1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Tooling/Syntax/BuildTree.h" 9 #include "clang/AST/ASTFwd.h" 10 #include "clang/AST/Decl.h" 11 #include "clang/AST/DeclBase.h" 12 #include "clang/AST/DeclCXX.h" 13 #include "clang/AST/DeclarationName.h" 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/AST/Stmt.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/AST/TypeLocVisitor.h" 20 #include "clang/Basic/LLVM.h" 21 #include "clang/Basic/SourceLocation.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/Specifiers.h" 24 #include "clang/Basic/TokenKinds.h" 25 #include "clang/Lex/Lexer.h" 26 #include "clang/Lex/LiteralSupport.h" 27 #include "clang/Tooling/Syntax/Nodes.h" 28 #include "clang/Tooling/Syntax/Tokens.h" 29 #include "clang/Tooling/Syntax/Tree.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/ScopeExit.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/Support/Allocator.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/FormatVariadic.h" 40 #include "llvm/Support/MemoryBuffer.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cstddef> 43 #include <map> 44 45 using namespace clang; 46 47 LLVM_ATTRIBUTE_UNUSED 48 static bool isImplicitExpr(Expr *E) { return E->IgnoreImplicit() != E; } 49 50 namespace { 51 /// Get start location of the Declarator from the TypeLoc. 52 /// E.g.: 53 /// loc of `(` in `int (a)` 54 /// loc of `*` in `int *(a)` 55 /// loc of the first `(` in `int (*a)(int)` 56 /// loc of the `*` in `int *(a)(int)` 57 /// loc of the first `*` in `const int *const *volatile a;` 58 /// 59 /// It is non-trivial to get the start location because TypeLocs are stored 60 /// inside out. In the example above `*volatile` is the TypeLoc returned 61 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` 62 /// returns. 63 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { 64 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { 65 auto L = Visit(T.getInnerLoc()); 66 if (L.isValid()) 67 return L; 68 return T.getLParenLoc(); 69 } 70 71 // Types spelled in the prefix part of the declarator. 72 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { 73 return HandlePointer(T); 74 } 75 76 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { 77 return HandlePointer(T); 78 } 79 80 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { 81 return HandlePointer(T); 82 } 83 84 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { 85 return HandlePointer(T); 86 } 87 88 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { 89 return HandlePointer(T); 90 } 91 92 // All other cases are not important, as they are either part of declaration 93 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on 94 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the 95 // declarator themselves, but their underlying type can. 96 SourceLocation VisitTypeLoc(TypeLoc T) { 97 auto N = T.getNextTypeLoc(); 98 if (!N) 99 return SourceLocation(); 100 return Visit(N); 101 } 102 103 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { 104 if (T.getTypePtr()->hasTrailingReturn()) 105 return SourceLocation(); // avoid recursing into the suffix of declarator. 106 return VisitTypeLoc(T); 107 } 108 109 private: 110 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { 111 auto L = Visit(T.getPointeeLoc()); 112 if (L.isValid()) 113 return L; 114 return T.getLocalSourceRange().getBegin(); 115 } 116 }; 117 } // namespace 118 119 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { 120 switch (E.getOperator()) { 121 // Comparison 122 case OO_EqualEqual: 123 case OO_ExclaimEqual: 124 case OO_Greater: 125 case OO_GreaterEqual: 126 case OO_Less: 127 case OO_LessEqual: 128 case OO_Spaceship: 129 // Assignment 130 case OO_Equal: 131 case OO_SlashEqual: 132 case OO_PercentEqual: 133 case OO_CaretEqual: 134 case OO_PipeEqual: 135 case OO_LessLessEqual: 136 case OO_GreaterGreaterEqual: 137 case OO_PlusEqual: 138 case OO_MinusEqual: 139 case OO_StarEqual: 140 case OO_AmpEqual: 141 // Binary computation 142 case OO_Slash: 143 case OO_Percent: 144 case OO_Caret: 145 case OO_Pipe: 146 case OO_LessLess: 147 case OO_GreaterGreater: 148 case OO_AmpAmp: 149 case OO_PipePipe: 150 case OO_ArrowStar: 151 case OO_Comma: 152 return syntax::NodeKind::BinaryOperatorExpression; 153 case OO_Tilde: 154 case OO_Exclaim: 155 return syntax::NodeKind::PrefixUnaryOperatorExpression; 156 // Prefix/Postfix increment/decrement 157 case OO_PlusPlus: 158 case OO_MinusMinus: 159 switch (E.getNumArgs()) { 160 case 1: 161 return syntax::NodeKind::PrefixUnaryOperatorExpression; 162 case 2: 163 return syntax::NodeKind::PostfixUnaryOperatorExpression; 164 default: 165 llvm_unreachable("Invalid number of arguments for operator"); 166 } 167 // Operators that can be unary or binary 168 case OO_Plus: 169 case OO_Minus: 170 case OO_Star: 171 case OO_Amp: 172 switch (E.getNumArgs()) { 173 case 1: 174 return syntax::NodeKind::PrefixUnaryOperatorExpression; 175 case 2: 176 return syntax::NodeKind::BinaryOperatorExpression; 177 default: 178 llvm_unreachable("Invalid number of arguments for operator"); 179 } 180 return syntax::NodeKind::BinaryOperatorExpression; 181 // Not yet supported by SyntaxTree 182 case OO_New: 183 case OO_Delete: 184 case OO_Array_New: 185 case OO_Array_Delete: 186 case OO_Coawait: 187 case OO_Subscript: 188 case OO_Arrow: 189 return syntax::NodeKind::UnknownExpression; 190 case OO_Call: 191 return syntax::NodeKind::CallExpression; 192 case OO_Conditional: // not overloadable 193 case NUM_OVERLOADED_OPERATORS: 194 case OO_None: 195 llvm_unreachable("Not an overloadable operator"); 196 } 197 llvm_unreachable("Unknown OverloadedOperatorKind enum"); 198 } 199 200 /// Gets the range of declarator as defined by the C++ grammar. E.g. 201 /// `int a;` -> range of `a`, 202 /// `int *a;` -> range of `*a`, 203 /// `int a[10];` -> range of `a[10]`, 204 /// `int a[1][2][3];` -> range of `a[1][2][3]`, 205 /// `int *a = nullptr` -> range of `*a = nullptr`. 206 /// FIMXE: \p Name must be a source range, e.g. for `operator+`. 207 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, 208 SourceLocation Name, 209 SourceRange Initializer) { 210 SourceLocation Start = GetStartLoc().Visit(T); 211 SourceLocation End = T.getSourceRange().getEnd(); 212 assert(End.isValid()); 213 if (Name.isValid()) { 214 if (Start.isInvalid()) 215 Start = Name; 216 if (SM.isBeforeInTranslationUnit(End, Name)) 217 End = Name; 218 } 219 if (Initializer.isValid()) { 220 auto InitializerEnd = Initializer.getEnd(); 221 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || 222 End == InitializerEnd); 223 End = InitializerEnd; 224 } 225 return SourceRange(Start, End); 226 } 227 228 namespace { 229 /// All AST hierarchy roots that can be represented as pointers. 230 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; 231 /// Maintains a mapping from AST to syntax tree nodes. This class will get more 232 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. 