1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 namespace { 31 /// Maps nodes of the left tree to ones on the right, and vice versa. 32 class Mapping { 33 public: 34 Mapping() = default; 35 Mapping(Mapping &&Other) = default; 36 Mapping &operator=(Mapping &&Other) = default; 37 38 Mapping(size_t Size) { 39 SrcToDst = llvm::make_unique<NodeId[]>(Size); 40 DstToSrc = llvm::make_unique<NodeId[]>(Size); 41 } 42 43 void link(NodeId Src, NodeId Dst) { 44 SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; 45 } 46 47 NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } 48 NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } 49 bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } 50 bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } 51 52 private: 53 std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; 54 }; 55 } // end anonymous namespace 56 57 class ASTDiff::Impl { 58 public: 59 SyntaxTree::Impl &T1, &T2; 60 Mapping TheMapping; 61 62 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 63 const ComparisonOptions &Options); 64 65 /// Matches nodes one-by-one based on their similarity. 66 void computeMapping(); 67 68 // Compute Change for each node based on similarity. 69 void computeChangeKinds(Mapping &M); 70 71 NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, 72 NodeId Id) const { 73 if (&*Tree == &T1) 74 return TheMapping.getDst(Id); 75 assert(&*Tree == &T2 && "Invalid tree."); 76 return TheMapping.getSrc(Id); 77 } 78 79 private: 80 // Returns true if the two subtrees are identical. 81 bool identical(NodeId Id1, NodeId Id2) const; 82 83 // Returns false if the nodes must not be mached. 84 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 85 86 // Returns true if the nodes' parents are matched. 87 bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; 88 89 // Uses an optimal albeit slow algorithm to compute a mapping between two 90 // subtrees, but only if both have fewer nodes than MaxSize. 91 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 92 93 // Computes the ratio of common descendants between the two nodes. 94 // Descendants are only considered to be equal when they are mapped in M. 95 double getSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 96 97 // Returns the node that has the highest degree of similarity. 98 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 99 100 // Returns a mapping of identical subtrees. 101 Mapping matchTopDown() const; 102 103 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 104 void matchBottomUp(Mapping &M) const; 105 106 const ComparisonOptions &Options; 107 108 friend class ZhangShashaMatcher; 109 }; 110 111 /// Represents the AST of a TranslationUnit. 112 class SyntaxTree::Impl { 113 public: 114 /// Constructs a tree from the entire translation unit. 115 Impl(SyntaxTree *Parent, const ASTContext &AST); 116 /// Constructs a tree from an AST node. 117 Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST); 118 Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST); 119 template <class T> 120 Impl(SyntaxTree *Parent, 121 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 122 const ASTContext &AST) 123 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 124 template <class T> 125 Impl(SyntaxTree *Parent, 126 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 127 const ASTContext &AST) 128 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 129 130 SyntaxTree *Parent; 131 const ASTContext &AST; 132 std::vector<NodeId> Leaves; 133 // Maps preorder indices to postorder ones. 134 std::vector<int> PostorderIds; 135 std::vector<NodeId> NodesBfs; 136 137 int getSize() const { return Nodes.size(); } 138 NodeId getRootId() const { return 0; } 139 PreorderIterator begin() const { return getRootId(); } 140 PreorderIterator end() const { return getSize(); } 141 142 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 143 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 144 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 145 void addNode(Node &N) { Nodes.push_back(N); } 146 int getNumberOfDescendants(NodeId Id) const; 147 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 148 int findPositionInParent(NodeId Id, bool Shifted = false) const; 149 150 std::string getNodeValue(NodeId Id) const; 151 std::string getNodeValue(const Node &Node) const; 152 153 private: 154 /// Nodes in preorder. 