1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 namespace { 31 /// Maps nodes of the left tree to ones on the right, and vice versa. 32 class Mapping { 33 public: 34 Mapping() = default; 35 Mapping(Mapping &&Other) = default; 36 Mapping &operator=(Mapping &&Other) = default; 37 38 Mapping(size_t Size) { 39 SrcToDst = llvm::make_unique<NodeId[]>(Size); 40 DstToSrc = llvm::make_unique<NodeId[]>(Size); 41 } 42 43 void link(NodeId Src, NodeId Dst) { 44 SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; 45 } 46 47 NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } 48 NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } 49 bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } 50 bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } 51 52 private: 53 std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; 54 }; 55 } // end anonymous namespace 56 57 class ASTDiff::Impl { 58 public: 59 SyntaxTree::Impl &T1, &T2; 60 Mapping TheMapping; 61 62 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 63 const ComparisonOptions &Options); 64 65 /// Matches nodes one-by-one based on their similarity. 66 void computeMapping(); 67 68 // Compute Change for each node based on similarity. 69 void computeChangeKinds(Mapping &M); 70 71 NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, 72 NodeId Id) const { 73 if (&*Tree == &T1) 74 return TheMapping.getDst(Id); 75 assert(&*Tree == &T2 && "Invalid tree."); 76 return TheMapping.getSrc(Id); 77 } 78 79 private: 80 // Returns true if the two subtrees are identical. 81 bool identical(NodeId Id1, NodeId Id2) const; 82 83 // Returns false if the nodes must not be mached. 84 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 85 86 // Returns true if the nodes' parents are matched. 87 bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; 88 89 // Uses an optimal albeit slow algorithm to compute a mapping between two 90 // subtrees, but only if both have fewer nodes than MaxSize. 91 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 92 93 // Computes the ratio of common descendants between the two nodes. 94 // Descendants are only considered to be equal when they are mapped in M. 95 double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 96 97 // Returns the node that has the highest degree of similarity. 98 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 99 100 // Returns a mapping of identical subtrees. 101 Mapping matchTopDown() const; 102 103 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 104 void matchBottomUp(Mapping &M) const; 105 106 const ComparisonOptions &Options; 107 108 friend class ZhangShashaMatcher; 109 }; 110 111 /// Represents the AST of a TranslationUnit. 112 class SyntaxTree::Impl { 113 public: 114 /// Constructs a tree from an AST node. 115 Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); 116 Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); 117 template <class T> 118 Impl(SyntaxTree *Parent, 119 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 120 ASTContext &AST) 121 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 122 template <class T> 123 Impl(SyntaxTree *Parent, 124 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 125 ASTContext &AST) 126 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 127 128 SyntaxTree *Parent; 129 ASTContext &AST; 130 std::vector<NodeId> Leaves; 131 // Maps preorder indices to postorder ones. 132 std::vector<int> PostorderIds; 133 std::vector<NodeId> NodesBfs; 134 135 int getSize() const { return Nodes.size(); } 136 NodeId getRootId() const { return 0; } 137 PreorderIterator begin() const { return getRootId(); } 138 PreorderIterator end() const { return getSize(); } 139 140 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 141 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 142 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 143 void addNode(Node &N) { Nodes.push_back(N); } 144 int getNumberOfDescendants(NodeId Id) const; 145 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 146 int findPositionInParent(NodeId Id, bool Shifted = false) const; 147 148 std::string getRelativeName(const NamedDecl *ND, 149 const DeclContext *Context) const; 150 std::string getRelativeName(const NamedDecl *ND) const; 151 152 std::string getNodeValue(NodeId Id) const; 153 std::string getNodeValue(const Node &Node) const; 154 std::string getDeclValue(const Decl *D) const; 155 std::string getStmtValue(const Stmt *S) const; 156 157 private: 158 /// Nodes in preorder. 