1 //===- ModuleDepCollector.cpp - Callbacks to collect deps -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Tooling/DependencyScanning/ModuleDepCollector.h"
10 
11 #include "clang/Frontend/CompilerInstance.h"
12 #include "clang/Lex/Preprocessor.h"
13 #include "clang/Tooling/DependencyScanning/DependencyScanningWorker.h"
14 #include "llvm/Support/StringSaver.h"
15 
16 using namespace clang;
17 using namespace tooling;
18 using namespace dependencies;
19 
20 static void optimizeHeaderSearchOpts(HeaderSearchOptions &Opts,
21                                      ASTReader &Reader,
22                                      const serialization::ModuleFile &MF) {
23   // Only preserve search paths that were used during the dependency scan.
24   std::vector<HeaderSearchOptions::Entry> Entries = Opts.UserEntries;
25   Opts.UserEntries.clear();
26   for (unsigned I = 0; I < Entries.size(); ++I)
27     if (MF.SearchPathUsage[I])
28       Opts.UserEntries.push_back(Entries[I]);
29 }
30 
31 CompilerInvocation ModuleDepCollector::makeInvocationForModuleBuildWithoutPaths(
32     const ModuleDeps &Deps,
33     llvm::function_ref<void(CompilerInvocation &)> Optimize) const {
34   // Make a deep copy of the original Clang invocation.
35   CompilerInvocation CI(OriginalInvocation);
36 
37   CI.getLangOpts()->resetNonModularOptions();
38   CI.getPreprocessorOpts().resetNonModularOptions();
39 
40   // Remove options incompatible with explicit module build or are likely to
41   // differ between identical modules discovered from different translation
42   // units.
43   CI.getFrontendOpts().Inputs.clear();
44   CI.getFrontendOpts().OutputFile.clear();
45   CI.getCodeGenOpts().MainFileName.clear();
46   CI.getCodeGenOpts().DwarfDebugFlags.clear();
47 
48   CI.getFrontendOpts().ProgramAction = frontend::GenerateModule;
49   CI.getLangOpts()->ModuleName = Deps.ID.ModuleName;
50   CI.getFrontendOpts().IsSystemModule = Deps.IsSystem;
51 
52   CI.getLangOpts()->ImplicitModules = false;
53   CI.getHeaderSearchOpts().ImplicitModuleMaps = false;
54 
55   // Report the prebuilt modules this module uses.
56   for (const auto &PrebuiltModule : Deps.PrebuiltModuleDeps)
57     CI.getFrontendOpts().ModuleFiles.push_back(PrebuiltModule.PCMFile);
58 
59   CI.getFrontendOpts().ModuleMapFiles = Deps.ModuleMapFileDeps;
60 
61   Optimize(CI);
62 
63   // The original invocation probably didn't have strict context hash enabled.
64   // We will use the context hash of this invocation to distinguish between
65   // multiple incompatible versions of the same module and will use it when
66   // reporting dependencies to the clients. Let's make sure we're using
67   // **strict** context hash in order to prevent accidental sharing of
68   // incompatible modules (e.g. with differences in search paths).
69   CI.getHeaderSearchOpts().ModulesStrictContextHash = true;
70 
71   return CI;
72 }
73 
74 static std::vector<std::string>
75 serializeCompilerInvocation(const CompilerInvocation &CI) {
76   // Set up string allocator.
77   llvm::BumpPtrAllocator Alloc;
78   llvm::StringSaver Strings(Alloc);
79   auto SA = [&Strings](const Twine &Arg) { return Strings.save(Arg).data(); };
80 
81   // Synthesize full command line from the CompilerInvocation, including "-cc1".
82   SmallVector<const char *, 32> Args{"-cc1"};
83   CI.generateCC1CommandLine(Args, SA);
84 
85   // Convert arguments to the return type.
