is derived from clang::Stmt),
215   /// wraps expressions into expression statement.
216   void markStmtChild(Stmt *Child, NodeRole Role);
217   /// Should be called for expressions in non-statement position to avoid
218   /// wrapping into expression statement.
219   void markExprChild(Expr *Child, NodeRole Role);
220   /// Set role for a token starting at \p Loc.
221   void markChildToken(SourceLocation Loc, NodeRole R);
222   /// Set role for \p T.
223   void markChildToken(const syntax::Token *T, NodeRole R);
224 
225   /// Set role for \p N.
226   void markChild(syntax::Node *N, NodeRole R);
227   /// Set role for the syntax node matching \p N.
228   void markChild(ASTPtr N, NodeRole R);
229 
230   /// Finish building the tree and consume the root node.
231   syntax::TranslationUnit *finalize() && {
232     auto Tokens = Arena.tokenBuffer().expandedTokens();
233     assert(!Tokens.empty());
234     assert(Tokens.back().kind() == tok::eof);
235 
236     // Build the root of the tree, consuming all the children.
237     Pending.foldChildren(Arena, Tokens.drop_back(),
238                          new (Arena.allocator()) syntax::TranslationUnit);
239 
240     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
241     TU->assertInvariantsRecursive();
242     return TU;
243   }
244 
245   /// Finds a token starting at \p L. The token must exist if \p L is valid.
246   const syntax::Token *findToken(SourceLocation L) const;
247 
248   /// Finds the syntax tokens corresponding to the \p SourceRange.
249   llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
250     assert(Range.isValid());
251     return getRange(Range.getBegin(), Range.getEnd());
252   }
253 
254   /// Finds the syntax tokens corresponding to the passed source locations.
255   /// \p First is the start position of the first token and \p Last is the start
256   /// position of the last token.
257   llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
258                                          SourceLocation Last) const {
259     assert(First.isValid());
260     assert(Last.isValid());
261     assert(First == Last ||
262            Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
263     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
264   }
265 
266   llvm::ArrayRef<syntax::Token>
267   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
268     auto Tokens = getRange(D->getSourceRange());
269     return maybeAppendSemicolon(Tokens, D);
270   }
271 
272   /// Returns true if \p D is the last declarator in a chain and is thus
273   /// reponsible for creating SimpleDeclaration for the whole chain.
274   template <class T>
275   bool isResponsibleForCreatingDeclaration(const T *D) const {
276     static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
277                    std::is_base_of<TypedefNameDecl, T>::value),
278                   "only DeclaratorDecl and TypedefNameDecl are supported.");
279 
280     const Decl *Next = D->getNextDeclInContext();
281 
282     // There's no next sibling, this one is responsible.
283     if (Next == nullptr) {
284       return true;
285     }
286     const auto *NextT = llvm::dyn_cast<T>(Next);
287 
288     // Next sibling is not the same type, this one is responsible.
289     if (NextT == nullptr) {
290       return true;
291     }
292     // Next sibling doesn't begin at the same loc, it must be a different
293     // declaration, so this declarator is responsible.
294     if (NextT->getBeginLoc() != D->getBeginLoc()) {
295       return true;
296     }
297 
298     // NextT is a member of the same declaration, and we need the last member to
299     // create declaration. This one is not responsible.
300     return false;
301   }
302 
303   llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
304     llvm::ArrayRef<clang::syntax::Token> Tokens;
305     // We want to drop the template parameters for specializations.
306     if (const auto *S = llvm::dyn_cast<TagDecl>(D))
307       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
308     else
309       Tokens = getRange(D->getSourceRange());
310     return maybeAppendSemicolon(Tokens, D);
311   }
312 
313   llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
314     return getRange(E->getSourceRange());
315   }
316 
317   /// Find the adjusted range for the statement, consuming the trailing
318   /// semicolon when needed.
319   llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
320     auto Tokens = getRange(S->getSourceRange());
321     if (isa<CompoundStmt>(S))
322       return Tokens;
323 
324     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
325     // all statements that end with those. Consume this semicolon here.
