1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/Tokens.h"
31 #include "clang/Tooling/Syntax/Tree.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/FormatVariadic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cstddef>
45 #include <map>
46 
47 using namespace clang;
48 
49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
50 // generated by the compiler, as well as in implicit conversions like the one
51 // wrapping `1` in `X x = 1;`.
52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
53   if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
54     auto NumArgs = C->getNumArgs();
55     if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
56       Expr *A = C->getArg(0);
57       if (C->getParenOrBraceRange().isInvalid())
58         return A;
59     }
60   }
61   return E;
62 }
63 
64 // In:
65 // struct X {
66 //   X(int)
67 // };
68 // X x = X(1);
69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
70 // `CXXConstructExpr X(1)`.
71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
72   if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
73     if (F->getCastKind() == CK_ConstructorConversion)
74       return F->getSubExpr();
75   }
76   return E;
77 }
78 
79 static Expr *IgnoreImplicit(Expr *E) {
80   return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
81                          IgnoreImplicitConstructorSingleStep,
82                          IgnoreCXXFunctionalCastExprWrappingConstructor);
83 }
84 
85 LLVM_ATTRIBUTE_UNUSED
86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
87 
88 namespace {
89 /// Get start location of the Declarator from the TypeLoc.
90 /// E.g.:
91 ///   loc of `(` in `int (a)`
92 ///   loc of `*` in `int *(a)`
93 ///   loc of the first `(` in `int (*a)(int)`
94 ///   loc of the `*` in `int *(a)(int)`
95 ///   loc of the first `*` in `const int *const *volatile a;`
96 ///
97 /// It is non-trivial to get the start location because TypeLocs are stored
98 /// inside out. In the example above `*volatile` is the TypeLoc returned
99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
100 /// returns.
101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
102   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
103     auto L = Visit(T.getInnerLoc());
104     if (L.isValid())
105       return L;
106     return T.getLParenLoc();
107   }
108 
109   // Types spelled in the prefix part of the declarator.
110   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
111     return HandlePointer(T);
112   }
113 
114   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
115     return HandlePointer(T);
116   }
117 
118   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
119     return HandlePointer(T);
120   }
121 
122   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
123     return HandlePointer(T);
124   }
125 
126   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
127     return HandlePointer(T);
128   }
129 
130   // All other cases are not important, as they are either part of declaration
131   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
132   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
133   // declarator themselves, but their underlying type can.
134   SourceLocation VisitTypeLoc(TypeLoc T) {
135     auto N = T.getNextTypeLoc();
136     if (!N)
137       return SourceLocation();
138     return Visit(N);
139   }
140 
141   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
142     if (T.getTypePtr()->hasTrailingReturn())
143       return SourceLocation(); // avoid recursing into the suffix of declarator.
144     return VisitTypeLoc(T);
145   }
146 
147 private:
148   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
149     auto L = Visit(T.getPointeeLoc());
150     if (L.isValid())
151       return L;
152     return T.getLocalSourceRange().getBegin();
153   }
154 };
155 } // namespace
156 
157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
158   auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
159     return isa<CXXDefaultArgExpr>(It);
160   });
161   return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163 
164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165   switch (E.getOperator()) {
166   // Comparison
167   case OO_EqualEqual:
168   case OO_ExclaimEqual:
169   case OO_Greater:
170   case OO_GreaterEqual:
171   case OO_Less:
172   case OO_LessEqual:
173   case OO_Spaceship:
174   // Assignment
175   case OO_Equal:
176   case OO_SlashEqual:
177   case OO_PercentEqual:
178   case OO_CaretEqual:
179   case OO_PipeEqual:
180   case OO_LessLessEqual:
181   case OO_GreaterGreaterEqual:
182   case OO_PlusEqual:
183   case OO_MinusEqual:
184   case OO_StarEqual:
185   case OO_AmpEqual:
186   // Binary computation
187   case OO_Slash:
188   case OO_Percent:
189   case OO_Caret:
190   case OO_Pipe:
191   case OO_LessLess:
192   case OO_GreaterGreater:
193   case OO_AmpAmp:
194   case OO_PipePipe:
195   case OO_ArrowStar:
196   case OO_Comma:
197     return syntax::NodeKind::BinaryOperatorExpression;
198   case OO_Tilde:
199   case OO_Exclaim:
200     return syntax::NodeKind::PrefixUnaryOperatorExpression;
201   // Prefix/Postfix increment/decrement
202   case OO_PlusPlus:
203   case OO_MinusMinus:
204     switch (E.getNumArgs()) {
205     case 1:
206       return syntax::NodeKind::PrefixUnaryOperatorExpression;
207     case 2:
208       return syntax::NodeKind::PostfixUnaryOperatorExpression;
209     default:
210       llvm_unreachable("Invalid number of arguments for operator");
211     }
212   // Operators that can be unary or binary
213   case OO_Plus:
214   case OO_Minus:
215   case OO_Star:
216   case OO_Amp:
217     switch (E.getNumArgs()) {
218     case 1:
219       return syntax::NodeKind::PrefixUnaryOperatorExpression;
220     case 2:
221       return syntax::NodeKind::BinaryOperatorExpression;
222     default:
223       llvm_unreachable("Invalid number of arguments for operator");
224     }
225     return syntax::NodeKind::BinaryOperatorExpression;
226   // Not yet supported by SyntaxTree
227   case OO_New:
228   case OO_Delete:
229   case OO_Array_New:
230   case OO_Array_Delete:
231   case OO_Coawait:
232   case OO_Subscript:
233   case OO_Arrow:
234     return syntax::NodeKind::UnknownExpression;
235   case OO_Call:
236     return syntax::NodeKind::CallExpression;
237   case OO_Conditional: // not overloadable
238   case NUM_OVERLOADED_OPERATORS:
239   case OO_None:
240     llvm_unreachable("Not an overloadable operator");
241   }
242   llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244 
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 ///     `int ^a;`
248 ///     `int *^a;`
249 ///     `int ^a::S::f(){}`
250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251   assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252          "only DeclaratorDecl and TypedefNameDecl are supported.");
253 
254   auto DN = D->getDeclName();
255   bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256   if (IsAnonymous)
257     return SourceLocation();
258 
259   if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260     if (DD->getQualifierLoc()) {
261       return DD->getQualifierLoc().getBeginLoc();
262     }
263   }
264 
265   return D->getLocation();
266 }
267 
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 ///     `int a;` -> range of ``,
270 ///     `int *a = nullptr` -> range of `= nullptr`.
271 ///     `int a{}` -> range of `{}`.
272 ///     `int a()` -> range of `()`.