155 std::vector<Node> Nodes; 156 157 void initTree(); 158 void setLeftMostDescendants(); 159 }; 160 161 template <class T> 162 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 163 if (!N) 164 return true; 165 SourceLocation SLoc = N->getLocStart(); 166 return SLoc.isValid() && SrcMgr.isInSystemHeader(SLoc); 167 } 168 169 namespace { 170 /// Counts the number of nodes that will be compared. 171 struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { 172 int Count = 0; 173 const SyntaxTree::Impl &Tree; 174 NodeCountVisitor(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 175 bool TraverseDecl(Decl *D) { 176 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 177 return true; 178 ++Count; 179 RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); 180 return true; 181 } 182 bool TraverseStmt(Stmt *S) { 183 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 184 return true; 185 ++Count; 186 RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); 187 return true; 188 } 189 bool TraverseType(QualType T) { return true; } 190 }; 191 } // end anonymous namespace 192 193 namespace { 194 // Sets Height, Parent and Children for each node. 195 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 196 int Id = 0, Depth = 0; 197 NodeId Parent; 198 SyntaxTree::Impl &Tree; 199 200 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 201 202 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 203 NodeId MyId = Id; 204 Node &N = Tree.getMutableNode(MyId); 205 N.Parent = Parent; 206 N.Depth = Depth; 207 N.ASTNode = DynTypedNode::create(*ASTNode); 208 assert(!N.ASTNode.getNodeKind().isNone() && 209 "Expected nodes to have a valid kind."); 210 if (Parent.isValid()) { 211 Node &P = Tree.getMutableNode(Parent); 212 P.Children.push_back(MyId); 213 } 214 Parent = MyId; 215 ++Id; 216 ++Depth; 217 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 218 } 219 void PostTraverse(std::tuple<NodeId, NodeId> State) { 220 NodeId MyId, PreviousParent; 221 std::tie(MyId, PreviousParent) = State; 222 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 223 Parent = PreviousParent; 224 --Depth; 225 Node &N = Tree.getMutableNode(MyId); 226 N.RightMostDescendant = Id - 1; 227 assert(N.RightMostDescendant >= 0 && 228 N.RightMostDescendant < Tree.getSize() && 229 "Rightmost descendant must be a valid tree node."); 230 if (N.isLeaf()) 231 Tree.Leaves.push_back(MyId); 232 N.Height = 1; 233 for (NodeId Child : N.Children) 234 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 235 } 236 bool TraverseDecl(Decl *D) { 237 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 238 return true; 239 auto SavedState = PreTraverse(D); 240 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 241 PostTraverse(SavedState); 242 return true; 243 } 244 bool TraverseStmt(Stmt *S) { 245 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 246 return true; 247 auto SavedState = PreTraverse(S); 248 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 249 PostTraverse(SavedState); 250 return true; 251 } 252 bool TraverseType(QualType T) { return true; } 253 }; 254 } // end anonymous namespace 255 256 SyntaxTree::Impl::Impl(SyntaxTree *Parent, const ASTContext &AST) 257 : Impl(Parent, AST.getTranslationUnitDecl(), AST) {} 258 259 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST) 260 : Parent(Parent), AST(AST) { 261 NodeCountVisitor NodeCounter(*this); 262 NodeCounter.TraverseDecl(N); 263 Nodes.resize(NodeCounter.Count); 264 PreorderVisitor PreorderWalker(*this); 265 PreorderWalker.TraverseDecl(N); 266 initTree(); 267 } 268 269 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST) 270 : Parent(Parent), AST(AST) { 271 NodeCountVisitor NodeCounter(*this); 272 NodeCounter.TraverseStmt(N); 273 