1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 21 using namespace clang; 22 using namespace ento; 23 24 namespace { 25 class SimpleSValBuilder : public SValBuilder { 26 protected: 27 SVal dispatchCast(SVal val, QualType castTy) override; 28 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; 29 SVal evalCastFromLoc(Loc val, QualType castTy) override; 30 31 public: 32 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 33 ProgramStateManager &stateMgr) 34 : SValBuilder(alloc, context, stateMgr) {} 35 ~SimpleSValBuilder() override {} 36 37 SVal evalMinus(NonLoc val) override; 38 SVal evalComplement(NonLoc val) override; 39 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 40 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 41 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 42 Loc lhs, Loc rhs, QualType resultTy) override; 43 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 44 Loc lhs, NonLoc rhs, QualType resultTy) override; 45 46 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 47 /// (integer) value, that value is returned. Otherwise, returns NULL. 48 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 49 50 /// Recursively descends into symbolic expressions and replaces symbols 51 /// with their known values (in the sense of the getKnownValue() method). 52 SVal simplifySVal(ProgramStateRef State, SVal V) override; 53 54 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 55 const llvm::APSInt &RHS, QualType resultTy); 56 }; 57 } // end anonymous namespace 58 59 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 60 ASTContext &context, 61 ProgramStateManager &stateMgr) { 62 return new SimpleSValBuilder(alloc, context, stateMgr); 63 } 64 65 //===----------------------------------------------------------------------===// 66 // Transfer function for Casts. 67 //===----------------------------------------------------------------------===// 68 69 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 70 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); 71 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) 72 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); 73 } 74 75 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 76 bool isLocType = Loc::isLocType(castTy); 77 if (val.getAs<nonloc::PointerToMember>()) 78 return val; 79 80 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { 81 if (isLocType) 82 return LI->getLoc(); 83 // FIXME: Correctly support promotions/truncations. 84 unsigned castSize = Context.getIntWidth(castTy); 85 if (castSize == LI->getNumBits()) 86 return val; 87 return makeLocAsInteger(LI->getLoc(), castSize); 88 } 89 90 if (const SymExpr *se = val.getAsSymbolicExpression()) { 91 QualType T = Context.getCanonicalType(se->getType()); 92 // If types are the same or both are integers, ignore the cast. 93 // FIXME: Remove this hack when we support symbolic truncation/extension. 94 // HACK: If both castTy and T are integers, ignore the cast. This is 95 // not a permanent solution. Eventually we want to precisely handle 96 // extension/truncation of symbolic integers. This prevents us from losing 97 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 98 // different integer types. 99 if (haveSameType(T, castTy)) 100 return val; 101 102 if (!isLocType) 103 return makeNonLoc(se, T, castTy); 104 return UnknownVal(); 105 } 106 107 // If value is a non-integer constant, produce unknown. 108 if (!val.getAs<nonloc::ConcreteInt>()) 109 return UnknownVal(); 110 111 // Handle casts to a boolean type. 112 if (castTy->isBooleanType()) { 113 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); 114 return makeTruthVal(b, castTy); 115 } 116 117 // Only handle casts from integers to integers - if val is an integer constant 118 // being cast to a non-integer type, produce unknown. 119 if (!isLocType && !castTy->isIntegralOrEnumerationType()) 120 return UnknownVal(); 121 122 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); 123 BasicVals.getAPSIntType(castTy).apply(i); 124 125 if (isLocType) 126 return makeIntLocVal(i); 127 else 128 return makeIntVal(i); 129 } 130 131 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 132 133 // Casts from pointers -> pointers, just return the lval. 134 // 135 // Casts from pointers -> references, just return the lval. These 136 // can be introduced by the frontend for corner cases, e.g 137 // casting from va_list* to __builtin_va_list&. 138 // 139 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 140 return val; 141 142 // FIXME: Handle transparent unions where a value can be "transparently" 143 // lifted into a union type. 144 if (castTy->isUnionType()) 145 return UnknownVal(); 146 147 // Casting a Loc to a bool will almost always be true, 148 // unless this is a weak function or a symbolic region. 149 if (castTy->isBooleanType()) { 150 switch (val.getSubKind()) { 151 case loc::MemRegionValKind: { 152 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); 153 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) 154 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) 155 if (FD->isWeak()) 156 // FIXME: Currently we are using an extent symbol here, 157 // because there are no generic region address metadata 158 // symbols to use, only content metadata. 159 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); 160 161 if (const SymbolicRegion *SymR = R->getSymbolicBase()) 162 return makeNonLoc(SymR->getSymbol(), BO_NE, 163 BasicVals.getZeroWithPtrWidth(), castTy); 164 165 // FALL-THROUGH 166 LLVM_FALLTHROUGH; 167 } 168 169 case loc::GotoLabelKind: 170 // Labels and non-symbolic memory regions are always true. 171 return makeTruthVal(true, castTy); 172 } 173 } 174 175 if (castTy->isIntegralOrEnumerationType()) { 176 unsigned BitWidth = Context.getIntWidth(castTy); 177 178 if (!val.getAs<loc::ConcreteInt>()) 179 return makeLocAsInteger(val, BitWidth); 180 181 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); 182 BasicVals.getAPSIntType(castTy).apply(i); 183 return makeIntVal(i); 184 } 185 186 // All other cases: return 'UnknownVal'. This includes casting pointers 187 // to floats, which is probably badness it itself, but this is a good 188 // intermediate solution until we do something better. 