1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 /// Maps nodes of the left tree to ones on the right, and vice versa. 31 class Mapping { 32 public: 33 Mapping() = default; 34 Mapping(Mapping &&Other) = default; 35 Mapping &operator=(Mapping &&Other) = default; 36 Mapping(int Size1, int Size2) { 37 // Maximum possible size after patching one tree. 38 int Size = Size1 + Size2; 39 SrcToDst = llvm::make_unique<SmallVector<NodeId, 2>[]>(Size); 40 DstToSrc = llvm::make_unique<SmallVector<NodeId, 2>[]>(Size); 41 } 42 43 void link(NodeId Src, NodeId Dst) { 44 SrcToDst[Src].push_back(Dst); 45 DstToSrc[Dst].push_back(Src); 46 } 47 48 NodeId getDst(NodeId Src) const { 49 if (hasSrc(Src)) 50 return SrcToDst[Src][0]; 51 return NodeId(); 52 } 53 NodeId getSrc(NodeId Dst) const { 54 if (hasDst(Dst)) 55 return DstToSrc[Dst][0]; 56 return NodeId(); 57 } 58 const SmallVector<NodeId, 2> &getAllDsts(NodeId Src) const { 59 return SrcToDst[Src]; 60 } 61 const SmallVector<NodeId, 2> &getAllSrcs(NodeId Dst) const { 62 return DstToSrc[Dst]; 63 } 64 bool hasSrc(NodeId Src) const { return !SrcToDst[Src].empty(); } 65 bool hasDst(NodeId Dst) const { return !DstToSrc[Dst].empty(); } 66 bool hasSrcDst(NodeId Src, NodeId Dst) const { 67 for (NodeId DstId : SrcToDst[Src]) 68 if (DstId == Dst) 69 return true; 70 for (NodeId SrcId : DstToSrc[Dst]) 71 if (SrcId == Src) 72 return true; 73 return false; 74 } 75 76 private: 77 std::unique_ptr<SmallVector<NodeId, 2>[]> SrcToDst, DstToSrc; 78 }; 79 80 class ASTDiff::Impl { 81 public: 82 SyntaxTree::Impl &T1, &T2; 83 bool IsMappingDone = false; 84 Mapping TheMapping; 85 86 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 87 const ComparisonOptions &Options) 88 : T1(T1), T2(T2), Options(Options) {} 89 90 /// Matches nodes one-by-one based on their similarity. 91 void computeMapping(); 92 93 std::vector<Match> getMatches(Mapping &M); 94 95 /// Finds an edit script that converts T1 to T2. 96 std::vector<Change> computeChanges(Mapping &M); 97 98 void printChangeImpl(raw_ostream &OS, const Change &Chg) const; 99 void printMatchImpl(raw_ostream &OS, const Match &M) const; 100 101 // Returns a mapping of identical subtrees. 102 Mapping matchTopDown() const; 103 104 private: 105 // Returns true if the two subtrees are identical. 106 bool identical(NodeId Id1, NodeId Id2) const; 107 108 bool canBeAddedToMapping(const Mapping &M, NodeId Id1, NodeId Id2) const; 109 110 // Returns false if the nodes must not be mached. 111 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 112 113 // Adds all corresponding subtrees of the two nodes to the mapping. 114 // The two nodes must be identical. 115 void addIsomorphicSubTrees(Mapping &M, NodeId Id1, NodeId Id2) const; 116 117 // Uses an optimal albeit slow algorithm to compute a mapping between two 118 // subtrees, but only if both have fewer nodes than MaxSize. 119 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 120 121 // Computes the ratio of common descendants between the two nodes. 122 // Descendants are only considered to be equal when they are mapped in M. 123 double getSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 124 125 // Returns the node that has the highest degree of similarity. 126 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 127 128 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 129 void matchBottomUp(Mapping &M) const; 130 131 const ComparisonOptions &Options; 132 133 friend class ZhangShashaMatcher; 134 }; 135 136 /// Represents the AST of a TranslationUnit. 