1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains definitons for the AST differencing interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Tooling/ASTDiff/ASTDiff.h" 15 16 #include "clang/AST/RecursiveASTVisitor.h" 17 #include "clang/Lex/Lexer.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 20 #include <limits> 21 #include <memory> 22 #include <unordered_set> 23 24 using namespace llvm; 25 using namespace clang; 26 27 namespace clang { 28 namespace diff { 29 30 namespace { 31 /// Maps nodes of the left tree to ones on the right, and vice versa. 32 class Mapping { 33 public: 34 Mapping() = default; 35 Mapping(Mapping &&Other) = default; 36 Mapping &operator=(Mapping &&Other) = default; 37 Mapping(int Size1, int Size2) { 38 // Maximum possible size after patching one tree. 39 int Size = Size1 + Size2; 40 SrcToDst = llvm::make_unique<SmallVector<NodeId, 2>[]>(Size); 41 DstToSrc = llvm::make_unique<SmallVector<NodeId, 2>[]>(Size); 42 } 43 44 void link(NodeId Src, NodeId Dst) { 45 SrcToDst[Src].push_back(Dst); 46 DstToSrc[Dst].push_back(Src); 47 } 48 49 NodeId getDst(NodeId Src) const { 50 if (hasSrc(Src)) 51 return SrcToDst[Src][0]; 52 return NodeId(); 53 } 54 NodeId getSrc(NodeId Dst) const { 55 if (hasDst(Dst)) 56 return DstToSrc[Dst][0]; 57 return NodeId(); 58 } 59 const SmallVector<NodeId, 2> &getAllDsts(NodeId Src) const { 60 return SrcToDst[Src]; 61 } 62 const SmallVector<NodeId, 2> &getAllSrcs(NodeId Dst) const { 63 return DstToSrc[Dst]; 64 } 65 bool hasSrc(NodeId Src) const { return !SrcToDst[Src].empty(); } 66 bool hasDst(NodeId Dst) const { return !DstToSrc[Dst].empty(); } 67 bool hasSrcDst(NodeId Src, NodeId Dst) const { 68 for (NodeId DstId : SrcToDst[Src]) 69 if (DstId == Dst) 70 return true; 71 for (NodeId SrcId : DstToSrc[Dst]) 72 if (SrcId == Src) 73 return true; 74 return false; 75 } 76 77 private: 78 std::unique_ptr<SmallVector<NodeId, 2>[]> SrcToDst, DstToSrc; 79 }; 80 } // end anonymous namespace 81 82 class ASTDiff::Impl { 83 public: 84 SyntaxTree::Impl &T1, &T2; 85 bool IsMappingDone = false; 86 Mapping TheMapping; 87 88 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 89 const ComparisonOptions &Options) 90 : T1(T1), T2(T2), Options(Options) {} 91 92 /// Matches nodes one-by-one based on their similarity. 93 void computeMapping(); 94 95 std::vector<Match> getMatches(Mapping &M); 96 97 /// Finds an edit script that converts T1 to T2. 98 std::vector<Change> computeChanges(Mapping &M); 99 100 void printChangeImpl(raw_ostream &OS, const Change &Chg) const; 101 void printMatchImpl(raw_ostream &OS, const Match &M) const; 102 103 // Returns a mapping of identical subtrees. 104 Mapping matchTopDown() const; 105 106 private: 107 // Returns true if the two subtrees are identical. 108 bool identical(NodeId Id1, NodeId Id2) const; 109 110 bool canBeAddedToMapping(const Mapping &M, NodeId Id1, NodeId Id2) const; 111 112 // Returns false if the nodes must not be mached. 113 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 114 115 // Uses an optimal albeit slow algorithm to compute a mapping between two 116 // subtrees, but only if both have fewer nodes than MaxSize. 117 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 118 119 // Computes the ratio of common descendants between the two nodes. 120 // Descendants are only considered to be equal when they are mapped in M. 121 double getSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 122 123 // Returns the node that has the highest degree of similarity. 124 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 125 126 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 127 void matchBottomUp(Mapping &M) const; 128 129 const ComparisonOptions &Options; 130 131 friend class ZhangShashaMatcher; 132 }; 133 134 /// Represents the AST of a TranslationUnit. 