159 std::vector<Node> Nodes; 160 161 void initTree(); 162 void setLeftMostDescendants(); 163 }; 164 165 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } 166 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } 167 168 template <class T> 169 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 170 if (!N) 171 return true; 172 SourceLocation SLoc = N->getLocStart(); 173 if (SLoc.isValid()) { 174 // Ignore everything from other files. 175 if (!SrcMgr.isInMainFile(SLoc)) 176 return true; 177 // Ignore macros. 178 if (SLoc != SrcMgr.getSpellingLoc(SLoc)) 179 return true; 180 } 181 return isSpecializedNodeExcluded(N); 182 } 183 184 namespace { 185 /// Counts the number of nodes that will be compared. 186 struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { 187 int Count = 0; 188 const SyntaxTree::Impl &Tree; 189 NodeCountVisitor(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 190 bool TraverseDecl(Decl *D) { 191 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 192 return true; 193 ++Count; 194 RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); 195 return true; 196 } 197 bool TraverseStmt(Stmt *S) { 198 if (S) 199 S = S->IgnoreImplicit(); 200 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 201 return true; 202 ++Count; 203 RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); 204 return true; 205 } 206 bool TraverseType(QualType T) { return true; } 207 }; 208 } // end anonymous namespace 209 210 namespace { 211 // Sets Height, Parent and Children for each node. 212 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 213 int Id = 0, Depth = 0; 214 NodeId Parent; 215 SyntaxTree::Impl &Tree; 216 217 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 218 219 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 220 NodeId MyId = Id; 221 Node &N = Tree.getMutableNode(MyId); 222 N.Parent = Parent; 223 N.Depth = Depth; 224 N.ASTNode = DynTypedNode::create(*ASTNode); 225 assert(!N.ASTNode.getNodeKind().isNone() && 226 "Expected nodes to have a valid kind."); 227 if (Parent.isValid()) { 228 Node &P = Tree.getMutableNode(Parent); 229 P.Children.push_back(MyId); 230 } 231 Parent = MyId; 232 ++Id; 233 ++Depth; 234 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 235 } 236 void PostTraverse(std::tuple<NodeId, NodeId> State) { 237 NodeId MyId, PreviousParent; 238 std::tie(MyId, PreviousParent) = State; 239 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 240 Parent = PreviousParent; 241 --Depth; 242 Node &N = Tree.getMutableNode(MyId); 243 N.RightMostDescendant = Id - 1; 244 assert(N.RightMostDescendant >= 0 && 245 N.RightMostDescendant < Tree.getSize() && 246 "Rightmost descendant must be a valid tree node."); 247 if (N.isLeaf()) 248 Tree.Leaves.push_back(MyId); 249 N.Height = 1; 250 for (NodeId Child : N.Children) 251 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 252 } 253 bool TraverseDecl(Decl *D) { 254 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 255 return true; 256 auto SavedState = PreTraverse(D); 257 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 258 PostTraverse(SavedState); 259 return true; 260 } 261 bool TraverseStmt(Stmt *S) { 262 if (S) 263 S = S->IgnoreImplicit(); 264 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 265 return true; 266 auto SavedState = PreTraverse(S); 267 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 268 PostTraverse(SavedState); 269 return true; 270 } 271 bool TraverseType(QualType T) { return true; } 272 }; 273 } // end anonymous namespace 274 275 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) 276 : Parent(Parent), AST(AST) { 277 NodeCountVisitor NodeCounter(*this); 278 NodeCounter.TraverseDecl(N); 279 Nodes.resize(NodeCounter.Count); 280 PreorderVisitor PreorderWalker(*this); 281 PreorderWalker.TraverseDecl(N); 282 initTree(); 283 } 284 285 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) 286 : Parent(Parent), AST(AST) { 287 NodeCountVisitor NodeCounter(*this); 288 NodeCounter.TraverseStmt(N); 289 Nodes.resize(NodeCounter.Count); 290 PreorderVisitor PreorderWalker(*this); 291 PreorderWalker.TraverseStmt(N); 292 initTree(); 293 } 294 295 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 296 NodeId Root) { 297 std::vector<NodeId> Postorder; 298 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 299 const Node &N = Tree.getNode(Id); 300 for (NodeId Child : N.Children) 301 Traverse(Child); 302 Postorder.push_back(Id); 303 }; 304 Traverse(Root); 305 return Postorder; 306 } 307 308 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 309 NodeId Root) { 310 std::vector<NodeId> Ids; 311 size_t Expanded = 0; 312 Ids.push_back(Root); 313 while (Expanded < Ids.size()) 314 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 315 Ids.push_back(Child); 316 return Ids; 317 } 318 319 void SyntaxTree::Impl::initTree() { 320 setLeftMostDescendants(); 321 int PostorderId = 0; 322 PostorderIds.resize(getSize()); 323 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 324 for (NodeId Child : getNode(Id).Children) 325 PostorderTraverse(Child); 326 PostorderIds[Id] = PostorderId; 327 ++PostorderId; 328 }; 329 PostorderTraverse(getRootId()); 330 NodesBfs = getSubtreeBfs(*this, getRootId()); 331 } 332 333 void SyntaxTree::Impl::setLeftMostDescendants() { 334 for (NodeId Leaf : Leaves) { 335 getMutableNode(Leaf).LeftMostDescendant = Leaf; 336 NodeId Parent, Cur = Leaf; 337 while ((Parent = getNode(Cur).Parent).isValid() && 338 getNode(Parent).Children[0] == Cur) { 339 Cur = Parent; 340 getMutableNode(Cur).LeftMostDescendant = Leaf; 341 } 342 } 343 } 344 345 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 346 return getNode(Id).RightMostDescendant - Id + 1; 347 } 348 349 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 350 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 351 } 352 353 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { 354 NodeId Parent = getNode(Id).Parent; 355 if (Parent.isInvalid()) 356 return 0; 357 const auto &Siblings = getNode(Parent).Children; 358 int Position = 0; 359 for (size_t I = 0, E = Siblings.size(); I < E; ++I) { 360 if (Shifted) 361 Position += getNode(Siblings[I]).Shift; 362 if (Siblings[I] == Id) { 363 Position += I; 364 return Position; 365 } 366 } 367 llvm_unreachable("Node not found in parent's children."); 368 } 369 370 // Returns the qualified name of ND. If it is subordinate to Context, 371 // then the prefix of the latter is removed from the returned value. 372 std::string 373 SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, 374 const DeclContext *Context) const { 375 std::string Val = ND->getQualifiedNameAsString(); 376 std::string ContextPrefix; 377 if (!Context) 378 return Val; 379 if (auto *Namespace = dyn_cast<NamespaceDecl>(Context)) 380 ContextPrefix = Namespace->getQualifiedNameAsString(); 381 else if (auto *Record = dyn_cast<RecordDecl>(Context)) 382 ContextPrefix = Record->getQualifiedNameAsString(); 383 else if (AST.getLangOpts().CPlusPlus11) 384 if (auto *Tag = dyn_cast<TagDecl>(Context)) 385 ContextPrefix = Tag->getQualifiedNameAsString(); 386 // Strip the qualifier, if Val refers to somthing in the current scope. 