233 /// FIXME: expose this as public API. 234 class ASTToSyntaxMapping { 235 public: 236 void add(ASTPtr From, syntax::Tree *To) { 237 assert(To != nullptr); 238 assert(!From.isNull()); 239 240 bool Added = Nodes.insert({From, To}).second; 241 (void)Added; 242 assert(Added && "mapping added twice"); 243 } 244 245 void add(NestedNameSpecifierLoc From, syntax::Tree *To) { 246 assert(To != nullptr); 247 assert(From.hasQualifier()); 248 249 bool Added = NNSNodes.insert({From, To}).second; 250 (void)Added; 251 assert(Added && "mapping added twice"); 252 } 253 254 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); } 255 256 syntax::Tree *find(NestedNameSpecifierLoc P) const { 257 return NNSNodes.lookup(P); 258 } 259 260 private: 261 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; 262 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; 263 }; 264 } // namespace 265 266 /// A helper class for constructing the syntax tree while traversing a clang 267 /// AST. 268 /// 269 /// At each point of the traversal we maintain a list of pending nodes. 270 /// Initially all tokens are added as pending nodes. When processing a clang AST 271 /// node, the clients need to: 272 /// - create a corresponding syntax node, 273 /// - assign roles to all pending child nodes with 'markChild' and 274 /// 'markChildToken', 275 /// - replace the child nodes with the new syntax node in the pending list 276 /// with 'foldNode'. 277 /// 278 /// Note that all children are expected to be processed when building a node. 279 /// 280 /// Call finalize() to finish building the tree and consume the root node. 281 class syntax::TreeBuilder { 282 public: 283 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) { 284 for (const auto &T : Arena.tokenBuffer().expandedTokens()) 285 LocationToToken.insert({T.location().getRawEncoding(), &T}); 286 } 287 288 llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); } 289 const SourceManager &sourceManager() const { return Arena.sourceManager(); } 290 291 /// Populate children for \p New node, assuming it covers tokens from \p 292 /// Range. 293 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { 294 assert(New); 295 Pending.foldChildren(Arena, Range, New); 296 if (From) 297 Mapping.add(From, New); 298 } 299 300 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { 301 // FIXME: add mapping for TypeLocs 302 foldNode(Range, New, nullptr); 303 } 304 305 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 306 NestedNameSpecifierLoc From) { 307 assert(New); 308 Pending.foldChildren(Arena, Range, New); 309 if (From) 310 Mapping.add(From, New); 311 } 312 313 /// Notifies that we should not consume trailing semicolon when computing 314 /// token range of \p D. 315 void noticeDeclWithoutSemicolon(Decl *D); 316 317 /// Mark the \p Child node with a corresponding \p Role. All marked children 318 /// should be consumed by foldNode. 319 /// When called on expressions (clang::Expr is derived from clang::Stmt), 320 /// wraps expressions into expression statement. 321 void markStmtChild(Stmt *Child, NodeRole Role); 322 /// Should be called for expressions in non-statement position to avoid 323 /// wrapping into expression statement. 324 void markExprChild(Expr *Child, NodeRole Role); 325 /// Set role for a token starting at \p Loc. 326 void markChildToken(SourceLocation Loc, NodeRole R); 327 /// Set role for \p T. 328 void markChildToken(const syntax::Token *T, NodeRole R); 329 330 /// Set role for \p N. 331 void markChild(syntax::Node *N, NodeRole R); 332 /// Set role for the syntax node matching \p N. 333 void markChild(ASTPtr N, NodeRole R); 334 /// Set role for the syntax node matching \p N. 335 void markChild(NestedNameSpecifierLoc N, NodeRole R); 336 337 /// Finish building the tree and consume the root node. 338 syntax::TranslationUnit *finalize() && { 339 auto Tokens = Arena.tokenBuffer().expandedTokens(); 340 assert(!Tokens.empty()); 341 assert(Tokens.back().kind() == tok::eof); 342 343 // Build the root of the tree, consuming all the children. 344 Pending.foldChildren(Arena, Tokens.drop_back(), 345 new (Arena.allocator()) syntax::TranslationUnit); 346 347 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); 348 TU->assertInvariantsRecursive(); 349 return TU; 350 } 351 352 /// Finds a token starting at \p L. The token must exist if \p L is valid. 353 const syntax::Token *findToken(SourceLocation L) const; 354 355 /// Finds the syntax tokens corresponding to the \p SourceRange. 356 ArrayRef<syntax::Token> getRange(SourceRange Range) const { 357 assert(Range.isValid()); 358 return getRange(Range.getBegin(), Range.getEnd()); 359 } 360 361 /// Finds the syntax tokens corresponding to the passed source locations. 362 /// \p First is the start position of the first token and \p Last is the start 363 /// position of the last token. 364 ArrayRef<syntax::Token> getRange(SourceLocation First, 365 SourceLocation Last) const { 366 assert(First.isValid()); 367 assert(Last.isValid()); 368 assert(First == Last || 369 Arena.sourceManager().isBeforeInTranslationUnit(First, Last)); 370 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last))); 371 } 372 373 ArrayRef<syntax::Token> 374 getTemplateRange(const ClassTemplateSpecializationDecl *D) const { 375 auto Tokens = getRange(D->getSourceRange()); 376 return maybeAppendSemicolon(Tokens, D); 377 } 378 379 /// Returns true if \p D is the last declarator in a chain and is thus 380 /// reponsible for creating SimpleDeclaration for the whole chain. 381 template <class T> 382 bool isResponsibleForCreatingDeclaration(const T *D) const { 383 static_assert((std::is_base_of<DeclaratorDecl, T>::value || 384 std::is_base_of<TypedefNameDecl, T>::value), 385 "only DeclaratorDecl and TypedefNameDecl are supported."); 386 387 const Decl *Next = D->getNextDeclInContext(); 388 389 // There's no next sibling, this one is responsible. 390 if (Next == nullptr) { 391 return true; 392 } 393 const auto *NextT = dyn_cast<T>(Next); 394 395 // Next sibling is not the same type, this one is responsible. 396 if (NextT == nullptr) { 397 return true; 398 } 399 // Next sibling doesn't begin at the same loc, it must be a different 400 // declaration, so this declarator is responsible. 401 if (NextT->getBeginLoc() != D->getBeginLoc()) { 402 return true; 403 } 404 405 // NextT is a member of the same declaration, and we need the last member to 406 // create declaration. This one is not responsible. 407 return false; 408 } 409 410 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { 411 ArrayRef<syntax::Token> Tokens; 412 // We want to drop the template parameters for specializations. 413 if (const auto *S = dyn_cast<TagDecl>(D)) 414 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); 415 else 416 Tokens = getRange(D->getSourceRange()); 417 return maybeAppendSemicolon(Tokens, D); 418 } 419 420 ArrayRef<syntax::Token> getExprRange(const Expr *E) const { 421 return getRange(E->getSourceRange()); 422 } 423 424 /// Find the adjusted range for the statement, consuming the trailing 425 /// semicolon when needed. 