137 class SyntaxTree::Impl { 138 public: 139 /// Constructs a tree from the entire translation unit. 140 Impl(SyntaxTree *Parent, const ASTContext &AST); 141 /// Constructs a tree from an AST node. 142 Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST); 143 Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST); 144 template <class T> 145 Impl(SyntaxTree *Parent, 146 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 147 const ASTContext &AST) 148 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 149 template <class T> 150 Impl(SyntaxTree *Parent, 151 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 152 const ASTContext &AST) 153 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 154 155 SyntaxTree *Parent; 156 const ASTContext &AST; 157 std::vector<NodeId> Leaves; 158 // Maps preorder indices to postorder ones. 159 std::vector<int> PostorderIds; 160 161 int getSize() const { return Nodes.size(); } 162 NodeId getRootId() const { return 0; } 163 164 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 165 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 166 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 167 void addNode(Node &N) { Nodes.push_back(N); } 168 int getNumberOfDescendants(NodeId Id) const; 169 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 170 171 std::string getNodeValue(NodeId Id) const; 172 std::string getNodeValue(const DynTypedNode &DTN) const; 173 /// Prints the node as "<type>[: <value>](<postorder-id)" 174 void printNode(NodeId Id) const { printNode(llvm::outs(), Id); } 175 void printNode(raw_ostream &OS, NodeId Id) const; 176 177 void printTree() const; 178 void printTree(NodeId Root) const; 179 void printTree(raw_ostream &OS, NodeId Root) const; 180 181 void printAsJsonImpl(raw_ostream &OS) const; 182 void printNodeAsJson(raw_ostream &OS, NodeId Id) const; 183 184 private: 185 /// Nodes in preorder. 186 std::vector<Node> Nodes; 187 188 void initTree(); 189 void setLeftMostDescendants(); 190 }; 191 192 template <class T> 193 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 194 if (!N) 195 return true; 196 SourceLocation SLoc = N->getLocStart(); 197 return SLoc.isValid() && SrcMgr.isInSystemHeader(SLoc); 198 } 199 200 namespace { 201 /// Counts the number of nodes that will be compared. 202 struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { 203 int Count = 0; 204 const SyntaxTree::Impl &Tree; 205 NodeCountVisitor(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 206 bool TraverseDecl(Decl *D) { 207 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 208 return true; 209 ++Count; 210 RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); 211 return true; 212 } 213 bool TraverseStmt(Stmt *S) { 214 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 215 return true; 216 ++Count; 217 RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); 218 return true; 219 } 220 bool TraverseType(QualType T) { return true; } 221 }; 222 } // end anonymous namespace 223 224 namespace { 225 // Sets Height, Parent and Children for each node. 226 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 227 int Id = 0, Depth = 0; 228 NodeId Parent; 229 SyntaxTree::Impl &Tree; 230 231 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 232 233 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 234 NodeId MyId = Id; 235 Node &N = Tree.getMutableNode(MyId); 236 N.Parent = Parent; 237 N.Depth = Depth; 238 N.ASTNode = DynTypedNode::create(*ASTNode); 239 assert(!N.ASTNode.getNodeKind().isNone() && 240 "Expected nodes to have a valid kind."); 241 if (Parent.isValid()) { 242 Node &P = Tree.getMutableNode(Parent); 243 P.Children.push_back(MyId); 244 } 245 Parent = MyId; 246 ++Id; 247 ++Depth; 248 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 249 } 250 void PostTraverse(std::tuple<NodeId, NodeId> State) { 251 NodeId MyId, PreviousParent; 252 std::tie(MyId, PreviousParent) = State; 253 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 254 Parent = PreviousParent; 255 --Depth; 256 Node &N = Tree.getMutableNode(MyId); 257 N.RightMostDescendant = Id; 258 if (N.isLeaf()) 259 Tree.Leaves.push_back(MyId); 260 N.Height = 1; 261 for (NodeId Child : N.Children) 262 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 263 } 264 bool TraverseDecl(Decl *D) { 265 