1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 namespace { 31 /// Maps nodes of the left tree to ones on the right, and vice versa. 32 class Mapping { 33 public: 34 Mapping() = default; 35 Mapping(Mapping &&Other) = default; 36 Mapping &operator=(Mapping &&Other) = default; 37 38 Mapping(size_t Size) { 39 SrcToDst = llvm::make_unique<NodeId[]>(Size); 40 DstToSrc = llvm::make_unique<NodeId[]>(Size); 41 } 42 43 void link(NodeId Src, NodeId Dst) { 44 SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; 45 } 46 47 NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } 48 NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } 49 bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } 50 bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } 51 52 private: 53 std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; 54 }; 55 } // end anonymous namespace 56 57 class ASTDiff::Impl { 58 public: 59 SyntaxTree::Impl &T1, &T2; 60 Mapping TheMapping; 61 62 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 63 const ComparisonOptions &Options); 64 65 /// Matches nodes one-by-one based on their similarity. 66 void computeMapping(); 67 68 // Compute Change for each node based on similarity. 69 void computeChangeKinds(Mapping &M); 70 71 NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, 72 NodeId Id) const { 73 if (&*Tree == &T1) 74 return TheMapping.getDst(Id); 75 assert(&*Tree == &T2 && "Invalid tree."); 76 return TheMapping.getSrc(Id); 77 } 78 79 private: 80 // Returns true if the two subtrees are identical. 81 bool identical(NodeId Id1, NodeId Id2) const; 82 83 // Returns false if the nodes must not be mached. 84 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 85 86 // Returns true if the nodes' parents are matched. 87 bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; 88 89 // Uses an optimal albeit slow algorithm to compute a mapping between two 90 // subtrees, but only if both have fewer nodes than MaxSize. 91 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 92 93 // Computes the ratio of common descendants between the two nodes. 94 // Descendants are only considered to be equal when they are mapped in M. 95 double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 96 97 // Returns the node that has the highest degree of similarity. 98 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 99 100 // Returns a mapping of identical subtrees. 101 Mapping matchTopDown() const; 102 103 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 104 void matchBottomUp(Mapping &M) const; 105 106 const ComparisonOptions &Options; 107 108 friend class ZhangShashaMatcher; 109 }; 110 111 /// Represents the AST of a TranslationUnit. 112 class SyntaxTree::Impl { 113 public: 114 /// Constructs a tree from an AST node. 115 Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); 116 Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); 117 template <class T> 118 Impl(SyntaxTree *Parent, 119 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 120 ASTContext &AST) 121 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 122 template <class T> 123 Impl(SyntaxTree *Parent, 124 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 125 ASTContext &AST) 126 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 127 128 SyntaxTree *Parent; 129 ASTContext &AST; 130 /// Nodes in preorder. 131 std::vector<Node> Nodes; 132 std::vector<NodeId> Leaves; 133 // Maps preorder indices to postorder ones. 134 std::vector<int> PostorderIds; 135 std::vector<NodeId> NodesBfs; 136 137 int getSize() const { return Nodes.size(); } 138 NodeId getRootId() const { return 0; } 139 PreorderIterator begin() const { return getRootId(); } 140 PreorderIterator end() const { return getSize(); } 141 142 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 143 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 144 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 145 void addNode(Node &N) { Nodes.push_back(N); } 146 int getNumberOfDescendants(NodeId Id) const; 147 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 148 int findPositionInParent(NodeId Id, bool Shifted = false) const; 149 150 std::string getRelativeName(const NamedDecl *ND, 151 const DeclContext *Context) const; 152 std::string getRelativeName(const NamedDecl *ND) const; 153 154 std::string getNodeValue(NodeId Id) const; 155 std::string getNodeValue(const Node &Node) const; 156 std::string getDeclValue(const Decl *D) const; 157 std::string getStmtValue(const Stmt *S) const; 158 159 private: 160 void initTree(); 161 void setLeftMostDescendants(); 162 }; 163 164 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } 165 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } 166 167 template <class T> 168 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 169 if (!N) 170 return true; 171 SourceLocation SLoc = N->getLocStart(); 172 if (SLoc.isValid()) { 173 // Ignore everything from other files. 