86   return std::vector<std::string>{Args.begin(), Args.end()};
87 }
88 
89 std::vector<std::string> ModuleDeps::getCanonicalCommandLine(
90     std::function<StringRef(ModuleID)> LookupPCMPath) const {
91   CompilerInvocation CI(BuildInvocation);
92   FrontendOptions &FrontendOpts = CI.getFrontendOpts();
93 
94   InputKind ModuleMapInputKind(FrontendOpts.DashX.getLanguage(),
95                                InputKind::Format::ModuleMap);
96   FrontendOpts.Inputs.emplace_back(ClangModuleMapFile, ModuleMapInputKind);
97   FrontendOpts.OutputFile = std::string(LookupPCMPath(ID));
98 
99   for (ModuleID MID : ClangModuleDeps)
100     FrontendOpts.ModuleFiles.emplace_back(LookupPCMPath(MID));
101 
102   return serializeCompilerInvocation(CI);
103 }
104 
105 std::vector<std::string>
106 ModuleDeps::getCanonicalCommandLineWithoutModulePaths() const {
107   return serializeCompilerInvocation(BuildInvocation);
108 }
109 
110 void ModuleDepCollectorPP::FileChanged(SourceLocation Loc,
111                                        FileChangeReason Reason,
112                                        SrcMgr::CharacteristicKind FileType,
113                                        FileID PrevFID) {
114   if (Reason != PPCallbacks::EnterFile)
115     return;
116 
117   // This has to be delayed as the context hash can change at the start of
118   // `CompilerInstance::ExecuteAction`.
119   if (MDC.ContextHash.empty()) {
120     MDC.ContextHash = MDC.ScanInstance.getInvocation().getModuleHash();
121     MDC.Consumer.handleContextHash(MDC.ContextHash);
122   }
123 
124   SourceManager &SM = MDC.ScanInstance.getSourceManager();
125 
126   // Dependency generation really does want to go all the way to the
127   // file entry for a source location to find out what is depended on.
128   // We do not want #line markers to affect dependency generation!
129   if (Optional<StringRef> Filename =
130           SM.getNonBuiltinFilenameForID(SM.getFileID(SM.getExpansionLoc(Loc))))
131     MDC.FileDeps.push_back(
132         std::string(llvm::sys::path::remove_leading_dotslash(*Filename)));
133 }
134 
135 void ModuleDepCollectorPP::InclusionDirective(
136     SourceLocation HashLoc, const Token &IncludeTok, StringRef FileName,
137     bool IsAngled, CharSourceRange FilenameRange, const FileEntry *File,
138     StringRef SearchPath, StringRef RelativePath, const Module *Imported,
139     SrcMgr::CharacteristicKind FileType) {
140   if (!File && !Imported) {
141     // This is a non-modular include that HeaderSearch failed to find. Add it
142     // here as `FileChanged` will never see it.
143     MDC.FileDeps.push_back(std::string(FileName));
144   }
145   handleImport(Imported);
146 }
147 
148 void ModuleDepCollectorPP::moduleImport(SourceLocation ImportLoc,
149                                         ModuleIdPath Path,
150                                         const Module *Imported) {
151   handleImport(Imported);
152 }
153 
154 void ModuleDepCollectorPP::handleImport(const Module *Imported) {
155   if (!Imported)
156     return;
157 
158   const Module *TopLevelModule = Imported->getTopLevelModule();
159 
160   if (MDC.isPrebuiltModule(TopLevelModule))
161     DirectPrebuiltModularDeps.insert(TopLevelModule);
162   else
163     DirectModularDeps.insert(TopLevelModule);
164 }
165 
166 void ModuleDepCollectorPP::EndOfMainFile() {
167   FileID MainFileID = MDC.ScanInstance.getSourceManager().getMainFileID();
168   MDC.MainFile = std::string(MDC.ScanInstance.getSourceManager()
169                                  .getFileEntryForID(MainFileID)
170                                  ->getName());
171 
172   if (!MDC.ScanInstance.getPreprocessorOpts().ImplicitPCHInclude.empty())
173     MDC.FileDeps.push_back(
174         MDC.ScanInstance.getPreprocessorOpts().ImplicitPCHInclude);
175 
176   for (const Module *M : DirectModularDeps) {
177     // A top-level module might not be actually imported as a module when
178     // -fmodule-name is used to compile a translation unit that imports this
179     // module. In that case it can be skipped. The appropriate header
180     // dependencies will still be reported as expected.