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 266 return true; 267 auto SavedState = PreTraverse(D); 268 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 269 PostTraverse(SavedState); 270 return true; 271 } 272 bool TraverseStmt(Stmt *S) { 273 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 274 return true; 275 auto SavedState = PreTraverse(S); 276 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 277 PostTraverse(SavedState); 278 return true; 279 } 280 bool TraverseType(QualType T) { return true; } 281 }; 282 } // end anonymous namespace 283 284 SyntaxTree::Impl::Impl(SyntaxTree *Parent, const ASTContext &AST) 285 : Impl(Parent, AST.getTranslationUnitDecl(), AST) {} 286 287 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST) 288 : Parent(Parent), AST(AST) { 289 NodeCountVisitor NodeCounter(*this); 290 NodeCounter.TraverseDecl(N); 291 Nodes.resize(NodeCounter.Count); 292 PreorderVisitor PreorderWalker(*this); 293 PreorderWalker.TraverseDecl(N); 294 initTree(); 295 } 296 297 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST) 298 : Parent(Parent), AST(AST) { 299 NodeCountVisitor NodeCounter(*this); 300 NodeCounter.TraverseStmt(N); 301 Nodes.resize(NodeCounter.Count); 302 PreorderVisitor PreorderWalker(*this); 303 PreorderWalker.TraverseStmt(N); 304 initTree(); 305 } 306 307 void SyntaxTree::Impl::initTree() { 308 setLeftMostDescendants(); 309 int PostorderId = 0; 310 PostorderIds.resize(getSize()); 311 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 312 for (NodeId Child : getNode(Id).Children) 313 PostorderTraverse(Child); 314 PostorderIds[Id] = PostorderId; 315 ++PostorderId; 316 }; 317 PostorderTraverse(getRootId()); 318 } 319 320 void SyntaxTree::Impl::setLeftMostDescendants() { 321 for (NodeId Leaf : Leaves) { 322 getMutableNode(Leaf).LeftMostDescendant = Leaf; 323 NodeId Parent, Cur = Leaf; 324 while ((Parent = getNode(Cur).Parent).isValid() && 325 getNode(Parent).Children[0] == Cur) { 326 Cur = Parent; 327 getMutableNode(Cur).LeftMostDescendant = Leaf; 328 } 329 } 330 } 331 332 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 333 NodeId Root) { 334 std::vector<NodeId> Postorder; 335 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 336 const Node &N = Tree.getNode(Id); 337 for (NodeId Child : N.Children) 338 Traverse(Child); 339 Postorder.push_back(Id); 340 }; 341 Traverse(Root); 342 return Postorder; 343 } 344 345 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 346 NodeId Root) { 347 std::vector<NodeId> Ids; 348 size_t Expanded = 0; 349 Ids.push_back(Root); 350 while (Expanded < Ids.size()) 351 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 352 Ids.push_back(Child); 353 return Ids; 354 } 355 356 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 357 return getNode(Id).RightMostDescendant - Id + 1; 358 } 359 360 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 361 NodeId Lower = SubtreeRoot; 362 NodeId Upper = getNode(SubtreeRoot).RightMostDescendant; 363 return Id >= Lower && Id <= Upper; 364 } 365 366 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 367 return getNodeValue(getNode(Id).ASTNode); 368 } 369 370 std::string SyntaxTree::Impl::getNodeValue(const DynTypedNode &DTN) const { 371 if (auto *X = DTN.get<BinaryOperator>()) 372 return X->getOpcodeStr(); 373 if (auto *X = DTN.get<AccessSpecDecl>()) { 374 CharSourceRange Range(X->getSourceRange(), false); 375 return Lexer::getSourceText(Range, AST.getSourceManager(), 376 AST.getLangOpts()); 377 } 378 if (auto *X = DTN.get<IntegerLiteral>()) { 379 SmallString<256> Str; 380 X->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 381 return Str.str(); 382 } 383 if (auto *X = DTN.get<StringLiteral>()) 384 return X->getString(); 385 if (auto *X = DTN.get<ValueDecl>()) 386 return X->getNameAsString() + "(" + X->getType().getAsString() + ")"; 387 if (DTN.get<DeclStmt>() || DTN.get<TranslationUnitDecl>()) 388 return ""; 389 std::string Value; 390 if (auto *X = DTN.get<DeclRefExpr>()) { 391 if (X->hasQualifier()) { 392 llvm::raw_string_ostream OS(Value); 393 PrintingPolicy PP(AST.getLangOpts()); 394 X->getQualifier()->print(OS, PP); 395 } 396 Value += X->getDecl()->getNameAsString(); 397 return Value; 398 } 399 if (auto *X = DTN.get<NamedDecl>()) 400 Value += X->getNameAsString() + ";"; 401 if (auto *X = DTN.get<TypedefNameDecl>()) 402 return Value + X->getUnderlyingType().getAsString() + ";"; 403 if (DTN.get<NamespaceDecl>()) 404 return Value; 405 if (auto *X = DTN.get<TypeDecl>()) 406 if (X->getTypeForDecl()) 407 Value += 408 X->getTypeForDecl()->getCanonicalTypeInternal().getAsString() + ";"; 409 if (DTN.get<Decl>()) 410 return Value; 411 if (DTN.get<Stmt>()) 412 return ""; 413 llvm_unreachable("Fatal: unhandled AST node.\n"); 414 } 415 416 void SyntaxTree::Impl::printTree() const { printTree(getRootId()); } 417 void SyntaxTree::Impl::printTree(NodeId Root) const { 418 printTree(llvm::outs(), Root); 419 } 420 421 void SyntaxTree::Impl::printTree(raw_ostream &OS, NodeId Root) const { 422 const Node &N = getNode(Root); 423 for (int I = 0; I < N.Depth; ++I) 424 OS << " "; 425 printNode(OS, Root); 426 OS << "\n"; 427 for (NodeId Child : N.Children) 428 printTree(OS, Child); 429 } 430 431 void SyntaxTree::Impl::printNode(raw_ostream &OS, NodeId Id) const { 432 if (Id.isInvalid()) { 433 OS << "None"; 434 return; 435 } 436 OS << getNode(Id).getTypeLabel(); 437 if (getNodeValue(Id) != "") 438 OS << ": " << getNodeValue(Id); 439 OS << "(" << PostorderIds[Id] << ")"; 440 } 441 442 void SyntaxTree::Impl::printNodeAsJson(raw_ostream &OS, NodeId Id) const { 443 auto N = getNode(Id); 444 OS << R"({"type":")" << N.getTypeLabel() << R"(")"; 445 if (getNodeValue(Id) != "") 446 OS << R"(,"value":")" << getNodeValue(Id) << R"(")"; 447 OS << R"(,"children":[)"; 448 if (N.Children.size() > 0) { 449 printNodeAsJson(OS, N.Children[0]); 450 for (size_t I = 1, E = N.Children.size(); I < E; ++I) { 451 OS << ","; 452 printNodeAsJson(OS, N.Children[I]); 453 } 454 } 455 OS << "]}"; 456 } 457 458 void SyntaxTree::Impl::printAsJsonImpl(raw_ostream &OS) const { 459 OS << R"({"root":)"; 460 printNodeAsJson(OS, getRootId()); 461 OS << "}\n"; 462 } 463 464 /// Identifies a node in a subtree by its postorder offset, starting at 1. 465 struct SNodeId { 466 int Id = 0; 467 468 explicit SNodeId(int Id) : Id(Id) {} 469 explicit SNodeId() = default; 470 471 operator int() const { return Id; } 472 SNodeId &operator++() { return ++Id, *this; } 473 SNodeId &operator--() { return --Id, *this; } 474 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 475 }; 476 477 class Subtree { 478 private: 479 /// The parent tree. 480 const SyntaxTree::Impl &Tree; 481 /// Maps SNodeIds to original ids. 482 std::vector<NodeId> RootIds; 483 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 484 std::vector<SNodeId> LeftMostDescendants; 485 486 public: 487 std::vector<SNodeId> KeyRoots; 488 489 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 490 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 491 int NumLeaves = setLeftMostDescendants(); 492 computeKeyRoots(NumLeaves); 493 } 494 int getSize() const { return RootIds.size(); } 495 NodeId getIdInRoot(SNodeId Id) const { 496 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 497 return RootIds[Id - 1]; 498 } 499 const Node &getNode(SNodeId Id) const { 500 return Tree.getNode(getIdInRoot(Id)); 501 } 502 SNodeId getLeftMostDescendant(SNodeId Id) const { 503 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 504 return LeftMostDescendants[Id - 1]; 505 } 506 /// Returns the postorder index of the leftmost descendant in the subtree. 507 NodeId getPostorderOffset() const { 508 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 509 } 510 std::string getNodeValue(SNodeId Id) const { 511 return Tree.getNodeValue(getIdInRoot(Id)); 512 } 513 514 private: 515 /// Returns the number of leafs in the subtree. 