135 class SyntaxTree::Impl { 136 public: 137 /// Constructs a tree from the entire translation unit. 138 Impl(SyntaxTree *Parent, const ASTContext &AST); 139 /// Constructs a tree from an AST node. 140 Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST); 141 Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST); 142 template <class T> 143 Impl(SyntaxTree *Parent, 144 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 145 const ASTContext &AST) 146 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 147 template <class T> 148 Impl(SyntaxTree *Parent, 149 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 150 const ASTContext &AST) 151 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 152 153 SyntaxTree *Parent; 154 const ASTContext &AST; 155 std::vector<NodeId> Leaves; 156 // Maps preorder indices to postorder ones. 157 std::vector<int> PostorderIds; 158 159 int getSize() const { return Nodes.size(); } 160 NodeId getRootId() const { return 0; } 161 162 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 163 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 164 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 165 void addNode(Node &N) { Nodes.push_back(N); } 166 int getNumberOfDescendants(NodeId Id) const; 167 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 168 169 std::string getNodeValue(NodeId Id) const; 170 std::string getNodeValue(const DynTypedNode &DTN) const; 171 /// Prints the node as "<type>[: <value>](<postorder-id)" 172 void printNode(NodeId Id) const { printNode(llvm::outs(), Id); } 173 void printNode(raw_ostream &OS, NodeId Id) const; 174 175 void printTree() const; 176 void printTree(NodeId Root) const; 177 void printTree(raw_ostream &OS, NodeId Root) const; 178 179 private: 180 /// Nodes in preorder. 181 std::vector<Node> Nodes; 182 183 void initTree(); 184 void setLeftMostDescendants(); 185 }; 186 187 template <class T> 188 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 189 if (!N) 190 return true; 191 SourceLocation SLoc = N->getLocStart(); 192 return SLoc.isValid() && SrcMgr.isInSystemHeader(SLoc); 193 } 194 195 namespace { 196 /// Counts the number of nodes that will be compared. 197 struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { 198 int Count = 0; 199 const SyntaxTree::Impl &Tree; 200 NodeCountVisitor(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 201 bool TraverseDecl(Decl *D) { 202 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 203 return true; 204 ++Count; 205 RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); 206 return true; 207 } 208 bool TraverseStmt(Stmt *S) { 209 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 210 return true; 211 ++Count; 212 RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); 213 return true; 214 } 215 bool TraverseType(QualType T) { return true; } 216 }; 217 } // end anonymous namespace 218 219 namespace { 220 // Sets Height, Parent and Children for each node. 221 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 222 int Id = 0, Depth = 0; 223 NodeId Parent; 224 SyntaxTree::Impl &Tree; 225 226 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 227 228 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 229 NodeId MyId = Id; 230 Node &N = Tree.getMutableNode(MyId); 231 N.Parent = Parent; 232 N.Depth = Depth; 233 N.ASTNode = DynTypedNode::create(*ASTNode); 234 assert(!N.ASTNode.getNodeKind().isNone() && 235 "Expected nodes to have a valid kind."); 236 if (Parent.isValid()) { 237 Node &P = Tree.getMutableNode(Parent); 238 P.Children.push_back(MyId); 239 } 240 Parent = MyId; 241 ++Id; 242 ++Depth; 243 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 244 } 245 void PostTraverse(std::tuple<NodeId, NodeId> State) { 246 NodeId MyId, PreviousParent; 247 std::tie(MyId, PreviousParent) = State; 248 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 249 Parent = PreviousParent; 250 --Depth; 251 Node &N = Tree.getMutableNode(MyId); 252 N.RightMostDescendant = Id - 1; 253 assert(N.RightMostDescendant >= 0 && 254 N.RightMostDescendant < Tree.getSize() && 255 "Rightmost descendant must be a valid