1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defined the types Store and StoreManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16 #include "clang/AST/CharUnits.h"
17 
18 using namespace clang;
19 using namespace ento;
20 
21 StoreManager::StoreManager(ProgramStateManager &stateMgr)
22   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
23     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
24 
25 StoreRef StoreManager::enterStackFrame(const ProgramState *state,
26                                        const StackFrameContext *frame) {
27   return StoreRef(state->getStore(), *this);
28 }
29 
30 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
31                                               QualType EleTy, uint64_t index) {
32   NonLoc idx = svalBuilder.makeArrayIndex(index);
33   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
34 }
35 
36 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
37 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
38   if (const RecordType *RT = Ty->getAs<RecordType>()) {
39     const RecordDecl *D = RT->getDecl();
40     if (!D->getDefinition())
41       return false;
42   }
43 
44   return true;
45 }
46 
47 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
48   return StoreRef(store, *this);
49 }
50 
51 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
52                                                         QualType T) {
53   NonLoc idx = svalBuilder.makeZeroArrayIndex();
54   assert(!T.isNull());
55   return MRMgr.getElementRegion(T, idx, R, Ctx);
56 }
57 
58 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
59 
60   ASTContext &Ctx = StateMgr.getContext();
61 
62   // Handle casts to Objective-C objects.
63   if (CastToTy->isObjCObjectPointerType())
64     return R->StripCasts();
65 
66   if (CastToTy->isBlockPointerType()) {
67     // FIXME: We may need different solutions, depending on the symbol
68     // involved.  Blocks can be casted to/from 'id', as they can be treated
69     // as Objective-C objects.  This could possibly be handled by enhancing
70     // our reasoning of downcasts of symbolic objects.
71     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
72       return R;
73 
74     // We don't know what to make of it.  Return a NULL region, which
75     // will be interpretted as UnknownVal.
76     return NULL;
77   }
78 
79   // Now assume we are casting from pointer to pointer. Other cases should
80   // already be handled.
81   QualType PointeeTy = CastToTy->getPointeeType();
82   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
83 
84   // Handle casts to void*.  We just pass the region through.
85   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
86     return R;
87 
88   // Handle casts from compatible types.
89   if (R->isBoundable())
90     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
91       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
92       if (CanonPointeeTy == ObjTy)
93         return R;
94     }
95 
96   // Process region cast according to the kind of the region being cast.
97   switch (R->getKind()) {
98     case MemRegion::CXXThisRegionKind:
99     case MemRegion::GenericMemSpaceRegionKind:
100     case MemRegion::StackLocalsSpaceRegionKind:
101     case MemRegion::StackArgumentsSpaceRegionKind:
102     case MemRegion::HeapSpaceRegionKind:
103     case MemRegion::UnknownSpaceRegionKind:
104     case MemRegion::StaticGlobalSpaceRegionKind:
105     case MemRegion::GlobalInternalSpaceRegionKind:
106     case MemRegion::GlobalSystemSpaceRegionKind:
107     case MemRegion::GlobalImmutableSpaceRegionKind: {
108       llvm_unreachable("Invalid region cast");
109     }
110 
111     case MemRegion::FunctionTextRegionKind:
112     case MemRegion::BlockTextRegionKind:
113     case MemRegion::BlockDataRegionKind:
114     case MemRegion::StringRegionKind:
115       // FIXME: Need to handle arbitrary downcasts.
116     case MemRegion::SymbolicRegionKind:
117     case MemRegion::AllocaRegionKind:
118     case MemRegion::CompoundLiteralRegionKind:
119     case MemRegion::FieldRegionKind:
120     case MemRegion::ObjCIvarRegionKind:
121     case MemRegion::VarRegionKind:
122     case MemRegion::CXXTempObjectRegionKind:
123     case MemRegion::CXXBaseObjectRegionKind:
124       return MakeElementRegion(R, PointeeTy);
125 
126     case MemRegion::ElementRegionKind: {
127       // If we are casting from an ElementRegion to another type, the
128       // algorithm is as follows:
129       //
130       // (1) Compute the "raw offset" of the ElementRegion from the
131       //     base region.  This is done by calling 'getAsRawOffset()'.
132       //
133       // (2a) If we get a 'RegionRawOffset' after calling
134       //      'getAsRawOffset()', determine if the absolute offset
135       //      can be exactly divided into chunks of the size of the
136       //      casted-pointee type.  If so, create a new ElementRegion with
137       //      the pointee-cast type as the new ElementType and the index
138       //      being the offset divded by the chunk size.  If not, create
139       //      a new ElementRegion at offset 0 off the raw offset region.
140       //
141       // (2b) If we don't a get a 'RegionRawOffset' after calling
142       //      'getAsRawOffset()', it means that we are at offset 0.
143       //
144       // FIXME: Handle symbolic raw offsets.
145 
146       const ElementRegion *elementR = cast<ElementRegion>(R);
147       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
148       const MemRegion *baseR = rawOff.getRegion();
149 
150       // If we cannot compute a raw offset, throw up our hands and return
151       // a NULL MemRegion*.
152       if (!baseR)
153         return NULL;
154 
155       CharUnits off = rawOff.getOffset();
156 
157       if (off.isZero()) {
158         // Edge case: we are at 0 bytes off the beginning of baseR.  We
159         // check to see if type we are casting to is the same as the base
160         // region.  If so, just return the base region.