189 return UnknownVal(); 190 } 191 192 //===----------------------------------------------------------------------===// 193 // Transfer function for unary operators. 194 //===----------------------------------------------------------------------===// 195 196 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 197 switch (val.getSubKind()) { 198 case nonloc::ConcreteIntKind: 199 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 200 default: 201 return UnknownVal(); 202 } 203 } 204 205 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 206 switch (X.getSubKind()) { 207 case nonloc::ConcreteIntKind: 208 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 209 default: 210 return UnknownVal(); 211 } 212 } 213 214 //===----------------------------------------------------------------------===// 215 // Transfer function for binary operators. 216 //===----------------------------------------------------------------------===// 217 218 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 219 BinaryOperator::Opcode op, 220 const llvm::APSInt &RHS, 221 QualType resultTy) { 222 bool isIdempotent = false; 223 224 // Check for a few special cases with known reductions first. 225 switch (op) { 226 default: 227 // We can't reduce this case; just treat it normally. 228 break; 229 case BO_Mul: 230 // a*0 and a*1 231 if (RHS == 0) 232 return makeIntVal(0, resultTy); 233 else if (RHS == 1) 234 isIdempotent = true; 235 break; 236 case BO_Div: 237 // a/0 and a/1 238 if (RHS == 0) 239 // This is also handled elsewhere. 240 return UndefinedVal(); 241 else if (RHS == 1) 242 isIdempotent = true; 243 break; 244 case BO_Rem: 245 // a%0 and a%1 246 if (RHS == 0) 247 // This is also handled elsewhere. 248 return UndefinedVal(); 249 else if (RHS == 1) 250 return makeIntVal(0, resultTy); 251 break; 252 case BO_Add: 253 case BO_Sub: 254 case BO_Shl: 255 case BO_Shr: 256 case BO_Xor: 257 // a+0, a-0, a<<0, a>>0, a^0 258 if (RHS == 0) 259 isIdempotent = true; 260 break; 261 case BO_And: 262 // a&0 and a&(~0) 263 if (RHS == 0) 264 return makeIntVal(0, resultTy); 265 else if (RHS.isAllOnesValue()) 266 isIdempotent = true; 267 break; 268 case BO_Or: 269 // a|0 and a|(~0) 270 if (RHS == 0) 271 isIdempotent = true; 272 else if (RHS.isAllOnesValue()) { 273 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 274 return nonloc::ConcreteInt(Result); 275 } 276 break; 277 } 278 279 // Idempotent ops (like a*1) can still change the type of an expression. 280 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 281 // dirty work. 282 if (isIdempotent) 283 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 284 285 // If we reach this point, the expression cannot be simplified. 286 // Make a SymbolVal for the entire expression, after converting the RHS. 287 const llvm::APSInt *ConvertedRHS = &RHS; 288 if (BinaryOperator::isComparisonOp(op)) { 289 // We're looking for a type big enough to compare the symbolic value 290 // with the given constant. 291 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 292 ASTContext &Ctx = getContext(); 293 QualType SymbolType = LHS->getType(); 294 uint64_t ValWidth = RHS.getBitWidth(); 295 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 296 297 if (ValWidth < TypeWidth) { 298 // If the value is too small, extend it. 299 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 300 } else if (ValWidth == TypeWidth) { 301 // If the value is signed but the symbol is unsigned, do the comparison 302 // in unsigned space. [C99 6.3.1.8] 303 // (For the opposite case, the value is already unsigned.) 304 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 305 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 306 } 307 } else 308 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 309 310 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 311 } 312 313 // See if Sym is known to be a relation Rel with Bound. 314 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 315 llvm::APSInt Bound, ProgramStateRef State) { 316 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 317 SVal Result = 318 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 319 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 320 if (auto DV = Result.getAs<DefinedSVal>()) { 321 return !State->assume(*DV, false); 322 } 323 return false; 324 } 325 326 // See if Sym is known to be within [min/4, max/4], where min and max 327 // are the bounds of the symbol's integral type. With such symbols, 328 // some manipulations can be performed without the risk of overflow. 329 // assume() doesn't cause infinite recursion because we should be dealing 330 // with simpler symbols on every recursive call. 331 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 332 ProgramStateRef State) { 333 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 334 BasicValueFactory &BV = SVB.getBasicValueFactory(); 335 336 QualType T = Sym->getType(); 337 assert(T->isSignedIntegerOrEnumerationType() && 338 "This only works with signed integers!"); 339 APSIntType AT = BV.getAPSIntType(T); 340 341 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 342 return isInRelation(BO_LE, Sym, Max, State) && 343 isInRelation(BO_GE, Sym, Min, State); 344 } 345 346 // Same for the concrete integers: see if I is within [min/4, max/4]. 