Nodes.resize(NodeCounter.Count); 274 PreorderVisitor PreorderWalker(*this); 275 PreorderWalker.TraverseStmt(N); 276 initTree(); 277 } 278 279 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 280 NodeId Root) { 281 std::vector<NodeId> Postorder; 282 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 283 const Node &N = Tree.getNode(Id); 284 for (NodeId Child : N.Children) 285 Traverse(Child); 286 Postorder.push_back(Id); 287 }; 288 Traverse(Root); 289 return Postorder; 290 } 291 292 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 293 NodeId Root) { 294 std::vector<NodeId> Ids; 295 size_t Expanded = 0; 296 Ids.push_back(Root); 297 while (Expanded < Ids.size()) 298 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 299 Ids.push_back(Child); 300 return Ids; 301 } 302 303 void SyntaxTree::Impl::initTree() { 304 setLeftMostDescendants(); 305 int PostorderId = 0; 306 PostorderIds.resize(getSize()); 307 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 308 for (NodeId Child : getNode(Id).Children) 309 PostorderTraverse(Child); 310 PostorderIds[Id] = PostorderId; 311 ++PostorderId; 312 }; 313 PostorderTraverse(getRootId()); 314 NodesBfs = getSubtreeBfs(*this, getRootId()); 315 } 316 317 void SyntaxTree::Impl::setLeftMostDescendants() { 318 for (NodeId Leaf : Leaves) { 319 getMutableNode(Leaf).LeftMostDescendant = Leaf; 320 NodeId Parent, Cur = Leaf; 321 while ((Parent = getNode(Cur).Parent).isValid() && 322 getNode(Parent).Children[0] == Cur) { 323 Cur = Parent; 324 getMutableNode(Cur).LeftMostDescendant = Leaf; 325 } 326 } 327 } 328 329 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 330 return getNode(Id).RightMostDescendant - Id + 1; 331 } 332 333 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 334 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 335 } 336 337 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { 338 NodeId Parent = getNode(Id).Parent; 339 if (Parent.isInvalid()) 340 return 0; 341 const auto &Siblings = getNode(Parent).Children; 342 int Position = 0; 343 for (size_t I = 0, E = Siblings.size(); I < E; ++I) { 344 if (Shifted) 345 Position += getNode(Siblings[I]).Shift; 346 if (Siblings[I] == Id) { 347 Position += I; 348 return Position; 349 } 350 } 351 llvm_unreachable("Node not found in parent's children."); 352 } 353 354 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 355 return getNodeValue(getNode(Id)); 356 } 357 358 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { 359 const DynTypedNode &DTN = N.ASTNode; 360 if (auto *X = DTN.get<BinaryOperator>()) 361 return X->getOpcodeStr(); 362 if (auto *X = DTN.get<AccessSpecDecl>()) { 363 CharSourceRange Range(X->getSourceRange(), false); 364 return Lexer::getSourceText(Range, AST.getSourceManager(), 365 AST.getLangOpts()); 366 } 367 if (auto *X = DTN.get<IntegerLiteral>()) { 368 SmallString<256> Str; 369 X->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 370 return Str.str(); 371 } 372 if (auto *X = DTN.get<StringLiteral>()) 373 return X->getString(); 374 if (auto *X = DTN.get<ValueDecl>()) 375 return X->getNameAsString() + "(" + X->getType().getAsString() + ")"; 376 if (DTN.get<DeclStmt>() || DTN.get<TranslationUnitDecl>()) 377 return ""; 378 std::string Value; 379 if (auto *X = DTN.get<DeclRefExpr>()) { 380 if (X->hasQualifier()) { 381 llvm::raw_string_ostream OS(Value); 382 PrintingPolicy PP(AST.getLangOpts()); 383 X->getQualifier()->print(OS, PP); 384 } 385 Value += X->getDecl()->getNameAsString(); 386 return Value; 387 } 388 if (auto *X = DTN.get<NamedDecl>()) 389 Value += X->getNameAsString() + ";"; 390 if (auto *X = DTN.get<TypedefNameDecl>()) 391 return Value + X->getUnderlyingType().getAsString() + ";"; 392 if (DTN.get<NamespaceDecl>()) 393 return Value; 394 if (auto *X = DTN.get<TypeDecl>()) 395 if (X->getTypeForDecl()) 396 Value += 397 X->getTypeForDecl()->getCanonicalTypeInternal().getAsString() + ";"; 398 if (DTN.get<Decl>()) 399 return Value; 400 if (DTN.get<Stmt>()) 401 return ""; 402 llvm_unreachable("Fatal: unhandled AST node.