1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains definitons for the AST differencing interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Tooling/ASTDiff/ASTDiff.h"
14 #include "clang/AST/ParentMapContext.h"
15 #include "clang/AST/RecursiveASTVisitor.h"
16 #include "clang/Basic/SourceManager.h"
17 #include "clang/Lex/Lexer.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/Support/ConvertUTF.h"
20 
21 #include <limits>
22 #include <memory>
23 #include <unordered_set>
24 
25 using namespace llvm;
26 using namespace clang;
27 
28 namespace clang {
29 namespace diff {
30 
31 namespace {
32 /// Maps nodes of the left tree to ones on the right, and vice versa.
33 class Mapping {
34 public:
35   Mapping() = default;
36   Mapping(Mapping &&Other) = default;
37   Mapping &operator=(Mapping &&Other) = default;
38 
39   Mapping(size_t Size) {
40     SrcToDst = std::make_unique<NodeId[]>(Size);
41     DstToSrc = std::make_unique<NodeId[]>(Size);
42   }
43 
44   void link(NodeId Src, NodeId Dst) {
45     SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
46   }
47 
48   NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
49   NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
50   bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
51   bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
52 
53 private:
54   std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
55 };
56 } // end anonymous namespace
57 
58 class ASTDiff::Impl {
59 public:
60   SyntaxTree::Impl &T1, &T2;
61   Mapping TheMapping;
62 
63   Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
64        const ComparisonOptions &Options);
65 
66   /// Matches nodes one-by-one based on their similarity.
67   void computeMapping();
68 
69   // Compute Change for each node based on similarity.
70   void computeChangeKinds(Mapping &M);
71 
72   NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
73                    NodeId Id) const {
74     if (&*Tree == &T1)
75       return TheMapping.getDst(Id);
76     assert(&*Tree == &T2 && "Invalid tree.");
77     return TheMapping.getSrc(Id);
78   }
79 
80 private:
81   // Returns true if the two subtrees are identical.
82   bool identical(NodeId Id1, NodeId Id2) const;
83 
84   // Returns false if the nodes must not be mached.
85   bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
86 
87   // Returns true if the nodes' parents are matched.
88   bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
89 
90   // Uses an optimal albeit slow algorithm to compute a mapping between two
91   // subtrees, but only if both have fewer nodes than MaxSize.
92   void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
93 
94   // Computes the ratio of common descendants between the two nodes.
95   // Descendants are only considered to be equal when they are mapped in M.
96   double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
97 
98   // Returns the node that has the highest degree of similarity.
99   NodeId findCandidate(const Mapping &M, NodeId Id1) const;
100 
101   // Returns a mapping of identical subtrees.
102   Mapping matchTopDown() const;
103 
104   // Tries to match any yet unmapped nodes, in a bottom-up fashion.
105   void matchBottomUp(Mapping &M) const;
106 
107   const ComparisonOptions &Options;
108 
109   friend class ZhangShashaMatcher;
110 };
111 
112 /// Represents the AST of a TranslationUnit.
113 class SyntaxTree::Impl {
114 public:
115   Impl(SyntaxTree *Parent, ASTContext &AST);
116   /// Constructs a tree from an AST node.
117   Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
118   Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
119   template <class T>
120   Impl(SyntaxTree *Parent,
121        std::enable_if_t<std::is_base_of<Stmt, T>::value, T> *Node,
122        ASTContext &AST)
123       : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
124   template <class T>
125   Impl(SyntaxTree *Parent,
126        std::enable_if_t<std::is_base_of<Decl, T>::value, T> *Node,
127        ASTContext &AST)
128       : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
129 
130   SyntaxTree *Parent;
131   ASTContext &AST;
132   PrintingPolicy TypePP;
133   /// Nodes in preorder.
134   std::vector<Node> Nodes;
135   std::vector<NodeId> Leaves;
136   // Maps preorder indices to postorder ones.