273 static SourceRange getInitializerRange(Decl *D) {
274   if (auto *V = dyn_cast<VarDecl>(D)) {
275     auto *I = V->getInit();
276     // Initializers in range-based-for are not part of the declarator
277     if (I && !V->isCXXForRangeDecl())
278       return I->getSourceRange();
279   }
280 
281   return SourceRange();
282 }
283 
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 ///     `int a;` -> range of `a`,
286 ///     `int *a;` -> range of `*a`,
287 ///     `int a[10];` -> range of `a[10]`,
288 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
289 ///     `int *a = nullptr` -> range of `*a = nullptr`.
290 ///     `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293                                       SourceLocation Name,
294                                       SourceRange Initializer) {
295   SourceLocation Start = GetStartLoc().Visit(T);
296   SourceLocation End = T.getEndLoc();
297   assert(End.isValid());
298   if (Name.isValid()) {
299     if (Start.isInvalid())
300       Start = Name;
301     if (SM.isBeforeInTranslationUnit(End, Name))
302       End = Name;
303   }
304   if (Initializer.isValid()) {
305     auto InitializerEnd = Initializer.getEnd();
306     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
307            End == InitializerEnd);
308     End = InitializerEnd;
309   }
310   return SourceRange(Start, End);
311 }
312 
313 namespace {
314 /// All AST hierarchy roots that can be represented as pointers.
315 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
316 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
317 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
318 /// FIXME: expose this as public API.
319 class ASTToSyntaxMapping {
320 public:
321   void add(ASTPtr From, syntax::Tree *To) {
322     assert(To != nullptr);
323     assert(!From.isNull());
324 
325     bool Added = Nodes.insert({From, To}).second;
326     (void)Added;
327     assert(Added && "mapping added twice");
328   }
329 
330   void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
331     assert(To != nullptr);
332     assert(From.hasQualifier());
333 
334     bool Added = NNSNodes.insert({From, To}).second;
335     (void)Added;
336     assert(Added && "mapping added twice");
337   }
338 
339   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
340 
341   syntax::Tree *find(NestedNameSpecifierLoc P) const {
342     return NNSNodes.lookup(P);
343   }
344 
345 private:
346   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
347   llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
348 };
349 } // namespace
350 
351 /// A helper class for constructing the syntax tree while traversing a clang
352 /// AST.
353 ///
354 /// At each point of the traversal we maintain a list of pending nodes.
355 /// Initially all tokens are added as pending nodes. When processing a clang AST
356 /// node, the clients need to:
357 ///   - create a corresponding syntax node,
358 ///   - assign roles to all pending child nodes with 'markChild' and
359 ///     'markChildToken',
360 ///   - replace the child nodes with the new syntax node in the pending list
361 ///     with 'foldNode'.
362 ///
363 /// Note that all children are expected to be processed when building a node.
364 ///
365 /// Call finalize() to finish building the tree and consume the root node.
366 class syntax::TreeBuilder {
367 public:
368   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
369     for (const auto &T : Arena.getTokenBuffer().expandedTokens())
370       LocationToToken.insert({T.location(), &T});
371   }
372 
373   llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
374   const SourceManager &sourceManager() const {
375     return Arena.getSourceManager();
376   }
377 
378   /// Populate children for \p New node, assuming it covers tokens from \p
379   /// Range.
380   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
381     assert(New);
382     Pending.foldChildren(Arena, Range, New);
383     if (From)
384       Mapping.add(From, New);
385   }
386 
387   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
388     // FIXME: add mapping for TypeLocs
389     foldNode(Range, New, nullptr);
390   }
391 
392   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
393                 NestedNameSpecifierLoc From) {
394     assert(New);
395     Pending.foldChildren(Arena, Range, New);
396     if (From)
397       Mapping.add(From, New);
398   }
399 
400   /// Populate children for \p New list, assuming it covers tokens from a
401   /// subrange of \p SuperRange.
402   void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
403                 ASTPtr From) {
404     assert(New);
405     auto ListRange = Pending.shrinkToFitList(SuperRange);
406     Pending.foldChildren(Arena, ListRange, New);
407     if (From)
408       Mapping.add(From, New);
409   }
410 
411   /// Notifies that we should not consume trailing semicolon when computing
412   /// token range of \p D.
413   void noticeDeclWithoutSemicolon(Decl *D);
414 
415   /// Mark the \p Child node with a corresponding \p Role. All marked children
416   /// should be consumed by foldNode.
417   /// When called on expressions (clang::Expr is derived from clang::Stmt),
418   /// wraps expressions into expression statement.
419   void markStmtChild(Stmt *Child, NodeRole Role);
420   /// Should be called for expressions in non-statement position to avoid
421   /// wrapping into expression statement.
422   void markExprChild(Expr *Child, NodeRole Role);
423   /// Set role for a token starting at \p Loc.
424   void markChildToken(SourceLocation Loc, NodeRole R);
425   /// Set role for \p T.
426   void markChildToken(const syntax::Token *T, NodeRole R);
427 
428   /// Set role for \p N.
429   void markChild(syntax::Node *N, NodeRole R);
430   /// Set role for the syntax node matching \p N.
431   void markChild(ASTPtr N, NodeRole R);
432   /// Set role for the syntax node matching \p N.
433   void markChild(NestedNameSpecifierLoc N, NodeRole R);
434 
435   /// Finish building the tree and consume the root node.
436   syntax::TranslationUnit *finalize() && {
437     auto Tokens = Arena.getTokenBuffer().expandedTokens();
438     assert(!Tokens.empty());
439     assert(Tokens.back().kind() == tok::eof);
440 
441     // Build the root of the tree, consuming all the children.
442     Pending.foldChildren(Arena, Tokens.drop_back(),
443                          new (Arena.getAllocator()) syntax::TranslationUnit);
444 
445     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
446     TU->assertInvariantsRecursive();
447     return TU;
448   }
449 
450   /// Finds a token starting at \p L. The token must exist if \p L is valid.
451   const syntax::Token *findToken(SourceLocation L) const;
452 
453   /// Finds the syntax tokens corresponding to the \p SourceRange.
454   ArrayRef<syntax::Token> getRange(SourceRange Range) const {
455     assert(Range.isValid());
456     return getRange(Range.getBegin(), Range.getEnd());
457   }
458 
459   /// Finds the syntax tokens corresponding to the passed source locations.
460   /// \p First is the start position of the first token and \p Last is the start
461   /// position of the last token.
462   ArrayRef<syntax::Token> getRange(SourceLocation First,
463                                    SourceLocation Last) const {
464     assert(First.isValid());
465     assert(Last.isValid());
466     assert(First == Last ||
467            Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
468     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
469   }
470 
471   ArrayRef<syntax::Token>
472   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
473     auto Tokens = getRange(D->getSourceRange());
474     return maybeAppendSemicolon(Tokens, D);
475   }
476 
477   /// Returns true if \p D is the last declarator in a chain and is thus
478   /// reponsible for creating SimpleDeclaration for the whole chain.
