1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 namespace { 31 /// Maps nodes of the left tree to ones on the right, and vice versa. 32 class Mapping { 33 public: 34 Mapping() = default; 35 Mapping(Mapping &&Other) = default; 36 Mapping &operator=(Mapping &&Other) = default; 37 Mapping(int Size1, int Size2) { 38 // Maximum possible size after patching one tree. 39 int Size = Size1 + Size2; 40 SrcToDst = llvm::make_unique<SmallVector<NodeId, 2>[]>(Size); 41 DstToSrc = llvm::make_unique<SmallVector<NodeId, 2>[]>(Size); 42 } 43 44 void link(NodeId Src, NodeId Dst) { 45 SrcToDst[Src].push_back(Dst); 46 DstToSrc[Dst].push_back(Src); 47 } 48 49 NodeId getDst(NodeId Src) const { 50 if (hasSrc(Src)) 51 return SrcToDst[Src][0]; 52 return NodeId(); 53 } 54 NodeId getSrc(NodeId Dst) const { 55 if (hasDst(Dst)) 56 return DstToSrc[Dst][0]; 57 return NodeId(); 58 } 59 const SmallVector<NodeId, 2> &getAllDsts(NodeId Src) const { 60 return SrcToDst[Src]; 61 } 62 const SmallVector<NodeId, 2> &getAllSrcs(NodeId Dst) const { 63 return DstToSrc[Dst]; 64 } 65 bool hasSrc(NodeId Src) const { return !SrcToDst[Src].empty(); } 66 bool hasDst(NodeId Dst) const { return !DstToSrc[Dst].empty(); } 67 bool hasSrcDst(NodeId Src, NodeId Dst) const { 68 for (NodeId DstId : SrcToDst[Src]) 69 if (DstId == Dst) 70 return true; 71 for (NodeId SrcId : DstToSrc[Dst]) 72 if (SrcId == Src) 73 return true; 74 return false; 75 } 76 77 private: 78 std::unique_ptr<SmallVector<NodeId, 2>[]> SrcToDst, DstToSrc; 79 }; 80 } // end anonymous namespace 81 82 class ASTDiff::Impl { 83 public: 84 SyntaxTree::Impl &T1, &T2; 85 Mapping TheMapping; 86 87 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 88 const ComparisonOptions &Options); 89 90 /// Matches nodes one-by-one based on their similarity. 91 void computeMapping(); 92 93 // Compute Change for each node based on similarity. 94 void computeChangeKinds(Mapping &M); 95 96 NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, 97 NodeId Id) const { 98 if (&*Tree == &T1) 99 return TheMapping.getDst(Id); 100 assert(&*Tree == &T2 && "Invalid tree."); 101 return TheMapping.getSrc(Id); 102 } 103 104 private: 105 // Returns true if the two subtrees are identical. 106 bool identical(NodeId Id1, NodeId Id2) const; 107 108 bool canBeAddedToMapping(const Mapping &M, NodeId Id1, NodeId Id2) const; 109 110 // Returns false if the nodes must not be mached. 111 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 112 113 // Returns true if the nodes' parents are matched. 114 bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; 115 116 // Uses an optimal albeit slow algorithm to compute a mapping between two 117 // subtrees, but only if both have fewer nodes than MaxSize. 118 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 119 120 // Computes the ratio of common descendants between the two nodes. 121 // Descendants are only considered to be equal when they are mapped in M. 122 double getSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 123 124 // Returns the node that has the highest degree of similarity. 125 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 126 127 // Returns a mapping of identical subtrees. 128 Mapping matchTopDown() const; 129 130 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 131 void matchBottomUp(Mapping &M) const; 132 133 const ComparisonOptions &Options; 134 135 friend class ZhangShashaMatcher; 136 }; 137 138 /// Represents the AST of a TranslationUnit. 139 class SyntaxTree::Impl { 140 public: 141 /// Constructs a tree from the entire translation unit. 142 Impl(SyntaxTree *Parent, const ASTContext &AST); 143 /// Constructs a tree from an AST node. 144 Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST); 145 Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST); 146 template <class T> 147 Impl(SyntaxTree *Parent, 148 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 149 const ASTContext &AST) 150 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 151 template <class T> 152 Impl(SyntaxTree *Parent, 153 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 154 const ASTContext &AST) 155 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 156 157 SyntaxTree *Parent; 158 const ASTContext &AST; 159 std::vector<NodeId> Leaves; 