1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defined the types Store and StoreManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/DeclObjC.h" 18 19 using namespace clang; 20 using namespace ento; 21 22 StoreManager::StoreManager(ProgramStateManager &stateMgr) 23 : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr), 24 MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {} 25 26 StoreRef StoreManager::enterStackFrame(ProgramStateRef state, 27 const LocationContext *callerCtx, 28 const StackFrameContext *calleeCtx) { 29 return StoreRef(state->getStore(), *this); 30 } 31 32 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base, 33 QualType EleTy, uint64_t index) { 34 NonLoc idx = svalBuilder.makeArrayIndex(index); 35 return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext()); 36 } 37 38 // FIXME: Merge with the implementation of the same method in MemRegion.cpp 39 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) { 40 if (const RecordType *RT = Ty->getAs<RecordType>()) { 41 const RecordDecl *D = RT->getDecl(); 42 if (!D->getDefinition()) 43 return false; 44 } 45 46 return true; 47 } 48 49 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) { 50 return StoreRef(store, *this); 51 } 52 53 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R, 54 QualType T) { 55 NonLoc idx = svalBuilder.makeZeroArrayIndex(); 56 assert(!T.isNull()); 57 return MRMgr.getElementRegion(T, idx, R, Ctx); 58 } 59 60 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) { 61 62 ASTContext &Ctx = StateMgr.getContext(); 63 64 // Handle casts to Objective-C objects. 65 if (CastToTy->isObjCObjectPointerType()) 66 return R->StripCasts(); 67 68 if (CastToTy->isBlockPointerType()) { 69 // FIXME: We may need different solutions, depending on the symbol 70 // involved. Blocks can be casted to/from 'id', as they can be treated 71 // as Objective-C objects. This could possibly be handled by enhancing 72 // our reasoning of downcasts of symbolic objects. 73 if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R)) 74 return R; 75 76 // We don't know what to make of it. Return a NULL region, which 77 // will be interpretted as UnknownVal. 78 return NULL; 79 } 80 81 // Now assume we are casting from pointer to pointer. Other cases should 82 // already be handled. 83 QualType PointeeTy = CastToTy->getPointeeType(); 84 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 85 86 // Handle casts to void*. We just pass the region through. 87 if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy) 88 return R; 89 90 // Handle casts from compatible types. 91 if (R->isBoundable()) 92 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 93 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 94 if (CanonPointeeTy == ObjTy) 95 return R; 96 } 97 98 // Process region cast according to the kind of the region being cast. 99 switch (R->getKind()) { 100 case MemRegion::CXXThisRegionKind: 101 case MemRegion::GenericMemSpaceRegionKind: 102 case MemRegion::StackLocalsSpaceRegionKind: 103 case MemRegion::StackArgumentsSpaceRegionKind: 104 case MemRegion::HeapSpaceRegionKind: 105 case MemRegion::UnknownSpaceRegionKind: 106 case MemRegion::StaticGlobalSpaceRegionKind: 107 case MemRegion::GlobalInternalSpaceRegionKind: 108 case MemRegion::GlobalSystemSpaceRegionKind: 109 case MemRegion::GlobalImmutableSpaceRegionKind: { 110 llvm_unreachable("Invalid region cast"); 111 } 112 113 case MemRegion::FunctionTextRegionKind: 114 case MemRegion::BlockTextRegionKind: 115 case MemRegion::BlockDataRegionKind: 116 case MemRegion::StringRegionKind: 117 // FIXME: Need to handle arbitrary downcasts. 118 case MemRegion::SymbolicRegionKind: 119 case MemRegion::AllocaRegionKind: 120 case MemRegion::CompoundLiteralRegionKind: 121 case MemRegion::FieldRegionKind: 122 case MemRegion::ObjCIvarRegionKind: 123 case MemRegion::VarRegionKind: 124 case MemRegion::CXXTempObjectRegionKind: 125 case MemRegion::CXXBaseObjectRegionKind: 126 return MakeElementRegion(R, PointeeTy); 127 128 case MemRegion::ElementRegionKind: { 129 // If we are casting from an ElementRegion to another type, the 130 // algorithm is as follows: 131 // 132 // (1) Compute the "raw offset" of the ElementRegion from the 133 // base region. This is done by calling 'getAsRawOffset()'. 134 // 135 // (2a) If we get a 'RegionRawOffset' after calling 136 // 'getAsRawOffset()', determine if the absolute offset 137 // can be exactly divided into chunks of the size of the 138 // casted-pointee type. If so, create a new ElementRegion with 139 // the pointee-cast type as the new ElementType and the index 140 // being the offset divded by the chunk size. If not, create 141 // a new ElementRegion at offset 0 off the raw offset region. 142 // 143 // (2b) If we don't a get a 'RegionRawOffset' after calling 144 // 'getAsRawOffset()', it means that we are at offset 0. 145 // 146 // FIXME: Handle symbolic raw offsets. 147 148 const ElementRegion *elementR = cast<ElementRegion>(R); 149 const RegionRawOffset &rawOff = elementR->getAsArrayOffset(); 150 const MemRegion *baseR = rawOff.getRegion(); 151 152 // If we cannot compute a raw offset, throw up our hands and return 153 // a NULL MemRegion*. 154 if (!baseR) 155 return NULL; 156 157 CharUnits off = rawOff.getOffset(); 158 159 if (off.isZero()) { 160 // Edge case: we are at 0 bytes off the beginning of baseR. We 161 // check to see if type we are casting to is the same as the base 162 // region. If so, just return the base region. 163 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) { 164 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 165 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 166 if (CanonPointeeTy == ObjTy) 167 return baseR; 168 } 169 170 // Otherwise, create a new ElementRegion at offset 0. 