161         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
162           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
163           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
164           if (CanonPointeeTy == ObjTy)
165             return baseR;
166         }
167 
168         // Otherwise, create a new ElementRegion at offset 0.
169         return MakeElementRegion(baseR, PointeeTy);
170       }
171 
172       // We have a non-zero offset from the base region.  We want to determine
173       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
174       // we create an ElementRegion whose index is that value.  Otherwise, we
175       // create two ElementRegions, one that reflects a raw offset and the other
176       // that reflects the cast.
177 
178       // Compute the index for the new ElementRegion.
179       int64_t newIndex = 0;
180       const MemRegion *newSuperR = 0;
181 
182       // We can only compute sizeof(PointeeTy) if it is a complete type.
183       if (IsCompleteType(Ctx, PointeeTy)) {
184         // Compute the size in **bytes**.
185         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
186         if (!pointeeTySize.isZero()) {
187           // Is the offset a multiple of the size?  If so, we can layer the
188           // ElementRegion (with elementType == PointeeTy) directly on top of
189           // the base region.
190           if (off % pointeeTySize == 0) {
191             newIndex = off / pointeeTySize;
192             newSuperR = baseR;
193           }
194         }
195       }
196 
197       if (!newSuperR) {
198         // Create an intermediate ElementRegion to represent the raw byte.
199         // This will be the super region of the final ElementRegion.
200         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
201       }
202 
203       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
204     }
205   }
206 
207   llvm_unreachable("unreachable");
208 }
209 
210 
211 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
212 ///  implicit casts that arise from loads from regions that are reinterpreted
213 ///  as another region.
214 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
215                                     QualType castTy, bool performTestOnly) {
216 
217   if (castTy.isNull() || V.isUnknownOrUndef())
218     return V;
219 
220   ASTContext &Ctx = svalBuilder.getContext();
221 
222   if (performTestOnly) {
223     // Automatically translate references to pointers.
224     QualType T = R->getValueType();
225     if (const ReferenceType *RT = T->getAs<ReferenceType>())
226       T = Ctx.getPointerType(RT->getPointeeType());
227 
228     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
229     return V;
230   }
231 
232   return svalBuilder.dispatchCast(V, castTy);
233 }
234 
235 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
236   if (Base.isUnknownOrUndef())
237     return Base;
238 
239   Loc BaseL = cast<Loc>(Base);
240   const MemRegion* BaseR = 0;
241 
242   switch (BaseL.getSubKind()) {
243   case loc::MemRegionKind:
244     BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
245     break;
246 
247   case loc::GotoLabelKind:
248     // These are anormal cases. Flag an undefined value.
249     return UndefinedVal();
250 
251   case loc::ConcreteIntKind:
252     // While these seem funny, this can happen through casts.
253     // FIXME: What we should return is the field offset.  For example,
254     //  add the field offset to the integer value.  That way funny things
255     //  like this work properly:  &(((struct foo *) 0xa)->f)
256     return Base;
257 
258   default:
259     llvm_unreachable("Unhandled Base.");
260   }
261 
262   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
263   // of FieldDecl.
264   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
265     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
266 
267   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
268 }
269 
270 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
271                                     SVal Base) {
272 
273   // If the base is an unknown or undefined value, just return it back.
274   // FIXME: For absolute pointer addresses, we just return that value back as
275   //  well, although in reality we should return the offset added to that
276   //  value.
277   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
278     return Base;
279 
280   const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
281 
282   // Pointer of any type can be cast and used as array base.
283   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
284 
285   // Convert the offset to the appropriate size and signedness.
286   Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
287 
288   if (!ElemR) {
289     //
290     // If the base region is not an ElementRegion, create one.
291     // This can happen in the following example:
292     //
293     //   char *p = __builtin_alloc(10);
294     //   p[1] = 8;
295     //
296     //  Observe that 'p' binds to an AllocaRegion.
297     //
298     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
299                                                     BaseRegion, Ctx));
300   }
301 
302   SVal BaseIdx = ElemR->getIndex();
303 
304   if (!isa<nonloc::ConcreteInt>(BaseIdx))
305     return UnknownVal();
306 
307   const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
308 
309   // Only allow non-integer offsets if the base region has no offset itself.
310   // FIXME: This is a somewhat arbitrary restriction. We should be using
311   // SValBuilder here to add the two offsets without checking their types.
312   if (!isa<nonloc::ConcreteInt>(Offset)) {
313     if (isa<ElementRegion>(BaseRegion->StripCasts()))
314       return UnknownVal();
315 
316     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
317                                                     ElemR->getSuperRegion(),
318                                                     Ctx));
319   }
320 
321   const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
322   assert(BaseIdxI.isSigned());
323 
324   // Compute the new index.
325   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
326                                                                     OffI));
327 
328   // Construct the new ElementRegion.
329   const MemRegion *ArrayR = ElemR->getSuperRegion();
330   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
331                                                   Ctx));
332 }
333 
334 StoreManager::BindingsHandler::~BindingsHandler() {}
335 
336 void SubRegionMap::anchor() { }
337 void SubRegionMap::Visitor::anchor() { }
338