174 if (!SrcMgr.isInMainFile(SLoc)) 175 return true; 176 // Ignore macros. 177 if (SLoc != SrcMgr.getSpellingLoc(SLoc)) 178 return true; 179 } 180 return isSpecializedNodeExcluded(N); 181 } 182 183 namespace { 184 // Sets Height, Parent and Children for each node. 185 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 186 int Id = 0, Depth = 0; 187 NodeId Parent; 188 SyntaxTree::Impl &Tree; 189 190 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 191 192 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 193 NodeId MyId = Id; 194 Tree.Nodes.emplace_back(); 195 Node &N = Tree.getMutableNode(MyId); 196 N.Parent = Parent; 197 N.Depth = Depth; 198 N.ASTNode = DynTypedNode::create(*ASTNode); 199 assert(!N.ASTNode.getNodeKind().isNone() && 200 "Expected nodes to have a valid kind."); 201 if (Parent.isValid()) { 202 Node &P = Tree.getMutableNode(Parent); 203 P.Children.push_back(MyId); 204 } 205 Parent = MyId; 206 ++Id; 207 ++Depth; 208 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 209 } 210 void PostTraverse(std::tuple<NodeId, NodeId> State) { 211 NodeId MyId, PreviousParent; 212 std::tie(MyId, PreviousParent) = State; 213 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 214 Parent = PreviousParent; 215 --Depth; 216 Node &N = Tree.getMutableNode(MyId); 217 N.RightMostDescendant = Id - 1; 218 assert(N.RightMostDescendant >= 0 && 219 N.RightMostDescendant < Tree.getSize() && 220 "Rightmost descendant must be a valid tree node."); 221 if (N.isLeaf()) 222 Tree.Leaves.push_back(MyId); 223 N.Height = 1; 224 for (NodeId Child : N.Children) 225 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 226 } 227 bool TraverseDecl(Decl *D) { 228 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 229 return true; 230 auto SavedState = PreTraverse(D); 231 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 232 PostTraverse(SavedState); 233 return true; 234 } 235 bool TraverseStmt(Stmt *S) { 236 if (S) 237 S = S->IgnoreImplicit(); 238 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 239 return true; 240 auto SavedState = PreTraverse(S); 241 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 242 PostTraverse(SavedState); 243 return true; 244 } 245 bool TraverseType(QualType T) { return true; } 246 }; 247 } // end anonymous namespace 248 249 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) 250 : Parent(Parent), AST(AST) { 251 PreorderVisitor PreorderWalker(*this); 252 PreorderWalker.TraverseDecl(N); 253 initTree(); 254 } 255 256 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) 257 : Parent(Parent), AST(AST) { 258 PreorderVisitor PreorderWalker(*this); 259 PreorderWalker.TraverseStmt(N); 260 initTree(); 261 } 262 263 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 264 NodeId Root) { 265 std::vector<NodeId> Postorder; 266 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 267 const Node &N = Tree.getNode(Id); 268 for (NodeId Child : N.Children) 269 Traverse(Child); 270 Postorder.push_back(Id); 271 }; 272 Traverse(Root); 273 return Postorder; 274 } 275 276 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 277 NodeId Root) { 278 std::vector<NodeId> Ids; 279 size_t Expanded = 0; 280 Ids.push_back(Root); 281 while (Expanded < Ids.size()) 282 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 283 Ids.push_back(Child); 284 return Ids; 285 } 286 287 void SyntaxTree::Impl::initTree() { 288 setLeftMostDescendants(); 289 int PostorderId = 0; 290 PostorderIds.resize(getSize()); 291 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 292 for (NodeId Child : getNode(Id).Children) 293 PostorderTraverse(Child); 294 PostorderIds[Id] = PostorderId; 295 ++PostorderId; 296 }; 297 PostorderTraverse(getRootId()); 298 NodesBfs = getSubtreeBfs(*this, getRootId()); 299 } 300 301 void SyntaxTree::Impl::setLeftMostDescendants() { 302 for (NodeId Leaf : Leaves) { 303 getMutableNode(Leaf).LeftMostDescendant = Leaf; 304 NodeId Parent, Cur = Leaf; 305 while ((Parent = getNode(Cur).Parent).isValid() && 306 