\n"); 403 } 404 405 /// Identifies a node in a subtree by its postorder offset, starting at 1. 406 struct SNodeId { 407 int Id = 0; 408 409 explicit SNodeId(int Id) : Id(Id) {} 410 explicit SNodeId() = default; 411 412 operator int() const { return Id; } 413 SNodeId &operator++() { return ++Id, *this; } 414 SNodeId &operator--() { return --Id, *this; } 415 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 416 }; 417 418 class Subtree { 419 private: 420 /// The parent tree. 421 const SyntaxTree::Impl &Tree; 422 /// Maps SNodeIds to original ids. 423 std::vector<NodeId> RootIds; 424 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 425 std::vector<SNodeId> LeftMostDescendants; 426 427 public: 428 std::vector<SNodeId> KeyRoots; 429 430 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 431 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 432 int NumLeaves = setLeftMostDescendants(); 433 computeKeyRoots(NumLeaves); 434 } 435 int getSize() const { return RootIds.size(); } 436 NodeId getIdInRoot(SNodeId Id) const { 437 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 438 return RootIds[Id - 1]; 439 } 440 const Node &getNode(SNodeId Id) const { 441 return Tree.getNode(getIdInRoot(Id)); 442 } 443 SNodeId getLeftMostDescendant(SNodeId Id) const { 444 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 445 return LeftMostDescendants[Id - 1]; 446 } 447 /// Returns the postorder index of the leftmost descendant in the subtree. 448 NodeId getPostorderOffset() const { 449 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 450 } 451 std::string getNodeValue(SNodeId Id) const { 452 return Tree.getNodeValue(getIdInRoot(Id)); 453 } 454 455 private: 456 /// Returns the number of leafs in the subtree. 457 int setLeftMostDescendants() { 458 int NumLeaves = 0; 459 LeftMostDescendants.resize(getSize()); 460 for (int I = 0; I < getSize(); ++I) { 461 SNodeId SI(I + 1); 462 const Node &N = getNode(SI); 463 NumLeaves += N.isLeaf(); 464 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 465 "Postorder traversal in subtree should correspond to traversal in " 466 "the root tree by a constant offset."); 467 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 468 getPostorderOffset()); 469 } 470 return NumLeaves; 471 } 472 void computeKeyRoots(int Leaves) { 473 KeyRoots.resize(Leaves); 474 std::unordered_set<int> Visited; 475 int K = Leaves - 1; 476 for (SNodeId I(getSize()); I > 0; --I) { 477 SNodeId LeftDesc = getLeftMostDescendant(I); 478 if (Visited.count(LeftDesc)) 479 continue; 480 assert(K >= 0 && "K should be non-negative"); 481 KeyRoots[K] = I; 482 Visited.insert(LeftDesc); 483 --K; 484 } 485 } 486 }; 487 488 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 489 /// Computes an optimal mapping between two trees using only insertion, 490 /// deletion and update as edit actions (similar to the Levenshtein distance). 491 class ZhangShashaMatcher { 492 const ASTDiff::Impl &DiffImpl; 493 Subtree S1; 494 Subtree S2; 495 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 496 497 public: 498 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 499 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 500 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 501 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 502 size_t(S1.getSize()) + 1); 503 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 504 size_t(S1.getSize()) + 1); 505 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 506 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 507 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 508 } 509 } 510 511 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 512 std::vector<std::pair<NodeId, NodeId>> Matches; 513 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 514 515 computeTreeDist(); 516 517 bool RootNodePair = true; 518 519 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 520 521 while (!TreePairs.empty()) { 522 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 523 std::tie(LastRow, LastCol) = TreePairs.back(); 524 TreePairs.pop_back(); 525 526 if (!RootNodePair) { 527 computeForestDist(LastRow, LastCol); 