1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defined the types Store and StoreManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 20 21 using namespace clang; 22 using namespace ento; 23 24 StoreManager::StoreManager(ProgramStateManager &stateMgr) 25 : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr), 26 MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {} 27 28 StoreRef StoreManager::enterStackFrame(Store OldStore, 29 const CallEvent &Call, 30 const StackFrameContext *LCtx) { 31 StoreRef Store = StoreRef(OldStore, *this); 32 33 SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings; 34 Call.getInitialStackFrameContents(LCtx, InitialBindings); 35 36 for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(), 37 E = InitialBindings.end(); 38 I != E; ++I) { 39 Store = Bind(Store.getStore(), I->first, I->second); 40 } 41 42 return Store; 43 } 44 45 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base, 46 QualType EleTy, 47 uint64_t index) { 48 NonLoc idx = svalBuilder.makeArrayIndex(index); 49 return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext()); 50 } 51 52 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) { 53 return StoreRef(store, *this); 54 } 55 56 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R, 57 QualType T) { 58 NonLoc idx = svalBuilder.makeZeroArrayIndex(); 59 assert(!T.isNull()); 60 return MRMgr.getElementRegion(T, idx, R, Ctx); 61 } 62 63 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) { 64 65 ASTContext &Ctx = StateMgr.getContext(); 66 67 // Handle casts to Objective-C objects. 68 if (CastToTy->isObjCObjectPointerType()) 69 return R->StripCasts(); 70 71 if (CastToTy->isBlockPointerType()) { 72 // FIXME: We may need different solutions, depending on the symbol 73 // involved. Blocks can be casted to/from 'id', as they can be treated 74 // as Objective-C objects. This could possibly be handled by enhancing 75 // our reasoning of downcasts of symbolic objects. 76 if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R)) 77 return R; 78 79 // We don't know what to make of it. Return a NULL region, which 80 // will be interpretted as UnknownVal. 81 return nullptr; 82 } 83 84 // Now assume we are casting from pointer to pointer. Other cases should 85 // already be handled. 86 QualType PointeeTy = CastToTy->getPointeeType(); 87 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 88 89 // Handle casts to void*. We just pass the region through. 90 if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy) 91 return R; 92 93 // Handle casts from compatible types. 94 if (R->isBoundable()) 95 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 96 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 97 if (CanonPointeeTy == ObjTy) 98 return R; 99 } 100 101 // Process region cast according to the kind of the region being cast. 102 switch (R->getKind()) { 103 case MemRegion::CXXThisRegionKind: 104 case MemRegion::CodeSpaceRegionKind: 105 case MemRegion::StackLocalsSpaceRegionKind: 106 case MemRegion::StackArgumentsSpaceRegionKind: 107 case MemRegion::HeapSpaceRegionKind: 108 case MemRegion::UnknownSpaceRegionKind: 109 case MemRegion::StaticGlobalSpaceRegionKind: 110 case MemRegion::GlobalInternalSpaceRegionKind: 111 case MemRegion::GlobalSystemSpaceRegionKind: 112 case MemRegion::GlobalImmutableSpaceRegionKind: { 113 llvm_unreachable("Invalid region cast"); 114 } 115 116 case MemRegion::FunctionCodeRegionKind: 117 case MemRegion::BlockCodeRegionKind: 118 case MemRegion::BlockDataRegionKind: 119 case MemRegion::StringRegionKind: 120 // FIXME: Need to handle arbitrary downcasts. 121 case MemRegion::SymbolicRegionKind: 122 case MemRegion::AllocaRegionKind: 123 case MemRegion::CompoundLiteralRegionKind: 124 case MemRegion::FieldRegionKind: 125 case MemRegion::ObjCIvarRegionKind: 126 case MemRegion::ObjCStringRegionKind: 127 case MemRegion::VarRegionKind: 128 case MemRegion::CXXTempObjectRegionKind: 129 case MemRegion::CXXBaseObjectRegionKind: 130 return MakeElementRegion(cast<SubRegion>(R), PointeeTy); 131 132 case MemRegion::ElementRegionKind: { 133 // If we are casting from an ElementRegion to another type, the 134 // algorithm is as follows: 135 // 136 // (1) Compute the "raw offset" of the ElementRegion from the 137 // base region. This is done by calling 'getAsRawOffset()'. 