tree node."); 256 if (N.isLeaf()) 257 Tree.Leaves.push_back(MyId); 258 N.Height = 1; 259 for (NodeId Child : N.Children) 260 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 261 } 262 bool TraverseDecl(Decl *D) { 263 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 264 return true; 265 auto SavedState = PreTraverse(D); 266 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 267 PostTraverse(SavedState); 268 return true; 269 } 270 bool TraverseStmt(Stmt *S) { 271 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 272 return true; 273 auto SavedState = PreTraverse(S); 274 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 275 PostTraverse(SavedState); 276 return true; 277 } 278 bool TraverseType(QualType T) { return true; } 279 }; 280 } // end anonymous namespace 281 282 SyntaxTree::Impl::Impl(SyntaxTree *Parent, const ASTContext &AST) 283 : Impl(Parent, AST.getTranslationUnitDecl(), AST) {} 284 285 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, const ASTContext &AST) 286 : Parent(Parent), AST(AST) { 287 NodeCountVisitor NodeCounter(*this); 288 NodeCounter.TraverseDecl(N); 289 Nodes.resize(NodeCounter.Count); 290 PreorderVisitor PreorderWalker(*this); 291 PreorderWalker.TraverseDecl(N); 292 initTree(); 293 } 294 295 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, const ASTContext &AST) 296 : Parent(Parent), AST(AST) { 297 NodeCountVisitor NodeCounter(*this); 298 NodeCounter.TraverseStmt(N); 299 Nodes.resize(NodeCounter.Count); 300 PreorderVisitor PreorderWalker(*this); 301 PreorderWalker.TraverseStmt(N); 302 initTree(); 303 } 304 305 void SyntaxTree::Impl::initTree() { 306 setLeftMostDescendants(); 307 int PostorderId = 0; 308 PostorderIds.resize(getSize()); 309 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 310 for (NodeId Child : getNode(Id).Children) 311 PostorderTraverse(Child); 312 PostorderIds[Id] = PostorderId; 313 ++PostorderId; 314 }; 315 PostorderTraverse(getRootId()); 316 } 317 318 void SyntaxTree::Impl::setLeftMostDescendants() { 319 for (NodeId Leaf : Leaves) { 320 getMutableNode(Leaf).LeftMostDescendant = Leaf; 321 NodeId Parent, Cur = Leaf; 322 while ((Parent = getNode(Cur).Parent).isValid() && 323 getNode(Parent).Children[0] == Cur) { 324 Cur = Parent; 325 getMutableNode(Cur).LeftMostDescendant = Leaf; 326 } 327 } 328 } 329 330 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 331 NodeId Root) { 332 std::vector<NodeId> Postorder; 333 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 334 const Node &N = Tree.getNode(Id); 335 for (NodeId Child : N.Children) 336 Traverse(Child); 337 Postorder.push_back(Id); 338 }; 339 Traverse(Root); 340 return Postorder; 341 } 342 343 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 344 NodeId Root) { 345 std::vector<NodeId> Ids; 346 size_t Expanded = 0; 347 Ids.push_back(Root); 348 while (Expanded < Ids.size()) 349 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 350 Ids.push_back(Child); 351 return Ids; 352 } 353 354 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 355 return getNode(Id).RightMostDescendant - Id + 1; 356 } 357 358 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 359 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 360 } 361 362 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 363 return getNodeValue(getNode(Id).ASTNode); 364 } 365 366 std::string SyntaxTree::Impl::getNodeValue(const DynTypedNode &DTN) const { 367 if (auto *X = DTN.get<BinaryOperator>()) 368 return X->getOpcodeStr(); 369 if (auto *X = DTN.get<AccessSpecDecl>()) { 370 CharSourceRange Range(X->getSourceRange(), false); 371 return Lexer::getSourceText(Range, AST.getSourceManager(), 372 AST.getLangOpts()); 373 } 374 if (auto *X = DTN.get<IntegerLiteral>()) { 375 SmallString<256> Str; 376 X->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 377 return Str.str(); 378 } 379 if (auto *X = DTN.get<StringLiteral>()) 380 return X->getString(); 381 if (auto *X = DTN.get<ValueDecl>()) 382 