326     if (Tokens.back().kind() == tok::semi)
327       return Tokens;
328     return withTrailingSemicolon(Tokens);
329   }
330 
331 private:
332   llvm::ArrayRef<syntax::Token>
333   maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
334                        const Decl *D) const {
335     if (llvm::isa<NamespaceDecl>(D))
336       return Tokens;
337     if (DeclsWithoutSemicolons.count(D))
338       return Tokens;
339     // FIXME: do not consume trailing semicolon on function definitions.
340     // Most declarations own a semicolon in syntax trees, but not in clang AST.
341     return withTrailingSemicolon(Tokens);
342   }
343 
344   llvm::ArrayRef<syntax::Token>
345   withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
346     assert(!Tokens.empty());
347     assert(Tokens.back().kind() != tok::eof);
348     // We never consume 'eof', so looking at the next token is ok.
349     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
350       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
351     return Tokens;
352   }
353 
354   void setRole(syntax::Node *N, NodeRole R) {
355     assert(N->role() == NodeRole::Detached);
356     N->setRole(R);
357   }
358 
359   /// A collection of trees covering the input tokens.
360   /// When created, each tree corresponds to a single token in the file.
361   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
362   /// node and update the list of trees accordingly.
363   ///
364   /// Ensures that added nodes properly nest and cover the whole token stream.
365   struct Forest {
366     Forest(syntax::Arena &A) {
367       assert(!A.tokenBuffer().expandedTokens().empty());
368       assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
369       // Create all leaf nodes.
370       // Note that we do not have 'eof' in the tree.
371       for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
372         auto *L = new (A.allocator()) syntax::Leaf(&T);
373         L->Original = true;
374         L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
375         Trees.insert(Trees.end(), {&T, L});
376       }
377     }
378 
379     void assignRole(llvm::ArrayRef<syntax::Token> Range,
380                     syntax::NodeRole Role) {
381       assert(!Range.empty());
382       auto It = Trees.lower_bound(Range.begin());
383       assert(It != Trees.end() && "no node found");
384       assert(It->first == Range.begin() && "no child with the specified range");
385       assert((std::next(It) == Trees.end() ||
386               std::next(It)->first == Range.end()) &&
387              "no child with the specified range");
388       assert(It->second->role() == NodeRole::Detached &&
389              "re-assigning role for a child");
390       It->second->setRole(Role);
391     }
392 
393     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
394     void foldChildren(const syntax::Arena &A,
395                       llvm::ArrayRef<syntax::Token> Tokens,
396                       syntax::Tree *Node) {
397       // Attach children to `Node`.
398       assert(Node->firstChild() == nullptr && "node already has children");
399 
400       auto *FirstToken = Tokens.begin();
401       auto BeginChildren = Trees.lower_bound(FirstToken);
402 
403       assert((BeginChildren == Trees.end() ||
404               BeginChildren->first == FirstToken) &&
405              "fold crosses boundaries of existing subtrees");
406       auto EndChildren = Trees.lower_bound(Tokens.end());
407       assert(
408           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
409           "fold crosses boundaries of existing subtrees");
410 
411       // We need to go in reverse order, because we can only prepend.
412       for (auto It = EndChildren; It != BeginChildren; --It) {
413         auto *C = std::prev(It)->second;
414         if (C->role() == NodeRole::Detached)
415           C->setRole(NodeRole::Unknown);
416         Node->prependChildLowLevel(C);
417       }
418 
419       // Mark that this node came from the AST and is backed by the source code.
420       Node->Original = true;
421       Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
422 
423       Trees.erase(BeginChildren, EndChildren);
424       Trees.insert({FirstToken, Node});
425     }
426 
427     // EXPECTS: all tokens were consumed and are owned by a single root node.