138 // 139 // (2a) If we get a 'RegionRawOffset' after calling 140 // 'getAsRawOffset()', determine if the absolute offset 141 // can be exactly divided into chunks of the size of the 142 // casted-pointee type. If so, create a new ElementRegion with 143 // the pointee-cast type as the new ElementType and the index 144 // being the offset divded by the chunk size. If not, create 145 // a new ElementRegion at offset 0 off the raw offset region. 146 // 147 // (2b) If we don't a get a 'RegionRawOffset' after calling 148 // 'getAsRawOffset()', it means that we are at offset 0. 149 // 150 // FIXME: Handle symbolic raw offsets. 151 152 const ElementRegion *elementR = cast<ElementRegion>(R); 153 const RegionRawOffset &rawOff = elementR->getAsArrayOffset(); 154 const MemRegion *baseR = rawOff.getRegion(); 155 156 // If we cannot compute a raw offset, throw up our hands and return 157 // a NULL MemRegion*. 158 if (!baseR) 159 return nullptr; 160 161 CharUnits off = rawOff.getOffset(); 162 163 if (off.isZero()) { 164 // Edge case: we are at 0 bytes off the beginning of baseR. We 165 // check to see if type we are casting to is the same as the base 166 // region. If so, just return the base region. 167 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) { 168 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType()); 169 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); 170 if (CanonPointeeTy == ObjTy) 171 return baseR; 172 } 173 174 // Otherwise, create a new ElementRegion at offset 0. 175 return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy); 176 } 177 178 // We have a non-zero offset from the base region. We want to determine 179 // if the offset can be evenly divided by sizeof(PointeeTy). If so, 180 // we create an ElementRegion whose index is that value. Otherwise, we 181 // create two ElementRegions, one that reflects a raw offset and the other 182 // that reflects the cast. 183 184 // Compute the index for the new ElementRegion. 185 int64_t newIndex = 0; 186 const MemRegion *newSuperR = nullptr; 187 188 // We can only compute sizeof(PointeeTy) if it is a complete type. 189 if (!PointeeTy->isIncompleteType()) { 190 // Compute the size in **bytes**. 191 CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy); 192 if (!pointeeTySize.isZero()) { 193 // Is the offset a multiple of the size? If so, we can layer the 194 // ElementRegion (with elementType == PointeeTy) directly on top of 195 // the base region. 196 if (off % pointeeTySize == 0) { 197 newIndex = off / pointeeTySize; 198 newSuperR = baseR; 199 } 200 } 201 } 202 203 if (!newSuperR) { 204 // Create an intermediate ElementRegion to represent the raw byte. 205 // This will be the super region of the final ElementRegion. 206 newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy, 207 off.getQuantity()); 208 } 209 210 return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex); 211 } 212 } 213 214 llvm_unreachable("unreachable"); 215 } 216 217 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) { 218 const MemRegion *MR = V.getAsRegion(); 219 if (!MR) 220 return true; 221 222 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 223 if (!TVR) 224 return true; 225 226 const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl(); 227 if (!RD) 228 return true; 229 230 const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl(); 231 if (!Expected) 232 Expected = Ty->getAsCXXRecordDecl(); 233 234 return Expected->getCanonicalDecl() == RD->getCanonicalDecl(); 235 } 236 237 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) { 238 // Sanity check to avoid doing the wrong thing in the face of 239 // reinterpret_cast. 240 if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType())) 241 return UnknownVal(); 242 243 // Walk through the cast path to create nested CXXBaseRegions. 244 SVal Result = Derived; 245 for (CastExpr::path_const_iterator I = Cast->path_begin(), 246 E = Cast->path_end(); 247 I != E; ++I) { 248 Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual()); 249 } 250 return Result; 251 } 252 253 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) { 254 // Walk through the path to create nested CXXBaseRegions. 