1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 namespace { 31 /// Maps nodes of the left tree to ones on the right, and vice versa. 32 class Mapping { 33 public: 34 Mapping() = default; 35 Mapping(Mapping &&Other) = default; 36 Mapping &operator=(Mapping &&Other) = default; 37 38 Mapping(size_t Size) { 39 SrcToDst = llvm::make_unique<NodeId[]>(Size); 40 DstToSrc = llvm::make_unique<NodeId[]>(Size); 41 } 42 43 void link(NodeId Src, NodeId Dst) { 44 SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; 45 } 46 47 NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } 48 NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } 49 bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } 50 bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } 51 52 private: 53 std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; 54 }; 55 } // end anonymous namespace 56 57 class ASTDiff::Impl { 58 public: 59 SyntaxTree::Impl &T1, &T2; 60 Mapping TheMapping; 61 62 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 63 const ComparisonOptions &Options); 64 65 /// Matches nodes one-by-one based on their similarity. 66 void computeMapping(); 67 68 // Compute Change for each node based on similarity. 69 void computeChangeKinds(Mapping &M); 70 71 NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, 72 NodeId Id) const { 73 if (&*Tree == &T1) 74 return TheMapping.getDst(Id); 75 assert(&*Tree == &T2 && "Invalid tree."); 76 return TheMapping.getSrc(Id); 77 } 78 79 private: 80 // Returns true if the two subtrees are identical. 81 bool identical(NodeId Id1, NodeId Id2) const; 82 83 // Returns false if the nodes must not be mached. 84 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 85 86 // Returns true if the nodes' parents are matched. 87 bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; 88 89 // Uses an optimal albeit slow algorithm to compute a mapping between two 90 // subtrees, but only if both have fewer nodes than MaxSize. 91 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 92 93 // Computes the ratio of common descendants between the two nodes. 94 // Descendants are only considered to be equal when they are mapped in M. 95 double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 96 97 // Returns the node that has the highest degree of similarity. 98 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 99 100 // Returns a mapping of identical subtrees. 101 Mapping matchTopDown() const; 102 103 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 104 void matchBottomUp(Mapping &M) const; 105 106 const ComparisonOptions &Options; 107 108 friend class ZhangShashaMatcher; 109 }; 110 111 /// Represents the AST of a TranslationUnit. 112 class SyntaxTree::Impl { 113 public: 114 /// Constructs a tree from the entire translation unit. 115 Impl(SyntaxTree *Parent, const ASTContext &AST); 116 /// Constructs a tree from an AST node. 117 Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST); 118 Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST); 119 template <class T> 120 Impl(SyntaxTree *Parent, 121 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 122 const ASTContext &AST) 123 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 124 template <class T> 125 Impl(SyntaxTree *Parent, 126 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 127 const ASTContext &AST) 128 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 129 130 SyntaxTree *Parent; 131 const ASTContext &AST; 132 std::vector<NodeId> Leaves; 133 // Maps preorder indices to postorder ones. 134 std::vector<int> PostorderIds; 135 std::vector<NodeId> NodesBfs; 136 137 int getSize() const { return Nodes.size(); } 138 NodeId getRootId() const { return 0; } 139 PreorderIterator begin() const { return getRootId(); } 140 PreorderIterator end() const { return getSize(); } 141 142 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 143 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 144 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 145 void addNode(Node &N) { Nodes.push_back(N); } 146 int getNumberOfDescendants(NodeId Id) const; 147 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 148 int findPositionInParent(NodeId Id, bool Shifted = false) const; 149 150 std::string getNodeValue(NodeId Id) const; 151 std::string getNodeValue(const Node &Node) const; 152 153 private: 154 /// Nodes in preorder. 