426 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { 427 auto Tokens = getRange(S->getSourceRange()); 428 if (isa<CompoundStmt>(S)) 429 return Tokens; 430 431 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and 432 // all statements that end with those. Consume this semicolon here. 433 if (Tokens.back().kind() == tok::semi) 434 return Tokens; 435 return withTrailingSemicolon(Tokens); 436 } 437 438 private: 439 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, 440 const Decl *D) const { 441 if (isa<NamespaceDecl>(D)) 442 return Tokens; 443 if (DeclsWithoutSemicolons.count(D)) 444 return Tokens; 445 // FIXME: do not consume trailing semicolon on function definitions. 446 // Most declarations own a semicolon in syntax trees, but not in clang AST. 447 return withTrailingSemicolon(Tokens); 448 } 449 450 ArrayRef<syntax::Token> 451 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { 452 assert(!Tokens.empty()); 453 assert(Tokens.back().kind() != tok::eof); 454 // We never consume 'eof', so looking at the next token is ok. 455 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) 456 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1); 457 return Tokens; 458 } 459 460 void setRole(syntax::Node *N, NodeRole R) { 461 assert(N->role() == NodeRole::Detached); 462 N->setRole(R); 463 } 464 465 /// A collection of trees covering the input tokens. 466 /// When created, each tree corresponds to a single token in the file. 467 /// Clients call 'foldChildren' to attach one or more subtrees to a parent 468 /// node and update the list of trees accordingly. 469 /// 470 /// Ensures that added nodes properly nest and cover the whole token stream. 471 struct Forest { 472 Forest(syntax::Arena &A) { 473 assert(!A.tokenBuffer().expandedTokens().empty()); 474 assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof); 475 // Create all leaf nodes. 476 // Note that we do not have 'eof' in the tree. 477 for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) { 478 auto *L = new (A.allocator()) syntax::Leaf(&T); 479 L->Original = true; 480 L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue(); 481 Trees.insert(Trees.end(), {&T, L}); 482 } 483 } 484 485 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { 486 assert(!Range.empty()); 487 auto It = Trees.lower_bound(Range.begin()); 488 assert(It != Trees.end() && "no node found"); 489 assert(It->first == Range.begin() && "no child with the specified range"); 490 assert((std::next(It) == Trees.end() || 491 std::next(It)->first == Range.end()) && 492 "no child with the specified range"); 493 assert(It->second->role() == NodeRole::Detached && 494 "re-assigning role for a child"); 495 It->second->setRole(Role); 496 } 497 498 /// Add \p Node to the forest and attach child nodes based on \p Tokens. 499 void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens, 500 syntax::Tree *Node) { 501 // Attach children to `Node`. 502 assert(Node->firstChild() == nullptr && "node already has children"); 503 504 auto *FirstToken = Tokens.begin(); 505 auto BeginChildren = Trees.lower_bound(FirstToken); 506 507 assert((BeginChildren == Trees.end() || 508 BeginChildren->first == FirstToken) && 509 "fold crosses boundaries of existing subtrees"); 510 auto EndChildren = Trees.lower_bound(Tokens.end()); 511 assert( 512 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && 513 "fold crosses boundaries of existing subtrees"); 514 515 // We need to go in reverse order, because we can only prepend. 516 for (auto It = EndChildren; It != BeginChildren; --It) { 517 auto *C = std::prev(It)->second; 518 if (C->role() == NodeRole::Detached) 519 C->setRole(NodeRole::Unknown); 520 Node->prependChildLowLevel(C); 521 } 522 523 // Mark that this node came from the AST and is backed by the source code. 524 Node->Original = true; 525 Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue(); 526 527 Trees.erase(BeginChildren, EndChildren); 528 Trees.insert({FirstToken, Node}); 529 } 530 531 // EXPECTS: all tokens were consumed and are owned by a single root node. 532 syntax::Node *finalize() && { 533 assert(Trees.size() == 1); 534 auto *Root = Trees.begin()->second; 535 Trees = {}; 536 return Root; 537 } 538 539 std::string str(const syntax::Arena &A) const { 540 std::string R; 541 for (auto It = Trees.begin(); It != Trees.end(); ++It) { 542 unsigned CoveredTokens = 543 It != Trees.end() 544 ? (std::next(It)->first - It->first) 545 : A.tokenBuffer().expandedTokens().end() - It->first; 546 547 R += std::string( 548 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(), 549 It->first->text(A.sourceManager()), CoveredTokens)); 550 R += It->second->dump(A.sourceManager()); 551 } 552 return R; 553 } 554 555 private: 556 /// Maps from the start token to a subtree starting at that token. 557 /// Keys in the map are pointers into the array of expanded tokens, so 558 /// pointer order corresponds to the order of preprocessor tokens. 559 std::map<const syntax::Token *, syntax::Node *> Trees; 560 }; 561 562 /// For debugging purposes. 563 std::string str() { return Pending.str(Arena); } 564 565 syntax::Arena &Arena; 566 /// To quickly find tokens by their start location. 567 llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *> 568 LocationToToken; 569 Forest Pending; 570 llvm::DenseSet<Decl *> DeclsWithoutSemicolons; 571 ASTToSyntaxMapping Mapping; 572 }; 573 574 namespace { 575 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { 576 public: 577 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) 578 : Builder(Builder), Context(Context) {} 579 580 bool shouldTraversePostOrder() const { return true; } 581 582 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { 583 return processDeclaratorAndDeclaration(DD); 584 } 585 586 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { 587 return processDeclaratorAndDeclaration(TD); 588 } 589 590 bool VisitDecl(Decl *D) { 591 assert(!D->isImplicit()); 592 Builder.foldNode(Builder.getDeclarationRange(D), 593 new (allocator()) syntax::UnknownDeclaration(), D); 594 return true; 595 } 596 597 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to 598 // override Traverse. 599 // FIXME: make RAV call WalkUpFrom* instead. 600 bool 601 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { 602 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) 603 return false; 604 if (C->isExplicitSpecialization()) 605 return true; // we are only interested in explicit instantiations. 606 auto *Declaration = 607 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C)); 608 foldExplicitTemplateInstantiation( 609 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()), 610 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C); 611 return true; 612 } 613 614 bool WalkUpFromTemplateDecl(TemplateDecl *S) { 615 foldTemplateDeclaration( 616 Builder.getDeclarationRange(S), 617 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()), 618 Builder.getDeclarationRange(S->getTemplatedDecl()), S); 619 return true; 620 } 621 622 bool WalkUpFromTagDecl(TagDecl *C) { 623 // FIXME: build the ClassSpecifier node. 624 if (!C->isFreeStanding()) { 625 assert(C->getNumTemplateParameterLists() == 0); 626 return true; 627 } 628 handleFreeStandingTagDecl(C); 629 return true; 630 } 631 632 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { 633 assert(C->isFreeStanding()); 634 // Class is a declaration specifier and needs a spanning declaration node. 635 auto DeclarationRange = Builder.getDeclarationRange(C); 636 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; 637 Builder.foldNode(DeclarationRange, Result, nullptr); 638 639 // Build TemplateDeclaration nodes if we had template parameters. 