137   std::vector<int> PostorderIds;
138   std::vector<NodeId> NodesBfs;
139 
140   int getSize() const { return Nodes.size(); }
141   NodeId getRootId() const { return 0; }
142   PreorderIterator begin() const { return getRootId(); }
143   PreorderIterator end() const { return getSize(); }
144 
145   const Node &getNode(NodeId Id) const { return Nodes[Id]; }
146   Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
147   bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
148   void addNode(Node &N) { Nodes.push_back(N); }
149   int getNumberOfDescendants(NodeId Id) const;
150   bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
151   int findPositionInParent(NodeId Id, bool Shifted = false) const;
152 
153   std::string getRelativeName(const NamedDecl *ND,
154                               const DeclContext *Context) const;
155   std::string getRelativeName(const NamedDecl *ND) const;
156 
157   std::string getNodeValue(NodeId Id) const;
158   std::string getNodeValue(const Node &Node) const;
159   std::string getDeclValue(const Decl *D) const;
160   std::string getStmtValue(const Stmt *S) const;
161 
162 private:
163   void initTree();
164   void setLeftMostDescendants();
165 };
166 
167 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
168 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
169 static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
170   return !I->isWritten();
171 }
172 
173 template <class T>
174 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
175   if (!N)
176     return true;
177   SourceLocation SLoc = N->getSourceRange().getBegin();
178   if (SLoc.isValid()) {
179     // Ignore everything from other files.
180     if (!SrcMgr.isInMainFile(SLoc))
181       return true;
182     // Ignore macros.
183     if (SLoc != SrcMgr.getSpellingLoc(SLoc))
184       return true;
185   }
186   return isSpecializedNodeExcluded(N);
187 }
188 
189 namespace {
190 // Sets Height, Parent and Children for each node.
191 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
192   int Id = 0, Depth = 0;
193   NodeId Parent;
194   SyntaxTree::Impl &Tree;
195 
196   PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
197 
198   template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
199     NodeId MyId = Id;
200     Tree.Nodes.emplace_back();
201     Node &N = Tree.getMutableNode(MyId);
202     N.Parent = Parent;
203     N.Depth = Depth;
204     N.ASTNode = DynTypedNode::create(*ASTNode);
205     assert(!N.ASTNode.getNodeKind().isNone() &&
206            "Expected nodes to have a valid kind.");
207     if (Parent.isValid()) {
208       Node &P = Tree.getMutableNode(Parent);
209       P.Children.push_back(MyId);
210     }
211     Parent = MyId;
212     ++Id;
213     ++Depth;
214     return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
215   }
216   void PostTraverse(std::tuple<NodeId, NodeId> State) {
217     NodeId MyId, PreviousParent;
218     std::tie(MyId, PreviousParent) = State;
219     assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
220     Parent = PreviousParent;
221     --Depth;
222     Node &N = Tree.getMutableNode(MyId);
223     N.RightMostDescendant = Id - 1;
224     assert(N.RightMostDescendant >= 0 &&
225            N.RightMostDescendant < Tree.getSize() &&
226            "Rightmost descendant must be a valid tree node.");
227     if (N.isLeaf())
228       Tree.Leaves.push_back(MyId);
229     N.Height = 1;
230     for (NodeId Child : N.Children)
231       N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
232   }
233   bool TraverseDecl(Decl *D) {
234     if (isNodeExcluded(Tree.AST.getSourceManager(), D))
235       return true;
236     auto SavedState = PreTraverse(D);
237     RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
238     PostTraverse(SavedState);
239     return true;
240   }
241   bool TraverseStmt(Stmt *S) {
242     if (auto *E = dyn_cast_or_null<Expr>(S))
243       S = E->IgnoreImplicit();
244     if (isNodeExcluded(Tree.AST.getSourceManager(), S))
245       return true;
246     auto SavedState = PreTraverse(S);
247     RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
248     PostTraverse(SavedState);
249     return true;
250   }
251   bool TraverseType(QualType T) { return true; }
252   bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
