1 //===- Store.cpp - Interface for maps from Locations to Values ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defined the types Store and StoreManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/Type.h" 23 #include "clang/Basic/LLVM.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 30 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 31 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" 32 #include "llvm/ADT/APSInt.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include <cassert> 38 #include <cstdint> 39 40 using namespace clang; 41 using namespace ento; 42 43 StoreManager::StoreManager(ProgramStateManager &stateMgr) 44 : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr), 45 MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {} 46 47 StoreRef StoreManager::enterStackFrame(Store OldStore, 48 const CallEvent &Call, 49 const StackFrameContext *LCtx) { 50 StoreRef Store = StoreRef(OldStore, *this); 51 52 SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings; 53 Call.getInitialStackFrameContents(LCtx, InitialBindings); 54 55 for (const auto &I : InitialBindings) 56 Store = Bind(Store.getStore(), I.first, I.second); 57 58 return Store; 59 } 60 61 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base, 62 QualType EleTy, 63 uint64_t index) { 64 NonLoc idx = svalBuilder.makeArrayIndex(index); 65 return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext()); 66 } 67 68 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) { 69 return StoreRef(store, *this); 70 } 71 72 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R, 73 QualType T) { 74 NonLoc idx = svalBuilder.makeZeroArrayIndex(); 75 assert(!T.isNull()); 76 return MRMgr.getElementRegion(T, idx, R, Ctx); 77 } 78 79 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) { 80 ASTContext &Ctx = StateMgr.getContext(); 81 82 // Handle casts to Objective-C objects. 83 if (CastToTy->isObjCObjectPointerType()) 84 return R->StripCasts(); 85 86 if (CastToTy->isBlockPointerType()) { 87 // FIXME: We may need different solutions, depending on the symbol 88 // involved. Blocks can be casted to/from 'id', as they can be treated 89 // as Objective-C objects. This could possibly be handled by enhancing 90 // our reasoning of downcasts of symbolic objects. 91 if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R)) 92 return R; 93 94 // We don't know what to make of it. Return a NULL region, which 95 // will be interpretted as UnknownVal. 96 return nullptr; 97 } 98 99 // Now assume we are casting from pointer to pointer. Other cases should 100 // already be handled. 101 QualType PointeeTy = CastToTy->getPointeeType(); 102 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 103 104 // Handle casts to void*. We just pass the region through. 105 if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy) 106 return R; 107 108 // Handle casts from compatible types. 109 if (R->isBoundable()) 110 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 111 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 112 if (CanonPointeeTy == ObjTy) 113 return R; 114 } 115 116 // Process region cast according to the kind of the region being cast. 117 switch (R->getKind()) { 118 case MemRegion::CXXThisRegionKind: 119 case MemRegion::CodeSpaceRegionKind: 120 case MemRegion::StackLocalsSpaceRegionKind: 121 case MemRegion::StackArgumentsSpaceRegionKind: 122 case MemRegion::HeapSpaceRegionKind: 123 case MemRegion::UnknownSpaceRegionKind: 124 case MemRegion::StaticGlobalSpaceRegionKind: 125 case MemRegion::GlobalInternalSpaceRegionKind: 126 case MemRegion::GlobalSystemSpaceRegionKind: 127 case MemRegion::GlobalImmutableSpaceRegionKind: { 128 llvm_unreachable("Invalid region cast"); 129 } 130 131 case MemRegion::FunctionCodeRegionKind: 132 case MemRegion::BlockCodeRegionKind: 133 case MemRegion::BlockDataRegionKind: 134 case MemRegion::StringRegionKind: 135 // FIXME: Need to handle arbitrary downcasts. 136 case MemRegion::SymbolicRegionKind: 137 case MemRegion::AllocaRegionKind: 138 case MemRegion::CompoundLiteralRegionKind: 139 case MemRegion::FieldRegionKind: 140 case MemRegion::ObjCIvarRegionKind: 141 case MemRegion::ObjCStringRegionKind: 142 case MemRegion::VarRegionKind: 143 case MemRegion::CXXTempObjectRegionKind: 144 case MemRegion::CXXBaseObjectRegionKind: 145 return MakeElementRegion(cast<SubRegion>(R), PointeeTy); 146 147 case MemRegion::ElementRegionKind: { 148 // If we are casting from an ElementRegion to another type, the 149 // algorithm is as follows: 150 // 151 // (1) Compute the "raw offset" of the ElementRegion from the 152 // base region. This is done by calling 'getAsRawOffset()'. 