160 // Maps preorder indices to postorder ones. 161 std::vector<int> PostorderIds; 162 std::vector<NodeId> NodesBfs; 163 164 int getSize() const { return Nodes.size(); } 165 NodeId getRootId() const { return 0; } 166 PreorderIterator begin() const { return getRootId(); } 167 PreorderIterator end() const { return getSize(); } 168 169 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 170 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 171 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 172 void addNode(Node &N) { Nodes.push_back(N); } 173 int getNumberOfDescendants(NodeId Id) const; 174 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 175 int findPositionInParent(NodeId Id, bool Shifted = false) const; 176 177 std::string getNodeValue(NodeId Id) const; 178 std::string getNodeValue(const Node &Node) const; 179 180 private: 181 /// Nodes in preorder. 182 std::vector<Node> Nodes; 183 184 void initTree(); 185 void setLeftMostDescendants(); 186 }; 187 188 template <class T> 189 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 190 if (!N) 191 return true; 192 SourceLocation SLoc = N->getLocStart(); 193 return SLoc.isValid() && SrcMgr.isInSystemHeader(SLoc); 194 } 195 196 namespace { 197 /// Counts the number of nodes that will be compared. 198 struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { 199 int Count = 0; 200 const SyntaxTree::Impl &Tree; 201 NodeCountVisitor(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 202 bool TraverseDecl(Decl *D) { 203 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 204 return true; 205 ++Count; 206 RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); 207 return true; 208 } 209 bool TraverseStmt(Stmt *S) { 210 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 211 return true; 212 ++Count; 213 RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); 214 return true; 215 } 216 bool TraverseType(QualType T) { return true; } 217 }; 218 } // end anonymous namespace 219 220 namespace { 221 // Sets Height, Parent and Children for each node. 222 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 223 int Id = 0, Depth = 0; 224 NodeId Parent; 225 SyntaxTree::Impl &Tree; 226 227 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 228 229 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 230 NodeId MyId = Id; 231 Node &N = Tree.getMutableNode(MyId); 232 N.Parent = Parent; 233 N.Depth = Depth; 234 N.ASTNode = DynTypedNode::create(*ASTNode); 235 assert(!N.ASTNode.getNodeKind().isNone() && 236 "Expected nodes to have a valid kind."); 237 if (Parent.isValid()) { 238 Node &P = Tree.getMutableNode(Parent); 239 P.Children.push_back(MyId); 240 } 241 Parent = MyId; 242 ++Id; 243 ++Depth; 244 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 245 } 246 void PostTraverse(std::tuple<NodeId, NodeId> State) { 247 NodeId MyId, PreviousParent; 248 std::tie(MyId, PreviousParent) = State; 249 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 250 Parent = PreviousParent; 251 --Depth; 252 Node &N = Tree.getMutableNode(MyId); 253 N.RightMostDescendant = Id - 1; 254 assert(N.RightMostDescendant >= 0 && 255 N.RightMostDescendant < Tree.getSize() && 256 "Rightmost descendant must be a valid tree node."); 257 if (N.isLeaf()) 258 Tree.Leaves.push_back(MyId); 259 N.Height = 1; 260 for (NodeId Child : N.Children) 261 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 262 } 263 bool TraverseDecl(Decl *D) { 264 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 265 return true; 266 auto SavedState = PreTraverse(D); 267 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 268 PostTraverse(SavedState); 269 return true; 270 } 271 bool TraverseStmt(Stmt *S) { 272 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 273 return true; 274 auto SavedState = PreTraverse(S); 275 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 276 PostTraverse(SavedState); 277 return true; 278 } 279 bool TraverseType(QualType T) { return true; } 280 }; 281 } // end anonymous namespace 282 283 SyntaxTree::Impl::Impl(SyntaxTree *Parent, const ASTContext &AST) 284 : Impl(Parent, AST.getTranslationUnitDecl(), AST) {} 285 286 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST) 287 : Parent(Parent), AST(AST) { 288 NodeCountVisitor NodeCounter(*this); 