253     if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
254       return true;
255     auto SavedState = PreTraverse(Init);
256     RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
257     PostTraverse(SavedState);
258     return true;
259   }
260 };
261 } // end anonymous namespace
262 
263 SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
264     : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
265   TypePP.AnonymousTagLocations = false;
266 }
267 
268 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
269     : Impl(Parent, AST) {
270   PreorderVisitor PreorderWalker(*this);
271   PreorderWalker.TraverseDecl(N);
272   initTree();
273 }
274 
275 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
276     : Impl(Parent, AST) {
277   PreorderVisitor PreorderWalker(*this);
278   PreorderWalker.TraverseStmt(N);
279   initTree();
280 }
281 
282 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
283                                                NodeId Root) {
284   std::vector<NodeId> Postorder;
285   std::function<void(NodeId)> Traverse = [&](NodeId Id) {
286     const Node &N = Tree.getNode(Id);
287     for (NodeId Child : N.Children)
288       Traverse(Child);
289     Postorder.push_back(Id);
290   };
291   Traverse(Root);
292   return Postorder;
293 }
294 
295 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
296                                          NodeId Root) {
297   std::vector<NodeId> Ids;
298   size_t Expanded = 0;
299   Ids.push_back(Root);
300   while (Expanded < Ids.size())
301     for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
302       Ids.push_back(Child);
303   return Ids;
304 }
305 
306 void SyntaxTree::Impl::initTree() {
307   setLeftMostDescendants();
308   int PostorderId = 0;
309   PostorderIds.resize(getSize());
310   std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
311     for (NodeId Child : getNode(Id).Children)
312       PostorderTraverse(Child);
313     PostorderIds[Id] = PostorderId;
314     ++PostorderId;
315   };
316   PostorderTraverse(getRootId());
317   NodesBfs = getSubtreeBfs(*this, getRootId());
318 }
319 
320 void SyntaxTree::Impl::setLeftMostDescendants() {
321   for (NodeId Leaf : Leaves) {
322     getMutableNode(Leaf).LeftMostDescendant = Leaf;
323     NodeId Parent, Cur = Leaf;
324     while ((Parent = getNode(Cur).Parent).isValid() &&
325            getNode(Parent).Children[0] == Cur) {
326       Cur = Parent;
327       getMutableNode(Cur).LeftMostDescendant = Leaf;
328     }
329   }
330 }
331 
332 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
333   return getNode(Id).RightMostDescendant - Id + 1;
334 }
335 
336 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
337   return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
338 }
339 
340 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
341   NodeId Parent = getNode(Id).Parent;
342   if (Parent.isInvalid())
343     return 0;
344   const auto &Siblings = getNode(Parent).Children;
345   int Position = 0;
346   for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
347     if (Shifted)
348       Position += getNode(Siblings[I]).Shift;
349     if (Siblings[I] == Id) {
350       Position += I;
351       return Position;
352     }
353   }
354   llvm_unreachable("Node not found in parent's children.");
355 }
356 
357 // Returns the qualified name of ND. If it is subordinate to Context,
358 // then the prefix of the latter is removed from the returned value.
359 std::string
360 SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
361                                   const DeclContext *Context) const {
362   std::string Val = ND->getQualifiedNameAsString();
363   std::string ContextPrefix;
364   if (!Context)
365     return Val;
366   if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
367     ContextPrefix = Namespace->getQualifiedNameAsString();
368   else if (auto *Record = dyn_cast<RecordDecl>(Context))
369     ContextPrefix = Record->getQualifiedNameAsString();
370   else if (AST.getLangOpts().CPlusPlus11)
371     if (auto *Tag = dyn_cast<TagDecl>(Context))
372       ContextPrefix = Tag->getQualifiedNameAsString();
373   // Strip the qualifier, if Val refers to something in the current scope.
374   // But leave one leading ':' in place, so that we know that this is a
375   // relative path.