return X->getNameAsString() + "(" + X->getType().getAsString() + ")"; 383 if (DTN.get<DeclStmt>() || DTN.get<TranslationUnitDecl>()) 384 return ""; 385 std::string Value; 386 if (auto *X = DTN.get<DeclRefExpr>()) { 387 if (X->hasQualifier()) { 388 llvm::raw_string_ostream OS(Value); 389 PrintingPolicy PP(AST.getLangOpts()); 390 X->getQualifier()->print(OS, PP); 391 } 392 Value += X->getDecl()->getNameAsString(); 393 return Value; 394 } 395 if (auto *X = DTN.get<NamedDecl>()) 396 Value += X->getNameAsString() + ";"; 397 if (auto *X = DTN.get<TypedefNameDecl>()) 398 return Value + X->getUnderlyingType().getAsString() + ";"; 399 if (DTN.get<NamespaceDecl>()) 400 return Value; 401 if (auto *X = DTN.get<TypeDecl>()) 402 if (X->getTypeForDecl()) 403 Value += 404 X->getTypeForDecl()->getCanonicalTypeInternal().getAsString() + ";"; 405 if (DTN.get<Decl>()) 406 return Value; 407 if (DTN.get<Stmt>()) 408 return ""; 409 llvm_unreachable("Fatal: unhandled AST node.\n"); 410 } 411 412 void SyntaxTree::Impl::printTree() const { printTree(getRootId()); } 413 void SyntaxTree::Impl::printTree(NodeId Root) const { 414 printTree(llvm::outs(), Root); 415 } 416 417 void SyntaxTree::Impl::printTree(raw_ostream &OS, NodeId Root) const { 418 const Node &N = getNode(Root); 419 for (int I = 0; I < N.Depth; ++I) 420 OS << " "; 421 printNode(OS, Root); 422 OS << "\n"; 423 for (NodeId Child : N.Children) 424 printTree(OS, Child); 425 } 426 427 void SyntaxTree::Impl::printNode(raw_ostream &OS, NodeId Id) const { 428 if (Id.isInvalid()) { 429 OS << "None"; 430 return; 431 } 432 OS << getNode(Id).getTypeLabel(); 433 if (getNodeValue(Id) != "") 434 OS << ": " << getNodeValue(Id); 435 OS << "(" << PostorderIds[Id] << ")"; 436 } 437 438 /// Identifies a node in a subtree by its postorder offset, starting at 1. 439 struct SNodeId { 440 int Id = 0; 441 442 explicit SNodeId(int Id) : Id(Id) {} 443 explicit SNodeId() = default; 444 445 operator int() const { return Id; } 446 SNodeId &operator++() { return ++Id, *this; } 447 SNodeId &operator--() { return --Id, *this; } 448 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 449 }; 450 451 class Subtree { 452 private: 453 /// The parent tree. 454 const SyntaxTree::Impl &Tree; 455 /// Maps SNodeIds to original ids. 456 std::vector<NodeId> RootIds; 457 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 458 std::vector<SNodeId> LeftMostDescendants; 459 460 public: 461 std::vector<SNodeId> KeyRoots; 462 463 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 464 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 465 int NumLeaves = setLeftMostDescendants(); 466 computeKeyRoots(NumLeaves); 467 } 468 int getSize() const { return RootIds.size(); } 469 NodeId getIdInRoot(SNodeId Id) const { 470 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 471 return RootIds[Id - 1]; 472 } 473 const Node &getNode(SNodeId Id) const { 474 return Tree.getNode(getIdInRoot(Id)); 475 } 476 SNodeId getLeftMostDescendant(SNodeId Id) const { 477 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 478 return LeftMostDescendants[Id - 1]; 479 } 480 /// Returns the postorder index of the leftmost descendant in the subtree. 481 NodeId getPostorderOffset() const { 482 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 483 } 484 std::string getNodeValue(SNodeId Id) const { 485 return Tree.getNodeValue(getIdInRoot(Id)); 486 } 487 488 private: 489 /// Returns the number of leafs in the subtree. 