289 NodeCounter.TraverseDecl(N); 290 Nodes.resize(NodeCounter.Count); 291 PreorderVisitor PreorderWalker(*this); 292 PreorderWalker.TraverseDecl(N); 293 initTree(); 294 } 295 296 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST) 297 : Parent(Parent), AST(AST) { 298 NodeCountVisitor NodeCounter(*this); 299 NodeCounter.TraverseStmt(N); 300 Nodes.resize(NodeCounter.Count); 301 PreorderVisitor PreorderWalker(*this); 302 PreorderWalker.TraverseStmt(N); 303 initTree(); 304 } 305 306 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 307 NodeId Root) { 308 std::vector<NodeId> Postorder; 309 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 310 const Node &N = Tree.getNode(Id); 311 for (NodeId Child : N.Children) 312 Traverse(Child); 313 Postorder.push_back(Id); 314 }; 315 Traverse(Root); 316 return Postorder; 317 } 318 319 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 320 NodeId Root) { 321 std::vector<NodeId> Ids; 322 size_t Expanded = 0; 323 Ids.push_back(Root); 324 while (Expanded < Ids.size()) 325 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 326 Ids.push_back(Child); 327 return Ids; 328 } 329 330 void SyntaxTree::Impl::initTree() { 331 setLeftMostDescendants(); 332 int PostorderId = 0; 333 PostorderIds.resize(getSize()); 334 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 335 for (NodeId Child : getNode(Id).Children) 336 PostorderTraverse(Child); 337 PostorderIds[Id] = PostorderId; 338 ++PostorderId; 339 }; 340 PostorderTraverse(getRootId()); 341 NodesBfs = getSubtreeBfs(*this, getRootId()); 342 } 343 344 void SyntaxTree::Impl::setLeftMostDescendants() { 345 for (NodeId Leaf : Leaves) { 346 getMutableNode(Leaf).LeftMostDescendant = Leaf; 347 NodeId Parent, Cur = Leaf; 348 while ((Parent = getNode(Cur).Parent).isValid() && 349 getNode(Parent).Children[0] == Cur) { 350 Cur = Parent; 351 getMutableNode(Cur).LeftMostDescendant = Leaf; 352 } 353 } 354 } 355 356 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 357 return getNode(Id).RightMostDescendant - Id + 1; 358 } 359 360 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 361 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 362 } 363 364 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { 365 NodeId Parent = getNode(Id).Parent; 366 if (Parent.isInvalid()) 367 return 0; 368 const auto &Siblings = getNode(Parent).Children; 369 int Position = 0; 370 for (size_t I = 0, E = Siblings.size(); I < E; ++I) { 371 if (Shifted) 372 Position += getNode(Siblings[I]).Shift; 373 if (Siblings[I] == Id) { 374 Position += I; 375 return Position; 376 } 377 } 378 llvm_unreachable("Node not found in parent's children."); 379 } 380 381 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 382 return getNodeValue(getNode(Id)); 383 } 384 385 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { 386 const DynTypedNode &DTN = N.ASTNode; 387 if (auto *X = DTN.get<BinaryOperator>()) 388 return X->getOpcodeStr(); 389 if (auto *X = DTN.get<AccessSpecDecl>()) { 390 CharSourceRange Range(X->getSourceRange(), false); 391 return Lexer::getSourceText(Range, AST.getSourceManager(), 392 AST.getLangOpts()); 393 } 394 if (auto *X = DTN.get<IntegerLiteral>()) { 395 SmallString<256> Str; 396 X->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 397 return Str.str(); 398 } 399 if (auto *X = DTN.get<StringLiteral>()) 400 return X->getString(); 401 if (auto *X = DTN.get<ValueDecl>()) 402 return X->getNameAsString() + "(" + X->getType().getAsString() + ")"; 403 if (DTN.get<DeclStmt>() || DTN.get<TranslationUnitDecl>()) 404 return ""; 405 std::string Value; 406 if (auto *X = DTN.get<DeclRefExpr>()) { 407 if (X->hasQualifier()) { 408 llvm::raw_string_ostream OS(Value); 409 PrintingPolicy PP(AST.getLangOpts()); 410 X->getQualifier()->print(OS, PP); 411 } 412 Value += X->getDecl()->getNameAsString(); 413 return Value; 414 } 415 if (auto *X = DTN.get<NamedDecl>()) 416 Value += X->getNameAsString() + ";"; 417 if (auto *X = DTN.get<TypedefNameDecl>()) 418 return Value + X->getUnderlyingType().getAsString() + ";"; 419 if (DTN.get<NamespaceDecl>()) 420 return Value; 421 if (auto *X = DTN.get<TypeDecl>()) 422 if (X->getTypeForDecl()) 423 Value += 424 X->getTypeForDecl()->getCanonicalTypeInternal().getAsString() + ";"; 425 if (DTN.get<Decl>()) 426 return Value; 427 if (DTN.get<Stmt>()) 428 return ""; 429 llvm_unreachable("Fatal: unhandled AST node.