getNode(Parent).Children[0] == Cur) { 307 Cur = Parent; 308 getMutableNode(Cur).LeftMostDescendant = Leaf; 309 } 310 } 311 } 312 313 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 314 return getNode(Id).RightMostDescendant - Id + 1; 315 } 316 317 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 318 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 319 } 320 321 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { 322 NodeId Parent = getNode(Id).Parent; 323 if (Parent.isInvalid()) 324 return 0; 325 const auto &Siblings = getNode(Parent).Children; 326 int Position = 0; 327 for (size_t I = 0, E = Siblings.size(); I < E; ++I) { 328 if (Shifted) 329 Position += getNode(Siblings[I]).Shift; 330 if (Siblings[I] == Id) { 331 Position += I; 332 return Position; 333 } 334 } 335 llvm_unreachable("Node not found in parent's children."); 336 } 337 338 // Returns the qualified name of ND. If it is subordinate to Context, 339 // then the prefix of the latter is removed from the returned value. 340 std::string 341 SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, 342 const DeclContext *Context) const { 343 std::string Val = ND->getQualifiedNameAsString(); 344 std::string ContextPrefix; 345 if (!Context) 346 return Val; 347 if (auto *Namespace = dyn_cast<NamespaceDecl>(Context)) 348 ContextPrefix = Namespace->getQualifiedNameAsString(); 349 else if (auto *Record = dyn_cast<RecordDecl>(Context)) 350 ContextPrefix = Record->getQualifiedNameAsString(); 351 else if (AST.getLangOpts().CPlusPlus11) 352 if (auto *Tag = dyn_cast<TagDecl>(Context)) 353 ContextPrefix = Tag->getQualifiedNameAsString(); 354 // Strip the qualifier, if Val refers to somthing in the current scope. 355 // But leave one leading ':' in place, so that we know that this is a 356 // relative path. 357 if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix)) 358 Val = Val.substr(ContextPrefix.size() + 1); 359 return Val; 360 } 361 362 std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { 363 return getRelativeName(ND, ND->getDeclContext()); 364 } 365 366 static const DeclContext *getEnclosingDeclContext(ASTContext &AST, 367 const Stmt *S) { 368 while (S) { 369 const auto &Parents = AST.getParents(*S); 370 if (Parents.empty()) 371 return nullptr; 372 const auto &P = Parents[0]; 373 if (const auto *D = P.get<Decl>()) 374 return D->getDeclContext(); 375 S = P.get<Stmt>(); 376 } 377 return nullptr; 378 } 379 380 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 381 return getNodeValue(getNode(Id)); 382 } 383 384 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { 385 const DynTypedNode &DTN = N.ASTNode; 386 if (auto *S = DTN.get<Stmt>()) 387 return getStmtValue(S); 388 if (auto *D = DTN.get<Decl>()) 389 return getDeclValue(D); 390 llvm_unreachable("Fatal: unhandled AST node.\n"); 391 } 392 393 std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { 394 std::string Value; 395 PrintingPolicy TypePP(AST.getLangOpts()); 396 TypePP.AnonymousTagLocations = false; 397 398 if (auto *V = dyn_cast<ValueDecl>(D)) { 399 Value += getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")"; 400 if (auto *C = dyn_cast<CXXConstructorDecl>(D)) { 401 for (auto *Init : C->inits()) { 402 if (!Init->isWritten()) 403 continue; 404 if (Init->isBaseInitializer()) { 405 Value += Init->getBaseClass()->getCanonicalTypeInternal().getAsString( 406 TypePP); 407 } else if (Init->isDelegatingInitializer()) { 408 Value += C->getNameAsString(); 409 } else { 410 assert(Init->isAnyMemberInitializer()); 411 Value += getRelativeName(Init->getMember()); 412 } 413 Value += ","; 414 } 415 } 416 return Value; 417 } 418 if (auto *N = dyn_cast<NamedDecl>(D)) 419 Value += getRelativeName(N) + ";"; 420 if (auto *T = dyn_cast<TypedefNameDecl>(D)) 421 return Value + T->getUnderlyingType().getAsString(TypePP) + ";"; 422 if (auto *T = dyn_cast<TypeDecl>(D)) 423 if (T->getTypeForDecl()) 424 Value += 425 T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) + 426 ";"; 427 if (auto *U = dyn_cast<UsingDirectiveDecl>(D)) 428 return U->getNominatedNamespace()->getName(); 429 if (auto *A = dyn_cast<AccessSpecDecl>(D)) { 430 CharSourceRange Range(A->getSourceRange(), false); 431 return Lexer::getSourceText(Range, AST.getSourceManager(), 432 AST.getLangOpts()); 433 } 434 return Value; 435 } 436 437 std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { 438 if (auto *U = dyn_cast<UnaryOperator>(S)) 439 return UnaryOperator::getOpcodeStr(U->getOpcode()); 440 if (auto *B = dyn_cast<BinaryOperator>(S)) 441 return B->getOpcodeStr(); 442 if (auto *M = dyn_cast<MemberExpr>(S)) 443 return getRelativeName(M->getMemberDecl()); 444 if (auto *I = dyn_cast<IntegerLiteral>(S)) { 445 SmallString<256> Str; 446 I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 447 return Str.str(); 448 } 449 if (auto *F = dyn_cast<FloatingLiteral>(S)) { 450 SmallString<256> Str; 451 F->getValue().toString(Str); 452 return Str.str(); 453 } 454 if (auto *D = dyn_cast<DeclRefExpr>(S)) 455 return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); 456 if (auto *String = dyn_cast<StringLiteral>(S)) 457 return String->getString(); 458 if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S)) 459 return B->getValue() ? "true" : "false"; 460 return ""; 461 } 462 463 /// Identifies a node in a subtree by its postorder offset, starting at 1. 464 struct SNodeId { 465 int Id = 0; 466 467 explicit SNodeId(int Id) : Id(Id) {} 468 explicit SNodeId() = default; 469 470 operator int() const { return Id; } 471 SNodeId &operator++() { return ++Id, *this; } 472 SNodeId &operator--() { return --Id, *this; } 473 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 474 }; 475 476 class Subtree { 477 private: 478 /// The parent tree. 479 const SyntaxTree::Impl &Tree; 480 /// Maps SNodeIds to original ids. 481 std::vector<NodeId> RootIds; 482 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 483 std::vector<SNodeId> LeftMostDescendants; 484 485 public: 486 std::vector<SNodeId> KeyRoots; 487 488 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 489 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 490 int NumLeaves = setLeftMostDescendants(); 491 computeKeyRoots(NumLeaves); 492 } 493 int getSize() const { return RootIds.size(); } 494 NodeId getIdInRoot(SNodeId Id) const { 495 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 496 return RootIds[Id - 1]; 497 } 498 const Node &getNode(SNodeId Id) const { 499 return Tree.getNode(getIdInRoot(Id)); 500 } 501 SNodeId getLeftMostDescendant(SNodeId Id) const { 502 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 503 return LeftMostDescendants[Id - 1]; 504 } 505 /// Returns the postorder index of the leftmost descendant in the subtree. 506 NodeId getPostorderOffset() const { 507 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 508 } 509 std::string getNodeValue(SNodeId Id) const { 510 return Tree.getNodeValue(getIdInRoot(Id)); 511 } 512 513 private: 514 /// Returns the number of leafs in the subtree. 515 int setLeftMostDescendants() { 516 int NumLeaves = 0; 517 LeftMostDescendants.resize(getSize()); 518 for (int I = 0; I < getSize(); ++I) { 519 SNodeId SI(I + 1); 520 const Node &N = getNode(SI); 521 NumLeaves += N.isLeaf(); 522 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 523 "Postorder traversal in subtree should correspond to traversal in " 524 "the root tree by a constant offset."); 525 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 526 getPostorderOffset()); 527 } 528 return NumLeaves; 529 } 530 void computeKeyRoots(int Leaves) { 531 KeyRoots.resize(Leaves); 532 std::unordered_set<int> Visited; 533 int K = Leaves - 1; 534 for (SNodeId I(getSize()); I > 0; --I) { 535 SNodeId LeftDesc = getLeftMostDescendant(I); 536 if (Visited.count(LeftDesc)) 537 continue; 538 assert(K >= 0 && "K should be non-negative"); 539 KeyRoots[K] = I; 540 Visited.insert(LeftDesc); 541 --K; 542 } 543 } 544 }; 545 546 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 547 /// Computes an optimal mapping between two trees using only insertion, 548 /// deletion and update as edit actions (similar to the Levenshtein distance). 549 class ZhangShashaMatcher { 550 const ASTDiff::Impl &DiffImpl; 551 Subtree S1; 552 Subtree S2; 553 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 554 555 public: 556 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 557 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 558 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 559 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 560 size_t(S1.getSize()) + 1); 561 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 562 size_t(S1.getSize()) + 1); 563 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 564 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 565 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 566 } 567 } 568 569 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 570 std::vector<std::pair<NodeId, NodeId>> Matches; 571 