640 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { 641 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc()); 642 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end()); 643 Result = 644 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr); 645 DeclarationRange = R; 646 }; 647 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C)) 648 ConsumeTemplateParameters(*S->getTemplateParameters()); 649 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) 650 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1)); 651 return Result; 652 } 653 654 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { 655 // We do not want to call VisitDecl(), the declaration for translation 656 // unit is built by finalize(). 657 return true; 658 } 659 660 bool WalkUpFromCompoundStmt(CompoundStmt *S) { 661 using NodeRole = syntax::NodeRole; 662 663 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen); 664 for (auto *Child : S->body()) 665 Builder.markStmtChild(Child, NodeRole::Statement); 666 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen); 667 668 Builder.foldNode(Builder.getStmtRange(S), 669 new (allocator()) syntax::CompoundStatement, S); 670 return true; 671 } 672 673 // Some statements are not yet handled by syntax trees. 674 bool WalkUpFromStmt(Stmt *S) { 675 Builder.foldNode(Builder.getStmtRange(S), 676 new (allocator()) syntax::UnknownStatement, S); 677 return true; 678 } 679 680 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { 681 // We override to traverse range initializer as VarDecl. 682 // RAV traverses it as a statement, we produce invalid node kinds in that 683 // case. 684 // FIXME: should do this in RAV instead? 685 bool Result = [&, this]() { 686 if (S->getInit() && !TraverseStmt(S->getInit())) 687 return false; 688 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) 689 return false; 690 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) 691 return false; 692 if (S->getBody() && !TraverseStmt(S->getBody())) 693 return false; 694 return true; 695 }(); 696 WalkUpFromCXXForRangeStmt(S); 697 return Result; 698 } 699 700 bool TraverseStmt(Stmt *S) { 701 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) { 702 // We want to consume the semicolon, make sure SimpleDeclaration does not. 703 for (auto *D : DS->decls()) 704 Builder.noticeDeclWithoutSemicolon(D); 705 } else if (auto *E = dyn_cast_or_null<Expr>(S)) { 706 return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit()); 707 } 708 return RecursiveASTVisitor::TraverseStmt(S); 709 } 710 711 // Some expressions are not yet handled by syntax trees. 712 bool WalkUpFromExpr(Expr *E) { 713 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); 714 Builder.foldNode(Builder.getExprRange(E), 715 new (allocator()) syntax::UnknownExpression, E); 716 return true; 717 } 718 719 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { 720 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node 721 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The 722 // UDL suffix location does not point to the beginning of a token, so we 723 // can't represent the UDL suffix as a separate syntax tree node. 724 725 return WalkUpFromUserDefinedLiteral(S); 726 } 727 728 syntax::UserDefinedLiteralExpression * 729 buildUserDefinedLiteral(UserDefinedLiteral *S) { 730 switch (S->getLiteralOperatorKind()) { 731 case UserDefinedLiteral::LOK_Integer: 732 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 733 case UserDefinedLiteral::LOK_Floating: 734 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 735 case UserDefinedLiteral::LOK_Character: 736 return new (allocator()) syntax::CharUserDefinedLiteralExpression; 737 case UserDefinedLiteral::LOK_String: 738 return new (allocator()) syntax::StringUserDefinedLiteralExpression; 739 case UserDefinedLiteral::LOK_Raw: 740 case UserDefinedLiteral::LOK_Template: 741 // For raw literal operator and numeric literal operator template we 742 // cannot get the type of the operand in the semantic AST. We get this 743 // information from the token. As integer and floating point have the same 744 // token kind, we run `NumericLiteralParser` again to distinguish them. 745 auto TokLoc = S->getBeginLoc(); 746 auto TokSpelling = 747 Builder.findToken(TokLoc)->text(Context.getSourceManager()); 748 auto Literal = 749 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), 750 Context.getLangOpts(), Context.getTargetInfo(), 751 Context.getDiagnostics()); 752 if (Literal.isIntegerLiteral()) 753 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 754 else { 755 assert(Literal.isFloatingLiteral()); 756 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 757 } 758 } 759 llvm_unreachable("Unknown literal operator kind."); 760 } 761 762 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { 763 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 764 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S); 765 return true; 766 } 767 768 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the 769 // `DependentTemplateSpecializationType` case. 770 /// Given a nested-name-specifier return the range for the last name 771 /// specifier. 772 /// 773 /// e.g. `std::T::template X<U>::` => `template X<U>::` 774 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) { 775 auto SR = NNSLoc.getLocalSourceRange(); 776 777 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should* 778 // return the desired `SourceRange`, but there is a corner case. For a 779 // `DependentTemplateSpecializationType` this method returns its 780 // qualifiers as well, in other words in the example above this method 781 // returns `T::template X<U>::` instead of only `template X<U>::` 782 if (auto TL = NNSLoc.getTypeLoc()) { 783 if (auto DependentTL = 784 TL.getAs<DependentTemplateSpecializationTypeLoc>()) { 785 // The 'template' keyword is always present in dependent template 786 // specializations. Except in the case of incorrect code 787 // TODO: Treat the case of incorrect code. 788 SR.setBegin(DependentTL.getTemplateKeywordLoc()); 789 } 790 } 791 792 return SR; 793 } 794 795 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) { 796 switch (NNS.getKind()) { 797 case NestedNameSpecifier::Global: 798 return syntax::NodeKind::GlobalNameSpecifier; 799 case NestedNameSpecifier::Namespace: 800 case NestedNameSpecifier::NamespaceAlias: 801 case NestedNameSpecifier::Identifier: 802 return syntax::NodeKind::IdentifierNameSpecifier; 803 case NestedNameSpecifier::TypeSpecWithTemplate: 804 return syntax::NodeKind::SimpleTemplateNameSpecifier; 805 case NestedNameSpecifier::TypeSpec: { 806 const auto *NNSType = NNS.getAsType(); 807 assert(NNSType); 808 if (isa<DecltypeType>(NNSType)) 809 return syntax::NodeKind::DecltypeNameSpecifier; 810 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>( 811 NNSType)) 812 return syntax::NodeKind::SimpleTemplateNameSpecifier; 813 return syntax::NodeKind::IdentifierNameSpecifier; 814 } 815 default: 816 // FIXME: Support Microsoft's __super 817 llvm::report_fatal_error("We