155 std::vector<Node> Nodes; 156 157 void initTree(); 158 void setLeftMostDescendants(); 159 }; 160 161 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } 162 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } 163 164 template <class T> 165 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 166 if (!N) 167 return true; 168 SourceLocation SLoc = N->getLocStart(); 169 if (SLoc.isValid()) { 170 // Ignore everything from other files. 171 if (!SrcMgr.isInMainFile(SLoc)) 172 return true; 173 // Ignore macros. 174 if (SLoc != SrcMgr.getSpellingLoc(SLoc)) 175 return true; 176 } 177 return isSpecializedNodeExcluded(N); 178 } 179 180 namespace { 181 /// Counts the number of nodes that will be compared. 182 struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { 183 int Count = 0; 184 const SyntaxTree::Impl &Tree; 185 NodeCountVisitor(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 186 bool TraverseDecl(Decl *D) { 187 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 188 return true; 189 ++Count; 190 RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); 191 return true; 192 } 193 bool TraverseStmt(Stmt *S) { 194 if (S) 195 S = S->IgnoreImplicit(); 196 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 197 return true; 198 ++Count; 199 RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); 200 return true; 201 } 202 bool TraverseType(QualType T) { return true; } 203 }; 204 } // end anonymous namespace 205 206 namespace { 207 // Sets Height, Parent and Children for each node. 208 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 209 int Id = 0, Depth = 0; 210 NodeId Parent; 211 SyntaxTree::Impl &Tree; 212 213 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 214 215 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 216 NodeId MyId = Id; 217 Node &N = Tree.getMutableNode(MyId); 218 N.Parent = Parent; 219 N.Depth = Depth; 220 N.ASTNode = DynTypedNode::create(*ASTNode); 221 assert(!N.ASTNode.getNodeKind().isNone() && 222 "Expected nodes to have a valid kind."); 223 if (Parent.isValid()) { 224 Node &P = Tree.getMutableNode(Parent); 225 P.Children.push_back(MyId); 226 } 227 Parent = MyId; 228 ++Id; 229 ++Depth; 230 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 231 } 232 void PostTraverse(std::tuple<NodeId, NodeId> State) { 233 NodeId MyId, PreviousParent; 234 std::tie(MyId, PreviousParent) = State; 235 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 236 Parent = PreviousParent; 237 --Depth; 238 Node &N = Tree.getMutableNode(MyId); 239 N.RightMostDescendant = Id - 1; 240 assert(N.RightMostDescendant >= 0 && 241 N.RightMostDescendant < Tree.getSize() && 242 "Rightmost descendant must be a valid tree node."); 243 if (N.isLeaf()) 244 Tree.Leaves.push_back(MyId); 245 N.Height = 1; 246 for (NodeId Child : N.Children) 247 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 248 } 249 bool TraverseDecl(Decl *D) { 250 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 251 return true; 252 auto SavedState = PreTraverse(D); 253 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 254 PostTraverse(SavedState); 255 return true; 256 } 257 bool TraverseStmt(Stmt *S) { 258 if (S) 259 S = S->IgnoreImplicit(); 260 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 261 return true; 262 auto SavedState = PreTraverse(S); 263 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 264 PostTraverse(SavedState); 265 return true; 266 } 267 bool TraverseType(QualType T) { return true; } 268 }; 269 } // end anonymous namespace 270 271 SyntaxTree::Impl::Impl(SyntaxTree *Parent, const ASTContext &AST) 272 : Impl(Parent, AST.getTranslationUnitDecl(), AST) {} 273 274 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST) 275 : Parent(Parent), AST(AST) { 276 NodeCountVisitor NodeCounter(*this); 277 NodeCounter.TraverseDecl(N); 278 Nodes.resize(NodeCounter.Count); 279 PreorderVisitor PreorderWalker(*this); 280 PreorderWalker.TraverseDecl(N); 281 initTree(); 282 } 283 284 