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 572 573 computeTreeDist(); 574 575 bool RootNodePair = true; 576 577 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 578 579 while (!TreePairs.empty()) { 580 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 581 std::tie(LastRow, LastCol) = TreePairs.back(); 582 TreePairs.pop_back(); 583 584 if (!RootNodePair) { 585 computeForestDist(LastRow, LastCol); 586 } 587 588 RootNodePair = false; 589 590 FirstRow = S1.getLeftMostDescendant(LastRow); 591 FirstCol = S2.getLeftMostDescendant(LastCol); 592 593 Row = LastRow; 594 Col = LastCol; 595 596 while (Row > FirstRow || Col > FirstCol) { 597 if (Row > FirstRow && 598 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 599 --Row; 600 } else if (Col > FirstCol && 601 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 602 --Col; 603 } else { 604 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 605 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 606 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 607 LMD2 == S2.getLeftMostDescendant(LastCol)) { 608 NodeId Id1 = S1.getIdInRoot(Row); 609 NodeId Id2 = S2.getIdInRoot(Col); 610 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 611 "These nodes must not be matched."); 612 Matches.emplace_back(Id1, Id2); 613 --Row; 614 --Col; 615 } else { 616 TreePairs.emplace_back(Row, Col); 617 Row = LMD1; 618 Col = LMD2; 619 } 620 } 621 } 622 } 623 return Matches; 624 } 625 626 private: 627 /// We use a simple cost model for edit actions, which seems good enough. 628 /// Simple cost model for edit actions. This seems to make the matching 629 /// algorithm perform reasonably well. 630 /// The values range between 0 and 1, or infinity if this edit action should 631 /// always be avoided. 632 static constexpr double DeletionCost = 1; 633 static constexpr double InsertionCost = 1; 634 635 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 636 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 637 return std::numeric_limits<double>::max(); 638 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 639 } 640 641 void computeTreeDist() { 642 for (SNodeId Id1 : S1.KeyRoots) 643 for (SNodeId Id2 : S2.KeyRoots) 644 computeForestDist(Id1, Id2); 645 } 646 647 void computeForestDist(SNodeId Id1, SNodeId Id2) { 648 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 649 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 650 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 651 652 ForestDist[LMD1][LMD2] = 0; 653 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 654 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 655 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 656 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 657 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 658 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 659 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 660 double UpdateCost = getUpdateCost(D1, D2); 661 ForestDist[D1][D2] = 662 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 663 ForestDist[D1][D2 - 1] + InsertionCost, 664 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 665 TreeDist[D1][D2] = ForestDist[D1][D2]; 666 } else { 667 ForestDist[D1][D2] = 668 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 669 ForestDist[D1][D2 - 1] + InsertionCost, 670 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 671 } 672 } 673 } 674 } 675 }; 676 677 ast_type_traits::ASTNodeKind Node::getType() const { 678 return ASTNode.getNodeKind(); 679 } 680 681 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 682 683 llvm::Optional<std::string> Node::getQualifiedIdentifier() const { 684 if (auto *ND = ASTNode.get<NamedDecl>()) { 685 if (ND->getDeclName().isIdentifier()) 686 return ND->getQualifiedNameAsString(); 687 } 688 return llvm::None; 689 } 690 691 llvm::Optional<StringRef> Node::getIdentifier() const { 692 if (auto *ND = ASTNode.get<NamedDecl>()) { 693 if (ND->getDeclName().isIdentifier()) 694 return ND->getName(); 695 } 696 return llvm::None; 697 } 698 699 namespace { 700 // Compares nodes by their depth. 701 struct HeightLess { 702 const SyntaxTree::Impl &Tree; 703 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 704 bool operator()(NodeId Id1, NodeId Id2) const { 705 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 706 } 707 }; 708 } // end anonymous namespace 709 710 namespace { 711 // Priority queue for nodes, sorted descendingly by their height. 