479   bool isResponsibleForCreatingDeclaration(const Decl *D) const {
480     assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
481            "only DeclaratorDecl and TypedefNameDecl are supported.");
482 
483     const Decl *Next = D->getNextDeclInContext();
484 
485     // There's no next sibling, this one is responsible.
486     if (Next == nullptr) {
487       return true;
488     }
489 
490     // Next sibling is not the same type, this one is responsible.
491     if (D->getKind() != Next->getKind()) {
492       return true;
493     }
494     // Next sibling doesn't begin at the same loc, it must be a different
495     // declaration, so this declarator is responsible.
496     if (Next->getBeginLoc() != D->getBeginLoc()) {
497       return true;
498     }
499 
500     // NextT is a member of the same declaration, and we need the last member to
501     // create declaration. This one is not responsible.
502     return false;
503   }
504 
505   ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
506     ArrayRef<syntax::Token> Tokens;
507     // We want to drop the template parameters for specializations.
508     if (const auto *S = dyn_cast<TagDecl>(D))
509       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
510     else
511       Tokens = getRange(D->getSourceRange());
512     return maybeAppendSemicolon(Tokens, D);
513   }
514 
515   ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
516     return getRange(E->getSourceRange());
517   }
518 
519   /// Find the adjusted range for the statement, consuming the trailing
520   /// semicolon when needed.
521   ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
522     auto Tokens = getRange(S->getSourceRange());
523     if (isa<CompoundStmt>(S))
524       return Tokens;
525 
526     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
527     // all statements that end with those. Consume this semicolon here.
528     if (Tokens.back().kind() == tok::semi)
529       return Tokens;
530     return withTrailingSemicolon(Tokens);
531   }
532 
533 private:
534   ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
535                                                const Decl *D) const {
536     if (isa<NamespaceDecl>(D))
537       return Tokens;
538     if (DeclsWithoutSemicolons.count(D))
539       return Tokens;
540     // FIXME: do not consume trailing semicolon on function definitions.
541     // Most declarations own a semicolon in syntax trees, but not in clang AST.
542     return withTrailingSemicolon(Tokens);
543   }
544 
545   ArrayRef<syntax::Token>
546   withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
547     assert(!Tokens.empty());
548     assert(Tokens.back().kind() != tok::eof);
549     // We never consume 'eof', so looking at the next token is ok.
550     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
551       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
552     return Tokens;
553   }
554 
555   void setRole(syntax::Node *N, NodeRole R) {
556     assert(N->getRole() == NodeRole::Detached);
557     N->setRole(R);
558   }
559 
560   /// A collection of trees covering the input tokens.
561   /// When created, each tree corresponds to a single token in the file.
562   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
563   /// node and update the list of trees accordingly.
564   ///
565   /// Ensures that added nodes properly nest and cover the whole token stream.
566   struct Forest {
567     Forest(syntax::Arena &A) {
568       assert(!A.getTokenBuffer().expandedTokens().empty());
569       assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
570       // Create all leaf nodes.
571       // Note that we do not have 'eof' in the tree.
572       for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
573         auto *L = new (A.getAllocator()) syntax::Leaf(&T);
574         L->Original = true;
575         L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
576         Trees.insert(Trees.end(), {&T, L});
577       }
578     }
579 
580     void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
581       assert(!Range.empty());
582       auto It = Trees.lower_bound(Range.begin());
583       assert(It != Trees.end() && "no node found");
584       assert(It->first == Range.begin() && "no child with the specified range");
585       assert((std::next(It) == Trees.end() ||
586               std::next(It)->first == Range.end()) &&
587              "no child with the specified range");
588       assert(It->second->getRole() == NodeRole::Detached &&
589              "re-assigning role for a child");
590       It->second->setRole(Role);
591     }
592 
593     /// Shrink \p Range to a subrange that only contains tokens of a list.
594     /// List elements and delimiters should already have correct roles.
595     ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
596       auto BeginChildren = Trees.lower_bound(Range.begin());
597       assert((BeginChildren == Trees.end() ||
598               BeginChildren->first == Range.begin()) &&
599              "Range crosses boundaries of existing subtrees");
600 
601       auto EndChildren = Trees.lower_bound(Range.end());
602       assert(
603           (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
604           "Range crosses boundaries of existing subtrees");
605 
606       auto BelongsToList = [](decltype(Trees)::value_type KV) {
607         auto Role = KV.second->getRole();
608         return Role == syntax::NodeRole::ListElement ||
609                Role == syntax::NodeRole::ListDelimiter;
610       };
611 
612       auto BeginListChildren =
613           std::find_if(BeginChildren, EndChildren, BelongsToList);
614 
615       auto EndListChildren =
616           std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
617 
618       return ArrayRef<syntax::Token>(BeginListChildren->first,
619                                      EndListChildren->first);
620     }
621 
622     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
623     void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
624                       syntax::Tree *Node) {
625       // Attach children to `Node`.
626       assert(Node->getFirstChild() == nullptr && "node already has children");
627 
628       auto *FirstToken = Tokens.begin();
629       auto BeginChildren = Trees.lower_bound(FirstToken);
630 
631       assert((BeginChildren == Trees.end() ||
632               BeginChildren->first == FirstToken) &&
633              "fold crosses boundaries of existing subtrees");
634       auto EndChildren = Trees.lower_bound(Tokens.end());
635       assert(
636           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
637           "fold crosses boundaries of existing subtrees");
638 
639       // We need to go in reverse order, because we can only prepend.
640       for (auto It = EndChildren; It != BeginChildren; --It) {
641         auto *C = std::prev(It)->second;
642         if (C->getRole() == NodeRole::Detached)
643           C->setRole(NodeRole::Unknown);
644         Node->prependChildLowLevel(C);
645       }
646 
647       // Mark that this node came from the AST and is backed by the source code.
648       Node->Original = true;
649       Node->CanModify =
650           A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
651 
652       Trees.erase(BeginChildren, EndChildren);
653       Trees.insert({FirstToken, Node});
654     }
655 
656     // EXPECTS: all tokens were consumed and are owned by a single root node.