428     syntax::Node *finalize() && {
429       assert(Trees.size() == 1);
430       auto *Root = Trees.begin()->second;
431       Trees = {};
432       return Root;
433     }
434 
435     std::string str(const syntax::Arena &A) const {
436       std::string R;
437       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
438         unsigned CoveredTokens =
439             It != Trees.end()
440                 ? (std::next(It)->first - It->first)
441                 : A.tokenBuffer().expandedTokens().end() - It->first;
442 
443         R += std::string(llvm::formatv(
444             "- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
445             It->first->text(A.sourceManager()), CoveredTokens));
446         R += It->second->dump(A);
447       }
448       return R;
449     }
450 
451   private:
452     /// Maps from the start token to a subtree starting at that token.
453     /// Keys in the map are pointers into the array of expanded tokens, so
454     /// pointer order corresponds to the order of preprocessor tokens.
455     std::map<const syntax::Token *, syntax::Node *> Trees;
456   };
457 
458   /// For debugging purposes.
459   std::string str() { return Pending.str(Arena); }
460 
461   syntax::Arena &Arena;
462   /// To quickly find tokens by their start location.
463   llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
464       LocationToToken;
465   Forest Pending;
466   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
467   ASTToSyntaxMapping Mapping;
468 };
469 
470 namespace {
471 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
472 public:
473   explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
474       : Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
475 
476   bool shouldTraversePostOrder() const { return true; }
477 
478   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
479     return processDeclaratorAndDeclaration(DD);
480   }
481 
482   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
483     return processDeclaratorAndDeclaration(TD);
484   }
485 
486   bool VisitDecl(Decl *D) {
487     assert(!D->isImplicit());
488     Builder.foldNode(Builder.getDeclarationRange(D),
489                      new (allocator()) syntax::UnknownDeclaration(), D);
490     return true;
491   }
492 
493   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
494   // override Traverse.
495   // FIXME: make RAV call WalkUpFrom* instead.
496   bool
497   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
498     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
499       return false;
500     if (C->isExplicitSpecialization())
501       return true; // we are only interested in explicit instantiations.
502     auto *Declaration =
503         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
504     foldExplicitTemplateInstantiation(
505         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
506         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
507     return true;
508   }
509 
510   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
511     foldTemplateDeclaration(
512         Builder.getDeclarationRange(S),
513         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
514         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
515     return true;
516   }
517 
518   bool WalkUpFromTagDecl(TagDecl *C) {
519     // FIXME: build the ClassSpecifier node.
520     if (!C->isFreeStanding()) {
521       assert(C->getNumTemplateParameterLists() == 0);
522       return true;
523     }
524     handleFreeStandingTagDecl(C);
525     return true;
526   }
527 
528   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
529     assert(C->isFreeStanding());
530     // Class is a declaration specifier and needs a spanning declaration node.
531     auto DeclarationRange = Builder.getDeclarationRange(C);
532     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
533     Builder.foldNode(DeclarationRange, Result, nullptr);
534 
535     // Build TemplateDeclaration nodes if we had template parameters.
536     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
537       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
538       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
539       Result =
540           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
541       DeclarationRange = R;
542     };
543     if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
544       ConsumeTemplateParameters(*S->getTemplateParameters());
545     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
546       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
547     return Result;
548   }
549 
550   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
551     // We do not want to call VisitDecl(), the declaration for translation
552     // unit is built by finalize().
553     return true;
554   }
555 
556   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
557     using NodeRole = syntax::NodeRole;
558 
559     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
560     for (auto *Child : S->body())
561       Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
562     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
563 
564     Builder.foldNode(Builder.getStmtRange(S),
565                      new (allocator()) syntax::CompoundStatement, S);
566     return true;
567   }
568 
569   // Some statements are not yet handled by syntax trees.
570   bool WalkUpFromStmt(Stmt *S) {
571     Builder.foldNode(Builder.getStmtRange(S),
572                      new (allocator()) syntax::UnknownStatement, S);
573     return true;
574   }
575 
576   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
577     // We override to traverse range initializer as VarDecl.
578     // RAV traverses it as a statement, we produce invalid node kinds in that
579     // case.
580     // FIXME: should do this in RAV instead?
