1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 21 using namespace clang; 22 using namespace ento; 23 24 namespace { 25 class SimpleSValBuilder : public SValBuilder { 26 protected: 27 SVal dispatchCast(SVal val, QualType castTy) override; 28 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; 29 SVal evalCastFromLoc(Loc val, QualType castTy) override; 30 31 public: 32 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 33 ProgramStateManager &stateMgr) 34 : SValBuilder(alloc, context, stateMgr) {} 35 ~SimpleSValBuilder() override {} 36 37 SVal evalMinus(NonLoc val) override; 38 SVal evalComplement(NonLoc val) override; 39 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 40 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 41 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 42 Loc lhs, Loc rhs, QualType resultTy) override; 43 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 44 Loc lhs, NonLoc rhs, QualType resultTy) override; 45 46 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 47 /// (integer) value, that value is returned. Otherwise, returns NULL. 48 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 49 50 /// Recursively descends into symbolic expressions and replaces symbols 51 /// with their known values (in the sense of the getKnownValue() method). 52 SVal simplifySVal(ProgramStateRef State, SVal V) override; 53 54 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 55 const llvm::APSInt &RHS, QualType resultTy); 56 }; 57 } // end anonymous namespace 58 59 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 60 ASTContext &context, 61 ProgramStateManager &stateMgr) { 62 return new SimpleSValBuilder(alloc, context, stateMgr); 63 } 64 65 //===----------------------------------------------------------------------===// 66 // Transfer function for Casts. 67 //===----------------------------------------------------------------------===// 68 69 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 70 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); 71 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) 72 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); 73 } 74 75 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 76 bool isLocType = Loc::isLocType(castTy); 77 if (val.getAs<nonloc::PointerToMember>()) 78 return val; 79 80 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { 81 if (isLocType) 82 return LI->getLoc(); 83 // FIXME: Correctly support promotions/truncations. 84 unsigned castSize = Context.getIntWidth(castTy); 85 if (castSize == LI->getNumBits()) 86 return val; 87 return makeLocAsInteger(LI->getLoc(), castSize); 88 } 89 90 if (const SymExpr *se = val.getAsSymbolicExpression()) { 91 QualType T = Context.getCanonicalType(se->getType()); 92 // If types are the same or both are integers, ignore the cast. 93 // FIXME: Remove this hack when we support symbolic truncation/extension. 94 // HACK: If both castTy and T are integers, ignore the cast. This is 95 // not a permanent solution. Eventually we want to precisely handle 96 // extension/truncation of symbolic integers. This prevents us from losing 97 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 98 // different integer types. 99 if (haveSameType(T, castTy)) 100 return val; 101 102 if (!isLocType) 103 return makeNonLoc(se, T, castTy); 104 return UnknownVal(); 105 } 106 107 // If value is a non-integer constant, produce unknown. 108 if (!val.getAs<nonloc::ConcreteInt>()) 109 return UnknownVal(); 110 111 // Handle casts to a boolean type. 112 if (castTy->isBooleanType()) { 113 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); 114 return makeTruthVal(b, castTy); 115 } 116 117 // Only handle casts from integers to integers - if val is an integer constant 118 // being cast to a non-integer type, produce unknown. 119 if (!isLocType && !castTy->isIntegralOrEnumerationType()) 120 return UnknownVal(); 121 122 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); 123 BasicVals.getAPSIntType(castTy).apply(i); 124 125 if (isLocType) 126 return makeIntLocVal(i); 127 else 128 return makeIntVal(i); 129 } 130 131 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 132 133 // Casts from pointers -> pointers, just return the lval. 134 // 135 // Casts from pointers -> references, just return the lval. These 136 // can be introduced by the frontend for corner cases, e.g 137 // casting from va_list* to __builtin_va_list&. 138 // 139 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 140 return val; 141 142 // FIXME: Handle transparent unions where a value can be "transparently" 143 // lifted into a union type. 144 if (castTy->isUnionType()) 145 return UnknownVal(); 146 147 // Casting a Loc to a bool will almost always be true, 148 // unless this is a weak function or a symbolic region. 149 if (castTy->isBooleanType()) { 150 switch (val.getSubKind()) { 151 case loc::MemRegionValKind: { 152 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); 153 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) 154 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) 155 if (FD->isWeak()) 156 // FIXME: Currently we are using an extent symbol here, 157 // because there are no generic region address metadata 158 // symbols to use, only content metadata. 