376   if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
377     Val = Val.substr(ContextPrefix.size() + 1);
378   return Val;
379 }
380 
381 std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
382   return getRelativeName(ND, ND->getDeclContext());
383 }
384 
385 static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
386                                                   const Stmt *S) {
387   while (S) {
388     const auto &Parents = AST.getParents(*S);
389     if (Parents.empty())
390       return nullptr;
391     const auto &P = Parents[0];
392     if (const auto *D = P.get<Decl>())
393       return D->getDeclContext();
394     S = P.get<Stmt>();
395   }
396   return nullptr;
397 }
398 
399 static std::string getInitializerValue(const CXXCtorInitializer *Init,
400                                        const PrintingPolicy &TypePP) {
401   if (Init->isAnyMemberInitializer())
402     return std::string(Init->getAnyMember()->getName());
403   if (Init->isBaseInitializer())
404     return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
405   if (Init->isDelegatingInitializer())
406     return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
407   llvm_unreachable("Unknown initializer type");
408 }
409 
410 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
411   return getNodeValue(getNode(Id));
412 }
413 
414 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
415   const DynTypedNode &DTN = N.ASTNode;
416   if (auto *S = DTN.get<Stmt>())
417     return getStmtValue(S);
418   if (auto *D = DTN.get<Decl>())
419     return getDeclValue(D);
420   if (auto *Init = DTN.get<CXXCtorInitializer>())
421     return getInitializerValue(Init, TypePP);
422   llvm_unreachable("Fatal: unhandled AST node.\n");
423 }
424 
425 std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
426   std::string Value;
427   if (auto *V = dyn_cast<ValueDecl>(D))
428     return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
429   if (auto *N = dyn_cast<NamedDecl>(D))
430     Value += getRelativeName(N) + ";";
431   if (auto *T = dyn_cast<TypedefNameDecl>(D))
432     return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
433   if (auto *T = dyn_cast<TypeDecl>(D))
434     if (T->getTypeForDecl())
435       Value +=
436           T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
437           ";";
438   if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
439     return std::string(U->getNominatedNamespace()->getName());
440   if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
441     CharSourceRange Range(A->getSourceRange(), false);
442     return std::string(
443         Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts()));
444   }
445   return Value;
446 }
447 
448 std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
449   if (auto *U = dyn_cast<UnaryOperator>(S))
450     return std::string(UnaryOperator::getOpcodeStr(U->getOpcode()));
451   if (auto *B = dyn_cast<BinaryOperator>(S))
452     return std::string(B->getOpcodeStr());
453   if (auto *M = dyn_cast<MemberExpr>(S))
454     return getRelativeName(M->getMemberDecl());
455   if (auto *I = dyn_cast<IntegerLiteral>(S)) {
456     SmallString<256> Str;
457     I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
458     return std::string(Str.str());
459   }
460   if (auto *F = dyn_cast<FloatingLiteral>(S)) {
461     SmallString<256> Str;
462     F->getValue().toString(Str);
463     return std::string(Str.str());
464   }
465   if (auto *D = dyn_cast<DeclRefExpr>(S))
466     return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
467   if (auto *String = dyn_cast<StringLiteral>(S)) {
468     if (String->isWide() || String->isUTF16() || String->isUTF32()) {
469       std::string UTF8Str;
470       unsigned int NumChars = String->getLength();
471       const char *Bytes = String->getBytes().data();
472       if (String->isWide()) {
473         const auto *Chars = reinterpret_cast<const wchar_t *>(Bytes);
474         if (!convertWideToUTF8({Chars, NumChars}, UTF8Str))
475           return "";
476       } else if (String->isUTF16()) {
477         const auto *Chars = reinterpret_cast<const UTF16 *>(Bytes);
478         if (!convertUTF16ToUTF8String({Chars, NumChars}, UTF8Str))
479           return "";
480       } else {
481         assert(String->isUTF32() && "Unsupported string encoding.");
482         const auto *Chars = reinterpret_cast<const UTF32 *>(Bytes);
483         if (!convertUTF32ToUTF8String({Chars, NumChars}, UTF8Str))
484           return "";
485       }
486       return UTF8Str;
487     }
488     return std::string(String->getString());
489   }
490   if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
491     return B->getValue() ? "true" : "false";
492   return "";
493 }
494 
495 /// Identifies a node in a subtree by its postorder offset, starting at 1.
496 struct SNodeId {
497   int Id = 0;
498 
499   explicit SNodeId(int Id) : Id(Id) {}
500   explicit SNodeId() = default;
501 
502   operator int() const { return Id; }
503   SNodeId &operator++() { return ++Id, *this; }
504   SNodeId &operator--() { return --Id, *this; }
505   SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
506 };
507 
508 class Subtree {
509 private:
510   /// The parent tree.