581     if (S->getInit() && !TraverseStmt(S->getInit()))
582       return false;
583     if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
584       return false;
585     if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
586       return false;
587     if (S->getBody() && !TraverseStmt(S->getBody()))
588       return false;
589     return true;
590   }
591 
592   bool TraverseStmt(Stmt *S) {
593     if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
594       // We want to consume the semicolon, make sure SimpleDeclaration does not.
595       for (auto *D : DS->decls())
596         Builder.noticeDeclWithoutSemicolon(D);
597     } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
598       return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit());
599     }
600     return RecursiveASTVisitor::TraverseStmt(S);
601   }
602 
603   // Some expressions are not yet handled by syntax trees.
604   bool WalkUpFromExpr(Expr *E) {
605     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
606     Builder.foldNode(Builder.getExprRange(E),
607                      new (allocator()) syntax::UnknownExpression, E);
608     return true;
609   }
610 
611   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
612     Builder.markChildToken(
613         S->getOperatorLoc(),
614         syntax::NodeRole::UnaryOperatorExpression_operatorToken);
615     Builder.markExprChild(S->getSubExpr(),
616                           syntax::NodeRole::UnaryOperatorExpression_operand);
617 
618     if (S->isPostfix())
619       Builder.foldNode(Builder.getExprRange(S),
620                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
621                        S);
622     else
623       Builder.foldNode(Builder.getExprRange(S),
624                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
625                        S);
626 
627     return true;
628   }
629 
630   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
631     Builder.markExprChild(
632         S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
633     Builder.markChildToken(
634         S->getOperatorLoc(),
635         syntax::NodeRole::BinaryOperatorExpression_operatorToken);
636     Builder.markExprChild(
637         S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
638     Builder.foldNode(Builder.getExprRange(S),
639                      new (allocator()) syntax::BinaryOperatorExpression, S);
640     return true;
641   }
642 
643   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
644     if (S->isInfixBinaryOp()) {
645       Builder.markExprChild(
646           S->getArg(0),
647           syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
648       Builder.markChildToken(
649           S->getOperatorLoc(),
650           syntax::NodeRole::BinaryOperatorExpression_operatorToken);
651       Builder.markExprChild(
652           S->getArg(1),
653           syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
654       Builder.foldNode(Builder.getExprRange(S),
655                        new (allocator()) syntax::BinaryOperatorExpression, S);
656       return true;
657     }
658     return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S);
659   }
660 
661   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
662     auto Tokens = Builder.getDeclarationRange(S);
663     if (Tokens.front().kind() == tok::coloncolon) {
664       // Handle nested namespace definitions. Those start at '::' token, e.g.
665       // namespace a^::b {}
666       // FIXME: build corresponding nodes for the name of this namespace.
667       return true;
668     }
669     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
670     return true;
671   }
672 
673   bool TraverseParenTypeLoc(ParenTypeLoc L) {
674     // We reverse order of traversal to get the proper syntax structure.
675     if (!WalkUpFromParenTypeLoc(L))
676       return false;
677     return TraverseTypeLoc(L.getInnerLoc());
678   }
679 
680   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
681     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
682     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
683     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
684                      new (allocator()) syntax::ParenDeclarator, L);
685     return true;
686   }
687 
688   // Declarator chunks, they are produced by type locs and some clang::Decls.
689   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
690     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
691     Builder.markExprChild(L.getSizeExpr(),
692                           syntax::NodeRole::ArraySubscript_sizeExpression);
693     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
694     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
695                      new (allocator()) syntax::ArraySubscript, L);
696     return true;
697   }
698 
699   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
700     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
701     for (auto *P : L.getParams()) {
702       Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
703     }
704     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
705     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
706                      new (allocator()) syntax::ParametersAndQualifiers, L);
707     return true;
708   }
709 
710   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
711     if (!L.getTypePtr()->hasTrailingReturn())
712       return WalkUpFromFunctionTypeLoc(L);
713 
714     auto *TrailingReturnTokens = BuildTrailingReturn(L);
715     // Finish building the node for parameters.