387 // But leave one leading ':' in place, so that we know that this is a 388 // relative path. 389 if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix)) 390 Val = Val.substr(ContextPrefix.size() + 1); 391 return Val; 392 } 393 394 std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { 395 return getRelativeName(ND, ND->getDeclContext()); 396 } 397 398 static const DeclContext *getEnclosingDeclContext(ASTContext &AST, 399 const Stmt *S) { 400 while (S) { 401 const auto &Parents = AST.getParents(*S); 402 if (Parents.empty()) 403 return nullptr; 404 const auto &P = Parents[0]; 405 if (const auto *D = P.get<Decl>()) 406 return D->getDeclContext(); 407 S = P.get<Stmt>(); 408 } 409 return nullptr; 410 } 411 412 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 413 return getNodeValue(getNode(Id)); 414 } 415 416 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { 417 const DynTypedNode &DTN = N.ASTNode; 418 if (auto *S = DTN.get<Stmt>()) 419 return getStmtValue(S); 420 if (auto *D = DTN.get<Decl>()) 421 return getDeclValue(D); 422 llvm_unreachable("Fatal: unhandled AST node.\n"); 423 } 424 425 std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { 426 std::string Value; 427 PrintingPolicy TypePP(AST.getLangOpts()); 428 TypePP.AnonymousTagLocations = false; 429 430 if (auto *V = dyn_cast<ValueDecl>(D)) { 431 Value += getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")"; 432 if (auto *C = dyn_cast<CXXConstructorDecl>(D)) { 433 for (auto *Init : C->inits()) { 434 if (!Init->isWritten()) 435 continue; 436 if (Init->isBaseInitializer()) { 437 Value += Init->getBaseClass()->getCanonicalTypeInternal().getAsString( 438 TypePP); 439 } else if (Init->isDelegatingInitializer()) { 440 Value += C->getNameAsString(); 441 } else { 442 assert(Init->isAnyMemberInitializer()); 443 Value += getRelativeName(Init->getMember()); 444 } 445 Value += ","; 446 } 447 } 448 return Value; 449 } 450 if (auto *N = dyn_cast<NamedDecl>(D)) 451 Value += getRelativeName(N) + ";"; 452 if (auto *T = dyn_cast<TypedefNameDecl>(D)) 453 return Value + T->getUnderlyingType().getAsString(TypePP) + ";"; 454 if (auto *T = dyn_cast<TypeDecl>(D)) 455 if (T->getTypeForDecl()) 456 Value += 457 T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) + 458 ";"; 459 if (auto *U = dyn_cast<UsingDirectiveDecl>(D)) 460 return U->getNominatedNamespace()->getName(); 461 if (auto *A = dyn_cast<AccessSpecDecl>(D)) { 462 CharSourceRange Range(A->getSourceRange(), false); 463 return Lexer::getSourceText(Range, AST.getSourceManager(), 464 AST.getLangOpts()); 465 } 466 return Value; 467 } 468 469 std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { 470 if (auto *U = dyn_cast<UnaryOperator>(S)) 471 return UnaryOperator::getOpcodeStr(U->getOpcode()); 472 if (auto *B = dyn_cast<BinaryOperator>(S)) 473 return B->getOpcodeStr(); 474 if (auto *M = dyn_cast<MemberExpr>(S)) 475 return getRelativeName(M->getMemberDecl()); 476 if (auto *I = dyn_cast<IntegerLiteral>(S)) { 477 SmallString<256> Str; 478 I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 479 return Str.str(); 480 } 481 if (auto *F = dyn_cast<FloatingLiteral>(S)) { 482 SmallString<256> Str; 483 F->getValue().toString(Str); 484 return Str.str(); 485 } 486 if (auto *D = dyn_cast<DeclRefExpr>(S)) 487 return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); 488 if (auto *String = dyn_cast<StringLiteral>(S)) 489 return String->getString(); 490 if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S)) 491 return B->getValue() ? "true" : "false"; 492 return ""; 493 } 494 495 /// Identifies a node in a subtree by its postorder offset, starting at 1. 496 struct SNodeId { 497 int Id = 0; 498 499 explicit SNodeId(int Id) : Id(Id) {} 500 explicit SNodeId() = default; 501 502 operator int() const { return Id; } 503 SNodeId &operator++() { return ++Id, *this; } 504 SNodeId &operator--() { return --Id, *this; } 505 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 506 }; 507 508 class Subtree { 509 private: 510 /// The parent tree. 511 const SyntaxTree::Impl &Tree; 512 /// Maps SNodeIds to original ids. 513 std::vector<NodeId> RootIds; 514 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 515 std::vector<SNodeId> LeftMostDescendants; 516 517 public: 518 std::vector<SNodeId> KeyRoots; 519 520 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 521 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 522 int NumLeaves = setLeftMostDescendants(); 523 computeKeyRoots(NumLeaves); 524 } 525 int getSize() const { return RootIds.size(); } 526 NodeId getIdInRoot(SNodeId Id) const { 527 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 528 return RootIds[Id - 1]; 529 } 530 const Node &getNode(SNodeId Id) const { 531 return Tree.getNode(getIdInRoot(Id)); 532 } 533 SNodeId getLeftMostDescendant(SNodeId Id) const { 534 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 535 return LeftMostDescendants[Id - 1]; 536 } 537 /// Returns the postorder index of the leftmost descendant in the subtree. 