490 int setLeftMostDescendants() { 491 int NumLeaves = 0; 492 LeftMostDescendants.resize(getSize()); 493 for (int I = 0; I < getSize(); ++I) { 494 SNodeId SI(I + 1); 495 const Node &N = getNode(SI); 496 NumLeaves += N.isLeaf(); 497 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 498 "Postorder traversal in subtree should correspond to traversal in " 499 "the root tree by a constant offset."); 500 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 501 getPostorderOffset()); 502 } 503 return NumLeaves; 504 } 505 void computeKeyRoots(int Leaves) { 506 KeyRoots.resize(Leaves); 507 std::unordered_set<int> Visited; 508 int K = Leaves - 1; 509 for (SNodeId I(getSize()); I > 0; --I) { 510 SNodeId LeftDesc = getLeftMostDescendant(I); 511 if (Visited.count(LeftDesc)) 512 continue; 513 assert(K >= 0 && "K should be non-negative"); 514 KeyRoots[K] = I; 515 Visited.insert(LeftDesc); 516 --K; 517 } 518 } 519 }; 520 521 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 522 /// Computes an optimal mapping between two trees using only insertion, 523 /// deletion and update as edit actions (similar to the Levenshtein distance). 524 class ZhangShashaMatcher { 525 const ASTDiff::Impl &DiffImpl; 526 Subtree S1; 527 Subtree S2; 528 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 529 530 public: 531 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 532 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 533 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 534 TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 535 size_t(S1.getSize()) + 1); 536 ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( 537 size_t(S1.getSize()) + 1); 538 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 539 TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 540 ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); 541 } 542 } 543 544 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 545 std::vector<std::pair<NodeId, NodeId>> Matches; 546 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 547 548 computeTreeDist(); 549 550 bool RootNodePair = true; 551 552 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 553 554 while (!TreePairs.empty()) { 555 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 556 std::tie(LastRow, LastCol) = TreePairs.back(); 557 TreePairs.pop_back(); 558 559 if (!RootNodePair) { 560 computeForestDist(LastRow, LastCol); 561 } 562 563 RootNodePair = false; 564 565 FirstRow = S1.getLeftMostDescendant(LastRow); 566 FirstCol = S2.getLeftMostDescendant(LastCol); 567 568 Row = LastRow; 569 Col = LastCol; 570 571 while (Row > FirstRow || Col > FirstCol) { 572 if (Row > FirstRow && 573 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 574 --Row; 575 } else if (Col > FirstCol && 576 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 577 --Col; 578 } else { 579 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 580 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 581 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 582 LMD2 == S2.getLeftMostDescendant(LastCol)) { 583 NodeId Id1 = S1.getIdInRoot(Row); 584 NodeId Id2 = S2.getIdInRoot(Col); 585 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 586 "These nodes must not be matched."); 587 Matches.emplace_back(Id1, Id2); 588 --Row; 589 --Col; 590 } else { 591 TreePairs.emplace_back(Row, Col); 592 Row = LMD1; 593 Col = LMD2; 594 } 595 } 596 } 597 } 598 return Matches; 599 } 600 601 private: 602 /// We use a simple cost model for edit actions, which seems good enough. 603 /// Simple cost model for edit actions. This seems to make the matching 604 /// algorithm perform reasonably well. 605 /// The values range between 0 and 1, or infinity if this edit action should 606 /// always be avoided. 607 static constexpr double DeletionCost = 1; 608 static constexpr double InsertionCost = 1; 609 610 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 611 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 612 return std::numeric_limits<double>::max(); 613 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 614 } 615 616 void computeTreeDist() { 617 for (SNodeId Id1 : S1.KeyRoots) 618 for (SNodeId Id2 : S2.KeyRoots) 619 computeForestDist(Id1, Id2); 620 } 621 622 void computeForestDist(SNodeId Id1, SNodeId Id2) { 623 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 624 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 625 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 626 627 ForestDist[LMD1][LMD2] = 