347 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 348 APSIntType AT(I); 349 assert(!AT.isUnsigned() && 350 "This only works with signed integers!"); 351 352 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 353 return (I <= Max) && (I >= -Max); 354 } 355 356 static std::pair<SymbolRef, llvm::APSInt> 357 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 358 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 359 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 360 return std::make_pair(SymInt->getLHS(), 361 (SymInt->getOpcode() == BO_Add) ? 362 (SymInt->getRHS()) : 363 (-SymInt->getRHS())); 364 365 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 366 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 367 } 368 369 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 370 // same signed integral type and no overflows occur (which should be checked 371 // by the caller). 372 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 373 BinaryOperator::Opcode Op, 374 SymbolRef LSym, llvm::APSInt LInt, 375 SymbolRef RSym, llvm::APSInt RInt) { 376 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 377 BasicValueFactory &BV = SVB.getBasicValueFactory(); 378 SymbolManager &SymMgr = SVB.getSymbolManager(); 379 380 QualType SymTy = LSym->getType(); 381 assert(SymTy == RSym->getType() && 382 "Symbols are not of the same type!"); 383 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 384 "Integers are not of the same type as symbols!"); 385 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 386 "Integers are not of the same type as symbols!"); 387 388 QualType ResultTy; 389 if (BinaryOperator::isComparisonOp(Op)) 390 ResultTy = SVB.getConditionType(); 391 else if (BinaryOperator::isAdditiveOp(Op)) 392 ResultTy = SymTy; 393 else 394 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 395 396 // FIXME: Can we use assume() without getting into an infinite recursion? 397 if (LSym == RSym) 398 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 399 nonloc::ConcreteInt(RInt), ResultTy) 400 .castAs<NonLoc>(); 401 402 SymbolRef ResultSym = nullptr; 403 BinaryOperator::Opcode ResultOp; 404 llvm::APSInt ResultInt; 405 if (BinaryOperator::isComparisonOp(Op)) { 406 // Prefer comparing to a non-negative number. 407 // FIXME: Maybe it'd be better to have consistency in 408 // "$x - $y" vs. "$y - $x" because those are solver's keys. 409 if (LInt > RInt) { 410 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 411 ResultOp = BinaryOperator::reverseComparisonOp(Op); 412 ResultInt = LInt - RInt; // Opposite order! 413 } else { 414 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 415 ResultOp = Op; 416 ResultInt = RInt - LInt; // Opposite order! 417 } 418 } else { 419 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 420 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 421 ResultOp = BO_Add; 422 // Bring back the cosmetic difference. 423 if (ResultInt < 0) { 424 ResultInt = -ResultInt; 425 ResultOp = BO_Sub; 426 } else if (ResultInt == 0) { 427 // Shortcut: Simplify "$x + 0" to "$x". 428 return nonloc::SymbolVal(ResultSym); 429 } 430 } 431 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 432 return nonloc::SymbolVal( 433 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 434 } 435 436 // Rearrange if symbol type matches the result type and if the operator is a 437 // comparison operator, both symbol and constant must be within constant 438 // overflow bounds. 439 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 440 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 441 return Sym->getType() == Ty && 442 (!BinaryOperator::isComparisonOp(Op) || 443 (isWithinConstantOverflowBounds(Sym, State) && 444 isWithinConstantOverflowBounds(Int))); 445 } 446 447 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 448 BinaryOperator::Opcode Op, NonLoc Lhs, 449 NonLoc Rhs, QualType ResultTy) { 450 ProgramStateManager &StateMgr = State->getStateManager(); 451 SValBuilder &SVB = StateMgr.getSValBuilder(); 452 453 // We expect everything to be of the same type - this type. 454 QualType SingleTy; 455 456 auto &Opts = 457 StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions(); 458 459 // FIXME: After putting complexity threshold to the symbols we can always 460 // rearrange additive operations but rearrange comparisons only if 461 // option is set. 462 if(!Opts.ShouldAggressivelySimplifyBinaryOperation) 463 return None; 464 465 SymbolRef LSym = Lhs.getAsSymbol(); 466 if (!LSym) 467 return None; 468 469 if (BinaryOperator::isComparisonOp(Op)) { 470 SingleTy = LSym->getType(); 471 if (ResultTy != SVB.getConditionType()) 472 return None; 473 // Initialize SingleTy later with a symbol's type. 474 } else if (BinaryOperator::isAdditiveOp(Op)) { 475 SingleTy = ResultTy; 476 if (LSym->getType() != SingleTy) 477 return None; 478 } else { 479 // Don't rearrange other operations. 480 return None; 481 } 482 483 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 484 485 // Rearrange signed symbolic expressions only 486 if (!SingleTy->isSignedIntegerOrEnumerationType()) 487 return None; 488 489 SymbolRef RSym = Rhs.getAsSymbol(); 490 if (!RSym || RSym->getType() != SingleTy) 491 return None; 492 493 BasicValueFactory &BV = State->getBasicVals(); 494 llvm::APSInt LInt, RInt; 495 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 496 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 497 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 498 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 499 return None; 500 501 // We know that no overflows can occur anymore. 