538 NodeId getPostorderOffset() const { 539 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 540 } 541 std::string getNodeValue(SNodeId Id) const { 542 return Tree.getNodeValue(getIdInRoot(Id)); 543 } 544 545 private: 546 /// Returns the number of leafs in the subtree. 547 int setLeftMostDescendants() { 548 int NumLeaves = 0; 549 LeftMostDescendants.resize(getSize()); 550 for (int I = 0; I < getSize(); ++I) { 551 SNodeId SI(I + 1); 552 const Node &N = getNode(SI); 553 NumLeaves += N.isLeaf(); 554 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 555 "Postorder traversal in subtree should correspond to traversal in " 556 "the root tree by a constant offset."); 557 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 558 getPostorderOffset()); 559 } 560 return NumLeaves; 561 } 562 void computeKeyRoots(int Leaves) { 563 KeyRoots.resize(Leaves); 564 std::unordered_set<int> Visited; 565 int K = Leaves - 1; 566 for (SNodeId I(getSize()); I > 0; --I) { 567 SNodeId LeftDesc = getLeftMostDescendant(I); 568 if (Visited.count(LeftDesc)) 569 continue; 570 assert(K >= 0 && "K should be non-negative"); 571 KeyRoots[K] = I; 572 Visited.insert(LeftDesc); 573 --K; 574 } 575 } 576 }; 577 578 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 579 /// Computes an optimal mapping between two trees using only insertion, 580 /// deletion and update as edit actions (similar to the Levenshtein distance). 581 class ZhangShashaMatcher { 582 const ASTDiff::Impl &DiffImpl; 583 Subtree S1; 584 Subtree S2; 585 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 586 587 public: 588 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 589 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 590 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 591 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 592 size_t(S1.getSize()) + 1); 593 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 594 size_t(S1.getSize()) + 1); 595 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 596 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 597 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 598 } 599 } 600 601 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 602 std::vector<std::pair<NodeId, NodeId>> Matches; 603 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 604 605 computeTreeDist(); 606 607 bool RootNodePair = true; 608 609 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 610 611 while (!TreePairs.empty()) { 612 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 613 std::tie(LastRow, LastCol) = TreePairs.back(); 614 TreePairs.pop_back(); 615 616 if (!RootNodePair) { 617 computeForestDist(LastRow, LastCol); 618 } 619 620 RootNodePair = false; 621 622 FirstRow = S1.getLeftMostDescendant(LastRow); 623 FirstCol = S2.getLeftMostDescendant(LastCol); 624 625 Row = LastRow; 626 Col = LastCol; 627 628 while (Row > FirstRow || Col > FirstCol) { 629 if (Row > FirstRow && 630 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 631 --Row; 632 } else if (Col > FirstCol && 633 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 634 --Col; 635 } else { 636 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 637 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 638 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 639 LMD2 == S2.getLeftMostDescendant(LastCol)) { 640 NodeId Id1 = S1.getIdInRoot(Row); 641 NodeId Id2 = S2.getIdInRoot(Col); 642 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 643 "These nodes must not be matched."); 644 Matches.emplace_back(Id1, Id2); 645 --Row; 646 --Col; 647 } else { 648 TreePairs.emplace_back(Row, Col); 649 Row = LMD1; 650 Col = LMD2; 651 } 652 } 653 } 654 } 655 return Matches; 656 } 657 658 private: 659 /// We use a simple cost model for edit actions, which seems good enough. 