0; 628 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 629 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 630 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 631 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 632 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 633 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 634 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 635 double UpdateCost = getUpdateCost(D1, D2); 636 ForestDist[D1][D2] = 637 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 638 ForestDist[D1][D2 - 1] + InsertionCost, 639 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 640 TreeDist[D1][D2] = ForestDist[D1][D2]; 641 } else { 642 ForestDist[D1][D2] = 643 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 644 ForestDist[D1][D2 - 1] + InsertionCost, 645 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 646 } 647 } 648 } 649 } 650 }; 651 652 ast_type_traits::ASTNodeKind Node::getType() const { 653 return ASTNode.getNodeKind(); 654 } 655 656 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 657 658 namespace { 659 // Compares nodes by their depth. 660 struct HeightLess { 661 const SyntaxTree::Impl &Tree; 662 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 663 bool operator()(NodeId Id1, NodeId Id2) const { 664 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 665 } 666 }; 667 } // end anonymous namespace 668 669 namespace { 670 // Priority queue for nodes, sorted descendingly by their height. 671 class PriorityList { 672 const SyntaxTree::Impl &Tree; 673 HeightLess Cmp; 674 std::vector<NodeId> Container; 675 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 676 677 public: 678 PriorityList(const SyntaxTree::Impl &Tree) 679 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 680 681 void push(NodeId id) { List.push(id); } 682 683 std::vector<NodeId> pop() { 684 int Max = peekMax(); 685 std::vector<NodeId> Result; 686 if (Max == 0) 687 return Result; 688 while (peekMax() == Max) { 689 Result.push_back(List.top()); 690 List.pop(); 691 } 692 // TODO this is here to get a stable output, not a good heuristic 693 std::sort(Result.begin(), Result.end()); 694 return Result; 695 } 696 int peekMax() const { 697 if (List.empty()) 698 return 0; 699 return Tree.getNode(List.top()).Height; 700 } 701 void open(NodeId Id) { 702 for (NodeId Child : Tree.getNode(Id).Children) 703 push(Child); 704 } 705 }; 706 } // end anonymous namespace 707 708 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 709 const Node &N1 = T1.getNode(Id1); 710 const Node &N2 = T2.getNode(Id2); 711 if (N1.Children.size() != N2.Children.size() || 712 !isMatchingPossible(Id1, Id2) || 713 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 714 return false; 715 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 716 if (!identical(N1.Children[Id], N2.Children[Id])) 717 return false; 718 return true; 719 } 720 721 bool ASTDiff::Impl::canBeAddedToMapping(const Mapping &M, NodeId Id1, 722 NodeId Id2) const { 723 assert(isMatchingPossible(Id1, Id2) && 724 "Matching must be possible in the first place."); 725 if (M.hasSrcDst(Id1, Id2)) 726 return false; 727 if (Options.EnableMatchingWithUnmatchableParents) 728 return true; 729 const Node &N1 = T1.getNode(Id1); 730 const Node &N2 = T2.getNode(Id2); 731 NodeId P1 = N1.Parent; 732 NodeId P2 = N2.Parent; 733 // Only allow matching if parents can be matched. 