502 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 503 } 504 505 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 506 BinaryOperator::Opcode op, 507 NonLoc lhs, NonLoc rhs, 508 QualType resultTy) { 509 NonLoc InputLHS = lhs; 510 NonLoc InputRHS = rhs; 511 512 // Handle trivial case where left-side and right-side are the same. 513 if (lhs == rhs) 514 switch (op) { 515 default: 516 break; 517 case BO_EQ: 518 case BO_LE: 519 case BO_GE: 520 return makeTruthVal(true, resultTy); 521 case BO_LT: 522 case BO_GT: 523 case BO_NE: 524 return makeTruthVal(false, resultTy); 525 case BO_Xor: 526 case BO_Sub: 527 if (resultTy->isIntegralOrEnumerationType()) 528 return makeIntVal(0, resultTy); 529 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy); 530 case BO_Or: 531 case BO_And: 532 return evalCastFromNonLoc(lhs, resultTy); 533 } 534 535 while (1) { 536 switch (lhs.getSubKind()) { 537 default: 538 return makeSymExprValNN(op, lhs, rhs, resultTy); 539 case nonloc::PointerToMemberKind: { 540 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 541 "Both SVals should have pointer-to-member-type"); 542 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 543 RPTM = rhs.castAs<nonloc::PointerToMember>(); 544 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 545 switch (op) { 546 case BO_EQ: 547 return makeTruthVal(LPTMD == RPTMD, resultTy); 548 case BO_NE: 549 return makeTruthVal(LPTMD != RPTMD, resultTy); 550 default: 551 return UnknownVal(); 552 } 553 } 554 case nonloc::LocAsIntegerKind: { 555 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 556 switch (rhs.getSubKind()) { 557 case nonloc::LocAsIntegerKind: 558 // FIXME: at the moment the implementation 559 // of modeling "pointers as integers" is not complete. 560 if (!BinaryOperator::isComparisonOp(op)) 561 return UnknownVal(); 562 return evalBinOpLL(state, op, lhsL, 563 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 564 resultTy); 565 case nonloc::ConcreteIntKind: { 566 // FIXME: at the moment the implementation 567 // of modeling "pointers as integers" is not complete. 568 if (!BinaryOperator::isComparisonOp(op)) 569 return UnknownVal(); 570 // Transform the integer into a location and compare. 571 // FIXME: This only makes sense for comparisons. If we want to, say, 572 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 573 // then pack it back into a LocAsInteger. 574 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 575 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 576 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 577 } 578 default: 579 switch (op) { 580 case BO_EQ: 581 return makeTruthVal(false, resultTy); 582 case BO_NE: 583 return makeTruthVal(true, resultTy); 584 default: 585 // This case also handles pointer arithmetic. 586 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 587 } 588 } 589 } 590 case nonloc::ConcreteIntKind: { 591 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 592 593 // If we're dealing with two known constants, just perform the operation. 594 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 595 llvm::APSInt RHSValue = *KnownRHSValue; 596 if (BinaryOperator::isComparisonOp(op)) { 597 // We're looking for a type big enough to compare the two values. 598 // FIXME: This is not correct. char + short will result in a promotion 599 // to int. Unfortunately we have lost types by this point. 600 APSIntType CompareType = std::max(APSIntType(LHSValue), 601 APSIntType(RHSValue)); 602 CompareType.apply(LHSValue); 603 CompareType.apply(RHSValue); 604 } else if (!BinaryOperator::isShiftOp(op)) { 605 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 606 IntType.apply(LHSValue); 607 IntType.apply(RHSValue); 608 } 609 610 const llvm::APSInt *Result = 611 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 612 if (!Result) 613 return UndefinedVal(); 614 615 return nonloc::ConcreteInt(*Result); 616 } 617 618 // Swap the left and right sides and flip the operator if doing so 619 // allows us to better reason about the expression (this is a form 620 // of expression canonicalization). 621 // While we're at it, catch some special cases for non-commutative ops. 622 switch (op) { 623 case BO_LT: 624 case BO_GT: 625 case BO_LE: 626 case BO_GE: 627 op = BinaryOperator::reverseComparisonOp(op); 628 LLVM_FALLTHROUGH; 629 case BO_EQ: 630 case BO_NE: 631 case BO_Add: 632 case BO_Mul: 633 case BO_And: 634 case BO_Xor: 635 case BO_Or: 636 std::swap(lhs, rhs); 637 continue; 638 case BO_Shr: 639 // (~0)>>a 640 if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) 641 return evalCastFromNonLoc(lhs, resultTy); 642 LLVM_FALLTHROUGH; 643 case BO_Shl: 644 // 0<<a and 0>>a 645 if (LHSValue == 0) 646 return evalCastFromNonLoc(lhs, resultTy); 647 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 648 default: 649 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 650 } 651 } 652 case nonloc::SymbolValKind: { 653 // We only handle LHS as simple symbols or SymIntExprs. 654 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 655 656 // LHS is a symbolic expression. 657 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 658 659 // Is this a logical not? (!x is represented as x == 0.) 660 if (op == BO_EQ && rhs.isZeroConstant()) { 661 // We know how to negate certain expressions. Simplify them here. 662 663 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 664 switch (opc) { 665 default: 666 // We don't know how to negate this operation. 667 // Just handle it as if it were a normal comparison to 0. 668 break; 669 case BO_LAnd: 670 case BO_LOr: 671 llvm_unreachable("Logical operators handled by branching logic."); 672 case BO_Assign: 673 case BO_MulAssign: 674 case BO_DivAssign: 675 case BO_RemAssign: 676 case BO_AddAssign: 677 case BO_SubAssign: 678 case BO_ShlAssign: 679 case BO_ShrAssign: 680 case BO_AndAssign: 681 case BO_XorAssign: 682 case BO_OrAssign: 683 case BO_Comma: 684 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 685 case BO_PtrMemD: 686 case BO_PtrMemI: 687 llvm_unreachable("Pointer arithmetic not handled here."); 688 case BO_LT: 689 case BO_GT: 690 case BO_LE: 691 case BO_GE: 692 case BO_EQ: 693 case BO_NE: 694 assert(resultTy->isBooleanType() || 695 resultTy == getConditionType()); 696 assert(symIntExpr->getType()->isBooleanType() || 697 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 698 getConditionType())); 699 // Negate the comparison and make a value. 