181     if (!M->getASTFile())
182       continue;
183     handleTopLevelModule(M);
184   }
185 
186   MDC.Consumer.handleDependencyOutputOpts(*MDC.Opts);
187 
188   for (auto &&I : MDC.ModularDeps)
189     MDC.Consumer.handleModuleDependency(I.second);
190 
191   for (auto &&I : MDC.FileDeps)
192     MDC.Consumer.handleFileDependency(I);
193 
194   for (auto &&I : DirectPrebuiltModularDeps)
195     MDC.Consumer.handlePrebuiltModuleDependency(PrebuiltModuleDep{I});
196 }
197 
198 ModuleID ModuleDepCollectorPP::handleTopLevelModule(const Module *M) {
199   assert(M == M->getTopLevelModule() && "Expected top level module!");
200 
201   // If this module has been handled already, just return its ID.
202   auto ModI = MDC.ModularDeps.insert({M, ModuleDeps{}});
203   if (!ModI.second)
204     return ModI.first->second.ID;
205 
206   ModuleDeps &MD = ModI.first->second;
207 
208   MD.ID.ModuleName = M->getFullModuleName();
209   MD.ImportedByMainFile = DirectModularDeps.contains(M);
210   MD.ImplicitModulePCMPath = std::string(M->getASTFile()->getName());
211   MD.IsSystem = M->IsSystem;
212 
213   const FileEntry *ModuleMap = MDC.ScanInstance.getPreprocessor()
214                                    .getHeaderSearchInfo()
215                                    .getModuleMap()
216                                    .getModuleMapFileForUniquing(M);
217 
218   if (ModuleMap) {
219     StringRef Path = ModuleMap->tryGetRealPathName();
220     if (Path.empty())
221       Path = ModuleMap->getName();
222     MD.ClangModuleMapFile = std::string(Path);
223   }
224 
225   serialization::ModuleFile *MF =
226       MDC.ScanInstance.getASTReader()->getModuleManager().lookup(
227           M->getASTFile());
228   MDC.ScanInstance.getASTReader()->visitInputFiles(
229       *MF, true, true, [&](const serialization::InputFile &IF, bool isSystem) {
230         // __inferred_module.map is the result of the way in which an implicit
231         // module build handles inferred modules. It adds an overlay VFS with
232         // this file in the proper directory and relies on the rest of Clang to
233         // handle it like normal. With explicitly built modules we don't need
234         // to play VFS tricks, so replace it with the correct module map.
235         if (IF.getFile()->getName().endswith("__inferred_module.map")) {
236           MD.FileDeps.insert(ModuleMap->getName());
237           return;
238         }
239         MD.FileDeps.insert(IF.getFile()->getName());
240       });
241 
242   // We usually don't need to list the module map files of our dependencies when
243   // building a module explicitly: their semantics will be deserialized from PCM
244   // files.
245   //
246   // However, some module maps loaded implicitly during the dependency scan can
247   // describe anti-dependencies. That happens when this module, let's call it
248   // M1, is marked as '[no_undeclared_includes]' and tries to access a header
249   // "M2/M2.h" from another module, M2, but doesn't have a 'use M2;'
250   // declaration. The explicit build needs the module map for M2 so that it
251   // knows that textually including "M2/M2.h" is not allowed.
252   // E.g., '__has_include("M2/M2.h")' should return false, but without M2's
253   // module map the explicit build would return true.
254   //
255   // An alternative approach would be to tell the explicit build what its
256   // textual dependencies are, instead of having it re-discover its
257   // anti-dependencies. For example, we could create and use an `-ivfs-overlay`
258   // with `fall-through: false` that explicitly listed the dependencies.
259   // However, that's more complicated to implement and harder to reason about.
260   if (M->NoUndeclaredIncludes) {
261     // We don't have a good way to determine which module map described the
262     // anti-dependency (let alone what's the corresponding top-level module
263     // map). We simply specify all the module maps in the order they were loaded
264     // during the implicit build during scan.
265     // TODO: Resolve this by serializing and only using Module::UndeclaredUses.
266     MDC.ScanInstance.getASTReader()->visitTopLevelModuleMaps(
267         *MF, [&](const FileEntry *FE) {
268           if (FE->getName().endswith("__inferred_module.map"))
269             return;
270           // The top-level modulemap of this module will be the input file. We
271           // don't need to specify it as a module map.
272           if (FE == ModuleMap)
273             return;
274           MD.ModuleMapFileDeps.push_back(FE->getName().str());
275         });
276   }
277 
278   // Add direct prebuilt module dependencies now, so that we can use them when
279   // creating a CompilerInvocation and computing context hash for this
280   // ModuleDeps instance.