734 return (P1.isInvalid() && P2.isInvalid()) || 735 (P1.isValid() && P2.isValid() && isMatchingPossible(P1, P2)); 736 } 737 738 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 739 return Options.isMatchingAllowed(T1.getNode(Id1).ASTNode, 740 T2.getNode(Id2).ASTNode); 741 } 742 743 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 744 NodeId Id2) const { 745 if (std::max(T1.getNumberOfDescendants(Id1), 746 T2.getNumberOfDescendants(Id2)) >= Options.MaxSize) 747 return; 748 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 749 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 750 for (const auto Tuple : R) { 751 NodeId Src = Tuple.first; 752 NodeId Dst = Tuple.second; 753 if (canBeAddedToMapping(M, Src, Dst)) 754 M.link(Src, Dst); 755 } 756 } 757 758 double ASTDiff::Impl::getSimilarity(const Mapping &M, NodeId Id1, 759 NodeId Id2) const { 760 if (Id1.isInvalid() || Id2.isInvalid()) 761 return 0.0; 762 int CommonDescendants = 0; 763 const Node &N1 = T1.getNode(Id1); 764 for (NodeId Id = Id1 + 1; Id <= N1.RightMostDescendant; ++Id) 765 CommonDescendants += int(T2.isInSubtree(M.getDst(Id), Id2)); 766 return 2.0 * CommonDescendants / 767 (T1.getNumberOfDescendants(Id1) + T2.getNumberOfDescendants(Id2)); 768 } 769 770 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 771 NodeId Candidate; 772 double HighestSimilarity = 0.0; 773 for (NodeId Id2 = 0, E = T2.getSize(); Id2 < E; ++Id2) { 774 if (!isMatchingPossible(Id1, Id2)) 775 continue; 776 if (M.hasDst(Id2)) 777 continue; 778 double Similarity = getSimilarity(M, Id1, Id2); 779 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 780 HighestSimilarity = Similarity; 781 Candidate = Id2; 782 } 783 } 784 return Candidate; 785 } 786 787 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 788 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 789 for (NodeId Id1 : Postorder) { 790 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 791 !M.hasDst(T2.getRootId())) { 792 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 793 M.link(T1.getRootId(), T2.getRootId()); 794 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 795 } 796 break; 797 } 798 const Node &N1 = T1.getNode(Id1); 799 bool Matched = M.hasSrc(Id1); 800 bool MatchedChildren = 801 std::any_of(N1.Children.begin(), N1.Children.end(), 802 [&](NodeId Child) { return M.hasSrc(Child); }); 803 if (Matched || !MatchedChildren) 804 continue; 805 NodeId Id2 = findCandidate(M, Id1); 806 if (Id2.isValid() && canBeAddedToMapping(M, Id1, Id2)) { 807 M.link(Id1, Id2); 808 addOptimalMapping(M, Id1, Id2); 809 } 810 } 811 } 812 813 Mapping ASTDiff::Impl::matchTopDown() const { 814 PriorityList L1(T1); 815 PriorityList L2(T2); 816 817 Mapping M(T1.getSize(), T2.getSize()); 818 819 L1.push(T1.getRootId()); 820 L2.push(T2.getRootId()); 821 822 int Max1, Max2; 823 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 824 Options.MinHeight) { 825 if (Max1 > Max2) { 826 for (NodeId Id : L1.pop()) 827 L1.open(Id); 828 continue; 829 } 830 if (Max2 > Max1) { 831 for (NodeId Id : L2.pop()) 832 L2.open(Id); 833 continue; 834 } 835 std::vector<NodeId> H1, H2; 836 H1 = L1.pop(); 837 H2 = L2.pop(); 838 for (NodeId Id1 : H1) { 839 for (NodeId Id2 : H2) { 840 if (identical(Id1, Id2) && canBeAddedToMapping(M, Id1, Id2)) { 841 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 842 M.link(Id1 + I, Id2 + I); 843 } 844 } 845 } 846 for (NodeId Id1 : H1) { 847 if (!M.hasSrc(Id1)) 848 L1.open(Id1); 849 } 850 for (NodeId Id2 : H2) { 851 if (!M.hasDst(Id2)) 852 L2.open(Id2); 853 } 854 } 855 return M; 856 } 857 858 void ASTDiff::Impl::computeMapping() { 859 if (IsMappingDone) 860 return; 861 TheMapping = matchTopDown(); 862 matchBottomUp(TheMapping); 863 IsMappingDone = true; 864 } 865 866 std::vector<Match> ASTDiff::Impl::getMatches(Mapping &M) { 867 std::vector<Match> Matches; 868 for (NodeId Id1 = 0, Id2, E = T1.getSize(); Id1 < E; ++Id1) 869 if ((Id2 = M.getDst(Id1)).isValid()) 870 Matches.push_back({Id1, Id2}); 871 return Matches; 872 } 873 874 std::vector<Change> ASTDiff::Impl::computeChanges(Mapping &M) { 875 std::vector<Change> Changes; 876 for (NodeId Id2 : getSubtreeBfs(T2, T2.getRootId())) { 877 const Node &N2 = T2.getNode(Id2); 878 NodeId Id1 = M.getSrc(Id2); 879 if (Id1.isValid()) { 880 assert(isMatchingPossible(Id1, Id2) && "Invalid matching."); 881 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 882 Changes.emplace_back(Update, Id1, Id2); 883 } 884 continue; 885 } 886 NodeId P2 = N2.Parent; 887 NodeId P1 = M.getSrc(P2); 