255 SVal Result = Derived; 256 for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end(); 257 I != E; ++I) { 258 Result = evalDerivedToBase(Result, I->Base->getType(), 259 I->Base->isVirtual()); 260 } 261 return Result; 262 } 263 264 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType, 265 bool IsVirtual) { 266 Optional<loc::MemRegionVal> DerivedRegVal = 267 Derived.getAs<loc::MemRegionVal>(); 268 if (!DerivedRegVal) 269 return Derived; 270 271 const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl(); 272 if (!BaseDecl) 273 BaseDecl = BaseType->getAsCXXRecordDecl(); 274 assert(BaseDecl && "not a C++ object?"); 275 276 const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion( 277 BaseDecl, cast<SubRegion>(DerivedRegVal->getRegion()), IsVirtual); 278 279 return loc::MemRegionVal(BaseReg); 280 } 281 282 /// Returns the static type of the given region, if it represents a C++ class 283 /// object. 284 /// 285 /// This handles both fully-typed regions, where the dynamic type is known, and 286 /// symbolic regions, where the dynamic type is merely bounded (and even then, 287 /// only ostensibly!), but does not take advantage of any dynamic type info. 288 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) { 289 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR)) 290 return TVR->getValueType()->getAsCXXRecordDecl(); 291 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) 292 return SR->getSymbol()->getType()->getPointeeCXXRecordDecl(); 293 return nullptr; 294 } 295 296 SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType, 297 bool &Failed) { 298 Failed = false; 299 300 const MemRegion *MR = Base.getAsRegion(); 301 if (!MR) 302 return UnknownVal(); 303 304 // Assume the derived class is a pointer or a reference to a CXX record. 305 TargetType = TargetType->getPointeeType(); 306 assert(!TargetType.isNull()); 307 const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl(); 308 if (!TargetClass && !TargetType->isVoidType()) 309 return UnknownVal(); 310 311 // Drill down the CXXBaseObject chains, which represent upcasts (casts from 312 // derived to base). 313 while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) { 314 // If found the derived class, the cast succeeds. 315 if (MRClass == TargetClass) 316 return loc::MemRegionVal(MR); 317 318 // We skip over incomplete types. They must be the result of an earlier 319 // reinterpret_cast, as one can only dynamic_cast between types in the same 320 // class hierarchy. 321 if (!TargetType->isVoidType() && MRClass->hasDefinition()) { 322 // Static upcasts are marked as DerivedToBase casts by Sema, so this will 323 // only happen when multiple or virtual inheritance is involved. 324 CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true, 325 /*DetectVirtual=*/false); 326 if (MRClass->isDerivedFrom(TargetClass, Paths)) 327 return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front()); 328 } 329 330 if (const CXXBaseObjectRegion *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) { 331 // Drill down the chain to get the derived classes. 332 MR = BaseR->getSuperRegion(); 333 continue; 334 } 335 336 // If this is a cast to void*, return the region. 337 if (TargetType->isVoidType()) 338 return loc::MemRegionVal(MR); 339 340 // Strange use of reinterpret_cast can give us paths we don't reason 341 // about well, by putting in ElementRegions where we'd expect 342 // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the 343 // derived class has a zero offset from the base class), then it's safe 344 // to strip the cast; if it's invalid, -Wreinterpret-base-class should 345 // catch it. In the interest of performance, the analyzer will silently 346 // do the wrong thing in the invalid case (because offsets for subregions 347 // will be wrong). 348 const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false); 349 if (Uncasted == MR) { 350 // We reached the bottom of the hierarchy and did not find the derived 351 // class. We we must be casting the base to derived, so the cast should 352 // fail. 353 break; 354 } 355 356 MR = Uncasted; 357 } 358 359 // We failed if the region we ended up with has perfect type info. 360 Failed = isa<TypedValueRegion>(MR); 361 return UnknownVal(); 362 } 363 364 365 /// CastRetrievedVal - Used by subclasses of StoreManager to implement 366 /// implicit casts that arise from loads from regions that are reinterpreted 367 /// as another region. 368 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R, 369 QualType castTy, bool performTestOnly) { 370 371 if (castTy.isNull() || V.isUnknownOrUndef()) 372 return V; 373 374 ASTContext &Ctx = svalBuilder.getContext(); 375 376 if (performTestOnly) { 377 // Automatically translate references to pointers. 