159 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); 160 161 if (const SymbolicRegion *SymR = R->getSymbolicBase()) 162 return nonloc::SymbolVal(SymR->getSymbol()); 163 164 // FALL-THROUGH 165 LLVM_FALLTHROUGH; 166 } 167 168 case loc::GotoLabelKind: 169 // Labels and non-symbolic memory regions are always true. 170 return makeTruthVal(true, castTy); 171 } 172 } 173 174 if (castTy->isIntegralOrEnumerationType()) { 175 unsigned BitWidth = Context.getIntWidth(castTy); 176 177 if (!val.getAs<loc::ConcreteInt>()) 178 return makeLocAsInteger(val, BitWidth); 179 180 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); 181 BasicVals.getAPSIntType(castTy).apply(i); 182 return makeIntVal(i); 183 } 184 185 // All other cases: return 'UnknownVal'. This includes casting pointers 186 // to floats, which is probably badness it itself, but this is a good 187 // intermediate solution until we do something better. 188 return UnknownVal(); 189 } 190 191 //===----------------------------------------------------------------------===// 192 // Transfer function for unary operators. 193 //===----------------------------------------------------------------------===// 194 195 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 196 switch (val.getSubKind()) { 197 case nonloc::ConcreteIntKind: 198 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 199 default: 200 return UnknownVal(); 201 } 202 } 203 204 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 205 switch (X.getSubKind()) { 206 case nonloc::ConcreteIntKind: 207 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 208 default: 209 return UnknownVal(); 210 } 211 } 212 213 //===----------------------------------------------------------------------===// 214 // Transfer function for binary operators. 215 //===----------------------------------------------------------------------===// 216 217 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 218 BinaryOperator::Opcode op, 219 const llvm::APSInt &RHS, 220 QualType resultTy) { 221 bool isIdempotent = false; 222 223 // Check for a few special cases with known reductions first. 224 switch (op) { 225 default: 226 // We can't reduce this case; just treat it normally. 227 break; 228 case BO_Mul: 229 // a*0 and a*1 230 if (RHS == 0) 231 return makeIntVal(0, resultTy); 232 else if (RHS == 1) 233 isIdempotent = true; 234 break; 235 case BO_Div: 236 // a/0 and a/1 237 if (RHS == 0) 238 // This is also handled elsewhere. 239 return UndefinedVal(); 240 else if (RHS == 1) 241 isIdempotent = true; 242 break; 243 case BO_Rem: 244 // a%0 and a%1 245 if (RHS == 0) 246 // This is also handled elsewhere. 247 return UndefinedVal(); 248 else if (RHS == 1) 249 return makeIntVal(0, resultTy); 250 break; 251 case BO_Add: 252 case BO_Sub: 253 case BO_Shl: 254 case BO_Shr: 255 case BO_Xor: 256 // a+0, a-0, a<<0, a>>0, a^0 257 if (RHS == 0) 258 isIdempotent = true; 259 break; 260 case BO_And: 261 // a&0 and a&(~0) 262 if (RHS == 0) 263 return makeIntVal(0, resultTy); 264 else if (RHS.isAllOnesValue()) 265 isIdempotent = true; 266 break; 267 case BO_Or: 268 // a|0 and a|(~0) 269 if (RHS == 0) 270 isIdempotent = true; 271 else if (RHS.isAllOnesValue()) { 272 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 273 return nonloc::ConcreteInt(Result); 274 } 275 break; 276 } 277 278 // Idempotent ops (like a*1) can still change the type of an expression. 279 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 280 // dirty work. 281 if (isIdempotent) 282 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 283 284 // If we reach this point, the expression cannot be simplified. 285 // Make a SymbolVal for the entire expression, after converting the RHS. 286 const llvm::APSInt *ConvertedRHS = &RHS; 287 if (BinaryOperator::isComparisonOp(op)) { 288 // We're looking for a type big enough to compare the symbolic value 289 // with the given constant. 290 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 291 ASTContext &Ctx = getContext(); 292 QualType SymbolType = LHS->getType(); 293 uint64_t ValWidth = RHS.getBitWidth(); 294 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 295 296 if (ValWidth < TypeWidth) { 297 // If the value is too small, extend it. 298 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 299 } else if (ValWidth == TypeWidth) { 300 // If the value is signed but the symbol is unsigned, do the comparison 301 // in unsigned space. [C99 6.3.1.8] 302 // (For the opposite case, the value is already unsigned.) 303 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 304 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 305 } 306 } else 307 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 308 309 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 310 } 311 312 // See if Sym is known to be a relation Rel with Bound. 313 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 314 llvm::APSInt Bound, ProgramStateRef State) { 315 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 316 SVal Result = 317 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 318 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 319 if (auto DV = Result.getAs<DefinedSVal>()) { 320 return !State->assume(*DV, false); 321 } 322 return false; 323 } 324 325 // See if Sym is known to be within [min/4, max/4], where min and max 326 // are the bounds of the symbol's integral type. With such symbols, 327 // some manipulations can be performed without the risk of overflow. 328 // assume() doesn't cause infinite recursion because we should be dealing 329 // with simpler symbols on every recursive call. 330 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 331 ProgramStateRef State) { 332 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 333 BasicValueFactory &BV = SVB.getBasicValueFactory(); 334 335 QualType T = Sym->getType(); 336 assert(T->isSignedIntegerOrEnumerationType() && 337 "This only works with signed integers!"); 338 APSIntType AT = BV.getAPSIntType(T); 339 340 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 341 return isInRelation(BO_LE, Sym, Max, State) && 342 isInRelation(BO_GE, Sym, Min, State); 343 } 344 345 // Same for the concrete integers: see if I is within [min/4, max/4]. 