716     Builder.markChild(TrailingReturnTokens,
717                       syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
718     return WalkUpFromFunctionTypeLoc(L);
719   }
720 
721   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
722     auto SR = L.getLocalSourceRange();
723     Builder.foldNode(Builder.getRange(SR),
724                      new (allocator()) syntax::MemberPointer, L);
725     return true;
726   }
727 
728   // The code below is very regular, it could even be generated with some
729   // preprocessor magic. We merely assign roles to the corresponding children
730   // and fold resulting nodes.
731   bool WalkUpFromDeclStmt(DeclStmt *S) {
732     Builder.foldNode(Builder.getStmtRange(S),
733                      new (allocator()) syntax::DeclarationStatement, S);
734     return true;
735   }
736 
737   bool WalkUpFromNullStmt(NullStmt *S) {
738     Builder.foldNode(Builder.getStmtRange(S),
739                      new (allocator()) syntax::EmptyStatement, S);
740     return true;
741   }
742 
743   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
744     Builder.markChildToken(S->getSwitchLoc(),
745                            syntax::NodeRole::IntroducerKeyword);
746     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
747     Builder.foldNode(Builder.getStmtRange(S),
748                      new (allocator()) syntax::SwitchStatement, S);
749     return true;
750   }
751 
752   bool WalkUpFromCaseStmt(CaseStmt *S) {
753     Builder.markChildToken(S->getKeywordLoc(),
754                            syntax::NodeRole::IntroducerKeyword);
755     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
756     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
757     Builder.foldNode(Builder.getStmtRange(S),
758                      new (allocator()) syntax::CaseStatement, S);
759     return true;
760   }
761 
762   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
763     Builder.markChildToken(S->getKeywordLoc(),
764                            syntax::NodeRole::IntroducerKeyword);
765     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
766     Builder.foldNode(Builder.getStmtRange(S),
767                      new (allocator()) syntax::DefaultStatement, S);
768     return true;
769   }
770 
771   bool WalkUpFromIfStmt(IfStmt *S) {
772     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
773     Builder.markStmtChild(S->getThen(),
774                           syntax::NodeRole::IfStatement_thenStatement);
775     Builder.markChildToken(S->getElseLoc(),
776                            syntax::NodeRole::IfStatement_elseKeyword);
777     Builder.markStmtChild(S->getElse(),
778                           syntax::NodeRole::IfStatement_elseStatement);
779     Builder.foldNode(Builder.getStmtRange(S),
780                      new (allocator()) syntax::IfStatement, S);
781     return true;
782   }
783 
784   bool WalkUpFromForStmt(ForStmt *S) {
785     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
786     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
787     Builder.foldNode(Builder.getStmtRange(S),
788                      new (allocator()) syntax::ForStatement, S);
789     return true;
790   }
791 
792   bool WalkUpFromWhileStmt(WhileStmt *S) {
793     Builder.markChildToken(S->getWhileLoc(),
794                            syntax::NodeRole::IntroducerKeyword);
795     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
796     Builder.foldNode(Builder.getStmtRange(S),
797                      new (allocator()) syntax::WhileStatement, S);
798     return true;
799   }
800 
801   bool WalkUpFromContinueStmt(ContinueStmt *S) {
802     Builder.markChildToken(S->getContinueLoc(),
803                            syntax::NodeRole::IntroducerKeyword);
804     Builder.foldNode(Builder.getStmtRange(S),
805                      new (allocator()) syntax::ContinueStatement, S);
806     return true;
807   }
808 
809   bool WalkUpFromBreakStmt(BreakStmt *S) {
810     Builder.markChildToken(S->getBreakLoc(),
811                            syntax::NodeRole::IntroducerKeyword);
812     Builder.foldNode(Builder.getStmtRange(S),
813                      new (allocator()) syntax::BreakStatement, S);
814     return true;
815   }
816 
817   bool WalkUpFromReturnStmt(ReturnStmt *S) {
818     Builder.markChildToken(S->getReturnLoc(),
819                            syntax::NodeRole::IntroducerKeyword);
820     Builder.markExprChild(S->getRetValue(),
821                           syntax::NodeRole::ReturnStatement_value);
822     Builder.foldNode(Builder.getStmtRange(S),
823                      new (allocator()) syntax::ReturnStatement, S);
824     return true;
825   }
826 
827   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
828     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