don't yet support the __super specifier", 818 true); 819 } 820 } 821 822 syntax::NameSpecifier * 823 BuildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { 824 assert(NNSLoc.hasQualifier()); 825 auto NameSpecifierTokens = 826 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back(); 827 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) { 828 case syntax::NodeKind::GlobalNameSpecifier: 829 return new (allocator()) syntax::GlobalNameSpecifier; 830 case syntax::NodeKind::IdentifierNameSpecifier: { 831 assert(NameSpecifierTokens.size() == 1); 832 Builder.markChildToken(NameSpecifierTokens.begin(), 833 syntax::NodeRole::Unknown); 834 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; 835 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 836 return NS; 837 } 838 case syntax::NodeKind::SimpleTemplateNameSpecifier: { 839 // TODO: Build `SimpleTemplateNameSpecifier` children and implement 840 // accessors to them. 841 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, 842 // some `TypeLoc`s have inside them the previous name specifier and 843 // we want to treat them independently. 844 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; 845 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 846 return NS; 847 } 848 case syntax::NodeKind::DecltypeNameSpecifier: { 849 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>(); 850 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL)) 851 return nullptr; 852 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; 853 // TODO: Implement accessor to `DecltypeNameSpecifier` inner 854 // `DecltypeTypeLoc`. 855 // For that add mapping from `TypeLoc` to `syntax::Node*` then: 856 // Builder.markChild(TypeLoc, syntax::NodeRole); 857 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 858 return NS; 859 } 860 default: 861 llvm_unreachable("getChildKind() does not return this value"); 862 } 863 } 864 865 // To build syntax tree nodes for NestedNameSpecifierLoc we override 866 // Traverse instead of WalkUpFrom because we want to traverse the children 867 // ourselves and build a list instead of a nested tree of name specifier 868 // prefixes. 869 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { 870 if (!QualifierLoc) 871 return true; 872 for (auto it = QualifierLoc; it; it = it.getPrefix()) { 873 auto *NS = BuildNameSpecifier(it); 874 if (!NS) 875 return false; 876 Builder.markChild(NS, syntax::NodeRole::ListElement); 877 Builder.markChildToken(it.getEndLoc(), syntax::NodeRole::ListDelimiter); 878 } 879 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), 880 new (allocator()) syntax::NestedNameSpecifier, 881 QualifierLoc); 882 return true; 883 } 884 885 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, 886 SourceLocation TemplateKeywordLoc, 887 SourceRange UnqualifiedIdLoc, 888 ASTPtr From) { 889 if (QualifierLoc) { 890 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier); 891 if (TemplateKeywordLoc.isValid()) 892 Builder.markChildToken(TemplateKeywordLoc, 893 syntax::NodeRole::TemplateKeyword); 894 } 895 896 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; 897 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId, 898 nullptr); 899 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId); 900 901 auto IdExpressionBeginLoc = 902 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); 903 904 auto *TheIdExpression = new (allocator()) syntax::IdExpression; 905 Builder.foldNode( 906 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()), 907 TheIdExpression, From); 908 909 return TheIdExpression; 910 } 911 912 bool WalkUpFromMemberExpr(MemberExpr *S) { 913 // For `MemberExpr` with implicit `this->` we generate a simple 914 // `id-expression` syntax node, beacuse an implicit `member-expression` is 915 // syntactically undistinguishable from an `id-expression` 916 if (S->isImplicitAccess()) { 917 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 918 SourceRange(S->getMemberLoc(), S->getEndLoc()), S); 919 return true; 920 } 921 922 auto *TheIdExpression = buildIdExpression( 923 S->getQualifierLoc(), S->getTemplateKeywordLoc(), 924 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr); 925 926 Builder.markChild(TheIdExpression, syntax::NodeRole::Member); 927 928 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object); 929 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken); 930 931 Builder.foldNode(Builder.getExprRange(S), 932 new (allocator()) syntax::MemberExpression, S); 933 return true; 934 } 935 936 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { 937 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 938 SourceRange(S->getLocation(), S->getEndLoc()), S); 939 940 return true; 941 } 942 943 // Same logic as DeclRefExpr. 944 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { 945 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 946 SourceRange(S->getLocation(), S->getEndLoc()), S); 947 948 return true; 949 } 950 951 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { 952 if (!S->isImplicit()) { 953 Builder.markChildToken(S->getLocation(), 954 syntax::NodeRole::IntroducerKeyword); 955 Builder.foldNode(Builder.getExprRange(S), 956 new (allocator()) syntax::ThisExpression, S); 957 } 958 return true; 959 } 960 961 bool WalkUpFromParenExpr(ParenExpr *S) { 962 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen); 963 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression); 964 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen); 965 Builder.foldNode(Builder.getExprRange(S), 966 new (allocator()) syntax::ParenExpression, S); 967 return true; 968 } 969 970 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { 971 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 972 Builder.foldNode(Builder.getExprRange(S), 973 new (allocator()) syntax::IntegerLiteralExpression, S); 974 return true; 975 } 976 977 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { 978 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 979 Builder.foldNode(Builder.getExprRange(S), 980 new (allocator()) syntax::CharacterLiteralExpression, S); 981 return true; 982 } 983 984 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { 985 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 986 Builder.foldNode(Builder.getExprRange(S), 987 new (allocator()) syntax::FloatingLiteralExpression, S); 988 return true; 989 } 990 991 bool WalkUpFromStringLiteral(StringLiteral *S) { 992 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 993 Builder.foldNode(Builder.getExprRange(S), 994 new (allocator()) syntax::StringLiteralExpression, S); 995 return true; 996 } 997 998 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { 999 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1000 Builder.foldNode(Builder.getExprRange(S), 1001 new (allocator()) syntax::BoolLiteralExpression, S); 1002 return true; 1003 } 1004 1005 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { 1006 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1007 Builder.foldNode(Builder.getExprRange(S), 1008 new (allocator()) syntax::CxxNullPtrExpression, S); 1009 return true; 1010 } 1011 1012 bool WalkUpFromUnaryOperator(UnaryOperator *S) { 1013 