346 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 347 APSIntType AT(I); 348 assert(!AT.isUnsigned() && 349 "This only works with signed integers!"); 350 351 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 352 return (I <= Max) && (I >= -Max); 353 } 354 355 static std::pair<SymbolRef, llvm::APSInt> 356 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 357 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 358 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 359 return std::make_pair(SymInt->getLHS(), 360 (SymInt->getOpcode() == BO_Add) ? 361 (SymInt->getRHS()) : 362 (-SymInt->getRHS())); 363 364 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 365 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 366 } 367 368 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 369 // same signed integral type and no overflows occur (which should be checked 370 // by the caller). 371 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 372 BinaryOperator::Opcode Op, 373 SymbolRef LSym, llvm::APSInt LInt, 374 SymbolRef RSym, llvm::APSInt RInt) { 375 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 376 BasicValueFactory &BV = SVB.getBasicValueFactory(); 377 SymbolManager &SymMgr = SVB.getSymbolManager(); 378 379 QualType SymTy = LSym->getType(); 380 assert(SymTy == RSym->getType() && 381 "Symbols are not of the same type!"); 382 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 383 "Integers are not of the same type as symbols!"); 384 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 385 "Integers are not of the same type as symbols!"); 386 387 QualType ResultTy; 388 if (BinaryOperator::isComparisonOp(Op)) 389 ResultTy = SVB.getConditionType(); 390 else if (BinaryOperator::isAdditiveOp(Op)) 391 ResultTy = SymTy; 392 else 393 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 394 395 // FIXME: Can we use assume() without getting into an infinite recursion? 396 if (LSym == RSym) 397 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 398 nonloc::ConcreteInt(RInt), ResultTy) 399 .castAs<NonLoc>(); 400 401 SymbolRef ResultSym = nullptr; 402 BinaryOperator::Opcode ResultOp; 403 llvm::APSInt ResultInt; 404 if (BinaryOperator::isComparisonOp(Op)) { 405 // Prefer comparing to a non-negative number. 406 // FIXME: Maybe it'd be better to have consistency in 407 // "$x - $y" vs. "$y - $x" because those are solver's keys. 408 if (LInt > RInt) { 409 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 410 ResultOp = BinaryOperator::reverseComparisonOp(Op); 411 ResultInt = LInt - RInt; // Opposite order! 412 } else { 413 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 414 ResultOp = Op; 415 ResultInt = RInt - LInt; // Opposite order! 416 } 417 } else { 418 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 419 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 420 ResultOp = BO_Add; 421 // Bring back the cosmetic difference. 422 if (ResultInt < 0) { 423 ResultInt = -ResultInt; 424 ResultOp = BO_Sub; 425 } else if (ResultInt == 0) { 426 // Shortcut: Simplify "$x + 0" to "$x". 427 return nonloc::SymbolVal(ResultSym); 428 } 429 } 430 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 431 return nonloc::SymbolVal( 432 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 433 } 434 435 // Rearrange if symbol type matches the result type and if the operator is a 436 // comparison operator, both symbol and constant must be within constant 437 // overflow bounds. 438 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 439 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 440 return Sym->getType() == Ty && 441 (!BinaryOperator::isComparisonOp(Op) || 442 (isWithinConstantOverflowBounds(Sym, State) && 443 isWithinConstantOverflowBounds(Int))); 444 } 445 446 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 447 BinaryOperator::Opcode Op, NonLoc Lhs, 448 NonLoc Rhs, QualType ResultTy) { 449 ProgramStateManager &StateMgr = State->getStateManager(); 450 SValBuilder &SVB = StateMgr.getSValBuilder(); 451 452 // We expect everything to be of the same type - this type. 453 QualType SingleTy; 454 455 auto &Opts = 456 StateMgr.getOwningEngine()->getAnalysisManager().getAnalyzerOptions(); 457 458 SymbolRef LSym = Lhs.getAsSymbol(); 459 if (!LSym) 460 return None; 461 462 // Always rearrange additive operations but rearrange comparisons only if 463 // option is set. 464 if (BinaryOperator::isComparisonOp(Op) && 465 Opts.shouldAggressivelySimplifyRelationalComparison()) { 466 SingleTy = LSym->getType(); 467 if (ResultTy != SVB.getConditionType()) 468 return None; 469 // Initialize SingleTy later with a symbol's type. 470 } else if (BinaryOperator::isAdditiveOp(Op)) { 471 SingleTy = ResultTy; 472 if (LSym->getType() != SingleTy) 473 return None; 474 // Substracting unsigned integers is a nightmare. 475 if (!SingleTy->isSignedIntegerOrEnumerationType()) 476 return None; 477 } else { 478 // Don't rearrange other operations. 479 return None; 480 } 481 482 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 483 484 SymbolRef RSym = Rhs.getAsSymbol(); 485 if (!RSym || RSym->getType() != SingleTy) 486 return None; 487 488 BasicValueFactory &BV = State->getBasicVals(); 489 llvm::APSInt LInt, RInt; 490 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 491 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 492 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 493 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 494 return None; 495 496 // We know that no overflows can occur anymore. 