657     syntax::Node *finalize() && {
658       assert(Trees.size() == 1);
659       auto *Root = Trees.begin()->second;
660       Trees = {};
661       return Root;
662     }
663 
664     std::string str(const syntax::Arena &A) const {
665       std::string R;
666       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
667         unsigned CoveredTokens =
668             It != Trees.end()
669                 ? (std::next(It)->first - It->first)
670                 : A.getTokenBuffer().expandedTokens().end() - It->first;
671 
672         R += std::string(
673             formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
674                     It->first->text(A.getSourceManager()), CoveredTokens));
675         R += It->second->dump(A.getSourceManager());
676       }
677       return R;
678     }
679 
680   private:
681     /// Maps from the start token to a subtree starting at that token.
682     /// Keys in the map are pointers into the array of expanded tokens, so
683     /// pointer order corresponds to the order of preprocessor tokens.
684     std::map<const syntax::Token *, syntax::Node *> Trees;
685   };
686 
687   /// For debugging purposes.
688   std::string str() { return Pending.str(Arena); }
689 
690   syntax::Arena &Arena;
691   /// To quickly find tokens by their start location.
692   llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
693   Forest Pending;
694   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
695   ASTToSyntaxMapping Mapping;
696 };
697 
698 namespace {
699 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
700 public:
701   explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
702       : Builder(Builder), Context(Context) {}
703 
704   bool shouldTraversePostOrder() const { return true; }
705 
706   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
707     return processDeclaratorAndDeclaration(DD);
708   }
709 
710   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
711     return processDeclaratorAndDeclaration(TD);
712   }
713 
714   bool VisitDecl(Decl *D) {
715     assert(!D->isImplicit());
716     Builder.foldNode(Builder.getDeclarationRange(D),
717                      new (allocator()) syntax::UnknownDeclaration(), D);
718     return true;
719   }
720 
721   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
722   // override Traverse.
723   // FIXME: make RAV call WalkUpFrom* instead.
724   bool
725   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
726     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
727       return false;
728     if (C->isExplicitSpecialization())
729       return true; // we are only interested in explicit instantiations.
730     auto *Declaration =
731         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
732     foldExplicitTemplateInstantiation(
733         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
734         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
735     return true;
736   }
737 
738   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
739     foldTemplateDeclaration(
740         Builder.getDeclarationRange(S),
741         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
742         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
743     return true;
744   }
745 
746   bool WalkUpFromTagDecl(TagDecl *C) {
747     // FIXME: build the ClassSpecifier node.
748     if (!C->isFreeStanding()) {
749       assert(C->getNumTemplateParameterLists() == 0);
750       return true;
751     }
752     handleFreeStandingTagDecl(C);
753     return true;
754   }
755 
756   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
757     assert(C->isFreeStanding());
758     // Class is a declaration specifier and needs a spanning declaration node.
759     auto DeclarationRange = Builder.getDeclarationRange(C);
760     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
761     Builder.foldNode(DeclarationRange, Result, nullptr);
762 
763     // Build TemplateDeclaration nodes if we had template parameters.
764     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
765       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
766       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
767       Result =
768           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
769       DeclarationRange = R;
770     };
771     if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
772       ConsumeTemplateParameters(*S->getTemplateParameters());
773     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
774       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
775     return Result;
776   }
777 
778   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
779     // We do not want to call VisitDecl(), the declaration for translation
780     // unit is built by finalize().
781     return true;
782   }
783 
784   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
785     using NodeRole = syntax::NodeRole;
786 
787     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
788     for (auto *Child : S->body())
789       Builder.markStmtChild(Child, NodeRole::Statement);
790     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
791 
792     Builder.foldNode(Builder.getStmtRange(S),
793                      new (allocator()) syntax::CompoundStatement, S);
794     return true;
795   }
796 
797   // Some statements are not yet handled by syntax trees.
798   bool WalkUpFromStmt(Stmt *S) {
799     Builder.foldNode(Builder.getStmtRange(S),
800                      new (allocator()) syntax::UnknownStatement, S);
801     return true;
802   }
803 
804   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
805     // We override to traverse range initializer as VarDecl.
806     // RAV traverses it as a statement, we produce invalid node kinds in that
807     // case.
808     // FIXME: should do this in RAV instead?
809     bool Result = [&, this]() {
810       if (S->getInit() && !TraverseStmt(S->getInit()))
811         return false;
812       if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
813         return false;
814       if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
815         return false;
816       if (S->getBody() && !TraverseStmt(S->getBody()))
817         return false;
818       return true;
819     }();
820     WalkUpFromCXXForRangeStmt(S);
821     return Result;
822   }
823 
824   bool TraverseStmt(Stmt *S) {
825     if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
826       // We want to consume the semicolon, make sure SimpleDeclaration does not.
827       for (auto *D : DS->decls())
828         Builder.noticeDeclWithoutSemicolon(D);
829     } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
830       return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
831     }
832     return RecursiveASTVisitor::TraverseStmt(S);
833   }
834 
835   // Some expressions are not yet handled by syntax trees.
836   bool WalkUpFromExpr(Expr *E) {
837     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
838     Builder.foldNode(Builder.getExprRange(E),
839                      new (allocator()) syntax::UnknownExpression, E);
840     return true;
841   }
842 
843   bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
844     // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
845     // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
846     // UDL suffix location does not point to the beginning of a token, so we
847     // can't represent the UDL suffix as a separate syntax tree node.
848 
849     return WalkUpFromUserDefinedLiteral(S);
850   }
851 
852   syntax::UserDefinedLiteralExpression *
853   buildUserDefinedLiteral(UserDefinedLiteral *S) {
854     switch (S->getLiteralOperatorKind()) {
855     case UserDefinedLiteral::LOK_Integer:
856       return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
857     case UserDefinedLiteral::LOK_Floating:
858       return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
859     case UserDefinedLiteral::LOK_Character:
860       return new (allocator()) syntax::CharUserDefinedLiteralExpression;
861     case UserDefinedLiteral::LOK_String:
862       return new (allocator()) syntax::StringUserDefinedLiteralExpression;
863     case UserDefinedLiteral::LOK_Raw:
864     case UserDefinedLiteral::LOK_Template:
865       // For raw literal operator and numeric literal operator template we
866       // cannot get the type of the operand in the semantic AST. We get this
867       // information from the token. As integer and floating point have the same
868       // token kind, we run `NumericLiteralParser` again to distinguish them.
869       auto TokLoc = S->getBeginLoc();
870       auto TokSpelling =
871           Builder.findToken(TokLoc)->text(Context.getSourceManager());
872       auto Literal =
873           NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
874                                Context.getLangOpts(), Context.getTargetInfo(),
875                                Context.getDiagnostics());
876       if (Literal.isIntegerLiteral())
877         return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
878       else {
879         assert(Literal.isFloatingLiteral());
880         return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
881       }
882     }
883     llvm_unreachable("Unknown literal operator kind.");
884   }
885 
886   bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
887     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
888     Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
889     return true;
890   }
891 
892   // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
893   // `DependentTemplateSpecializationType` case.