511   const SyntaxTree::Impl &Tree;
512   /// Maps SNodeIds to original ids.
513   std::vector<NodeId> RootIds;
514   /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
515   std::vector<SNodeId> LeftMostDescendants;
516 
517 public:
518   std::vector<SNodeId> KeyRoots;
519 
520   Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
521     RootIds = getSubtreePostorder(Tree, SubtreeRoot);
522     int NumLeaves = setLeftMostDescendants();
523     computeKeyRoots(NumLeaves);
524   }
525   int getSize() const { return RootIds.size(); }
526   NodeId getIdInRoot(SNodeId Id) const {
527     assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
528     return RootIds[Id - 1];
529   }
530   const Node &getNode(SNodeId Id) const {
531     return Tree.getNode(getIdInRoot(Id));
532   }
533   SNodeId getLeftMostDescendant(SNodeId Id) const {
534     assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
535     return LeftMostDescendants[Id - 1];
536   }
537   /// Returns the postorder index of the leftmost descendant in the subtree.
538   NodeId getPostorderOffset() const {
539     return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
540   }
541   std::string getNodeValue(SNodeId Id) const {
542     return Tree.getNodeValue(getIdInRoot(Id));
543   }
544 
545 private:
546   /// Returns the number of leafs in the subtree.
547   int setLeftMostDescendants() {
548     int NumLeaves = 0;
549     LeftMostDescendants.resize(getSize());
550     for (int I = 0; I < getSize(); ++I) {
551       SNodeId SI(I + 1);
552       const Node &N = getNode(SI);
553       NumLeaves += N.isLeaf();
554       assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
555              "Postorder traversal in subtree should correspond to traversal in "
556              "the root tree by a constant offset.");
557       LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
558                                        getPostorderOffset());
559     }
560     return NumLeaves;
561   }
562   void computeKeyRoots(int Leaves) {
563     KeyRoots.resize(Leaves);
564     std::unordered_set<int> Visited;
565     int K = Leaves - 1;
566     for (SNodeId I(getSize()); I > 0; --I) {
567       SNodeId LeftDesc = getLeftMostDescendant(I);
568       if (Visited.count(LeftDesc))
569         continue;
570       assert(K >= 0 && "K should be non-negative");
571       KeyRoots[K] = I;
572       Visited.insert(LeftDesc);
573       --K;
574     }
575   }
576 };
577 
578 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
579 /// Computes an optimal mapping between two trees using only insertion,
580 /// deletion and update as edit actions (similar to the Levenshtein distance).
581 class ZhangShashaMatcher {
582   const ASTDiff::Impl &DiffImpl;
583   Subtree S1;
584   Subtree S2;
585   std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
586 
587 public:
588   ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
589                      const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
590       : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
591     TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
592         size_t(S1.getSize()) + 1);
593     ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
594         size_t(S1.getSize()) + 1);
595     for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
596       TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
597       ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
598     }
599   }
600 
601   std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
602     std::vector<std::pair<NodeId, NodeId>> Matches;
603     std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
604 
605     computeTreeDist();
606 
607     bool RootNodePair = true;
608 
609     TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
610 
611     while (!TreePairs.empty()) {
612       SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
613       std::tie(LastRow, LastCol) = TreePairs.back();
614       TreePairs.pop_back();
615 
616       if (!RootNodePair) {
617         computeForestDist(LastRow, LastCol);
618       }
619 
620       RootNodePair = false;
621 
622       FirstRow = S1.getLeftMostDescendant(LastRow);
623       FirstCol = S2.getLeftMostDescendant(LastCol);
624 
625       Row = LastRow;
626       Col = LastCol;
627 
628       while (Row > FirstRow || Col > FirstCol) {
629         if (Row > FirstRow &&
630             ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
631           --Row;
632         } else if (Col > FirstCol &&
633                    ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
634           --Col;
635         } else {
636           SNodeId LMD1 = S1.getLeftMostDescendant(Row);
637           SNodeId LMD2 = S2.getLeftMostDescendant(Col);
638           if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
639               LMD2 == S2.getLeftMostDescendant(LastCol)) {
640             NodeId Id1 = S1.getIdInRoot(Row);
641             NodeId Id2 = S2.getIdInRoot(Col);
642             assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
643                    "These nodes must not be matched.");
644             Matches.emplace_back(Id1, Id2);
645             --Row;
646             --Col;
647           } else {
648             TreePairs.emplace_back(Row, Col);
649             Row = LMD1;
650             Col = LMD2;
651           }
652         }
653       }
654     }
655     return Matches;
656   }
657 
658 private:
659   /// We use a simple cost model for edit actions, which seems good enough.