497 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 498 } 499 500 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 501 BinaryOperator::Opcode op, 502 NonLoc lhs, NonLoc rhs, 503 QualType resultTy) { 504 NonLoc InputLHS = lhs; 505 NonLoc InputRHS = rhs; 506 507 // Handle trivial case where left-side and right-side are the same. 508 if (lhs == rhs) 509 switch (op) { 510 default: 511 break; 512 case BO_EQ: 513 case BO_LE: 514 case BO_GE: 515 return makeTruthVal(true, resultTy); 516 case BO_LT: 517 case BO_GT: 518 case BO_NE: 519 return makeTruthVal(false, resultTy); 520 case BO_Xor: 521 case BO_Sub: 522 if (resultTy->isIntegralOrEnumerationType()) 523 return makeIntVal(0, resultTy); 524 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy); 525 case BO_Or: 526 case BO_And: 527 return evalCastFromNonLoc(lhs, resultTy); 528 } 529 530 while (1) { 531 switch (lhs.getSubKind()) { 532 default: 533 return makeSymExprValNN(state, op, lhs, rhs, resultTy); 534 case nonloc::PointerToMemberKind: { 535 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 536 "Both SVals should have pointer-to-member-type"); 537 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 538 RPTM = rhs.castAs<nonloc::PointerToMember>(); 539 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 540 switch (op) { 541 case BO_EQ: 542 return makeTruthVal(LPTMD == RPTMD, resultTy); 543 case BO_NE: 544 return makeTruthVal(LPTMD != RPTMD, resultTy); 545 default: 546 return UnknownVal(); 547 } 548 } 549 case nonloc::LocAsIntegerKind: { 550 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 551 switch (rhs.getSubKind()) { 552 case nonloc::LocAsIntegerKind: 553 // FIXME: at the moment the implementation 554 // of modeling "pointers as integers" is not complete. 555 if (!BinaryOperator::isComparisonOp(op)) 556 return UnknownVal(); 557 return evalBinOpLL(state, op, lhsL, 558 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 559 resultTy); 560 case nonloc::ConcreteIntKind: { 561 // FIXME: at the moment the implementation 562 // of modeling "pointers as integers" is not complete. 563 if (!BinaryOperator::isComparisonOp(op)) 564 return UnknownVal(); 565 // Transform the integer into a location and compare. 566 // FIXME: This only makes sense for comparisons. If we want to, say, 567 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 568 // then pack it back into a LocAsInteger. 569 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 570 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 571 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 572 } 573 default: 574 switch (op) { 575 case BO_EQ: 576 return makeTruthVal(false, resultTy); 577 case BO_NE: 578 return makeTruthVal(true, resultTy); 579 default: 580 // This case also handles pointer arithmetic. 581 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 582 } 583 } 584 } 585 case nonloc::ConcreteIntKind: { 586 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 587 588 // If we're dealing with two known constants, just perform the operation. 589 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 590 llvm::APSInt RHSValue = *KnownRHSValue; 591 if (BinaryOperator::isComparisonOp(op)) { 592 // We're looking for a type big enough to compare the two values. 593 // FIXME: This is not correct. char + short will result in a promotion 594 // to int. Unfortunately we have lost types by this point. 595 APSIntType CompareType = std::max(APSIntType(LHSValue), 596 APSIntType(RHSValue)); 597 CompareType.apply(LHSValue); 598 CompareType.apply(RHSValue); 599 } else if (!BinaryOperator::isShiftOp(op)) { 600 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 601 IntType.apply(LHSValue); 602 IntType.apply(RHSValue); 603 } 604 605 const llvm::APSInt *Result = 606 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 607 if (!Result) 608 return UndefinedVal(); 609 610 return nonloc::ConcreteInt(*Result); 611 } 612 613 // Swap the left and right sides and flip the operator if doing so 614 // allows us to better reason about the expression (this is a form 615 // of expression canonicalization). 616 // While we're at it, catch some special cases for non-commutative ops. 617 switch (op) { 618 case BO_LT: 619 case BO_GT: 620 case BO_LE: 621 case BO_GE: 622 op = BinaryOperator::reverseComparisonOp(op); 623 // FALL-THROUGH 624 case BO_EQ: 625 case BO_NE: 626 case BO_Add: 627 case BO_Mul: 628 case BO_And: 629 case BO_Xor: 630 case BO_Or: 631 std::swap(lhs, rhs); 632 continue; 633 case BO_Shr: 634 // (~0)>>a 635 if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) 636 return evalCastFromNonLoc(lhs, resultTy); 637 // FALL-THROUGH 638 case BO_Shl: 639 // 0<<a and 0>>a 640 if (LHSValue == 0) 641 return evalCastFromNonLoc(lhs, resultTy); 642 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 643 default: 644 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 645 } 646 } 647 case nonloc::SymbolValKind: { 648 // We only handle LHS as simple symbols or SymIntExprs. 649 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 650 651 // LHS is a symbolic expression. 652 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 653 654 // Is this a logical not? (!x is represented as x == 0.) 655 if (op == BO_EQ && rhs.isZeroConstant()) { 656 // We know how to negate certain expressions. Simplify them here. 657 658 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 659 switch (opc) { 660 default: 661 // We don't know how to negate this operation. 