700 opc = BinaryOperator::negateComparisonOp(opc); 701 return makeNonLoc(symIntExpr->getLHS(), opc, 702 symIntExpr->getRHS(), resultTy); 703 } 704 } 705 706 // For now, only handle expressions whose RHS is a constant. 707 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 708 // If both the LHS and the current expression are additive, 709 // fold their constants and try again. 710 if (BinaryOperator::isAdditiveOp(op)) { 711 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 712 if (BinaryOperator::isAdditiveOp(lop)) { 713 // Convert the two constants to a common type, then combine them. 714 715 // resultTy may not be the best type to convert to, but it's 716 // probably the best choice in expressions with mixed type 717 // (such as x+1U+2LL). The rules for implicit conversions should 718 // choose a reasonable type to preserve the expression, and will 719 // at least match how the value is going to be used. 720 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 721 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 722 const llvm::APSInt &second = IntType.convert(*RHSValue); 723 724 const llvm::APSInt *newRHS; 725 if (lop == op) 726 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 727 else 728 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 729 730 assert(newRHS && "Invalid operation despite common type!"); 731 rhs = nonloc::ConcreteInt(*newRHS); 732 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 733 op = lop; 734 continue; 735 } 736 } 737 738 // Otherwise, make a SymIntExpr out of the expression. 739 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 740 } 741 } 742 743 // Does the symbolic expression simplify to a constant? 744 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 745 // and try again. 746 SVal simplifiedLhs = simplifySVal(state, lhs); 747 if (simplifiedLhs != lhs) 748 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { 749 lhs = *simplifiedLhsAsNonLoc; 750 continue; 751 } 752 753 // Is the RHS a constant? 754 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 755 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 756 757 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 758 return *V; 759 760 // Give up -- this is not a symbolic expression we can handle. 761 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 762 } 763 } 764 } 765 } 766 767 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 768 const FieldRegion *RightFR, 769 BinaryOperator::Opcode op, 770 QualType resultTy, 771 SimpleSValBuilder &SVB) { 772 // Only comparisons are meaningful here! 773 if (!BinaryOperator::isComparisonOp(op)) 774 return UnknownVal(); 775 776 // Next, see if the two FRs have the same super-region. 777 // FIXME: This doesn't handle casts yet, and simply stripping the casts 778 // doesn't help. 779 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 780 return UnknownVal(); 781 782 const FieldDecl *LeftFD = LeftFR->getDecl(); 783 const FieldDecl *RightFD = RightFR->getDecl(); 784 const RecordDecl *RD = LeftFD->getParent(); 785 786 // Make sure the two FRs are from the same kind of record. Just in case! 787 // FIXME: This is probably where inheritance would be a problem. 788 if (RD != RightFD->getParent()) 789 return UnknownVal(); 790 791 // We know for sure that the two fields are not the same, since that 792 // would have given us the same SVal. 793 if (op == BO_EQ) 794 return SVB.makeTruthVal(false, resultTy); 795 if (op == BO_NE) 796 return SVB.makeTruthVal(true, resultTy); 797 798 // Iterate through the fields and see which one comes first. 799 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 800 // members and the units in which bit-fields reside have addresses that 801 // increase in the order in which they are declared." 802 bool leftFirst = (op == BO_LT || op == BO_LE); 803 for (const auto *I : RD->fields()) { 804 if (I == LeftFD) 805 return SVB.makeTruthVal(leftFirst, resultTy); 806 if (I == RightFD) 807 return SVB.makeTruthVal(!leftFirst, resultTy); 808 } 809 810 llvm_unreachable("Fields not found in parent record's definition"); 811 } 812 813 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 814 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 815 BinaryOperator::Opcode op, 816 Loc lhs, Loc rhs, 817 QualType resultTy) { 818 // Only comparisons and subtractions are valid operations on two pointers. 819 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 820 // However, if a pointer is casted to an integer, evalBinOpNN may end up 821 // calling this function with another operation (PR7527). We don't attempt to 822 // model this for now, but it could be useful, particularly when the 823 // "location" is actually an integer value that's been passed through a void*. 824 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 825 return UnknownVal(); 826 827 // Special cases for when both sides are identical. 828 if (lhs == rhs) { 829 switch (op) { 830 default: 831 llvm_unreachable("Unimplemented operation for two identical values"); 832 case BO_Sub: 833 return makeZeroVal(resultTy); 834 case BO_EQ: 835 case BO_LE: 836 case BO_GE: 837 return makeTruthVal(true, resultTy); 838 case BO_NE: 839 case BO_LT: 840 case BO_GT: 841 return makeTruthVal(false, resultTy); 842 } 843 } 844 845 switch (lhs.getSubKind()) { 846 default: 847 llvm_unreachable("Ordering not implemented for this Loc."); 848 849 case loc::GotoLabelKind: 850 // The only thing we know about labels is that they're non-null. 851 if (rhs.isZeroConstant()) { 852 switch (op) { 853 default: 854 break; 855 case BO_Sub: 856 return evalCastFromLoc(lhs, resultTy); 857 case BO_EQ: 858 case BO_LE: 859 case BO_LT: 860 return makeTruthVal(false, resultTy); 861 case BO_NE: 862 case BO_GT: 863 case BO_GE: 864 return makeTruthVal(true, resultTy); 865 } 866 } 867 // There may be two labels for the same location, and a function region may 868 // have the same address as a label at the start of the function (depending 869 // on the ABI). 