\n"); 430 } 431 432 /// Identifies a node in a subtree by its postorder offset, starting at 1. 433 struct SNodeId { 434 int Id = 0; 435 436 explicit SNodeId(int Id) : Id(Id) {} 437 explicit SNodeId() = default; 438 439 operator int() const { return Id; } 440 SNodeId &operator++() { return ++Id, *this; } 441 SNodeId &operator--() { return --Id, *this; } 442 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 443 }; 444 445 class Subtree { 446 private: 447 /// The parent tree. 448 const SyntaxTree::Impl &Tree; 449 /// Maps SNodeIds to original ids. 450 std::vector<NodeId> RootIds; 451 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 452 std::vector<SNodeId> LeftMostDescendants; 453 454 public: 455 std::vector<SNodeId> KeyRoots; 456 457 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 458 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 459 int NumLeaves = setLeftMostDescendants(); 460 computeKeyRoots(NumLeaves); 461 } 462 int getSize() const { return RootIds.size(); } 463 NodeId getIdInRoot(SNodeId Id) const { 464 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 465 return RootIds[Id - 1]; 466 } 467 const Node &getNode(SNodeId Id) const { 468 return Tree.getNode(getIdInRoot(Id)); 469 } 470 SNodeId getLeftMostDescendant(SNodeId Id) const { 471 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 472 return LeftMostDescendants[Id - 1]; 473 } 474 /// Returns the postorder index of the leftmost descendant in the subtree. 475 NodeId getPostorderOffset() const { 476 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 477 } 478 std::string getNodeValue(SNodeId Id) const { 479 return Tree.getNodeValue(getIdInRoot(Id)); 480 } 481 482 private: 483 /// Returns the number of leafs in the subtree. 484 int setLeftMostDescendants() { 485 int NumLeaves = 0; 486 LeftMostDescendants.resize(getSize()); 487 for (int I = 0; I < getSize(); ++I) { 488 SNodeId SI(I + 1); 489 const Node &N = getNode(SI); 490 NumLeaves += N.isLeaf(); 491 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 492 "Postorder traversal in subtree should correspond to traversal in " 493 "the root tree by a constant offset."); 494 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 495 getPostorderOffset()); 496 } 497 return NumLeaves; 498 } 499 void computeKeyRoots(int Leaves) { 500 KeyRoots.resize(Leaves); 501 std::unordered_set<int> Visited; 502 int K = Leaves - 1; 503 for (SNodeId I(getSize()); I > 0; --I) { 504 SNodeId LeftDesc = getLeftMostDescendant(I); 505 if (Visited.count(LeftDesc)) 506 continue; 507 assert(K >= 0 && "K should be non-negative"); 508 KeyRoots[K] = I; 509 Visited.insert(LeftDesc); 510 --K; 511 } 512 } 513 }; 514 515 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 516 /// Computes an optimal mapping between two trees using only insertion, 517 /// deletion and update as edit actions (similar to the Levenshtein distance). 518 class ZhangShashaMatcher { 519 const ASTDiff::Impl &DiffImpl; 520 Subtree S1; 521 Subtree S2; 522 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 523 524 public: 525 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 526 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 527 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 528 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 529 size_t(S1.getSize()) + 1); 530 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 531 size_t(S1.getSize()) + 1); 532 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 533 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 534 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 535 } 536 } 537 538 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 539 std::vector<std::pair<NodeId, NodeId>> Matches; 540 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 541 542 computeTreeDist(); 543 544 bool RootNodePair = true; 545 546 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 547 548 while (!TreePairs.empty()) { 549 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 550 std::tie(LastRow, LastCol) = TreePairs.back(); 551 TreePairs.pop_back(); 552 553 if (!RootNodePair) { 554 computeForestDist(LastRow, LastCol); 555 } 556 557 RootNodePair = false; 