662 // Just handle it as if it were a normal comparison to 0. 663 break; 664 case BO_LAnd: 665 case BO_LOr: 666 llvm_unreachable("Logical operators handled by branching logic."); 667 case BO_Assign: 668 case BO_MulAssign: 669 case BO_DivAssign: 670 case BO_RemAssign: 671 case BO_AddAssign: 672 case BO_SubAssign: 673 case BO_ShlAssign: 674 case BO_ShrAssign: 675 case BO_AndAssign: 676 case BO_XorAssign: 677 case BO_OrAssign: 678 case BO_Comma: 679 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 680 case BO_PtrMemD: 681 case BO_PtrMemI: 682 llvm_unreachable("Pointer arithmetic not handled here."); 683 case BO_LT: 684 case BO_GT: 685 case BO_LE: 686 case BO_GE: 687 case BO_EQ: 688 case BO_NE: 689 assert(resultTy->isBooleanType() || 690 resultTy == getConditionType()); 691 assert(symIntExpr->getType()->isBooleanType() || 692 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 693 getConditionType())); 694 // Negate the comparison and make a value. 695 opc = BinaryOperator::negateComparisonOp(opc); 696 return makeNonLoc(symIntExpr->getLHS(), opc, 697 symIntExpr->getRHS(), resultTy); 698 } 699 } 700 701 // For now, only handle expressions whose RHS is a constant. 702 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 703 // If both the LHS and the current expression are additive, 704 // fold their constants and try again. 705 if (BinaryOperator::isAdditiveOp(op)) { 706 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 707 if (BinaryOperator::isAdditiveOp(lop)) { 708 // Convert the two constants to a common type, then combine them. 709 710 // resultTy may not be the best type to convert to, but it's 711 // probably the best choice in expressions with mixed type 712 // (such as x+1U+2LL). The rules for implicit conversions should 713 // choose a reasonable type to preserve the expression, and will 714 // at least match how the value is going to be used. 715 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 716 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 717 const llvm::APSInt &second = IntType.convert(*RHSValue); 718 719 const llvm::APSInt *newRHS; 720 if (lop == op) 721 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 722 else 723 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 724 725 assert(newRHS && "Invalid operation despite common type!"); 726 rhs = nonloc::ConcreteInt(*newRHS); 727 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 728 op = lop; 729 continue; 730 } 731 } 732 733 // Otherwise, make a SymIntExpr out of the expression. 734 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 735 } 736 } 737 738 // Does the symbolic expression simplify to a constant? 739 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 740 // and try again. 741 SVal simplifiedLhs = simplifySVal(state, lhs); 742 if (simplifiedLhs != lhs) 743 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { 744 lhs = *simplifiedLhsAsNonLoc; 745 continue; 746 } 747 748 // Is the RHS a constant? 749 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 750 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 751 752 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 753 return *V; 754 755 // Give up -- this is not a symbolic expression we can handle. 756 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 757 } 758 } 759 } 760 } 761 762 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 763 const FieldRegion *RightFR, 764 BinaryOperator::Opcode op, 765 QualType resultTy, 766 SimpleSValBuilder &SVB) { 767 // Only comparisons are meaningful here! 768 if (!BinaryOperator::isComparisonOp(op)) 769 return UnknownVal(); 770 771 // Next, see if the two FRs have the same super-region. 772 // FIXME: This doesn't handle casts yet, and simply stripping the casts 773 // doesn't help. 774 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 775 return UnknownVal(); 776 777 const FieldDecl *LeftFD = LeftFR->getDecl(); 778 const FieldDecl *RightFD = RightFR->getDecl(); 779 const RecordDecl *RD = LeftFD->getParent(); 780 781 // Make sure the two FRs are from the same kind of record. Just in case! 782 // FIXME: This is probably where inheritance would be a problem. 783 if (RD != RightFD->getParent()) 784 return UnknownVal(); 785 786 // We know for sure that the two fields are not the same, since that 787 // would have given us the same SVal. 788 if (op == BO_EQ) 789 return SVB.makeTruthVal(false, resultTy); 790 if (op == BO_NE) 791 return SVB.makeTruthVal(true, resultTy); 792 793 // Iterate through the fields and see which one comes first. 794 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 795 // members and the units in which bit-fields reside have addresses that 796 // increase in the order in which they are declared." 797 bool leftFirst = (op == BO_LT || op == BO_LE); 798 for (const auto *I : RD->fields()) { 799 if (I == LeftFD) 800 return SVB.makeTruthVal(leftFirst, resultTy); 801 if (I == RightFD) 802 return SVB.makeTruthVal(!leftFirst, resultTy); 803 } 804 805 llvm_unreachable("Fields not found in parent record's definition"); 806 } 807 808 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 809 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 810 BinaryOperator::Opcode op, 811 Loc lhs, Loc rhs, 812 QualType resultTy) { 813 // Only comparisons and subtractions are valid operations on two pointers. 814 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 815 // However, if a pointer is casted to an integer, evalBinOpNN may end up 816 // calling this function with another operation (PR7527). We don't attempt to 817 // model this for now, but it could be useful, particularly when the 818 // "location" is actually an integer value that's been passed through a void*. 