870 // FIXME: we can probably do a comparison against other MemRegions, though. 871 // FIXME: is there a way to tell if two labels refer to the same location? 872 return UnknownVal(); 873 874 case loc::ConcreteIntKind: { 875 // If one of the operands is a symbol and the other is a constant, 876 // build an expression for use by the constraint manager. 877 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 878 // We can only build expressions with symbols on the left, 879 // so we need a reversible operator. 880 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 881 return UnknownVal(); 882 883 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 884 op = BinaryOperator::reverseComparisonOp(op); 885 return makeNonLoc(rSym, op, lVal, resultTy); 886 } 887 888 // If both operands are constants, just perform the operation. 889 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 890 SVal ResultVal = 891 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 892 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 893 return evalCastFromNonLoc(*Result, resultTy); 894 895 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 896 return UnknownVal(); 897 } 898 899 // Special case comparisons against NULL. 900 // This must come after the test if the RHS is a symbol, which is used to 901 // build constraints. The address of any non-symbolic region is guaranteed 902 // to be non-NULL, as is any label. 903 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 904 if (lhs.isZeroConstant()) { 905 switch (op) { 906 default: 907 break; 908 case BO_EQ: 909 case BO_GT: 910 case BO_GE: 911 return makeTruthVal(false, resultTy); 912 case BO_NE: 913 case BO_LT: 914 case BO_LE: 915 return makeTruthVal(true, resultTy); 916 } 917 } 918 919 // Comparing an arbitrary integer to a region or label address is 920 // completely unknowable. 921 return UnknownVal(); 922 } 923 case loc::MemRegionValKind: { 924 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 925 // If one of the operands is a symbol and the other is a constant, 926 // build an expression for use by the constraint manager. 927 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 928 if (BinaryOperator::isComparisonOp(op)) 929 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 930 return UnknownVal(); 931 } 932 // Special case comparisons to NULL. 933 // This must come after the test if the LHS is a symbol, which is used to 934 // build constraints. The address of any non-symbolic region is guaranteed 935 // to be non-NULL. 936 if (rInt->isZeroConstant()) { 937 if (op == BO_Sub) 938 return evalCastFromLoc(lhs, resultTy); 939 940 if (BinaryOperator::isComparisonOp(op)) { 941 QualType boolType = getContext().BoolTy; 942 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); 943 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 944 return evalBinOpNN(state, op, l, r, resultTy); 945 } 946 } 947 948 // Comparing a region to an arbitrary integer is completely unknowable. 949 return UnknownVal(); 950 } 951 952 // Get both values as regions, if possible. 953 const MemRegion *LeftMR = lhs.getAsRegion(); 954 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 955 956 const MemRegion *RightMR = rhs.getAsRegion(); 957 if (!RightMR) 958 // The RHS is probably a label, which in theory could address a region. 959 // FIXME: we can probably make a more useful statement about non-code 960 // regions, though. 961 return UnknownVal(); 962 963 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 964 const MemRegion *RightBase = RightMR->getBaseRegion(); 965 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 966 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 967 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 968 969 // If the two regions are from different known memory spaces they cannot be 970 // equal. Also, assume that no symbolic region (whose memory space is 971 // unknown) is on the stack. 972 if (LeftMS != RightMS && 973 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 974 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 975 switch (op) { 976 default: 977 return UnknownVal(); 978 case BO_EQ: 979 return makeTruthVal(false, resultTy); 980 case BO_NE: 981 return makeTruthVal(true, resultTy); 982 } 983 } 984 985 // If both values wrap regions, see if they're from different base regions. 986 // Note, heap base symbolic regions are assumed to not alias with 987 // each other; for example, we assume that malloc returns different address 988 // on each invocation. 989 // FIXME: ObjC object pointers always reside on the heap, but currently 990 // we treat their memory space as unknown, because symbolic pointers 991 // to ObjC objects may alias. There should be a way to construct 992 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 993 // guesses memory space for ObjC object pointers manually instead of 994 // relying on us. 995 if (LeftBase != RightBase && 996 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 997 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 998 switch (op) { 999 default: 1000 return UnknownVal(); 1001 case BO_EQ: 1002 return makeTruthVal(false, resultTy); 1003 case BO_NE: 1004 return makeTruthVal(true, resultTy); 1005 } 1006 } 1007 1008 // Handle special cases for when both regions are element regions. 1009 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 1010 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 1011 if (RightER && LeftER) { 1012 // Next, see if the two ERs have the same super-region and matching types. 