516 int setLeftMostDescendants() { 517 int NumLeaves = 0; 518 LeftMostDescendants.resize(getSize()); 519 for (int I = 0; I < getSize(); ++I) { 520 SNodeId SI(I + 1); 521 const Node &N = getNode(SI); 522 NumLeaves += N.isLeaf(); 523 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 524 "Postorder traversal in subtree should correspond to traversal in " 525 "the root tree by a constant offset."); 526 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 527 getPostorderOffset()); 528 } 529 return NumLeaves; 530 } 531 void computeKeyRoots(int Leaves) { 532 KeyRoots.resize(Leaves); 533 std::unordered_set<int> Visited; 534 int K = Leaves - 1; 535 for (SNodeId I(getSize()); I > 0; --I) { 536 SNodeId LeftDesc = getLeftMostDescendant(I); 537 if (Visited.count(LeftDesc)) 538 continue; 539 assert(K >= 0 && "K should be non-negative"); 540 KeyRoots[K] = I; 541 Visited.insert(LeftDesc); 542 --K; 543 } 544 } 545 }; 546 547 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 548 /// Computes an optimal mapping between two trees using only insertion, 549 /// deletion and update as edit actions (similar to the Levenshtein distance). 550 class ZhangShashaMatcher { 551 const ASTDiff::Impl &DiffImpl; 552 Subtree S1; 553 Subtree S2; 554 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 555 556 public: 557 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 558 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 559 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 560 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 561 size_t(S1.getSize()) + 1); 562 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 563 size_t(S1.getSize()) + 1); 564 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 565 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 566 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 567 } 568 } 569 570 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 571 std::vector<std::pair<NodeId, NodeId>> Matches; 572 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 573 574 computeTreeDist(); 575 576 bool RootNodePair = true; 577 578 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 579 580 while (!TreePairs.empty()) { 581 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 582 std::tie(LastRow, LastCol) = TreePairs.back(); 583 TreePairs.pop_back(); 584 585 if (!RootNodePair) { 586 computeForestDist(LastRow, LastCol); 587 } 588 589 RootNodePair = false; 590 591 FirstRow = S1.getLeftMostDescendant(LastRow); 592 FirstCol = S2.getLeftMostDescendant(LastCol); 593 594 Row = LastRow; 595 Col = LastCol; 596 597 while (Row > FirstRow || Col > FirstCol) { 598 if (Row > FirstRow && 599 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 600 --Row; 601 } else if (Col > FirstCol && 602 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 603 --Col; 604 } else { 605 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 606 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 607 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 608 LMD2 == S2.getLeftMostDescendant(LastCol)) { 609 NodeId Id1 = S1.getIdInRoot(Row); 610 NodeId Id2 = S2.getIdInRoot(Col); 611 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 612 "These nodes must not be matched."); 613 Matches.emplace_back(Id1, Id2); 614 --Row; 615 --Col; 616 } else { 617 TreePairs.emplace_back(Row, Col); 618 Row = LMD1; 619 Col = LMD2; 620 } 621 } 622 } 623 } 624 return Matches; 625 } 626 627 private: 628 /// Simple cost model for edit actions. 629 /// The values range between 0 and 1, or infinity if this edit action should 630 /// always be avoided. 