281   llvm::DenseSet<const Module *> SeenModules;
282   addAllSubmodulePrebuiltDeps(M, MD, SeenModules);
283 
284   MD.BuildInvocation = MDC.makeInvocationForModuleBuildWithoutPaths(
285       MD, [&](CompilerInvocation &BuildInvocation) {
286         if (MDC.OptimizeArgs)
287           optimizeHeaderSearchOpts(BuildInvocation.getHeaderSearchOpts(),
288                                    *MDC.ScanInstance.getASTReader(), *MF);
289       });
290   MD.ID.ContextHash = MD.BuildInvocation.getModuleHash();
291 
292   llvm::DenseSet<const Module *> AddedModules;
293   addAllSubmoduleDeps(M, MD, AddedModules);
294 
295   return MD.ID;
296 }
297 
298 void ModuleDepCollectorPP::addAllSubmodulePrebuiltDeps(
299     const Module *M, ModuleDeps &MD,
300     llvm::DenseSet<const Module *> &SeenSubmodules) {
301   addModulePrebuiltDeps(M, MD, SeenSubmodules);
302 
303   for (const Module *SubM : M->submodules())
304     addAllSubmodulePrebuiltDeps(SubM, MD, SeenSubmodules);
305 }
306 
307 void ModuleDepCollectorPP::addModulePrebuiltDeps(
308     const Module *M, ModuleDeps &MD,
309     llvm::DenseSet<const Module *> &SeenSubmodules) {
310   for (const Module *Import : M->Imports)
311     if (Import->getTopLevelModule() != M->getTopLevelModule())
312       if (MDC.isPrebuiltModule(Import->getTopLevelModule()))
313         if (SeenSubmodules.insert(Import->getTopLevelModule()).second)
314           MD.PrebuiltModuleDeps.emplace_back(Import->getTopLevelModule());
315 }
316 
317 void ModuleDepCollectorPP::addAllSubmoduleDeps(
318     const Module *M, ModuleDeps &MD,
319     llvm::DenseSet<const Module *> &AddedModules) {
320   addModuleDep(M, MD, AddedModules);
321 
322   for (const Module *SubM : M->submodules())
323     addAllSubmoduleDeps(SubM, MD, AddedModules);
324 }
325 
326 void ModuleDepCollectorPP::addModuleDep(
327     const Module *M, ModuleDeps &MD,
328     llvm::DenseSet<const Module *> &AddedModules) {
329   for (const Module *Import : M->Imports) {
330     if (Import->getTopLevelModule() != M->getTopLevelModule() &&
331         !MDC.isPrebuiltModule(Import)) {
332       ModuleID ImportID = handleTopLevelModule(Import->getTopLevelModule());
333       if (AddedModules.insert(Import->getTopLevelModule()).second)
334         MD.ClangModuleDeps.push_back(ImportID);
335     }
336   }
337 }
338 
339 ModuleDepCollector::ModuleDepCollector(
340     std::unique_ptr<DependencyOutputOptions> Opts,
341     CompilerInstance &ScanInstance, DependencyConsumer &C,
342     CompilerInvocation &&OriginalCI, bool OptimizeArgs)
343     : ScanInstance(ScanInstance), Consumer(C), Opts(std::move(Opts)),
344       OriginalInvocation(std::move(OriginalCI)), OptimizeArgs(OptimizeArgs) {}
345 
346 void ModuleDepCollector::attachToPreprocessor(Preprocessor &PP) {
347   PP.addPPCallbacks(std::make_unique<ModuleDepCollectorPP>(*this));
348 }
349 
350 void ModuleDepCollector::attachToASTReader(ASTReader &R) {}
351 
352 bool ModuleDepCollector::isPrebuiltModule(const Module *M) {
353   std::string Name(M->getTopLevelModuleName());
354   const auto &PrebuiltModuleFiles =
355       ScanInstance.getHeaderSearchOpts().PrebuiltModuleFiles;
356   auto PrebuiltModuleFileIt = PrebuiltModuleFiles.find(Name);
357   if (PrebuiltModuleFileIt == PrebuiltModuleFiles.end())
358     return false;
359   assert("Prebuilt module came from the expected AST file" &&
360          PrebuiltModuleFileIt->second == M->getASTFile()->getName());
361   return true;
362 }
363