Builder.markChildToken(S->getOperatorLoc(), 1014 syntax::NodeRole::OperatorToken); 1015 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand); 1016 1017 if (S->isPostfix()) 1018 Builder.foldNode(Builder.getExprRange(S), 1019 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1020 S); 1021 else 1022 Builder.foldNode(Builder.getExprRange(S), 1023 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1024 S); 1025 1026 return true; 1027 } 1028 1029 bool WalkUpFromBinaryOperator(BinaryOperator *S) { 1030 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide); 1031 Builder.markChildToken(S->getOperatorLoc(), 1032 syntax::NodeRole::OperatorToken); 1033 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide); 1034 Builder.foldNode(Builder.getExprRange(S), 1035 new (allocator()) syntax::BinaryOperatorExpression, S); 1036 return true; 1037 } 1038 1039 syntax::CallArguments *buildCallArguments(CallExpr::arg_range Args) { 1040 for (const auto &Arg : Args) { 1041 Builder.markExprChild(Arg, syntax::NodeRole::ListElement); 1042 const auto *DelimiterToken = 1043 std::next(Builder.findToken(Arg->getEndLoc())); 1044 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1045 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1046 } 1047 1048 auto *Arguments = new (allocator()) syntax::CallArguments; 1049 if (!Args.empty()) 1050 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(), 1051 (*(Args.end() - 1))->getEndLoc()), 1052 Arguments, nullptr); 1053 1054 return Arguments; 1055 } 1056 1057 bool WalkUpFromCallExpr(CallExpr *S) { 1058 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee); 1059 1060 const auto *LParenToken = 1061 std::next(Builder.findToken(S->getCallee()->getEndLoc())); 1062 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed 1063 // the test on decltype desctructors. 1064 if (LParenToken->kind() == clang::tok::l_paren) 1065 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1066 1067 Builder.markChild(buildCallArguments(S->arguments()), 1068 syntax::NodeRole::Arguments); 1069 1070 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1071 1072 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1073 new (allocator()) syntax::CallExpression, S); 1074 return true; 1075 } 1076 1077 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1078 // To construct a syntax tree of the same shape for calls to built-in and 1079 // user-defined operators, ignore the `DeclRefExpr` that refers to the 1080 // operator and treat it as a simple token. Do that by traversing 1081 // arguments instead of children. 1082 for (auto *child : S->arguments()) { 1083 // A postfix unary operator is declared as taking two operands. The 1084 // second operand is used to distinguish from its prefix counterpart. In 1085 // the semantic AST this "phantom" operand is represented as a 1086 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this 1087 // operand because it does not correspond to anything written in source 1088 // code. 1089 if (child->getSourceRange().isInvalid()) { 1090 assert(getOperatorNodeKind(*S) == 1091 syntax::NodeKind::PostfixUnaryOperatorExpression); 1092 continue; 1093 } 1094 if (!TraverseStmt(child)) 1095 return false; 1096 } 1097 return WalkUpFromCXXOperatorCallExpr(S); 1098 } 1099 1100 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1101 switch (getOperatorNodeKind(*S)) { 1102 case syntax::NodeKind::BinaryOperatorExpression: 1103 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide); 1104 Builder.markChildToken(S->getOperatorLoc(), 1105 syntax::NodeRole::OperatorToken); 1106 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide); 1107 Builder.foldNode(Builder.getExprRange(S), 1108 new (allocator()) syntax::BinaryOperatorExpression, S); 1109 return true; 1110 case syntax::NodeKind::PrefixUnaryOperatorExpression: 1111 Builder.markChildToken(S->getOperatorLoc(), 1112 syntax::NodeRole::OperatorToken); 1113 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1114 Builder.foldNode(Builder.getExprRange(S), 1115 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1116 S); 1117 return true; 1118 case syntax::NodeKind::PostfixUnaryOperatorExpression: 1119 Builder.markChildToken(S->getOperatorLoc(), 1120 syntax::NodeRole::OperatorToken); 1121 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1122 Builder.foldNode(Builder.getExprRange(S), 1123 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1124 S); 1125 return true; 1126 case syntax::NodeKind::CallExpression: { 1127 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee); 1128 1129 const auto *LParenToken = 1130 std::next(Builder.findToken(S->getArg(0)->getEndLoc())); 1131 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have 1132 // fixed the test on decltype desctructors. 1133 if (LParenToken->kind() == clang::tok::l_paren) 1134 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1135 1136 Builder.markChild(buildCallArguments(CallExpr::arg_range( 1137 S->arg_begin() + 1, S->arg_end())), 1138 syntax::NodeRole::Arguments); 1139 1140 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1141 1142 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1143 new (allocator()) syntax::CallExpression, S); 1144 return true; 1145 } 1146 case syntax::NodeKind::UnknownExpression: 1147 return WalkUpFromExpr(S); 1148 default: 1149 llvm_unreachable("getOperatorNodeKind() does not return this value"); 1150 } 1151 } 1152 1153 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { 1154 auto Tokens = Builder.getDeclarationRange(S); 1155 if (Tokens.front().kind() == tok::coloncolon) { 1156 // Handle nested namespace definitions. Those start at '::' token, e.g. 1157 // namespace a^::b {} 1158 // FIXME: build corresponding nodes for the name of this namespace. 1159 return true; 1160 } 1161 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); 1162 return true; 1163 } 1164 1165 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test 1166 // results. Find test coverage or remove it. 1167 bool TraverseParenTypeLoc(ParenTypeLoc L) { 1168 // We reverse order of traversal to get the proper syntax structure. 1169 if (!WalkUpFromParenTypeLoc(L)) 1170 return false; 1171 return TraverseTypeLoc(L.getInnerLoc()); 1172 } 1173 1174 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { 1175 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1176 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1177 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()), 1178 new (allocator()) syntax::ParenDeclarator, L); 1179 return true; 1180 } 1181 1182 // Declarator chunks, they are produced by type locs and some clang::Decls. 