660   /// Simple cost model for edit actions. This seems to make the matching
661   /// algorithm perform reasonably well.
662   /// The values range between 0 and 1, or infinity if this edit action should
663   /// always be avoided.
664   static constexpr double DeletionCost = 1;
665   static constexpr double InsertionCost = 1;
666 
667   double getUpdateCost(SNodeId Id1, SNodeId Id2) {
668     if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
669       return std::numeric_limits<double>::max();
670     return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
671   }
672 
673   void computeTreeDist() {
674     for (SNodeId Id1 : S1.KeyRoots)
675       for (SNodeId Id2 : S2.KeyRoots)
676         computeForestDist(Id1, Id2);
677   }
678 
679   void computeForestDist(SNodeId Id1, SNodeId Id2) {
680     assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
681     SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
682     SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
683 
684     ForestDist[LMD1][LMD2] = 0;
685     for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
686       ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
687       for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
688         ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
689         SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
690         SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
691         if (DLMD1 == LMD1 && DLMD2 == LMD2) {
692           double UpdateCost = getUpdateCost(D1, D2);
693           ForestDist[D1][D2] =
694               std::min({ForestDist[D1 - 1][D2] + DeletionCost,
695                         ForestDist[D1][D2 - 1] + InsertionCost,
696                         ForestDist[D1 - 1][D2 - 1] + UpdateCost});
697           TreeDist[D1][D2] = ForestDist[D1][D2];
698         } else {
699           ForestDist[D1][D2] =
700               std::min({ForestDist[D1 - 1][D2] + DeletionCost,
701                         ForestDist[D1][D2 - 1] + InsertionCost,
702                         ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
703         }
704       }
705     }
706   }
707 };
708 
709 ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); }
710 
711 StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
712 
713 llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
714   if (auto *ND = ASTNode.get<NamedDecl>()) {
715     if (ND->getDeclName().isIdentifier())
716       return ND->getQualifiedNameAsString();
717   }
718   return llvm::None;
719 }
720 
721 llvm::Optional<StringRef> Node::getIdentifier() const {
722   if (auto *ND = ASTNode.get<NamedDecl>()) {
723     if (ND->getDeclName().isIdentifier())
724       return ND->getName();
725   }
726   return llvm::None;
727 }
728 
729 namespace {
730 // Compares nodes by their depth.
731 struct HeightLess {
732   const SyntaxTree::Impl &Tree;
733   HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
734   bool operator()(NodeId Id1, NodeId Id2) const {
735     return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
736   }
737 };
738 } // end anonymous namespace
739 
740 namespace {
741 // Priority queue for nodes, sorted descendingly by their height.
