1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defined the types Store and StoreManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16 #include "clang/AST/CharUnits.h"
17 
18 using namespace clang;
19 using namespace ento;
20 
21 StoreManager::StoreManager(ProgramStateManager &stateMgr)
22   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
23     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
24 
25 StoreRef StoreManager::enterStackFrame(const ProgramState *state,
26                                        const StackFrameContext *frame) {
27   return StoreRef(state->getStore(), *this);
28 }
29 
30 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
31                                               QualType EleTy, uint64_t index) {
32   NonLoc idx = svalBuilder.makeArrayIndex(index);
33   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
34 }
35 
36 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
37 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
38   if (const RecordType *RT = Ty->getAs<RecordType>()) {
39     const RecordDecl *D = RT->getDecl();
40     if (!D->getDefinition())
41       return false;
42   }
43 
44   return true;
45 }
46 
47 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
48   return StoreRef(store, *this);
49 }
50 
51 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
52                                                         QualType T) {
53   NonLoc idx = svalBuilder.makeZeroArrayIndex();
54   assert(!T.isNull());
55   return MRMgr.getElementRegion(T, idx, R, Ctx);
56 }
57 
58 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
59 
60   ASTContext &Ctx = StateMgr.getContext();
61 
62   // Handle casts to Objective-C objects.
63   if (CastToTy->isObjCObjectPointerType())
64     return R->StripCasts();
65 
66   if (CastToTy->isBlockPointerType()) {
67     // FIXME: We may need different solutions, depending on the symbol
68     // involved.  Blocks can be casted to/from 'id', as they can be treated
69     // as Objective-C objects.  This could possibly be handled by enhancing
70     // our reasoning of downcasts of symbolic objects.
71     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
72       return R;
73 
74     // We don't know what to make of it.  Return a NULL region, which
75     // will be interpretted as UnknownVal.
76     return NULL;
77   }
78 
79   // Now assume we are casting from pointer to pointer. Other cases should
80   // already be handled.
81   QualType PointeeTy = CastToTy->getPointeeType();
82   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
83 
84   // Handle casts to void*.  We just pass the region through.
85   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
86     return R;
87 
88   // Handle casts from compatible types.
89   if (R->isBoundable())
90     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
91       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
92       if (CanonPointeeTy == ObjTy)
93         return R;
94     }
95 
96   // Process region cast according to the kind of the region being cast.
97   switch (R->getKind()) {
98     case MemRegion::CXXThisRegionKind:
99     case MemRegion::GenericMemSpaceRegionKind:
100     case MemRegion::StackLocalsSpaceRegionKind:
101     case MemRegion::StackArgumentsSpaceRegionKind:
102     case MemRegion::HeapSpaceRegionKind:
103     case MemRegion::UnknownSpaceRegionKind:
104     case MemRegion::NonStaticGlobalSpaceRegionKind:
105     case MemRegion::StaticGlobalSpaceRegionKind: {
106       llvm_unreachable("Invalid region cast");
107     }
108 
109     case MemRegion::FunctionTextRegionKind:
110     case MemRegion::BlockTextRegionKind:
111     case MemRegion::BlockDataRegionKind:
112     case MemRegion::StringRegionKind:
113       // FIXME: Need to handle arbitrary downcasts.
114     case MemRegion::SymbolicRegionKind:
115     case MemRegion::AllocaRegionKind:
116     case MemRegion::CompoundLiteralRegionKind:
117     case MemRegion::FieldRegionKind:
118     case MemRegion::ObjCIvarRegionKind:
119     case MemRegion::VarRegionKind:
120     case MemRegion::CXXTempObjectRegionKind:
121     case MemRegion::CXXBaseObjectRegionKind:
122       return MakeElementRegion(R, PointeeTy);
123 
124     case MemRegion::ElementRegionKind: {
125       // If we are casting from an ElementRegion to another type, the
126       // algorithm is as follows:
127       //
128       // (1) Compute the "raw offset" of the ElementRegion from the
129       //     base region.  This is done by calling 'getAsRawOffset()'.
130       //
131       // (2a) If we get a 'RegionRawOffset' after calling
132       //      'getAsRawOffset()', determine if the absolute offset
133       //      can be exactly divided into chunks of the size of the
134       //      casted-pointee type.  If so, create a new ElementRegion with
135       //      the pointee-cast type as the new ElementType and the index
136       //      being the offset divded by the chunk size.  If not, create
137       //      a new ElementRegion at offset 0 off the raw offset region.
138       //
139       // (2b) If we don't a get a 'RegionRawOffset' after calling
140       //      'getAsRawOffset()', it means that we are at offset 0.
141       //
142       // FIXME: Handle symbolic raw offsets.
143 
144       const ElementRegion *elementR = cast<ElementRegion>(R);
145       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
146       const MemRegion *baseR = rawOff.getRegion();
147 
148       // If we cannot compute a raw offset, throw up our hands and return
149       // a NULL MemRegion*.
150       if (!baseR)
151         return NULL;
152 
153       CharUnits off = rawOff.getOffset();
154 
155       if (off.isZero()) {
156         // Edge case: we are at 0 bytes off the beginning of baseR.  We
157         // check to see if type we are casting to is the same as the base
158         // region.  If so, just return the base region.