1183 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { 1184 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen); 1185 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size); 1186 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen); 1187 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()), 1188 new (allocator()) syntax::ArraySubscript, L); 1189 return true; 1190 } 1191 1192 syntax::ParameterDeclarationList * 1193 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { 1194 for (auto *P : Params) { 1195 Builder.markChild(P, syntax::NodeRole::ListElement); 1196 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc())); 1197 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1198 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1199 } 1200 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; 1201 if (!Params.empty()) 1202 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(), 1203 Params.back()->getEndLoc()), 1204 Parameters, nullptr); 1205 return Parameters; 1206 } 1207 1208 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { 1209 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1210 1211 Builder.markChild(buildParameterDeclarationList(L.getParams()), 1212 syntax::NodeRole::Parameters); 1213 1214 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1215 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), 1216 new (allocator()) syntax::ParametersAndQualifiers, L); 1217 return true; 1218 } 1219 1220 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { 1221 if (!L.getTypePtr()->hasTrailingReturn()) 1222 return WalkUpFromFunctionTypeLoc(L); 1223 1224 auto *TrailingReturnTokens = BuildTrailingReturn(L); 1225 // Finish building the node for parameters. 1226 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn); 1227 return WalkUpFromFunctionTypeLoc(L); 1228 } 1229 1230 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1231 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds 1232 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to 1233 // "(Y::*mp)" We thus reverse the order of traversal to get the proper 1234 // syntax structure. 1235 if (!WalkUpFromMemberPointerTypeLoc(L)) 1236 return false; 1237 return TraverseTypeLoc(L.getPointeeLoc()); 1238 } 1239 1240 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1241 auto SR = L.getLocalSourceRange(); 1242 Builder.foldNode(Builder.getRange(SR), 1243 new (allocator()) syntax::MemberPointer, L); 1244 return true; 1245 } 1246 1247 // The code below is very regular, it could even be generated with some 1248 // preprocessor magic. We merely assign roles to the corresponding children 1249 // and fold resulting nodes. 1250 bool WalkUpFromDeclStmt(DeclStmt *S) { 1251 Builder.foldNode(Builder.getStmtRange(S), 1252 new (allocator()) syntax::DeclarationStatement, S); 1253 return true; 1254 } 1255 1256 bool WalkUpFromNullStmt(NullStmt *S) { 1257 Builder.foldNode(Builder.getStmtRange(S), 1258 new (allocator()) syntax::EmptyStatement, S); 1259 return true; 1260 } 1261 1262 bool WalkUpFromSwitchStmt(SwitchStmt *S) { 1263 Builder.markChildToken(S->getSwitchLoc(), 1264 syntax::NodeRole::IntroducerKeyword); 1265 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1266 Builder.foldNode(Builder.getStmtRange(S), 1267 new (allocator()) syntax::SwitchStatement, S); 1268 return true; 1269 } 1270 1271 bool WalkUpFromCaseStmt(CaseStmt *S) { 1272 Builder.markChildToken(S->getKeywordLoc(), 1273 syntax::NodeRole::IntroducerKeyword); 1274 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue); 1275 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1276 Builder.foldNode(Builder.getStmtRange(S), 1277 new (allocator()) syntax::CaseStatement, S); 1278 return true; 1279 } 1280 1281 bool WalkUpFromDefaultStmt(DefaultStmt *S) { 1282 Builder.markChildToken(S->getKeywordLoc(), 1283 syntax::NodeRole::IntroducerKeyword); 1284 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1285 Builder.foldNode(Builder.getStmtRange(S), 1286 new (allocator()) syntax::DefaultStatement, S); 1287 return true; 1288 } 1289 1290 bool WalkUpFromIfStmt(IfStmt *S) { 1291 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword); 1292 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement); 1293 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword); 1294 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement); 1295 Builder.foldNode(Builder.getStmtRange(S), 1296 new (allocator()) syntax::IfStatement, S); 1297 return true; 1298 } 1299 1300 bool WalkUpFromForStmt(ForStmt *S) { 1301 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1302 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1303 Builder.foldNode(Builder.getStmtRange(S), 1304 new (allocator()) syntax::ForStatement, S); 1305 return true; 1306 } 1307 1308 bool WalkUpFromWhileStmt(WhileStmt *S) { 1309 Builder.markChildToken(S->getWhileLoc(), 1310 syntax::NodeRole::IntroducerKeyword); 1311 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1312 Builder.foldNode(Builder.getStmtRange(S), 1313 new (allocator()) syntax::WhileStatement, S); 1314 return true; 1315 } 1316 1317 bool WalkUpFromContinueStmt(ContinueStmt *S) { 1318 Builder.markChildToken(S->getContinueLoc(), 1319 syntax::NodeRole::IntroducerKeyword); 1320 Builder.foldNode(Builder.getStmtRange(S), 1321 new (allocator()) syntax::ContinueStatement, S); 1322 return true; 1323 } 1324 1325 bool WalkUpFromBreakStmt(BreakStmt *S) { 1326 Builder.markChildToken(S->getBreakLoc(), 1327 syntax::NodeRole::IntroducerKeyword); 1328 Builder.foldNode(Builder.getStmtRange(S), 1329 new (allocator()) syntax::BreakStatement, S); 1330 return true; 1331 } 1332 1333 bool WalkUpFromReturnStmt(ReturnStmt *S) { 1334 Builder.markChildToken(S->getReturnLoc(), 1335 syntax::NodeRole::IntroducerKeyword); 1336 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue); 1337 Builder.foldNode(Builder.getStmtRange(S), 1338 new (allocator()) syntax::ReturnStatement, S); 1339 return true; 1340 } 1341 1342 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { 1343 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1344 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1345 Builder.foldNode(Builder.getStmtRange(S), 1346 new (allocator()) syntax::RangeBasedForStatement, S); 1347 return true; 1348 } 1349 1350 bool WalkUpFromEmptyDecl(EmptyDecl *S) { 1351 Builder.foldNode(Builder.getDeclarationRange(S), 1352 new (allocator()) syntax::EmptyDeclaration, S); 1353 return true; 1354 } 1355 1356 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { 1357 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition); 1358 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message); 1359 Builder.foldNode(Builder.getDeclarationRange(S), 1360 new (allocator()) syntax::StaticAssertDeclaration, S); 1361 return true; 1362 } 1363 1364 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { 1365 Builder.foldNode(Builder.getDeclarationRange(S), 1366 new (allocator()) syntax::LinkageSpecificationDeclaration, 1367 S); 1368 return true; 1369 } 1370 1371 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { 1372 Builder.foldNode(Builder.getDeclarationRange(S), 1373 new (allocator()) syntax::NamespaceAliasDefinition, S); 1374 return true; 1375 } 1376 1377 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { 1378 Builder.foldNode(Builder.getDeclarationRange(S), 1379 new (allocator()) syntax::UsingNamespaceDirective, S); 1380 return true; 1381 } 1382 1383 bool WalkUpFromUsingDecl(UsingDecl *S) { 1384 Builder.foldNode(Builder.getDeclarationRange(S), 1385 new (allocator()) syntax::UsingDeclaration, S); 1386 return true; 1387 } 1388 1389 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { 1390 Builder.foldNode(Builder.getDeclarationRange(S), 1391 new (allocator()) syntax::UsingDeclaration, S); 