712 class PriorityList { 713 const SyntaxTree::Impl &Tree; 714 HeightLess Cmp; 715 std::vector<NodeId> Container; 716 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 717 718 public: 719 PriorityList(const SyntaxTree::Impl &Tree) 720 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 721 722 void push(NodeId id) { List.push(id); } 723 724 std::vector<NodeId> pop() { 725 int Max = peekMax(); 726 std::vector<NodeId> Result; 727 if (Max == 0) 728 return Result; 729 while (peekMax() == Max) { 730 Result.push_back(List.top()); 731 List.pop(); 732 } 733 // TODO this is here to get a stable output, not a good heuristic 734 std::sort(Result.begin(), Result.end()); 735 return Result; 736 } 737 int peekMax() const { 738 if (List.empty()) 739 return 0; 740 return Tree.getNode(List.top()).Height; 741 } 742 void open(NodeId Id) { 743 for (NodeId Child : Tree.getNode(Id).Children) 744 push(Child); 745 } 746 }; 747 } // end anonymous namespace 748 749 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 750 const Node &N1 = T1.getNode(Id1); 751 const Node &N2 = T2.getNode(Id2); 752 if (N1.Children.size() != N2.Children.size() || 753 !isMatchingPossible(Id1, Id2) || 754 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 755 return false; 756 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 757 if (!identical(N1.Children[Id], N2.Children[Id])) 758 return false; 759 return true; 760 } 761 762 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 763 return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); 764 } 765 766 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, 767 NodeId Id2) const { 768 NodeId P1 = T1.getNode(Id1).Parent; 769 NodeId P2 = T2.getNode(Id2).Parent; 770 return (P1.isInvalid() && P2.isInvalid()) || 771 (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); 772 } 773 774 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 775 NodeId Id2) const { 776 if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > 777 Options.MaxSize) 778 return; 779 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 780 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 781 for (const auto Tuple : R) { 782 NodeId Src = Tuple.first; 783 NodeId Dst = Tuple.second; 784 if (!M.hasSrc(Src) && !M.hasDst(Dst)) 785 M.link(Src, Dst); 786 } 787 } 788 789 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, 790 NodeId Id2) const { 791 int CommonDescendants = 0; 792 const Node &N1 = T1.getNode(Id1); 793 // Count the common descendants, excluding the subtree root. 794 for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { 795 NodeId Dst = M.getDst(Src); 796 CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); 797 } 798 // We need to subtract 1 to get the number of descendants excluding the root. 799 double Denominator = T1.getNumberOfDescendants(Id1) - 1 + 800 T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; 801 // CommonDescendants is less than the size of one subtree. 802 assert(Denominator >= 0 && "Expected non-negative denominator."); 803 if (Denominator == 0) 804 return 0; 805 return CommonDescendants / Denominator; 806 } 807 808 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 809 NodeId Candidate; 810 double HighestSimilarity = 0.0; 811 for (NodeId Id2 : T2) { 812 if (!isMatchingPossible(Id1, Id2)) 813 continue; 814 if (M.hasDst(Id2)) 815 continue; 816 double Similarity = getJaccardSimilarity(M, Id1, Id2); 817 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 818 HighestSimilarity = Similarity; 819 Candidate = Id2; 820 } 821 } 822 return Candidate; 823 } 824 825 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 826 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 827 for (NodeId Id1 : Postorder) { 828 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 829 !M.hasDst(T2.getRootId())) { 830 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 831 M.link(T1.getRootId(), T2.getRootId()); 832 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 833 } 834 break; 835 } 836 bool Matched = M.hasSrc(Id1); 837 const Node &N1 = T1.getNode(Id1); 838 bool MatchedChildren = 839 std::any_of(N1.Children.begin(), N1.Children.end(), 840 [&](NodeId Child) { return M.hasSrc(Child); }); 841 if (Matched || !MatchedChildren) 842 continue; 843 NodeId Id2 = findCandidate(M, Id1); 844 if (Id2.isValid()) { 845 M.link(Id1, Id2); 846 addOptimalMapping(M, Id1, Id2); 847 } 848 } 849 } 850 851 Mapping ASTDiff::Impl::matchTopDown() const { 852 PriorityList L1(T1); 853 PriorityList L2(T2); 854 