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST) 285 : Parent(Parent), AST(AST) { 286 NodeCountVisitor NodeCounter(*this); 287 NodeCounter.TraverseStmt(N); 288 Nodes.resize(NodeCounter.Count); 289 PreorderVisitor PreorderWalker(*this); 290 PreorderWalker.TraverseStmt(N); 291 initTree(); 292 } 293 294 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 295 NodeId Root) { 296 std::vector<NodeId> Postorder; 297 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 298 const Node &N = Tree.getNode(Id); 299 for (NodeId Child : N.Children) 300 Traverse(Child); 301 Postorder.push_back(Id); 302 }; 303 Traverse(Root); 304 return Postorder; 305 } 306 307 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 308 NodeId Root) { 309 std::vector<NodeId> Ids; 310 size_t Expanded = 0; 311 Ids.push_back(Root); 312 while (Expanded < Ids.size()) 313 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 314 Ids.push_back(Child); 315 return Ids; 316 } 317 318 void SyntaxTree::Impl::initTree() { 319 setLeftMostDescendants(); 320 int PostorderId = 0; 321 PostorderIds.resize(getSize()); 322 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 323 for (NodeId Child : getNode(Id).Children) 324 PostorderTraverse(Child); 325 PostorderIds[Id] = PostorderId; 326 ++PostorderId; 327 }; 328 PostorderTraverse(getRootId()); 329 NodesBfs = getSubtreeBfs(*this, getRootId()); 330 } 331 332 void SyntaxTree::Impl::setLeftMostDescendants() { 333 for (NodeId Leaf : Leaves) { 334 getMutableNode(Leaf).LeftMostDescendant = Leaf; 335 NodeId Parent, Cur = Leaf; 336 while ((Parent = getNode(Cur).Parent).isValid() && 337 getNode(Parent).Children[0] == Cur) { 338 Cur = Parent; 339 getMutableNode(Cur).LeftMostDescendant = Leaf; 340 } 341 } 342 } 343 344 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 345 return getNode(Id).RightMostDescendant - Id + 1; 346 } 347 348 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 349 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 350 } 351 352 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { 353 NodeId Parent = getNode(Id).Parent; 354 if (Parent.isInvalid()) 355 return 0; 356 const auto &Siblings = getNode(Parent).Children; 357 int Position = 0; 358 for (size_t I = 0, E = Siblings.size(); I < E; ++I) { 359 if (Shifted) 360 Position += getNode(Siblings[I]).Shift; 361 if (Siblings[I] == Id) { 362 Position += I; 363 return Position; 364 } 365 } 366 llvm_unreachable("Node not found in parent's children."); 367 } 368 369 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 370 return getNodeValue(getNode(Id)); 371 } 372 373 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { 374 const DynTypedNode &DTN = N.ASTNode; 375 if (auto *X = DTN.get<BinaryOperator>()) 376 return X->getOpcodeStr(); 377 if (auto *X = DTN.get<AccessSpecDecl>()) { 378 CharSourceRange Range(X->getSourceRange(), false); 379 return Lexer::getSourceText(Range, AST.getSourceManager(), 380 AST.getLangOpts()); 381 } 382 if (auto *X = DTN.get<IntegerLiteral>()) { 383 SmallString<256> Str; 384 X->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 385 return Str.str(); 386 } 387 if (auto *X = DTN.get<StringLiteral>()) 388 return X->getString(); 389 if (auto *X = DTN.get<ValueDecl>()) 390 return X->getNameAsString() + "(" + X->getType().getAsString() + ")"; 391 if (DTN.get<DeclStmt>() || DTN.get<TranslationUnitDecl>()) 392 return ""; 393 std::string Value; 394 if (auto *X = DTN.get<DeclRefExpr>()) { 395 if (X->hasQualifier()) { 396 llvm::raw_string_ostream OS(Value); 397 PrintingPolicy PP(AST.getLangOpts()); 398 X->getQualifier()->print(OS, PP); 399 } 400 Value += X->getDecl()->getNameAsString(); 401 return Value; 402 } 403 if (auto *X = DTN.get<NamedDecl>()) 404 Value += X->getNameAsString() + ";"; 405 if (auto *X = DTN.get<TypedefNameDecl>()) 406 return Value + X->getUnderlyingType().getAsString() + ";"; 407 if (DTN.get<NamespaceDecl>()) 408 return Value; 409 if (auto *X = DTN.get<TypeDecl>()) 410 if (X->getTypeForDecl()) 411 Value += 412 X->getTypeForDecl()->getCanonicalTypeInternal().getAsString() + ";"; 413 if (DTN.get<Decl>()) 414 return Value; 415 if (DTN.get<Stmt>()) 416 return ""; 417 llvm_unreachable("Fatal: unhandled AST node.