660 /// Simple cost model for edit actions. This seems to make the matching 661 /// algorithm perform reasonably well. 662 /// The values range between 0 and 1, or infinity if this edit action should 663 /// always be avoided. 664 static constexpr double DeletionCost = 1; 665 static constexpr double InsertionCost = 1; 666 667 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 668 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 669 return std::numeric_limits<double>::max(); 670 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 671 } 672 673 void computeTreeDist() { 674 for (SNodeId Id1 : S1.KeyRoots) 675 for (SNodeId Id2 : S2.KeyRoots) 676 computeForestDist(Id1, Id2); 677 } 678 679 void computeForestDist(SNodeId Id1, SNodeId Id2) { 680 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 681 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 682 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 683 684 ForestDist[LMD1][LMD2] = 0; 685 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 686 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 687 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 688 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 689 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 690 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 691 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 692 double UpdateCost = getUpdateCost(D1, D2); 693 ForestDist[D1][D2] = 694 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 695 ForestDist[D1][D2 - 1] + InsertionCost, 696 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 697 TreeDist[D1][D2] = ForestDist[D1][D2]; 698 } else { 699 ForestDist[D1][D2] = 700 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 701 ForestDist[D1][D2 - 1] + InsertionCost, 702 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 703 } 704 } 705 } 706 } 707 }; 708 709 ast_type_traits::ASTNodeKind Node::getType() const { 710 return ASTNode.getNodeKind(); 711 } 712 713 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 714 715 llvm::Optional<std::string> Node::getQualifiedIdentifier() const { 716 if (auto *ND = ASTNode.get<NamedDecl>()) { 717 if (ND->getDeclName().isIdentifier()) 718 return ND->getQualifiedNameAsString(); 719 } 720 return llvm::None; 721 } 722 723 llvm::Optional<StringRef> Node::getIdentifier() const { 724 if (auto *ND = ASTNode.get<NamedDecl>()) { 725 if (ND->getDeclName().isIdentifier()) 726 return ND->getName(); 727 } 728 return llvm::None; 729 } 730 731 namespace { 732 // Compares nodes by their depth. 733 struct HeightLess { 734 const SyntaxTree::Impl &Tree; 735 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 736 bool operator()(NodeId Id1, NodeId Id2) const { 737 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 738 } 739 }; 740 } // end anonymous namespace 741 742 namespace { 743 // Priority queue for nodes, sorted descendingly by their height. 744 class PriorityList { 745 const SyntaxTree::Impl &Tree; 746 HeightLess Cmp; 747 std::vector<NodeId> Container; 748 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 749 750 public: 751 PriorityList(const SyntaxTree::Impl &Tree) 752 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 753 754 void push(NodeId id) { List.push(id); } 755 756 std::vector<NodeId> pop() { 757 int Max = peekMax(); 758 std::vector<NodeId> Result; 759 if (Max == 0) 760 return Result; 761 while (peekMax() == Max) { 762 Result.push_back(List.top()); 763 List.pop(); 764 } 765 // TODO this is here to get a stable output, not a good heuristic 766 std::sort(Result.begin(), Result.end()); 767 return Result; 768 } 769 int peekMax() const { 770 if (List.empty()) 771 return 0; 772 return Tree.getNode(List.top()).Height; 773 } 774 void open(NodeId Id) { 775 for (NodeId Child : Tree.getNode(Id).Children) 776 push(Child); 