855 Mapping M(T1.getSize() + T2.getSize()); 856 857 L1.push(T1.getRootId()); 858 L2.push(T2.getRootId()); 859 860 int Max1, Max2; 861 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 862 Options.MinHeight) { 863 if (Max1 > Max2) { 864 for (NodeId Id : L1.pop()) 865 L1.open(Id); 866 continue; 867 } 868 if (Max2 > Max1) { 869 for (NodeId Id : L2.pop()) 870 L2.open(Id); 871 continue; 872 } 873 std::vector<NodeId> H1, H2; 874 H1 = L1.pop(); 875 H2 = L2.pop(); 876 for (NodeId Id1 : H1) { 877 for (NodeId Id2 : H2) { 878 if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { 879 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 880 M.link(Id1 + I, Id2 + I); 881 } 882 } 883 } 884 for (NodeId Id1 : H1) { 885 if (!M.hasSrc(Id1)) 886 L1.open(Id1); 887 } 888 for (NodeId Id2 : H2) { 889 if (!M.hasDst(Id2)) 890 L2.open(Id2); 891 } 892 } 893 return M; 894 } 895 896 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 897 const ComparisonOptions &Options) 898 : T1(T1), T2(T2), Options(Options) { 899 computeMapping(); 900 computeChangeKinds(TheMapping); 901 } 902 903 void ASTDiff::Impl::computeMapping() { 904 TheMapping = matchTopDown(); 905 if (Options.StopAfterTopDown) 906 return; 907 matchBottomUp(TheMapping); 908 } 909 910 void ASTDiff::Impl::computeChangeKinds(Mapping &M) { 911 for (NodeId Id1 : T1) { 912 if (!M.hasSrc(Id1)) { 913 T1.getMutableNode(Id1).Change = Delete; 914 T1.getMutableNode(Id1).Shift -= 1; 915 } 916 } 917 for (NodeId Id2 : T2) { 918 if (!M.hasDst(Id2)) { 919 T2.getMutableNode(Id2).Change = Insert; 920 T2.getMutableNode(Id2).Shift -= 1; 921 } 922 } 923 for (NodeId Id1 : T1.NodesBfs) { 924 NodeId Id2 = M.getDst(Id1); 925 if (Id2.isInvalid()) 926 continue; 927 if (!haveSameParents(M, Id1, Id2) || 928 T1.findPositionInParent(Id1, true) != 929 T2.findPositionInParent(Id2, true)) { 930 T1.getMutableNode(Id1).Shift -= 1; 931 T2.getMutableNode(Id2).Shift -= 1; 932 } 933 } 934 for (NodeId Id2 : T2.NodesBfs) { 935 NodeId Id1 = M.getSrc(Id2); 936 if (Id1.isInvalid()) 937 continue; 938 Node &N1 = T1.getMutableNode(Id1); 939 Node &N2 = T2.getMutableNode(Id2); 940 if (Id1.isInvalid()) 941 continue; 942 if (!haveSameParents(M, Id1, Id2) || 943 T1.findPositionInParent(Id1, true) != 944 T2.findPositionInParent(Id2, true)) { 945 N1.Change = N2.Change = Move; 946 } 947 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 948 N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); 949 } 950 } 951 } 952 953 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 954 const ComparisonOptions &Options) 955 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 956 957 ASTDiff::~ASTDiff() = default; 958 959 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { 960 return DiffImpl->getMapped(SourceTree.TreeImpl, Id); 961 } 962 963 SyntaxTree::SyntaxTree(ASTContext &AST) 964 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 965 this, AST.getTranslationUnitDecl(), AST)) {} 966 967 SyntaxTree::~SyntaxTree() = default; 968 969 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 970 971 const Node &SyntaxTree::getNode(NodeId Id) const { 972 return TreeImpl->getNode(Id); 973 } 974 975 int SyntaxTree::getSize() const { return TreeImpl->getSize(); } 976 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 977 SyntaxTree::PreorderIterator SyntaxTree::begin() const { 978 return TreeImpl->begin(); 979 } 980 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } 981 982 int SyntaxTree::findPositionInParent(NodeId Id) const { 983 return TreeImpl->findPositionInParent(Id); 984 } 985 986 std::pair<unsigned, unsigned> 987 SyntaxTree::getSourceRangeOffsets(const Node &N) const { 988 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 989 SourceRange Range = N.ASTNode.getSourceRange(); 990 SourceLocation BeginLoc = Range.getBegin(); 991 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 992 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 993 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 994 if (ThisExpr->isImplicit()) 995 EndLoc = BeginLoc; 996 } 997 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 998 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 999 return {Begin, End}; 1000 } 1001 1002 std::string SyntaxTree::getNodeValue(NodeId Id) const { 1003 return TreeImpl->getNodeValue(Id); 1004 } 1005 1006 std::string SyntaxTree::getNodeValue(const Node &N) const { 1007 return TreeImpl->getNodeValue(N); 1008 } 1009 1010 } // end namespace diff 1011 } // end namespace clang 1012