819 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 820 return UnknownVal(); 821 822 // Special cases for when both sides are identical. 823 if (lhs == rhs) { 824 switch (op) { 825 default: 826 llvm_unreachable("Unimplemented operation for two identical values"); 827 case BO_Sub: 828 return makeZeroVal(resultTy); 829 case BO_EQ: 830 case BO_LE: 831 case BO_GE: 832 return makeTruthVal(true, resultTy); 833 case BO_NE: 834 case BO_LT: 835 case BO_GT: 836 return makeTruthVal(false, resultTy); 837 } 838 } 839 840 switch (lhs.getSubKind()) { 841 default: 842 llvm_unreachable("Ordering not implemented for this Loc."); 843 844 case loc::GotoLabelKind: 845 // The only thing we know about labels is that they're non-null. 846 if (rhs.isZeroConstant()) { 847 switch (op) { 848 default: 849 break; 850 case BO_Sub: 851 return evalCastFromLoc(lhs, resultTy); 852 case BO_EQ: 853 case BO_LE: 854 case BO_LT: 855 return makeTruthVal(false, resultTy); 856 case BO_NE: 857 case BO_GT: 858 case BO_GE: 859 return makeTruthVal(true, resultTy); 860 } 861 } 862 // There may be two labels for the same location, and a function region may 863 // have the same address as a label at the start of the function (depending 864 // on the ABI). 865 // FIXME: we can probably do a comparison against other MemRegions, though. 866 // FIXME: is there a way to tell if two labels refer to the same location? 867 return UnknownVal(); 868 869 case loc::ConcreteIntKind: { 870 // If one of the operands is a symbol and the other is a constant, 871 // build an expression for use by the constraint manager. 872 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 873 // We can only build expressions with symbols on the left, 874 // so we need a reversible operator. 875 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 876 return UnknownVal(); 877 878 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 879 op = BinaryOperator::reverseComparisonOp(op); 880 return makeNonLoc(rSym, op, lVal, resultTy); 881 } 882 883 // If both operands are constants, just perform the operation. 884 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 885 SVal ResultVal = 886 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 887 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 888 return evalCastFromNonLoc(*Result, resultTy); 889 890 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 891 return UnknownVal(); 892 } 893 894 // Special case comparisons against NULL. 895 // This must come after the test if the RHS is a symbol, which is used to 896 // build constraints. The address of any non-symbolic region is guaranteed 897 // to be non-NULL, as is any label. 898 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 899 if (lhs.isZeroConstant()) { 900 switch (op) { 901 default: 902 break; 903 case BO_EQ: 904 case BO_GT: 905 case BO_GE: 906 return makeTruthVal(false, resultTy); 907 case BO_NE: 908 case BO_LT: 909 case BO_LE: 910 return makeTruthVal(true, resultTy); 911 } 912 } 913 914 // Comparing an arbitrary integer to a region or label address is 915 // completely unknowable. 916 return UnknownVal(); 917 } 918 case loc::MemRegionValKind: { 919 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 920 // If one of the operands is a symbol and the other is a constant, 921 // build an expression for use by the constraint manager. 922 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 923 if (BinaryOperator::isComparisonOp(op)) 924 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 925 return UnknownVal(); 926 } 927 // Special case comparisons to NULL. 928 // This must come after the test if the LHS is a symbol, which is used to 929 // build constraints. The address of any non-symbolic region is guaranteed 930 // to be non-NULL. 931 if (rInt->isZeroConstant()) { 932 if (op == BO_Sub) 933 return evalCastFromLoc(lhs, resultTy); 934 935 if (BinaryOperator::isComparisonOp(op)) { 936 QualType boolType = getContext().BoolTy; 937 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); 938 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 939 return evalBinOpNN(state, op, l, r, resultTy); 940 } 941 } 942 943 // Comparing a region to an arbitrary integer is completely unknowable. 944 return UnknownVal(); 945 } 946 947 // Get both values as regions, if possible. 948 const MemRegion *LeftMR = lhs.getAsRegion(); 949 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 950 951 const MemRegion *RightMR = rhs.getAsRegion(); 952 if (!RightMR) 953 // The RHS is probably a label, which in theory could address a region. 954 // FIXME: we can probably make a more useful statement about non-code 955 // regions, though. 956 return UnknownVal(); 957 958 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 959 const MemRegion *RightBase = RightMR->getBaseRegion(); 960 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 961 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 962 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 963 964 // If the two regions are from different known memory spaces they cannot be 965 // equal. Also, assume that no symbolic region (whose memory space is 966 // unknown) is on the stack. 967 if (LeftMS != RightMS && 968 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 969 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 970 switch (op) { 971 default: 972 return UnknownVal(); 973 case BO_EQ: 974 return makeTruthVal(false, resultTy); 975 case BO_NE: 976 return makeTruthVal(true, resultTy); 977 } 978 } 979 980 // If both values wrap regions, see if they're from different base regions. 