829     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
830     Builder.foldNode(Builder.getStmtRange(S),
831                      new (allocator()) syntax::RangeBasedForStatement, S);
832     return true;
833   }
834 
835   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
836     Builder.foldNode(Builder.getDeclarationRange(S),
837                      new (allocator()) syntax::EmptyDeclaration, S);
838     return true;
839   }
840 
841   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
842     Builder.markExprChild(S->getAssertExpr(),
843                           syntax::NodeRole::StaticAssertDeclaration_condition);
844     Builder.markExprChild(S->getMessage(),
845                           syntax::NodeRole::StaticAssertDeclaration_message);
846     Builder.foldNode(Builder.getDeclarationRange(S),
847                      new (allocator()) syntax::StaticAssertDeclaration, S);
848     return true;
849   }
850 
851   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
852     Builder.foldNode(Builder.getDeclarationRange(S),
853                      new (allocator()) syntax::LinkageSpecificationDeclaration,
854                      S);
855     return true;
856   }
857 
858   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
859     Builder.foldNode(Builder.getDeclarationRange(S),
860                      new (allocator()) syntax::NamespaceAliasDefinition, S);
861     return true;
862   }
863 
864   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
865     Builder.foldNode(Builder.getDeclarationRange(S),
866                      new (allocator()) syntax::UsingNamespaceDirective, S);
867     return true;
868   }
869 
870   bool WalkUpFromUsingDecl(UsingDecl *S) {
871     Builder.foldNode(Builder.getDeclarationRange(S),
872                      new (allocator()) syntax::UsingDeclaration, S);
873     return true;
874   }
875 
876   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
877     Builder.foldNode(Builder.getDeclarationRange(S),
878                      new (allocator()) syntax::UsingDeclaration, S);
879     return true;
880   }
881 
882   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
883     Builder.foldNode(Builder.getDeclarationRange(S),
884                      new (allocator()) syntax::UsingDeclaration, S);
885     return true;
886   }
887 
888   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
889     Builder.foldNode(Builder.getDeclarationRange(S),
890                      new (allocator()) syntax::TypeAliasDeclaration, S);
891     return true;
892   }
893 
894 private:
895   template <class T> SourceLocation getQualifiedNameStart(T *D) {
896     static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
897                    std::is_base_of<TypedefNameDecl, T>::value),
898                   "only DeclaratorDecl and TypedefNameDecl are supported.");
899 
900     auto DN = D->getDeclName();
901     bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
902     if (IsAnonymous)
903       return SourceLocation();
904 
905     if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
906       if (DD->getQualifierLoc()) {
907         return DD->getQualifierLoc().getBeginLoc();
908       }
909     }
910 
911     return D->getLocation();
912   }
913 
914   SourceRange getInitializerRange(Decl *D) {
915     if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
916       auto *I = V->getInit();
917       // Initializers in range-based-for are not part of the declarator
918       if (I && !V->isCXXForRangeDecl())
919         return I->getSourceRange();
920     }
921 
922     return SourceRange();
923   }
924 
925   /// Folds SimpleDeclarator node (if present) and in case this is the last
926   /// declarator in the chain it also folds SimpleDeclaration node.
927   template <class T> bool processDeclaratorAndDeclaration(T *D) {
928     SourceRange Initializer = getInitializerRange(D);
929     auto Range = getDeclaratorRange(Builder.sourceManager(),
930                                     D->getTypeSourceInfo()->getTypeLoc(),
931                                     getQualifiedNameStart(D), Initializer);
932 
933     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
934     // declaration, but no declarator).
935     if (Range.getBegin().isValid()) {
936       auto *N = new (allocator()) syntax::SimpleDeclarator;
937       Builder.foldNode(Builder.getRange(Range), N, nullptr);
938       Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
939     }
940 
941     if (Builder.isResponsibleForCreatingDeclaration(D)) {
942       Builder.foldNode(Builder.getDeclarationRange(D),
943                        new (allocator()) syntax::SimpleDeclaration, D);
944     }
945     return true;
946   }
947 
948   /// Returns the range of the built node.