1392 return true; 1393 } 1394 1395 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { 1396 Builder.foldNode(Builder.getDeclarationRange(S), 1397 new (allocator()) syntax::UsingDeclaration, S); 1398 return true; 1399 } 1400 1401 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { 1402 Builder.foldNode(Builder.getDeclarationRange(S), 1403 new (allocator()) syntax::TypeAliasDeclaration, S); 1404 return true; 1405 } 1406 1407 private: 1408 template <class T> SourceLocation getQualifiedNameStart(T *D) { 1409 static_assert((std::is_base_of<DeclaratorDecl, T>::value || 1410 std::is_base_of<TypedefNameDecl, T>::value), 1411 "only DeclaratorDecl and TypedefNameDecl are supported."); 1412 1413 auto DN = D->getDeclName(); 1414 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); 1415 if (IsAnonymous) 1416 return SourceLocation(); 1417 1418 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) { 1419 if (DD->getQualifierLoc()) { 1420 return DD->getQualifierLoc().getBeginLoc(); 1421 } 1422 } 1423 1424 return D->getLocation(); 1425 } 1426 1427 SourceRange getInitializerRange(Decl *D) { 1428 if (auto *V = dyn_cast<VarDecl>(D)) { 1429 auto *I = V->getInit(); 1430 // Initializers in range-based-for are not part of the declarator 1431 if (I && !V->isCXXForRangeDecl()) 1432 return I->getSourceRange(); 1433 } 1434 1435 return SourceRange(); 1436 } 1437 1438 /// Folds SimpleDeclarator node (if present) and in case this is the last 1439 /// declarator in the chain it also folds SimpleDeclaration node. 1440 template <class T> bool processDeclaratorAndDeclaration(T *D) { 1441 SourceRange Initializer = getInitializerRange(D); 1442 auto Range = getDeclaratorRange(Builder.sourceManager(), 1443 D->getTypeSourceInfo()->getTypeLoc(), 1444 getQualifiedNameStart(D), Initializer); 1445 1446 // There doesn't have to be a declarator (e.g. `void foo(int)` only has 1447 // declaration, but no declarator). 1448 if (Range.getBegin().isValid()) { 1449 auto *N = new (allocator()) syntax::SimpleDeclarator; 1450 Builder.foldNode(Builder.getRange(Range), N, nullptr); 1451 Builder.markChild(N, syntax::NodeRole::Declarator); 1452 } 1453 1454 if (Builder.isResponsibleForCreatingDeclaration(D)) { 1455 Builder.foldNode(Builder.getDeclarationRange(D), 1456 new (allocator()) syntax::SimpleDeclaration, D); 1457 } 1458 return true; 1459 } 1460 1461 /// Returns the range of the built node. 1462 syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) { 1463 assert(L.getTypePtr()->hasTrailingReturn()); 1464 1465 auto ReturnedType = L.getReturnLoc(); 1466 // Build node for the declarator, if any. 1467 auto ReturnDeclaratorRange = 1468 getDeclaratorRange(this->Builder.sourceManager(), ReturnedType, 1469 /*Name=*/SourceLocation(), 1470 /*Initializer=*/SourceLocation()); 1471 syntax::SimpleDeclarator *ReturnDeclarator = nullptr; 1472 if (ReturnDeclaratorRange.isValid()) { 1473 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; 1474 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), 1475 ReturnDeclarator, nullptr); 1476 } 1477 1478 // Build node for trailing return type. 1479 auto Return = Builder.getRange(ReturnedType.getSourceRange()); 1480 const auto *Arrow = Return.begin() - 1; 1481 assert(Arrow->kind() == tok::arrow); 1482 auto Tokens = llvm::makeArrayRef(Arrow, Return.end()); 1483 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); 1484 if (ReturnDeclarator) 1485 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator); 1486 auto *R = new (allocator()) syntax::TrailingReturnType; 1487 Builder.foldNode(Tokens, R, L); 1488 return R; 1489 } 1490 1491 void foldExplicitTemplateInstantiation( 1492 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, 1493 const syntax::Token *TemplateKW, 1494 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { 1495 assert(!ExternKW || ExternKW->kind() == tok::kw_extern); 1496 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1497 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword); 1498 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1499 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration); 1500 Builder.foldNode( 1501 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From); 1502 } 1503 1504 syntax::TemplateDeclaration *foldTemplateDeclaration( 1505 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, 1506 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { 1507 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1508 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1509 1510 auto *N = new (allocator()) syntax::TemplateDeclaration; 1511 Builder.foldNode(Range, N, From); 1512 Builder.markChild(N, syntax::NodeRole::Declaration); 1513 return N; 1514 } 1515 1516 /// A small helper to save some typing. 1517 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } 1518 1519 syntax::TreeBuilder &Builder; 1520 const ASTContext &Context; 1521 }; 1522 } // namespace 1523 1524 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { 1525 DeclsWithoutSemicolons.insert(D); 1526 } 1527 1528 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { 1529 if (Loc.isInvalid()) 1530 return; 1531 Pending.assignRole(*findToken(Loc), Role); 1532 } 1533 1534 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { 1535 if (!T) 1536 return; 1537 Pending.assignRole(*T, R); 1538 } 1539 1540 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { 1541 assert(N); 1542 setRole(N, R); 1543 } 1544 1545 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { 1546 auto *SN = Mapping.find(N); 1547 assert(SN != nullptr); 1548 setRole(SN, R); 1549 } 1550 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { 1551 auto *SN = Mapping.find(NNSLoc); 1552 assert(SN != nullptr); 1553 setRole(SN, R); 1554 } 1555 1556 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { 1557 if (!Child) 1558 return; 1559 1560 syntax::Tree *ChildNode; 1561 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) { 1562 // This is an expression in a statement position, consume the trailing 1563 // semicolon and form an 'ExpressionStatement' node. 1564 markExprChild(ChildExpr, NodeRole::Expression); 1565 ChildNode = new (allocator()) syntax::ExpressionStatement; 1566 // (!) 'getStmtRange()' ensures this covers a trailing semicolon. 1567 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode); 1568 } else { 1569 ChildNode = Mapping.find(Child); 1570 } 1571 assert(ChildNode != nullptr); 1572 setRole(ChildNode, Role); 1573 } 1574 1575 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { 1576 if (!Child) 1577 return; 1578 Child = Child->IgnoreImplicit(); 1579 1580 syntax::Tree *ChildNode = Mapping.find(Child); 1581 assert(ChildNode != nullptr); 1582 setRole(ChildNode, Role); 1583 } 1584 1585 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { 1586 if (L.isInvalid()) 1587 return nullptr; 1588 auto It = LocationToToken.find(L.getRawEncoding()); 1589 assert(It != LocationToToken.end()); 1590 return It->second; 1591 } 1592 1593 syntax::TranslationUnit * 1594 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) { 1595 TreeBuilder Builder(A); 1596 BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext()); 1597 return std::move(Builder).finalize(); 1598 } 1599