894   /// Given a nested-name-specifier return the range for the last name
895   /// specifier.
896   ///
897   /// e.g. `std::T::template X<U>::` => `template X<U>::`
898   SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
899     auto SR = NNSLoc.getLocalSourceRange();
900 
901     // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
902     // return the desired `SourceRange`, but there is a corner case. For a
903     // `DependentTemplateSpecializationType` this method returns its
904     // qualifiers as well, in other words in the example above this method
905     // returns `T::template X<U>::` instead of only `template X<U>::`
906     if (auto TL = NNSLoc.getTypeLoc()) {
907       if (auto DependentTL =
908               TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
909         // The 'template' keyword is always present in dependent template
910         // specializations. Except in the case of incorrect code
911         // TODO: Treat the case of incorrect code.
912         SR.setBegin(DependentTL.getTemplateKeywordLoc());
913       }
914     }
915 
916     return SR;
917   }
918 
919   syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
920     switch (NNS.getKind()) {
921     case NestedNameSpecifier::Global:
922       return syntax::NodeKind::GlobalNameSpecifier;
923     case NestedNameSpecifier::Namespace:
924     case NestedNameSpecifier::NamespaceAlias:
925     case NestedNameSpecifier::Identifier:
926       return syntax::NodeKind::IdentifierNameSpecifier;
927     case NestedNameSpecifier::TypeSpecWithTemplate:
928       return syntax::NodeKind::SimpleTemplateNameSpecifier;
929     case NestedNameSpecifier::TypeSpec: {
930       const auto *NNSType = NNS.getAsType();
931       assert(NNSType);
932       if (isa<DecltypeType>(NNSType))
933         return syntax::NodeKind::DecltypeNameSpecifier;
934       if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
935               NNSType))
936         return syntax::NodeKind::SimpleTemplateNameSpecifier;
937       return syntax::NodeKind::IdentifierNameSpecifier;
938     }
939     default:
940       // FIXME: Support Microsoft's __super
941       llvm::report_fatal_error("We don't yet support the __super specifier",
942                                true);
943     }
944   }
945 
946   syntax::NameSpecifier *
947   buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
948     assert(NNSLoc.hasQualifier());
949     auto NameSpecifierTokens =
950         Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
951     switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
952     case syntax::NodeKind::GlobalNameSpecifier:
953       return new (allocator()) syntax::GlobalNameSpecifier;
954     case syntax::NodeKind::IdentifierNameSpecifier: {
955       assert(NameSpecifierTokens.size() == 1);
956       Builder.markChildToken(NameSpecifierTokens.begin(),
957                              syntax::NodeRole::Unknown);
958       auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
959       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
960       return NS;
961     }
962     case syntax::NodeKind::SimpleTemplateNameSpecifier: {
963       // TODO: Build `SimpleTemplateNameSpecifier` children and implement
964       // accessors to them.
965       // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
966       // some `TypeLoc`s have inside them the previous name specifier and
967       // we want to treat them independently.
968       auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
969       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
970       return NS;
971     }
972     case syntax::NodeKind::DecltypeNameSpecifier: {
973       const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
974       if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
975         return nullptr;
976       auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
977       // TODO: Implement accessor to `DecltypeNameSpecifier` inner
978       // `DecltypeTypeLoc`.
979       // For that add mapping from `TypeLoc` to `syntax::Node*` then:
980       // Builder.markChild(TypeLoc, syntax::NodeRole);
981       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
982       return NS;
983     }
984     default:
985       llvm_unreachable("getChildKind() does not return this value");
986     }
987   }
988 
989   // To build syntax tree nodes for NestedNameSpecifierLoc we override
990   // Traverse instead of WalkUpFrom because we want to traverse the children
991   // ourselves and build a list instead of a nested tree of name specifier
992   // prefixes.
993   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
994     if (!QualifierLoc)
995       return true;
996     for (auto It = QualifierLoc; It; It = It.getPrefix()) {
997       auto *NS = buildNameSpecifier(It);
998       if (!NS)
999         return false;
1000       Builder.markChild(NS, syntax::NodeRole::ListElement);
1001       Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1002     }
1003     Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1004                      new (allocator()) syntax::NestedNameSpecifier,
1005                      QualifierLoc);
1006     return true;
1007   }
1008 
1009   syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1010                                           SourceLocation TemplateKeywordLoc,
1011                                           SourceRange UnqualifiedIdLoc,
1012                                           ASTPtr From) {
1013     if (QualifierLoc) {
1014       Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1015       if (TemplateKeywordLoc.isValid())
1016         Builder.markChildToken(TemplateKeywordLoc,
1017                                syntax::NodeRole::TemplateKeyword);
1018     }
1019 
1020     auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1021     Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1022                      nullptr);
1023     Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1024 
1025     auto IdExpressionBeginLoc =
1026         QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1027 
1028     auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1029     Builder.foldNode(
1030         Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1031         TheIdExpression, From);
1032 
1033     return TheIdExpression;
1034   }
1035 
1036   bool WalkUpFromMemberExpr(MemberExpr *S) {
1037     // For `MemberExpr` with implicit `this->` we generate a simple
1038     // `id-expression` syntax node, beacuse an implicit `member-expression` is
1039     // syntactically undistinguishable from an `id-expression`
1040     if (S->isImplicitAccess()) {
1041       buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1042                         SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1043       return true;
1044     }
1045 
1046     auto *TheIdExpression = buildIdExpression(
1047         S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1048         SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1049 
1050     Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1051 
1052     Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1053     Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1054 
1055     Builder.foldNode(Builder.getExprRange(S),
1056                      new (allocator()) syntax::MemberExpression, S);
1057     return true;
1058   }
1059 
1060   bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1061     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1062                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1063 
1064     return true;
1065   }
1066 
1067   // Same logic as DeclRefExpr.