558 559 FirstRow = S1.getLeftMostDescendant(LastRow); 560 FirstCol = S2.getLeftMostDescendant(LastCol); 561 562 Row = LastRow; 563 Col = LastCol; 564 565 while (Row > FirstRow || Col > FirstCol) { 566 if (Row > FirstRow && 567 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 568 --Row; 569 } else if (Col > FirstCol && 570 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 571 --Col; 572 } else { 573 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 574 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 575 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 576 LMD2 == S2.getLeftMostDescendant(LastCol)) { 577 NodeId Id1 = S1.getIdInRoot(Row); 578 NodeId Id2 = S2.getIdInRoot(Col); 579 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 580 "These nodes must not be matched."); 581 Matches.emplace_back(Id1, Id2); 582 --Row; 583 --Col; 584 } else { 585 TreePairs.emplace_back(Row, Col); 586 Row = LMD1; 587 Col = LMD2; 588 } 589 } 590 } 591 } 592 return Matches; 593 } 594 595 private: 596 /// We use a simple cost model for edit actions, which seems good enough. 597 /// Simple cost model for edit actions. This seems to make the matching 598 /// algorithm perform reasonably well. 599 /// The values range between 0 and 1, or infinity if this edit action should 600 /// always be avoided. 601 static constexpr double DeletionCost = 1; 602 static constexpr double InsertionCost = 1; 603 604 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 605 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 606 return std::numeric_limits<double>::max(); 607 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 608 } 609 610 void computeTreeDist() { 611 for (SNodeId Id1 : S1.KeyRoots) 612 for (SNodeId Id2 : S2.KeyRoots) 613 computeForestDist(Id1, Id2); 614 } 615 616 void computeForestDist(SNodeId Id1, SNodeId Id2) { 617 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 618 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 619 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 620 621 ForestDist[LMD1][LMD2] = 0; 622 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 623 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 624 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 625 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 626 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 627 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 628 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 629 double UpdateCost = getUpdateCost(D1, D2); 630 ForestDist[D1][D2] = 631 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 632 ForestDist[D1][D2 - 1] + InsertionCost, 633 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 634 TreeDist[D1][D2] = ForestDist[D1][D2]; 635 } else { 636 ForestDist[D1][D2] = 637 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 638 ForestDist[D1][D2 - 1] + InsertionCost, 639 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 640 } 641 } 642 } 643 } 644 }; 645 646 ast_type_traits::ASTNodeKind Node::getType() const { 647 return ASTNode.getNodeKind(); 648 } 649 650 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 651 652 namespace { 653 // Compares nodes by their depth. 654 struct HeightLess { 655 const SyntaxTree::Impl &Tree; 656 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 657 bool operator()(NodeId Id1, NodeId Id2) const { 658 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 659 } 660 }; 661 } // end anonymous namespace 662 663 namespace { 664 // Priority queue for nodes, sorted descendingly by their height. 665 class PriorityList { 666 const SyntaxTree::Impl &Tree; 667 HeightLess Cmp; 668 std::vector<NodeId> Container; 669 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 670 671 public: 672 PriorityList(const SyntaxTree::Impl &Tree) 673 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 674 675 void push(NodeId id) { List.push(id); } 676 677 std::vector<NodeId> pop() { 678 int Max = peekMax(); 679 std::vector<NodeId> Result; 680 if (Max == 0) 681 return Result; 682 while (peekMax() == Max) { 683 Result.push_back(List.top()); 684 List.pop(); 685 } 686 // TODO this is here to get a stable output, not a good heuristic 687 std::sort(Result.begin(), Result.end()); 688 return Result; 689 } 690 int peekMax() const { 691 if (List.empty()) 692 return 0; 693 return Tree.getNode(List.top()).Height; 694 } 695 void open(NodeId Id) { 696 for (NodeId Child : Tree.getNode(Id).Children) 697 push(Child); 698 } 699 }; 700 } // end anonymous namespace 701 702 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 703 const Node &N1 = T1.getNode(Id1); 704 const Node &N2 = T2.getNode(Id2); 705 if (N1.Children.size() != N2.Children.size() || 706 !isMatchingPossible(Id1, Id2) || 707 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 708 return false; 709 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 710 if (!identical(N1.Children[Id], N2.Children[Id])) 711 return false; 712 return true; 713 } 714 715 bool ASTDiff::Impl::canBeAddedToMapping(const Mapping &M, NodeId Id1, 716 NodeId Id2) const { 717 assert(isMatchingPossible(Id1, Id2) && 718 "Matching must be possible in the first place."); 719 if (M.hasSrcDst(Id1, Id2)) 720 return false; 721 if (Options.EnableMatchingWithUnmatchableParents) 722 return true; 723 const Node &N1 = T1.getNode(Id1); 724 const Node &N2 = T2.getNode(Id2); 725 NodeId P1 = N1.Parent; 726 NodeId P2 = N2.Parent; 727 // Only allow matching if parents can be matched. 728 return (P1.isInvalid() && P2.isInvalid()) || 729 (P1.isValid() && P2.isValid() && isMatchingPossible(P1, P2)); 730 } 731 732 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 733 return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); 734 } 735 736 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, 737 NodeId Id2) const { 738 NodeId P1 = T1.getNode(Id1).Parent; 739 NodeId P2 = T2.getNode(Id2).Parent; 740 return (P1.isInvalid() && P2.isInvalid()) || 741 (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); 742 } 743 744 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 745 NodeId Id2) const { 746 if (std::max(T1.getNumberOfDescendants(Id1), 747 T2.getNumberOfDescendants(Id2)) >= Options.MaxSize) 748 return; 749 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 750 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 751 for (const auto Tuple : R) { 752 NodeId Src = Tuple.first; 753 NodeId Dst = Tuple.second; 754 if (canBeAddedToMapping(M, Src, Dst)) 755 M.link(Src, Dst); 756 } 757 } 758 759 double ASTDiff::Impl::getSimilarity(const Mapping &M, NodeId Id1, 760 NodeId Id2) const { 761 if (Id1.isInvalid() || Id2.isInvalid()) 762 return 0.0; 763 int CommonDescendants = 0; 764 const Node &N1 = T1.getNode(Id1); 765 for (NodeId Id = Id1 + 1; Id <= N1.RightMostDescendant; ++Id) 766 CommonDescendants += int(T2.isInSubtree(M.getDst(Id), Id2)); 767 return 2.0 * CommonDescendants / 768 (T1.getNumberOfDescendants(Id1) + T2.getNumberOfDescendants(Id2)); 769 } 770 771 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 772 NodeId Candidate; 773 double HighestSimilarity = 0.0; 774 for (NodeId Id2 : T2) { 775 if (!isMatchingPossible(Id1, Id2)) 776 continue; 777 if (M.hasDst(Id2)) 778 continue; 779 double Similarity = getSimilarity(M, Id1, Id2); 780 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 781 HighestSimilarity = Similarity; 782 Candidate = Id2; 783 } 784 } 785 return Candidate; 786 } 787 788 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 789 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 790 for (NodeId Id1 : Postorder) { 791 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 792 !M.hasDst(T2.getRootId())) { 793 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 794 M.link(T1.getRootId(), T2.getRootId()); 795 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 796 } 797 break; 798 } 799 const Node &N1 = T1.getNode(Id1); 800 bool Matched = M.hasSrc(Id1); 801 bool MatchedChildren = 802 std::any_of(N1.Children.begin(), N1.Children.end(), 803 [&](NodeId Child) { return M.hasSrc(Child); }); 804 if (Matched || !MatchedChildren) 805 continue; 806 NodeId Id2 = findCandidate(M, Id1); 807 if (Id2.isValid() && canBeAddedToMapping(M, Id1, Id2)) { 808 M.link(Id1, Id2); 809 addOptimalMapping(M, Id1, Id2); 810 } 811 } 812 } 813 814 Mapping ASTDiff::Impl::matchTopDown() const { 815 PriorityList L1(T1); 816 PriorityList L2(T2); 817 818 Mapping M(T1.getSize(), T2.getSize()); 819 820 L1.push(T1.getRootId()); 821 L2.push(T2.getRootId()); 822 823 int Max1, Max2; 824 