528 } 529 530 RootNodePair = false; 531 532 FirstRow = S1.getLeftMostDescendant(LastRow); 533 FirstCol = S2.getLeftMostDescendant(LastCol); 534 535 Row = LastRow; 536 Col = LastCol; 537 538 while (Row > FirstRow || Col > FirstCol) { 539 if (Row > FirstRow && 540 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 541 --Row; 542 } else if (Col > FirstCol && 543 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 544 --Col; 545 } else { 546 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 547 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 548 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 549 LMD2 == S2.getLeftMostDescendant(LastCol)) { 550 NodeId Id1 = S1.getIdInRoot(Row); 551 NodeId Id2 = S2.getIdInRoot(Col); 552 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 553 "These nodes must not be matched."); 554 Matches.emplace_back(Id1, Id2); 555 --Row; 556 --Col; 557 } else { 558 TreePairs.emplace_back(Row, Col); 559 Row = LMD1; 560 Col = LMD2; 561 } 562 } 563 } 564 } 565 return Matches; 566 } 567 568 private: 569 /// We use a simple cost model for edit actions, which seems good enough. 570 /// Simple cost model for edit actions. This seems to make the matching 571 /// algorithm perform reasonably well. 572 /// The values range between 0 and 1, or infinity if this edit action should 573 /// always be avoided. 574 static constexpr double DeletionCost = 1; 575 static constexpr double InsertionCost = 1; 576 577 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 578 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 579 return std::numeric_limits<double>::max(); 580 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 581 } 582 583 void computeTreeDist() { 584 for (SNodeId Id1 : S1.KeyRoots) 585 for (SNodeId Id2 : S2.KeyRoots) 586 computeForestDist(Id1, Id2); 587 } 588 589 void computeForestDist(SNodeId Id1, SNodeId Id2) { 590 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 591 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 592 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 593 594 ForestDist[LMD1][LMD2] = 0; 595 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 596 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 597 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 598 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 599 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 600 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 601 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 602 double UpdateCost = getUpdateCost(D1, D2); 603 ForestDist[D1][D2] = 604 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 605 ForestDist[D1][D2 - 1] + InsertionCost, 606 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 607 TreeDist[D1][D2] = ForestDist[D1][D2]; 608 } else { 609 ForestDist[D1][D2] = 610 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 611 ForestDist[D1][D2 - 1] + InsertionCost, 612 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 613 } 614 } 615 } 616 } 617 }; 618 619 ast_type_traits::ASTNodeKind Node::getType() const { 620 return ASTNode.getNodeKind(); 621 } 622 623 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 624 625 namespace { 626 // Compares nodes by their depth. 627 struct HeightLess { 628 const SyntaxTree::Impl &Tree; 629 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 630 bool operator()(NodeId Id1, NodeId Id2) const { 631 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 632 } 633 }; 634 } // end anonymous namespace 635 636 namespace { 637 // Priority queue for nodes, sorted descendingly by their height. 