742 class PriorityList {
743   const SyntaxTree::Impl &Tree;
744   HeightLess Cmp;
745   std::vector<NodeId> Container;
746   PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
747 
748 public:
749   PriorityList(const SyntaxTree::Impl &Tree)
750       : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
751 
752   void push(NodeId id) { List.push(id); }
753 
754   std::vector<NodeId> pop() {
755     int Max = peekMax();
756     std::vector<NodeId> Result;
757     if (Max == 0)
758       return Result;
759     while (peekMax() == Max) {
760       Result.push_back(List.top());
761       List.pop();
762     }
763     // TODO this is here to get a stable output, not a good heuristic
764     llvm::sort(Result);
765     return Result;
766   }
767   int peekMax() const {
768     if (List.empty())
769       return 0;
770     return Tree.getNode(List.top()).Height;
771   }
772   void open(NodeId Id) {
773     for (NodeId Child : Tree.getNode(Id).Children)
774       push(Child);
775   }
776 };
777 } // end anonymous namespace
778 
779 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
780   const Node &N1 = T1.getNode(Id1);
781   const Node &N2 = T2.getNode(Id2);
782   if (N1.Children.size() != N2.Children.size() ||
783       !isMatchingPossible(Id1, Id2) ||
784       T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
785     return false;
786   for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
787     if (!identical(N1.Children[Id], N2.Children[Id]))
788       return false;
789   return true;
790 }
791 
792 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
793   return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
794 }
795 
796 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
797                                     NodeId Id2) const {
798   NodeId P1 = T1.getNode(Id1).Parent;
799   NodeId P2 = T2.getNode(Id2).Parent;
800   return (P1.isInvalid() && P2.isInvalid()) ||
801          (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
802 }
803 
804 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
805                                       NodeId Id2) const {
806   if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
807       Options.MaxSize)
808     return;
809   ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
810   std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
811   for (const auto &Tuple : R) {
812     NodeId Src = Tuple.first;
813     NodeId Dst = Tuple.second;
814     if (!M.hasSrc(Src) && !M.hasDst(Dst))
815       M.link(Src, Dst);
816   }
817 }
818 
819 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
820                                            NodeId Id2) const {
821   int CommonDescendants = 0;
822   const Node &N1 = T1.getNode(Id1);
823   // Count the common descendants, excluding the subtree root.
824   for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
825     NodeId Dst = M.getDst(Src);
826     CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
827   }
828   // We need to subtract 1 to get the number of descendants excluding the root.
829   double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
830                        T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
831   // CommonDescendants is less than the size of one subtree.
832   assert(Denominator >= 0 && "Expected non-negative denominator.");
833   if (Denominator == 0)
834     return 0;
835   return CommonDescendants / Denominator;
836 }
837 
838 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
839   NodeId Candidate;
840   double HighestSimilarity = 0.0;
841   for (NodeId Id2 : T2) {
842     if (!isMatchingPossible(Id1, Id2))
843       continue;
844     if (M.hasDst(Id2))
845       continue;
846     double Similarity = getJaccardSimilarity(M, Id1, Id2);
847     if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
848       HighestSimilarity = Similarity;
849       Candidate = Id2;
850     }
851   }
852   return Candidate;
853 }
854 
855 void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
856   std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
857   for (NodeId Id1 : Postorder) {
858     if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
859         !M.hasDst(T2.getRootId())) {
860       if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
861         M.link(T1.getRootId(), T2.getRootId());
862         addOptimalMapping(M, T1.getRootId(), T2.getRootId());
863       }
864       break;
865     }
866     bool Matched = M.hasSrc(Id1);
867     const Node &N1 = T1.getNode(Id1);
868     bool MatchedChildren = llvm::any_of(
869         N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
870     if (Matched || !MatchedChildren)
871       continue;
872     NodeId Id2 = findCandidate(M, Id1);
873     if (Id2.isValid()) {
874       M.link(Id1, Id2);
875       addOptimalMapping(M, Id1, Id2);
876     }
877   }
878 }
879 
880 Mapping ASTDiff::Impl::matchTopDown() const {
881   PriorityList L1(T1);
882   PriorityList L2(T2);
883 