\n"); 418 } 419 420 /// Identifies a node in a subtree by its postorder offset, starting at 1. 421 struct SNodeId { 422 int Id = 0; 423 424 explicit SNodeId(int Id) : Id(Id) {} 425 explicit SNodeId() = default; 426 427 operator int() const { return Id; } 428 SNodeId &operator++() { return ++Id, *this; } 429 SNodeId &operator--() { return --Id, *this; } 430 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 431 }; 432 433 class Subtree { 434 private: 435 /// The parent tree. 436 const SyntaxTree::Impl &Tree; 437 /// Maps SNodeIds to original ids. 438 std::vector<NodeId> RootIds; 439 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 440 std::vector<SNodeId> LeftMostDescendants; 441 442 public: 443 std::vector<SNodeId> KeyRoots; 444 445 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 446 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 447 int NumLeaves = setLeftMostDescendants(); 448 computeKeyRoots(NumLeaves); 449 } 450 int getSize() const { return RootIds.size(); } 451 NodeId getIdInRoot(SNodeId Id) const { 452 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 453 return RootIds[Id - 1]; 454 } 455 const Node &getNode(SNodeId Id) const { 456 return Tree.getNode(getIdInRoot(Id)); 457 } 458 SNodeId getLeftMostDescendant(SNodeId Id) const { 459 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 460 return LeftMostDescendants[Id - 1]; 461 } 462 /// Returns the postorder index of the leftmost descendant in the subtree. 463 NodeId getPostorderOffset() const { 464 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 465 } 466 std::string getNodeValue(SNodeId Id) const { 467 return Tree.getNodeValue(getIdInRoot(Id)); 468 } 469 470 private: 471 /// Returns the number of leafs in the subtree. 472 int setLeftMostDescendants() { 473 int NumLeaves = 0; 474 LeftMostDescendants.resize(getSize()); 475 for (int I = 0; I < getSize(); ++I) { 476 SNodeId SI(I + 1); 477 const Node &N = getNode(SI); 478 NumLeaves += N.isLeaf(); 479 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 480 "Postorder traversal in subtree should correspond to traversal in " 481 "the root tree by a constant offset."); 482 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 483 getPostorderOffset()); 484 } 485 return NumLeaves; 486 } 487 void computeKeyRoots(int Leaves) { 488 KeyRoots.resize(Leaves); 489 std::unordered_set<int> Visited; 490 int K = Leaves - 1; 491 for (SNodeId I(getSize()); I > 0; --I) { 492 SNodeId LeftDesc = getLeftMostDescendant(I); 493 if (Visited.count(LeftDesc)) 494 continue; 495 assert(K >= 0 && "K should be non-negative"); 496 KeyRoots[K] = I; 497 Visited.insert(LeftDesc); 498 --K; 499 } 500 } 501 }; 502 503 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 504 /// Computes an optimal mapping between two trees using only insertion, 505 /// deletion and update as edit actions (similar to the Levenshtein distance). 506 class ZhangShashaMatcher { 507 const ASTDiff::Impl &DiffImpl; 508 Subtree S1; 509 Subtree S2; 510 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 511 512 public: 513 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 514 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 515 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 516 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 517 size_t(S1.getSize()) + 1); 518 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 519 size_t(S1.getSize()) + 1); 520 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 521 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 522 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 523 } 524 } 525 526 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 527 std::vector<std::pair<NodeId, NodeId>> Matches; 528 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 529 530 computeTreeDist(); 531 532 bool RootNodePair = true; 533 534 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 535 536 while (!TreePairs.empty()) { 537 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 538 std::tie(LastRow, LastCol) = TreePairs.back(); 539 TreePairs.pop_back(); 540 541 if (!RootNodePair) { 542 computeForestDist(LastRow, LastCol); 543 } 544 545 RootNodePair = false; 546 547 FirstRow = S1.getLeftMostDescendant(LastRow); 548 FirstCol = S2.getLeftMostDescendant(LastCol); 549 550 Row = LastRow; 551 Col = LastCol; 552 553 while (Row > FirstRow || Col > FirstCol) { 554 if (Row > FirstRow && 555 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 556 --Row; 557 } else if (Col > FirstCol && 558 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 559 --Col; 560 } else { 561 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 562 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 563 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 564 LMD2 == S2.getLeftMostDescendant(LastCol)) { 565 NodeId Id1 = S1.getIdInRoot(Row); 566 NodeId Id2 = S2.getIdInRoot(Col); 567 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 568 "These nodes must not be matched."); 569 Matches.emplace_back(Id1, Id2); 570 --Row; 571 --Col; 572 } else { 573 TreePairs.emplace_back(Row, Col); 574 Row = LMD1; 575 Col = LMD2; 576 } 577 } 578 } 579 } 580 return Matches; 581 } 582 583 private: 584 /// We use a simple cost model for edit actions, which seems good enough. 585 /// Simple cost model for edit actions. This seems to make the matching 586 /// algorithm perform reasonably well. 587 /// The values range between 0 and 1, or infinity if this edit action should 588 /// always be avoided. 589 static constexpr double DeletionCost = 1; 590 static constexpr double InsertionCost = 1; 591 592 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 593 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 594 return std::numeric_limits<double>::max(); 595 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 596 } 597 598 void computeTreeDist() { 599 for (SNodeId Id1 : S1.KeyRoots) 600 for (SNodeId Id2 : S2.KeyRoots) 601 computeForestDist(Id1, Id2); 602 } 603 604 void computeForestDist(SNodeId Id1, SNodeId Id2) { 605 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 606 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 607 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 608 609 ForestDist[LMD1][LMD2] = 0; 610 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 611 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 612 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 613 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 614 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 615 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 616 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 617 double UpdateCost = getUpdateCost(D1, D2); 618 ForestDist[D1][D2] = 619 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 620 ForestDist[D1][D2 - 1] + InsertionCost, 621 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 622 TreeDist[D1][D2] = ForestDist[D1][D2]; 623 } else { 624 ForestDist[D1][D2] = 625 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 626 ForestDist[D1][D2 - 1] + InsertionCost, 627 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 628 } 629 } 630 } 631 } 632 }; 633 634 ast_type_traits::ASTNodeKind Node::getType() const { 635 return ASTNode.getNodeKind(); 636 } 637 638 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 639 640 namespace { 641 // Compares nodes by their depth. 642 struct HeightLess { 643 const SyntaxTree::Impl &Tree; 644 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 645 bool operator()(NodeId Id1, NodeId Id2) const { 646 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 647 } 648 }; 649 } // end anonymous namespace 650 651 namespace { 652 // Priority queue for nodes, sorted descendingly by their height. 