777 } 778 }; 779 } // end anonymous namespace 780 781 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 782 const Node &N1 = T1.getNode(Id1); 783 const Node &N2 = T2.getNode(Id2); 784 if (N1.Children.size() != N2.Children.size() || 785 !isMatchingPossible(Id1, Id2) || 786 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 787 return false; 788 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 789 if (!identical(N1.Children[Id], N2.Children[Id])) 790 return false; 791 return true; 792 } 793 794 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 795 return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); 796 } 797 798 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, 799 NodeId Id2) const { 800 NodeId P1 = T1.getNode(Id1).Parent; 801 NodeId P2 = T2.getNode(Id2).Parent; 802 return (P1.isInvalid() && P2.isInvalid()) || 803 (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); 804 } 805 806 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 807 NodeId Id2) const { 808 if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > 809 Options.MaxSize) 810 return; 811 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 812 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 813 for (const auto Tuple : R) { 814 NodeId Src = Tuple.first; 815 NodeId Dst = Tuple.second; 816 if (!M.hasSrc(Src) && !M.hasDst(Dst)) 817 M.link(Src, Dst); 818 } 819 } 820 821 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, 822 NodeId Id2) const { 823 int CommonDescendants = 0; 824 const Node &N1 = T1.getNode(Id1); 825 // Count the common descendants, excluding the subtree root. 826 for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { 827 NodeId Dst = M.getDst(Src); 828 CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); 829 } 830 // We need to subtract 1 to get the number of descendants excluding the root. 831 double Denominator = T1.getNumberOfDescendants(Id1) - 1 + 832 T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; 833 // CommonDescendants is less than the size of one subtree. 834 assert(Denominator >= 0 && "Expected non-negative denominator."); 835 if (Denominator == 0) 836 return 0; 837 return CommonDescendants / Denominator; 838 } 839 840 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 841 NodeId Candidate; 842 double HighestSimilarity = 0.0; 843 for (NodeId Id2 : T2) { 844 if (!isMatchingPossible(Id1, Id2)) 845 continue; 846 if (M.hasDst(Id2)) 847 continue; 848 double Similarity = getJaccardSimilarity(M, Id1, Id2); 849 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 850 HighestSimilarity = Similarity; 851 Candidate = Id2; 852 } 853 } 854 return Candidate; 855 } 856 857 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 858 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 859 for (NodeId Id1 : Postorder) { 860 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 861 !M.hasDst(T2.getRootId())) { 862 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 863 M.link(T1.getRootId(), T2.getRootId()); 864 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 865 } 866 break; 867 } 868 bool Matched = M.hasSrc(Id1); 869 const Node &N1 = T1.getNode(Id1); 870 bool MatchedChildren = 871 std::any_of(N1.Children.begin(), N1.Children.end(), 872 [&](NodeId Child) { return M.hasSrc(Child); }); 873 if (Matched || !MatchedChildren) 874 continue; 875 NodeId Id2 = findCandidate(M, Id1); 876 if (Id2.isValid()) { 877 M.link(Id1, Id2); 878 addOptimalMapping(M, Id1, Id2); 879 } 880 } 881 } 882 883 Mapping ASTDiff::Impl::matchTopDown() const { 884 PriorityList L1(T1); 885 PriorityList L2(T2); 886 887 Mapping M(T1.getSize() + T2.getSize()); 888 889 L1.push(T1.getRootId()); 890 L2.push(T2.getRootId()); 891 892 int Max1, Max2; 893 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 894 Options.MinHeight) { 895 if (Max1 > Max2) { 896 for (NodeId Id : L1.pop()) 897 L1.open(Id); 898 continue; 899 } 900 if (Max2 > Max1) { 901 for (NodeId Id : L2.pop()) 902 L2.open(Id); 903 continue; 904 } 905 std::vector<NodeId> H1, H2; 906 H1 = L1.pop(); 907 H2 = L2.pop(); 