981 // Note, heap base symbolic regions are assumed to not alias with 982 // each other; for example, we assume that malloc returns different address 983 // on each invocation. 984 // FIXME: ObjC object pointers always reside on the heap, but currently 985 // we treat their memory space as unknown, because symbolic pointers 986 // to ObjC objects may alias. There should be a way to construct 987 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 988 // guesses memory space for ObjC object pointers manually instead of 989 // relying on us. 990 if (LeftBase != RightBase && 991 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 992 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 993 switch (op) { 994 default: 995 return UnknownVal(); 996 case BO_EQ: 997 return makeTruthVal(false, resultTy); 998 case BO_NE: 999 return makeTruthVal(true, resultTy); 1000 } 1001 } 1002 1003 // Handle special cases for when both regions are element regions. 1004 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 1005 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 1006 if (RightER && LeftER) { 1007 // Next, see if the two ERs have the same super-region and matching types. 1008 // FIXME: This should do something useful even if the types don't match, 1009 // though if both indexes are constant the RegionRawOffset path will 1010 // give the correct answer. 1011 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 1012 LeftER->getElementType() == RightER->getElementType()) { 1013 // Get the left index and cast it to the correct type. 1014 // If the index is unknown or undefined, bail out here. 1015 SVal LeftIndexVal = LeftER->getIndex(); 1016 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1017 if (!LeftIndex) 1018 return UnknownVal(); 1019 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); 1020 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1021 if (!LeftIndex) 1022 return UnknownVal(); 1023 1024 // Do the same for the right index. 1025 SVal RightIndexVal = RightER->getIndex(); 1026 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1027 if (!RightIndex) 1028 return UnknownVal(); 1029 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); 1030 RightIndex = RightIndexVal.getAs<NonLoc>(); 1031 if (!RightIndex) 1032 return UnknownVal(); 1033 1034 // Actually perform the operation. 1035 // evalBinOpNN expects the two indexes to already be the right type. 1036 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1037 } 1038 } 1039 1040 // Special handling of the FieldRegions, even with symbolic offsets. 1041 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1042 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1043 if (RightFR && LeftFR) { 1044 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1045 *this); 1046 if (!R.isUnknown()) 1047 return R; 1048 } 1049 1050 // Compare the regions using the raw offsets. 1051 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1052 RegionOffset RightOffset = RightMR->getAsOffset(); 1053 1054 if (LeftOffset.getRegion() != nullptr && 1055 LeftOffset.getRegion() == RightOffset.getRegion() && 1056 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1057 int64_t left = LeftOffset.getOffset(); 1058 int64_t right = RightOffset.getOffset(); 1059 1060 switch (op) { 1061 default: 1062 return UnknownVal(); 1063 case BO_LT: 1064 return makeTruthVal(left < right, resultTy); 1065 case BO_GT: 1066 return makeTruthVal(left > right, resultTy); 1067 case BO_LE: 1068 return makeTruthVal(left <= right, resultTy); 1069 case BO_GE: 1070 return makeTruthVal(left >= right, resultTy); 1071 case BO_EQ: 1072 return makeTruthVal(left == right, resultTy); 1073 case BO_NE: 1074 return makeTruthVal(left != right, resultTy); 1075 } 1076 } 1077 1078 // At this point we're not going to get a good answer, but we can try 1079 // conjuring an expression instead. 1080 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1081 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1082 if (LHSSym && RHSSym) 1083 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1084 1085 // If we get here, we have no way of comparing the regions. 1086 return UnknownVal(); 1087 } 1088 } 1089 } 1090 1091 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1092 BinaryOperator::Opcode op, 1093 Loc lhs, NonLoc rhs, QualType resultTy) { 1094 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1095 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1096 if (PTMSV->isNullMemberPointer()) 1097 return UndefinedVal(); 1098 if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) { 1099 SVal Result = lhs; 1100 1101 for (const auto &I : *PTMSV) 1102 Result = StateMgr.getStoreManager().evalDerivedToBase( 1103 Result, I->getType(),I->isVirtual()); 1104 return state->getLValue(FD, Result); 1105 } 1106 } 1107 1108 return rhs; 1109 } 1110 1111 assert(!BinaryOperator::isComparisonOp(op) && 1112 "arguments to comparison ops must be of the same type"); 1113 1114 // Special case: rhs is a zero constant. 1115 if (rhs.isZeroConstant()) 1116 return lhs; 1117 1118 // Perserve the null pointer so that it can be found by the DerefChecker. 1119 if (lhs.isZeroConstant()) 1120 return lhs; 1121 1122 // We are dealing with pointer arithmetic. 1123 1124 // Handle pointer arithmetic on constant values. 1125 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1126 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1127 const llvm::APSInt &leftI = lhsInt->getValue(); 1128 assert(leftI.isUnsigned()); 1129 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1130 1131 // Convert the bitwidth of rightI. This should deal with overflow 1132 // since we are dealing with concrete values. 