949   syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
950     assert(L.getTypePtr()->hasTrailingReturn());
951 
952     auto ReturnedType = L.getReturnLoc();
953     // Build node for the declarator, if any.
954     auto ReturnDeclaratorRange =
955         getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
956                            /*Name=*/SourceLocation(),
957                            /*Initializer=*/SourceLocation());
958     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
959     if (ReturnDeclaratorRange.isValid()) {
960       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
961       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
962                        ReturnDeclarator, nullptr);
963     }
964 
965     // Build node for trailing return type.
966     auto Return = Builder.getRange(ReturnedType.getSourceRange());
967     const auto *Arrow = Return.begin() - 1;
968     assert(Arrow->kind() == tok::arrow);
969     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
970     Builder.markChildToken(Arrow, syntax::NodeRole::TrailingReturnType_arrow);
971     if (ReturnDeclarator)
972       Builder.markChild(ReturnDeclarator,
973                         syntax::NodeRole::TrailingReturnType_declarator);
974     auto *R = new (allocator()) syntax::TrailingReturnType;
975     Builder.foldNode(Tokens, R, L);
976     return R;
977   }
978 
979   void foldExplicitTemplateInstantiation(
980       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
981       const syntax::Token *TemplateKW,
982       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
983     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
984     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
985     Builder.markChildToken(
986         ExternKW,
987         syntax::NodeRole::ExplicitTemplateInstantiation_externKeyword);
988     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
989     Builder.markChild(
990         InnerDeclaration,
991         syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
992     Builder.foldNode(
993         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
994   }
995 
996   syntax::TemplateDeclaration *foldTemplateDeclaration(
997       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
998       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
999     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1000     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1001 
1002     auto *N = new (allocator()) syntax::TemplateDeclaration;
1003     Builder.foldNode(Range, N, From);
1004     Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
1005     return N;
1006   }
1007 
1008   /// A small helper to save some typing.
1009   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1010 
1011   syntax::TreeBuilder &Builder;
1012   const LangOptions &LangOpts;
1013 };
1014 } // namespace
1015 
1016 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1017   DeclsWithoutSemicolons.insert(D);
1018 }
1019 
1020 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1021   if (Loc.isInvalid())
1022     return;
1023   Pending.assignRole(*findToken(Loc), Role);
1024 }
1025 
1026 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1027   if (!T)
1028     return;
1029   Pending.assignRole(*T, R);
1030 }
1031 
1032 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1033   assert(N);
1034   setRole(N, R);
1035 }
1036 
1037 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1038   auto *SN = Mapping.find(N);
1039   assert(SN != nullptr);
1040   setRole(SN, R);
1041 }
1042 
1043 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1044   if (!Child)
1045     return;
1046 
1047   syntax::Tree *ChildNode = Mapping.find(Child);
1048   assert(ChildNode != nullptr);
1049 
1050   // This is an expression in a statement position, consume the trailing
1051   // semicolon and form an 'ExpressionStatement' node.
1052   if (isa<Expr>(Child)) {
1053     setRole(ChildNode, NodeRole::ExpressionStatement_expression);
1054     ChildNode = new (allocator()) syntax::ExpressionStatement;
1055     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1056     Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1057   }
1058   setRole(ChildNode, Role);
1059 }
1060 
1061 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1062   if (!Child)
1063     return;
1064   Child = Child->IgnoreImplicit();
1065 
1066   syntax::Tree *ChildNode = Mapping.find(Child);
1067   assert(ChildNode != nullptr);
1068   setRole(ChildNode, Role);
1069 }
1070 
1071 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1072   if (L.isInvalid())
1073     return nullptr;
1074   auto It = LocationToToken.find(L.getRawEncoding());
1075   assert(It != LocationToToken.end());
1076   return It->second;
1077 }
1078 
1079 syntax::TranslationUnit *
1080 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
1081   TreeBuilder Builder(A);
1082   BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
1083   return std::move(Builder).finalize();
1084 }
1085