653 class PriorityList { 654 const SyntaxTree::Impl &Tree; 655 HeightLess Cmp; 656 std::vector<NodeId> Container; 657 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 658 659 public: 660 PriorityList(const SyntaxTree::Impl &Tree) 661 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 662 663 void push(NodeId id) { List.push(id); } 664 665 std::vector<NodeId> pop() { 666 int Max = peekMax(); 667 std::vector<NodeId> Result; 668 if (Max == 0) 669 return Result; 670 while (peekMax() == Max) { 671 Result.push_back(List.top()); 672 List.pop(); 673 } 674 // TODO this is here to get a stable output, not a good heuristic 675 std::sort(Result.begin(), Result.end()); 676 return Result; 677 } 678 int peekMax() const { 679 if (List.empty()) 680 return 0; 681 return Tree.getNode(List.top()).Height; 682 } 683 void open(NodeId Id) { 684 for (NodeId Child : Tree.getNode(Id).Children) 685 push(Child); 686 } 687 }; 688 } // end anonymous namespace 689 690 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 691 const Node &N1 = T1.getNode(Id1); 692 const Node &N2 = T2.getNode(Id2); 693 if (N1.Children.size() != N2.Children.size() || 694 !isMatchingPossible(Id1, Id2) || 695 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 696 return false; 697 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 698 if (!identical(N1.Children[Id], N2.Children[Id])) 699 return false; 700 return true; 701 } 702 703 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 704 return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); 705 } 706 707 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, 708 NodeId Id2) const { 709 NodeId P1 = T1.getNode(Id1).Parent; 710 NodeId P2 = T2.getNode(Id2).Parent; 711 return (P1.isInvalid() && P2.isInvalid()) || 712 (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); 713 } 714 715 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 716 NodeId Id2) const { 717 if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > 718 Options.MaxSize) 719 return; 720 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 721 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 722 for (const auto Tuple : R) { 723 NodeId Src = Tuple.first; 724 NodeId Dst = Tuple.second; 725 if (!M.hasSrc(Src) && !M.hasDst(Dst)) 726 M.link(Src, Dst); 727 } 728 } 729 730 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, 731 NodeId Id2) const { 732 int CommonDescendants = 0; 733 const Node &N1 = T1.getNode(Id1); 734 // Count the common descendants, excluding the subtree root. 735 for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { 736 NodeId Dst = M.getDst(Src); 737 CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); 738 } 739 // We need to subtract 1 to get the number of descendants excluding the root. 740 double Denominator = T1.getNumberOfDescendants(Id1) - 1 + 741 T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; 742 // CommonDescendants is less than the size of one subtree. 743 assert(Denominator >= 0 && "Expected non-negative denominator."); 744 if (Denominator == 0) 745 return 0; 746 return CommonDescendants / Denominator; 747 } 748 749 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 750 NodeId Candidate; 751 double HighestSimilarity = 0.0; 752 for (NodeId Id2 : T2) { 753 if (!isMatchingPossible(Id1, Id2)) 754 continue; 755 if (M.hasDst(Id2)) 756 continue; 757 double Similarity = getJaccardSimilarity(M, Id1, Id2); 758 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 759 HighestSimilarity = Similarity; 760 Candidate = Id2; 761 } 762 } 763 return Candidate; 764 } 765 766 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 767 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 768 for (NodeId Id1 : Postorder) { 769 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 770 !M.hasDst(T2.getRootId())) { 771 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 772 M.link(T1.getRootId(), T2.getRootId()); 773 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 774 } 775 break; 776 } 777 bool Matched = M.hasSrc(Id1); 778 const Node &N1 = T1.getNode(Id1); 779 bool MatchedChildren = 780 std::any_of(N1.Children.begin(), N1.Children.end(), 781 [&](NodeId Child) { return M.hasSrc(Child); }); 782 if (Matched || !MatchedChildren) 783 continue; 784 NodeId Id2 = findCandidate(M, Id1); 785 if (Id2.isValid()) { 786 M.link(Id1, Id2); 787 addOptimalMapping(M, Id1, Id2); 788 } 789 } 790 } 791 792 Mapping ASTDiff::Impl::matchTopDown() const { 793 PriorityList L1(T1); 794 PriorityList L2(T2); 795 796 Mapping M(T1.getSize() + T2.getSize()); 797 798 L1.push(T1.getRootId()); 799 L2.push(T2.getRootId()); 800 801 int Max1, Max2; 802 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 803 Options.MinHeight) { 804 if (Max1 > Max2) { 805 for (NodeId Id : L1.pop()) 806 L1.open(Id); 807 