153 // 154 // (2a) If we get a 'RegionRawOffset' after calling 155 // 'getAsRawOffset()', determine if the absolute offset 156 // can be exactly divided into chunks of the size of the 157 // casted-pointee type. If so, create a new ElementRegion with 158 // the pointee-cast type as the new ElementType and the index 159 // being the offset divded by the chunk size. If not, create 160 // a new ElementRegion at offset 0 off the raw offset region. 161 // 162 // (2b) If we don't a get a 'RegionRawOffset' after calling 163 // 'getAsRawOffset()', it means that we are at offset 0. 164 // 165 // FIXME: Handle symbolic raw offsets. 166 167 const ElementRegion *elementR = cast<ElementRegion>(R); 168 const RegionRawOffset &rawOff = elementR->getAsArrayOffset(); 169 const MemRegion *baseR = rawOff.getRegion(); 170 171 // If we cannot compute a raw offset, throw up our hands and return 172 // a NULL MemRegion*. 173 if (!baseR) 174 return nullptr; 175 176 CharUnits off = rawOff.getOffset(); 177 178 if (off.isZero()) { 179 // Edge case: we are at 0 bytes off the beginning of baseR. We 180 // check to see if type we are casting to is the same as the base 181 // region. If so, just return the base region. 182 if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) { 183 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 184 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 185 if (CanonPointeeTy == ObjTy) 186 return baseR; 187 } 188 189 // Otherwise, create a new ElementRegion at offset 0. 190 return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy); 191 } 192 193 // We have a non-zero offset from the base region. We want to determine 194 // if the offset can be evenly divided by sizeof(PointeeTy). If so, 195 // we create an ElementRegion whose index is that value. Otherwise, we 196 // create two ElementRegions, one that reflects a raw offset and the other 197 // that reflects the cast. 198 199 // Compute the index for the new ElementRegion. 200 int64_t newIndex = 0; 201 const MemRegion *newSuperR = nullptr; 202 203 // We can only compute sizeof(PointeeTy) if it is a complete type. 204 if (!PointeeTy->isIncompleteType()) { 205 // Compute the size in **bytes**. 206 CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy); 207 if (!pointeeTySize.isZero()) { 208 // Is the offset a multiple of the size? If so, we can layer the 209 // ElementRegion (with elementType == PointeeTy) directly on top of 210 // the base region. 211 if (off % pointeeTySize == 0) { 212 newIndex = off / pointeeTySize; 213 newSuperR = baseR; 214 } 215 } 216 } 217 218 if (!newSuperR) { 219 // Create an intermediate ElementRegion to represent the raw byte. 220 // This will be the super region of the final ElementRegion. 221 newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy, 222 off.getQuantity()); 223 } 224 225 return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex); 226 } 227 } 228 229 llvm_unreachable("unreachable"); 230 } 231 232 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) { 233 const MemRegion *MR = V.getAsRegion(); 234 if (!MR) 235 return true; 236 237 const auto *TVR = dyn_cast<TypedValueRegion>(MR); 238 if (!TVR) 239 return true; 240 241 const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl(); 242 if (!RD) 243 return true; 244 245 const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl(); 246 if (!Expected) 247 Expected = Ty->getAsCXXRecordDecl(); 248 249 return Expected->getCanonicalDecl() == RD->getCanonicalDecl(); 250 } 251 252 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) { 253 // Sanity check to avoid doing the wrong thing in the face of 254 // reinterpret_cast. 255 if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType())) 256 return UnknownVal(); 257 258 // Walk through the cast path to create nested CXXBaseRegions. 259 SVal Result = Derived; 260 for (CastExpr::path_const_iterator I = Cast->path_begin(), 261 E = Cast->path_end(); 262 I != E; ++I) { 263 Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual()); 264 } 265 return Result; 266 } 267 268 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) { 269 // Walk through the path to create nested CXXBaseRegions. 