884   Mapping M(T1.getSize() + T2.getSize());
885 
886   L1.push(T1.getRootId());
887   L2.push(T2.getRootId());
888 
889   int Max1, Max2;
890   while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
891          Options.MinHeight) {
892     if (Max1 > Max2) {
893       for (NodeId Id : L1.pop())
894         L1.open(Id);
895       continue;
896     }
897     if (Max2 > Max1) {
898       for (NodeId Id : L2.pop())
899         L2.open(Id);
900       continue;
901     }
902     std::vector<NodeId> H1, H2;
903     H1 = L1.pop();
904     H2 = L2.pop();
905     for (NodeId Id1 : H1) {
906       for (NodeId Id2 : H2) {
907         if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
908           for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
909             M.link(Id1 + I, Id2 + I);
910         }
911       }
912     }
913     for (NodeId Id1 : H1) {
914       if (!M.hasSrc(Id1))
915         L1.open(Id1);
916     }
917     for (NodeId Id2 : H2) {
918       if (!M.hasDst(Id2))
919         L2.open(Id2);
920     }
921   }
922   return M;
923 }
924 
925 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
926                     const ComparisonOptions &Options)
927     : T1(T1), T2(T2), Options(Options) {
928   computeMapping();
929   computeChangeKinds(TheMapping);
930 }
931 
932 void ASTDiff::Impl::computeMapping() {
933   TheMapping = matchTopDown();
934   if (Options.StopAfterTopDown)
935     return;
936   matchBottomUp(TheMapping);
937 }
938 
939 void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
940   for (NodeId Id1 : T1) {
941     if (!M.hasSrc(Id1)) {
942       T1.getMutableNode(Id1).Change = Delete;
943       T1.getMutableNode(Id1).Shift -= 1;
944     }
945   }
946   for (NodeId Id2 : T2) {
947     if (!M.hasDst(Id2)) {
948       T2.getMutableNode(Id2).Change = Insert;
949       T2.getMutableNode(Id2).Shift -= 1;
950     }
951   }
952   for (NodeId Id1 : T1.NodesBfs) {
953     NodeId Id2 = M.getDst(Id1);
954     if (Id2.isInvalid())
955       continue;
956     if (!haveSameParents(M, Id1, Id2) ||
957         T1.findPositionInParent(Id1, true) !=
958             T2.findPositionInParent(Id2, true)) {
959       T1.getMutableNode(Id1).Shift -= 1;
960       T2.getMutableNode(Id2).Shift -= 1;
961     }
962   }
963   for (NodeId Id2 : T2.NodesBfs) {
964     NodeId Id1 = M.getSrc(Id2);
965     if (Id1.isInvalid())
966       continue;
967     Node &N1 = T1.getMutableNode(Id1);
968     Node &N2 = T2.getMutableNode(Id2);
969     if (Id1.isInvalid())
970       continue;
971     if (!haveSameParents(M, Id1, Id2) ||
972         T1.findPositionInParent(Id1, true) !=
973             T2.findPositionInParent(Id2, true)) {
974       N1.Change = N2.Change = Move;
975     }
976     if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
977       N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
978     }
979   }
980 }
981 
982 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
983                  const ComparisonOptions &Options)
984     : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
985 
986 ASTDiff::~ASTDiff() = default;
987 
988 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
989   return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
990 }
991 
992 SyntaxTree::SyntaxTree(ASTContext &AST)
993     : TreeImpl(std::make_unique<SyntaxTree::Impl>(
994           this, AST.getTranslationUnitDecl(), AST)) {}
995 
996 SyntaxTree::~SyntaxTree() = default;
997 
998 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
999 
1000 const Node &SyntaxTree::getNode(NodeId Id) const {
1001   return TreeImpl->getNode(Id);
1002 }
1003 
1004 int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
1005 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
1006 SyntaxTree::PreorderIterator SyntaxTree::begin() const {
1007   return TreeImpl->begin();
1008 }
1009 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
1010 
1011 int SyntaxTree::findPositionInParent(NodeId Id) const {
1012   return TreeImpl->findPositionInParent(Id);
1013 }
1014 
1015 std::pair<unsigned, unsigned>
1016 SyntaxTree::getSourceRangeOffsets(const Node &N) const {
1017   const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
1018   SourceRange Range = N.ASTNode.getSourceRange();
1019   SourceLocation BeginLoc = Range.getBegin();
1020   SourceLocation EndLoc = Lexer::getLocForEndOfToken(
1021       Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
1022   if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1023     if (ThisExpr->isImplicit())
1024       EndLoc = BeginLoc;
1025   }
1026   unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1027   unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1028   return {Begin, End};
1029 }
1030 
1031 std::string SyntaxTree::getNodeValue(NodeId Id) const {
1032   return TreeImpl->getNodeValue(Id);
1033 }
1034 
1035 std::string SyntaxTree::getNodeValue(const Node &N) const {
1036   return TreeImpl->getNodeValue(N);
1037 }
1038 
1039 } // end namespace diff
1040 } // end namespace clang
1041