378 QualType T = R->getValueType(); 379 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 380 T = Ctx.getPointerType(RT->getPointeeType()); 381 382 assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T)); 383 return V; 384 } 385 386 return svalBuilder.dispatchCast(V, castTy); 387 } 388 389 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) { 390 if (Base.isUnknownOrUndef()) 391 return Base; 392 393 Loc BaseL = Base.castAs<Loc>(); 394 const SubRegion* BaseR = nullptr; 395 396 switch (BaseL.getSubKind()) { 397 case loc::MemRegionValKind: 398 BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion()); 399 break; 400 401 case loc::GotoLabelKind: 402 // These are anormal cases. Flag an undefined value. 403 return UndefinedVal(); 404 405 case loc::ConcreteIntKind: 406 // While these seem funny, this can happen through casts. 407 // FIXME: What we should return is the field offset, not base. For example, 408 // add the field offset to the integer value. That way things 409 // like this work properly: &(((struct foo *) 0xa)->f) 410 // However, that's not easy to fix without reducing our abilities 411 // to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7 412 // is a null dereference even though we're dereferencing offset of f 413 // rather than null. Coming up with an approach that computes offsets 414 // over null pointers properly while still being able to catch null 415 // dereferences might be worth it. 416 return Base; 417 418 default: 419 llvm_unreachable("Unhandled Base."); 420 } 421 422 // NOTE: We must have this check first because ObjCIvarDecl is a subclass 423 // of FieldDecl. 424 if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D)) 425 return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); 426 427 return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR)); 428 } 429 430 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) { 431 return getLValueFieldOrIvar(decl, base); 432 } 433 434 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset, 435 SVal Base) { 436 437 // If the base is an unknown or undefined value, just return it back. 438 // FIXME: For absolute pointer addresses, we just return that value back as 439 // well, although in reality we should return the offset added to that 440 // value. See also the similar FIXME in getLValueFieldOrIvar(). 441 if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>()) 442 return Base; 443 444 const SubRegion *BaseRegion = 445 Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>(); 446 447 // Pointer of any type can be cast and used as array base. 448 const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion); 449 450 // Convert the offset to the appropriate size and signedness. 451 Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>(); 452 453 if (!ElemR) { 454 // 455 // If the base region is not an ElementRegion, create one. 456 // This can happen in the following example: 457 // 458 // char *p = __builtin_alloc(10); 459 // p[1] = 8; 460 // 461 // Observe that 'p' binds to an AllocaRegion. 462 // 463 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, 464 BaseRegion, Ctx)); 465 } 466 467 SVal BaseIdx = ElemR->getIndex(); 468 469 if (!BaseIdx.getAs<nonloc::ConcreteInt>()) 470 return UnknownVal(); 471 472 const llvm::APSInt &BaseIdxI = 473 BaseIdx.castAs<nonloc::ConcreteInt>().getValue(); 474 475 // Only allow non-integer offsets if the base region has no offset itself. 476 // FIXME: This is a somewhat arbitrary restriction. We should be using 477 // SValBuilder here to add the two offsets without checking their types. 478 if (!Offset.getAs<nonloc::ConcreteInt>()) { 479 if (isa<ElementRegion>(BaseRegion->StripCasts())) 480 return UnknownVal(); 481 482 return loc::MemRegionVal(MRMgr.getElementRegion( 483 elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx)); 484 } 485 486 const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue(); 487 assert(BaseIdxI.isSigned()); 488 489 // Compute the new index. 490 nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI + 491 OffI)); 492 493 // Construct the new ElementRegion. 494 const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion()); 495 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR, 496 Ctx)); 497 } 498 499 StoreManager::BindingsHandler::~BindingsHandler() {} 500 501 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr, 502 Store store, 503 const MemRegion* R, 504 SVal val) { 505 SymbolRef SymV = val.getAsLocSymbol(); 506 if (!SymV || SymV != Sym) 507 return true; 508 509 if (Binding) { 510 First = false; 511 return false; 512 } 513 else 514 Binding = R; 515 516 return true; 517 } 518