159         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
160           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
161           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
162           if (CanonPointeeTy == ObjTy)
163             return baseR;
164         }
165 
166         // Otherwise, create a new ElementRegion at offset 0.
167         return MakeElementRegion(baseR, PointeeTy);
168       }
169 
170       // We have a non-zero offset from the base region.  We want to determine
171       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
172       // we create an ElementRegion whose index is that value.  Otherwise, we
173       // create two ElementRegions, one that reflects a raw offset and the other
174       // that reflects the cast.
175 
176       // Compute the index for the new ElementRegion.
177       int64_t newIndex = 0;
178       const MemRegion *newSuperR = 0;
179 
180       // We can only compute sizeof(PointeeTy) if it is a complete type.
181       if (IsCompleteType(Ctx, PointeeTy)) {
182         // Compute the size in **bytes**.
183         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
184         if (!pointeeTySize.isZero()) {
185           // Is the offset a multiple of the size?  If so, we can layer the
186           // ElementRegion (with elementType == PointeeTy) directly on top of
187           // the base region.
188           if (off % pointeeTySize == 0) {
189             newIndex = off / pointeeTySize;
190             newSuperR = baseR;
191           }
192         }
193       }
194 
195       if (!newSuperR) {
196         // Create an intermediate ElementRegion to represent the raw byte.
197         // This will be the super region of the final ElementRegion.
198         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
199       }
200 
201       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
202     }
203   }
204 
205   llvm_unreachable("unreachable");
206 }
207 
208 
209 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
210 ///  implicit casts that arise from loads from regions that are reinterpreted
211 ///  as another region.
212 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
213                                     QualType castTy, bool performTestOnly) {
214 
215   if (castTy.isNull() || V.isUnknownOrUndef())
216     return V;
217 
218   ASTContext &Ctx = svalBuilder.getContext();
219 
220   if (performTestOnly) {
221     // Automatically translate references to pointers.
222     QualType T = R->getValueType();
223     if (const ReferenceType *RT = T->getAs<ReferenceType>())
224       T = Ctx.getPointerType(RT->getPointeeType());
225 
226     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
227     return V;
228   }
229 
230   assert(isa<Loc>(&V) || isa<NonLoc>(&V));
231   return svalBuilder.dispatchCast(V, castTy);
232 }
233 
234 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
235   if (Base.isUnknownOrUndef())
236     return Base;
237 
238   Loc BaseL = cast<Loc>(Base);
239   const MemRegion* BaseR = 0;
240 
241   switch (BaseL.getSubKind()) {
242   case loc::MemRegionKind:
243     BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
244     break;
245 
246   case loc::GotoLabelKind:
247     // These are anormal cases. Flag an undefined value.
248     return UndefinedVal();
249 
250   case loc::ConcreteIntKind:
251     // While these seem funny, this can happen through casts.
252     // FIXME: What we should return is the field offset.  For example,
253     //  add the field offset to the integer value.  That way funny things
254     //  like this work properly:  &(((struct foo *) 0xa)->f)
255     return Base;
256 
257   default:
258     llvm_unreachable("Unhandled Base.");
259   }
260 
261   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
262   // of FieldDecl.
263   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
264     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
265 
266   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
267 }
268 
269 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
270                                     SVal Base) {
271 
272   // If the base is an unknown or undefined value, just return it back.
273   // FIXME: For absolute pointer addresses, we just return that value back as
274   //  well, although in reality we should return the offset added to that
275   //  value.
276   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
277     return Base;
278 
279   const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
280 
281   // Pointer of any type can be cast and used as array base.
282   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
283 
284   // Convert the offset to the appropriate size and signedness.
285   Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
286 
287   if (!ElemR) {
288     //
289     // If the base region is not an ElementRegion, create one.
290     // This can happen in the following example:
291     //
292     //   char *p = __builtin_alloc(10);
293     //   p[1] = 8;
294     //
295     //  Observe that 'p' binds to an AllocaRegion.
296     //
297     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
298                                                     BaseRegion, Ctx));
299   }
300 
301   SVal BaseIdx = ElemR->getIndex();
302 
303   if (!isa<nonloc::ConcreteInt>(BaseIdx))
304     return UnknownVal();
305 
306   const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
307 
308   // Only allow non-integer offsets if the base region has no offset itself.
309   // FIXME: This is a somewhat arbitrary restriction. We should be using
310   // SValBuilder here to add the two offsets without checking their types.
311   if (!isa<nonloc::ConcreteInt>(Offset)) {
312     if (isa<ElementRegion>(BaseRegion->StripCasts()))
313       return UnknownVal();
314 
315     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
316                                                     ElemR->getSuperRegion(),
317                                                     Ctx));
318   }
319 
320   const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
321   assert(BaseIdxI.isSigned());
322 
323   // Compute the new index.
324   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
325                                                                     OffI));
326 
327   // Construct the new ElementRegion.
328   const MemRegion *ArrayR = ElemR->getSuperRegion();
329   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
330                                                   Ctx));
331 }
332 
333 StoreManager::BindingsHandler::~BindingsHandler() {}
334 
335