270 SVal Result = Derived; 271 for (const auto &I : Path) 272 Result = evalDerivedToBase(Result, I.Base->getType(), 273 I.Base->isVirtual()); 274 return Result; 275 } 276 277 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType, 278 bool IsVirtual) { 279 Optional<loc::MemRegionVal> DerivedRegVal = 280 Derived.getAs<loc::MemRegionVal>(); 281 if (!DerivedRegVal) 282 return Derived; 283 284 const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl(); 285 if (!BaseDecl) 286 BaseDecl = BaseType->getAsCXXRecordDecl(); 287 assert(BaseDecl && "not a C++ object?"); 288 289 const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion( 290 BaseDecl, cast<SubRegion>(DerivedRegVal->getRegion()), IsVirtual); 291 292 return loc::MemRegionVal(BaseReg); 293 } 294 295 /// Returns the static type of the given region, if it represents a C++ class 296 /// object. 297 /// 298 /// This handles both fully-typed regions, where the dynamic type is known, and 299 /// symbolic regions, where the dynamic type is merely bounded (and even then, 300 /// only ostensibly!), but does not take advantage of any dynamic type info. 301 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) { 302 if (const auto *TVR = dyn_cast<TypedValueRegion>(MR)) 303 return TVR->getValueType()->getAsCXXRecordDecl(); 304 if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) 305 return SR->getSymbol()->getType()->getPointeeCXXRecordDecl(); 306 return nullptr; 307 } 308 309 SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType, 310 bool &Failed) { 311 Failed = false; 312 313 const MemRegion *MR = Base.getAsRegion(); 314 if (!MR) 315 return UnknownVal(); 316 317 // Assume the derived class is a pointer or a reference to a CXX record. 318 TargetType = TargetType->getPointeeType(); 319 assert(!TargetType.isNull()); 320 const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl(); 321 if (!TargetClass && !TargetType->isVoidType()) 322 return UnknownVal(); 323 324 // Drill down the CXXBaseObject chains, which represent upcasts (casts from 325 // derived to base). 326 while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) { 327 // If found the derived class, the cast succeeds. 328 if (MRClass == TargetClass) 329 return loc::MemRegionVal(MR); 330 331 // We skip over incomplete types. They must be the result of an earlier 332 // reinterpret_cast, as one can only dynamic_cast between types in the same 333 // class hierarchy. 334 if (!TargetType->isVoidType() && MRClass->hasDefinition()) { 335 // Static upcasts are marked as DerivedToBase casts by Sema, so this will 336 // only happen when multiple or virtual inheritance is involved. 337 CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true, 338 /*DetectVirtual=*/false); 339 if (MRClass->isDerivedFrom(TargetClass, Paths)) 340 return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front()); 341 } 342 343 if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) { 344 // Drill down the chain to get the derived classes. 345 MR = BaseR->getSuperRegion(); 346 continue; 347 } 348 349 // If this is a cast to void*, return the region. 350 if (TargetType->isVoidType()) 351 return loc::MemRegionVal(MR); 352 353 // Strange use of reinterpret_cast can give us paths we don't reason 354 // about well, by putting in ElementRegions where we'd expect 355 // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the 356 // derived class has a zero offset from the base class), then it's safe 357 // to strip the cast; if it's invalid, -Wreinterpret-base-class should 358 // catch it. In the interest of performance, the analyzer will silently 359 // do the wrong thing in the invalid case (because offsets for subregions 360 // will be wrong). 361 const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false); 362 if (Uncasted == MR) { 363 // We reached the bottom of the hierarchy and did not find the derived 364 // class. We must be casting the base to derived, so the cast should 365 // fail. 366 break; 367 } 368 369 MR = Uncasted; 370 } 371 372 // We failed if the region we ended up with has perfect type info. 373 Failed = isa<TypedValueRegion>(MR); 374 return UnknownVal(); 375 } 376 377 /// CastRetrievedVal - Used by subclasses of StoreManager to implement 378 /// implicit casts that arise from loads from regions that are reinterpreted 379 /// as another region. 