1013 // FIXME: This should do something useful even if the types don't match, 1014 // though if both indexes are constant the RegionRawOffset path will 1015 // give the correct answer. 1016 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 1017 LeftER->getElementType() == RightER->getElementType()) { 1018 // Get the left index and cast it to the correct type. 1019 // If the index is unknown or undefined, bail out here. 1020 SVal LeftIndexVal = LeftER->getIndex(); 1021 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1022 if (!LeftIndex) 1023 return UnknownVal(); 1024 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); 1025 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1026 if (!LeftIndex) 1027 return UnknownVal(); 1028 1029 // Do the same for the right index. 1030 SVal RightIndexVal = RightER->getIndex(); 1031 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1032 if (!RightIndex) 1033 return UnknownVal(); 1034 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); 1035 RightIndex = RightIndexVal.getAs<NonLoc>(); 1036 if (!RightIndex) 1037 return UnknownVal(); 1038 1039 // Actually perform the operation. 1040 // evalBinOpNN expects the two indexes to already be the right type. 1041 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1042 } 1043 } 1044 1045 // Special handling of the FieldRegions, even with symbolic offsets. 1046 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1047 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1048 if (RightFR && LeftFR) { 1049 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1050 *this); 1051 if (!R.isUnknown()) 1052 return R; 1053 } 1054 1055 // Compare the regions using the raw offsets. 1056 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1057 RegionOffset RightOffset = RightMR->getAsOffset(); 1058 1059 if (LeftOffset.getRegion() != nullptr && 1060 LeftOffset.getRegion() == RightOffset.getRegion() && 1061 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1062 int64_t left = LeftOffset.getOffset(); 1063 int64_t right = RightOffset.getOffset(); 1064 1065 switch (op) { 1066 default: 1067 return UnknownVal(); 1068 case BO_LT: 1069 return makeTruthVal(left < right, resultTy); 1070 case BO_GT: 1071 return makeTruthVal(left > right, resultTy); 1072 case BO_LE: 1073 return makeTruthVal(left <= right, resultTy); 1074 case BO_GE: 1075 return makeTruthVal(left >= right, resultTy); 1076 case BO_EQ: 1077 return makeTruthVal(left == right, resultTy); 1078 case BO_NE: 1079 return makeTruthVal(left != right, resultTy); 1080 } 1081 } 1082 1083 // At this point we're not going to get a good answer, but we can try 1084 // conjuring an expression instead. 1085 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1086 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1087 if (LHSSym && RHSSym) 1088 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1089 1090 // If we get here, we have no way of comparing the regions. 1091 return UnknownVal(); 1092 } 1093 } 1094 } 1095 1096 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1097 BinaryOperator::Opcode op, 1098 Loc lhs, NonLoc rhs, QualType resultTy) { 1099 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1100 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1101 if (PTMSV->isNullMemberPointer()) 1102 return UndefinedVal(); 1103 if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) { 1104 SVal Result = lhs; 1105 1106 for (const auto &I : *PTMSV) 1107 Result = StateMgr.getStoreManager().evalDerivedToBase( 1108 Result, I->getType(),I->isVirtual()); 1109 return state->getLValue(FD, Result); 1110 } 1111 } 1112 1113 return rhs; 1114 } 1115 1116 assert(!BinaryOperator::isComparisonOp(op) && 1117 "arguments to comparison ops must be of the same type"); 1118 1119 // Special case: rhs is a zero constant. 1120 if (rhs.isZeroConstant()) 1121 return lhs; 1122 1123 // Perserve the null pointer so that it can be found by the DerefChecker. 1124 if (lhs.isZeroConstant()) 1125 return lhs; 1126 1127 // We are dealing with pointer arithmetic. 1128 1129 // Handle pointer arithmetic on constant values. 1130 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1131 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1132 const llvm::APSInt &leftI = lhsInt->getValue(); 1133 assert(leftI.isUnsigned()); 1134 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1135 1136 // Convert the bitwidth of rightI. This should deal with overflow 1137 // since we are dealing with concrete values. 1138 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1139 1140 // Offset the increment by the pointer size. 1141 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1142 QualType pointeeType = resultTy->getPointeeType(); 1143 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1144 rightI *= Multiplicand; 1145 1146 // Compute the adjusted pointer. 1147 switch (op) { 1148 case BO_Add: 1149 rightI = leftI + rightI; 1150 break; 1151 case BO_Sub: 1152 rightI = leftI - rightI; 1153 break; 1154 default: 1155 llvm_unreachable("Invalid pointer arithmetic operation"); 1156 } 1157 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1158 } 1159 } 1160 1161 // Handle cases where 'lhs' is a region. 1162 if (const MemRegion *region = lhs.getAsRegion()) { 1163 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1164 SVal index = UnknownVal(); 1165 const SubRegion *superR = nullptr; 1166 // We need to know the type of the pointer in order to add an integer to it. 1167 // Depending on the type, different amount of bytes is added. 