1068   bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1069     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1070                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1071 
1072     return true;
1073   }
1074 
1075   bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1076     if (!S->isImplicit()) {
1077       Builder.markChildToken(S->getLocation(),
1078                              syntax::NodeRole::IntroducerKeyword);
1079       Builder.foldNode(Builder.getExprRange(S),
1080                        new (allocator()) syntax::ThisExpression, S);
1081     }
1082     return true;
1083   }
1084 
1085   bool WalkUpFromParenExpr(ParenExpr *S) {
1086     Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1087     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1088     Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1089     Builder.foldNode(Builder.getExprRange(S),
1090                      new (allocator()) syntax::ParenExpression, S);
1091     return true;
1092   }
1093 
1094   bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1095     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1096     Builder.foldNode(Builder.getExprRange(S),
1097                      new (allocator()) syntax::IntegerLiteralExpression, S);
1098     return true;
1099   }
1100 
1101   bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1102     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1103     Builder.foldNode(Builder.getExprRange(S),
1104                      new (allocator()) syntax::CharacterLiteralExpression, S);
1105     return true;
1106   }
1107 
1108   bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1109     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1110     Builder.foldNode(Builder.getExprRange(S),
1111                      new (allocator()) syntax::FloatingLiteralExpression, S);
1112     return true;
1113   }
1114 
1115   bool WalkUpFromStringLiteral(StringLiteral *S) {
1116     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1117     Builder.foldNode(Builder.getExprRange(S),
1118                      new (allocator()) syntax::StringLiteralExpression, S);
1119     return true;
1120   }
1121 
1122   bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1123     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1124     Builder.foldNode(Builder.getExprRange(S),
1125                      new (allocator()) syntax::BoolLiteralExpression, S);
1126     return true;
1127   }
1128 
1129   bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1130     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1131     Builder.foldNode(Builder.getExprRange(S),
1132                      new (allocator()) syntax::CxxNullPtrExpression, S);
1133     return true;
1134   }
1135 
1136   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1137     Builder.markChildToken(S->getOperatorLoc(),
1138                            syntax::NodeRole::OperatorToken);
1139     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1140 
1141     if (S->isPostfix())
1142       Builder.foldNode(Builder.getExprRange(S),
1143                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1144                        S);
1145     else
1146       Builder.foldNode(Builder.getExprRange(S),
1147                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1148                        S);
1149 
1150     return true;
1151   }
1152 
1153   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1154     Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1155     Builder.markChildToken(S->getOperatorLoc(),
1156                            syntax::NodeRole::OperatorToken);
1157     Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1158     Builder.foldNode(Builder.getExprRange(S),
1159                      new (allocator()) syntax::BinaryOperatorExpression, S);
1160     return true;
1161   }
1162 
1163   /// Builds `CallArguments` syntax node from arguments that appear in source
1164   /// code, i.e. not default arguments.
1165   syntax::CallArguments *
1166   buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1167     auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1168     for (auto *Arg : Args) {
1169       Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1170       const auto *DelimiterToken =
1171           std::next(Builder.findToken(Arg->getEndLoc()));
1172       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1173         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1174     }
1175 
1176     auto *Arguments = new (allocator()) syntax::CallArguments;
1177     if (!Args.empty())
1178       Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1179                                         (*(Args.end() - 1))->getEndLoc()),
1180                        Arguments, nullptr);
1181 
1182     return Arguments;
1183   }
1184 
1185   bool WalkUpFromCallExpr(CallExpr *S) {
1186     Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1187 
1188     const auto *LParenToken =
1189         std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1190     // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1191     // the test on decltype desctructors.
1192     if (LParenToken->kind() == clang::tok::l_paren)
1193       Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1194 
1195     Builder.markChild(buildCallArguments(S->arguments()),
1196                       syntax::NodeRole::Arguments);
1197 
1198     Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1199 
1200     Builder.foldNode(Builder.getRange(S->getSourceRange()),
1201                      new (allocator()) syntax::CallExpression, S);
1202     return true;
1203   }
1204 
1205   bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1206     // Ignore the implicit calls to default constructors.
1207     if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1208         S->getParenOrBraceRange().isInvalid())
1209       return true;
1210     return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1211   }
1212 
1213   bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1214     // To construct a syntax tree of the same shape for calls to built-in and
1215     // user-defined operators, ignore the `DeclRefExpr` that refers to the
1216     // operator and treat it as a simple token. Do that by traversing
1217     // arguments instead of children.
1218     for (auto *child : S->arguments()) {
1219       // A postfix unary operator is declared as taking two operands. The
1220       // second operand is used to distinguish from its prefix counterpart. In
1221       // the semantic AST this "phantom" operand is represented as a
1222       // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1223       // operand because it does not correspond to anything written in source
1224       // code.
1225       if (child->getSourceRange().isInvalid()) {
1226         assert(getOperatorNodeKind(*S) ==
1227                syntax::NodeKind::PostfixUnaryOperatorExpression);
1228         continue;
1229       }
1230       if (!TraverseStmt(child))
1231         return false;
1232     }
1233     return WalkUpFromCXXOperatorCallExpr(S);
1234   }
1235 
1236   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1237     switch (getOperatorNodeKind(*S)) {
1238     case syntax::NodeKind::BinaryOperatorExpression:
1239       Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1240       Builder.markChildToken(S->getOperatorLoc(),
1241                              syntax::NodeRole::OperatorToken);
1242       Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1243       Builder.foldNode(Builder.getExprRange(S),
1244                        new (allocator()) syntax::BinaryOperatorExpression, S);
1245       return true;
1246     case syntax::NodeKind::PrefixUnaryOperatorExpression:
1247       Builder.markChildToken(S->getOperatorLoc(),
1248                              syntax::NodeRole::OperatorToken);
1249       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1250       Builder.foldNode(Builder.getExprRange(S),
1251                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1252                        S);
1253       return true;
1254     case syntax::NodeKind::PostfixUnaryOperatorExpression:
1255       Builder.markChildToken(S->getOperatorLoc(),
1256                              syntax::NodeRole::OperatorToken);
1257       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1258       Builder.foldNode(Builder.getExprRange(S),
1259                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1260                        S);
1261       return true;
1262     case syntax::NodeKind::CallExpression: {
1263       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1264 
1265       const auto *LParenToken =
1266           std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1267       // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1268       // fixed the test on decltype desctructors.
1269       if (LParenToken->kind() == clang::tok::l_paren)
1270         Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1271 
1272       Builder.markChild(buildCallArguments(CallExpr::arg_range(
1273                             S->arg_begin() + 1, S->arg_end())),
1274                         syntax::NodeRole::Arguments);
1275 
1276       Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1277 
1278       Builder.foldNode(Builder.getRange(S->getSourceRange()),
1279                        new (allocator()) syntax::CallExpression, S);
1280       return true;
1281     }
1282     case syntax::NodeKind::UnknownExpression:
1283       return WalkUpFromExpr(S);
1284     default:
1285       llvm_unreachable("getOperatorNodeKind() does not return this value");
1286     }
1287   }
1288 
1289   bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1290 
1291   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1292     auto Tokens = Builder.getDeclarationRange(S);
1293     if (Tokens.front().kind() == tok::coloncolon) {
1294       // Handle nested namespace definitions. Those start at '::' token, e.g.
1295       // namespace a^::b {}
1296       // FIXME: build corresponding nodes for the name of this namespace.
1297       return true;
1298     }
1299     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1300     return true;
1301   }
1302 
1303   // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1304   // results. Find test coverage or remove it.