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 825 Options.MinHeight) { 826 if (Max1 > Max2) { 827 for (NodeId Id : L1.pop()) 828 L1.open(Id); 829 continue; 830 } 831 if (Max2 > Max1) { 832 for (NodeId Id : L2.pop()) 833 L2.open(Id); 834 continue; 835 } 836 std::vector<NodeId> H1, H2; 837 H1 = L1.pop(); 838 H2 = L2.pop(); 839 for (NodeId Id1 : H1) { 840 for (NodeId Id2 : H2) { 841 if (identical(Id1, Id2) && canBeAddedToMapping(M, Id1, Id2)) { 842 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 843 M.link(Id1 + I, Id2 + I); 844 } 845 } 846 } 847 for (NodeId Id1 : H1) { 848 if (!M.hasSrc(Id1)) 849 L1.open(Id1); 850 } 851 for (NodeId Id2 : H2) { 852 if (!M.hasDst(Id2)) 853 L2.open(Id2); 854 } 855 } 856 return M; 857 } 858 859 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 860 const ComparisonOptions &Options) 861 : T1(T1), T2(T2), Options(Options) { 862 computeMapping(); 863 computeChangeKinds(TheMapping); 864 } 865 866 void ASTDiff::Impl::computeMapping() { 867 TheMapping = matchTopDown(); 868 matchBottomUp(TheMapping); 869 } 870 871 void ASTDiff::Impl::computeChangeKinds(Mapping &M) { 872 for (NodeId Id1 : T1) { 873 if (!M.hasSrc(Id1)) { 874 T1.getMutableNode(Id1).Change = Delete; 875 T1.getMutableNode(Id1).Shift -= 1; 876 } 877 } 878 for (NodeId Id2 : T2) { 879 if (!M.hasDst(Id2)) { 880 T2.getMutableNode(Id2).Change = Insert; 881 T2.getMutableNode(Id2).Shift -= 1; 882 } 883 } 884 for (NodeId Id1 : T1.NodesBfs) { 885 NodeId Id2 = M.getDst(Id1); 886 if (Id2.isInvalid()) 887 continue; 888 if (!haveSameParents(M, Id1, Id2) || 889 T1.findPositionInParent(Id1, true) != 890 T2.findPositionInParent(Id2, true)) { 891 T1.getMutableNode(Id1).Shift -= 1; 892 T2.getMutableNode(Id2).Shift -= 1; 893 } 894 } 895 for (NodeId Id2 : T2.NodesBfs) { 896 NodeId Id1 = M.getSrc(Id2); 897 if (Id1.isInvalid()) 898 continue; 899 Node &N1 = T1.getMutableNode(Id1); 900 Node &N2 = T2.getMutableNode(Id2); 901 if (Id1.isInvalid()) 902 continue; 903 if (!haveSameParents(M, Id1, Id2) || 904 T1.findPositionInParent(Id1, true) != 905 T2.findPositionInParent(Id2, true)) { 906 N1.Change = N2.Change = Move; 907 } 908 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 909 N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); 910 } 911 } 912 } 913 914 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 915 const ComparisonOptions &Options) 916 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 917 918 ASTDiff::~ASTDiff() = default; 919 920 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { 921 return DiffImpl->getMapped(SourceTree.TreeImpl, Id); 922 } 923 924 SyntaxTree::SyntaxTree(const ASTContext &AST) 925 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 926 this, AST.getTranslationUnitDecl(), AST)) {} 927 928 SyntaxTree::~SyntaxTree() = default; 929 930 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 931 932 const Node &SyntaxTree::getNode(NodeId Id) const { 933 return TreeImpl->getNode(Id); 934 } 935 936 int SyntaxTree::getSize() const { return TreeImpl->getSize(); } 937 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 938 SyntaxTree::PreorderIterator SyntaxTree::begin() const { 939 return TreeImpl->begin(); 940 } 941 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } 942 943 int SyntaxTree::findPositionInParent(NodeId Id) const { 944 return TreeImpl->findPositionInParent(Id); 945 } 946 947 std::pair<unsigned, unsigned> 948 SyntaxTree::getSourceRangeOffsets(const Node &N) const { 949 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 950 SourceRange Range = N.ASTNode.getSourceRange(); 951 SourceLocation BeginLoc = Range.getBegin(); 952 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 953 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 954 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 955 if (ThisExpr->isImplicit()) 956 EndLoc = BeginLoc; 957 } 958 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 959 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 960 return {Begin, End}; 961 } 962 963 std::string SyntaxTree::getNodeValue(NodeId Id) const { 964 return TreeImpl->getNodeValue(Id); 965 } 966 967 std::string SyntaxTree::getNodeValue(const Node &N) const { 968 return TreeImpl->getNodeValue(N); 969 } 970 971 } // end namespace diff 972 } // end namespace clang 973