638 class PriorityList { 639 const SyntaxTree::Impl &Tree; 640 HeightLess Cmp; 641 std::vector<NodeId> Container; 642 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 643 644 public: 645 PriorityList(const SyntaxTree::Impl &Tree) 646 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 647 648 void push(NodeId id) { List.push(id); } 649 650 std::vector<NodeId> pop() { 651 int Max = peekMax(); 652 std::vector<NodeId> Result; 653 if (Max == 0) 654 return Result; 655 while (peekMax() == Max) { 656 Result.push_back(List.top()); 657 List.pop(); 658 } 659 // TODO this is here to get a stable output, not a good heuristic 660 std::sort(Result.begin(), Result.end()); 661 return Result; 662 } 663 int peekMax() const { 664 if (List.empty()) 665 return 0; 666 return Tree.getNode(List.top()).Height; 667 } 668 void open(NodeId Id) { 669 for (NodeId Child : Tree.getNode(Id).Children) 670 push(Child); 671 } 672 }; 673 } // end anonymous namespace 674 675 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 676 const Node &N1 = T1.getNode(Id1); 677 const Node &N2 = T2.getNode(Id2); 678 if (N1.Children.size() != N2.Children.size() || 679 !isMatchingPossible(Id1, Id2) || 680 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 681 return false; 682 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 683 if (!identical(N1.Children[Id], N2.Children[Id])) 684 return false; 685 return true; 686 } 687 688 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 689 return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); 690 } 691 692 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, 693 NodeId Id2) const { 694 NodeId P1 = T1.getNode(Id1).Parent; 695 NodeId P2 = T2.getNode(Id2).Parent; 696 return (P1.isInvalid() && P2.isInvalid()) || 697 (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); 698 } 699 700 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 701 NodeId Id2) const { 702 if (std::max(T1.getNumberOfDescendants(Id1), 703 T2.getNumberOfDescendants(Id2)) >= Options.MaxSize) 704 return; 705 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 706 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 707 for (const auto Tuple : R) { 708 NodeId Src = Tuple.first; 709 NodeId Dst = Tuple.second; 710 if (!M.hasSrc(Src) && !M.hasDst(Dst)) 711 M.link(Src, Dst); 712 } 713 } 714 715 double ASTDiff::Impl::getSimilarity(const Mapping &M, NodeId Id1, 716 NodeId Id2) const { 717 if (Id1.isInvalid() || Id2.isInvalid()) 718 return 0.0; 719 int CommonDescendants = 0; 720 const Node &N1 = T1.getNode(Id1); 721 for (NodeId Id = Id1 + 1; Id <= N1.RightMostDescendant; ++Id) 722 CommonDescendants += int(T2.isInSubtree(M.getDst(Id), Id2)); 723 return 2.0 * CommonDescendants / 724 (T1.getNumberOfDescendants(Id1) + T2.getNumberOfDescendants(Id2)); 725 } 726 727 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 728 NodeId Candidate; 729 double HighestSimilarity = 0.0; 730 for (NodeId Id2 : T2) { 731 if (!isMatchingPossible(Id1, Id2)) 732 continue; 733 if (M.hasDst(Id2)) 734 continue; 735 double Similarity = getSimilarity(M, Id1, Id2); 736 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 737 HighestSimilarity = Similarity; 738 Candidate = Id2; 739 } 740 } 741 return Candidate; 742 } 743 744 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 745 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 746 for (NodeId Id1 : Postorder) { 747 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 748 !M.hasDst(T2.getRootId())) { 749 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 750 M.link(T1.getRootId(), T2.getRootId()); 751 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 752 } 753 break; 754 } 755 const Node &N1 = T1.getNode(Id1); 756 bool Matched = M.hasSrc(Id1); 757 bool MatchedChildren = 758 std::any_of(N1.Children.begin(), N1.Children.end(), 759 [&](NodeId Child) { return M.hasSrc(Child); }); 760 if (Matched || !MatchedChildren) 761 continue; 762 NodeId Id2 = findCandidate(M, Id1); 763 if (Id2.isValid()) { 764 M.link(Id1, Id2); 765 addOptimalMapping(M, Id1, Id2); 766 } 767 } 768 } 769 770 Mapping ASTDiff::Impl::matchTopDown() const { 771 PriorityList L1(T1); 772 PriorityList L2(T2); 773 774 Mapping M(T1.getSize() + T2.getSize()); 775 776 L1.push(T1.getRootId()); 777 L2.push(T2.getRootId()); 778 779 int Max1, Max2; 780 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 781 Options.MinHeight) { 782 if (Max1 > Max2) { 783 for (NodeId Id : L1.pop()) 784 L1.open(Id); 785 continue; 786 } 787 if (Max2 > Max1) { 788 for (NodeId Id : L2.pop()) 