631 632 /// These costs could be modified to better model the estimated cost of / 633 /// inserting / deleting the current node. 634 static constexpr double DeletionCost = 1; 635 static constexpr double InsertionCost = 1; 636 637 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 638 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 639 return std::numeric_limits<double>::max(); 640 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 641 } 642 643 void computeTreeDist() { 644 for (SNodeId Id1 : S1.KeyRoots) 645 for (SNodeId Id2 : S2.KeyRoots) 646 computeForestDist(Id1, Id2); 647 } 648 649 void computeForestDist(SNodeId Id1, SNodeId Id2) { 650 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 651 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 652 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 653 654 ForestDist[LMD1][LMD2] = 0; 655 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 656 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 657 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 658 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 659 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 660 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 661 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 662 double UpdateCost = getUpdateCost(D1, D2); 663 ForestDist[D1][D2] = 664 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 665 ForestDist[D1][D2 - 1] + InsertionCost, 666 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 667 TreeDist[D1][D2] = ForestDist[D1][D2]; 668 } else { 669 ForestDist[D1][D2] = 670 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 671 ForestDist[D1][D2 - 1] + InsertionCost, 672 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 673 } 674 } 675 } 676 } 677 }; 678 679 namespace { 680 // Compares nodes by their depth. 681 struct HeightLess { 682 const SyntaxTree::Impl &Tree; 683 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 684 bool operator()(NodeId Id1, NodeId Id2) const { 685 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 686 } 687 }; 688 } // end anonymous namespace 689 690 // Priority queue for nodes, sorted descendingly by their height. 691 class PriorityList { 692 const SyntaxTree::Impl &Tree; 693 HeightLess Cmp; 694 std::vector<NodeId> Container; 695 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 696 697 public: 698 PriorityList(const SyntaxTree::Impl &Tree) 699 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 700 701 void push(NodeId id) { List.push(id); } 702 703 std::vector<NodeId> pop() { 704 int Max = peekMax(); 705 std::vector<NodeId> Result; 706 if (Max == 0) 707 return Result; 708 while (peekMax() == Max) { 709 Result.push_back(List.top()); 710 List.pop(); 711 } 712 // TODO this is here to get a stable output, not a good heuristic 713 std::sort(Result.begin(), Result.end()); 714 return Result; 715 } 716 int peekMax() const { 717 if (List.empty()) 718 return 0; 719 return Tree.getNode(List.top()).Height; 720 } 721 void open(NodeId Id) { 722 for (NodeId Child : Tree.getNode(Id).Children) 723 push(Child); 724 } 725 }; 726 727 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 728 const Node &N1 = T1.getNode(Id1); 729 const Node &N2 = T2.getNode(Id2); 730 if (N1.Children.size() != N2.Children.size() || 731 !isMatchingPossible(Id1, Id2) || 732 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 733 return false; 734 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 735 if (!identical(N1.Children[Id], N2.Children[Id])) 736 return false; 737 return true; 738 } 739 740 bool ASTDiff::Impl::canBeAddedToMapping(const Mapping &M, NodeId Id1, 741 NodeId Id2) const { 742 assert(isMatchingPossible(Id1, Id2) && 743 "Matching must be possible in the first place."); 744 if (M.hasSrcDst(Id1, Id2)) 745 return false; 746 if (Options.EnableMatchingWithUnmatchableParents) 747 return true; 748 const Node &N1 = T1.getNode(Id1); 749 const Node &N2 = T2.getNode(Id2); 750 NodeId P1 = N1.Parent; 751 NodeId P2 = N2.Parent; 752 // Only allow matching if parents can be matched. 