1168 QualType elementType; 1169 1170 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1171 assert(op == BO_Add || op == BO_Sub); 1172 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1173 getArrayIndexType()); 1174 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1175 elementType = elemReg->getElementType(); 1176 } 1177 else if (isa<SubRegion>(region)) { 1178 assert(op == BO_Add || op == BO_Sub); 1179 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1180 superR = cast<SubRegion>(region); 1181 // TODO: Is this actually reliable? Maybe improving our MemRegion 1182 // hierarchy to provide typed regions for all non-void pointers would be 1183 // better. For instance, we cannot extend this towards LocAsInteger 1184 // operations, where result type of the expression is integer. 1185 if (resultTy->isAnyPointerType()) 1186 elementType = resultTy->getPointeeType(); 1187 } 1188 1189 // Represent arithmetic on void pointers as arithmetic on char pointers. 1190 // It is fine when a TypedValueRegion of char value type represents 1191 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1192 if (elementType->isVoidType()) 1193 elementType = getContext().CharTy; 1194 1195 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1196 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1197 superR, getContext())); 1198 } 1199 } 1200 return UnknownVal(); 1201 } 1202 1203 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1204 SVal V) { 1205 V = simplifySVal(state, V); 1206 if (V.isUnknownOrUndef()) 1207 return nullptr; 1208 1209 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1210 return &X->getValue(); 1211 1212 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1213 return &X->getValue(); 1214 1215 if (SymbolRef Sym = V.getAsSymbol()) 1216 return state->getConstraintManager().getSymVal(state, Sym); 1217 1218 // FIXME: Add support for SymExprs. 1219 return nullptr; 1220 } 1221 1222 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1223 // For now, this function tries to constant-fold symbols inside a 1224 // nonloc::SymbolVal, and does nothing else. More simplifications should 1225 // be possible, such as constant-folding an index in an ElementRegion. 1226 1227 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1228 ProgramStateRef State; 1229 SValBuilder &SVB; 1230 1231 // Cache results for the lifetime of the Simplifier. Results change every 1232 // time new constraints are added to the program state, which is the whole 1233 // point of simplifying, and for that very reason it's pointless to maintain 1234 // the same cache for the duration of the whole analysis. 1235 llvm::DenseMap<SymbolRef, SVal> Cached; 1236 1237 static bool isUnchanged(SymbolRef Sym, SVal Val) { 1238 return Sym == Val.getAsSymbol(); 1239 } 1240 1241 SVal cache(SymbolRef Sym, SVal V) { 1242 Cached[Sym] = V; 1243 return V; 1244 } 1245 1246 SVal skip(SymbolRef Sym) { 1247 return cache(Sym, SVB.makeSymbolVal(Sym)); 1248 } 1249 1250 public: 1251 Simplifier(ProgramStateRef State) 1252 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1253 1254 SVal VisitSymbolData(const SymbolData *S) { 1255 // No cache here. 1256 if (const llvm::APSInt *I = 1257 SVB.getKnownValue(State, SVB.makeSymbolVal(S))) 1258 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1259 : (SVal)SVB.makeIntVal(*I); 1260 return SVB.makeSymbolVal(S); 1261 } 1262 1263 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually 1264 // start producing them. 1265 1266 SVal VisitSymIntExpr(const SymIntExpr *S) { 1267 auto I = Cached.find(S); 1268 if (I != Cached.end()) 1269 return I->second; 1270 1271 SVal LHS = Visit(S->getLHS()); 1272 if (isUnchanged(S->getLHS(), LHS)) 1273 return skip(S); 1274 1275 SVal RHS; 1276 // By looking at the APSInt in the right-hand side of S, we cannot 1277 // figure out if it should be treated as a Loc or as a NonLoc. 1278 // So make our guess by recalling that we cannot multiply pointers 1279 // or compare a pointer to an integer. 1280 if (Loc::isLocType(S->getLHS()->getType()) && 1281 BinaryOperator::isComparisonOp(S->getOpcode())) { 1282 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1283 // the same meaning for Loc-type symbols, but the latter form 1284 // is preferred in SVal computations for being Loc itself. 1285 if (SymbolRef Sym = LHS.getAsSymbol()) { 1286 assert(Loc::isLocType(Sym->getType())); 1287 LHS = SVB.makeLoc(Sym); 1288 } 1289 RHS = SVB.makeIntLocVal(S->getRHS()); 1290 } else { 1291 RHS = SVB.makeIntVal(S->getRHS()); 1292 } 1293 1294 return cache( 1295 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1296 } 1297 1298 SVal VisitSymSymExpr(const SymSymExpr *S) { 1299 auto I = Cached.find(S); 1300 if (I != Cached.end()) 1301 return I->second; 1302 1303 // For now don't try to simplify mixed Loc/NonLoc expressions 1304 // because they often appear from LocAsInteger operations 1305 // and we don't know how to combine a LocAsInteger 1306 // with a concrete value. 1307 if (Loc::isLocType(S->getLHS()->getType()) != 1308 Loc::isLocType(S->getRHS()->getType())) 1309 return skip(S); 1310 1311 SVal LHS = Visit(S->getLHS()); 1312 SVal RHS = Visit(S->getRHS()); 1313 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) 1314 return skip(S); 1315 1316 return cache( 1317 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1318 } 1319 1320 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1321 1322 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1323 1324 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1325 // Simplification is much more costly than computing complexity. 1326 // For high complexity, it may be not worth it. 1327 return Visit(V.getSymbol()); 1328 } 1329 1330 SVal VisitSVal(SVal V) { return V; } 1331 }; 1332 1333 // A crude way of preventing this function from calling itself from evalBinOp. 1334 static bool isReentering = false; 1335 if (isReentering) 1336 return V; 1337 1338 isReentering = true; 1339 SVal SimplifiedV = Simplifier(State).Visit(V); 1340 isReentering = false; 1341 1342 return SimplifiedV; 1343 } 1344