continue; 808 } 809 if (Max2 > Max1) { 810 for (NodeId Id : L2.pop()) 811 L2.open(Id); 812 continue; 813 } 814 std::vector<NodeId> H1, H2; 815 H1 = L1.pop(); 816 H2 = L2.pop(); 817 for (NodeId Id1 : H1) { 818 for (NodeId Id2 : H2) { 819 if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { 820 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 821 M.link(Id1 + I, Id2 + I); 822 } 823 } 824 } 825 for (NodeId Id1 : H1) { 826 if (!M.hasSrc(Id1)) 827 L1.open(Id1); 828 } 829 for (NodeId Id2 : H2) { 830 if (!M.hasDst(Id2)) 831 L2.open(Id2); 832 } 833 } 834 return M; 835 } 836 837 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 838 const ComparisonOptions &Options) 839 : T1(T1), T2(T2), Options(Options) { 840 computeMapping(); 841 computeChangeKinds(TheMapping); 842 } 843 844 void ASTDiff::Impl::computeMapping() { 845 TheMapping = matchTopDown(); 846 if (Options.StopAfterTopDown) 847 return; 848 matchBottomUp(TheMapping); 849 } 850 851 void ASTDiff::Impl::computeChangeKinds(Mapping &M) { 852 for (NodeId Id1 : T1) { 853 if (!M.hasSrc(Id1)) { 854 T1.getMutableNode(Id1).Change = Delete; 855 T1.getMutableNode(Id1).Shift -= 1; 856 } 857 } 858 for (NodeId Id2 : T2) { 859 if (!M.hasDst(Id2)) { 860 T2.getMutableNode(Id2).Change = Insert; 861 T2.getMutableNode(Id2).Shift -= 1; 862 } 863 } 864 for (NodeId Id1 : T1.NodesBfs) { 865 NodeId Id2 = M.getDst(Id1); 866 if (Id2.isInvalid()) 867 continue; 868 if (!haveSameParents(M, Id1, Id2) || 869 T1.findPositionInParent(Id1, true) != 870 T2.findPositionInParent(Id2, true)) { 871 T1.getMutableNode(Id1).Shift -= 1; 872 T2.getMutableNode(Id2).Shift -= 1; 873 } 874 } 875 for (NodeId Id2 : T2.NodesBfs) { 876 NodeId Id1 = M.getSrc(Id2); 877 if (Id1.isInvalid()) 878 continue; 879 Node &N1 = T1.getMutableNode(Id1); 880 Node &N2 = T2.getMutableNode(Id2); 881 if (Id1.isInvalid()) 882 continue; 883 if (!haveSameParents(M, Id1, Id2) || 884 T1.findPositionInParent(Id1, true) != 885 T2.findPositionInParent(Id2, true)) { 886 N1.Change = N2.Change = Move; 887 } 888 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 889 N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); 890 } 891 } 892 } 893 894 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 895 const ComparisonOptions &Options) 896 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 897 898 ASTDiff::~ASTDiff() = default; 899 900 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { 901 return DiffImpl->getMapped(SourceTree.TreeImpl, Id); 902 } 903 904 SyntaxTree::SyntaxTree(const ASTContext &AST) 905 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 906 this, AST.getTranslationUnitDecl(), AST)) {} 907 908 SyntaxTree::~SyntaxTree() = default; 909 910 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 911 912 const Node &SyntaxTree::getNode(NodeId Id) const { 913 return TreeImpl->getNode(Id); 914 } 915 916 int SyntaxTree::getSize() const { return TreeImpl->getSize(); } 917 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 918 SyntaxTree::PreorderIterator SyntaxTree::begin() const { 919 return TreeImpl->begin(); 920 } 921 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } 922 923 int SyntaxTree::findPositionInParent(NodeId Id) const { 924 return TreeImpl->findPositionInParent(Id); 925 } 926 927 std::pair<unsigned, unsigned> 928 SyntaxTree::getSourceRangeOffsets(const Node &N) const { 929 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 930 SourceRange Range = N.ASTNode.getSourceRange(); 931 SourceLocation BeginLoc = Range.getBegin(); 932 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 933 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 934 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 935 if (ThisExpr->isImplicit()) 936 EndLoc = BeginLoc; 937 } 938 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 939 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 940 return {Begin, End}; 941 } 942 943 std::string SyntaxTree::getNodeValue(NodeId Id) const { 944 return TreeImpl->getNodeValue(Id); 945 } 946 947 std::string SyntaxTree::getNodeValue(const Node &N) const { 948 return TreeImpl->getNodeValue(N); 949 } 950 951 } // end namespace diff 952 } // end namespace clang 953