888 assert(P1.isValid() && 889 "Parents must be matched for determining the change type."); 890 Node &Parent1 = T1.getMutableNode(P1); 891 const Node &Parent2 = T2.getNode(P2); 892 auto &Siblings1 = Parent1.Children; 893 const auto &Siblings2 = Parent2.Children; 894 size_t Position; 895 for (Position = 0; Position < Siblings2.size(); ++Position) 896 if (Siblings2[Position] == Id2 || Position >= Siblings1.size()) 897 break; 898 Changes.emplace_back(Insert, Id2, P2, Position); 899 Node PatchNode; 900 PatchNode.Parent = P1; 901 PatchNode.LeftMostDescendant = N2.LeftMostDescendant; 902 PatchNode.RightMostDescendant = N2.RightMostDescendant; 903 PatchNode.Depth = N2.Depth; 904 PatchNode.ASTNode = N2.ASTNode; 905 // TODO update Depth if needed 906 NodeId PatchNodeId = T1.getSize(); 907 // TODO maybe choose a different data structure for Children. 908 Siblings1.insert(Siblings1.begin() + Position, PatchNodeId); 909 T1.addNode(PatchNode); 910 M.link(PatchNodeId, Id2); 911 } 912 for (NodeId Id1 = 0; Id1 < T1.getSize(); ++Id1) { 913 NodeId Id2 = M.getDst(Id1); 914 if (Id2.isInvalid()) 915 Changes.emplace_back(Delete, Id1, Id2); 916 } 917 return Changes; 918 } 919 920 void ASTDiff::Impl::printChangeImpl(raw_ostream &OS, const Change &Chg) const { 921 switch (Chg.Kind) { 922 case Delete: 923 OS << "Delete "; 924 T1.printNode(OS, Chg.Src); 925 OS << "\n"; 926 break; 927 case Update: 928 OS << "Update "; 929 T1.printNode(OS, Chg.Src); 930 OS << " to " << T2.getNodeValue(Chg.Dst) << "\n"; 931 break; 932 case Insert: 933 OS << "Insert "; 934 T2.printNode(OS, Chg.Src); 935 OS << " into "; 936 T2.printNode(OS, Chg.Dst); 937 OS << " at " << Chg.Position << "\n"; 938 break; 939 case Move: 940 llvm_unreachable("TODO"); 941 break; 942 }; 943 } 944 945 void ASTDiff::Impl::printMatchImpl(raw_ostream &OS, const Match &M) const { 946 OS << "Match "; 947 T1.printNode(OS, M.Src); 948 OS << " to "; 949 T2.printNode(OS, M.Dst); 950 OS << "\n"; 951 } 952 953 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 954 const ComparisonOptions &Options) 955 : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 956 957 ASTDiff::~ASTDiff() = default; 958 959 SyntaxTree::SyntaxTree(const ASTContext &AST) 960 : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( 961 this, AST.getTranslationUnitDecl(), AST)) {} 962 963 std::vector<Match> ASTDiff::getMatches() { 964 DiffImpl->computeMapping(); 965 return DiffImpl->getMatches(DiffImpl->TheMapping); 966 } 967 968 std::vector<Change> ASTDiff::getChanges() { 969 DiffImpl->computeMapping(); 970 return DiffImpl->computeChanges(DiffImpl->TheMapping); 971 } 972 973 void ASTDiff::printChange(raw_ostream &OS, const Change &Chg) const { 974 DiffImpl->printChangeImpl(OS, Chg); 975 } 976 977 void ASTDiff::printMatch(raw_ostream &OS, const Match &M) const { 978 DiffImpl->printMatchImpl(OS, M); 979 } 980 981 SyntaxTree::~SyntaxTree() = default; 982 983 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 984 985 const Node &SyntaxTree::getNode(NodeId Id) const { 986 return TreeImpl->getNode(Id); 987 } 988 989 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 990 991 std::pair<unsigned, unsigned> SyntaxTree::getSourceRangeOffsets(const Node &N) const { 992 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 993 SourceRange Range = N.ASTNode.getSourceRange(); 994 SourceLocation BeginLoc = Range.getBegin(); 995 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 996 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 997 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 998 if (ThisExpr->isImplicit()) 999 EndLoc = BeginLoc; 1000 } 1001 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 1002 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 1003 return {Begin, End}; 1004 } 1005 1006 std::string SyntaxTree::getNodeValue(const DynTypedNode &DTN) const { 1007 return TreeImpl->getNodeValue(DTN); 1008 } 1009 1010 } // end namespace diff 1011 } // end namespace clang 1012