380 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R, 381 QualType castTy) { 382 if (castTy.isNull() || V.isUnknownOrUndef()) 383 return V; 384 385 return svalBuilder.dispatchCast(V, castTy); 386 } 387 388 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) { 389 if (Base.isUnknownOrUndef()) 390 return Base; 391 392 Loc BaseL = Base.castAs<Loc>(); 393 const SubRegion* BaseR = nullptr; 394 395 switch (BaseL.getSubKind()) { 396 case loc::MemRegionValKind: 397 BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion()); 398 break; 399 400 case loc::GotoLabelKind: 401 // These are anormal cases. Flag an undefined value. 402 return UndefinedVal(); 403 404 case loc::ConcreteIntKind: 405 // While these seem funny, this can happen through casts. 406 // FIXME: What we should return is the field offset, not base. For example, 407 // add the field offset to the integer value. That way things 408 // like this work properly: &(((struct foo *) 0xa)->f) 409 // However, that's not easy to fix without reducing our abilities 410 // to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7 411 // is a null dereference even though we're dereferencing offset of f 412 // rather than null. Coming up with an approach that computes offsets 413 // over null pointers properly while still being able to catch null 414 // dereferences might be worth it. 415 return Base; 416 417 default: 418 llvm_unreachable("Unhandled Base."); 419 } 420 421 // NOTE: We must have this check first because ObjCIvarDecl is a subclass 422 // of FieldDecl. 423 if (const auto *ID = dyn_cast<ObjCIvarDecl>(D)) 424 return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); 425 426 return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR)); 427 } 428 429 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) { 430 return getLValueFieldOrIvar(decl, base); 431 } 432 433 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset, 434 SVal Base) { 435 // If the base is an unknown or undefined value, just return it back. 436 // FIXME: For absolute pointer addresses, we just return that value back as 437 // well, although in reality we should return the offset added to that 438 // value. See also the similar FIXME in getLValueFieldOrIvar(). 439 if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>()) 440 return Base; 441 442 if (Base.getAs<loc::GotoLabel>()) 443 return UnknownVal(); 444 445 const SubRegion *BaseRegion = 446 Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>(); 447 448 // Pointer of any type can be cast and used as array base. 449 const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion); 450 451 // Convert the offset to the appropriate size and signedness. 452 Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>(); 453 454 if (!ElemR) { 455 // If the base region is not an ElementRegion, create one. 456 // This can happen in the following example: 457 // 458 // char *p = __builtin_alloc(10); 459 // p[1] = 8; 460 // 461 // Observe that 'p' binds to an AllocaRegion. 462 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, 463 BaseRegion, Ctx)); 464 } 465 466 SVal BaseIdx = ElemR->getIndex(); 467 468 if (!BaseIdx.getAs<nonloc::ConcreteInt>()) 469 return UnknownVal(); 470 471 const llvm::APSInt &BaseIdxI = 472 BaseIdx.castAs<nonloc::ConcreteInt>().getValue(); 473 474 // Only allow non-integer offsets if the base region has no offset itself. 475 // FIXME: This is a somewhat arbitrary restriction. We should be using 476 // SValBuilder here to add the two offsets without checking their types. 477 if (!Offset.getAs<nonloc::ConcreteInt>()) { 478 if (isa<ElementRegion>(BaseRegion->StripCasts())) 479 return UnknownVal(); 480 481 return loc::MemRegionVal(MRMgr.getElementRegion( 482 elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx)); 483 } 484 485 const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue(); 486 assert(BaseIdxI.isSigned()); 487 488 // Compute the new index. 489 nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI + 490 OffI)); 491 492 // Construct the new ElementRegion. 493 const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion()); 494 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR, 495 Ctx)); 496 } 497 498 StoreManager::BindingsHandler::~BindingsHandler() = default; 499 500 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr, 501 Store store, 502 const MemRegion* R, 503 SVal val) { 504 SymbolRef SymV = val.getAsLocSymbol(); 505 if (!SymV || SymV != Sym) 506 return true; 507 508 if (Binding) { 509 First = false; 510 return false; 511 } 512 else 513 Binding = R; 514 515 return true; 516 } 517