908 for (NodeId Id1 : H1) { 909 for (NodeId Id2 : H2) { 910 if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { 911 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 912 M.link(Id1 + I, Id2 + I); 913 } 914 } 915 } 916 for (NodeId Id1 : H1) { 917 if (!M.hasSrc(Id1)) 918 L1.open(Id1); 919 } 920 for (NodeId Id2 : H2) { 921 if (!M.hasDst(Id2)) 922 L2.open(Id2); 923 } 924 } 925 return M; 926 } 927 928 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 929 const ComparisonOptions &Options) 930 : T1(T1), T2(T2), Options(Options) { 931 computeMapping(); 932 computeChangeKinds(TheMapping); 933 } 934 935 void ASTDiff::Impl::computeMapping() { 936 TheMapping = matchTopDown(); 937 if (Options.StopAfterTopDown) 938 return; 939 matchBottomUp(TheMapping); 940 } 941 942 void ASTDiff::Impl::computeChangeKinds(Mapping &M) { 943 for (NodeId Id1 : T1) { 944 if (!M.hasSrc(Id1)) { 945 T1.getMutableNode(Id1).Change = Delete; 946 T1.getMutableNode(Id1).Shift -= 1; 947 } 948 } 949 for (NodeId Id2 : T2) { 950 if (!M.hasDst(Id2)) { 951 T2.getMutableNode(Id2).Change = Insert; 952 T2.getMutableNode(Id2).Shift -= 1; 953 } 954 } 955 for (NodeId Id1 : T1.NodesBfs) { 956 NodeId Id2 = M.getDst(Id1); 957 if (Id2.isInvalid()) 958 continue; 959 if (!haveSameParents(M, Id1, Id2) || 960 T1.findPositionInParent(Id1, true) != 961 T2.findPositionInParent(Id2, true)) { 962 T1.getMutableNode(Id1).Shift -= 1; 963 T2.getMutableNode(Id2).Shift -= 1; 964 } 965 } 966 for (NodeId Id2 : T2.NodesBfs) { 967 NodeId Id1 = M.getSrc(Id2); 968 if (Id1.isInvalid()) 969 continue; 970 Node &N1 = T1.getMutableNode(Id1); 971 Node &N2 = T2.getMutableNode(Id2); 972 if (Id1.isInvalid()) 973 continue; 974 if (!haveSameParents(M, Id1, Id2) || 975 T1.findPositionInParent(Id1, true) != 976 T2.findPositionInParent(Id2, true)) { 977 N1.Change = N2.Change = Move; 978 } 979 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 980 N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); 981 } 982 } 983 } 984 985 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 986 const ComparisonOptions &Options) 987 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 988 989 ASTDiff::~ASTDiff() = default; 990 991 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { 992 return DiffImpl->getMapped(SourceTree.TreeImpl, Id); 993 } 994 995 SyntaxTree::SyntaxTree(ASTContext &AST) 996 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 997 this, AST.getTranslationUnitDecl(), AST)) {} 998 999 SyntaxTree::~SyntaxTree() = default; 1000 1001 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 1002 1003 const Node &SyntaxTree::getNode(NodeId Id) const { 1004 return TreeImpl->getNode(Id); 1005 } 1006 1007 int SyntaxTree::getSize() const { return TreeImpl->getSize(); } 1008 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 1009 SyntaxTree::PreorderIterator SyntaxTree::begin() const { 1010 return TreeImpl->begin(); 1011 } 1012 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } 1013 1014 int SyntaxTree::findPositionInParent(NodeId Id) const { 1015 return TreeImpl->findPositionInParent(Id); 1016 } 1017 1018 std::pair<unsigned, unsigned> 1019 SyntaxTree::getSourceRangeOffsets(const Node &N) const { 1020 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 1021 SourceRange Range = N.ASTNode.getSourceRange(); 1022 SourceLocation BeginLoc = Range.getBegin(); 1023 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 1024 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 1025 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 1026 if (ThisExpr->isImplicit()) 1027 EndLoc = BeginLoc; 1028 } 1029 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 1030 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 1031 return {Begin, End}; 1032 } 1033 1034 std::string SyntaxTree::getNodeValue(NodeId Id) const { 1035 return TreeImpl->getNodeValue(Id); 1036 } 1037 1038 std::string SyntaxTree::getNodeValue(const Node &N) const { 1039 return TreeImpl->getNodeValue(N); 1040 } 1041 1042 } // end namespace diff 1043 } // end namespace clang 1044