1305   bool TraverseParenTypeLoc(ParenTypeLoc L) {
1306     // We reverse order of traversal to get the proper syntax structure.
1307     if (!WalkUpFromParenTypeLoc(L))
1308       return false;
1309     return TraverseTypeLoc(L.getInnerLoc());
1310   }
1311 
1312   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1313     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1314     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1315     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1316                      new (allocator()) syntax::ParenDeclarator, L);
1317     return true;
1318   }
1319 
1320   // Declarator chunks, they are produced by type locs and some clang::Decls.
1321   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1322     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1323     Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1324     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1325     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1326                      new (allocator()) syntax::ArraySubscript, L);
1327     return true;
1328   }
1329 
1330   syntax::ParameterDeclarationList *
1331   buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1332     for (auto *P : Params) {
1333       Builder.markChild(P, syntax::NodeRole::ListElement);
1334       const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1335       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1336         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1337     }
1338     auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1339     if (!Params.empty())
1340       Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1341                                         Params.back()->getEndLoc()),
1342                        Parameters, nullptr);
1343     return Parameters;
1344   }
1345 
1346   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1347     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1348 
1349     Builder.markChild(buildParameterDeclarationList(L.getParams()),
1350                       syntax::NodeRole::Parameters);
1351 
1352     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1353     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1354                      new (allocator()) syntax::ParametersAndQualifiers, L);
1355     return true;
1356   }
1357 
1358   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1359     if (!L.getTypePtr()->hasTrailingReturn())
1360       return WalkUpFromFunctionTypeLoc(L);
1361 
1362     auto *TrailingReturnTokens = buildTrailingReturn(L);
1363     // Finish building the node for parameters.
1364     Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1365     return WalkUpFromFunctionTypeLoc(L);
1366   }
1367 
1368   bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1369     // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1370     // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1371     // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1372     // syntax structure.
1373     if (!WalkUpFromMemberPointerTypeLoc(L))
1374       return false;
1375     return TraverseTypeLoc(L.getPointeeLoc());
1376   }
1377 
1378   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1379     auto SR = L.getLocalSourceRange();
1380     Builder.foldNode(Builder.getRange(SR),
1381                      new (allocator()) syntax::MemberPointer, L);
1382     return true;
1383   }
1384 
1385   // The code below is very regular, it could even be generated with some
1386   // preprocessor magic. We merely assign roles to the corresponding children
1387   // and fold resulting nodes.
1388   bool WalkUpFromDeclStmt(DeclStmt *S) {
1389     Builder.foldNode(Builder.getStmtRange(S),
1390                      new (allocator()) syntax::DeclarationStatement, S);
1391     return true;
1392   }
1393 
1394   bool WalkUpFromNullStmt(NullStmt *S) {
1395     Builder.foldNode(Builder.getStmtRange(S),
1396                      new (allocator()) syntax::EmptyStatement, S);
1397     return true;
1398   }
1399 
1400   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1401     Builder.markChildToken(S->getSwitchLoc(),
1402                            syntax::NodeRole::IntroducerKeyword);
1403     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1404     Builder.foldNode(Builder.getStmtRange(S),
1405                      new (allocator()) syntax::SwitchStatement, S);
1406     return true;
1407   }
1408 
1409   bool WalkUpFromCaseStmt(CaseStmt *S) {
1410     Builder.markChildToken(S->getKeywordLoc(),
1411                            syntax::NodeRole::IntroducerKeyword);
1412     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1413     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1414     Builder.foldNode(Builder.getStmtRange(S),
1415                      new (allocator()) syntax::CaseStatement, S);
1416     return true;
1417   }
1418 
1419   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1420     Builder.markChildToken(S->getKeywordLoc(),
1421                            syntax::NodeRole::IntroducerKeyword);
1422     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1423     Builder.foldNode(Builder.getStmtRange(S),
1424                      new (allocator()) syntax::DefaultStatement, S);
1425     return true;
1426   }
1427 
1428   bool WalkUpFromIfStmt(IfStmt *S) {
1429     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1430     Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1431     Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1432     Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1433     Builder.foldNode(Builder.getStmtRange(S),
1434                      new (allocator()) syntax::IfStatement, S);
1435     return true;
1436   }
1437 
1438   bool WalkUpFromForStmt(ForStmt *S) {
1439     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1440     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1441     Builder.foldNode(Builder.getStmtRange(S),
1442                      new (allocator()) syntax::ForStatement, S);
1443     return true;
1444   }
1445 
1446   bool WalkUpFromWhileStmt(WhileStmt *S) {
1447     Builder.markChildToken(S->getWhileLoc(),
1448                            syntax::NodeRole::IntroducerKeyword);
1449     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1450     Builder.foldNode(Builder.getStmtRange(S),
1451                      new (allocator()) syntax::WhileStatement, S);
1452     return true;
1453   }
1454 
1455   bool WalkUpFromContinueStmt(ContinueStmt *S) {
1456     Builder.markChildToken(S->getContinueLoc(),
1457                            syntax::NodeRole::IntroducerKeyword);
1458     Builder.foldNode(Builder.getStmtRange(S),
1459                      new (allocator()) syntax::ContinueStatement, S);
1460     return true;
1461   }
1462 
1463   bool WalkUpFromBreakStmt(BreakStmt *S) {
1464     Builder.markChildToken(S->getBreakLoc(),
1465                            syntax::NodeRole::IntroducerKeyword);
1466     Builder.foldNode(Builder.getStmtRange(S),
1467                      new (allocator()) syntax::BreakStatement, S);
1468     return true;
1469   }
1470 
1471   bool WalkUpFromReturnStmt(ReturnStmt *S) {
1472     Builder.markChildToken(S->getReturnLoc(),
1473                            syntax::NodeRole::IntroducerKeyword);
1474     Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1475     Builder.foldNode(Builder.getStmtRange(S),
1476                      new (allocator()) syntax::ReturnStatement, S);
1477     return true;
1478   }
1479 
1480   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1481     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1482     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1483     Builder.foldNode(Builder.getStmtRange(S),
1484                      new (allocator()) syntax::RangeBasedForStatement, S);
1485     return true;
1486   }
1487 
1488   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1489     Builder.foldNode(Builder.getDeclarationRange(S),
1490                      new (allocator()) syntax::EmptyDeclaration, S);
1491     return true;
1492   }
1493 
1494   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1495     Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1496     Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1497     Builder.foldNode(Builder.getDeclarationRange(S),
1498                      new (allocator()) syntax::StaticAssertDeclaration, S);
1499     return true;
1500   }
1501 
1502   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1503     Builder.foldNode(Builder.getDeclarationRange(S),
1504                      new (allocator()) syntax::LinkageSpecificationDeclaration,
1505                      S);
1506     return true;
1507   }
1508 
1509   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1510     Builder.foldNode(Builder.getDeclarationRange(S),
1511                      new (allocator()) syntax::NamespaceAliasDefinition, S);
1512     return true;
1513   }
1514 
1515   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1516     Builder.foldNode(Builder.getDeclarationRange(S),
1517                      new (allocator()) syntax::UsingNamespaceDirective, S);
1518     return true;
1519   }
1520 
1521   bool WalkUpFromUsingDecl(UsingDecl *S) {
1522     Builder.foldNode(Builder.getDeclarationRange(S),
1523                      new (allocator()) syntax::UsingDeclaration, S);
1524     return true;
1525   }
1526 
1527   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1528     Builder.foldNode(Builder.getDeclarationRange(S),
1529                      new (allocator()) syntax::UsingDeclaration, S);
1530     return true;
1531   }
1532 
1533   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1534     Builder.foldNode(Builder.getDeclarationRange(S),
1535                      new (allocator()) syntax::UsingDeclaration, S);
1536     return true;
1537   }
1538 
1539   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1540     Builder.foldNode(Builder.getDeclarationRange(S),
1541                      new (allocator()) syntax::TypeAliasDeclaration, S);
1542     return true;
1543   }
1544 
1545 private:
1546   /// Folds SimpleDeclarator node (if present) and in case this is the last
1547   /// declarator in the chain it also folds SimpleDeclaration node.