789 L2.open(Id); 790 continue; 791 } 792 std::vector<NodeId> H1, H2; 793 H1 = L1.pop(); 794 H2 = L2.pop(); 795 for (NodeId Id1 : H1) { 796 for (NodeId Id2 : H2) { 797 if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { 798 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 799 M.link(Id1 + I, Id2 + I); 800 } 801 } 802 } 803 for (NodeId Id1 : H1) { 804 if (!M.hasSrc(Id1)) 805 L1.open(Id1); 806 } 807 for (NodeId Id2 : H2) { 808 if (!M.hasDst(Id2)) 809 L2.open(Id2); 810 } 811 } 812 return M; 813 } 814 815 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 816 const ComparisonOptions &Options) 817 : T1(T1), T2(T2), Options(Options) { 818 computeMapping(); 819 computeChangeKinds(TheMapping); 820 } 821 822 void ASTDiff::Impl::computeMapping() { 823 TheMapping = matchTopDown(); 824 matchBottomUp(TheMapping); 825 } 826 827 void ASTDiff::Impl::computeChangeKinds(Mapping &M) { 828 for (NodeId Id1 : T1) { 829 if (!M.hasSrc(Id1)) { 830 T1.getMutableNode(Id1).Change = Delete; 831 T1.getMutableNode(Id1).Shift -= 1; 832 } 833 } 834 for (NodeId Id2 : T2) { 835 if (!M.hasDst(Id2)) { 836 T2.getMutableNode(Id2).Change = Insert; 837 T2.getMutableNode(Id2).Shift -= 1; 838 } 839 } 840 for (NodeId Id1 : T1.NodesBfs) { 841 NodeId Id2 = M.getDst(Id1); 842 if (Id2.isInvalid()) 843 continue; 844 if (!haveSameParents(M, Id1, Id2) || 845 T1.findPositionInParent(Id1, true) != 846 T2.findPositionInParent(Id2, true)) { 847 T1.getMutableNode(Id1).Shift -= 1; 848 T2.getMutableNode(Id2).Shift -= 1; 849 } 850 } 851 for (NodeId Id2 : T2.NodesBfs) { 852 NodeId Id1 = M.getSrc(Id2); 853 if (Id1.isInvalid()) 854 continue; 855 Node &N1 = T1.getMutableNode(Id1); 856 Node &N2 = T2.getMutableNode(Id2); 857 if (Id1.isInvalid()) 858 continue; 859 if (!haveSameParents(M, Id1, Id2) || 860 T1.findPositionInParent(Id1, true) != 861 T2.findPositionInParent(Id2, true)) { 862 N1.Change = N2.Change = Move; 863 } 864 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 865 N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); 866 } 867 } 868 } 869 870 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 871 const ComparisonOptions &Options) 872 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 873 874 ASTDiff::~ASTDiff() = default; 875 876 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { 877 return DiffImpl->getMapped(SourceTree.TreeImpl, Id); 878 } 879 880 SyntaxTree::SyntaxTree(const ASTContext &AST) 881 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 882 this, AST.getTranslationUnitDecl(), AST)) {} 883 884 SyntaxTree::~SyntaxTree() = default; 885 886 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 887 888 const Node &SyntaxTree::getNode(NodeId Id) const { 889 return TreeImpl->getNode(Id); 890 } 891 892 int SyntaxTree::getSize() const { return TreeImpl->getSize(); } 893 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 894 SyntaxTree::PreorderIterator SyntaxTree::begin() const { 895 return TreeImpl->begin(); 896 } 897 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } 898 899 int SyntaxTree::findPositionInParent(NodeId Id) const { 900 return TreeImpl->findPositionInParent(Id); 901 } 902 903 std::pair<unsigned, unsigned> 904 SyntaxTree::getSourceRangeOffsets(const Node &N) const { 905 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 906 SourceRange Range = N.ASTNode.getSourceRange(); 907 SourceLocation BeginLoc = Range.getBegin(); 908 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 909 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 910 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 911 if (ThisExpr->isImplicit()) 912 EndLoc = BeginLoc; 913 } 914 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 915 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 916 return {Begin, End}; 917 } 918 919 std::string SyntaxTree::getNodeValue(NodeId Id) const { 920 return TreeImpl->getNodeValue(Id); 921 } 922 923 std::string SyntaxTree::getNodeValue(const Node &N) const { 924 return TreeImpl->getNodeValue(N); 925 } 926 927 } // end namespace diff 928 } // end namespace clang 929