171 return MakeElementRegion(baseR, PointeeTy); 172 } 173 174 // We have a non-zero offset from the base region. We want to determine 175 // if the offset can be evenly divided by sizeof(PointeeTy). If so, 176 // we create an ElementRegion whose index is that value. Otherwise, we 177 // create two ElementRegions, one that reflects a raw offset and the other 178 // that reflects the cast. 179 180 // Compute the index for the new ElementRegion. 181 int64_t newIndex = 0; 182 const MemRegion *newSuperR = 0; 183 184 // We can only compute sizeof(PointeeTy) if it is a complete type. 185 if (IsCompleteType(Ctx, PointeeTy)) { 186 // Compute the size in **bytes**. 187 CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy); 188 if (!pointeeTySize.isZero()) { 189 // Is the offset a multiple of the size? If so, we can layer the 190 // ElementRegion (with elementType == PointeeTy) directly on top of 191 // the base region. 192 if (off % pointeeTySize == 0) { 193 newIndex = off / pointeeTySize; 194 newSuperR = baseR; 195 } 196 } 197 } 198 199 if (!newSuperR) { 200 // Create an intermediate ElementRegion to represent the raw byte. 201 // This will be the super region of the final ElementRegion. 202 newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity()); 203 } 204 205 return MakeElementRegion(newSuperR, PointeeTy, newIndex); 206 } 207 } 208 209 llvm_unreachable("unreachable"); 210 } 211 212 213 /// CastRetrievedVal - Used by subclasses of StoreManager to implement 214 /// implicit casts that arise from loads from regions that are reinterpreted 215 /// as another region. 216 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R, 217 QualType castTy, bool performTestOnly) { 218 219 if (castTy.isNull() || V.isUnknownOrUndef()) 220 return V; 221 222 ASTContext &Ctx = svalBuilder.getContext(); 223 224 if (performTestOnly) { 225 // Automatically translate references to pointers. 226 QualType T = R->getValueType(); 227 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 228 T = Ctx.getPointerType(RT->getPointeeType()); 229 230 assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T)); 231 return V; 232 } 233 234 return svalBuilder.dispatchCast(V, castTy); 235 } 236 237 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) { 238 if (Base.isUnknownOrUndef()) 239 return Base; 240 241 Loc BaseL = cast<Loc>(Base); 242 const MemRegion* BaseR = 0; 243 244 switch (BaseL.getSubKind()) { 245 case loc::MemRegionKind: 246 BaseR = cast<loc::MemRegionVal>(BaseL).getRegion(); 247 break; 248 249 case loc::GotoLabelKind: 250 // These are anormal cases. Flag an undefined value. 251 return UndefinedVal(); 252 253 case loc::ConcreteIntKind: 254 // While these seem funny, this can happen through casts. 255 // FIXME: What we should return is the field offset. For example, 256 // add the field offset to the integer value. That way funny things 257 // like this work properly: &(((struct foo *) 0xa)->f) 258 return Base; 259 260 default: 261 llvm_unreachable("Unhandled Base."); 262 } 263 264 // NOTE: We must have this check first because ObjCIvarDecl is a subclass 265 // of FieldDecl. 266 if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D)) 267 return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); 268 269 return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR)); 270 } 271 272 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) { 273 return getLValueFieldOrIvar(decl, base); 274 } 275 276 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset, 277 SVal Base) { 278 279 // If the base is an unknown or undefined value, just return it back. 280 // FIXME: For absolute pointer addresses, we just return that value back as 281 // well, although in reality we should return the offset added to that 282 // value. 283 if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base)) 284 return Base; 285 286 const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion(); 287 288 // Pointer of any type can be cast and used as array base. 289 const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion); 290 291 // Convert the offset to the appropriate size and signedness. 292 Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset)); 293 294 if (!ElemR) { 295 // 296 // If the base region is not an ElementRegion, create one. 297 // This can happen in the following example: 298 // 299 // char *p = __builtin_alloc(10); 300 // p[1] = 8; 301 // 302 // Observe that 'p' binds to an AllocaRegion. 303 // 304 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, 305 BaseRegion, Ctx)); 306 } 307 308 SVal BaseIdx = ElemR->getIndex(); 309 310 if (!isa<nonloc::ConcreteInt>(BaseIdx)) 311 return UnknownVal(); 312 313 const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue(); 314 315 // Only allow non-integer offsets if the base region has no offset itself. 316 // FIXME: This is a somewhat arbitrary restriction. We should be using 317 // SValBuilder here to add the two offsets without checking their types. 318 if (!isa<nonloc::ConcreteInt>(Offset)) { 319 if (isa<ElementRegion>(BaseRegion->StripCasts())) 320 return UnknownVal(); 321 322 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, 323 ElemR->getSuperRegion(), 324 Ctx)); 325 } 326 327 const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue(); 328 assert(BaseIdxI.isSigned()); 329 330 // Compute the new index. 331 nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI + 332 OffI)); 333 334 // Construct the new ElementRegion. 335 const MemRegion *ArrayR = ElemR->getSuperRegion(); 336 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR, 337 Ctx)); 338 } 339 340 StoreManager::BindingsHandler::~BindingsHandler() {} 341 342 void SubRegionMap::anchor() { } 343 void SubRegionMap::Visitor::anchor() { } 344