1548   template <class T> bool processDeclaratorAndDeclaration(T *D) {
1549     auto Range = getDeclaratorRange(
1550         Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1551         getQualifiedNameStart(D), getInitializerRange(D));
1552 
1553     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1554     // declaration, but no declarator).
1555     if (!Range.getBegin().isValid()) {
1556       Builder.markChild(new (allocator()) syntax::DeclaratorList,
1557                         syntax::NodeRole::Declarators);
1558       Builder.foldNode(Builder.getDeclarationRange(D),
1559                        new (allocator()) syntax::SimpleDeclaration, D);
1560       return true;
1561     }
1562 
1563     auto *N = new (allocator()) syntax::SimpleDeclarator;
1564     Builder.foldNode(Builder.getRange(Range), N, nullptr);
1565     Builder.markChild(N, syntax::NodeRole::ListElement);
1566 
1567     if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1568       // If this is not the last declarator in the declaration we expect a
1569       // delimiter after it.
1570       const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1571       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1572         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1573     } else {
1574       auto *DL = new (allocator()) syntax::DeclaratorList;
1575       auto DeclarationRange = Builder.getDeclarationRange(D);
1576       Builder.foldList(DeclarationRange, DL, nullptr);
1577 
1578       Builder.markChild(DL, syntax::NodeRole::Declarators);
1579       Builder.foldNode(DeclarationRange,
1580                        new (allocator()) syntax::SimpleDeclaration, D);
1581     }
1582     return true;
1583   }
1584 
1585   /// Returns the range of the built node.
1586   syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1587     assert(L.getTypePtr()->hasTrailingReturn());
1588 
1589     auto ReturnedType = L.getReturnLoc();
1590     // Build node for the declarator, if any.
1591     auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1592                                              ReturnedType.getEndLoc());
1593     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1594     if (ReturnDeclaratorRange.isValid()) {
1595       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1596       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1597                        ReturnDeclarator, nullptr);
1598     }
1599 
1600     // Build node for trailing return type.
1601     auto Return = Builder.getRange(ReturnedType.getSourceRange());
1602     const auto *Arrow = Return.begin() - 1;
1603     assert(Arrow->kind() == tok::arrow);
1604     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1605     Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1606     if (ReturnDeclarator)
1607       Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1608     auto *R = new (allocator()) syntax::TrailingReturnType;
1609     Builder.foldNode(Tokens, R, L);
1610     return R;
1611   }
1612 
1613   void foldExplicitTemplateInstantiation(
1614       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1615       const syntax::Token *TemplateKW,
1616       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1617     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1618     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1619     Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1620     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1621     Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1622     Builder.foldNode(
1623         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1624   }
1625 
1626   syntax::TemplateDeclaration *foldTemplateDeclaration(
1627       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1628       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1629     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1630     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1631 
1632     auto *N = new (allocator()) syntax::TemplateDeclaration;
1633     Builder.foldNode(Range, N, From);
1634     Builder.markChild(N, syntax::NodeRole::Declaration);
1635     return N;
1636   }
1637 
1638   /// A small helper to save some typing.
1639   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1640 
1641   syntax::TreeBuilder &Builder;
1642   const ASTContext &Context;
1643 };
1644 } // namespace
1645 
1646 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1647   DeclsWithoutSemicolons.insert(D);
1648 }
1649 
1650 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1651   if (Loc.isInvalid())
1652     return;
1653   Pending.assignRole(*findToken(Loc), Role);
1654 }
1655 
1656 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1657   if (!T)
1658     return;
1659   Pending.assignRole(*T, R);
1660 }
1661 
1662 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1663   assert(N);
1664   setRole(N, R);
1665 }
1666 
1667 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1668   auto *SN = Mapping.find(N);
1669   assert(SN != nullptr);
1670   setRole(SN, R);
1671 }
1672 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1673   auto *SN = Mapping.find(NNSLoc);
1674   assert(SN != nullptr);
1675   setRole(SN, R);
1676 }
1677 
1678 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1679   if (!Child)
1680     return;
1681 
1682   syntax::Tree *ChildNode;
1683   if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1684     // This is an expression in a statement position, consume the trailing
1685     // semicolon and form an 'ExpressionStatement' node.
1686     markExprChild(ChildExpr, NodeRole::Expression);
1687     ChildNode = new (allocator()) syntax::ExpressionStatement;
1688     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1689     Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1690   } else {
1691     ChildNode = Mapping.find(Child);
1692   }
1693   assert(ChildNode != nullptr);
1694   setRole(ChildNode, Role);
1695 }
1696 
1697 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1698   if (!Child)
1699     return;
1700   Child = IgnoreImplicit(Child);
1701 
1702   syntax::Tree *ChildNode = Mapping.find(Child);
1703   assert(ChildNode != nullptr);
1704   setRole(ChildNode, Role);
1705 }
1706 
1707 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1708   if (L.isInvalid())
1709     return nullptr;
1710   auto It = LocationToToken.find(L);
1711   assert(It != LocationToToken.end());
1712   return It->second;
1713 }
1714 
1715 syntax::TranslationUnit *
1716 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
1717   TreeBuilder Builder(A);
1718   BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
1719   return std::move(Builder).finalize();
1720 }
1721