1133 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1134 1135 // Offset the increment by the pointer size. 1136 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1137 QualType pointeeType = resultTy->getPointeeType(); 1138 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1139 rightI *= Multiplicand; 1140 1141 // Compute the adjusted pointer. 1142 switch (op) { 1143 case BO_Add: 1144 rightI = leftI + rightI; 1145 break; 1146 case BO_Sub: 1147 rightI = leftI - rightI; 1148 break; 1149 default: 1150 llvm_unreachable("Invalid pointer arithmetic operation"); 1151 } 1152 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1153 } 1154 } 1155 1156 // Handle cases where 'lhs' is a region. 1157 if (const MemRegion *region = lhs.getAsRegion()) { 1158 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1159 SVal index = UnknownVal(); 1160 const SubRegion *superR = nullptr; 1161 // We need to know the type of the pointer in order to add an integer to it. 1162 // Depending on the type, different amount of bytes is added. 1163 QualType elementType; 1164 1165 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1166 assert(op == BO_Add || op == BO_Sub); 1167 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1168 getArrayIndexType()); 1169 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1170 elementType = elemReg->getElementType(); 1171 } 1172 else if (isa<SubRegion>(region)) { 1173 assert(op == BO_Add || op == BO_Sub); 1174 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1175 superR = cast<SubRegion>(region); 1176 // TODO: Is this actually reliable? Maybe improving our MemRegion 1177 // hierarchy to provide typed regions for all non-void pointers would be 1178 // better. For instance, we cannot extend this towards LocAsInteger 1179 // operations, where result type of the expression is integer. 1180 if (resultTy->isAnyPointerType()) 1181 elementType = resultTy->getPointeeType(); 1182 } 1183 1184 // Represent arithmetic on void pointers as arithmetic on char pointers. 1185 // It is fine when a TypedValueRegion of char value type represents 1186 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1187 if (elementType->isVoidType()) 1188 elementType = getContext().CharTy; 1189 1190 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1191 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1192 superR, getContext())); 1193 } 1194 } 1195 return UnknownVal(); 1196 } 1197 1198 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1199 SVal V) { 1200 if (V.isUnknownOrUndef()) 1201 return nullptr; 1202 1203 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1204 return &X->getValue(); 1205 1206 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1207 return &X->getValue(); 1208 1209 if (SymbolRef Sym = V.getAsSymbol()) 1210 return state->getConstraintManager().getSymVal(state, Sym); 1211 1212 // FIXME: Add support for SymExprs. 1213 return nullptr; 1214 } 1215 1216 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1217 // For now, this function tries to constant-fold symbols inside a 1218 // nonloc::SymbolVal, and does nothing else. More simplifications should 1219 // be possible, such as constant-folding an index in an ElementRegion. 1220 1221 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1222 ProgramStateRef State; 1223 SValBuilder &SVB; 1224 1225 public: 1226 Simplifier(ProgramStateRef State) 1227 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1228 1229 SVal VisitSymbolData(const SymbolData *S) { 1230 if (const llvm::APSInt *I = 1231 SVB.getKnownValue(State, nonloc::SymbolVal(S))) 1232 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1233 : (SVal)SVB.makeIntVal(*I); 1234 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeLoc(S) 1235 : nonloc::SymbolVal(S); 1236 } 1237 1238 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually 1239 // start producing them. 1240 1241 SVal VisitSymIntExpr(const SymIntExpr *S) { 1242 SVal LHS = Visit(S->getLHS()); 1243 SVal RHS; 1244 // By looking at the APSInt in the right-hand side of S, we cannot 1245 // figure out if it should be treated as a Loc or as a NonLoc. 1246 // So make our guess by recalling that we cannot multiply pointers 1247 // or compare a pointer to an integer. 1248 if (Loc::isLocType(S->getLHS()->getType()) && 1249 BinaryOperator::isComparisonOp(S->getOpcode())) { 1250 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1251 // the same meaning for Loc-type symbols, but the latter form 1252 // is preferred in SVal computations for being Loc itself. 1253 if (SymbolRef Sym = LHS.getAsSymbol()) { 1254 assert(Loc::isLocType(Sym->getType())); 1255 LHS = SVB.makeLoc(Sym); 1256 } 1257 RHS = SVB.makeIntLocVal(S->getRHS()); 1258 } else { 1259 RHS = SVB.makeIntVal(S->getRHS()); 1260 } 1261 return SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()); 1262 } 1263 1264 SVal VisitSymSymExpr(const SymSymExpr *S) { 1265 SVal LHS = Visit(S->getLHS()); 1266 SVal RHS = Visit(S->getRHS()); 1267 return SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()); 1268 } 1269 1270 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1271 1272 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1273 1274 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1275 // Simplification is much more costly than computing complexity. 1276 // For high complexity, it may be not worth it. 1277 if (V.getSymbol()->computeComplexity() > 100) 1278 return V; 1279 return Visit(V.getSymbol()); 1280 } 1281 1282 SVal VisitSVal(SVal V) { return V; } 1283 }; 1284 1285 return Simplifier(State).Visit(V); 1286 } 1287