753 return (P1.isInvalid() && P2.isInvalid()) || 754 (P1.isValid() && P2.isValid() && isMatchingPossible(P1, P2)); 755 } 756 757 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 758 return Options.isMatchingAllowed(T1.getNode(Id1).ASTNode, 759 T2.getNode(Id2).ASTNode); 760 } 761 762 void ASTDiff::Impl::addIsomorphicSubTrees(Mapping &M, NodeId Id1, 763 NodeId Id2) const { 764 assert(identical(Id1, Id2) && "Can only be called on identical subtrees."); 765 M.link(Id1, Id2); 766 const Node &N1 = T1.getNode(Id1); 767 const Node &N2 = T2.getNode(Id2); 768 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 769 addIsomorphicSubTrees(M, N1.Children[Id], N2.Children[Id]); 770 } 771 772 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 773 NodeId Id2) const { 774 if (std::max(T1.getNumberOfDescendants(Id1), 775 T2.getNumberOfDescendants(Id2)) >= Options.MaxSize) 776 return; 777 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 778 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 779 for (const auto Tuple : R) { 780 NodeId Src = Tuple.first; 781 NodeId Dst = Tuple.second; 782 if (canBeAddedToMapping(M, Src, Dst)) 783 M.link(Src, Dst); 784 } 785 } 786 787 double ASTDiff::Impl::getSimilarity(const Mapping &M, NodeId Id1, 788 NodeId Id2) const { 789 if (Id1.isInvalid() || Id2.isInvalid()) 790 return 0.0; 791 int CommonDescendants = 0; 792 const Node &N1 = T1.getNode(Id1); 793 for (NodeId Id = Id1 + 1; Id <= N1.RightMostDescendant; ++Id) 794 CommonDescendants += int(T2.isInSubtree(M.getDst(Id), Id2)); 795 return 2.0 * CommonDescendants / 796 (T1.getNumberOfDescendants(Id1) + T2.getNumberOfDescendants(Id2)); 797 } 798 799 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 800 NodeId Candidate; 801 double HighestSimilarity = 0.0; 802 for (NodeId Id2 = 0, E = T2.getSize(); Id2 < E; ++Id2) { 803 if (!isMatchingPossible(Id1, Id2)) 804 continue; 805 if (M.hasDst(Id2)) 806 continue; 807 double Similarity = getSimilarity(M, Id1, Id2); 808 if (Similarity > HighestSimilarity) { 809 HighestSimilarity = Similarity; 810 Candidate = Id2; 811 } 812 } 813 return Candidate; 814 } 815 816 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 817 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 818 for (NodeId Id1 : Postorder) { 819 if (Id1 == T1.getRootId()) { 820 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 821 M.link(T1.getRootId(), T2.getRootId()); 822 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 823 } 824 break; 825 } 826 const Node &N1 = T1.getNode(Id1); 827 bool Matched = M.hasSrc(Id1); 828 bool MatchedChildren = 829 std::any_of(N1.Children.begin(), N1.Children.end(), 830 [&](NodeId Child) { return M.hasSrc(Child); }); 831 if (Matched || !MatchedChildren) 832 continue; 833 NodeId Id2 = findCandidate(M, Id1); 834 if (Id2.isInvalid() || !canBeAddedToMapping(M, Id1, Id2) || 835 getSimilarity(M, Id1, Id2) < Options.MinSimilarity) 836 continue; 837 M.link(Id1, Id2); 838 addOptimalMapping(M, Id1, Id2); 839 } 840 } 841 842 Mapping ASTDiff::Impl::matchTopDown() const { 843 PriorityList L1(T1); 844 PriorityList L2(T2); 845 846 Mapping M(T1.getSize(), T2.getSize()); 847 848 L1.push(T1.getRootId()); 849 L2.push(T2.getRootId()); 850 851 int Max1, Max2; 852 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 853 Options.MinHeight) { 854 if (Max1 > Max2) { 855 for (NodeId Id : L1.pop()) 856 L1.open(Id); 857 continue; 858 } 859 if (Max2 > Max1) { 860 for (NodeId Id : L2.pop()) 861 L2.open(Id); 862 continue; 863 } 864 std::vector<NodeId> H1, H2; 865 H1 = L1.pop(); 866 H2 = L2.pop(); 867 for (NodeId Id1 : H1) { 868 for (NodeId Id2 : H2) 869 if (identical(Id1, Id2) && canBeAddedToMapping(M, Id1, Id2)) 870 addIsomorphicSubTrees(M, Id1, Id2); 871 } 872 for (NodeId Id1 : H1) { 873 if (!M.hasSrc(Id1)) 874 L1.open(Id1); 875 } 876 for (NodeId Id2 : H2) { 877 if (!M.hasDst(Id2)) 878 L2.open(Id2); 879 } 880 } 881 return M; 882 } 883 884 void ASTDiff::Impl::computeMapping() { 885 if (IsMappingDone) 886 return; 887 TheMapping = matchTopDown(); 888 matchBottomUp(TheMapping); 889 IsMappingDone = true; 890 } 891 892 std::vector<Match> ASTDiff::Impl::getMatches(Mapping &M) { 893 std::vector<Match> Matches; 894 for (NodeId Id1 = 0, Id2, E = T1.getSize(); Id1 < E; ++Id1) 895 if ((Id2 = M.getDst(Id1)).isValid()) 896 Matches.push_back({Id1, Id2}); 897 return Matches; 898 } 899 900 std::vector<Change> ASTDiff::Impl::computeChanges(Mapping &M) { 901 std::vector<Change> Changes; 902 for (NodeId Id2 : getSubtreeBfs(T2, T2.getRootId())) { 903 const Node &N2 = T2.getNode(Id2); 904 NodeId Id1 = M.getSrc(Id2); 905 if (Id1.isValid()) { 906 assert(isMatchingPossible(Id1, Id2) && "Invalid matching."); 907 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 908 Changes.emplace_back(Update, Id1, Id2); 909 } 910 continue; 911 } 912 NodeId P2 = N2.Parent; 913 NodeId P1 = M.getSrc(P2); 914 assert(P1.isValid() && 915 "Parents must be matched for determining the change type."); 916 Node &Parent1 = T1.getMutableNode(P1); 917 const Node &Parent2 = T2.getNode(P2); 918 auto &Siblings1 = Parent1.Children; 919 const auto &Siblings2 = Parent2.Children; 920 size_t Position; 921 for (Position = 0; Position < Siblings2.size(); ++Position) 922 if (Siblings2[Position] == Id2 || Position >= Siblings1.size()) 923 break; 924 Changes.emplace_back(Insert, Id2, P2, Position); 925 Node PatchNode; 926 PatchNode.Parent = P1; 927 PatchNode.LeftMostDescendant = N2.LeftMostDescendant; 928 PatchNode.RightMostDescendant = N2.RightMostDescendant; 929 PatchNode.Depth = N2.Depth; 930 PatchNode.ASTNode = N2.ASTNode; 931 // TODO update Depth if needed 932 NodeId PatchNodeId = T1.getSize(); 933 // TODO maybe choose a different data structure for Children. 934 Siblings1.insert(Siblings1.begin() + Position, PatchNodeId); 935 T1.addNode(PatchNode); 936 M.link(PatchNodeId, Id2); 937 } 938 for (NodeId Id1 = 0; Id1 < T1.getSize(); ++Id1) { 939 NodeId Id2 = M.getDst(Id1); 940 if (Id2.isInvalid()) 941 Changes.emplace_back(Delete, Id1, Id2); 942 } 943 return Changes; 944 } 945 946 void ASTDiff::Impl::printChangeImpl(raw_ostream &OS, const Change &Chg) const { 947 switch (Chg.Kind) { 948 case Delete: 949 OS << "Delete "; 950 T1.printNode(OS, Chg.Src); 951 OS << "\n"; 952 break; 953 case Update: 954 OS << "Update "; 955 T1.printNode(OS, Chg.Src); 956 OS << " to " << T2.getNodeValue(Chg.Dst) << "\n"; 957 break; 958 case Insert: 959 OS << "Insert "; 960 T2.printNode(OS, Chg.Src); 961 OS << " into "; 962 T2.printNode(OS, Chg.Dst); 963 OS << " at " << Chg.Position << "\n"; 964 break; 965 case Move: 966 llvm_unreachable("TODO"); 967 break; 968 }; 969 } 970 971 void ASTDiff::Impl::printMatchImpl(raw_ostream &OS, const Match &M) const { 972 OS << "Match "; 973 T1.printNode(OS, M.Src); 974 OS << " to "; 975 T2.printNode(OS, M.Dst); 976 OS << "\n"; 977 } 978 979 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 980 const ComparisonOptions &Options) 981 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 982 983 ASTDiff::~ASTDiff() = default; 984 985 SyntaxTree::SyntaxTree(const ASTContext &AST) 986 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 987 this, AST.getTranslationUnitDecl(), AST)) {} 988 989 std::vector<Match> ASTDiff::getMatches() { 990 DiffImpl->computeMapping(); 991 return DiffImpl->getMatches(DiffImpl->TheMapping); 992 } 993 994 std::vector<Change> ASTDiff::getChanges() { 995 DiffImpl->computeMapping(); 996 return DiffImpl->computeChanges(DiffImpl->TheMapping); 997 } 998 999 void ASTDiff::printChange(raw_ostream &OS, const Change &Chg) const { 1000 DiffImpl->printChangeImpl(OS, Chg); 1001 } 1002 1003 void ASTDiff::printMatch(raw_ostream &OS, const Match &M) const { 1004 DiffImpl->printMatchImpl(OS, M); 1005 } 1006 1007 SyntaxTree::~SyntaxTree() = default; 1008 1009 void SyntaxTree::printAsJson(raw_ostream &OS) { TreeImpl->printAsJsonImpl(OS); } 1010 1011 std::string SyntaxTree::getNodeValue(const DynTypedNode &DTN) const { 1012 return TreeImpl->getNodeValue(DTN); 1013 } 1014 1015 } // end namespace diff 1016 } // end namespace clang 1017